
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and

Computer Science
Delft Institute of Applied Mathematics

Time Integration of the Chemistry of Combustion
Processes in Industrial Furnaces, using Julia

Thesis submitted to the
Delft Institute of Applied Mathematics
in partial fulfilment of the requirements

for the degree

BACHELOR OF SCIENCE
in

APPLIED MATHEMATICS

by
Jochem Jelle van der Meer

Delft, Nederland
June 2023

Copyright © 2023 by Jochem Jelle van der Meer. All rights reserved.

BSc thesis APPLIED MATHEMATICS

“Time Integration of the Chemistry of Combustion Processes in
Industrial Furnaces, using Julia”

Jochem Jelle van der Meer

Delft University of Technology

Thesis committee
Dr. Domenico J.P. Lahaye

Dr. Neil V. Budko

June, 2023
Delft

Abstract

Combustion is and remains for the foreseeable future an essential chemical pro-
cess. The physical and mathematical modelling of such processes can help to
optimise the design and operation of combustion furnaces which is critical for
fuel efficiency. Given the combined complexity and interaction of the gas flow
dynamics and the reaction processes however, such modelling can become time
consuming and demanding when it is comes to computational capacity.

It is for this reason that alternative modelling and computational techniques
are of interest. This paper serves as a thorough introduction to modelling this
process using Chemical Reactor Networks (CRN) – which is known to be a
relatively efficient model and computational approach.

It provides a step-by-step explanation of the CRN approach, as well as a
hands-on implementation for a One-Step Mechanism, ie. a combustion process
involving only a single stage oxidisation of the fuel. It also introduces the
reader to the industry standard CHEMKIN format and the GRI 3.0 data-base,
and investigates the possibility of incorporating the state-of-the-art GRI 3.0
database into Chemical Reactor Networks.

Following on from this work it is recommended to validate CRN based results
against experimental data and modelling results using different techniques such
as Computational Fluid Dynamics to gauge both accuracy and computational
efficiency.

Acknowledgements

Many thanks go to Dr. Lahaye, who never shied away from the long meetings
many of which ate into overtime. They always left me feeling highly motivated
regarding both the subject matter and the project.

4

Contents

1 Introduction 7

2 Construction of Chemical Reactor Networks, an Introduction 8
2.1 Chemical Reactions on Nodes of the Network 9
2.2 Diffusion across Edges of Network 10

3 Diffusion only 14
3.1 Graph 1 . 14
3.2 Graph 2 . 18
3.3 Graph 3 . 23
3.4 Very large graphs . 24

4 One-Step Mechanism 25
4.1 Results . 28

5 GRI 3.0 database 30
5.1 Chemical Kinetics . 30
5.2 CHEMKIN format . 31
5.3 Handling GRI . 35

5.3.1 Extracting Stoichiometric Coefficients 35
5.4 GRI 3.0 constant temp, forward rate only 37

5.4.1 In 1 node, for 1 reaction 37
5.4.2 For all nodes, for all reactions 38

5.5 Results . 39

6 Future Expansions 44
6.1 Diffusivity coefficient . 44
6.2 GRI 3.0 backward reaction rates 45
6.3 Temperature . 46

7 Conclusion 47

8 Further practical resources 48

Bibliography 48

A Julia implementation 49

B Diffusion only 56
B.1 Graph 1 . 56
B.2 Graph 2 . 59
B.3 Graph 3 . 62
B.4 Graph 4 . 67
B.5 Graph 5 . 68
B.6 Graph 6 . 69

5

C GRI, gathering data 70

6

1 Introduction

Approximately 90% of the total energy production (including electricity) glob-
ally, is realized using combustion processes [15]. Despite the growth in renewable
energies hydrocarbon fuels are expected to remain very relevant for many ap-
plications due to some their unique properties. Chief amongst them being their
high energy density.

Given the increasing costs of combustion fuels and requirements to reduce
carbon footprint, the further optimisation of combustion processes therefore
remains very important. One way to identify and test possibilities for optimisa-
tion is through physical experiments using model systems, or even at industrial
scale. Such experiments are however costly, time consuming, and combustion
furnaces may not be readily available.

Instead physical and mathematical modelling can be applied which if val-
idated, can overcome many of the limitations of physical experiments. Com-
bustion processes are however notably complex involving the interdependent
effect of flow of gasses and combustion products through the furnace, and the
complex and often multi-stage combustion, chemical reaction processes, them-
selves. As a consequence such modelling can become very demanding in terms
of computational power and time.

It is for that reason that alternative and more simple physical and math-
ematical modelling techniques are being investigated. One such technique is
Chemical Reactor Networks (CRN), the subject of this research and paper. All
models have limitations, CRN however has a main advantage when it comes
to its computational efficiency relative to other common models. This applies
especially when compared to Computational Fluid Dynamics.

In order to help progress the evaluation and eventual adaptation of CRN
this paper provides a thorough introduction to subject. This is deemed useful
because the subject of CRN and Combustion, can be a confusing topic as it
draws on such a wide range of various disciplines namely Differential Equations,
Graph Theory, Chemistry, Linear Algebra, and Numerical Methods.

In order to maximise our understanding of CRN and in particular the ex-
plicit control of the model, this study has developed some of the key algorithms
used to construct the networks itself, instead of relying on using standard pack-
aging from libraries such as NetworkDynamics.jl. The functioning of this CRN
approach is tested and evaluated with a one-step mechanism for the combustion
of methane.

Finally, we will also discuss how the approach can be extended to incorporate
GRI 3.0, the importance of Chemical Kinetics, and how to handle GRI. Which
enables the deployment of more complex processes than the one-step mechanism.

7

2 Construction of Chemical Reactor Networks,
an Introduction

Chemical Reactor Networks are constructed by splitting up a problem (fur-
nace, kiln, etc) spatially. Each section can then be represented by a node in a
graph/network. Where each section is connected to the next via edges between
the respective nodes. On each of these nodes we apply a model for simulating
the chemistry that occurs within. We can then carry out calculations upon
the network as a whole covering both the chemistry for all nodes and the flow
between them.

In order to further the reader’s understanding we will make use of a visual
aid. Take for example this cement kiln:

Figure 1: Rendering of Cement Kiln, courtesy of Dr. Lahaye

We can split this kiln into multiple, say 4, sections as follows:

Figure 2: Rendering of Cement Kiln, courtesy of Dr. Lahaye, divided into 4
sections

From this we can extract our graph of nodes and edges:

8

Figure 3: Graph of the Cement Kiln

Now we have a graph representing the cement kiln, such that the nodes rep-
resent a section of the kiln and the edges represent a connection between the
sections. With a network such as this we can apply chemistry to each of the
nodes and use the edges to connect the sections.

This is the essence of Chemical Reactor Networks.

2.1 Chemical Reactions on Nodes of the Network

First we must introduce some very basic terminology, namely Chemical species,
or species, simply put this term is commonly used term to encompass molecules,
atoms, ions and radicals.

For each node we wish to know the molar concentration of the various species
which will be denoted using the common notation [·], the aforementioned is
defined such that [Xk] is the number of moles of species k per unit volume[15].

Each i-th node therefore will have a corresponding vector of molar concen-
trations:

ui =

 [X1]
...

[Xns
]

, where ns is the number of species.

Off course we would also like to know how the concentration of the various
species change over time. This, off course, is governed by differential equations:

d[Xk]
dt = RHS, for arbitrary k

We will discuss the specifics of the RHS later on, see section 4 and section 5,
but for now let’s not get bogged down with the details.

For each i-th node we can again make a corresponding vector, this time
containing the changes in concentrations:

u̇i =


d[X1]
dt
...

d[Xns]
dt

, where again ns is the number of species.

This results in two lists of vectors, namely:

u1, u2, . . . , unn and u̇1, u̇2, . . . , u̇nn , where nn is the number of nodes.

These lists of vectors can then be combined into two larger vectors as follows:

9

u =

 u1

...
unn

 , u̇ =

 u̇1

...
u̇nn


Here u and u̇ are associated with the entire network, with ui and u̇i being
associated with the i-th node.

2.2 Diffusion across Edges of Network

In order to connect the different nodes of the network according to the edges be-
tween them we must allow for the diffusion of chemical species. This is governed
by Fick’s Second Law of Diffusion[2]:

∂[Xk]
∂t = D ∂2[Xk]

∂x2 , for arbitrary k

Where D is a diffusivity coefficient which may be a function of temperature
and can differ per species. For now we will simply set D = 1, see section 6.
Conveniently and unsurprisingly Fick’s Second Law is analogous to the Heat
Equation, a common problem for which many spatial discretization methods
are known. Here we will be drawing upon the field of Numerical Methods[10].

We can visualise the spatial aspect of our problem (for example the kiln we
mentioned earlier) as a line, with a node at each xi:

x0 x1
. . . xi

. . . xnn xnn+1

left right

Where x0 and xnn+1 are virtual points, because in reality we only have nn

nodes. With regards to our kiln example earlier, these virtual points represent
the space outside of the kiln.

Because we are modelling a sealed furnace there should be no flow of species
out of the ends of the furnace. Meaning there should be no flow from point x1

through left to x0, nor from xnn
through right to xnn+1. This will give us the

following (cell-centered Neumann) boundary conditions[10]:

∂[Xk]
∂x (left) = 0, ∂[Xk]

∂x (right) = 0, for arbitrary k

We can now proceed to spatially discretise the diffusion equation. A common
approach is FDM (Finite Differences Method).

For ease of notation we will use y = [Xk] for arbitrary species k, and yi =
y(xi).

We start by constructing Taylor polynomials around xi in order to derive
the second-order central difference quotient:

yi+1 = yi + h
dy

dx
(xi) +

h2

2!

d2y

dx2
(xi) +

h3

3!

d3y

dx3
(xi) +O(h4)

yi−1 = yi − h
dy

dx
(xi) +

h2

2!

d2y

dx2
(xi)−

h3

3!

d3y

dx3
(xi) +O(h4)

10

=⇒ yi−1 + yi+1 = 2yi + h2 d
2y

dx2
+O(h4)

=⇒ yi−1 − 2yi + yi+1

h2
=

d2y

dx2
+O(h2)

Where h represents the (normalised) distance between nodes and thus between
sections, since we are using uniform distance for all edges we will use h = 1.
The standard notation for the numerical solution is ui. Conveniently due to the
set up of our model in 2.1 and because we designed yi for arbitrary species, we
are able to use the same ui, by switching from element-wise (species wise) to
vector-wise notation. Resulting in the following set of equations:

ui−1 − 2ui + ui+1 = fi, for i = 1, . . . , nn where fi =
∂ui

∂t

With similarly discretised Boundary Conditions:

∂[Xk]
∂x (left) = 0 =⇒ −u0 + u1 = 0

∂[Xk]
∂x (right) = 0 =⇒ −unn + unn+1 = 0

Note however that the equations for i = 1, nn contain the virtual points with
index i = 0, nn + 1:

u0 − 2u1 + u2 = f1, unn−1 − 2unn
+ unn+1 = fnn

In order to assert our Boundary Conditions and remove these virtual points we
will substitute their discretised versions into these equations. Resulting in the
following set of equations:

−u1 + u2 = f1
ui−1 − 2ui + ui+1 = fi, for i = 2, . . . , nn − 1

unn−1 − unn
= fnn

We can then use this to construct a matrix-vector system for arbitrary species
k which will look as follows:

˙[Xk] =


−1 1
1 −2 1

. . .

1 −2 1
1 −1


︸ ︷︷ ︸

A


[Xk]

∣∣∣
node 1
...

[Xk]
∣∣∣
node nn

 (1)

Thus if our system were to consist of only one species, rather than ns species
we could write our system simply as:

u̇ = Au (2)

Those familiar with Graph Theory will notice that the matrix A seems very
familiar. In fact A = −L, where L is the Laplacian matrix of the graph. This

11

is because the discrete Laplacian operator, also known as the Laplacian matrix,
is the discretised version of the standard continuous Laplacian operator, i.e. its
the continuous Laplacian operator re-defined for a discrete grid/graph. And

the operator used in Fick’s Second Law of Diffusion, ∂2

∂x2 , is simply the Laplace
operator in one dimension. For a more thorough explanation of this connection
with Graph Theory please refer to [21]. Fortunately the Laplacian matrix of a
graph is common terminology which is often implemented in software dealing
with graphs, including the Graphs.jl package [7] which we will be using. For
formal definitions from the field of Graph Theory please refer to [1].

Now we will rewrite the above system (1), in order to set up a system for
the entire network.

Note that u =

 u1

...
unn

 where ui =


[X1]

∣∣∣
node i
...

[Xns
]
∣∣∣
node i

 are column vectors.

Consider u written horizontally such that the column-vectors are unstacked
and laid out, as follows

ũ = unstack(u) =
[
u1 u2 . . . unn

]
=


u1[1] u2[1] . . . unn [1]
u1[2] u2[2] . . . unn [2]
...

... . . .
...

u1[ns] u2[ns] . . . unn
[ns]


Where ui[k] = [Xk]

∣∣∣
node i

denotes k-th element of ui.

Then

ũT =


u1[1] u1[2] . . . u1[ns]
u2[1] u2[2] . . . u2[ns]
...

... . . .
...

unn
[1] unn

[2] . . . unn
[ns]


For ease of notation we will call this matrix U and we’ll let

Uk =


[Xk]

∣∣∣
node 1
...

[Xk]
∣∣∣
node nn

 =

 u1[k]
...

unn
[k]


Then

U =
[
U1 U2 . . . Uns

]
= ũT

is of the following form:

12


species1 ↓ species2 ↓ . . . species ns ↓

node1 →
node2 →
...
node nn →


Such that

AU =
[
AU1 AU2 . . . AUns

]
is a matrix multiplication for the entire network.

If we use ûi[k] = [̂Xk]
∣∣∣
node i

to denote the effect of the matrix multiplication on

k-th element of ui, then

AU =


û1[1] û1[2] . . . û1[ns]

û2[1] û2[2] . . . û2[ns]
...

... . . .
...

ûnn [1] ûnn [2] . . . ûnn [ns]



Of the form



species1 ↓ species2 ↓ . . . species ns ↓
node1 → û1[1] û1[2] . . . û1[ns]

node2 → û2[1] û2[2] . . . û2[ns]
...

...
... . . .

...

node nn → ûnn
[1] ûnn

[2] . . . ûnn
[ns]


We can then rewrite this into same the form of u and u̇ by taking the rows

and stacking them vertically.

stack(AU) =


row1(AU)
row2(AU)

...
rownn

(AU)

 =



û1[1]

û1[2]
...

û1[ns]
...

ûnn [1]

ûnn
[2]
...

ûnn [ns]


So we finally derive our network wide system for multiple species.

u̇ = stack(AU) (3)

13

3 Diffusion only

In this section we will investigate the effects of the diffusion without any chemical
reactions taking place. This will be showcased on various graphs. For each graph
we will give the Initial Conditions (henceforth IC) of a high concentration for
one or multiple species in one or multiple nodes. To implement the Diffusion-
only Mechanism the following (pseudo-)code is used to define the Differential
Equation which is then solved using DifferentialEquations.jl.

Algorithm 1: Diffusion only

u
∣∣
t=initial

= IC;

Function Differential Equation
U = transpose(unstack(u));
u̇+ = stack(AU);

end

We may consider our diffusion successful if for each graph we achieve:

� For any given species its concentration should be the same in each node.

� No matter is created or destroyed, because there is no chemistry and no
flow out of the network.

The latter can be checked simply by taking the sum of the final (post-diffusion)
concentration across the nodes, which should then be equal to the sum of the
initial concentration across the nodes.

∀k :

nn∑
i=1

[Xk]
∣∣∣
node=i,t=initial

=

nn∑
i=1

[Xk]
∣∣∣
node=i,t=final

(4)

3.1 Graph 1

The first graph we will showcase is a simple straight line with 6 nodes. It looks
as follows.

14

Figure 4: Graph 1 rendered using GraphPlot.jl

This image was generated using the very handy package GraphPlot.jl[13].
When building graphs with the Graphs.jl package it’s always useful and good
practice to visually double check that you’ve build the desired graph with a plot
of the graph, this will prevent a great deal of frustration.

We will be using the following IC:

� [CH4] = 1 initial value for CH4 in node 1

� [O2] = 1, initial value for O2 in node 2

� [O2] = 1, initial value for O2 in node 4

The results for each species are displayed below. The labels indicate the corre-
sponding node.

15

Figure 5: Concentrations of CH4

Figure 6: Concentrations of O2

16

Figure 7: Concentrations of H2O

Figure 8: Concentrations of CO2

As we can see in Figure 5 and Figure 6 we get a nice even diffusion of CH4

and O2 respectively. Where for both species the concentrations equalise across
all the nodes. Thus satisfying our first criteria.

Also, no matter is created or destroyed. Thus satisfying our second criteria.
This is observed very easily for each species. To wit: for CH4 we get a concen-

17

tration of 1
6 for each node, with a total of 6 nodes: 1

6 · 6 = 1 which is the same
total as our IC.

The above graphs are species focused, for a node focused graph please see
appendix B

3.2 Graph 2

The second graph we will showcase is a loop with 6 nodes. It looks as follows.

Figure 9: Graph 2 rendered using GraphPlot.jl

Using the same IC as for Graph 1 we get the following results.

18

Figure 10: Concentrations of CH4

Figure 11: Concentrations of O2

19

Figure 12: Concentrations of H2O

Figure 13: Concentrations of CO2

20

Figure 14: Concentrations of CH4, overlap node 3 and 5

Figure 15: Concentrations of CH4, overlap node 2 and 6

As we can see in figure 10 and 11 we get a nice even diffusion of CH4 and
O2 respectively. And again the total amount of matter stays the same.

The reader may have noticed that in Figure 10 only 4 lines are visible yet we
have 6 nodes. This is because the lines for node 3 and 5 overlap, as can be seen
in figure 14. And the lines for node 2 and 6 overlap, as can be seen in figure

21

15. This occurs because node 2 and 6 are equidistant from node 1 into which
the methane is injected. Likewise node 3 and 5 are also equidistant from node
1. Thus they will fill with methane at equal rates.

Likewise for oxygen we can see from the below figures 16 and 17 that the lines
for nodes 2 and 4 overlap, and the lines for nodes 1 and 5 overlap, respectively.

Figure 16: Concentrations of O2, overlap node 2 and 4

Figure 17: Concentrations of O2, overlap node 1 and 5

22

The above graphs are species focused, for node focused graphs please see
appendix B

3.3 Graph 3

For our third graph we will use a standard generator from the Graph.jl[7] pack-
age in order to produce a more complicated graph. The generator used is the
barabasi-albert function with 12 nodes, an average degree of 3, and random seed
42.

Figure 18: Graph 3 rendered using GraphPlot.jl

In order to reduce the number of graphs for us to look at we will use the
following IC:

� [CH4] = 1 initial value for CH4 in node 1

Which provides the following results.

23

Figure 19: Concentrations of CH4

Again we get a nice even diffusion across all nodes and the total amount of
matter is maintained. For the additional graphs please refer to appendix B.

3.4 Very large graphs

Here we will investigate diffusion on very large graphs. Specifically we will com-
pare calculation times for diffusion when using time-integration and a linear
solver. Julia provides a native standard library called LinearAlgebra [9] it con-
tains the backslash operator, so called because of its syntax ”\” , which performs
linear solution.

However we must first derive the linear system which will we solve. We will
use only one species, say CH4, with IC:

� [CH4] = 1 initial value for CH4 in node 1

Recall the diffusion system for one species (2):

u̇ = Au

Diffusion will have finished when u̇ = 0, thus we want to solve

u̇ = Ax = 0, where x = u
∣∣
t=final

(5)

We can use (4) to incorporate our IC as follows.

nn∑
i=1

[CH4]
∣∣∣
node=i,t=initial

=

nn∑
i=1

[CH4]
∣∣∣
node=i,t=final

24

=⇒ 1 =

nn∑
i=1

[CH4]
∣∣∣
node=i,t=final

=

nn∑
i=1

xi

Which we can incorporate into the system we need to solve.

u̇ =



−1 1
1 −2 1

. . .

1 −2 1
1 −1

1 1 1 1 1


︸ ︷︷ ︸

Ā

 x1

...
xnn

 =


0
...
0
1


︸︷︷︸

q

u̇ = Āx = q

To generate these graphs we will again use the barabassi-albert graph gen-
erator with an average degree of 3 and random seed 42. A varying number of
nodes will be used in increasing orders of magnitude to up the computational
load. The results are tabulated in Table 1.

Time required (s)
Graph Number of nodes Linear solve ”\” DifferentialEquation.jl

4 1,000 0.1750141 1.1304552
5 10,000 41.8191324 159.6922803
6 100,000 unsuccessful 528.5795513

Table 1: Time requirements diffusion

As we can see the Backslash operator is able to deliver much faster per-
formance than time-integration using DifferentialEquations.jl. However due to
memory requirements the former is unsuccessful when we reach Graphs of the
order of 100,000 nodes. For the related visuals refer to Appendix B.

4 One-Step Mechanism

In this section we will look at a simple chemical reaction for the combustion of
methane, a so-called One-Step Mechanism.

CH4 + 2O2 → CO2 + 2H2O

Here Methane and Oxygen react forming Carbon-dioxide and Water. The
graph upon which we will implement this looks as follows:

25

Figure 20: Graph 1 rendered using GraphPlot.jl

Now that we have our graph and we have our species and chemical reaction,
the next step is to determine the reaction rate. This is governed by the following
aspects:

1. Arrhenius’ Law

2. Concentration levels

3. Stoichiometric Coefficients

Arrhenius Law [15] is an empirical law which states that the (forward) reaction
rate coefficient k is given by:

k = AT βexp(− E

RT
)

Where

� k is the (forward) reaction rate coefficient

� A is a pre-exponential constant

� T is the temperature

� β is the temperature exponent

� E is the activation energy

� R is the ideal gas constant.

26

When concentrations of CH4 and O2 are higher more collisions between
them will occur thus increasing the chances of a reaction taking place. To take
this into account the Arrhenius’ law must be combined with the concentration
levels of Methane and Oxygen to determine the overall (forward) reaction rate,
as follows[15]:

rate = k · [CH4] · [O2]

Because this reaction is not an elementary reaction we must also take into
account the associated reaction order for the two species,[11].

rate = k · [CH4]
1 · [O2]

0.5

In order to determine the rate at which each individual species is used-up
or produced we must regard their Stoichiometric coefficients[15]. The Stoichio-
metric coefficient of a given species is simply the coefficient of said species in
the equation for the relevant reaction. For our One-Step Mechanism we have
1 molecule of Methane reacting with 2 molecules of Oxygen, resulting in 1
molecule of Carbon-dioxide and 2 molecules of Water. Thus the Stoichiomet-
ric coefficients for CH4, O2, CO2 and H2O are 1,2,1,2 respectively. Combining
these with our overall reaction rate we can determine the rate for each individual
species as follows:

d[CH4]
dt = −1 · rate

d[O2]
dt = −2 · rate

d[CO2]
dt = 1 · rate

d[H2O]
dt = 2 · rate

To implement the One-Step Mechanism the following (pseudo-)code is used
to define the Differential Equation which is then solved using DifferentialEqua-
tions.jl.

Algorithm 2: One-Step Mechanism

coefficients = [−1,−2, 1, 2]
Function Differential Equation

for i ∈ 1 : nn do
rate = k · [CH4]i · [O2]i;
for j ∈ 0 : ns − 1 do

u̇[i · ns − j] =coefficient[end -j]·rate;
end

end
U = transpose(unstack(u));
u̇+ = stack(AU);

end

27

4.1 Results

The One-Step Mechanism was implemented using the parameter values[11]
found in Table 2.

Parameter Value
A 1.1e10
T 1e3
β 0
E 2e4
R 8.3145

Table 2: Parameter values for the One-Step Mechanism [11]

And using the following IC:

� [CH4] = 1 initial value for CH4 in node 1

� [O2] = 1, initial value for O2 in node 2

� [O2] = 1, initial value for O2 in node 4

Figure 21: Concentrations of CH4

28

Figure 22: Concentrations of O2

Figure 23: Concentrations of CO2

29

Figure 24: Concentrations of H2O

5 GRI 3.0 database

GRI 3.0 is a state of the art database containing all manner of data concerning
combustion reactions and the species involved[18].

5.1 Chemical Kinetics

In highschool students are taught, as with most matters relating to the sci-
ences, a simplified version of combustion reactions. For example, the simplest
combustion reaction possible is that of Hydrogen:

2H2 +O2 → 2H2O

We are taught that Hydrogen and Oxygen react thus producing Water. In
reality however there are many more elementary reactions that occur in be-
tween, even for such a simple reaction as the combustion of hydrogen we get
the following list of elementary reactions that actually occur[18]:

� H2+O2=OH+OH

� H2+OH=H2O+H

� H+O2=OH+O

� O+H2=OH+H

� H+O2+M=HO2+M

� H+O2+O2=HO2+O2

� H+O2+N2=HO2+N2

� OH+HO2=H2O+O2

� H+HO2=OH+OH

� O+HO2=O2+OH

30

� OH+OH=O+H2O

� H2+M=H+H+M

� O2+M=O+O+M

� H+OH+M=H2O+M

� HO2+H=H2+O2

� HO2+HO2=H2O2+O2

� H2O2+M=OH+OH+M

� H2O2+H=H2+HO2

� H2O2+OH=H2O+HO2

The more complex the fuel the more complex the reaction and the more
elementary reactions we get. If we then wish to look at the combustion of
natural gas, which is a mix of multiple fuels, well you can just imagine how
complicated it gets. But in fact you will not have to use your imagination,
you can simply look at the GRI 3.0 database which was designed for this very
purpose, it contains the 53 species and 325 elementary reactions involved in the
combustion of natural gas using air (rather than simply pure oxygen). This is
also much closer to industry application where natural gas is used rather than
just methane, and air rather than pure oxygen (which is rather expensive, whilst
air is free).

On top of this, these elementary reactions greatly affect the speed at which
the combustion occurs both in reality and in our model. This will affect how
closely our model can mimic reality with regards to the rate at which concen-
trations of species change, which also affects diffusion (e.g. there can be no
diffusion if a species is already used-up), and the rate at which temperature
changes (see section 6). Where thermochemistry deals only with the initial and
final states, chemical kinetics deals with the speed at which chemistry proceeds.

This is the essence of Chemical Kinetics.

5.2 CHEMKIN format

GRI 3.0 contains a grimech30 file which is the chemical-kinetics file, and a
thermo30 file which is the thermodynamic file[18]. They are stored in the
CHEMKIN format (specifically CHEMKIN-II), the relevant parts of which will
now be explained.

The grimech30 file will look as follows:

31

ELEMENTS

O H C N AR

END

SPECIES

H2 H O O2 OH H2O HO2 H2O2

C CH CH2 CH2(S) CH3 CH4 CO CO2

...(etc)...

END

!THERMO

! Insert GRI-Mech thermodynamics here or use in default file

!END

REACTIONS

REACTIONS KJOULES/MOLE MOLECULES

2O+M<=>O2+M 1.200E+17 -1.000 .00

...(etc)...

END

Figure 25: grimech30 example

As you can see in figure 25 the file contains:

1. An elements block

Which contains a list of the chemical elements involved

2. A species block

Which contains a list of the 53 species involved

3. A thermo block

This where the thermo30 file is inserted

4. A reactions block

Which contains a list of the 325 reactions.

The reaction block has 4 columns, which contain the following pieces of
information, in order from left to right:

i. The chemical reaction equation

ii. The Arrhenius’ Law parameter A

iii. The Arrhenius’ Law parameter β

iv. The Arrhenius’ Law parameter E

32

The thermo30 file look as follows:

THERMO

O L 1/90O 1 G 200.000 3500.000 1000.000 1

2.56942078E+00-8.59741137E-05 4.19484589E-08-1.00177799E-11 1.22833691E-15 2

2.92175791E+04 4.78433864E+00 3.16826710E+00-3.27931884E-03 6.64306396E-06 3

-6.12806624E-09 2.11265971E-12 2.91222592E+04 2.05193346E+00 4

O2 TPIS89O 2 G 200.000 3500.000 1000.000 1

3.28253784E+00 1.48308754E-03-7.57966669E-07 2.09470555E-10-2.16717794E-14 2

-1.08845772E+03 5.45323129E+00 3.78245636E+00-2.99673416E-03 9.84730201E-06 3

-9.68129509E-09 3.24372837E-12-1.06394356E+03 3.65767573E+00 4

...(etc)...

Figure 26: thermo30 example

As you can see in figure 26 the file contains an entry for each species. Where
each entry is 4 lines (as is indicated on the right hand side). Lines 2,3 and 4
contain 14 numbers.

These numbers are used for the NASA polynomials:

Cp

R
= a1 + a2T + a3T

2 + a4T
3 + a5T

4

H

RT
= a1 + a2T/2 + a3T

2/3 + a4T
3/4 + a5T

4/5 + a6/T

S

R
= a1 ln(T) + a2T + a3T

2/2 + a4T
3/3 + a5T

4/4 + a7

(6)

We will be using a YAML formatted GRI file, which contains the information of
the grimech30 and thermo30 files[19]. This way we can use the human-friendly
YAML format[12], which we can parse using the YAML.jl package[3].

The gri30.yaml file will look as follows:

33

phases:

- name: gas

thermo: ideal-gas

elements: [O, H, C, N, Ar]

species: [H2, H, O, O2, OH ...(etc)..]

kinetics: gas

transport: mixture-averaged

state: {T: 300.0, P: 1 atm}

species:

- name: H2

composition: {H: 2}

thermo:

model: NASA7

temperature-ranges: [200.0, 1000.0, 3500.0]

data:

- [2.34433112, 7.98052075e-03, -1.9478151e-05, 2.01572094e-08,

-7.37611761e-12, -917.935173, 0.683010238]

- [3.3372792, -4.94024731e-05, 4.99456778e-07,

-1.79566394e-10, 2.00255376e-14, -950.158922, -3.20502331]

note: TPIS78

transport:

model: gas

geometry: linear

well-depth: 38.0

diameter: 2.92

polarizability: 0.79

rotational-relaxation: 280.0

...(etc)...

reactions:

- equation: 2 O + M <=> O2 + M # Reaction 1

type: three-body

rate-constant: {A: 1.2e+17, b: -1.0, Ea: 0.0}

efficiencies: {H2: 2.4, H2O: 15.4, CH4: 2.0, CO: 1.75, CO2: 3.6, C2H6: 3.0,

AR: 0.83}

...(etc)...

Figure 27: gri30.yaml example

As you can see in figure 27 the file contains:

1. A phases block

Which contains a list of the chemical elements, and species involved.

2. A species block

34

Which contains a list of the 53 species involved. Where thermo con-
tains the thermodynamic information of the respective species from the
thermo30 file. With data containing the NASA polynomial coefficients
for the respective species.

3. A reactions block

Which contains a list of the 325 reactions. With the Arrhenius’ Law
parameter values for each reaction.

Occasionally there will be an entry in the reactions block which looks like
this:

- equation: O + CO (+M) <=> CO2 (+M) # Reaction 12

type: falloff

low-P-rate-constant: {A: 6.02e+14, b: 0.0, Ea: 3000.0}

high-P-rate-constant: {A: 1.8e+10, b: 0.0, Ea: 2385.0}

efficiencies: {H2: 2.0, O2: 6.0, H2O: 6.0, CH4: 2.0, CO: 1.5, CO2: 3.5,

C2H6: 3.0, AR: 0.5}

Figure 28: gri30.yaml Reaction equation example

In Figure 28 we see that there are both Low Pressure and High Pressure
parameter values. We will be using the low pressure as Industrial Furnaces
generally do not operate using high pressures[5]. Note: M can be ignored when
doing any calculation, it is a special dummy character symbolising all species.

5.3 Handling GRI

5.3.1 Extracting Stoichiometric Coefficients

Extract a vector of all species, we will call this vector: species.

species =


”H2O”
”H”
”O”
...

, a 53 element-vector

Per convention for every reaction the species on the Left Hand Side (hence-
forth LHS) are called the reactant species and the species on the Right Hand
Side (henceforth RHS) are called the product species.

reactants ⇄ products, reversible reactions
reactants → products, non-reversible reactions

For each reaction equation we extract the molar stoichiometric coefficients using
string manipulation and put these into 2 vectors.

35

For example let’s take reaction equation 1 in the GRI database: ”2 O +
M <=> O2 + M” This is split into a vector:

eq =



”2”
”O”
” + ”
”M”

” <=> ”
”O2”
” + ”
”M”


Which in turn is split into 2 vectors, eq l and eq r for the LHS and RHS respec-
tively:

eq l =


”2”
”O”
” + ”
”M”

 , eq r =

”O2”
” + ”
”M”


We extract the stoichiometric coefficient of every species in eq l and eq r.

From eq l we get 2 for species ”O”. From eq r we get 1 for species ”O2”. This
is done by parsing to Float64 the vector element at the index preceding that of
a species in the vector.

These coefficients are put into two vectors, v l j and v l r for the LHS and
RHS of the j-th reaction respectively. These vectors are of 53-elements (num-
ber of species) such that the coefficients are at the index of the species.

For our example with reaction equation 1: The only species in the LHS is
”O” with coefficient 2. The index of species ”O” in the species vector is 3. So
we make a vector with 3rd entry equal to 2.

v l 1 =



0
0
2
0
0
...


, similarly for RHS v r 1 =



0
0
0
1
0
...


The above is done for all 325 reactions. These column vectors are then combined
into into 2 matrices, matrix v l and v r for the LHS and RHS respectively.

v l =
[
v l 1 v l 2 . . . v l 325

]
, v r =

[
v r 1 v r 2 . . . v r 325

]

36

Such that v l and v r are each of the following form:


reaction1 ↓ reaction2 ↓ . . . reaction325 ↓

species1 →
species2 →
...
species53 →


The implementation for this is of the following structure:

Algorithm 3: Stoichiometric Coefficient Matrices v l and v r

Function Make matrices
v l = zeros(ns,nr);
v r = zeros(ns,nr);
for j ∈ 1 : nr do

Extract equation j from gri30.yaml ;
split equation j into eq l and eq r;
for i ∈ 1 : ns do

if species i ∈ eq l then
get index species of species i in eq l;
try to parse to Float64 eq l[index-1] :

coeff = the parsed float
catch e:

coeff =1
end
v l[i,j]=coeff

else if species i ∈ eq r then
get index species of species i in eq r;
try to parse to Float64 eq r[index-1] :

coeff = the parsed float
catch e:

coeff =1
end
v r[i,j]=coeff

end

end

end
return v l, v r

end

5.4 GRI 3.0 constant temp, forward rate only

5.4.1 In 1 node, for 1 reaction

For any reaction, say the n-th reaction, we extract the coefficients:

37

� A kn = pre-exponential term

� βn = temperature exponent

� En = activation energy

Which are used to calculate Arrhenius’ law:

kn = A kn · T βn · exp(− En

RT
), for arbitrary n (7)

To calculate the (forward) rate we need to multiply by the concentrations of the
reactant-species of the reaction.

How do we know a species is a reactant in the n-th reaction?
We look at the stoichiometric coefficient matrix v l, if the entry for species j in
reaction n is non-zero then species j is a reactant in reaction n. This entry, off
course, is simply v l[j, n].
We set: raten = kn then for every reactant species j we multiply the rate by
[Xj] such that the overall (forward) reaction rate of reaction n is given by:

raten = kn
∏
j

[Xj]

For reaction n we now have the overall (forward) rate. This can now be used
to assign a value to the rate of change of concentration.
For every reactant species j in reaction n:

d[Xj]
dt = −(stoichiometric coefficient)·raten = −v l[j, n] · raten

For every product species j in reaction n:

d[Xj]
dt = +(stoichiometric coefficient)·raten = +v r[j, n] · raten

Note the difference in signs and the difference in stoichiometric coefficient ma-
trices. Also note that this reaction rate not oly differs per species but is different
for each reaction and each node.

5.4.2 For all nodes, for all reactions

Our implementation must repeat this for all nodes and reactions. To do so the
following (pseudo-)code is used to define the Differential Equation which is then
solved using DifferentialEquations.jl.

38

Algorithm 4: GRI 3.0

Function Differential Equation
for i ∈ 1 : nn do

for i ∈ 1 : nr do
Extract: A kn, βn, En ;

kn = A kn · T βn · exp(−En

RT);
raten = kn;
for j ∈ 1 : length(v l[:, n]) do

if v l[j, n]! = 0 then
rate = −v l[j, n] · raten

end

end
for j ∈ 1 : length(v l[:, n]) do

if v l[j, n]! = 0 then
u̇i[j]+ = −(stoichiometric
coefficient)·raten = −v l[j, n] · raten

end
if v r[j, n]! = 0 then

u̇i[j]+ = +(stoichiometric
coefficient)·raten = −v r[j, n] · raten

end

end

end

end
U = transpose(unstack(u));
u̇+ = stack(AU);

end

Where nr is the number of reactions.

5.5 Results

We implement the GRI mechanism with forward reactions only, on the following
graph.

39

Figure 29: Graph 1 rendered using GraphPlot.jl

Using the following IC:

� [CH4] = 1 initial value for CH4 in node 1

� [O2] = 1, initial value for O2 in node 2

� [O2] = 1, initial value for O2 in node 4

There are no forward reactions in the GRI 3.0 mechanism with just the two
species CH4 and O2, we would therefore expect no reactions to occur. Thus
only diffusion should be happening. Which is exactly what we can see in Figures
30 and 31.

40

Figure 30: Concentrations of CH4

Figure 31: Concentrations of O2

Let us now showcase GRI using species for which a forward reaction is in
the GRI database. For example, one such reaction is

O + CH4 ⇄ OH + CH3

We will use the same graph as before. But this time we will use the following

41

IC:

� [CH4] = 1 initial value for CH4 in node 1

� [O] = 1, initial value for O in node 2

� [O] = 1, initial value for O in node 4

A myriad of species are produced in varying amounts via multiple different
reaction. However it is immediately confirmed that the GRI mechanism is not
designed to be used with only a forward reaction rate implemented. As you can
see with the species below the amounts are off huge proportions, because the
forward reaction rates are not tempered by backward reaction rates.

Figure 32: Concentrations of C2H2

42

Figure 33: Concentrations of H2

Figure 34: Concentrations of O2

43

6 Future Expansions

This section pertains to matters for which the author regrettably did not have
the required time to implement, due to the limited duration of a bachelor
project.

6.1 Diffusivity coefficient

The diffusivity coefficient D may vary per gas and can be a function of temper-
ature. There are a few different possible implementations which we will discuss
in an increasing order of complexity.

Firstly one could take the diffusivity constant of the predominant gas in the
furnace. Most practical burners operate using lean combustion, which is when
the oxidizer is in excess. Meaning that the fuel-air filled furnace contains mostly
air. Hence the properties such as the molecular weight, transport properties
and heat capacities are not significantly changed compared to just air[15]. The
diffusivity coefficient varies with a power of 1.5-1.8 of the temperature[4]. One
could take a tabulated value, D0, for the diffusion coefficient of air and use that
to calculate D as follows:

D = D0 · T 1.65

Secondly, one could take D0 as an average of the diffusivity coefficients of
the various species weighted according to their concentration in each section
(which will vary over time).

Thirdly, one could use the Chapman-Enskog Theory[4]. This theory gives
the following equation

D =
1.86 · 10−3T 3/2(1/M1 + 1/M2)

0.5

pσ2
12Ω

Where

� p is the pressure in atmospheres

� Mi are molecular weights

� σ12 = 0.5(σ1 + σ2) is the collision diameter

� Ω a complicated dimensionless integral which depends on the interaction
between the two species

Here p can be taken constant, this is one of the assumptions of our model. Since
for most deflagrations (subsonic combustion) p is almost constant[15].
For Mi and σi tabulated values can be used for the two most predominant gases
in a section according to their concentrations (which will vary over time).
For Ω tabulated values can be used, or one could use

Ω = TkB/ϵ12

44

Where tabulated values can be found for TkB/ϵ12 for the two most predominant
gases in a node according to their concentrations (which will vary over time).

Finally, one could repeat all of the above except with temperature as a
variable rather than a constant.

6.2 GRI 3.0 backward reaction rates

Currently for GRI 3.0 only the forward reaction rates have been implemented.
In order to complete the GRI model the backward reaction rates should also be
implemented. There are a few different possible implementations which we will
discuss in an increasing order of complexity.

Firstly, one could use pre-calculated values for the backwards reactions rates
for each equation. These rates are calculated for specific values of T . Hence if
one is using T as a constant then this would be a good option.

Secondly, one could use the same pre-calculated values when using T as a
variable. In this case one could simply use the pre-calculated value for a tem-
perature that is closest to T . One could also take some form of weighted average
of the two pre-calculated values that are closest to T .

Thirdly, if we denote the forward and backward reaction rate for a single
reaction by kf and kb respectively. Then we can denote the reaction rates for
arbitrary reaction j by kfj and kbj . Where kfj is calculated, as before, using
Arrhenius’ law as in Equation (7). The backward reaction rate can then be
calculated using[15]

kbj =
kfj

(1
RT)

∑ns
i=1 vijexp(

∆S0
j

R − ∆H0
j

RT)
(8)

Where

� vij = v
′′

ij − v
′

ij with v
′′

ij and v
′

ij being the LHS and RHS stoichiometric
coefficients for species i in reaction j, respectively

� ∆H0
j and ∆S0

j are the mass enthalpy and entropy changes for reaction
j at reference temperature T0 = 298.15K, which can be obtained from
tabulations.

For all of the implementations of backward reaction rates we will require
extra information, which unfortunately is not included in the GRI files. This
makes implementing GRI a much more inconvenient affair, not due to compu-
tation or mathematical complexity but simply due to a lack of information. For
a more about this issue please look at Appendix C.

45

6.3 Temperature

So far the temperature has been implemented as a constant value. Besides its
inherent importance as a quantity to keep track of, it can also affect the reaction
rates. Thus it would be a valuable addition to the model. Firstly, we must add
T to the model in order to be able to track it. This can be done by adding an
extra entry to every ui as such:

ui =


[X1]
...

[Xns
]

Ti

 , where Ti is the Temperature in node i (9)

Secondly we must model the temperature change over time. The simplest of
the multiple equations which govern this[15] is:

ρCp
dT

dt
= ẇ

′

T +
∂

∂xi
(λ

∂T

∂xi
) + Q̇+ ρ

ns∑
k=1

Ykfk,iVk,i

Where

� ρ the density of the multi-species gas.

� Cp is the heat capacity

� ẇ
′

T is heat release due to combustion.

� λ is the thermal conductivity of the gas.

� Q̇ is a heat source term, e.g due to the electric spark used to ignite the
gas.

� ρ
∑ns

k=1 Ykfk,iVk,i is a convection term.

Here ρ can be calculated[15] using
∑ns

i=1 ρi.
The heat capacity in this case is assumed to be equal for all gases, this is often
used[15]. One could use the heat capacity of air because the fuel-air gas proper-
ties are not significantly changed compared to just pure air, this was discussed
in section 6.1. The thermal conductivity can be treated similarly.
The heat source, due to being so short lived, is negligible.
For convection one would be well advised to first consider a simpler implemen-
tation. For example one could look at the amount of diffusion going into a
node from its neighbour and use the temperature difference between them to
calculate an increase or decrease in temperature.
We can calculate ẇ

′

T [15]using

ẇ
′

T = −
ns∑
i=1

∆h0
f,iẇi

46

Where ∆h0
f,i is the mass formation enthalpy of species i at temperature T0 =

298.15K.
The molar formation enthalpies can be found at [20], which can then be

converted to mass formation enthalpy. Another option is to use the thermo file
to and NASA polynomials (6) to calculate the formation enthalpy.

7 Conclusion

Chemical Reactor Networks are a versatile way of modelling combustion pro-
cesses. They are capable of handling both the diffusion and chemistry at the
same time. The spatial discretisation used combines both Graph Theory and
Numerical Methods in a very neat and organised manner.

The way in which the diffusion is handled is independent from the chemistry
that occurs. Hence the single-step mechanism can be readily implemented and
could be just as readily replaced by a two or four-step mechanism, without
diffusion related complications. On top of this CRN is clearly able to handle
diffusion on very large and complicated graphs without painful calculation times.

Unfortunately the GRI 3.0 files do not contain all of the necessary informa-
tion which is required to produce a fully implemented CRN model of the GRI
mechanism. However given enough time and persistence this information could
be gathered, at which point it would be a seemingly simple task to complete
the implementation.

47

8 Further practical resources

On top of the references that have been mentioned so far, there are a few
honourable mentions. These are specifically of very practical value.

� The textbook [15] has an associated website[6] which also contains the
lectures associated with the book. Lecture 1 provides a good introduction
for the general topic of combustion and motivates the study thereof.

� One of the authors of [15], Thierry Poinsot, has also written an article[14]
entitled ”How to successfully fail in CFD”. This article is written in an
entertaining yet instructive manner and contains valuable reminders of
mistakes to avoid when designing and implementing models.

� The lead developer of DifferentialEquations.jl, Dr. Christopher Rackauckas,
has a very useful video[17] that serves as an introduction to DifferentialE-
quations.jl.

Bibliography

[1] Cesar O. Aguilar. Graph Theory. url: https://www.geneseo.edu/

~aguilar/public/notes/Graph-Theory-HTML/ch4-laplacian-matrices.

html (visited on June 16, 2023).

[2] Robert W. Balluffi, Samuel M. Allen, and W. Craig Carter. KINETICS
OF MATERIALS. 2005.

[3] Kevin Bonham. YAML.jl: a flexible data serialization format that is de-
signed to be easily read and written by human beings. 2013. url: https:
//github.com/JuliaData/YAML.jl.

[4] E.L. Cussler. Diffusion: Mass Transfer in Fluid Systems. Cambridge Se-
ries in Chemical Engineering. Cambridge University Press, 2009. isbn:
9780521871211. url: https://books.google.ch/books?id=dq6LdJyN8ScC.

[5] Xavier D’Hubert. Latest burner profiles. Global Cement Magazine. 2017.
url: https://www.globalcement.com/magazine/articles/1018-
latest-burner-profiles.

[6] eLearning @ Cerfacs - Online Courses. url: https://elearning.cerfacs.
fr/ (visited on June 23, 2023).

[7] James Fairbanks et al. JuliaGraphs/Graphs.jl: an optimized graphs pack-
age for the Julia programming language. 2021. url: https://github.
com/JuliaGraphs/Graphs.jl/.

[8] Individual reactions. url: http://combustion.berkeley.edu/gri-
mech/data/frames.html (visited on June 23, 2023).

[9] Julia Standard Library LinearAlgebra. url: https://docs.julialang.
org/en/v1/stdlib/LinearAlgebra/ (visited on June 21, 2023).

48

[10] J. van Kan et al. Numerical methods for Partial Differential Equations.
2019. isbn: 9789065624383.

[11] van der Linden L. “The parareal algorithm on the model for combustion
of methane.” In: Delft University of Technology (2020). url: http://
resolver.tudelft.nl/uuid:6839f1d6-002a-4415-b68b-848505cf6ada.

[12] Ingy döt Net et al. YAML format: YAML Ain’t Markup Language version
1.2. 2021. url: https://yaml.org/ (visited on June 20, 2023).

[13] Hector Perez.GraphPlot.jl: Graph visualization for Julia. 2015. url: https:
//github.com/JuliaGraphs/Graphs.jl/.

[14] Thierry Poinsot. How to successfully fail in CFD. 2020. url: https :

//www.cerfacs.fr/elearning/index.php?id=index- 7 (visited on
June 23, 2023).

[15] Thierry Poinsot and Denis Veynante. Theoretical and Numerical Combus-
tion, 3rd edition. Addison-Wesley Professional, 2022.

[16] Jacob Quinn et al. HTTP client and server functionality for Julia. 2022.
url: https://github.com/JuliaWeb/HTTP.jl (visited on June 23,
2023).

[17] Chris Rackauckas. Intro to solving differential equations in Julia. 2018.
url: https://www.youtube.com/live/KPEqYtEd-zY (visited on June 23,
2023).

[18] Gregory P. Smith et al. GRI 3.0. url: http://www.me.berkeley.edu/
gri_mech/ (visited on June 19, 2023).

[19] Ray Speth. GRI 3.0 in YAML format. 2019. url: https://gist.github.
com/speth/c8bfcf0389beba4422a334cc21828692 (visited on June 20,
2023).

[20] Thermodynamic Data at 298K. url: http://combustion.berkeley.
edu/gri-mech/data/thermo_table.html (visited on June 23, 2023).

[21] Shubhendu Trivedi. A Note on the Graph Laplacian. Mar. 29, 2015. url:
https://onionesquereality.wordpress.com/2015/03/29/a-note-

on-the-graph-laplacian/ (visited on June 16, 2023).

A Julia implementation

Code 1: Building a Graph

1 us ing D i f f e r en t i a lEqua t i on s , Plots , Graphs , GraphPlot ,
YAML

2 us ing Cairo , Fontconf ig , Compose
3
4 n node=6
5 g2 = Graph (n node)
6 add edge ! (g2 , 1 , 2)

49

7 add edge ! (g2 , 2 , 3)
8 add edge ! (g2 , 3 , 4)
9 add edge ! (g2 , 4 , 5)
10 add edge ! (g2 , 5 , 6)
11 node labe l = c o l l e c t (1 : Graphs . nv (g2)) ;
12 edge l abe l =edges (g2)
13 d i sp l ay (gp lo t (g2 , node labe l=node labe l , edg e l abe l=edge labe l ,

e d g e l a b e l d i s t x =1, e d g e l a b e l d i s t y=1)) ;
14 draw (PNG(” r e s d i f f u s i o n o n l y g r a ph 1 /graph1 . png”) , gp lo t (g2

, node labe l=node labe l , edg e l abe l=edge labe l ,
e d g e l a b e l d i s t x =1, e d g e l a b e l d i s t y=1))

Code 2: Diffusion only on a Generated Graph

1 n node=100000
2 g2 = ba r aba s i a l b e r t (n node , 3 , seed=42)
3 n s p e c i e s = 1
4
5 u0 = ze ro s (n s p e c i e s * n node)
6 u0 [1] = 1 . # i n i t i a l va lue CH4 in node 1
7
8 func t i on myrhsode2 ! (du , u , p , t)
9 du.=0
10 f o r i in 1 : n node
11 i f u [i]<0
12 u [i]=0
13 end
14 end
15 A = = l a p l a c i an mat r i x (g2)
16 U = reshape (u , (n spe c i e s , n node)) ’
17 du [:] += reshape (t ranspose (A*U) , (n s p e c i e s *n node

, 1))
18 end
19
20
21
22
23 # problem set=up : s e t the time span
24 tspan = (0 . 0 , 8 . 0)
25 # problem set=up : d e f i n e the ODE problem
26 prob = ODEProblem(myrhsode2 ! , u0 , tspan)
27
28 # perform time i n t e g r a t i o n
29 @elapsed s o l = so l v e (prob) ; #timing i t

Code 3: Plotting for One-Step Mechanism

1 l a b e l s =[”CH4” ”O2” ”CO2” ”H2O”]

50

2
3 #p lo t o f a l l s p e c i e s f o r each node !
4 f o r i in 1 : n node
5 idxs=(i * n spe c i e s =3) : 1 : (i * n sp e c i e s) ;
6 d i sp l ay (p l o t (so l , i dxs=idxs , t i t l e= ”node $ (i) ” ,

l a b e l s=l a b e l s)) ; #chemistry l a b e l s
7 s a v e f i g (” r e s d i f f u s i o n o n l y g r a ph 3 / graph3 node $ (

i) . png ”)
8 end
9
10 #p lo t o f a l l nodes f o r each s p e c i e s
11 f o r i in 1 : n s p e c i e s
12 idxs=i : 4 : n s p e c i e s *n node
13 idxs2= 1 : 1 : n node
14 idxs2=s t r i n g . (c o l l e c t (idxs2))
15 idxs2=reshape (idxs2 , (1 , n node)) ;
16 d i sp l ay (p l o t (so l , tspan =(0 .0 , 4 . 0) , idxs=idxs , t i t l e=

” s p e c i e s $ (l a b e l s [i]) ” , l a b e l s=idxs2)) ;
17 d i sp l ay (p l o t (so l , i dxs=idxs , t i t l e= ” s p e c i e s $ (

l a b e l s [i]) ”)) ;
18 s a v e f i g (” r e s d i f f u s i o n o n l y g r a ph 3 /

b a r a b a s i a l b e r t s p e c i e s $ (l a b e l s [i]) . png ”)
19 end

Code 4: Performing One-Step Mechanism

1 E = 2e4 # ac t i v a t i o n energy
2 B = 0 . # temperature exponent
3 A = 1.1 e10 # pre=exponent i a l f a c t o r
4 R = 8.3145 # gas constant
5 T = 1e3 # temperature in Kelvin
6 k = A * TˆB * exp(=E / R / T) # rat e c o e f f i c i e n t
7 n node = 6
8 n sp e c i e s = 4
9 mu l t i p l i e r = [=1 ,=2 ,1 ,2]
10 u0 = ze ro s (n s p e c i e s * n node)
11 u0 [1] = 1 . # i n i t i a l va lue CH4 in node 1
12 u0 [2 n spe c i e s =2] = 1 . # i n i t i a l va lue O2 in node 2
13 u0 [4 n spe c i e s =2] = 1 . # i n i t i a l va lue O2 in node 4
14 func t i on myrhsode2 ! (du , u , p , t)
15 du.=0
16
17 u [u.<0].=0
18
19
20 A = = l a p l a c i an mat r i x (g2)
21 U = reshape (u , (n spe c i e s , n node)) ’

51

22
23 #chemistry f o r each s e c t i o n
24 f o r i in 1 : n node
25 ra t e = k * u [i * n spe c i e s =3]ˆ1 * u [i * n spe c i e s =3+1]ˆ0.5
26
27 f o r j in 0 : (n spe c i e s =1)
28 du [i * n spe c i e s=j]=mu l t i p l i e r [(end =j)]* r a t e
29 end
30 end
31 du [:] += reshape (t ranspose (A*U) , (n s p e c i e s *n node

, 1))
32 end
33 # problem set=up : s e t the time span
34 #tspan = (0 . 0 , 8 . 0)
35 tspan =(0 .0 , 10 . 0)
36 # problem set=up : d e f i n e the ODE problem
37 prob = ODEProblem(myrhsode2 ! , u0 , tspan)
38
39 # perform time i n t e g r a t i o n
40 @elapsed s o l = so l v e (prob) ; #timing i t

Code 5: Make Coefficient Matrices for GRI

1 g r i = YAML. l o a d f i l e (” g r i 30 . yaml ”)
2
3 phases = g r i [” phases ”]
4 s p e c i e s=phases [1] [” s p e c i e s ”]
5 n s p e c i e s = length (s p e c i e s)
6 u0 = ze ro s (l ength (s p e c i e s) *n node)
7 r e a c t i o n s = g r i [” r e a c t i o n s ”]
8
9
10 func t i on make v (g r i)
11 phases=g r i [” phases ”]
12 s p e c i e s=phases [1] [” s p e c i e s ”]
13 r e a c t i o n s = g r i [” r e a c t i o n s ”]
14 v l = ze ro s (l ength (s p e c i e s) , l ength (r e a c t i o n s)) ;
15 v r = ze ro s (l ength (s p e c i e s) , l ength (r e a c t i o n s)) ;
16
17 f o r j in 1 : l ength (g r i [” r e a c t i o n s ”])
18 equat ion2 = g r i [” r e a c t i o n s ”] [j] [” equat ion ”]
19 eq=s p l i t (equat ion2) ;
20
21 i f f i n d f i r s t (item=>item==”<=>”,eq)!== nothing
22 middle = f i n d f i r s t (item=>item==”<=>”,eq)
23 e l s e i f f i n d f i r s t (item=>item==”=>”,eq)!==nothing
24 middle=f i n d f i r s t (item=>item==”=>”,eq)

52

25 end
26
27 e q l = eq [1 : middle=1]
28 eq r = eq [middle+1:end]
29 f o r i in 1 : l ength (s p e c i e s)
30 i f s p e c i e s [i] in e q l
31 i nd e x s p e c i e s = f i n d f i r s t (item=>item==

sp e c i e s [i] , e q l)
32 try
33 i f t rypar s e (Float64 , e q l [i nd ex spe c i e s =1]) !==

nothing
34 g l oba l c o e f f=parse (Float64 , e q l [i nd ex spe c i e s =1])
35 e l s e
36 g l oba l c o e f f = 1
37 end
38 catch e
39 g l oba l c o e f f =1
40 end
41 v l [i , j]= c o e f f
42 e l s e i f s p e c i e s [i] in eq r
43 i nd e x s p e c i e s = f i n d f i r s t (item=>item==sp e c i e s [i] , e q r)
44
45 try
46 i f t rypar s e (Float64 , eq r [i nd ex spe c i e s

=1]) !== nothing
47 g l oba l c o e f f=parse (Float64 , eq r [

i nd ex spe c i e s =1])
48 e l s e
49 g l oba l c o e f f = 1
50 end
51 catch e
52 g l oba l c o e f f =1
53 end
54 v r [i , j]= c o e f f
55 end
56 end
57 end
58 return v l , v r
59 end
60
61 v l , v r= make v (g r i)

Code 6: Using GRI and plotting

1
2 n s p e c i e s= length (s p e c i e s)
3 u0 = ze ro s (n s p e c i e s * n node)

53

4 #####IC
5 u0 [14]=1 #CH4 in node 1
6 u0 [n s p e c i e s + 4]=1 #O2 in node 2
7 u0 [3* n sp e c i e s +4]=1 #O2 in node 4
8 #not ac tua l values , but merely i n i t i a l i z i n g the

parameters
9 E = 2e4 # ac t i v a t i o n energy
10 B = 0 . # temperature exponent
11 A k = 1 .1 e10 # pre=exponent i a l f a c t o r
12 R = 8.3145 # gas constant
13 T = 1e3 # temperature in Kelvin
14
15 v l , v r = make v (g r i)
16 func t i on myrhsode2 ! (du , u , p , t)
17 du.=0
18 u [u.<0].=0
19 A = = l a p l a c i an mat r i x (g2)
20 U = reshape (u , (n spe c i e s , n node)) ’
21 #chemistry f o r each s e c t i o n
22 f o r i in 1 : n node
23 f o r n in 1 : l ength (r e a c t i o n s)
24 try
25 g l oba l A k = g r i [” r e a c t i o n s ”] [n] [” rate=constant ”] [”A”]
26 g l oba l B = g r i [” r e a c t i o n s ”] [n] [” rate=constant ”] [” b ”]
27 g l oba l E = g r i [” r e a c t i o n s ”] [n] [” rate=constant ”] [” Ea”]
28 catch e
29 g l oba l A k = g r i [” r e a c t i o n s ”] [n] [” low=P=rate=constant ”] [”

A”]
30 g l oba l B = g r i [” r e a c t i o n s ”] [n] [” low=P=rate=constant ”] [” b

”]
31 g l oba l E = g r i [” r e a c t i o n s ”] [n] [” low=P=rate=constant ”] [” Ea

”]
32 end
33 k = A k * Tˆ(B) * exp(=E / R / T) # rat e c o e f f i c i e n t ;
34
35 ra t e = k
36 f o r j in 1 : l ength (v l [: , n])
37 i f v l [j , n] !=0 #th i s checks that j i s index o f a

r e l e van t s p e c i e s f o r r e a c t i on n
38 ra t e = ra t e *(u [i * n spe c i e s=n sp e c i e s + j])
39
40 end
41 end
42 f o r j in 1 : l ength (v l [: , n])
43 i f v l [j , n] !=0
44 du [(i =1)* n sp e c i e s+j]+==v l [j , n] * (r a t e)

54

45 end
46 i f v r [j , n] !=0
47 du [(i =1)* n sp e c i e s+j]+=v r [j , n]* r a t e
48 end
49 end
50 end
51 end
52 du [:] += reshape (t ranspose (A*U) , (n s p e c i e s *n node

, 1)) ;
53 end
54 tspan =(0 .0 , 8 . 0)
55 # problem set=up : d e f i n e the ODE problem
56 prob = ODEProblem(myrhsode2 ! , u0 , tspan)
57
58 # perform time i n t e g r a t i o n
59 @elapsed s o l = so l v e (prob) ; #timing i t
60
61
62 ## 1 p lo t per s p e c i e s
63 l a b e l s = sp e c i e s
64 f o r i in 1 : n s p e c i e s
65 idxs=i : n s p e c i e s : n s p e c i e s *n node
66 idxs2= 1 : 1 : n node
67 idxs2=s t r i n g . (c o l l e c t (idxs2))
68 idxs2=reshape (idxs2 , (1 , n node)) ;
69 d i sp l ay (p l o t (so l , i dxs=idxs , t i t l e= ” s p e c i e s $ (l a b e l s [i])

” , l a b e l s=idxs2)) ;
70 s a v e f i g (” r e s g r i i c 1 / g r i s p e c i e s $ (l a b e l s [i]) . png ”)
71 end

Code 7: Potential GRI Web-Scraping Method

1 k b a l l = ze ro s (325) ;
2 f o r i in 1 :325
3 u r l =”http :// combustion . be rke l ey . edu/ gr i=mech/

data/ r e a c t i o n s /$ (i) ”
4 r = HTTP. get (u r l)
5 s t r 1=St r ing (r . body)
6 p r i n t l n (s t r 1)
7 s t r 2=s t r 1 [f i n d f i r s t (”1000” , s t r 1) [1] : end]
8 s t r 3= s t r 2 [begin : f i n d f i r s t (”\n” , s t r 2) [1] =1]
9 vec1 = s p l i t (s t r 3)
10 p r i n t l n (i)
11 k b a l l [i]= parse (Float64 , vec1 [5])
12 end

55

B Diffusion only

B.1 Graph 1

Figure 35: Graph 1 - Node 1

Figure 36: Graph 1 - Node 2

56

Figure 37: Graph 1 - Node 3

Figure 38: Graph 1 - Node 4

57

Figure 39: Graph 1 - Node 5

Figure 40: Graph 1 - Node 6

58

Figure 41: Graph 2 - Node 1

B.2 Graph 2

Figure 43: Graph 2 - Node 3

59

Figure 42: Graph 2 - Node 2

Figure 44: Graph 2 - Node 4

60

Figure 45: Graph 2 - Node 5

Figure 46: Graph 2 - Node 6

61

B.3 Graph 3

Figure 47: Graph 3 - Node 1

Figure 48: Graph 3 - Node 2

62

Figure 49: Graph 3 - Node 3

Figure 50: Graph 3 - Node 4

63

Figure 51: Graph 3 - Node 5

Figure 52: Graph 3 - Node 6

64

Figure 53: Graph 3 - Node 7

Figure 54: Graph 3 - Node 8

65

Figure 55: Graph 3 - Node 9

Figure 56: Graph 3 - Node 10

66

Figure 57: Graph 3 - Node 11

Figure 58: Graph 3 - Node 12

B.4 Graph 4

Generated with the barabassi-albert graph generator using an average degree of
3, and random seed 42. This time with a 1000 nodes.

67

Figure 59: Graph 4 rendered using GraphPlot.jl

Solving the system linearly required 0.1750141 seconds.
Solving this using DifferentialEquations.jl required 1.1304552 seconds.

Figure 60: Concentrations of CH4 on Graph 4

B.5 Graph 5

Again we use the barabassi-albert graph generator with an average degree of 3,
and random seed 42. However this time we will use 10,000 nodes.

68

Figure 61: Graph 5 rendered using GraphPlot.jl

Solving the system linearly required 41.8191324 seconds. Solving this using
DifferentialEquations.jl required 159.6922803 seconds.

Figure 62: Concentrations of CH4 on Graph 5

B.6 Graph 6

This time we use the barabassi-albert graph generator with, again, an average
degree of 3 and random seed 42. But now with 100,000 nodes.

69

Solving this using DifferentialEquations.jl required 528.5795513 seconds.
Due to sheer size producing any plots was not possible.

C GRI, gathering data

The information required is available on the webpage [8]. Unfortunately this
cannot be easily downloaded. The information appears to be loaded in after in-
teracting with the webpage, so a simple http request will also prove unfruitful.
However by reading the html code we discover that the reactions are available
on their own individual web pages which have a url of the following format:
http://combustion.berkeley.edu/gri-mech/data/reactions/i

Where the i at the end denotes the number of the reaction, meaning that insert-
ing i = 1 will provide the web page of the first reaction. This does not appear
to be noted anywhere. The package HTTP.jl [16] will allow us to request the
html of these webpages. We can then convert this to the String type in order to
do string manipulation. If we do this for the first reaction and print the result
it will look as follows.

...(irrelevant)...

__

Temp delta-S delta-H kf kr Keq

(K) (cal/mol K) (kcal/mol) ----(mol,cm3,s)----- (cm3/mol)

__

300 -28.0 -119.1 4.00E+14 3.57E-71 1.12E+85

500 -29.6 -119.7 2.40E+14 7.86E-37 3.05E+50

1000 -31.1 -120.8 1.20E+14 3.61E-11 3.32E+24

1500 -31.7 -121.5 8.00E+13 1.07E-02 7.49E+15

2000 -32.0 -122.0 6.00E+13 1.63E+02 3.67E+11

2500 -32.1 -122.4 4.80E+13 4.91E+04 9.79E+08

3000 -32.2 -122.7 4.00E+13 2.08E+06 1.92E+07

__

...(irrelevant)...

It contains the desired information surrounded by some irrelevant informa-
tion. Here kr denotes the backward (or ”reverse”) reaction rate.

However there are various exceptions for this format which makes the web-
scraping a bit more challenging.

For example, for some reactions the backward reaction rate column is not
present, though one could use the other data to calculate it. Such as below for
reaction 324. And as you can see there are also some minor issues with the html.

70

__

Temp DS DH kf

(K) (cal/mol K) (kcal/mol) (mol,cm3,s)

__

298 31.3 -15.2 2.41E+13

300 31.3 -15.2 2.41E+13

400 31.7 -15.1 2.41E+13

500 31.8 -15.1 2.41E+13

1000 31.0 -15.7 2.41E+13

1500 30.3 -16.5 2.41E+13

2000 29.8 -17.4 2.41E+13

2500 29.3 -18.6 2.41E+13

3000 28.8 -19.9 2.41E+13

__

But more than that, for some reactions the html is quite a mess. For example,
for reaction 23:

__

 Temp delta-S delta-H ...(etc)...

 (K) (cal/mol K) (kcal/mol) ----(mol,cm3,s)-----

__

 300 7.2 ...(etc)...

 500 6.5 ...(etc)...

 1000 4.9 ...(etc)...

 1500 3.8 ...(etc)...

 2000 2.9 ...(etc)...

 2500 2.2 ...(etc)...

 3000 1.6 ...(etc)...

__

As you can see collecting the information via web-scraping is not quite as simple
as it would seem at first, due to the non-uniformity of the reaction web-pages.
However given enough time it is surely possible.

71

