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Abstract

Purpose Europe aims to decarbonize its economy by 2050, which implies a significant deployment of renewables and energy
storage technologies. Offshore low-head pumped hydro storage (O-PHS) is presented as an alternative solution for coastal
countries with shallow seas and flat topography as a technology for grid-scale energy storage.

Methods We conduct a Life Cycle Assessment (LCA) for the construction, operation, and maintenance stages of an O-PHS
plant located in the North Sea, with a rated installed power of 2 GW and an average daily storage capacity of 8§ GWh. We
further compare O-PHS with conventional pumped hydro storage (C-PHS) in two inland European locations and lithium
iron phosphate (LFP) batteries. Due to the location of the O-PHS plant, offshore wind electricity generation is assumed.
Although the study focuses on climate change, the results for all 16 environmental impact categories of the European Product
Environmental Footprint methodology are provided.

Results and discussion We find that the O-PHS plant’s construction, maintenance, and operation emits around 33 gCO2eq/kWh.
When comparing technologies, O-PHS greenhouse gas (GHG) emissions are slightly higher than C-PHS in the Alpine region
and LFP batteries. In contrast, C-PHS results in the non-Alpine region are twice as high as the rest of the technology values.
From these emissions, we see that the impacts related to electricity storage are roughly the same as those related to electricity
generation. In other words, the use of O-PHS technology doubles the emissions from offshore wind farms. Although this may
seem a high premium to pay, it becomes a relatively low value when comparing it to the GHG emissions from the electricity
mix from surrounding countries like Germany or the Netherlands. On the other hand, the high demand for steel, copper, and
magnets, together with efficiency losses, makes turbines a hotspot for the O-PHS plant in all environmental indicators.
Conclusion This article urges engineers working in the O-PHS technology to focus on the turbines, increasing efficiency and
considering circularity strategies during the design phase, including lifetime extension and recycling to reduce emissions
across all impact categories.

Keywords Life Cycle Assessment - LCA - Low-Head Pumped Hydro Storage - Sustainability - Environmental impact -
Energy storage - Hydropower - Batteries
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and the asymmetry between electricity production and con-
sumption (Hainsch et al. 2022; Rehman et al. 2015).

Among the different energy storage technologies,
pumped hydro storage is a mature and well-established
technology for large-scale energy storage (Blakers et al.
2021; Rehman et al. 2015). However, traditional hydro-
power plants rely on high elevation differences to function,
making them unsuitable for regions with flat topography.
Ongoing research explores the possibility of implement-
ing offshore low-head pumped hydro storage (O-PHS) as
a viable solution (Ansorena Ruiz et al. 2022; Hoffstaedt
et al. 2022). This technology works on the same principle
as conventional pumped hydro storage (C-PHS), where
height differences between two separated water bodies
provide energy for turbines to spin and generate electricity
and pump water upstream when there is excess electricity
production. The novelty of O-PHS is that turbines operate
with a height difference of 30 m or less between the two
water bodies (Bricker et al. 2023). Consequently, O-PHS
requires more significant amounts of water, and thus vol-
ume, than C-PHS for the same storage capacity. Therefore,
a logical place to build this infrastructure is at sea, close to
offshore wind farms.

Many studies have looked into the environmental per-
formance of different storage technologies. However, to
the best of our knowledge, the ecological footprint of
O-PHS has not been previously investigated. This research
aims to fill this gap by performing a Life Cycle Assess-
ment (LCA) of this technology using a reference case in
the North Sea. Additionally, it compares the environmen-
tal impacts of O-PHS with those of existing storage tech-
nologies, namely C-PHS and lithium iron phosphate (LFP)
batteries.

Fig. 1 Overall approach with
the main sections of the system
modelled fall inside the system
boundaries, whereas the EoL
fall outside of them. The two
system boundaries present dif-

0-PHS

System boundaries

2 Methods
2.1 Goal, scope and overall approach

Using LCA, we aim to estimate the environmental impacts
of an O-PHS plant and to compare it with alternative tech-
nologies. Figure 1 depicts a cradle-to-gate approach with two
functional units (FU). Firstly, the construction and mainte-
nance of an O-PHS plant. Secondly, the delivery of 1 kWh of
stored electricity with a daily delivery of 8 GWh for 20 years,
including the operation of the previously accounted con-
struction and maintenance. The latter has a broader system
boundary since it also considers operation emissions from
electricity production, storage, and delivery. We use this sec-
ond FU to compare technologies, such as O-PHS, lithium
iron phosphate (LFP) batteries, and C-PHS. For compara-
bility purposes, the system boundaries considered for these
technologies are the same as in the O-PHS plant. Also, we
assume that electricity is sourced from offshore wind energy
for all three alternatives. Finally, the end-of-life (EoL) stage
is not considered for any of the technologies due to a lack of
data in this respect; instead, possible environmental impacts
from this life cycle stage are discussed qualitatively.

2.2 Inventory analysis

We used the following data sources for this research. Firstly,
data for the design and construction of the O-PHS plant
comes mainly from (ALPHEUS H2020 Project 2024a;
Ansorena Ruiz et al. 2022; Prasasti et al. 2024) related to
the ALPHEUS project.

Secondly, the ecoinvent 3.9.1 cut-off database (Wernet
et al. 2016) was used as a background life cycle inven-
tory (LCI) database to represent the materials and energy

FU 1: Construction and maintenance of an O-PHS plant

FU 2: 1 kWh of electricity stored with a daily delivery of 8 GWh for 20 years
O-PHS, C-PHS and LFP batteries

ferent functional units (FU), the

first one depicted in black, and

the second in blue Raw materials

_

Construction —_— Maintenance

FU1
1 O-PHS plant
4

Operation
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consumption for the three technologies. LFP batteries and
C-PHS are modelled using LCI data from ecoinvent. Thirdly,
missing information was estimated using data from available
literature sources, as indicated in the respective references.

2.2.1 Offshore Low-Head Pumped Hydro Storage

We assume the O-PHS plant is located in the North Sea,
45 km from the Dutch shores as shown in Fig. 2. The spe-
cific location was identified from (ALPHEUS H2020 Pro-
ject 2024b) and also employed in Hoffstaedt et al. (2024),
after considering a technically viable location within the
Dutch exclusive economic area, i.e. the sea considered as
Dutch territory which extends 200 nautical miles from the
state’s baseline, excluding spaces already devoted for other
uses, such as navigation routes, offshore windfarms, mili-
tary purposes, or environmental protection (ALPHEUS
H2020 Project 2024b). Further, it considers future offshore
wind projects surrounding the location, providing the elec-
tricity needed for its 2000 MW capacity. Nevertheless, by

a)

Inner berm

Protective layer

increasing the electric machines’ power, the reservoir size
could be reduced (Hoffstaedt et al. 2024). In fact, seven
potential sites have been identified, 3 in the Netherlands,
and 2 in both Germany and France (ALPHEUS H2020,
2024b).

We follow the design proposed by Prasasti et al. (2024)
for the construction, based on building a circular wall with
a diameter of 5 km. The essential elements that constitute
the most relevant parts of the dam are the foundations,
the caissons, the inner berm, and the protecting layer, as
depicted in Fig. 2. The plant’s Lifetime is 100 years, and
all the infrastructure needed for its construction and main-
tenance is considered.

Construction The energy and material requirements for the
extraction of resources, transportation, component manu-
facturing, and construction of the O-PHS plant form the
construction stage. The life cycle inventory data, calcula-
tions, and assumptions are provided in the Supplementary
Information.

Caisson

Foundations

T 2°30.0'

Fig.2 O-PHS construction. a Transverse view of the dam with its
different parts. b Top view of the dam with its diameter. ¢ High-
lighted as a red square, the project’s geographical location is 45 km

3°0.0' 3930.0° 0.0’ 4530.0° 5°0.0' 5930.0'

from the Dutch shores in the North Sea. Images retrieved from
Alpheus Project’s documentation (ALPHEUS H2020 Project 2024a,
2024b; Hoffstaedt et al. 2024)
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Civil infrastructure Civil infrastructure refers to the non-
moving parts of the construction, i.e. the dam. This struc-
ture is divided into four elements: the foundations, caissons,
inner berm, and the protective layer. The foundations are
made of granite and are modelled using data from Braga
et al. (2017). Caissons are hollow rectangular blocks of rein-
forced concrete with dimensions 65.1 m long, 22 m wide,
and 35 m tall. Once in place, they are filled with sand and are
used to build the wall that separates the reservoir and the sea.
The inner berm refers to the sand counterweight preventing
the caissons from moving due to wave and current forces.
All sand needed for this project is assumed to be taken from
the inner reservoir’s seabed, avoiding sand production on
land and transport to the construction site.

A double layer of protection is considered to keep the
inner berm’s sand from excessive spilling: a filter layer
composed of geotextile (Tencate 2019) and an armour layer
made from granite rocks.

Electromechanical equipment Electromechanical equip-
ment encompasses all machinery and components necessary
for electricity conversion. Due to the extensive nature of this
list, we focus on the most critical elements: reversible pump-
turbines, power electronics, transformers, and subsea cables.

Counter-rotating pump turbines are considered a promis-
ing technology for O-PHS due to their efficiency in lower
height differences (Ansorena Ruiz et al. 2022) and their dual
ability to pump water up the reservoir and generate elec-
tricity. With an average round-trip efficiency of 70% (Fahl-
beck et al. 2023; Prasasti et al. 2024; Truijen et al. 2024), the
impacts of these turbines are estimated based on the material
and energy inputs required for their manufacture. Electron-
ics play an essential role in monitoring and controlling the
machine. This study estimates the required amounts based
on the turbine’s weight. Literature consulted presents values
from 0.59% to 1.32% of the total weight for turbines up to
2 MW (Alsaleh and Sattler 2019; Schmidt 2006). Consider-
ing that turbines in this study reach 10 MW, a conservative
estimate of 2% of the total turbine weight is used to determine
the electronics needed. Transformers are used to increase the
voltage of a current to minimize transmission losses. An 880
MVA transformer is estimated to support a 2000 MW plant
capacity (Molina Gomez et al. 2022). Using kg/MVA data
(ABB 2003), the total weight of the transformer is calculated.
Finally, 60 km of subsea cable is considered to ensure a safe
range over the 45 km distance from shore.

Maintenance Maintenance is essential to ensure the long-
term functionality of the infrastructure. For the dams’
infrastructure operational and maintenance costs in stand-
ard PHS can go from 1 to 2.2% of the CAPEX (Connolly
2011; Renewable Power Generation Costs in 2012, 2013).

@ Springer

Considering this, the assumption that the protective layer
of granite will require 1% of the initial material for mainte-
nance over the plant’s Lifetime falls within that range. On
the other hand, a more conservative approach is taken for
sand losses, and for the inner berm, 10% of the initial sand
requirements is considered for maintenance.

The electromechanical equipment has a Lifespan of
25 years, meaning all the equipment will be replaced three
times during the 100-year operation of the plant. Addition-
ally, lubricating oil usage is considered. Based on other stud-
ies, further, lubricating oil is considered and, based on other
studies (Briones Hidrovo et al. 2017; Pang et al. 2015), it is
observed that larger plants require less lubricant per MWh,
resulting in a usage rate of 4.91e-6 kg/MWh. Maintenance
and construction material requirements are summarized in
Table 1.

Operation The machinery used for the operation of the
plant results in emissions. Fugitive emissions of sulfur hex-
afluoride (SF6) from the cooling system and transformers
amount to 3.4e-10 kg/kWh of electricity production (Veran-
Leigh and Vazquez-Rowe 2019). Importantly, no biogenic
emissions are considered for O-PHS, as these emissions,
typically released from organic matter after flooding and
drying the land, do not apply here due to the absence of
such land changes associated with C-PHS plants (Gemechu
and Kumar 2022; Pacca 2007). Figure 3 presents a simpli-
fied flowchart of the modeled Life Cycle Assessment (LCA)
structure.

2.2.2 Conventional PHS

C-PHS is the technological parent of O-PHS. Their simi-
larities make this comparison very relevant since C-PHS
maturity can show O-PHS potential. C-PHS is modelled
using the ecoinvent processes “electricity production,
hydro, reservoir, alpine region” and “electricity produc-
tion, hydro, reservoir, non-alpine region” (Wernet et al.
2016) with Norway and Germany as respective geogra-
phies. This is done following the reasoning that plants
in these regions would be the closest alternative to the
presented O-PHS. The main difference between these
two processes is the amount of biogenic CO, eq emis-
sions, defined directly by their location. These processes
are selected because they consider all the infrastructure
needed to produce 1 kWh from hydropower construction,
operation, and maintenance. It is important to note that
for these processes, the Lifetime of civil infrastructure
is 150 years and 80 years for electromechanical equip-
ment. Although this does not fit entirely with the model for
O-PHS, it is considered the closest process from ecoinvent.
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Table 1 Material requirements for the infrastructure of a 2 GW O-PHS plant. The percentage in the Maintenance column quantifies the amount

of material needed to maintain the infrastructure compared with the initial construction amount

Infrastructure Infrastructure sections Major processes Material needs (tonnes)
Construction Maintenance
Civil infrastructure Caisson Reinforcing Steel 158,368 -
Concrete 2,532,288 -
CEM 1I/B-V
Sand 18,561,067 -
Foundations Granite 12,119,007 -
Protection Layer Granite 12,563,323 125,633 (1%)
Geotextile 3,411 -
Inner Berm Sand 104,141,023 10,414,102 (10%)
Electromechanical equipment Turbine Stainless Steel 157,072 471,216 (300%)
Unalloyed Steel 31,554 94,662 (300%)
Low Allowed Steel 11,326 33,978 (300%)
Copper 11,326 33,978 (300%)
Magnet 555 1,665 (300%)
Electronics Steel 487 1,461 (300%)
Low Allowed Steel 487 1,461 (300%)
Copper 29 87 (300%)
Transformers Steel 94 282 (300%)
Low Allowed Steel 174 522 (300%)
Copper 76 228 (300%)
Sea cable Low Allowed Steel 2112 6,336 (300%)
Copper 847 2,541 (300%)
General equipment Lubricating oil - 1,430
_______________________________________________ .
Cals;?\r; F;:;ahcnegmem _"F‘{;‘S:ECE“"_ Electricity stored Electricity losses I:] P :
Electity (oM Electicly (ah S !
Fg,:giif;s _Fm:?‘m”—_. Dam construction i s < stem boundares :
Inner berm Inner berm Dam (unit Operation :
Construction uni |
Electricty (KWh |
Protection Layer | Protecton ___| Construction  ——1 :n?I » O?ijrsa;?:m L s:a?ea‘e:e*t’:»:i
Placement Layer (unit

Electromechanical
equipment (1 unt

Maintenance
services (unit)

Maintenance

1

Electromechanical
parts

Electromechanical
equipment (3 units)

Electromechanical
parts

Granite irregular
rocks (kg

Granite Production

Construction works

Construction works

Fig.3 A simplified flowchart was used in the O-PHS LCA model.
Blue represents the construction, green represents the maintenance,
and yellow represents the needed electricity. In practice, to model FU

1 (a single O-PHS plant), operation electricity is set to zero, and the
electricity output is scaled to the total electricity output of the plant’s

life cycle
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2.2.3 LFP batteries

From the many types of Li-ion batteries, LFP batteries are
particularly suitable for grid storage applications and offer
lower costs compared to other alternatives (Fan et al. 2020;
Killer et al. 2020). Additionally, it is expected that battery
manufacturers will shift away from utilizing conflictive
materials such as cobalt. For these reasons, this study has
chosen LFP batteries for comparison.

Following the recommendations of Arshad et al. (2022),
all assumptions regarding battery Lifetime are clearly
described to provide a comprehensive and transparent view
of the model. It is assumed that the batteries will undergo
a complete daily cycle, delivering the same amount of
electricity as the O-PHS plant, 8 GWh per day. Accurately
determining the Lifetime of a battery is challenging due to
significant technological advances over the years and vary-
ing Literature values ranging from 1800 to 8000 cycles and
from 5 to 20 years (Chen et al. 2012; Gallo et al. 2016;
Lehtola and Zahedi 2019; Peters et al. 2017; Popp et al.
2014; Swierczynski et al. 2015). Furthermore, future tech-
nology developments may increase the lifetime of LFP bat-
teries or result in new materials that outperform the assessed
alternative. For this reason, we do not consider replacements
once the lifetime of the LFP batteries is over. Based on the
assumption that the battery conditions (material and opera-
tional) will be optimal, a Lifetime of 7300 cycles or 20 years
has been selected.

The number of cycles a battery can undergo during its
lifetime directly depends on the depth of discharge (DoD),
which is the percentage of the battery that is regularly
charged and discharged. To ensure a higher number of cycles
and thus a longer lifespan, the DoD must also be optimal,
though there is no consensus on the exact value. For elec-
tric vehicles (EVs), a DoD of 80% is commonly considered
(Arshad et al. 2022; Peters et al. 2017), while some indi-
cations suggest that LFP batteries benefit from complete
(100%) cycles (Spitthoff et al. 2020). Other research states
that a DoD of 70% ensures the highest performance from
lithium batteries (Park et al. 2023). This report adopts the
most conservative approach, using a 70% DoD. This choice
means that with 70% of the total capacity, the battery infra-
structure must meet the O-PHS storage capacity, resulting
in oversizing the number of batteries needed, directly affect-
ing the infrastructure needs. Utilising LFP batteries’ specific
energy capacity of 0.159 kWh/kg (Dai et al. 2018), the total
battery requirement is estimated at 71,878 tons for construc-
tion and 20 years of operation.

2.2.4 Electricity for storage and losses

Emissions from electricity production are highly depend-
ent on the energy source and technology selection. The

@ Springer

O-PHS plant analysed in this study aims to store elec-
tricity produced from offshore wind farms. Therefore, it
is assumed that all the energy stored is sourced directly
from offshore wind turbines. Similarly, storage technolo-
gies have inherent round-trip efficiencies, leading to a per-
centage of electricity being lost during the storing process.
Such energy losses result in additional emissions associ-
ated with the energy required. To account for the storage
efficiency in the model, the gross electricity inputs have
been classified into the net energy delivered (i.e., the out-
put of 1 kWh of stored electricity) and the energy losses
(i.e., the additional electricity lost in the storage process).
For each technology, a range of average efficiency val-
ues is considered as a sensitivity analysis. The round-trip
efficiencies for O-PHS are 65%, 70%, and 75%. For LFP
batteries, Literature values range from 70 to 99% (Gallo
et al. 2016; Killer et al. 2020; Peters et al. 2017). We use
results from Peters et al. (2017), providing a range of 80%
to 99%, with an average of 92.4%. For C-PHS, values of
65%, 76%, and 87% are used (Kougias and Szabd, 2017).
Also, the lifespan of the different technologies has been
varied +10% as a sensitivity analysis. This will affect the
final energy stored and delivered and is modelled through
increasing or decreasing the electricity variables — i.e.:
input, output, loses — while leaving the infrastructural
needs the same. The best values regarding the efficiency
and lifetime scenarios are combined into one scenario to
model, and the same is done for the worst-case scenario.

2.3 Life Cycle Impact Assessment

Within the Product Environmental Footprint (PEF) meth-
odology proposed by the European Commission (THE
European Commission 2021), the Environmental Footprint
(EF) 3.1 methodology provides a standard set of impact
categories to assess with a specific characterization model.
The assessed EF impact categories are Climate change
(kg CO, eq), ozone depletion potential (kg CFC-11 eq),
Human toxicity, cancer (CTU}), Human toxicity non-
cancer (CTU,), Particulate matter (Disease incidence),
Tonising radiation (kBq U235 eq), Photochemical ozone
formation (kg NMVOC eq), Acidification (mol H +eq),
Eutrophication terrestrial (mol N eq), Eutrophication
freshwater (kg P eq), Eutrophication marine (kg N eq),
Ecotoxicity freshwater (CTUe), Land use (dimensionless),
Water use (m3 water eq of deprived water), Resource use
minerals and metals (kg Sb eq), and lastly Resource use
fossil (MJ).

The database from ecoinvent 3.9.1 cut-off (Wernet et al.
2016) feeds the modelling and calculations done through
the open-source LCA software Activity Browser (Steubing
et al. 2020).
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3 Results
3.1 Environmental impacts of O-PHS

GHG emissions from the construction and maintenance
of the O-PHS plant amount to 2,779 kt of CO, eq over
100 years. These emissions are broken down into differ-
ent plant sections and material types in Fig. 4. The high
amount of material requirements highlights the scale of the
infrastructure, which is the primary contributor, account-
ing for 94.5% of the total climate emissions for this case
study.

Civil infrastructure accounts for 55.7% of these emis-
sions (1548 kt of CO, eq) while electromechanical equip-
ment accounts for 44.1% (1,225 kt of CO, eq). Considering
maintenance as the substitution of the electromechanical
equipment once it reaches its EoL makes maintenance
emissions three times higher than those of construction.
The single largest emitter is the turbines, contributing
36.3% of the total emissions. Stainless steel, used in tur-
bine manufacturing, is responsible for 28% of the over-
all GHG emissions. The caissons are another significant
source, representing almost 29% of all emissions. This is
divided between concrete CEM II/B-V (a type specifically
used for marine constructions) at 11.8% and reinforcing
steel at 17%. Lastly, granite, used for the foundations and

protective layer, accounts for 21.6% of total CO, eq emis-
sions, split into 10.6% and 11%, respectively.

One noteworthy material is sand, which is required in
quantities exceeding 120 million tons. However, this sand is
not produced but transported from the seabed and piled up
to build the inner berm. Consequently, the inner berm has
no emissions from sand production, only from the transpor-
tation process. Transportation-related emissions fall under
‘Construction works’ and account for 0.6% of total plant
emissions. This mainly includes fuel consumption by ships
used in various construction activities.

These absolute emissions can be translated into relative
emissions by dividing the total number by the O-PHS plant’s
expected electricity, which results in 9.52 g of CO, eq/kWh
for all the infrastructure. Emissions beyond GHG have also
been analysed and categorised according to their origin to
identify hotspots in the infrastructure. All impact catego-
ries listed in the LCIA part are quantified (per kWh) and
depicted in Fig. 5. Despite the substantial dimensions of
the dam—>5 km in diameter and over 30 m tall—the emis-
sions from electromechanical equipment exceed those from
civil infrastructure in 12 out of the 16 impact categories.
Furthermore, the contribution of civil infrastructure does
not exceed 60% in any category, whereas electromechani-
cal equipment accounts for over 60% in 8 impact categories
and approximately 90% in 5. These findings highlight the

Fig.4 Disaggregated absolute a 0 b
. . 100%
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Fig. 5 Contribution analysis Q@"
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Abbreviations stand for CC: Climate change; OD: Ozone depletion CE: Human toxicity: Carcinogenic; NCE: Human toxicity: Non-
Carcinogenic; PMF: Particulate matter formation; IR: lonizing radiation; POF: Photochemical oxidant formation; AC: Acidification; ET:
Eutrophication-terrestrial; EF: Eutrophication-freshwater; electromechanical equipment: Eutrophication-marine; ECF: Ecotoxicity-
freshwater; LU: Land use; WU: Water use; RUM: Resources use minerals and metals; RUF: Resource use Fossil fuels

significant impact of electromechanical equipment, particu-
larly turbines, on the overall environmental footprint of the
infrastructure. Turbines account for over 50% of the total
emissions in five impact categories (see Fig. 5). In the acidi-
fication impact category, where turbines have their lowest
contribution, they still represent an important role, account-
ing for 30% of the total impact. Therefore, mitigating emis-
sions from turbines and their components stands out as an
effective approach to addressing emissions across all impact
categories in the infrastructure.

3.2 Comparison with alternative energy storage
technologies

Factors such as electricity use, efficiency scenarios, and
infrastructure emissions were considered together when
comparing technologies. Overall, the GHG emissions of
all technologies are approximately 30 g CO, eq, except for
C-PHS non-Alpine, where biogenic emissions from the
infrastructure increase the total to around 70 g CO, eq. Bio-
genic emissions are accounted for within the infrastructure
block because they are the direct result of processes needed
for the construction of a hydropower plant. GHG emis-
sions from electricity delivered after storage are consistent
across the four technologies, reflecting the footprint of 1
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kWh produced by offshore wind turbines. These emissions
from the electricity stored are the highest for three of the
four technologies, reaching 16.25 g CO, eq/kWh. However,
C-PHS non-Alpine diverges, presenting the highest emis-
sions from storage infrastructure at around 50 g CO, eq/
kWh. Despite variations in the type and quantity of materi-
als used in their construction, the remaining technologies
exhibit similar infrastructure emissions, ranging from 8.05
t0 9.52 g CO, eq/kWh.

Emissions from electricity losses vary, considering the
efficiency and the infrastructure Lifetime ranges defined
in Section 2.2.4 for the different technologies. For O-PHS,
emissions range from 5.42 to 8.75 g CO, eq (17.9%—24.6%);
for C-PHS (Alpine and non-Alpine), they range from 2.43
to 8.755 g CO, eq (10.1%-30.2% and 3.8%—11.2%, respec-
tively); and for LFP batteries, they range from 0.16 to 4.06 g
CO, eq (0.6%-13.4%). This sensitivity analysis of efficiency
and infrastructure lifetime is depicted by the error bars
shown for each technology in Fig. 6.

When considering impact categories beyond climate
change, the picture shifts (Fig. 7). The C-PHS results in
Alpine and non-Alpine regions are nearly identical across
the other assessed categories. LFP batteries are the highest
emitters in 10 of the 16 categories, with copper and the cath-
odes’ lithium-iron-phosphate being the primary contributors
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to these emissions. In contrast, O-PHS has the highest emis-
sions in four impact categories, while C-PHS leads in two.
Although impact categories are not directly comparable,
these findings provide a broader environmental perspective.
They suggest that O-PHS is a less polluting technology than
LFP batteries in most assessed impact categories. Not only
that, but it quantifies how less pollutant O-PHS is compared
with LFP batteries.

4 Discussion

When comparing O-PHS with other technologies in this
study, it can be seen that O-PHS results are in the same order
of magnitude as LFP batteries and C-PHS. Moreover, there
is no impact category in which O-PHS emissions dispropor-
tionally overshoot other technologies. Taking a closer look
at the source of GHG emissions, we see that the production
of electricity causes half of the emissions, while efficiency
losses and the infrastructure account for 21% and 29% of the
total emissions, respectively. This can be seen as an “envi-
ronmental premium” to pay to store electricity; however, sta-
tionary batteries serve other purposes beyond storing energy.
They also regulate the frequency in the grid and manage
power(Bielewski et al. 2022), a task that is usually per-
formed by thermal plants. In other words, the O-PHS plant
not only would store energy, but would provide stability to

the grid and therefore increase renewable penetration and
reduce curtailment, dealing with the intermittency issues
related to renewables. All this, at the relatively low cost of
around 33 g of CO, eq/kWh, whereas the emissions of the
countries surrounding the plant in 2023 (Netherlands, Ger-
many, Denmark, and Belgium) went from 94 to 381 g of
CO, eq/kWh (European Environmental Agency, 2024; Our
World in Data, 2024).

Nevertheless, seeing these optimistic results, we also
compared our findings with results from the literature on
different technologies. For this, we based the comparison on
the literature review done by Rahman et al. (2015), which
accounts for more technologies than those analysed in this
study. We excluded results previous to 2015 and results with
a different unit to g of CO, eq/kWh. Lead acid batteries, for
example, present values ranging from 65 to 1157 g of CO,
eq/kWh, while Li-ion batteries values range from 28-810
g of CO, eq/kWh, C-PHS results range from 8-276 g of
CO, eq/kWh, and other alternative technologies Like com-
pressed air energy storage and green hydrogen have results
of 20-380 g of CO, eq/kWh and 386-700 g of CO, eq/
kWh, respectively. This analysis shows that electricity-stor-
ing technologies, especially batteries, have a wide range of
variability in the LCA results for GHG emissions. Consider-
ing these ranges, our results (28 and 29 g of CO, eq/kWh for
C-PHS and LFP batteries) fall under the lower values range
but are not outliers. When considering LFP infrastructure
(Hiremath et al. 2015; Wang et al. 2018) find similar results
as those in this study with 16 and 20 g of CO, eq/kWh,
respectively.

However, we find three main reasons for these results to
be at the low end of the ranges. First, different studies pre-
sent their own assumptions and system boundaries that may
differ. For example, Wang et al. (2018) consider 2000 cycles
for the entire Lifetime of the LFP batteries and exclude the
use phase, while in this study we consider 8000 cycles and
include its use. Second, for C-PHS, biogenic emissions vary
depending on the weather where the C-PHS plant is located,
rising GHG emissions up to 547 g of CO, eq/kWh in tropi-
cal climates (Gemechu and Kumar 2022). Third and most
importantly, in the referenced studies that consider the use
phase (Abdon et al. 2017; Baumann et al. 2017; Hiremath
et al. 2015) the electricity stored is from the grid from Ger-
many, Switzerland, or the EU average. These GHG emis-
sions per kWh surpass those from the infrastructure, going
from 100 g of CO, eq/kWh in the Swiss case to more than
700 g of CO, eq/kWh in the German scenario.

This variance present in other technologies is important
to give robustness to results. Thus, we believe that further
research in O-PHS environmental assessment should be
carried out to confirm the results presented in this study
and to go into deeper detail on several key aspects of the
O-PHS technology. Firstly, closer attention should be paid

@ Springer
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to the circularity and EoL stage of the materials used, which
stands out as a notable gap in most research, including this
study. Considering the O-PHS plant is mainly made of steel,
concrete, sand, and granite, returning these materials to the
loop of economically valuable goods is already technically
possible (de Andrade Salgado and de Andrade Silva 2022).
Preventing equipment from becoming waste with designs
that give higher importance to the EoL stage of the product
has the potential to reduce the infrastructure’s environmen-
tal footprint in virtually all impact categories. Strategies,

@ Springer

including, but not limited to, repairing and remanufactur-
ing the turbines, reusing the granite stones, or recycling the
concrete and the steel from the caissons, can make a remark-
able difference in the infrastructure footprint (Russell and
Nasr 2023). However, although technological innovations
are required to achieve this goal, the challenge is not only
on the technical side.

Exploring business models and incentivising the eco-
nomics of the activities involved in the recovery and circu-
larization of material is paramount since the location and
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scale of the plant pose significant challenges for EoL and
circularity strategies. In other words, although all these EoL.
strategies are already technically possible, this may not be
economically feasible due to the magnitude and geographi-
cal situation of the materials. Therefore, more research in
EoL strategies, scenarios, and alternatives for material cir-
cularity, waste management, and the decommissioning of
the O-PHS plant is necessary in both the environmental and
the economic spheres.

Secondly, the impact on the living organisms in the con-
struction area and its surroundings is of the highest impor-
tance. This fact is not only relevant per se since the dam
would create an artificial reef that could improve biodiver-
sity in the area like offshore wind farms in the North Sea
(Li et al. 2023) but also, it could potentially destroy all bio-
diversity in the construction area and surroundings during
the construction process. Moreover, the decay of organic
matter is precisely the main reason for biogenic emissions
to appear in C-PHS. Depending on the location of the plant
and the weather, this type of emissions can be the primary
source of GHG emissions in the C-PHS technology (Geme-
chu and Kumar 2022). With this precedent and considering
the scale of the O-PHS plant, we believe it is highly relevant
to analyse the quantity and type of marine species that stay
or pass through the area where the O-PHS plant is planned.
More importantly, research should be carried out to study
how the construction and operation of the O-PHS can affect
them, if their decay in a closed area would result in biogenic
emissions and if so, how high these emissions are.

5 Conclusions

Using LCA, we studied the environmental impacts of
the emerging technology of Offshore Low-Head Pumped
Hydro Storage (O-PHS). We find that the GHG emissions
from an O-PHS plant are in the same order of magnitude
as those from lithium iron phosphate (LFP) batteries and
the best-performing Conventional Pumped Hydro Storage
plants (C-PHS). Additionally, O-PHS results do not present
disproportionate spikes in any impact category with respect
to other technologies. On the contrary, LFP batteries pre-
sent environmental hotspots for non-carcinogenic human
toxicity, acidification, terrestrial eutrophication, and metal
resource depletion; while water use is the most pressing
issue for C-PHS. Despite further research needs, this high-
lights the potential of O-PHS as an alternative electricity
storage technology from an ecological perspective. Also,
from a scalability point of view, only in the North Sea,
seven potential sites have been identified near the coasts of
the Netherlands, Germany, and France (ALPHEUS H2020,
2024). In fact, smaller reservoirs are also possible options

(Hoffstaedt et al. 2024). Although at this moment it is dif-
ficult to foresee with accuracy further potential sites for an
O-PHS plant to be deployed, it could be argued that there
are zones that already comply with some necessary require-
ments. The Yellow and the Baltic Sea comply with some
of these requirements, such as having a relatively narrow
sea bed and the presence, or foreseen presence, of offshore
wind farms (4C Offshore, 2025).

Moreover, storing technologies like O-PHS not only store
energy but also can provide ancillary services to the grid,
such as frequency regulation, power management (Bielewski
et al. 2022), and, in general, support grid stability. A stabil-
ity that is crucial from a grid perspective as it deals with
the intermittency of the renewables, increases their pen-
etration, and reduces curtailments. With this context, the
emissions from using an O-PHS plant to store energy and
deliver it to the grid are about 33 g of CO, eq/kWh, while
emissions from the plant itself (construction, maintenance
and operation) result in 16.3 g of CO, eq/kWh. This means
that there is a premium attached to the storage of electricity
and providing the aforementioned services. A premium that
is one-sixth of the current electricity mix of Denmark, the
country with the cleanest mix in the region of the O-PHS
plant from this study. While 50% of the emissions have their
origin in the production of electricity from the offshore wind
farms surrounding the O-PHS plant, the rest of the GHG
arise from the construction and maintenance of the plant
(29%) and from the wind energy that needs to be produced to
compensate for the energy losses linked to the 70% roundtrip
efficiency (21%). Among the infrastructure-related impacts,
turbines account for around 32% of the total GHG emissions
of the O-PHS plant, with 11% coming from the turbines’
materials and 21% from the efficiency losses. Nevertheless,
turbines are not only a major player in GHG emissions,
but they are the major contributor in 15 of the 16 assessed
impact categories when looking only at the infrastructure.
Considering this, increasing turbine efficiency is paramount
and should be prioritized to reduce the environmental foot-
print in all the impact categories. However, efficiency alone
is not enough, as mining and refining materials, such as
steel and copper, are highly polluting and energy-intensive
processes. Therefore, all life-cycle phases of the turbines
should be carefully considered for environmental improve-
ments during the design stage. Future research should also
consider the End-of-Life stage and the environmental gains
that could be made through recycling. In addition, maxim-
ising the turbines’ lifetime through, e.g., enhanced mainte-
nance, repairs, and remanufacturing may further lower their
per kWh impact. Furthermore, the use of less environmen-
tally impactful materials or alternative production methods
should be explored to reduce emissions across all impact
categories for O-PHS.

@ Springer
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