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Abstract. Recently, van Neerven, Weis and the author, constructed a the-

ory for stochastic integration of UMD Banach space valued processes. Here

the authors use a (cylindrical) Brownian motion as an integrator. In this
note we show how one can extend these results to the case where the integra-

tor is an arbitrary real-valued continuous local martingale. We give several

characterizations of integrability and prove a version of the Itô isometry, the
Burkholder-Davis-Gundy inequality, the Itô formula and the martingale rep-

resentation theorem.

1. Introduction

There are various approaches to stochastic integration of Banach space valued
processes. We are in particularly interested in the stochastic integral

∫
φ(t) dM(t)

for an E-valued strongly progressively measurable process φ, where E is a Banach
space and M is a local martingale. Already in the case where φ is an E-valued
function and M is a standard Brownian motion some serious problems occur. In
[26], Yor has constructed a bounded measurable function φ : [0, 1] → lp, where
1 ≤ p < 2, which cannot be stochastically integrated with respect to a standard
real-valued Brownian motion W . On the other hand, for Banach spaces with type 2
(for example Lp with p ∈ [2,∞), Hoffmann-Jørgensen and Pisier [10] have observed
that every function φ ∈ L2(0, T ;E) is stochastically integrable with respect to W
and there is a constant C independent of φ such that

E
∥∥∥∫ T

0

φ(t) dW (t)
∥∥∥2

≤ C2‖φ‖2L2(0,T ;E).

A few years later, Rosiński and Suchanecki [23] have characterized the stochas-
tic integrability for functions φ : [0, T ] → E and M = W . McConnell [16] has
used decoupling methods to give sufficient conditions for stochastic integrability of
strongly progressively measurable processes φ : [0, T ]× Ω → E and M = W in the
case where E is a UMD space (for example Lp with p ∈ (1,∞)).

In the case that E has martingale type 2 there is a different approach to study
stochastic integrability of strongly progressively measurable processes (cf. [1, 2,
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5, 21]). In this approach a sufficient condition for stochastic integrability is φ ∈
L2(0, T ;E) almost surely, and in this case one has the one-sided estimate

(1.1) E
∥∥∥∫ T

0

φ(t) dW (t)
∥∥∥2

≤ C2E‖φ‖2L2(0,T ;E),

where C is independent of φ. Although this gives a wide class of integrable
processes, it is not the right class in the following sense. The L2-condition is suffi-
cient, but not necessary (except if E is isomorphic to a Hilbert space (see [23])), and
the estimate (1.1) is only one-sided. We will now explain conditions for stochastic
integrability which are necessary and sufficient, and such that a two-sided estimate
holds.

In [20], van Neerven and Weis have obtained necessary and sufficient conditions
for stochastic integrability in terms of γ-radonifying operators in the case that
M = W . The space of stochastically integrable functions turns out to be γ(0, T ;E)
and it is shown that the following version of the Itô isometry holds:

E
∥∥∥∫ T

0

φ(t) dW (t)
∥∥∥2

= ‖φ‖2γ(0,T ;E).

The γ-spaces are useful tools in proving properties of stochastic integrals and in
studying existence and uniqueness of stochastic differential equations in Banach
spaces (cf. [2, 6, 20, 25]). The spaces turned out to be useful in various other areas
of mathematics asH∞-calculus [7, 14], control theory [9] and wavelet decomposition
[11]. Recently, in [13] some embedding results for γ-spaces have been obtained in
the case the space has type p or cotype q for some p ∈ [1, 2] and q ∈ [2,∞].

In [19], using decoupling techniques related to [8, 16], these characterizations
have been extended to the case of processes φ : [0, T ]×Ω → E and E is a UMD Ba-
nach space. It has been shown that the space of stochastically integrable processes is
given by the adapted and strongly measurable processes that satisfy φ ∈ γ(0, T ;E)
a.s., and for all p ∈ (1,∞) the following Itô isomorphism has been proved

(1.2) cpp‖φ‖
p
Lp(Ω;γ(0,T ;E)) ≤ E

∥∥∥∫ T

0

φ(t) dW (t)
∥∥∥p ≤ Cpp‖φ‖

p
Lp(Ω;γ(0,T ;E)),

where cp, Cp ≥ 0 are constants independent of φ.
The processes which one can integrate with the martingale type 2 theory are

the processes with paths in L2(0, T ;E) a.s. This class of processes is smaller than
the class of processes with paths in γ(0, T ;E) a.s. (except if E is isomorphic to a
Hilbert space). Secondly, among the spaces E = Lp, our theory is applicable for
all p ∈ (1,∞). The theory for martingale type 2 spaces only applies to E = Lp

with p ∈ [2,∞). The Lp-spaces are important in the study of stochastic evolution
equation and the applications to such equations are work in progress (cf. [18]).

A natural question is whether the theory from [19], in particular (1.2), can
be extended to the case where the Brownian motion is replaced by an arbitrary
continuous local martingale M . The goal of this paper is to construct such a
stochastic integration theory and to find a precise description of the integrable
processes. We show that the space of stochastically integrable processes is the set
of all strongly progressively measurable processes that satisfy φ ∈ γ(R+, [M ];E))
a.s. Moreover, for all p ∈ (1,∞) the following Itô isomorphism is obtained:

(1.3) cpp‖φ‖
p
Lp(Ω;γ([0,T ],[M ];E)) ≤ E

∥∥∥∫ T

0

φ(t) dM(t)
∥∥∥p ≤ Cpp‖φ‖

p
Lp(Ω;γ([0,T ],[M ];E)).
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Here [M ] is the quadratic variation of M . In the special case that E is a Hilbert
space, γ([0, T ], [M ];E) = L2(0, T ;E) isometrically, and the estimate (1.3) reduces
to a well-known inequality. The proofs below are based on time change arguments
as occur in some known proofs in the real-valued case. The procedure in the Banach
space setting is however more difficult.

As an application of the main result Theorem 3.3, an Itô formula and a martin-
gale representation theorem are proved in Section 4.

2. Preliminaries

A Banach space E is a UMD space if for some (equivalently, for all) p ∈ (1,∞)
there exists a constant βp,E ≥ 1 such that for every n ≥ 1, every martingale
difference sequence (dj)nj=1 in Lp(Ω;E), and every {−1, 1}-valued sequence (εj)nj=1

we have (
E

∥∥∥ n∑
j=1

εjdj

∥∥∥p) 1
p ≤ βp,E

(
E

∥∥∥ n∑
j=1

dj

∥∥∥p) 1
p

.

UMD spaces are reflexive. Examples of UMD spaces are all Hilbert spaces and the
spaces Lp(S) for 1 < p < ∞ and σ-finite measure spaces (S,Σ, µ). If E is a UMD
space, then Lp(S;E) is a UMD space for 1 < p <∞. For an overview of the theory
of UMD spaces we refer the reader to [4, 24] and references given therein.

Let (γn)n≥1 be a sequence of independent standard Gaussian random variables
on a probability space (Ω′,F ′,P′) (we reserve the notation (Ω,F ,P) for the prob-
ability space on which our processes live) and let H be a separable real Hilbert
space. A bounded operator R ∈ L (H,E) is said to be γ-radonifying if there exists
an orthonormal basis (hn)n≥1 of H such that the Gaussian series

∑
n≥1 γnRhn

converges in L2(Ω′;E). We then define

‖R‖γ(H,E) :=
(
E′

∥∥∥∑
n≥1

γnRhn

∥∥∥2) 1
2
.

This number does not depend on the sequence (γn)n≥1 and the basis (hn)n≥1, and
defines a norm on the space γ(H,E) of all γ-radonifying operators from H into
E. Endowed with this norm, γ(H,E) is a Banach space, which is separable if E
is separable. If R ∈ γ(H,E), then ‖R‖ ≤ ‖R‖γ(H,E). If E is a Hilbert space, then
γ(H,E) = L2(H,E) isometrically.

Let (S,Σ, µ) be a separable measure space. We say that a function φ : S → E
belongs to L2(S, µ) scalarly if for all x∗ ∈ E∗, 〈φ, x∗〉 ∈ L2(S, µ). A function
φ : S → E is said to represent an operator R ∈ γ(L2(S, µ), E) if φ belongs to
L2(S, µ) scalarly and for all x∗ ∈ E∗ and f ∈ L2(S, µ) we have

〈Rf, x∗〉 =
∫
S

f(s)〈φ(s), x∗〉 dµ(s).

The above notion will be abbreviated by φ ∈ γ(S, µ;E). If µ is the Lebesgue
measure we will also write γ(L2(R+), E) and γ(R+;E) for γ(L2(R+, µ), E) and
γ(R+, µ;E) respectively. Here R+ = [0,∞).

Let M be a real valued continuous local martingale. For almost all ω ∈ Ω, the
quadratic variation process [M ](·, ω) is continuous and increasing, so we can asso-
ciate a Lebesgue-Stieltjes measure with it, which we will also denote by [M ](·, ω).
We say that φ : R+ × Ω → E is scalarly in L2(R+, [M ]) a.s. if for all x∗ ∈ E∗,
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for almost all ω ∈ Ω, 〈φ(·, ω), x∗〉 ∈ L2(R+, [M ](·, ω)). For such a process φ and
a family X = (X(ω) : ω ∈ Ω) with X(ω) ∈ γ(L2(R+, [M ](·, ω);E) for almost all
ω ∈ Ω, we say that φ represents X if for all x∗ ∈ E∗, for almost all ω ∈ Ω,

〈φ(·, ω), x∗〉 = X∗(ω)x∗ in L2(R+, [M ](·, ω)).

In the case that M is a Brownian motion the above notion of representability
reduces to the one in [19], since for almost all ω ∈ Ω, [M ](t, ω) = t.

The following relation between the above two representability concepts can be
proved as [19, Lemma 2.7].

Lemma 2.1. Let E be a separable real Banach space. Let φ : R+ × Ω → E be
strongly measurable. For each ω ∈ Ω, let X(ω) ∈ γ(L2(R+, [M ](·, ω)), E). If X
is represented by φ, then for almost all ω ∈ Ω, X(ω) is represented by φ(·, ω). In
particular, φ ∈ γ(R+, [M ];E) almost surely.

3. Definitions and characterizations of the stochastic integral

Let (Ω,A ,P) be a complete probability space with a filtration F := (Ft)t∈R+

that satisfies the usual conditions. Let M be a real-valued continuous local mar-
tingale with M(0) = 0.

We say that φ : R+ × Ω → E is an elementary progressive process if it is of the
form

φ =
N∑
n=1

1(tn−1,tn]ξn,

where 0 ≤ t0 ≤ t1, . . . ,≤ tN < ∞ and for each n = 1, . . . , N , ξn are Ftn−1-
measurable E-valued random variables. For such φ we define the stochastic integral
as an element of L0(Ω;Cb(R+;E)) as∫ t

0

φ(s) dM(s) =
N∑
n=1

(M(tn ∧ t)−M(tn−1 ∧ t))ξn.

We will extend this definition of the stochastic integral below.
It is immediate that the stochastic integral definition can be extended to all

strongly progressively measurable processes φ : R+ × Ω → E that take values
in a finite dimensional subspace of E, and satisfy φ is in L2(R+, [M ];E) a.s. (or
φ is scalarly in L2(R+, [M ]) a.s.). For more general φ the stochastic integral is
constructed in Theorem 3.3.

Before characterizing the stochastic integral in general, we consider the case of
Brownian motions. The next result is an infinite time interval version of a special
case of the results in [19].

Proposition 3.1. Let E be a UMD space. For a strongly measurable and adapted
process φ : R+ × Ω → E which is scalarly in L2(R+) a.s. the following assertions
are equivalent:

(1) there exists a sequence (φn)n≥1 of elementary progressive processes such
that:
(i) for all x∗ ∈ E∗ we have lim

n→∞
〈φn, x∗〉 = 〈φ, x∗〉 in L0(Ω;L2(R+)),

(ii) there exists a process ζ ∈ L0(Ω;Cb(R+;E)) such that

ζ = lim
n→∞

∫ ·

0

φn(t) dW (t) in L0(Ω;Cb(R+;E)).
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(2) There exists a process ζ ∈ L0(Ω;Cb(R+;E)) such that for all x∗ ∈ E∗ we
have

〈ζ, x∗〉 =
∫ ·

0

〈φ(t), x∗〉 dW (t) in L0(Ω;Cb(R+)).

(3) φ ∈ γ(R+;E) almost surely;
Furthermore, for all p ∈ (1,∞) we have

(3.1) E sup
t∈R+

‖ζ(t)‖p hp,E E‖φ‖pγ(R+;E).

A process φ : R+×Ω → E satisfying the equivalent conditions of the proposition
will be called stochastically integrable with respect to W . The process ζ is called
the stochastic integral process of φ with respect to W , notation

ζ =
∫ ·

0

φ(t) dW (t).

The process ζ is a continuous local martingale that starts at 0.
To prove Proposition 3.1, some results from [19] have to be extended to the

infinite time setting. This can be done without major difficulties and we leave
this to the reader. For instance the following extension of [19, Proposition 2.12] is
needed, which we also use in the proof of our main result below.

For a strongly measurable map X : Ω → γ(L2(R+), E) we define X∗x∗ ∈
L0(Ω;L2(R+)) as (X∗x∗)(·, ω) = (X(ω))∗x∗, where we identified L2(R+) with its
dual. We say that X : Ω → γ(L2(R+), E) is elementary progressive if it is repre-
sented by an elementary progressive process φ : R+ × Ω → E.

Lemma 3.2. For a strongly measurable map X : Ω → γ(L2(R+), E) the following
assertions are equivalent:

(1) There exist elementary progressive elements X1, X2, . . . , such that X =
limn→∞Xn in L0(Ω; γ(L2(R+), E)).

(2) For all x∗ ∈ E∗, we have X∗x∗ is adapted.

Proof. (1) ⇒ (2) is obvious.
(2) ⇒ (1): The only thing we have to prove is that [19, Propositions 2.12] may be

extended to an infinite time horizon. For each T > 0 let PT : L2(R+) → L2(0, T )
be defined as PT f = f |(0,T ). Let Y T = X ◦ PT . By the right ideal property, we
have Y T ∈ L0(Ω; γ(L2(0, T ), E)). It follows from [19, Proposition 2.12] that we can
find elementary progressive Xn ∈ L0(Ω; γ(L2(0, n), E)) such that

‖Xn − Y n‖L0(Ω;γ(L2(0,n),E)) <
1
n
.

It follows from [19, Proposition 2.4] that X = limn→∞ Y n in γ(L2(R+), E)) almost
surely and we may conclude the result. �

We can now formulate the main result of this paper.

Theorem 3.3. Let E be a UMD space. For a strongly progressively measurable
process φ : R+×Ω → E which is scalarly in L2(R+, [M ]) a.s. the following assertions
are equivalent:

(1) there exists a sequence (φn)n≥1 of elementary progressive processes such
that:
(i) for all x∗ ∈ E∗ we have lim

n→∞
〈φn, x∗〉 = 〈φ, x∗〉 in L0(Ω;L2([M ])),
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(ii) there exists a process ζ ∈ L0(Ω;Cb(R+;E)) such that

ζ = lim
n→∞

∫ ·

0

φn(t) dM(t) in L0(Ω;Cb(R+;E)).

(2) There exists a process ζ ∈ L0(Ω;Cb(R+;E)) such that for all x∗ ∈ E∗ we
have

〈ζ, x∗〉 =
∫ ·

0

〈φ(t), x∗〉 dM(t) in L0(Ω;Cb(R+)).

(3) φ ∈ γ(R+, [M ];E) almost surely;

Furthermore, for all p ∈ (1,∞) we have

(3.2) E sup
t∈R+

‖ζ(t)‖p hp,E E‖φ‖pγ(R+,[M ];E).

A process φ : R+ × Ω → E satisfying the equivalent conditions of the theorem
will be called stochastically integrable with respect to M . The process ζ is called
the stochastic integral process of φ with respect to M , notation

ζ =
∫ ·

0

φ(t) dM(t).

In the same way as in [19, Proposition 5.8] one can show that ζ is a continuous
local martingale that starts at 0.

Remark 3.4. The norm γ(R+, [M ];E) plays the rôle of the classical quadratic varia-
tion and (3.2) may be seen as a version of the Itô isometry or as a stochastic integral
version of the Burkholder-Davis-Gundy inequalities. We do not know whether (3.2)
holds for p ∈ (0, 1].

For the proof of Theorem 3.3 we need some additional results. We start with a
lemma on time changes in spaces of γ-radonifying operators.

Lemma 3.5. Let E be a real Banach space. Let A : R+ → R with A(0) = 0 be
increasing and continuous and let µ be the Lebesgue-Stieltjes measure corresponding
to A. Let S := limt→∞A(t) ≤ ∞ and define τ : R+ → R as

τ(s) =

{
inf{t ≥ 0 : A(t) > s} for 0 ≤ s < S,

∞ for s ≥ S.

Let φ : R+ → E be strongly measurable and let ψ : R+ → E be defined as

ψ(s) =

{
φ(τ(s)) for 0 ≤ s < S,

0 for s ≥ S.

Then we have φ ∈ γ(R+, µ;E) if and only if ψ ∈ γ(R+;E). In that case,

(3.3) ‖φ‖γ(R+,µ;E) = ‖ψ‖γ(R+;E).

Recall the substitution rule: for a strongly measurable f : R+ → E, we have
f ∈ L1(R+, µ;E) if and only if f ◦ τ ∈ L1(0, S;E), and in that case

(3.4)
∫

R+

f(t) dµ(t) =
∫

[0,S)

f(τ(s)) ds.
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Proof. First notice that for all s ∈ R+, A(τ(s)) = s ∧ S and for all t ∈ R+,

τ(A(t)) = sup{r ≥ t : A(r) = A(t)}.

Let (fn)n≥1 be an orthonormal basis for L2(0, S). For each n ≥ 1, let fAn : R+ →
R be defined as fAn (t) = fn(A(t)). We claim that (fAn )n≥1 is an orthonormal basis
for L2(R+, µ). First of all it follows from (3.4) that for all m,n ≥ 1∫

R+

fAm(t)fAn (t) dµ(t) =
∫

[0,S)

fm(s)fn(s) ds = δmn.

Hence (fAn )n≥1 is an orthonormal system. Let f ∈ L2(R+, µ) be such that for all
n ≥ 1, ∫

R+

f(t)fAn (t) dµ(t) = 0.

We have to show that f = 0, µ-almost everywhere. Take any representative of f and
denote it again by f . Define f̃ : R+ → R as f̃(t) = f(τ(A(t))). Since τ(A(t)) 6= t

is possible only if A is constant near t, we have f̃ = f , µ-almost everywhere. It
follows from (3.4) that for all n ≥ 1,∫

[0,S)

f̃(τ(s))fn(s) ds =
∫

R+

f̃(s)fAn (s) dµ(s) =
∫

R+

f(s)fAn (s) dµ(s) = 0.

Since (fn)n≥1 is an orthonormal basis for L2(0, S), we obtain that f̃ ◦ τ = 0, λ-
almost everywhere. From (3.4), it follows that∫

R+

1{f(t) 6=0} dµ(t) =
∫

R+

1{f̃(t) 6=0} dµ(t) =
∫

[0,S)

1{f̃(τ(s)) 6=0} ds = 0,

and hence f(t) = 0, µ-almost everywhere. We may conclude that the claim is true.
”⇒” Let IAφ ∈ γ(L2(R+, µ), E) be the operator that φ represents. It follows from

(3.4) that for all x∗ ∈ E∗ we have

(3.5) ‖〈ψ, x∗〉‖L2(0,S) = ‖〈φ, x∗〉‖L2(R+,µ),

so ψ is scalarly in L2(0, S). Hence, by the closed graph theorem we may define
Iψ ∈ L (L2(0, S), E∗∗) as

〈x∗, Iψf〉 =
∫

[0,S)

f(s)〈ψ(s), x∗〉 ds, x∗ ∈ E∗, f ∈ L2(0, S).

From (3.4) we deduce that for all n ≥ 1 and x∗ ∈ E∗,

(3.6) 〈x∗, Iψfn〉 =
∫

[0,S)

fn(s)〈ψ(s), x∗〉 ds =
∫

R+

fAn (t)〈φ(t), x∗〉 dt = 〈IAφ fAn , x∗〉.

Since IAφ takes values in E we conclude that Iψfn ∈ E for all n ≥ 1. Since
E can be seen as a closed subspace of E∗∗ it follows that for f ∈ L2(0, S),
Iψf =

∑
n≥1[f, fn]L2(0,S)Iψfn converges in E. We obtain that Iψ ∈ L (L2(0, S), E).

Moreover by (3.6),

(3.7)
∑
n≥1

γnIψfn =
∑
n≥1

γnI
A
φ f

A
n ,

and hence the result and (3.3) follow.
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”⇐” As before (3.5) holds and we may define IAφ ∈ L (L2(R+, µ), E∗∗) as

〈x∗, IAφ f〉 =
∫

R+

f(t)〈φ(t), x∗〉 dµ(t), x∗ ∈ E∗, f ∈ L2(R+, µ).

It follows from (3.4) that for all x∗ ∈ E∗ and f ∈ L2(R+, µ) we have

〈x∗, IAφ f〉 =
∫

R+

f(t)〈φ(t), x∗〉 dµ(t) =
∫

[0,S)

f(τ(s))〈ψ(s), x∗〉) ds = 〈Iψ(f ◦ τ), x∗〉.

Since Iψ takes values in E we obtain that IAφ takes values in E. Moreover we may
conclude that (3.7) holds. This proves φ ∈ γ(R+, µ;E). �

Recall the following results (cf. [12] or [15]).

Theorem 3.6 (Dambis, Dubins and Schwartz). Define

τs = inf{t ≥ 0 : [M ]t > s}, Gs := Fτs
, s ∈ [0,∞).

Then there exist a probability space (Ω,A ,P) and a Brownian motion W with re-
spect to an extension of G := (Gs)s∈R+ such that almost surely

W = M ◦ τ on [0, [M ]∞) and M = W ◦ [M ].

Moreover, (Ω,A ,P) may be taken of the form (Ω× [0, 1],A ⊗B[0,1],P⊗λ, where
λ is the Lebesgue measure on [0, 1]. The extension of G can be chosen as G = G⊗H
for a certain filtration H on ([0, 1],B[0,1]).

Proposition 3.7 (Kazamaki). With the notations of Theorem 3.6, we have the
following time-change formula for stochastic integrals. If φ : R+ × Ω → R is F -
progressively measurable and satisfies∫ ∞

0

|φ(s)|2 d[M ]s <∞, almost surely,

then the process

(3.8) ψ(s) =

{
φ(τs) if 0 ≤ s < [M ]∞,
0 if [M ]∞ ≤ s <∞.

is G -adapted and satisfies almost surely
∫∞
0
|ψ(r)|2 dr <∞ and

(3.9)
∫ t

0

φ(r) dM(r) =
∫ [M ]t

0

ψ(r) dW (r), t ∈ R+,

(3.10)
∫ τs

0

φ(r) dM(r) =
∫ s

0

ψ(r) dW (r), s ∈ R+.

Finally, we need the next lemma for weak limits of processes.

Lemma 3.8. Let E be a reflexive Banach space. Let ζ : R+×Ω → E be a strongly
measurable process such that almost surely {ζ(t) : t ∈ R+} is bounded. If for all
x∗ ∈ E∗, limt→∞〈ζ(t), x∗〉 exists almost surely, then ζ∞ := weak- limt→∞ ζ(t) exists
almost surely and is strongly measurable.
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Proof. Since ζ is strongly measurable, we may assume that E is separable. By the
reflexivity of E, we can find a dense sequence (x∗n)n≥1 in E∗. For each n ≥ 1, let
Ωn be such that P (Ωn) = 1 and for all ω ∈ Ωn, limt→∞〈ζ(t, ω), x∗n〉 exists. Let

Ω0 =
⋂
n≥1

Ωn ∩ {ω ∈ Ω : ζ(·, ω) is bounded}.

Then it follows from an easy three-ε-argument that limt→∞〈ζ(t, ω), x∗〉 exists for
all x∗ ∈ E∗ and all ω ∈ Ω0. For each ω ∈ Ω0, define x∗∗ω ∈ E∗∗ = E as

〈x∗, x∗∗ω 〉 = lim
t→∞

〈ζ(t, ω), x∗〉

and x∗∗ω = 0 for ω ∈ {Ω0. We may define ζ∞ : Ω → E as ζ∞(ω) = x∗∗ω . The Pettis
measurability theorem ensures that ζ∞ is strongly measurable. �

We can now prove our main result.

Proof of Theorem 3.3. Since φ is strongly measurable, we may assume that E is
separable. Define ψ : R+ × Ω → E as

(3.11) ψ(s) =

{
φ(τs) if 0 ≤ s < [M ]∞,
0 if [M ]∞ ≤ s <∞.

Notice that against functionals from E∗, (3.11) coincides with (3.8). By Proposition
3.7 and the Pettis measurability theorem, ψ is strongly measurable and G -adapted.
Moreover, from the substitution rule (3.4) it follows that pointwise in Ω for all
x∗ ∈ E∗,
(3.12) ‖〈ψ, x∗〉‖L2(R+) = ‖〈φ, x∗〉‖L2(R+,[M ])

if one of the expressions is finite. In particular ψ is scalarly in L2(R+) a.s.
Let W , (Ω,A ,P) and G be as in Theorem 3.6. We will prove the result by

showing that (1), (2) and (3) for φ are equivalent with (1), (2) and (3) in Proposition
3.1 for ψ. (Notation (k, φ) ⇔ (k, ψ) for k = 1, 2, 3).

(1, φ) ⇒ (1, ψ): Assume (1) holds for a sequence of elementary progressive
processes (φn)n≥1. For all n ≥ 1, define ψn : [0,∞]× Ω → E as

ψn(s) :=

{
φn(τs) if 0 ≤ s < [M ]∞,
0 if [M ]∞ ≤ s <∞.

Then it follows from the Pettis measurability theorem and Proposition 3.7 that
each ψn is strongly measurable and strongly adapted and since φn is elementary
progressive it follows from (3.10) that for all n ≥ 1 for all s ∈ R+, almost surely we
have

ζψn
(s) :=

∫ s

0

ψn(r) dW (r) =
∫ τs

0

φn(r) dM(r).

By the assumption, (ζψn)n≥1 is a Cauchy sequence in L0(Ω;Cb(R+;E)), hence it
is convergent to some ζψ ∈ L0(Ω;Cb(R+;E)). By (3.4) and Theorem 3.3 (1) (i) it
follows that for all x∗ ∈ E∗ we have lim

n→∞
〈ψn, x∗〉 = 〈ψ, x∗〉 in L0(Ω;L2(R+)). Since

each ψn takes values in a finite dimensional subspace of E, we may approximate
it to obtain a sequence of elementary progressive processes (ψ̂n)n≥1 that satisfies
Proposition 3.1 (1) (i) and (ii).

(1, ψ) ⇒ (1, φ): Let Proposition 3.1 (1) be satisfied for ψ on the extended
probability space Ω. Then it follows from Proposition 3.1 that ψ ∈ γ(R+;E),
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P-almost surely. By the special choice of Ω and by Fubini’s theorem we may con-
clude that ψ ∈ γ(R+;E), P-almost surely. Now [19, Remark 2.8] assures that
ψ ∈ L0(Ω; γ(R+;E)). By Lemma 3.2 we can find elementary progressive processes
(ψn)n≥1 in L0(Ω; γ(R+;E)) such that ψ = limn→∞ ψn in L0(Ω; γ(R+;E)). In view
of the right ideal property, ψ = limn→∞ 1[0,[M ]∞)ψn in L0(Ω; γ(R+;E)) and it fol-
lows that we may assume that ψn(s) = 0 for s ≥ [M ]∞. For each n ≥ 1, define
φn : R+ × Ω → E as φn = ψn ◦ [M ]. Then (φn)n≥1 is a sequence of strongly pro-
gressively measurable processes. Moreover, φn ◦ τ = ψn. By substitution it follows
that for all x∗ ∈ E∗,

‖〈φ, x∗〉 − 〈φn, x∗〉‖L0(Ω;L2([M ])) = ‖〈ψ, x∗〉 − 〈ψn, x∗〉‖L0(Ω;L2(R+)).

Since the latter converges to 0 we obtain (1) (i). By the Itô homeomorphism from
[19, Theorem 5.5] we have,∫ ·

0

ψ(t) dW (t) = lim
n→∞

∫ ·

0

ψn(t) dW (t) in L0(Ω;Cb(R+;E)).

Since the ψn are elementary progressive processes one easily checks that, almost
surely for all t ∈ [0, T ],∫ [M ]t

0

ψn(t) dW (t) =
∫ t

0

φn(t) dM(t).

It follows that (
∫ t
0
φn(t) dM(t))n≥1 is a Cauchy sequence in L0(Ω;Cb(R+;E)). Now

as in the proof of (1, φ) ⇒ (1, ψ), we may conclude (1) (ii) via an approximation
argument.

(2, φ) ⇒ (2, ψ): Let ζ : [0,∞) × Ω → E be the given integral process. Let
ζψ : [0,∞)× Ω → E be defined as

ζψ(s) =

{
ζ(τs). if 0 ≤ s < [M ]∞,
weak− limt→∞ ζ(t) if [M ]∞ ≤ s <∞.

The weak limit exists almost surely and is strongly measurable by Lemma 3.8.
The result would follow immediately if ζψ ∈ L0(Ω;Cb(R+;E)). This is not clear,
since the trajectories of s 7→ τs are not necessarily continuous. Instead, we do the
following argument to show that Proposition 3.1 (2) holds for ψ. Afterwards, in
Corollary 3.9 we will show that almost surely ζψ has continuous trajectories.

It follows from Proposition 3.7 that ζψ is weakly continuous almost surely.
Choose (x∗n)n≥1 dense in the closed unit ball BE∗ . Let Ω0 with P (Ω0) = 1 be
such that for all ω ∈ Ω0, 〈ζψ(·, ω), x∗n〉 is continuous. For each k ≥ 1 define

Tk = inf{t > 0 : ‖ζψ(t)‖ ≥ k}.

Since ‖ζψ‖ = supn≥1 |〈ζψ, x∗n〉| is progressively measurable, each Tk is a stopping
time. We claim that ‖ζTk

ψ ‖ ≤ k on Ω0. Indeed, for all n ≥ 1 we have |〈ζTk

ψ , x∗n〉| ≤ k
on Ω0, and taking the supremum over all n gives the claim. In particular, we have
ζψ(Tk) ∈ L2(Ω;E).

Now fix k ≥ 1 and x∗ ∈ E∗. By (3.10) we have almost surely for all t ∈ R+,

〈ζTk

ψ (t), x∗〉 =
∫ t

0

1[0,Tk]〈ψ(s), x∗〉 dW (s).
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Since 〈ζTk

ψ , x∗〉 is bounded it follows from the Burkholder-Davis-Gundy inequalities
that 1[0,Tk]〈ψ, x∗〉 ∈ L2(Ω;L2(R+)). Hence 1[0,Tk]ψ is scalarly in L2(Ω;L2(R+))
and for all x∗ ∈ E∗, almost surely,

〈ζψ(Tk), x∗〉 =
∫ ∞

0

1[0,Tk]〈ψ(s), x∗〉 dW (s).

Therefore, we may apply the infinite time horizon case of [19, Theorem 3.6] to
conclude that for all k ≥ 1, 1[0,Tk]ψ ∈ L2(Ω; γ(R+;E)). Since for all ω ∈ Ω, Tk(ω) =
∞ for all k large enough, we deduce that ψ = limk→∞ 1[0,Tk]ψ ∈ L0(Ω; γ(R+;E)).
It follows from Proposition 3.1 that ψ is stochastically integrable and we may define
ζ̃ψ ∈ L0(Ω;Cb(R+;E)) as

ζ̃ψ(t) =
∫ t

0

ψ(s) dW (s).

We conclude that Proposition 3.1 (2) holds for ψ and ζ̃ψ.
(2, ψ) ⇒ (2, φ): Let ζψ be the stochastic integral process of ψ with respect to

W . Let ζ : [0,∞)×Ω → E be defined as ζ = ζψ ◦ [M ]. Then ζ ∈ L0(Ω;Cb(R+;E))
and it follows from (3.9) that for all x∗ ∈ E∗, for all t ∈ R+, almost surely we have

〈ζ(t), x∗〉 = 〈ζψ([M ]t), x∗〉 = (〈ζψ, x∗〉)([M ]t)

=
∫ [M ]t

0

〈ψ(r), x∗〉 dW (r) =
∫ t

0

〈φ(r), x∗〉 dM(r).

This proves (2).
(3, φ) ⇔ (3, ψ): This follows from Lemma 3.5. Moreover, it follows from (3.3)

that for almost all ω ∈ Ω, we have

(3.13) ‖φ(·, ω)‖γ(R+,[M ](·,ω);E) = ‖ψ(·, ω)‖γ(R+;E).

This shows that ω 7→ ‖φ(·, ω)‖γ(R+,[M ](·,ω);E) is measurable and (3.2) follows from
ζ(t) = ζψ([M ]t), (3.1) and (3.13). �

Proposition 3.7 has the following extension to E-valued processes.

Corollary 3.9. Let E be a UMD space. Under the assumptions and the notation
of Theorem 3.6, we have the following time-change formula for stochastic integrals.
If φ : R+ × Ω → E is strongly F -progressively measurable and satisfies, φ ∈
γ(R+, [M ];E) almost surely, then the process ψ : R+ × Ω → E defined as (3.11) is
G -adapted and satisfies, ψ ∈ γ(R+;E) almost surely, and the E-valued versions of
(3.9) and (3.10) hold.

Proof. In Theorem 3.3 we have already showed that ψ is G -adapted and almost
surely, ψ ∈ γ(R+;E). Also the E-valued version of (3.9) has been obtained there.
From (3.9) we deduce that∫ τs

0

φ(r) dM(r) =
∫ [M ]τs

0

ψ(r) dW (r) =
∫ s∧[M ]∞

0

ψ(r) dW (r) =
∫ s

0

ψ(r) dW (r)

and the E-valued version of (3.10) follows. �

To end this section we give the following useful convergence result for the sto-
chastic integral.
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Corollary 3.10. Let E be a UMD space. For each n ≥ 1 let φn : R+ × Ω →
E be stochastically integrable and let ζn ∈ L0(Ω;Cb(R+;E)) denote its stochastic
integral. Then we have φn → 0 in L0(Ω; γ(R+, [M ];E)) if and only if ζn → 0 in
L0(Ω;Cb(R+;E)).

Proof. This follows from [19, Theorem 5.5], Lemma 3.5 and Corollary 3.9. �

4. Applications

Several results in [19] can be extended to the case of general continuous local
martingales. Below we state and prove some of the fundamental results.

The following characterization for stochastic integrability follows for instance
from [19, Corollary 3.11], Lemma (3.5), Theorem 3.3 and the substitution rule
(3.4).

Corollary 4.1. Let E be UMD Banach function space over a σ-finite measure
space (S,Σ, µ) and let p ∈ (1,∞). Let φ : R+ × Ω → E be a strongly progressively
measurable process. Then φ is stochastically integrable with respect to M if and
only if almost surely ∥∥∥( ∫

R+

|φ(t, ·)|2 d[M ]t
) 1

2
∥∥∥
E
<∞.

In this case, for all p ∈ (1,∞) we have

E sup
t∈R+

∥∥∥∫ t

0

φ(t) dM(t)
∥∥∥p hp,E E

∥∥∥( ∫
R+

|φ(t, ·)|2 d[M ]t
) 1

2
∥∥∥p
E
.

Via the canonical embedding L2(R+, µ;E) ↪→ γ(L2(R+, µ);E) for a measure µ
for type 2 spaces, and the reversed embedding for cotype 2 spaces we obtain

Corollary 4.2. Let E be a UMD space and let p ∈ (1,∞).
(1) If E has type 2, then every strongly progressively measurable process φ such

that φ ∈ L2(R+, [M ];E) almost surely is stochastically integrable with re-
spect to M and we have

E sup
t∈R+

∥∥∥∫ t

0

φ(t) dM(t)
∥∥∥p .p,E E‖φ‖pL2(R+,[M ];E).

(2) If E has cotype 2, then every H-strongly measurable stochastically integrable
process φ belongs to L2(R+, [M ];E) almost surely and we have

E‖φ‖pL2(R+,[M ];E) .p,E E sup
t∈R+

∥∥∥∫ t

0

φ(t) dM(t)
∥∥∥p.

Of course, (1) (and (2)) can also be obtained from the fact that a UMD space
with (co)type 2 is a martingale (co)type 2 space.

We say that a strongly progressive measurable process φ : R+×Ω → E is locally
stochastically integrable with respect to M if for all T ∈ R+, we have that φ1[0,T ] is
scalarly in L2(R+, [M ]) a.s. and is stochastically integrable with respect to M . In
that case we may define the stochastic integral as∫ t

0

φ(s) dM(s) =
∫ t

0

φ(s)1[0,T ](s) dM(s),
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if t ∈ [0, T ] and T ∈ R+. This is well-defined and
∫ ·
0
φ(s) dM(s) has an a.s. pathwise

continuous version.
We will say that φ ∈ γloc(R+, [M ];E) a.s. if for every T ∈ R+, φ1[0,T ] is in

γloc(R+, [M ];E) a.s. It is a direct consequence of Theorem 3.3 that φ is locally
stochastically integrable with respect to M if and only if φ ∈ γloc(R+;E) a.s.

Theorem 4.3 (Itô formula). Let E and F be UMD spaces. Let M be a continuous
local martingale and let A : R+ × Ω → R be adapted, almost surely continuous
and locally of finite variation. Assume that f : R+ × E → F is of class C1,2. Let
φ : R+ × Ω → E be a strongly progressively measurable process which is locally
stochastically integrable with respect to M and assume that the paths of φ belong
to L2

loc(R+, [M ];E) almost surely. Let ψ : R+ × Ω → E be strongly progressively
measurable with paths in L1

loc(R+, A;E) almost surely. Let ξ : Ω → E be strongly
F0-measurable. Define ζ : R+ × Ω → E as

ζ = ξ +
∫ ·

0

ψ(s) dA(s) +
∫ ·

0

φ(s) dM(s)

Then s 7→ D2f(s, ζ(s))φ(s) is locally stochastically integrable with respect to M and
almost surely we have, for all t ∈ [0, T ],

f(t, ζ(t))− f(0, ζ(0)) =
∫ t

0

D1f(s, ζ(s)) ds+
∫ t

0

D2f(s, ζ(s))ψ(s) dA(s)

+
∫ t

0

D2f(s, ζ(s))φ(s) dM(s)

+ 1
2

∫ t

0

(
D2

2f(s, ζ(s))
)
(φ(s), φ(s)) d[M ](s).

In the case that E and F have type 2, M = W and A(s) = s, the above Itô
formula is a special case of [21, Theorem 74] (also see [3]).

In particular, Theorem 4.3 can be applied to the case that E = X ×X∗, where
X is a UMD space, F = R, and f : X ×X∗ → R is given by f(x, x∗) = 〈x, x∗〉. We
do not know how such a result could be obtained with the Itô formula from [3, 21]
unless X is isomorphic to a Hilbert space.

Proof. It suffices to prove the result on an arbitrary bounded interval [0, T ], so take
ψ and φ to be 0 on (T,∞). To proof the result it suffices to reduce to the case
where ξ, ψ and φ take values in a finite dimensional subspace of E. The only non-
trivial extension of the arguments in [17] is to construct stochastically integrable
processes (φn)n≥1 taking values in a finite dimensional subspace of E such that
φ = limn→∞ φn in γ(R+, [M ];E) ∩ L2(R+, [M ];E) almost surely.

Let φ̃ be the process ψ from Corollary 3.9. Then it follows from a substitution
that φ̃ ∈ γ(R+;E) ∩ L2(R+;E). It follows from [17] that φ̃ may be approximated
almost surely in γ(R+;E) ∩ L2(R+;E) by a sequence of elementary processes φ̃n.
As in the proof of Theorem 3.3 we may assume that φ̃n(s) = 0 for s ≥ [M ]∞.
Let φn(t) = φ̃n([M ]t). Then φn ◦ τ = φ̃n. It follows from Lemma 3.5 that φ =
limn→∞ φn in γ(R+, [M ];E) almost surely. It follows from (3.4) that φ = limn→∞ φ
in L2(R+, [M ];E) almost surely. The rest of the arguments are similar as in [17]. �

Let M be a real-valued continuous local martingale and let F be a filtration
that satisfies the usual conditions and to which M is adapted. We say that the
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pair (M,F ) satisfies the martingale representation property if for any real-valued
F -local martingale ζ, there is a progressively measurable process φ with almost all
paths in L2

loc(R+, [M ]) and such that for all t ∈ R+, we have

ζ(t) = ζ(0) +
∫ t

0

φ(s) dM(s) a.s.

For a detailed study on martingale representation properties, we refer to [22].
As an application of the results of Section 3, we extend the representation prop-

erty to E-valued local martingales. It should be observed that the proof critically
depends on the fact that we are able to give two-sided estimates in Theorem 3.3
and necessary and sufficient convergence results in Corollary 3.10.

Theorem 4.4 (Martingale representation theorem). Let E be a UMD space with
cotype 2 and let p ∈ (1,∞). Assume that the pair (M,F ) satisfies the martingale
representation theorem. The following assertions hold:

(1) If ξ ∈ Lp(Ω,F∞;E) has mean zero, then there exists a strongly progres-
sively measurable process φ which is in Lp(Ω; γ(R+, [M ];E)) such that∫ ∞

0

φ(s) dM(s) = ξ a.s.

(2) If ζ is an E-valued F -local martingale, then it has a version with continuous
paths and there is an a.s. unique strongly progressively measurable process
φ which is in γloc(R+, [M ];E) a.s. such that for all t ∈ R+, we have

ζ(t) = ζ(0) +
∫ t

0

φ(s) dM(s) a.s.

Proof. (1): Let Lpγ,progr(E) denote the subspace of progressively measurable pro-
cesses in Lp(Ω; γ(R+, [M ];E)). Let Lp0(Ω,F∞;E) denote the closed subspace of
random variables in Lp(Ω,F∞;E) with mean zero. Define Ip : Lpγ,progr(E) →
Lp0(Ω;E) as

Ipφ =
∫ ∞

0

φ(t) dM(t).

This is well-defined by Theorem 3.3 and it follows from (3.2) and Doob’s maximal
inequality that it is an isomorphism onto its range in Lp0(Ω,F∞;E).

Fix ω ∈ Ω and write A = [M ](·, ω). Since E has cotype 2, γ(L2(R+, A);E) em-
beds continuously into L2(R+, A;E). Therefore, each element in γ(L2(R+, A);E)
is represented by a function, i.e. γ(L2(R+, A);E) = γ(R+, A;E). It follows that
γ(R+, A;E) is a Banach space and therefore Lp(Ω; γ(R+, [M ];E)) is a Banach
space. It is straightforward to check that Lpγ,progr(E) is a closed subspace of
Lp(Ω; γ(R+, [M ];E)).

By the above properties Ip has a closed range in Lp0(Ω,F∞;E). We claim that
Ip is surjective. To prove this, it suffices to show that Ip has dense range. One
easily checks that the random variables of the form

∑N
n=1(1An

− P(An)) ⊗ xn
with each An ∈ F∞ and xn ∈ E, form a dense subspace of Lp0(Ω,F∞;E). By
linearity, for each A ⊂ F∞, it suffices to find a progressively measurable process
φ ∈ Lp(Ω;L2(R+, [M ])) such that∫ ∞

0

φ(t) dM(t) = 1A − P(A) a.s.
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Define ζ(t) = E(1A − P(A)|Ft). Then ζ is a real-valued martingale, and by the
assumptions on (M,F∞) there exists a progressively measurable φ with paths in
L2(R+, [M ]) a.s. such that for all t ∈ R+, we have∫ t

0

φ(s) dM(s) = ζ(t) a.s.

This shows that ζ has a pathwise continuous version, say ζ̃. By Doob’s maximal
inequality and the contractiveness of the conditional expectation one has

E sup
t∈R+

|ζ̃(t)|p ≤ Cp sup
t∈R+

E|ζ̃(t)|p = Cp sup
t∈R+

E|ζ(t)|p ≤ CpE|1A − P (A)|p <∞.

By Burkholder-Davis-Gundy inequality we obtain that

‖φ‖Lp(Ω;L2(R+,[M ])) hp E sup
t∈R+

|ζ̃(t)|p <∞.

This proves the result.
(2): We may assume ζ(0) = 0.
Step 1: First assume that there is a T > 0 such that ζT = ζt ∈ L1(Ω;E) for

all t > T . Then clearly, ζ∞ = ζT exists in L1(Ω,F∞;E). We show that ζ has a
continuous version.

Choose (ξn)n≥1 in L2(Ω,F∞;E) such that ζ∞ = limn→∞ ξn. By (1), the mar-
tingales (ζn)n≥1 defined by ζnt = E(ξn|Ft) have a version with bounded and con-
tinuous paths, say ζ̃n. It follows from Doob’s maximal inequality that for all ε > 0
and n,m ≥ 1,

P( sup
t∈R+

‖ζ̃n(t)− ζ̃m(t)‖ > ε) ≤ ε−1E‖ξn − ξm‖.

This shows that (ζ̃n)n≥1 is a Cauchy sequence in L0(Ω;Cb(R+;E)). Its limit is the
required version of ζ.

Step 2: Under the assumption of Step 1, we show that there is a strongly
progressively measurable φ with paths in γ(R+, [M ];E) a.s. such that for all t ∈ R+,
we have

(4.1)
∫ t

0

φ(s) dM(s) = ζ(t) a.s.

Let ζ denote the version constructed in Step 1. For each n ≥ 1 define a stopping
time τn as

τn = inf{t ≥ 0 : ‖ζt‖ ≥ n} ∧ n.
It follows from (1) that there is a sequence (φn)n≥1 of strongly progressively mea-
surable processes with paths in γ(R+[M ];E) a.s. such that∫ ·

0

φn(t) dM(t) = ζτn .

Clearly, (ζτn)n≥1 converges to ζ in L0(Ω;Cb(R+;E)). It follows from Corollary
3.10 that (φn)n≥1 is a Cauchy sequence in L0(Ω; γ(R+, [M ];E)) and therefore
it converges to some φ ∈ L0(Ω; γ(R+, [M ];E)) (here we use the completeness of
γ(R+, [M ];E) again). Now (4.1) follows from Corollary 3.10.

Step 3: We prove the general case. The uniqueness follows from Corollary
3.10. Let (τn)n≥1 be a localizing sequence for ζ. For each n ≥ 1, the martingale
ηn = ζn∧τn satisfies the above properties with T = n. Since the result holds for
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each ηn, we obtain a sequence (φn)n≥1 in L0(Ω; γ(R+, [M ];E)) such that for all
t ∈ R+, we have

ηn(t) =
∫ t

0

φn(s) dM(s) a.s.

By the uniqueness it follows that for all 1 ≤ m ≤ n, a.s., for a.a. t < τm, φn(t) =
φm(t). Therefore, we may take φ(t) = φn(t) for t < τn. �

Remark 4.5.
The assumption that E has cotype 2 in Theorem 4.4 is only needed for technical
reasons. Namely under this assumption every operator in γ(L2(R+, [M ](·, ω)), E)
can be represented by a function. In general one obtains in (1) that there exists
an operator X in the completion of Lpγ,progr(E) in Lp(Ω; γ(L2(R+, [M ]);E)) such
that Îp(X) = ξ a.s. Here Îp denotes the unique continuous extension of Ip to the
completion of Lpγ,progr(E). A similar result holds in (2).
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