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The Netherlands 

The use of digital techniques for organizing communication networks and 
for representing signals results in systems which are superior to their 
analog counterparts in terms of quality and reliability. During the 
last decade many interesting speech coding algorithms have been pro­
posed , but only the advent of fast and economical VLSI components has 
made it practical to implement speech coding techniques in real-titne 
systems. 

In this thesis a study of efficient time domain algorithms for the 
encoding of speech signals with a (near) telephone quality speech at bit 
rates below 16 kb/s is presented. A Delayed Decision Coding (DDC) sys­
tem using adaptive predictive techniques, which removes the correlation 
in the speech signal, is used as the basic structure. Procedures for 
determining the excitation sequence within such a DDC structure are 
investigated, 

One such procedure, called Multi-Pulse Excitation (MPE) coding [Atal 
and Remde, 1982], is studied in detail and techniques for improving the 
performance of this coder are described. 

In the course of the work a new coding concept called Regular-Pulse 
Excitation (RPE) coding was developed and it is demonstrated that this 
technique produces speech with a quality comparable to existing methods 
such as the MPE coder, but with a much lower complexity. 

To provide a reference to the parametric approaches (MPE and RPE), 
we describe the results of simulations with a code book approach for 
finding the optimal excitation sequences. Vie demonstrate that with some 
modifications this code book approach yields at lower bit rates a qual­
ity similar to that of parametric approaches, but at a much greater com­
plexity. 

Quantization procedures for the coder parameters are described, and 
efficient procedures for encoding the pulse positions of the multi-pulse 
excitation signal have been developed. Furthermore, different methods 
for the quantization of the filter coefficients have been investigated. 
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An investigation of the RPE and MPE coders demonstrated that both 
coders provide (near) toll quality speech at 10 kb/s. Coder tran­
sparency can be obtained at 16 kb/s, while with the use of vector quant­
ization techniques an adequate performance is obtained at 6 kb/s. 
Further, it is demonstrated that both coders can be successfully applied 
for the encoding of wide-band speech signals at rates below 32 kb/s. 

An efficient realization of the proposed RPE coding scheme is 
obtained by mapping the algorithm onto silicon with the use of CORDIC 
processor elements as basic building blocks. 

Finally, to provide a suitable environment for the investigation of 
speech coding algorithms, we describe a convenient interactive software 
package, which we have developed in the course of the work. 

V 

1. PREFACE 

Thesis Objectives 

Although speech research has been a continuing effort since the 
early nineteen forties, it was not until the beginning of the nineteen 
eighties that new coding concepts that enable the encoding of (near) 
toll-quality speech at rates below 16 kb/s were introduced. An 
interesting concept called Multi-Pulse Excitation (MPE) coding was pro­
posed in [Atal and Remde, 1982]. This introductory paper contained a 
good description of the coding principles but lacked many implementation 
details. Our first objective was to investigate the method and evaluate 
its performance. Impressed by the initial results we investigated 
modifications of the coder to improve the performance and to increase 
the efficiency. The use of a pitch predictor provided the roost dramatic 
improvement [Kroon and Deprettere, 1984]. To reduce the complexity of 
the coder several alternatives were investigated, such as reduction of 
the search frame size [Kroon and Deprettere, 1983]. Despite the 
encouraging results, we felt that the complexity of the MPE coder was 
too high, and that the encoding algorithm was not very suitable for VLSI 
implementation. This has led to the development of a new coding concept 
called Regular-Pulse Excitation (RPE) coding [Deprettere and Kroon, 
1985], which provides a performance equal to that of an MPE coder but 
has a structure more amenable to VLSI implementations. In [Deprettere 
and Jainandunsing, 1985] the encoding procedure was mapped as a regular 
VLSI structure using CORDIC modules. The two coders investigated have 
the same underlying structure, and we recognized the fact that the sto­
chastic coder [Atal and Schroeder, 1984] has a similar structure and 
differs only in the definition of the excitation function and the 
corresponding search procedure. Since one of our objectives was to com­
pare the different approaches, we investigate to a certain extent this 
coding concept as well. Another objective of this thesis was to provide 
procedures for quantization and encoding the coder parameters and their 
effect on the coder performance. Finally, as an important side effect, 
we established a software environment for the development and the 
evaluation of the coders [Kroon, 1983] [Kroon, 1983]. 

Thesis Outline 

Chapter 1 introduces the reader to the roost important speech coding 
techniques, and serves as a general introduction to the other chapters 
of this thesis. 

In Chapter 2 we define the basic structure of the investigated 
coders. The effect of the short-time and long-time predictors on the 
coder performance is evaluated and the error weighting procedures are 
introduced. 

Chapter 3 discusses a new coding concept called Regular-Pulse Exci­
tation. This concept is based on a parametric approach to finding the 
optimum excitation sequence, and provides a computationally efficient 
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procedure. The quality of the synthetic speech is close to toll quality 
at bit rates around 10 kb/s. 

The Multi-Pulse Excitation coder, as proposed by Atal and Remde, is 
thoroughly investigated in Chapter 4. V»e describe modifications to the 
basic MPE analysis procedures and their resulting impact on the syn­
thetic speech quality and the complexity of the coder. 

Instead of using a parametric approach for the definition of the 
excitation sequence we can use a search procedure to find the excitation 
sequence directly. This procedure is evaluated in Chapter 5 and is 
intended as a reference for the performance of the coders described in 
the previous chapters. 

The parametric approach requires a separate quantization and encod­
ing stage, and in Chapter 6 different procedures for encoding and quant­
ization will be described. 

A comparison of the different coding concepts and the performance at 
various bit rates is discussed in Chapter 7. Application of the BPE 
coder to the encoding of wide band speech is also discussed. Finally, 
we describe some experiments with degraded speech signals, and non-
speech signals. 

Efficient structures for the RPE coder will be described in Chapter 
8 and we discuss the possibility of mapping the coder onto silicon. 

The software environment used for the development and the evaluation 
of the coders is described in Chapter 9. 

References 
Atal, B.S. and J.P. Pemde, "A new model of LPC excitation for pro­
ducing natural-sounding speech at low bit rates," Proc. IEEE Int. 
Conf. Acoust., Speech and Signal Processing, pp. 614-617 (April 
1982). 

Atal, B.S. and M.K. Schroeder, "Stochastic coding of speech signals 
at very low bit rates," Proc. IEEE Int. Conf. Corm.unications, p. 
48.1 (May 1984). 

Deprettere, Ed. F. and P. Kroon, "Regular excitation reduction for 
effective and efficient LP-coding of speech," Proc. IEEE Int. Conf. 
Acoust., Speech, Signal Processing, pp. 25.8.1-25.8.4 (March 
1985). 

Deprettere, Ed.F. and K. Jainandunsing, "Design and VLSI implemen­
tation of a concurrent solver for N-coupled least-squares fitting 
problems," Proc. IEEE Int. Conf. Acoust., Speech, Signal Process­
ing, pp. 6.3.1-6.3.4 (March 1985). 

References vii 

Kroon, P. and E.F. Deprettere, "On the design of LPC-vocoders with 
multi-pulse excitation," Proc. European Conf. Circuit Theory and 
Design, pp. 390-394 (Sep. 1983). 

Kroon, P., "SPPACK User's Guide," Report NT-37, Dept. of EE, Delft 
University of Technology. Delft, The Netherlands (April 1983). 

Kroon, P., "SPPACK Programmer's Guide," Report NT-38, Dept. of EE 
Delft University of Technology, Delft, The Netherlands (April 
1983). ' 

Kroon, P. and E.F. Deprettere, "Experimental evaluation of dif­
ferent approaches to the multi-pulse coder," Proc. IEEE Int. Conf. 
Acoust., Speech, Signal Processing, pp. 10.4.1-10.4.4 (March 



CONTENTS 

ABSTRACT iii 

PREFACE v 

1. OVERVIEW OF SPEECH CODING 1 

1.1 Introduction 1 

1. 2 Basic Properties Of Speech 1 

1. 3 Classes Of Speech Coders 3 

1.4 Source Coding (Vocoders) 5 

1.4.1 Excitation Estirration S 

1.4.2 Filter (Vocal Tract) Estirration 5 

1.4.3 Very-Low Bit Rate Vocoding Techniques 6 

1.5 Waveforrr, Coding (Time Domain Methods) 6 

1.5.1 Pulse Code Modulation 6 

1.5.1.1 Non-Uniform, Quantization 7 

1.5.1.2 Adaptive Quantization 8 

1.5.2 Predictive Coding 8 

2.5.2.2 Adaptive Predictive Coding 9 

1.5.2.2 Differential Coding 10 

1.5.2.3 Delta Modulation 11 

1.5.2.4 Pitch Prediction 11 

1.5.2.5 Noise Spectral Shaping 12 

1.5.3 Vector Quantization 13 

1.6 Waveforrr. Coding (Frequency Dorrain Methods) 14 

1.6.1 Sub-Band Coding 25 

2.6.2 Adaptive Transform. Coding 25 

1.6.3 Harrronic Coding 25 



z CONTENTS 

1.7 Hybrid Coders Using Adaptive Prediction Techniques 16 

1.7.1 Base-Band Coding 16 

1.7.2 APC With Delayed Decision Coding 17 

1.7.2.1 Multi-Path Search Coder 18 

1.7.2.2 Regular-Pulse and Multi-Pulse Excitation Coder 29 

1.8 Additional Requirements For Speech Coding Systems 19 

1.8.1 Channel Errors IB 

1.8.2 Tandem Coding 19 

1.8.3 Processing Delay 19 

1.8.4 Transmission Of Non-Speech Signals 20 

1.8.5 Speech Signal Degradation 20 

2.8.6 Variable Rate Coding 20 

2 .9 Evaluation Of Speech Coders 20 

1.9.1 Objective Testing Procedures 22 

2.9.2 Subjective Testing Procedures 22 

2.20 Summary 22 

Further Reading 22 

References 23 

2. A BASIC STRUCTURE FOR EFFICIENT SPEECH CODING 29 

2. 2 Introduction 29 

2.2 Basic Structure 29 

2.3 Evaluation Procedure 32 

CONTENTS Xi 

2.4 A Filter For Modeling The Spectral Envelope 32 

2.4.2 Optimizing LPC Predictor Parameters 34 

2.4.2 Filter Structures 35 

2.4.3 Predictor Parameters 26 

2.4.4 Interpolation Of The Filter Coefficients 38 

2.5 A Filter For Modeling The Spectral Fine Structure 42 

2. 6 Selection Of An Error Criterion 45 

2 .7 Summary 48 

References 48 

3 . REGULAR-PULSE EXCITATION CODER 52 

3. 2 Introduction 52 

3.2 Regular-Pulse Excitation Coding 52 

3.3 Error Minimization Procedure 53 

3.3.1 Definitions 53 

3.3.2 Basic Algorithm, 54 

3.4 Another Approach To The RPE Coder 55 

3.5 Evaluation Of The RPE Algorithm, 59 

3.5.2 RPE Analysis Parameters 59 

3.5.2.2 NDRATE And NS 59 

3.5.2.2 Search Frame Size And Minimization Frame Size 60 

3.5.2 Application Of A Pitch Predictor 63 

3.5.3 Error Weighting Filter 64 

3.6 Complexity Reduction Of The RPE Coder 68 

3.7 Summary 73 

References 73 



t i CONTENTS 

4. MLTI-PULSE EXCITATION CODER 75 

4.1 Introduct ion 7 5 

4 .2 tfulti-Pulse Excitation Coding 75 

4 . 3 Error-Minimization Procedures 77 

4.3.1 Definitions 77 

4.3.2 Basic Algorithn. 78 

4.3.3 Optimal Procedure 79 

4.3.4 Sub-Optimal Procedures 79 

4.4 Evaluation Of The WE Algorithn, 81 

4.4.1 MPE Analysis Parameters 82 

4.4.2.2 Number Of Pulses Per Time Interval 82 

4.4.1.2 Search Frarr,e Size And Minimization Frarr.e Size S3 

4.4.2.3 Error Weighting Filter 87 

4.4.1.4 Solution Method For Finding The Pulses 89 

4 .5 Improvement Of The MPE Coder 90 

4.5.1 Variable Pulse Rate 90 

4.5.2 Use Of A Pitch Predictor 92 

4.6 Complexity Reduction Of The MPE Coder 94 

4.6.1 Complexity Analysis 95 

4.6.1.1 Initialization And State Update 95 

4.6.1.2 Pulse Search Procedure 95 

4.6.1.3 Jointly Optimal Amplitude Computation 95 

4.6.2.4 Error Update 96 

4.6.2 Auto-Correlation Analysis 96 

4.6.3 Reduction Of Search Frame Size 97 

4.6.4 Determination Of The Multi-Pulse Signal From The 
Residual 100 

CONTENTS Xiii 

4.7 Summary 202 

References 202 

5 . MULTI-PATH SEARCH CODING 203 

5.2 Introduction 203 

5. 2 Search Procedures And Code Book Populations 203 

5.2.2 Code Book Approach 203 

5.2.2 Tree And Trellis Coding 204 

5.3 Delayed Decision Coding With Stochastic Code Book Popula­

tions 205 

5 .4 Error Minimization Procedure 206 

5.4.2 Definitions 206 

5.5 Experimental Evaluation Of The Code book Approach 206 

5.6 Summary 222 

References 222 

6 . QUANTIZATION AND CODING 225 

6.2 Introduction 225 

6.2 Quantizing And Encoding The Excitation Parameters 225 

6.2.2 Excitation Signal Statistics 226 

6.2.2 Quantizer Selection 227 

6.2.3 Location Of The Quantizer 229 

6.2.4 Quantizer Parameters 220 

6.2.5 Quantization During The Minimization Procedure 222 

6.2.6 Gain Update Rate 224 

6.2.7 Improved Quantizer Performance 224 

6.2.7.2 Use Of A Pitch Predictor 224 

6.2.7.2 Entropy Coding 227 



x i v CONTENTS 

6.3 Coding Of The Pulse Positions Of The MPE Excitation 228 

6.3.1 Differential Coding 229 

6.3.2 Enurr<erative Coding 131 

6.3.3 Complexity Of The Coding Algorithms 134 

6.3.4 Combined Encoding Of Position And Amplitude 134 

6.3.4.1 Enum,erative Coding Of Positions And Amplitudes 234 

6.3.4.2 Differential Coding With Amplitude Coding 238 

6.3.5 Computational Complexity 240 

6.4 Quantizing And Encoding The Filter Pararr,eters 242 

6.4.2 Quantization Of The Filter Parameters For The RPE And 

MPE Coders 247 

6.5 Summary 253 

References 253 

7 . CODER PERFORMANCE EVALUATION 257 

7 .1 Introduction 257 

7 . 2 Performance At 9.6 Kb/s 257 

7 .3 Performance At 16 Kb/s 258 

7 .4 Performance At Lou Bit Rates 259 

7 .5 Hide band Speech Coding 267 

7.5.2 Predictor Parameters And Error Weighting 268 

7.5.2 Excitation Parameters 270 

7.5.2.2 Multi-Pulse Excitation Coder 270 

7.5.2.2 Regular-Pulse Excitation Coder 272 

7.5.3 Quantization And Encoding Of The Excitation Parair.e-
ters 272 

7.5.4 Quantization And Encoding Of The Filter Parame­
ters 273 

CONTENTS XV 

7.5.5 Performance At Rates Below 32 Kb/second 274 

7 .6 Performance For Degraded Speech 276 

7 .7 Summary 277 

References 278 

8. EFFICIENT ALGORITHMS 282 

8. 2 Introduction 282 

8.2 Solving A Set Of Linear Equations 2S2 

8.3 Solution Of The RPE Equations 285 

8.3.2 Fast Cholesky Decomposition of A. 285 

8.3.2 Back Substitution 288 

8.3.3 Decomposition of j 289 

8.3.4 The Concurrent Solution Of A Set Of N Equations 290 

8.3.4.2 Construction of the joint matrix 290 

8.3.4.2 Cholesky Factorization And Back Substitution 290 

8.4 Correlation Computations 294 

8.5 An example of an RPE coder architecture 295 

8.6 Summary 296 

References 296 

W 



XVl CONTENTS 

9. A SOFTWARE ENVIRONMENT FOR SIGNAL PROCESSING 299 

9.1 Introduction 299 

9.2 Design Considerations For A Software Package 200 

9 . 3 Description Of SPPACK 200 

9.4 Cormand Format And Processing 202 

9.4.2 Input /Output Files 203 

9.4.2 Range Specification 204 

9.4.3 Options 204 

9. S Error Checking And Recovery 204 

9.6 Help Utility And Documentation 205 

9.7 Data File Structures And Types 206 

9.7.2 Data Files 206 

9.7.2 File Header Format 207 

9.7.3 File Types 208 

9.8 Implementation Issues 209 

9.9 Creation And Modification Of Modules 209 

9.20 Examples 220 

9.22 Sumrary 222 

References 222 

20. CONCLUSIONS 225 

A. APPENDIX A: SPEECH QUALITY EVALUATION 227 

A.I Introduction 227 

A.2 Speech Material 227 

A.3 Objective Quality Measurement 228 

A.4 Subjective Quality Tests 229 

References 229 

CONTENTS XVÜ 

B. APPENDIX B: TIME-VARYING LINEAR FILTERS 225 

C. APPENDIX C: DISTANCE LIMITATION ALGORITHM MPE CODER 225 

C. 1 Introduction 225 

C.2 Search Intervals And Their Boundary Points 225 

C . 3 Moment Of Imposing Constraints 226 

C .4 Diagram. Of The Algorithm. 226 

D. APPENDIX D: VECTOR QUANTIZATION 229 

V. 1 Introduction 229 

D.2 Basic Structure Of A Vector Quantizer 229 

D.3 Code Book Generation Procedures For Vector Quantizers 230 

D.4 Code Book Generation Procedures 232 

D.4.2 Random. Codes 232 

D.4.2 Productcodes 232 

D.4.3 Split Codes 233 

D.4.4 Empty Cells 234 

D.5 Vector Quantization Of LPC Filter Coefficients 234 

D. 6 Lattice Quantizers 235 

References 237 

E. APPENDIX E: C0RDIC ALGORITHM 239 

References 243 

F. APPENDIX F: DESCRIPTION OF DEMONSTRATION RECORD 245 



xviit CONTENTS 

Different Coder Structures 

RPE Coding Conbined With Vector Quantization. . 

RPE and MPE performance at 10 kb/s and 16 kb/s 

Wide-band Speech 

i 

1. OVERVIEW OF SPEECH CODING 

l.l Introduction 

For many years it has been well known that communication systems 
could benefit from utilization of digital techniques. Usage of these 
techniques for network organization as well as signal representation 
results in systems that are superior to their analog counterparts, in 
terms of quality and reliability. A digital representation of signals 
offers many advantages such as low susceptibility to interference, 
applicability of digital encryption, and solid state storage facilities. 
Furthermore, digitization of transmission functions allows an integra­
tion of data, voice and graphics in a common communication concept. 
Despite all these advantages of the digital approach, wide-scale utili­
zations had to wait for the advent of fast and economical digital 
hardware. With recent developments in the design of integrated circuits 
and the appearance of signal processing chips, it has become practical 
to implement many digital signal processing algorithms in real-time sys­
tems. 

The importance of speech signals in communications and the underly­
ing goals of transmitting speech with the highest possible quality, over 
the least possible channel capacity, and with the least cost, are 
responsible for the increasing interest in speech coding research. 

In the remainder of this section, we review the principles of speech 
coding and the most important techniques. 

1.2 Basic Properties Of Speech 

The mechanism of speech production [Flanagan, 1972] is as follows: 
sound is generated either by vibration of the vocal cords or by creation 
of turbulent air flow at a constriction. This excitation is then spec­
trally shaped by the vocal tract which consists of the pharynx and the 
oral cavity. Sometimes, the nasal tract is also involved. This process 
can be modeled as a slowly time-varying linear system that is excited by 
either a train of (glottal) pulses or random noise [Fig. 1.1). Note 
that this model assumes that source features are separable from the 
vocal tract features. 

NOISE 
SOURCE 

PULSE 
SOURCE 

pitch 

J v 

gain 

SYNTHESIS 
FILTER I 
filter 

parameter; 

s(n) 
output 
s peech 

Figure 1.1. Model of speech production. 
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Speech sounds can be divided into three classes according to their 
of excitation: 

mode 

1 Voiced sounds (vowels and voiced consonants) are produced by a 
quasi- periodic vibration of the vocal cords. The frequency of 
these vibrations determines the pitch of the sound. 

2 Fricatives or unvoiced sounds (e.g. ss,sh,f) are generated by a 
turbulent flow of air at a constriction at some point in the vocal 
tract Sounds that are produced by both a constriction in the 
vocal tract and a vibration of the vocal folds are called voiced 
fricatives (e.g. z,zh,v). 

3 Plosives which are a result of making a closure of the vocal 
tract, building up the pressure behind the closure and releasing 
it abruptly. A plosive can be either voiced (e.g. b,d,g) or 
unvoiced (e.g. p,t,k). 

An important property of speech waveforms is that they are band lim­
ited (to approximately 8 kHz) due to their specific production process. 
A further bandwidth reduction (e.g. 3400 Hz in telephony systems) is 
possible without too much degradation. The finite bandwidth implies 
that the speech waveform can be sampled at a finite rate (e.g 8000 Hz in 
telephony systems). 

§bmm 
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Figure 1.2. 2 s segment; 
ros segment Waveforms and power spectra of speech; (a) a 

(b) a 32 ms segment of voiced speech; (c) a 32 
of unvoiced speech; (d) power spectrum of voiced segment b; 
(e) power spectrum of unvoiced segment c. After [Jayant and 
Noll, 1984]. 
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When viewed over a long period of time (e.g. 1 s) speech is seen to be a 
highly non-stationary process due to the variation of amplitude, 
voiced/unvoiced, silence behavior, and the time varying vocal tract 
(Fig. 1.2). However, over short periods of time (10-40 ms) speech is 
locally stationary and has a well-defined short-time spectrum. The 
envelope of the spectrum is determined primarily by the frequency 
response of the vocal tract filter. The resonances can be seen as peaks 
in the spectral envelope and are referred to as formants. Other proper­
ties of the speech waveform are revealed by the short-time statistics 
such as amplitude distribution and auto-correlation function. The pro­
bability density function of speech amplitudes is estimated by determin­
ing a histogram for a large number of samples. A good approximation to 
the measured amplitude distribution was found [Paez and Glisson, 1972] 
[Noll, 1974] to be a Laplace distribution or a gamma distribution. A 
simple Gaussian distribution is usually adequate for a short-time (20 
ms) distribution. The correlations that exist among the amplitude sam­
ples of a speech waveform are measured by an auto-correlation function. 
The correlation between adjacent samples (8 kHz) is usually high. For 
voiced segments we could also observe a correlation between samples 
spaced a pitch period apart due to the quasi-periodic excitation. 

Concluding, we could say that speech waveforms exhibit a consider­
able redundancy that could be used to advantage for designing digital 
coding algorithms. 

1.3 Classes Of Spsech Coders 

Designing a speech coding system involves a tradeoff among factors 
such as signal quality, transmission bit rate and robustness against 
environmental impairments and coder complexity (cost). These factors 
are mutually dependent. Signal quality improves for increasing bit 
rates, provided the optimum coding method for that particular bit rate 
is chosen. To maintain, as much as possible, signal quality at decreas­
ing bit rates, coder complexity will increase. 

Speech coding methods may be classified into different types depend­
ing on the speech properties and models that are utilized to obtain cod­
ing efficiency. We distinguish three types: waveform coding, vocoding 
(or source coding) and hybrid coding. 

Fig. 1.3 shows the relationship of these types in terms of the 
number of bits per second (b/s) and speech quality. As we see from this 
figure, bit rates, coder types and speech quality are highly correlated. 
For high bit rates (> 24 kb/s) simple waveform coders can be used to 
produce high (telephone) quality speech. At the other end of the scale, 
the low bit range (< 5 kb/s), only source coding methods, which produce 
low (synthetic) quality speech, are suitable. The medium bit rate range 
(between 5 and 24 kb/s) is covered by the hybrid coders, which can pro­
duce medium (communication) to high (telephone) quality speech. A short 
description of each type is given below, with a more detailed discussion 
in the rest of this chapter. 
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Figure 1.3. Subjective quality versus bit rate for speech coding. 

Source Coders {Vocoders). Source coders use a priori knowledge 
about how the signal was generated at the source. This knowledge is 
applied to model the source while signal coding is accomplished by cod­
ing the model parameters. Source coders for speech, referred to as 
vocoders, use the previously described speech production model 
represented by excitation parameters and vocal tract parameters. Due to 
the simplicity of this model, especially of the excitation part, 
vocoders produce a synthetic quality that cannot be improved by simply 
increasing the bit rate. 

Wavefonr. coders. Waveform coders do not use a priori knowledge 
about the signal generation process. The objective of waveform coding 
is to make the reconstructed signal be as close to the original signal 
as possible. In principle, they are designed to be signal independent; 
hence they can code equally well a variety of signals. They also tend 
to be robust for a wide range of speaker characteristics and for noisy 
environments. By exploiting more signal specific characteristics, such 
as amplitude nonstationarity and static and dynamic spectral charac­
teristics a greater coding efficiency can be obtained. 

Hybrid coders. Hybrid coders form the link between waveform coders 
and source coders. At the intended bit rates it is no longer possible 
to have the reconstructed signal match the input signal on a sample-by-
sample basis as in waveform coding. On the other hand, the maximum 
attainable quality of source coders is too low. Hybrid coders form a 
class in which the design criterion is neither waveform preservation nor 
signal modeling. Rather, we require that the output speech have a qual­
ity similar to the input signal on a subjective basis. Therefore, it is 
necessary to take advantage of certain properties of human speech per­
ception. Moreover, waveform coding techniques and source coding tech­
niques can be combined. 

1.3 Classes Of Speech Coders 5 

For telephone (toll) quality speech coding at rates below 16 kb/s, 
hybrid coders are going to play an important role in the coming years. 
In the following we describe current examples of the three categories 
with an emphasis on waveform and hybrid coders. 

1.4 Source Coding (Vocoders) 

Vocoders depend on a parameterization of the speech signal in accor­
dance with the linear, quasi-stationary model of speech production as 
described earlier. The sound source is either a sequence of pulses 
separated by a pitch period for voiced sounds or a white noise source 
for unvoiced sounds. The vocal tract is modeled by a time-varying 
linear filter. The analysis procedure has to estimate the excitation 
and the vocal tract parameters. The parameters obtained are quantized 
and transmitted. At the receiver, the pitch, gain and voicing parame­
ters are used to generate an excitation signal which excites the syn­
thesis filter. In our model the source and system (vocal tract) are 
independent and could be estimated separately. 

1.4.1 Excitation Estimation 

Two main problems exist in the process of excitation estimation: 
first, the discrimination between voiced and unvoiced segments [Atal and 
Babiner, 1976] and, second, the determination of the fundamental fre­
quency for voiced segments. Two basic approaches to tackling these 
problems are time domain methods [Gold and Rabiner, 1969], which 
operate directly on the waveform, and frequency domain [Sluyter et al., 
1980] [Sluyter, 1982] methods, which are based on spectral analysis. 

1.4.2 Filter {Vocal Tract) Estimation 

The vocal tract which is responsible for the spectral envelope of 
the speech segments can be represented in many ways. Similar to the 
excitation estimation, we could use time domain approaches and frequency 
domain approaches. Examples of time domain approaches are the auto­
correlation vocoder [Huggins, 1954], where samples of the auto­
correlation function of the speech segment are used, or the Linear 
Predictive Coder (LPC) [Atal and Hanauer, 1971] [Markel and Gray, 1976], 
which uses linear prediction coefficients that describe the spectral 
envelope. Frequency domain approaches are the formant vocoder [Klatt, 
1980], which uses the frequency values of major spectral resonances and 
the channel vocoder [Gold and Rader, 1967] and its digital counterpart, 
the DFT-vocoder [Bosscha and Sluyter, 1982], which uses the values of 
the short-time amplitude spectrum of the speech signal evaluated at 
specific frequencies. 
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1.4.3 Very-Low Bit Rate Vocoding Techniques 

The number of bits required for transmission of the vocoder parame­
ters depends on different factors, such as the update rate of the filter 
coefficients and the method used for parameter quantization. For exam­
ple, the U.S. government standard LPC vocoder (LPC-10) [Tremain, 1982] 
operates at a 2400 b/s transmission rate. The bit rate can be further 
decreased by transmitting parameters only when they have changed suffi­
ciently from the previous transmitted parameters. At the receiver, the 
parameters are interpolated linearly and the synthesis filter coeffi­
cients are updated regularly. With this variable frame rate (VFP) tech­
nique [Viswanathan et al., 1982], the transmission rate can be reduced 
from 2400 b/s to about 1600 b/s with no loss in speech quality. Further 
bit rate reduction can be obtained by using more sophisticated quantiza­
tion techniques such as vector quantization [Buzo et al., 1980]. In 
that method, all the linear prediction coefficients that represent an 
input speech spectrum are considered as a vector and quantized as a sin­
gle unit. Using vector quantization, one can reduce the bit rate to 800 
b/s ttoong et al., 1982]. By considering a number of consecutive frames 
as a vector, we obtain a segment vector quantizer [Roucos et al., 1982], 
which can transmit intelligible speech at 220 b/s when optimized for a 
single speaker. 

1.5 Viaveforro Coding (Time Domain Methods') 

1.5.1 Pulse Code Modulation 

A simple form of waveform coding is Pulse Code Modulation (PCM). In 
this roethocL the analog signal is sampled and uniformly quantized into 
one of N ■ 2 levels (R bits/sample). If a signal bandwidth of Vi Hz is 
assumed, the total bit rate is then 2VÏR b/s. Two common characteristics 
for a uniform quantizer with step size A and input range V = x^ - x are 
shown in Fig. 1.4. 

Figure 1.4. Two common uniform 3-bit quantizer characteristics (a) 
mid-tread, (b) mid-riser. 
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The mid-tread or rounding characteristic produces zero output for input 
samples that are in the neighborhood of zero. The mid-riser or trunca­
tion characteristic has a decision level located at zero, and maps zero 
valued input samples into non-zero output samples. When the input sam­
ple x falls outside the decision levels x and x the quantizer is said 
to be overloaded. To avoid significant overload or saturation noise the 
range V is chosen to be a suitable multiple of the rms signal level a. 
This multiple is called the loading factor. A large range, however, 
increases granular noise, while a small range reduces granular noise at 
the expense of saturation noise. For an optimal performance of the uni­
form quantizer the step size A and the range V have to be aligned to the 
input signal characteristics. In practice, alignment of the quantizer 
input is realized by one of two techniques: non-uniform or adaptive 
quantization. 

1.5.1.1 Non-Uniforn, Quantization A non-uniform quantizer has a small 
step size for small signal values and a large step size for large signal 
values. Given the probability density function (pdf) of the input sig­
nal, a non-uniform quantizer that minimizes the quantization noise for a 
given number of bits P can be designed. The design procedure for such a 
quantizer was independently proposed in [Lloyd, 1957] and in [Max, 
1960], and this optimum quantizer is commonly referred to as a Lloyd-Max 
quantizer. Max tabulated the optimum uniform and non-uniform quantizer 
characteristics for Gaussian distribution functions. In [Paez and Glis-
son, 1972] [Adams and Giesler, 1978] the Lloyd-Max design procedure was 
used to generate similar characteristics for Laplace and gamma distribu-
t i ons. 

A disadvantage of such an pdf optimized quantizer is its sensitivity 
to a mismatch between actual pdf and design pdf [Mauersberger, 1979]. 
Logarithmic quantizers are more robust than pdf optimized quantizers 
against a mismatch between signal pdf and quantizer pdf. Since non-
uniform quantization is equivalent to uniform quantization of a non-
linearly compressed signal, we can specify a non-uniform quantizer by an 
appropriate companding (compression and expanding) law. The amplitude 
compression characteristics used in log quantizers follow either the 
so-called u-law or the A-law [Gersho, 1978]. The A-law characteristic 
is used in European PCM telephone systems, while the PCM systems in the 
United States, Canada, and Japan use |j-law compression. Even though the 
maximum signal to noise ratio (SNE) of a logarithmic quantizer is less 
than the maximum SNR of a uniform quantizer, the former is more robust 
against varying input signal levels. For a wide range of power levels, 
a high SNR of the logarithmic quantizer is maintained while the SNR of 
the uniform quantizer drops rapidly with diminishing power levels. To 
achieve the same quality over a significant dynamic range a 12 bit uni­
form quantizer or an 8 bit logarithmic quantizer can be used. Thus a 
saving of 4 bits per sample is achieved by using non-uniform quantiza­
tion. 
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1.5.1.2 Adaptive Quantization Adaptive quantization utilizes a quan­
tizer (uniform or non-uniform) whose step size is adapted to the short-
term amplitude of the signal. In an Adaptive Pulse Code Modulation 
(APCM) system, the quantizer step size is adjusted at a rate that 
approximates the syllabic rate (10-30 ros) of running speech. Fig. 1.5 
shows a schematic diagram of an APCM system. 

s(n) UNIT-VARIANCE 
QUANTIZER 

Figure 1.5. Adaptive PCM (APCM) system. 

The quantizer is assumed to be fixed and the quantizer scale factor G is 
varied to be inversely proportional to the short term root-mean square 
(rms) value of the signal. Two general methods for sending G to the 
receiver are forward estimation and backward estimation [Noll, 1975]. 
In forward estimation G is computed block wise (10-30 ros) and transmit­
ted to the receiver for every block as side information. In backward 
estimation G is updated for every sample and computed from previously 
quantized samples and need not be transmitted. In general, forward 
adaptation is more optimal and more robust than backward adaptation. At 
a given bit rate, the performance (in terms of SNB) of adaptive quantiz­
ers is better than that of logarithmic quantizers [Noll, 1974]. 

1.5.2 Predictive Coding 

Thus far, we have only taken into account the amplitude characteris­
tics of the speech signal. A more efficient coder could be designed if 
we are also to take into account the correlations among the speech sam­
ples. Two types of correlations can be recognized: the correlation 
between successive speech samples (causing a non-flat spectral 
envelope), and the correlation between adjacent pitch periods (causing 
the spectral fine structure). If a dependence between successive sam­
ples exists, we could assume that a speech sample s(n) could be approxi­
mately predicted as a linear combination of a number of immediately 
preceding samples [Atal and Hanauer, 1971] [Makhoul, 1975] [Markel and 
Gray, 1976] 

s(n) - Z a, s(n-k) 
k=l K 

(1.1) 

where a, , 1 <. k <_ p, are called predictor coefficients and p is the 
order of the predictor. The error r(n) between the actual value and the 
predicted value is called the residual and is given by 

•(n) = s(n) - s(n) = s(n) + Z a s(n-k) 
k=l X 

(1.2) 

The problem is to find the predictor coefficients <ak>, that minimize 
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the error r(n) in an appropriate sense. Using the mean-squared error 
criterion, and leaving the range of summation currently undefined, we 
have to minimize 

2 r2(n) I [s(n) + Z a s(n-k)]' 
n k=l 

(1.3) 

By setting the partial derivatives with respect to each a to zero, we 
obtain the normal equations 

P 
Z 
k=l 

Z s(n-k)stn-i) -Z s(n)s(n-i) 
n 

1 < i < p (1.4) 

The choice of the summation range will affect the method of solution and 
the properties of the resulting optimum predictor. Popular methods are 
the auto-correlation method [Markel and Gray, 1973], and the covariance 
method [Atal and Hanauer, 1971], In the auto-correlation method the 
signal is appropriately windowed, such that it is identically zero out­
side the interval 1 < n < L. As a result the normal equations will 
become a Toeplitz set and can be solved very efficiently. In the 
covariance method we use the data in the interval 1 <_ n <. L, thereby 
minimizing the squared error over the interval p+1 <_ n < L. 

By denoting the z-transforms of signals by the corresponding capital 
letters, we obtain for the predictor residual 

R(z) - A(z)S(z) 
where 

(1.5) 

A(z) P 
Z 
k=l 

(1.6) 

From Eq. (1.5) we see that R(z) can be obtained by filtering S(z) 
through an all-zero filter with transfer function A(z). We also see 
from Eq. (1.5) that if R(z) has a flat spectrum, then the signal spec­
trum can be modeled by the spectrum of the all-pole filter 1/A(z). The 
filter A(z) is also known as the "inverse filter" since it is the 
inverse of the all-pole model of the signal spectrum. 

1.5.2.1 Adaptive Predictive Coding To match the time-varying spectral 
characteristics of the input signal, the predictor coefficients can be 
adapted periodically (typically every 10-30 ms). The concept of an 
Adaptive Predictive Coder (APC) is shown in Fig. 1.6. 

S ( z ) 
A ( z ) 

R ( z ) ADAPTIVE 
QUANTIZER 

R(z) S(z) 

Figure 1.6. Conceptual Adaptive Predictive Coding (APC) system. 
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In this figure the adaptive quantizer represents the APCM system of Fig. 
1.5. The filters A(z) and 1/A(z) are sometimes called the analysis and 
the synthesis filter, respectively. R(z) is the residual which is quan­
tized as R(z) and transmitted together with the side information (i.e. 
filter coefficients and quantizer scale factor). For an infinite level 
quantizer, f(n) is equal to r(n) and the synthetic signal §(n) will be 
equal to the original s(n). If we use a quantizer with a finite number 
of levels the A(z) filter is operating on the non-degraded input signal, 
while the 1/A(z) filter uses a quantized version of the input. Due to 
the feedback in the synthesis filter, any quantization noise present can 
be emphasized. To prevent this situation, the quantizer is placed in a 
feedback loop, as shown in Fig. 1.7. 

S(2) + , 
K 

Figure 1.7. 

^ R( V 

Prac 

ADAPTIVE 
QUANTIZER 

A(z)-1 

tic 

R(z) 

~T " 
^h - vy , 

1/A(z) 
S(z 

;al Adaptive Predictive Coding (APC) system 

From Fig. 1.7 we can write 

R(z) = A(z)S(z) + [A(z)-1] Q(z) 

Q(z) = R(z) - Rtz) 
where 

(1.7) 

(1.8) 

represents the quantization noise. 
by 

The synthetic signal S(z) 

S(z) = S(z) + Q(z) 

given 

(1.9) 

Therefore, the error S(z)-S(z) in quantizing the signal s(z) is equal to 
the residual quantization error Q(z), which depends on the variance of 
the residual signal. The ratio between the variance of the speech sig­
nal and that of of the residual signal, describes the effect of the 
predictor and is called prediction gain. The actual value of the pred­
iction gain depends on the shape of the input signal spectrum and will 
be high for voiced segments, and low for unvoiced segments. In [Makhoul 
and Berouti, 1979] it was shown that 

(SNR)Apc - S/R + ( S N R ) ^ dB (1.10) 

where S/R is the prediction gain in dB. 

1.5.2.2 Differential Coding If we choose for A(z) a filter with fixed 
coefficients, we call the predictive system a Differential PCM (DPCM) 
system. The coefficients are computed by taking the long-term average 
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of the signal spectrum and computing the optimal predictor coefficients. 
Note that the effect of increasing the order p tends to saturate, in 
general, around a predictor order p of about 2 or 3 due to the changing 
spectral characteristics of the input signal. If we adapt the predictor 
to the input signal we get an Adaptive Differential PCM (ADPCM) system 
[Jayant, 1974]. 

1.5.2.3 Delta Modulation Delta Modulation (DM) is basically a DPCM 
system, which uses a 1-bit (2-level) quantizer and a sampling rate much 
larger than the Nyquist rate. The over-sampling of the waveform 
increases the adjacent sampling correlation, which justifies the use of 
a 2-level quantizer. However, rapidly varying signals cause slope over­
load distortion and steady state signals introduce granular noise. The 
use of adaptive quantizers reduces these effects. Again, different 
strategies are possible. Adaptive Delta Modulation (ADM) uses a vari­
able step size, based on previous quantizer outputs. Vihen the step size 
is adapted very smoothly in time, we obtain a continuously variable 
slope delta modulation coder (CVSDM) [Jayant, 1974]. Another adaptation 
strategy is Digitally Controlled Delta Modulation (DCDM) [Greefkens et 
al., 1970]. 

1.5.2.4 Pitch Prediction The adaptive predictor tends to remove the 
correlation between adjacent samples. Such prediction, however, ignores 
the correlation between samples spaced a pitch period apart, due to the 
quasi-periodic nature of voiced speech. One method that exploits this 
correlation is the usage of an inverse pitch filter P(z) [Atal and 
Schroeder, 1970], defined by the general form 

P(z) „ -(M-l) . -M . -(M+l) 1 + 6^ + 62z + 63z (1.11) 
where M is the pitch period in samples, and 6 , 6 ,and 6 are the three 
pitch predictor coefficients. The delay M is chosen so that the corre­
lation between samples delayed M samples apart is the highest. The &-
parameters are then chosen to minimize the error signal. If & and & 
of the three-tap filter are set to zero, we obtain a one-tap pitch pred­
ictor which also yields good results but is less complicated than the 
three-tap predictor. The concept of an APC coder with pitch prediction 
is drawn in Fig. 1.8. 

S(z) 
A ( Z ; P(z) ADAPTIVE 

QUANTIZER 
1 / P ( z ) 1/A(z) 

S(z) 

Figure 1.8. Conceptual APC system with a pitch predictor. 

For a practical implementation we have to use a configuration similar to 
the one given in Fig. 1.7. 
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1 5 2 5 Hoise Spectral Shaping The quantization noise in APC generally 
has a flat spectrum. To ensure that the distortion in the speech signal 
is perceptually small, it is necessary to consider the spectrum of the 
quantization noise and its relation to the speech spectrum. An example 
of the noise spectrum in APC is shown in Fig. 1.9. If the short-term 
spectrum has a large dynamic range, as in voiced speech (dashed line), 
it is possible for the noise level to be above the signal level in some 
frequency ranges (solid line). In noise spectral shaping, one shapes 
the quantization noise spectrum such that it remains below the signal 
spectrum as much as possible (dash-dotted line). 
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Figure 1.9. Comparison between the noise spectrum in APC and in APC-NS. 

Fig. 1.10 shows a conceptual APC system with noise shaping (APC-NS) 
[Makhoul and Berouti, 1979] [Atal and Schroeder, 1979]. 

S(z) 
A(z) -® 

A+ 

ADAPTIVE 
QUANTIZER 

B(z)-1 Q(z) 

I / A ( Z ; 
S(z) 

Figure 1.10. Conceptual APC system with noise shaping (APC-NS). 

The output signal at the receiver is given by 
S(z) = S(z) + B(z)/A(z) Q(z) (1.12) 

By an appropriate choice of the filter B(z), the noise spectrum can be 
given any shape. A filter that has proven to be a suitable choice 
[Makhoul and Berouti, 1979] [Atal and Schroeder, 1979] is an all-zero 
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filter of the form 

P k -k 
B(z) - A(z/-tf) = 1 + E a y z , 0 i | ( l (1.13) 

k-1 
where y is a constant (typically -j-0.85). Note that for a value of y 
equal to one, the APC-NS coder is equivalent to the APC coder without 
noise shaping. The SNR for the APC-NS system is always less than the 
SNB of an APC coder without noise shaping [Makhoul and Berouti, 1979]. 
However, even if the SNR drops, the perceptual effect can be a reduced 
noise level and higher speech quality. An adaptive predictive coding 
system exploiting pitch prediction and noise shaping techniques can pro­
duce toll-quality speech at or around 16 kb/s. 

1.5.3 Vector Quantization 

A generalization of PCM is vector quantization (VQ) [Buzo et al., 
1980] [Abut et al., 1982] [Gray, 1984]. In VQ a block of L consecutive 
samples of the input waveform (or an appropriate transform thereof), 
forms an L-dimensional vector x that is treated as one entity. In the 
encoding process, each input vector x is assigned to the nearest 
representative vector y. in a set of N stored reference vectors known as 
the "code book". The best matching pattern in the code book is selected 
by the encoding process according to a suitable fidelity measure (e.g. 
mean squared error) and a binary word is used to identify this pattern 
in the code book. Even if the input samples are statistically indepen­
dent, an advantage can be gained by quantizing a block at a time rather 
than one sample at a time. This is a fundamental result of Shannon's 
rate distortion theory [Shannon, 1948] [Shannon, 1959]. The distortion 
of the block quantizers is defined as 

1 L -2 D = f- I ez (1.14) 
L i-1 ' 

—o where e. is the mean-square error of the i-th sample. As the block 
length L increases, the minimum bit rate needed for a given distortion 
will decrease. If L goes to infinity, the minimum bit rate approaches a 
limiting value R depending on D. The function R(D) is called the rate-
distortion function. For certain classes of input sequences {x.}, 
explicit solutions for R(D) have been found, and for many other cases, 
upper and lower bounds are available [Berger, 1971]. These rate distor­
tion functions can be used to determine quantizer performance by com­
parison of the quantizer distortion and the rate-distortion limits. 
Operation of the decoder is simple: it stores the code book and looks up 
the reproduction vector indexed by the encoder. The number of 
bits/sample is given by 

R = jr log2 N (1.15) 
where L is the dimension of the vector and N the number of patterns in 
the code book. To find appropriate code books, a generalization of the 
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Lloyd-Max design procedure can be used [Gray, 1984]. Disadvantages of 
the full-search VQ are the computational and storage requirements. The 
number of computations per sample is of the order of N=2 and a memory 
of LN words is required. For these reasons, the direct use of VQ on 
speech waveforms with optimal code books has been limited to dimension-
rate products (LR) of 8 or less [Abut et al., 1982], With this limita­
tion, the resulting quantizers compare favorably with scalar quantiza­
tion (i.e. PCM), but the overall performance achieved is not adequate 
for practical systems. An important reduction in computational complex­
ity may be reached by using tree-structured code books [Gray and Abut, 
1982] to allow a rapid search. In tree-structured VQ, a large part of 
the set of stored patterns in the code book is used only to guide the 
search. For example, in a binary tree code book of size 2 , the search 
consists of LK binary decisions; only at the last decision stage is the 
input vector compared with two patterns which are actual code vector 
candidates for representing the input vector. Two major problems are 
now that the resulting coding algorithm is sub—optimal and the required 
memory is increased over the full-search case. A reduction in both cod­
ing complexity and memory may be achieved by using a multi-stage 
approach [Juang, 1982]. Here, the encoding error of a vector quantizer 
is formed by taking the difference between the original and quantized 
vectors and then feeding it into a second vector quantizer. The final 
index to be transmitted is formed by the concatenation of indices from 
each code book. Another useful structure for a VQ is a product code. A 
typical example of a product VQ is a gain/shape VQ [Buzo et al., 1980] 
[Sabin and Gray, 1984], where separate codes are used to code the nor­
malized input vector (shape) and the normalization term (gain). 
Finally, we mention the use of lattices to design a so-called lattice 
quantizer [Gersho, 1979], which enables efficient searches and memory 
usage. 

In addition to the memoryless vector quantizers described, struc­
tures of VQ with memory have been proposed. Examples are the vector 
predictive quantizer [Cuperman and Gersho, 1982], which is a generalized 
DPCM coder, and the finite-state VQ [Foster and Gray, 1982]. Further, 
we want to mention the possibility of using VQ with other waveform cod­
ing techniques such as Sub-Band Coding [Gersho et al., 1984] and Resi­
dual Excited Linear Predictive (RELP) coding [Rebolledo et al., 1982]. 

1.6 Waveform Coding (Frequency Domain Methods) 

The waveform coding methods described in the previous sections all 
treat speech as a single full-band signal. The main differences in the 
various methods are determined by the degree of prediction that is 
exploited, and by whether or not schemes are adaptive. This whole class 
of coding methods is commonly referred to as time domain wave form 
coders. Another class of coding methods is referred to as frequency 
domain waveform coders. These coding techniques divide the speech sig­
nal into a number of separate frequency components and encode each of 
these components separately. 

1.6 Waveform Coding (Frequency Domain Methods) 15 

1.6.1 Sub-Band Coding 

In the Sub-Band Coder (SBC) [Crochiere et al., 1976] [Tribolet and 
Crochiere, 1979] the speech signal is partitioned into a number (typi­
cally 4 or 8) of frequency bands (sub-bands). Each sub-band is low-pass 
transposed and sampled at its Nyquist rate. The samples are encoded by 
using APCM techniques and the number of bits per sample in each band is 
chosen according to perceptual criteria for that band. At the recon­
struction side, the different bands are decoded and band-pass transposed 
back, and added to produce the reconstructed speech signal. If the 
number of bits for different bands is changed dynamically, the noise 
spectrum can be shaped to reduce the subjectively perceived noise in the 
reconstructed signal. This approach can produce toll-quality speech at 
or above 24 kb/s. 

1.6.2 Adaptive Transform Coding 

The Adaptive Transform Coder (ATC) [Zelinski and Noll, 1977] [Tri­
bolet and Crochiere, 1979] divides, analogously to the sub—band coder, 
the speech band into a number of frequency bands. However, many more 
bands are used (typically 128) and the translation to the frequency 
domain is achieved by means of a fast transform algorithm, such as the 
discrete cosine transform (DCT) [Makhoul, 1980]. The transform coeffi­
cients are APCM quantized and transmitted. An inverse transformation 
gives the reconstructed signal at the receiver. The number of bits 
assigned to each band is changed adaptively, resulting in an algorithm 
capable of fully adapting, dynamically, to the spectral properties of 
speech. An Adaptive Transform Coder exploiting noise shaping techniques 
is capable of producing toll-quality speech at or above 16 kb/s. 

1.6.3 Harmonic Coding 

Harmonic Coding (HO [Almeida and Tribolet, 1982] [Almeida and Tri­
bolet, 1984] [Almeida, ] is a hybrid coding technique based on combining 
ATC with a model of voiced speech. The main issue in a HC scheme is 
that a good reproduction of voiced speech segments is essential for 
achieving a high synthetic speech quality. This goal is achieved by 
coding the amplitudes and phases of the spectral lines of voiced speech. 
The parameters obtained are quantized and coded, and then used to syn­
thesize a spectrum, which is subtracted from that of the input speech, 
yielding the modeling residual. This residual is also quantized, coded 
and transmitted together with the model parameters. At the receiver the 
residual spectrum and the model spectrum are added, and an inverse 
transformation is applied to obtain the time signal. The available 
number of bits is dynamically allocated between the model parameters and 
the modeling residual. In segments that can be accurately modeled (e.g. 
voiced segments), most or all bits are allocated to the model parame­
ters, and very few or none to the modeling residual. Conversely, in 
segments where the modeling accuracy is very low (e.g. unvoiced seg­
ments) all bits are allocated to the modeling residual. In the latter 
case the coder behaves like an ATC coder. A Harmonic Coder can produce 
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toll-quality speech at or above 10 kb/s. 

1.7 Hybrid Coders Using Adaptive Prediction Techniqu.es 

Hybrid coding methods combine features of both waveform and source 
coders in an attempt to fill the performance gap between these two 
methods. Although many other hybrid approaches exist, we limit our­
selves to time-domain approaches that use Adaptive Prediction tech­
niques. These coders can be considered as residual coders, similar to 
the APC coder with forward adaptation. In forward adaptation the vari­
ous parameters are computed from a block of the speech signal and 
transmitted as side information in addition to the residual. In the APC 
system described the quantizer is included in the predictor loop and 
every sample is quantized. The coded prediction residual usually 
requires a significantly larger number of bits per second in comparison 
to the side information. To enable further reduction in bit rate, we 
have to use a coarser quantization of the residual. From this point of 
view, source coding - where the residual is replaced by either noise or 
pulse excitation - is the ultimate in residual quantization. Due to the 
low speech quality of vocoders, we have to search for better solutions 
that produce (near) toll-quality speech at bit rates below 16 kb/s. 

To reduce the bit rate required for coding the residual signal, we 
cannot simply decrease the number of quantization levels. Such an 
operation results in either peak clipping or a significant amount of 
granular noise. Moreover, the quantization noise cannot be assumed to 
be white due to its high correlation with the signal. The effects men­
tioned are undesirable. The APC coder with a center-clipper [Atal, 
1982] is based on the observation that accurate quantization of high 
amplitude portions of the prediction residual is necessary for achieving 
low perceptual distortion in the decoded speech. This means that most 
of the available bits are used for encoding the high-amplitude portions 
of the residual signal. To keep the bit rate within a specified value, 
the prediction residual can be center-clipped prior to quantization by a 
multi—level quantizer. 

1.7.1 Base-Band Coding 

Another approach to the quantization of the residual signal is the 
Base-Band Coder (BBC) [Viswanathan et al., 1982] (Fig. 1.11). Instead 
of transmitting the full-bandwidth (W Hz) residual (at 2Vv rate) as is 
done in APC, we only transmit a low frequency portion (base-band) of it, 
B Hz wide at 2B rate. Typically a ratio of W/B = 3 or 4 is used. At the 
receiver, we have to regenerate the high-frequency components of the 
residual from the base-band. A widely used method of High Frequency 
Regeneration (HFR) is that of spectral folding [Makhoul and Berouti, 
1979]. A disadvantage of the base-band coder with HFR is the effect of 
"tonal noises" in the output speech due to a mismatch between down-
sampling frequency and pitch frequency of the speech signal. 

Hybrid Coders Using Adaptive Prediction Techniques 
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Figure 1.11. Base-Band Coding system (BBC), (a) encoder, (b) decoder. 

Many of the proposed solutions for this problem [Viswanathan et al., 
1982] [Hedelin, 1983] introduce some other forms of distortion (such as 
hoarseness). Another solution using a pitch predictor for removing 
periodicity prior to down sampling has been reported to give good 
results without the introduction of other forms of distortion [Sluyter 

1.7.2 APC With Delayed Decision Coding 

Thus far the quantization of the residual has been achieved on an 
instantaneous basis, in contrast to the forward prediction which is done 
on a non-instantaneous basis. In computing the predictor parameters we 
attempt to minimize some global error criterion over the frame while not 
doing so for the residual. If we perform the quantization of the resi­
dual on a frame basis, we can achieve a more optimal performance Such 
foo! P F > r^ C h i S r e f e r r e d t o a s Delayed Decision Coding [Jayant and Noll, 
1984, Chapter 9] The problem could be formulated as follows: qiven a 
desired bit rate and the side information (spectral and pitch informa­
tion in APC), find the input sequence that minimizes a given error cri­
terion over a frame of speech. A general block diagram is shown in Fin. 
1.12, where the ' 

E X C I T A T I O N 

GENERATOR 

v(n) S Y N T H E S I S 

F I L T E R 

(n) 

M I N I M I Z A T I O N 

PROCEDURE 

^rh ■. 
KV * 

ERROR 

W E I G H T I N G 

e 

b) EXCITATION 
GENERATOR 

v(n) SYNTHESIS 
FILTER 

s(n) 

Figure 1.12. Adaptive Predictive Coding with Delayed Decision Coding. 
(a) encoder, (b) decoder. 

error criterion is incorporated in the block "error weighting", and the 

http://Techniqu.es
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block "synthesis filter" represents both the short- and long-term 
inverse prediction filters. There are several ways in which one could 
impose the constraint that the input sequence must have a specified bit 
rate. We describe some alternatives. 

1.7.2.1 Multi-Path Search Coder With Multi-path Search Coding CMSC) 
[Fehn and Noll, 1982] the optimal excitation sequence for a frame is 
determined from a collection of N possible output sequences. That out­
put sequence which achieves a minimum error (according to some cri­
terion) between the input and output signal will be transmitted. The 
collection of output sequences that is either stored or deterministi-
cally generated must be available at both transmitter and receiver. If 
we use a stored collection of output sequences, we only have to transmit 
the index of the sequence that produces a minimum error (code book cod­
ing). The code book can be generated with representative samples of the 
underlying signal, or signals that bear a close resemblance to the sig­
nal to be coded, such as Gaussian noise for residual signals [Atal, 
1982] [Atal and Schroeder, 1984]. For the latter case, the code can be 
generated on-line and excessive storage space is avoided. When the code 
book contains many sequences and when we want to find the optimal 
sequence for large frames ( > 20 samples), the search procedure becomes 
impractical very quickly. To reduce search times, sub-optimal methods 
such as tree and trellis coding [Fehn and Noll, 1982] [Stewart et al., 
1982] can be used. In these methods different sequences have a number 
of common elements. Each sequence forms a path through the tree or 
trellis. The transmitted code will provide information about how to 
trace through the tree or trellis. Fig. 1.13 shows the different struc­
tures of the coding books. 

: A< 

i — i — i — i — i i — i — < -

1 2 3 4 5 0 1 2 3 0 1 2 3 4 
n n n 

Figure 1.13. Code book structures: (a) code book, (b) tree, (c) 
trellis. 

The bit rates for this type of encoding can be very low. For example in 
[Atal and Schroeder, 1984] it was reported that for achieving (near) 
toll quality, only 2 kb/s are required for encoding the excitation 
sequence. 
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1.7.2.2 Regular-Pulse and Multi-Pulse Excitation Coder Rather than 
selecting the optimum sequence from a collection of possibilities, the 
excitation can be specified by a small set of parameters. The encoding 
procedure involves the determination of the optimum values of these 
parameters. The Regular-Pulse Excitation (RPE) [Deprettere and Kroon, 
1985] coder represents the residual signal as a set of uniformly spaced 
pulses (typically 10 pulses per 5 ms). The position of the first pulse 
within a frame and the amplitudes have to be determined during the 
encoding procedure. The Multi-Pulse Excitation (MPE) coder [Atal and 
Remde, 1982] represents the residual as a sequence of pulses located at 
non-uniformly spaced intervals. The coder searches these pulses (typi­
cally 8 pulses per 10 ms) such that the generated output signal is as 
close to the original as possible, for the given fidelity criterion. 
Finding the pulse positions and their corresponding amplitudes is a 
highly non-linear problem and sub-optimal strategies have to be used. 
As in the case of the Multi-path Search Coders, pitch prediction and 
noise shaping increase the perceived speech quality for the RPE and MPE 
coders. Both coders can produce (near) toll quality speech at 10 kb/s. 

1.8 Additional Requirements For Speech Coding Systems 

The primary goal of speech coding is to achieve the best quality at 
the lowest bit rate. But depending on the application, several other 
factors could affect the coding strategy. Some of these factors are 
described in the remainder of this section. 

1.8.1 Channel Errors 

If the coded signals are transmitted over noisy channels, they are 
subjected to transmission errors. Depending on the parameters and/or 
coding method involved, these errors result in unwanted perceivable 
effects. To prevent such undesired effects, we have to add error pro­
tection bits to the coded data at the expense of a higher bit rate, or 
we have to use another coder that is more robust against channel errors. 
1.8.2 Tanden. Coding 

In communications systems, identical and non-identical coders may be 
linked together. A connection of two or more coding systems is called a 
tandem configuration. Conversion from one coder to the other, either in 
the analog or digital domain, may not introduce too much degradation. 
1.8.3 Processing Delay 

A constraint for coders in a communication system is a limit on the 
processing delay. Increasing the delay in telecommunication systems 
makes communications more sensitive to echos. Forward prediction sys­
tems such as the APC coder and MSC and MPE coders have a processing 
delay equal to or greater than the duration of one analysis frame. 
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1.8.4 Transmission Of Non-Speech Signals 

In certain applications (telephony systems) not only speech has to 
be transmitted but also non—speech signals such as in-band signals and 
data signals from modems. The problem is that the spectral or temporal 
characteristics of non-speech signals are different from those of 
speech. This leads to a sub-optimal performance for data signals of 
coders optimized for speech signals. 

1.8.5 Speech Signal Degradation 

In practice, the quality of the input speech can be degraded. For 
example, the speech may be distorted by the use of non-linear (e.g. car­
bon) microphones. Another effect is the band limitation introduced by a 
practical telephone system. This can lead to a loss of the lower band 
of the speech signal (up to 300 Hz). During coder design the effects of 
these degradations have to be considered. 

1.8.6 Variable Rate Coding 

For speech coding applications in digital networks such as packet 
transmission systems [Gold, 1977] and Integrated Services Digital Net­
works (ISDN) [Decina, 1982], it is desirable to use coding techniques 
that can operate at variable rates. Rather than dropping parts of 
active speech in the case of channel overload, the coders are temporally 
switched to a lower rate. Obviously such a variable rate coding also 
implies a variable quality coding, but the network performance will be 
better than when fixed rate coding is used. Coding techniques which 
show some hierarchy in the encoded data are very suitable for variable 
bit rate systems. Due to the hierarchical structure, the less important 
parameters can be dropped to decrease the bit rate. This type of coder 
is called an embedded coding system (e.g. PCM). Some coding techniques 
(e.q. DPCM) which lack this hierarchy can be realized as an embedded 
system by modifying the coder structure [Jayant, 1983]. 

1.9 Evaluation Of Speech Coders 

The evaluation of speech coders has many aspects. The roost impor­
tant one is the analysis of the speech quality and of conditions (such 
as channel errors and acoustical background noise) that could 
deteriorate the coded speech quality. Besides the quality aspects, we 
also consider the algorithm complexity and its storage requirements. 
These factors could be of crucial importance for real-time implementa­
tions. Speech quality is a hard thing to measure due to its close con­
nection to human perception. Two methods for quality assessment of 
coder performance could be distinguished: objective tests and subjective 
tests. Objective tests use some fidelity measure that reflects as much 
as possible the quality of the subjectively perceived speech. Subjec­
tive tests depend heavily on tests conducted with human listeners. 
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1.9.1 Objective Testing Procedures 

Waveform coders and hybrid coders, which are close to the former, 
try to reconstruct the original signal as closely as possible. This 
means that we could use the difference between the original signal s(n) 
and the reconstructed signal s(n) as a measure of quality. A simple and 
widely used measure is the long-time-averaged signal-to-noise ratio 
(SNR) . 

I s2(n) 
SNR = 10 log D dB (1.16) 

1 [SCn)-s(n)] 
n 

where summations are typically done over several seconds of speech. A 
disadvantage of this measure is its susceptibility to high energy com­
ponents, which leads to an unfair treatment of low energy segments (such 
as fricatives) whose preservation is perceptually important. 

A better measure is the segmental SNR (SNRSEG) [Noll, 1974], which 
is the average of SNR values, computed over short-time (typically 10-20 
ms) segments. 

1 N 
SNRSEG = jj £ (SNR). dB (1.17) 

i = l 1 

where (SNR). corresponds to the SNR in dB for segment i computed in the 
same manner as in Eq. (1.16) and N corresponds to the number of segments 
i in the speech utterance. 

The SNRSEG tends to assign more equitable weightings to loud and 
soft parts of a sentence, thereby reflecting better the quality of the 
perceived signal. Although SNR and segmental SNR measures correspond 
adequately well with the subjectively perceived quality of waveform 
coders, these measures tend to fail if used for hybrid coders employing 
spectral noise shaping. This is mainly due to the fact that spectral 
shaping reduces the SNR but enhances the perceived speech quality. 
Despite this restriction, an objective measure such as the SNRSEG serves 
well as a guideline for optimizing coder parameters. 

1.9.2 Subjective Testing Procedures 

Speech quality is traditionally assessed by the criterion that a 
listener understands what is being said (intelligibility), and who said 
it (speaker recognizability). Speech intelligibility tests are some-
tiroes used to assess the quality of synthetic speech. All of these 
tests depend upon a human listener indicating his understanding of what 
was said (syllables, words or sentences). A widely used intelligibility 
test is the Diagnostic Rhyme test [Voiers, 1977]. A disadvantage of 
using intelligibility as a measure for quality is that speech intelligi­
bility is usually not a major problem in waveform and hybrid coded 
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speech unless the bit rate is very low. Furthermore, speaker recogniza-
bility is very easy for waveform and hybrid coders. Many vocoders, on 
the other hand, have a tendency to make everybody sound alike and thus 
have poor speaker recognizability. Some characteristics of a good pro­
cedure for determining speech quality are convenience (so that testers 
will use it), validity (so that coders that provide good quality speech 
will obtain high scores), and reliability (so that a given condition 
will obtain the same score in different tests). A quality test that is 
gaining more and more acceptance is the Mean Opinion Score (MOS) test 
[Daumer, 1982] [Goodman and Nash, 1982]. 

1.10 Summary 
During the presentation of many existing coding concepts, the reader 

may have lost his or her way in the maze of the most important develop­
ments. In this section we try to summarize the most important concepts 
in relation to associated applications. Vocoders are not very suitable 
for commercial telephony systems due to their synthetic quality. How­
ever, for applications where low bit rates are required and low speech 
quality is accepted (military systems), they can be useful. They have 
been very suitable as well for applications where manipulation with 
speech material is required such as in text-to-speech converters and 
source coding methods. On the other hand, there are simple waveform 
coding systems such as log-PCM and APCM which are capable of producing 
toll quality speech at 64 kb/s. Currently u-law and A-law log PCM are 
used as an international standard in commercial telephony systems. 
ADPCM is being considered as a new international standard for 32 kb/s 
channels in commercial telephony systems. There is a growing interest 
in hybrid coding techniques such as Adaptive Predictive Coding in combi­
nation with Delayed Decision Coding, which are capable of producing 
(near) toll quality speech at transmission rates around 10 kb/s. The 
availability of 9600 b/s modems which operate reliably over conventional 
dial-up lines and the growth of mobile telephony systems offers many 
applications for these hybrid coders. The high complexity of the hybrid 
coders described is worthy of note. Even with modern signal processing 
chips these algorithms are difficult to implement in real-time systems. 

Further Reading 

This chapter served as a general introduction to the subject of 
speech coding. For a reader who is interested in a more thorough treat­
ment of the topics discussed, we will describe some of the books that we 
consider as good reference works. The speech production process and 
human speech perception is treated in [Flanagan, 1972]. Although not 
really up to date, a good reference for linear prediction coding of 
speech is [Markel and Gray, 1976]. An overview of digital signal pro­
cessing techniques for speech coding, and a description of waveform 
coders and vocoders can be found in [Babiner and Schafer, 1978]. The 
most general overview of waveform coders and hybrid coders is given in 
[Jayant and Noll, 1984]. This book deals with applications of the tech­
niques described to the encoding of both speech and video signals. 
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2. ft BASIC STRUCTURE FOB EFFICIENT SPEECH CODING 

2.1 Introduction 

In the previous chapter we recounted several hybrid coding tech­
niques, which enable the encoding of toll quality speech at bit rates 
below 16 kb/s. An interesting structure for such a coder can be found 
when adaptive predictive coding techniques are combined with delayed 
decision coding techniques, taithin the given structure several pro­
cedures exist for the determination of the optimum excitation sequence. 
The choice of a particular procedure will have a big impact on both 
coder performance and coder complexity. Hence we will report these pro­
cedures in separate chapters. In this chapter we will discuss the basic 
structure and describe the procedures for deriving the predictor parame­
ters. Furthermore, we state the possibility of incorporating a percep­
tual weighting procedure in the coder structure. Vne also describe the 
procedures used for the evaluation of the coder performance. 

2.2 Basic Structure 

From the previous chapter we know that the redundancy in the speech 
signal due to the correlation among the speech samples can be effec­
tively removed with Adaptive Prediction techniques (Section 1.5.2). The 
resulting prediction filters model the short-time spectral envelope due 
to the frequency response of the vocal tract, and the short-time spec­
tral fine structure of voiced speech, due to the quasi-periodic nature 
of the signal. A remaining problem is how to find an efficient low bit 
rate excitation sequence that provides a toll quality synthetic signal. 
In Section 1.7.2 we described a delayed decision procedure embedded in 
an adaptive predictive system. The corresponding block diagram is 
repeated in Fig. 2.1. 

EXCITATION 
GENERATOR 

v(n) SYNTHESIS 
FILTER ^fc-~ iV 

ERROR 
WEIGHTING 

MINIMIZATION 
PROCEDURE 

EXCITATION v(n) SYNTHESIS 
GENERATOR FILTER 

Figure 2.1. Basic structure for encoding speech with a fidelity cri­
terion. (a) encoder, (b) decoder. 

The speech signal is encoded in a two-step procedure. First, an 
appropriate time-varying linear filter which models the linear 

St") 



30 A BASIC STRUCTURE FOR EFFICIENT SPEECH CODING 

dependency between the speech samples is determined. The filter can be 
either a short-time predictor, or a cascade of a short-time and a long­
time predictor. Second, for a given bit rate the optimum excitation 
sequence v(n) for such a filter is searched under the condition that the 
specified error criterion is minimized. The error criterion can be the 
mean squared error, but more sophisticated error criteria can be incor­
porated by an appropriate error weighting procedure. For a given error 
criterion, the optimum excitation sequence searched within adjacent 
frames (5 to 15 ms in duration) that will be referred to as search 
frames (size NSSIZE in samples). The error is minimized over frames of 
5 ms to 15 ms in duration (MMSIZE samples). Search frame size and 
minimization frame size may differ and both could be adaptive. In 
either case the search frame size must be less than or equal to the 
minimization frame size. Fig. 2.2 shows the relationship between NSSIZE 
and NMSIZE. 

-NMSIZE-

-NSSIZE »-

-NMSIZE 

-NSSIZE-

NMSIZE = NSSIZE 

Figure 2.2. Relationship between NSSIZE and NMSIZE. 
The decoding or synthesis procedure is very simple. The excitation 
sequence of length NSSIZE excites the synthesis filter to produce NSSIZE 
samples of the reconstructed speech signal §(n). Notice that the com­
plexity of the synthesis procedure is much lower than that of the encod­
ing or analysis procedure. Another interesting feature is that the syn­
thesis procedure is almost independent of the procedure used for the 
determination of the excitation parameters. This feature increases the 
versatility of a possible hardware implementation of the decoder. 

The performance of the proposed coder structure is determined by the 
following items: 

1. the model filter(s), 

2. the error criterion, 

3. the search procedure. 

In this chapter we will discuss the first two items. The definition of 
the excitation sequence and the corresponding search procedure will have 
a great influence on the coder performance and coder complexity. Hence, 
we will dedicate several chapters to different approaches. For example, 
a set of key parameters can be used to describe the excitation sequence, 
whereby the search procedure incorporates the determination of the 
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optimum values of those parameters. Such procedures are discussed in 
Chapter 3 (Regular-Pulse Excitation Coder) and Chapter 4 (Multi-Pulse 
Excitation Coder). In Chapter 5 we describe methods that use a code book 
approach to finding the optimal excitation sequence. 

2.3 Evaluation Procedure 

The performance of the coder parameters has been evaluated by means 
of computer simulations. To avoid quantization effects all computations 
were done with floating point arithmetic and none of the parameters was 
quantized. The experiments have been conducted with real speech data 
input and both objective and subjective tests have been performed to 
asses the final speech quality (see also Appendix A). For our experi­
ments the signals were sampled at an 8 kHz rate with a 12 bit linear 
quantizer, whose performance is roughly equivalent to that of an 8 bit 
logarithmic quantizer (i.e. the international standard for PCM coded 
speech in telephony systems [CCITT, 1980]). 

The range of variation of the analysis parameters was chosen in 
accordance with the application area of the coder (i.e. bit rates around 
10 kb/s). To examine the effect of a particular parameter, several 
analysis procedures were performed with varying parameter settings. 
While varying the value of one parameter, all the other parameters were 
kept fixed at their default values. The default values were determined 
after some preliminary experiments and are considered to be a reasonable 
choice. Table 2.1 lists the parameters and their default values used 
for the predictors. 

short-time predictor 

filter estimation method 
rate (NRATE) 
size (NSIZE) 
order (p) 

long-time predictor 

analysis procedure 
rate (NPRATE) 
range M 
order 

correlation + Hamro. window 
10 ms 
25 ms 
16 

correlation 
NRATE 
16,80 
1-tap 

TABLE 2.1. Default parameter settings for predictor analysis. 

To limit practical problems such as computation time and storage space 
most tests were performed with a subset of the data set described in 
Appendix A. Two utterances from four different speakers (2 male and 2 
female) were selected. These sentences and some of their characteristics 
are listed in Table 2.2. 
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utterance 

My father failed many tests 
My father failed many tests 
De nieuwe fiets is gestolen 
De nieuwe fiets is gestolen 

male/ 
female 

f 
ra 
f 
m 

av.pitch 
(Hz) 
181 
110 
151 
118 

av.energy 
(dB) 
36 
38 
42 
41 

file 

WD530 
WD540 
WD505 
WD518 

TM3LE 2.2. Test utterance characteristics. 

2.4 A Filter For Modeling The Spectral Envelope 

In Chapter 1 we described that the spectral envelope of a speech 
segment can be approximated by the spectrum of an all-pole filter 
1/A(z), where A(z) is defined as: 

p -k A(z) » 1 + £ a z (2.1) 
k=l K 

where a, , 1 < k < p are called predictor coefficients and p is the order 
of the predictor. The predictor parameters are determined such that the 
energy of the residual, which is obtained by filtering the speech signal 
through the filter A(z) , is minimal. The resulting set of equations are 
called the normal equations and can be solved very efficiently. For 
example, the covariance method can be solved by Cholesky decomposition. 
The auto-correlation method provides an even more efficient solution 
procedure, due to the Toeplitz property of the auto-correlation matrix 
(see also Chapter 8 ) . Both methods use the covariance sequence as an 
intermediate quantity. In another method, called the Burg method [Burg, 
1975], the predictor coefficients are obtained directly from the speech 
samples. Both auto-correlation and Burg methods are guaranteed to yield 
stable filters. The covariance method is not guaranteed to yield stable 
filters every time, but can be modified [Dickinson, 1978] [Atal, 1982] 
Co do so (modified or stabilized covariance method). Although the three 
methods mentioned differ in theoretical formulation, the practical 
results obtained with these methods are quite similar. computational 
considerations, such as numerical stability and the required analysis 
frame size (NSIZE) are more important. Some of the differences between 
the auto-correlation method and the covariance method are examined in 
[Chandra and Lin, 1974], and a description of the performance of the 
Burg method as compared to that of the auto-correlation or covariance 
method is described in [Gray and Wong, 1980]. The methods described are 
usually applied to data segments of fixed length. Recently proposed 
methods [Lee et al., 1981] [Deprettere, 1982] [Friedlander, 1982] esti­
mate the predictor coefficients continuously and update the coefficients 
every time a new speech sample is available. These adaptive algorithms 
tend to be more complicated than the previously described non-adaptive 
methods, and have thus far not been shown to produce any perceptible 
improvement in speech applications. 

The predictor coefficients {a } are determined such that the power 
of the prediction residual is minimized over frames whose duration may 
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vary from 10 to 30 ros. The coefficients are updated periodically (once 
every 10 to 30 ms) to follow the non-stationary behavior of the speech 
signal. We denote by NSIZE the analysis frame length in number of sam­
ples and we denote by NRATE the coefficient update rate in number of 
samples. For every frame of NRATE samples we obtain a set of predictor 
coefficients that will be used for the synthesis of NRATE samples. 
Hence, we could also refer to NRATE as a synthesis frame size. Fig. 2.3 
shows how the different parameters are related. 

-NSIZE-

-NRATE-

k ,m 

-NSIZE-

-NRATE ■«■ 

k ,m+l 

-NSIZE-

-NRATE-

k,m+2 

NSIZE = NRATE 

D = NSIZE-NRATE 

Figure 2.3. Relationship between NRATE and NSIZE. 

The value of NSIZE can be equal to NRATE (non-overlapping analysis 
frames) or greater than NRATE (overlapping analysis frames). Overlap­
ping analysis frames are used to get a smoother transition between coef­
ficient sets of adjacent frames. The actual rate required for transmis­
sion of the filter coefficients forms a compromise between quality and 
bit rate. The number of bits required to code a set of predictor coef­
ficients depends on the number of coefficients and the quantization 
method used. Typical values for 16 coefficients using optimal scalar 
quantization methods [Viswanathan and Makhoul, 1975] [Gray and Markel 
1976] vary from 6000 b/s to 3000 b/s for update rates of respectively 10 
and 20 ms (see also Chapter 6 ) . 

The number of -predictor coefficients or filter order forms another 
trade-off between allowed bit rate and desired resolution. In [Markel 
and Gray, 1976, Chapter 4], it was shown that to adequately represent 
the vocal tract, the total delay time of the A(z) filter roust be equal 
to twice the time required for sound waves to travel from the glottis to 
the lips, that is, 2L/c, where L is the length of the vocal tract and c 
is the speed of sound. For example, the representative values 
c ■ 34 cm/ms and L - 17 era result in a necessary delay of 1 ms. When 
the glottal and lip radiation characteristics and the imperfection of 
the all-pole model are also taken into account, a good rule of thumb for 
the estimation of the order is to take the sampling frequency (in kHz) 
plus 4 or 5. For an 8 kHz sampling frequency this leads to a 12 or 13-
th order filter. To assure robustness for a wide variety of speakers, a 
commonly used value is 16. 

To estimate the predictability of a waveform we describe the shape 
of a spectrum with a spectral flatness measure (sfro) [Markel and Gray, 
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1976] 

Q2 = (exp[ ~ f In S(e-1u)du])/o2 = n2/<?2 (2.2) 
- T T 

2 
where a is defined as the variance of the signal s(n) with power spec­
tral density (psd) function S(e-'u) 

<s = -i f S(e3ü,)du C2.3) 2TT * —n 
2 

It can be shown that a is the ratio of the geometric mean and arith­
metic mean of the samples of the psd. The value of & is bounded by 0 
and 1 and is equal to 1 if SteJ") is a psd of a white noise process. 
The numerator n of Eq.(2.2) can be interpreted as the minimum obtain­
able residual variance. The maximum achievable prediction gain is equal 
to the inverse of the sfm. 

2.4.1 Optimizing LPC Predictor Parameters 

LPC analysis attempts to model the spectrum of the input signal by 
assuming that speech is produced by exciting a linear all-pole filter 
with white noise. If this filter is excited by a periodic train of 
impulses with fundamental frequency f then the spectrum of the output 
signal will be a line spectrum with spectral values at only the harmon­
ics of this fundamental frequency f . For high pitched voices, the har­
monic spacing is too large to provide an adequate sampling of the spec­
tral envelope. If we apply LPC analysis to this spectrum, we observe 
discrepancies between the original and the model spectra such as merging 
or splitting of pole pairs, and increasing or decreasing of pole fre­
quencies and bandwidths [Atal, 1975]. As the fundamental f decreases, 
these discrepancies also decrease. As a result the filter parameters 
will be biased for voiced speech, especially for female speakers. Algo­
rithms that try to reduce this pitch-dependent bias on the filter param­
eters usually make an estimation of the input pulses and use this 
estimated input as model input [Miyanaga et al., 1982]. In [Singhal and 
Atal, 1983] the multi-pulse signal was used as an estimation for the 
input signal, based on the observation that the multi-pulse input con­
tains the same periodicity as the original speech. Reformulating the 
LPC analysis equations and solving for the prediction parameters result 
in a set of filter parameters that are to a large extent unbiased. 
After finding the new predictor parameters, the multi-pulse excitation 
must be recomputed. Instead of recomputing both locations and ampli­
tudes of the pulses, only the amplitudes are recomputed. The whole pro­
cess can be repeated until some specified error criterion is met. It 
was reported that as many as 10 to 20 iterations were required to obtain 
any perceivable improvement [Atal, private communication]. Besides the 
enormous complexity, precautions have also to be taken to ensure the 
stability of the synthesis filters produced by this modified analysis 
procedure. 
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2.4.2 Filter Structures 

To implement the all-zero filter ACz) and the all-pole filter 1/A(z) 
we can use either direct form filters [Oppenheim and Schafer, 1975], or 
lattice filters [Gray and Markel, 1973] [Makhoul, 1978]. Direct form 
filters are direct realizations of the differential equations that 
describe the input-output relation of the filter. Fig. 2.4 shows the 
direct form and lattice form structures for the all-pole analysis filter 
1/A(z). 

a) 

b) 

Figure 2.4. Direct form all-zero (a) and all-pole (b) filters. 

Lattice filters are canonical realizations of the filter transfer func­
tion. The filter coefficients, the so-called reflection coefficients, 
are all bounded by one, and can be obtained from the direct form filter 
parameters by a recursive procedure [Markel and Gray, 1976, Chapter 5]. 
One major disadvantage of direct form structures is their sensitivity to 
finite word length computations. Lattice filters are more suitable for 
fixed word length implementations. An additional advantage is that lat­
tice filters use coefficients which can be quantized very efficiently 
[Markel and Gray, 1976]. When disregarding finite word length effects, 
both types of filter structures realize the same transfer function; they 
are equivalent realizations. However, for speech synthesis applica­
tions, where the filter coefficients are refreshed at regular intervals, 
both filter structures show a different behavior. The refreshment of 
the filter coefficients is organized as follows. For every frame of 
NRATE samples the filter coefficients are kept fixed. Before the sam­
ples of the next frame are computed, all the filter coefficients of the 
previous frame are replaced by the coefficients belonging to the new 
frame. To ensure continuous filtering, the states of the filters are 
not cleared when a new set of coefficients is dumped. In Appendix B a 
more detailed discussion of the different coder structures is given. The 
differences in behavior for time-varying coefficients are noticeable 



36 A BASIC STRUCTURE FOR EFFICIENT SPEECH CODING 

when the two different structures are used in the analysis and synthesis 
procedure of Fig. 2.1. Fig. 2.5 shows the SNRSEG values of the recon­
structed speech produced by the MPE coder using either direct form or 
lattice form filters. The coefficients were updated at regular inter­
vals. 

"" 
D = direct form 
A = lattice 

a 
A 

1 

0 
A 

1 

B 

A 

1 

Update rate (NRATE) predictor coefficients (ms) 
10/20 

Figure 2.5. Segmental SNR values obtained with lattice form and direct 
form filters for different coefficient update rates. 

From this figure we conclude that direct form filters show a slightly 
better performance than lattice form filters. Note that all computa­
tions were done with floating point arithmetic, and that the differences 
between the filter structures will probably become less significant if 
finite precision arithmetic is used. To reduce the transition effects, 
we applied linear interpolation between adjacent coefficient sets. The 
interpolation was in both cases performed between the reflection coeffi­
cients to assure stable synthesis filters. Fig. 2.5 also shows the 
results obtained from interpolating once every 10 ms between coeffi­
cients that were obtained at a 20 ms rate (10/20). We see no difference 
in SNB for the direct form filters, but for the lattice form filters 
there is some improvement. Despite the somewhat better performance of 
the direct form realizations, we continue our experiments using only 
lattice realizations. 

2.4.3 Predictor Parameters 

To get some insight into the effect of the predictor parameters on 
the coder performance, we used the Multi-Pulse Excitation (MPE) method 
(see also Chapter 4). The possible compensation effect of the error 
minimization procedure for small inaccuracies in the spectral envelope 
(as defined by the predictor) was neglected. MPE analysis was performed 
with predictor parameters obtained with different predictive estirration 
algorithn.s (auto-correlation method, stabilized covariance method and 
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Burg method). In listening tests no difference could be heard between 
the different methods. Even the results obtained with the stabilized 
covariance method with high-frequency correction [Atal and Schroeder, 
1979], which was used in the original paper on MPE coding [Atal and 
Remde, 1982], were not really different from the results obtained with 
the auto-correlation method. 

The predictor order p was varied between 8 and 16. Listening tests 
revealed that no significant differences could be heard between the 
reconstructed speech signals for values of p larger than 12. For values 
of p less than 10 a slight degradation could be heard. Furthermore, we 
noticed that for male voices the effect of decreasing p was more notice­
able than for female voices. This effect can be explained by the 
shorter vocal tract of females. 

Three different update rates (NRATE) for the predictor coefficients 
were used: 10, 15 and 20 ros. As can be expected the best results were 
obtained with the highest update rate. In listening tests the degrada­
tion was small but could be heard, especially in speech segments with 
fast changing spectral characteristics. Fig. 2.6 shows the decrease in 
the segmental SNR for decreasing update rates. The averaged values for 
two female and two male speakers are shown. Although one has to be 
careful to interpret the spectral effects of the prediction filter in 
terms of SNR measurements, we were able to conclude that the ranking 
according to the SNR values was justified by listening tests. 

11-

10 -

9-

8-

7 -

n = female 
A = male 

A 

E 

1 

A 

E 

1 

A 

D 

1 
10 15 

Update rate INRATE) predictor coefficients (ms) 

Figure 2.6. Segmental SNR values for different update rates of the 
predictor parameters. 
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2.4.4 Interpolation Of The Filter Coefficients 

In the previous sub—section we described the effect of the update 
rate of the filter coefficients on the speech quality, and concluded 
that an update rate of 20 ms was generally not optimal. In this section 
we describe an approach for obtaining a higher update rate without 
increasing the bit rate. The spectral envelope of the speech signal is 
described by the filter 1/A(z). The spectral characteristics of speech 
vary in time, and therefore the filter coefficients need to be updated 
at regular time instants. However, these fluctuations are relatively 
slow, which means that the filter parameters can be determined at a fin­
ite rate. Thus the filter coefficients are non-constant functions of 
time with a bandwidth of typically 50 to 100 Hz. If these functions are 
sampled at a 20 ms rate, we can obtain the missing samples (for the 10 
ms rate) by interpolation. The filter coefficients can be represented 
by a set of reflection coefficients {p(i)>, which have the nice property 
that they are bounded by one. This means that we can apply linear 
interpolation to the reflection coefficients, whereby the interpolated 
filters are guaranteed to be stable. The idea is to analyze the speech 
at a 20 ms rate and synthesize the speech at a 10 ms rate, whereby the 
missing sets are obtained by linear interpolation between the available 
sets. If we choose an appropriate interpolation coefficient, we obtain 
virtually a 10 ms rate, while transmitting at a 20 ms rate. Vihen we 
embed the interpolation procedure in the excitation search procedure, we 
can define the optimum interpolated set to be the one that minimizes the 
mean-squared weighted error E. The interpolation of the filter coeffi­
cients is performed as follows: 

f(i) = r^i) + <j Cr_(i) - r (i)) , 1 < i < p (2.4) 

where r(i) represents the interpolated coefficient, r (i) and r (i) the 
available coefficients and a the interpolation coefficient (<J 
CO <. <s <. 1). To determine the optimal interpolation coefficient, we 
search an excitation sequence for every possible interpolated set, and 
compute the resulting squared error E. The sequence that produces the 
minimum error will then be selected. To reduce the increase in complex­
ity and bit rate, we limit the number of possible values for a to 4, 
which leads to an increase in complexity by a factor of 2. If this 
increase in complexity is undesirable, the interpolation coefficient has 
to be determined separately from the excitation search procedure. One 
possibility is to compare the interpolated sets with the coefficient 
sets obtained from an analysis at a 10 ms rate. The optimal choice is 
the interpolated set having a minimum "distance" to the original set. A 
commonly used distance measure between LPC filter sets is the log likel­
ihood ratio [Itakura, 1975]. This distance measure is given in dB by 

d: = 10 log1Q ( E 2 / E1) dB (2.5) 

where E and E are the mean-squared values of the residual, obtained 
from the current frame of speech, when the coefficients of the current 
frame and the interpolated coefficients, respectively, are used. 
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Instead of using the distance measure d in Eq.(2.5), one may use a 
simpler measure such as a weighted Euclidian distance between two sets 
of coefficients. In (Viswanathan et al., 1982) a Euclidian distance 
measure between Log Area Ratios (LAR's) was proposed. The log area 
function is given by 

g(i) - log1Q [(l+p(i)) / (l-p(i))] ,1 < i < p (2.6) 

where (p(i)> represent the reflection coefficients. The weighted Eucli­
dian distance between the original set {g.> and the interpolated set 
(g.> is defined as 

m m 
d = I w(i) [g(i) - g(i)] / Z w(i) (2.7) 

i-1 i-1 
where m <_ p and {w.} is a set of non-negative weights chosen to reflect 
the relative importance of the different LAR's to the perceived speech 
quality. In [Viswanathan et al., 1982] m=4 was found to be appropriate 
and the corresponding weights were: 1.3, 1.2, 1.1 and 1.0. In the same 
reference it was also noted that there was no difference in speech qual­
ity whether the log likelihood ratio measure or the LAR Euclidian dis­
tance was used. If the LAR's are also used as transmission parameters, 
the LAK distance measure is computationally less expensive than the log 
likelihood ratio measure. Interpolation can be performed on either the 
reflection coefficients (R) or the Log Area Ratios (L). The LAR 
representation emphasizes coefficients with absolute values close to 
one, which are also subjectively more important. The value of a was 
limited to four different values and could be either 0, 1/3, 2/3 and 3/3 
(set 1) or 0, 1/4, 2/4 and 3/4 (set 2). Further, the interpolation 
coefficient can be determined during the excitation search procedure 
(IN) or separately from this procedure (OUT). Fig. 2.7 shows the 
results obtained with the different methods applied to the MPE coder for 
different speakers. These figures were obtained using a much larger 
data base than the set of four test sentences of Table 2.2. The inter­
polation procedure used is coded as follows: filter parameters, method 
used for determination of the interpolation coefficient and the set of 
interpolation coefficients used. For example, RIN1 means that the 
reflection coefficients were interpolated with set 1 of the coefficients 
and that the optimal interpolation coefficient was selected during the 
MPE analysis procedure. Fig. 2.7 also shows the SNRSEG values of speech 
obtained with interpolation by o=\ (LOUT0) and without interpolation (10 
ms and 20 ms update rates). From this figure we see that interpolation 
between LAR's is somewhat better than interpolation between reflection 
coefficients and that interpolation with set 1 (0, 1/3, 2/3, and 3/3) 
produced the best results. V»e also see that determining the interpola­
tion coefficient with a distance measure gives no improvement over the 
use of a fixed interpolation coefficient. 
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Figure 2.7. SNR values obtained by interpolation of coefficients during 
MPE analysis (LIN1, BIN1, LIN2 and RIN2) and before MPE 
analysis (LOUTO,LOUT1 and LOUT2) for different speakers. 

An explanation for the improvement in SNR for a fixed interpolation fac­
tor was given in the previous sub-section. What is striking is that if 
the interpolation coefficient is determined during the MPE analysis 
(IN), the final speech quality is better than without interpolation (10 
ms). The variation of the interpolation coefficient o is illustrated in 
Fig. 2.8 for LIN1, LOUT1, LIN2 and LOUT2, respectively. From this fig­
ure we see that the values of o determined during the MPE analysis are 
quite different from those determined separately from the MPE analysis. 

MM 

1.1. JILL LULLIJ. 

t i m e x 10 ms 

Figure 2.8. Interpolation coefficient for a single utterance for the 
methods LIN1, LOUT1, LIN2 and LOUT2, respectively. 

In comparative listening tests we noted that interpolation always 
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improves the speech quality. 

2.5 a Filter For Modeling The Spectral Fine Structure 

In Chapter 1 we described how the periodicity in the speech signal 
due to pitch pulses can be estimated by a pitch predictor. The general 
form of a pitch predictor is 

P(z)-1 - 6 l z - ( M - 1 ] + & 2z" M
 + 63z-(M+1) (2.8) 

where M represents the distance between adjacent pitch pulses and 
ft., &2, and ft are pitch predictor coefficients. This predictor is 
callea a three-tap predictor. If we set ft and & to zero, then P(z)-1 
will reduce to a one-tap predictor. A short-time predictor l-A(z) and a 
long-time pitch predictor l-P(z) can be combined serially in either 
order to produce a cascaded predictor. Studies on APC schemes [Atal and 
Schroeder, 1979] suggest that it is preferable to use the short-time 
predictor before the long-time predictor. This means that the pitch 
predictor uses the residual signal as input (Fig. 2.9). 

s ( n ) 
A ( z ) 

r ( n ) 
P ( z ) 

r ' ( n ) 

Figure 2.9. Cascade of short-time predictor and long-time predictor. 

The parameters {ft,} and M are chosen to minimize the mean squared error 
E'. For the one-tap predictor (ft • ft ) E' is given by 

E' - ï [r'(n) - ft r'(n-M)]2 (2.9) 
n 

Leaving the range of summation unspecified for the moment, the minimiza­
tion of E' with respect to ft yields 

ft - 2 [r'(rt) r'(n-M)] / l [r'(n-M)]2 (2.10) 
n n 

Substituting this result in Eq.(2.9) gives an expression for E' as a 
function of M alone: 

[ S r'(n) r'(n-M)]2 
E' = £ Cr'(n)]2 - — (2.11) 

n 2 [r'(n-M)] 
n 

In Eq.(2.11) only the second term depends on M, so that maximizing this 
term minimizes the error E'. The approach is to compute 
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i I r'(n) r'(n-M)]2 

ft(H) = — Q " (2.12) 
Z [r'(n-M)] 
n 

for all values of M within a specified range, and then select the value 
for which A(M) is maximum. With M known, 6 may now be computed by the 
use of Eq.(2.10). 

So far, the range of the summation has been left open. If we use an 
infinite range of summation and window the data by a finite sized window 
such that the data outside the window equals zero, we obtain the auto­
correlation method. The denominator of Eq.(2.12) becomes fixed and 6 
will always be less than one, so that the pitch synthesis filter is 
guaranteed to be stable. To take into account the reduced number of 
terms in the summation in Eq.(2.12) for increasing values of M, we can 
normalize A(M) to the number of summed terms. Eq.(2.12) can be further 
simplified, by only considering either positive or negative correlation 
terms. This approach also ensures that 6 will have only positive or 
negative values, thereby facilitating quantization procedures. Note 
that this is not a real limitation to the performance of the predictor. 
Having a pitch pulse sequence whose sign is alternately positive and 
negative is very unlikely . If we use a window containing NPSIZE sam­
ples, Eq.(2.12) will reduce to 

NPSIZE 
A ' t M ) " KrpgT-717 M z r' t n ) r'(n-M) (2.13) 

N P S I Z E _ M n=M+l 
To make reliable estimations of the pitch period, at least two pitch 
pulses must fall within this analysis frame. This means that the larg­
est period that can be found is determined by NPSIZE/2. Usually, the 
minimum value of M is also bounded (e.g. M=16, which corresponds to a 
500 Hz pitch frequency at 8 kHz), so that the value of M in Eq.(2.12) 
varies from M=16 up to M=NPSIZE/2. 

Another approach is the covariance method, which minimizes the error 
over a fixed number of elements, say NPSIZE, and the summation in 
Eq.(2.9) ranges from n=-M+l to n=NPSIZE. A disadvantage of this method 
is that 6 can become greater than one, resulting in an unstable pitch 
synthesis filter. However, in practice instability of the pitch syn­
thesis filter seldom occurs, and can be entirely prevented by not allow­
ing 6. to be greater than one. An advantage is that the maximum value of 
M is not restricted by the value of NPSIZE. The best results were 
obtained with the covariance method, but a satisfying result could also 
be obtained by using Eq.(2.13) for determining the delay factor M, and 
using Eq.(2.10) with a summation range from M+l to NPSIZE to compute 6 
(see also Chapter 6, Fig. 6.10). 

The three-tap pitch predictor uses the same procedure as the one-tap 
to find the value of M. The minimization procedure then leads to a set 
of simultaneous linear equations in the three unknowns 6 , 6 , and 6 . 
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The solution to these equations does not guarantee a stable pitch syn­
thesis filter for both the auto-correlation and covariance methods. In 
the small number of cases where instability occurs, one could use a 
one-tap predictor (with & < 1), which is always guaranteed to be stable. 
On the other hand, instability for certain time instants is not neces­
sarily harmful for the quality of the reconstructed speech. In general, 
the performance of the three-tap pitch predictor is better than that of 
a one-tap, at the expense of a higher bit rate. Fig. 2.10 shows an 
example of the speech signal, the residual signal and the remaining sig­
nal after 1-tap and 3-tap pitch prediction. 

time (ms) 

Figure 2.10. (a) Speech signal, (b) residual signal, (c) residual after 
1-tap pp, (d) residual after 3-tap pp. 

The weighted error minimization procedure of Fig. 2.1 does not 
really change upon the use of a pitch predictor. The linear filter is 
replaced by a cascade of a pitch synthesis filter and a speech synthesis 
filter. The resulting block diagram is shown in Fig. 2.11. 

EXCITATION 
GENERATOR 

v(n) 
l/PUj 

MINIMIZATION 
PROCEDURE 

s(n)l + 
ERROR 

WEIGHTING 

EXCITATION 
GENERATOR 

1/P(z 1/A(2 
s(n) 

Figure 2.11. Block diagram of the structure of Fig. 2.1 with pitch 
prediction, (a) encoder, (b) decoder. 
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For the coder structure of Fig. 2.11, the pitch predictor parameters can 
be determined either apart from the weighted error minimization pro­
cedure [Kroon and Deprettere, 1984], or during the weighted minimization 
procedure [Singhal and Atal, 1984]. In the latter case the pitch pred­
ictor will directly contribute to the minimization of the weighted 
error. In this approach the predictor parameters are computed prior to 
the determination of the excitation sequence. In the case of a 1-tap 
pitch predictor we can write the output yCn) of the pitch synthesizer, 
with input v(n), as 

y(n) - v(n) + By (n-m) (2.14) 
m Jm 

where the subscript m denotes the value of the delay M. Without any 
input (v(n)=0) this equation reduces to 

ym(n) = e.ym(n-m) (2.15) 

The output of the pitch synthesizer is fed through both the synthesis 
filter and the weighting filter. Let z (n) represent the response to 
the signal y_(n) (with 6-1) and let e represent the initial error, 
which consists of the memory hangover (i.e. the output as a result of 
the initial filter states) of the synthesis and the weighting filter 
subtracted from the speech signal s(n). The squared error to be minim­
ized will then be 

E = X (e(0)(n) - Bz (n))2 (2.16) m n 
This equation is equivalent to Eq.(2.9) and can be solved in a similar 
way. The final speech quality is not really different for both pro­
cedures, but the latter procedure has some advantages when the excita­
tion signal is quantized separately (see also Chapter 6). A disadvan­
tage of this last procedure is that the coefficient update rate is equal 
to the search frame size, and can be quite high (e.g. 5 ms for the BPE 
coder). If the parameters are determined from the residual an arbitrary 
update rate can be chosen. 

The pitch predictor parameters are estimated over a frame of size 
NPSIZE and the range of the value M is usually chosen between the bounds 
16 and 160. This range corresponds to the variation in pitch for a wide 
range of speakers. In Fig. 2.12 we show the SNR values obtained from 
MPE coded speech with a one-tap pitch predictor for different values of 
M. The pitch predictor parameters were obtained with the covariance 
method. From this figure we see that better results are obtained for 
large ranges of M. In listening tests the effect of a pitch predictor is 
clearly distinguishable but the differences between a small and a large 
range of M are less noticeable. 
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Figure 2.12. Segmental SNR values for different analysis frame sizes of 
the one-tap pitch predictor. 

The complexity of pitch prediction increases for larger analysis frames. 
Similar to the short-time prediction a rate (NPRATE) has to be defined 
at which the coefficients are to be updated. The bit rate required for 
transmitting the pitch predictor coefficients is a function of NPRATE 
and the range of M. 

2.6 Selection Of An Error Criterion 
The coder structure of Fig. 2.1 minimizes the error between the ori­

ginal signal s(n) and the decoded signal s(n) according to a suitable 
error criterion. A commonly used error criterion in speech research is 
the mean squared error, which has an appealing mathematical trackability 
and provides an adequate performance. However, at rates below 16 kb/s, 
the mean-squared error is not a valid measure for the perceptual differ­
ence between the original and the reconstructed signal. V»e somehow have 
to incorporate a model of auditory perception into our error criterion, 
in order to decrease the subjective loudness of the noise. Knowledge 
about the perception of the approximation error in both the time domain 
and the frequency domain makes it possible to mask this error by the 
speech signal itself. Relatively little knowledge about forward and 
backward masking effects in time exists. More is known about masking 
effects in the frequency domain. For example, in [Schroeder et al., 
1979] it was shown that our hearing system has only a limited capability 
to detect small errors in the presence of large ones. This effect is 
called auditory masking. Spectral noise shaping can be obtained by dis­
tributing the noise power in relation to the input speech power. This 
task can be accomplished by minimizing a frequency weighted error in the 
block diagram of Fig. 2.1. Note that such a shaping procedure does not 
affect the bit rate or the complexity of the synthesis procedure. Only 
the encoder complexity is increased. The use of noise shaping 

n" female 
A= male 
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procedures was thoroughly investigated for APC schemes [Atal and 
Schroeder, 1979] [Makhoul and Berouti, 1979]. A suitable error weight­
ing filter was found to be 

W(z) - A(z)/A(z/-*), with Mz/y) - 1 + I a T
k z - k (2.17) 

k=l 
where A(z) is the short-time predictor as defined in Section 2.2. The 
theory of auditory masking suggests that we can tolerate large errors in 
the formant frequency regions where the spectral amplitudes are large. 
The parameter if is a fraction between 0 and 1 that controls the energy 
of the error in the formant regions. The value of ■% is determined by the 
degree to which one wishes to de-emphasize the formant regions in the 
error spectrum. Note that decreasing y increases the bandwidth of the 
poles of W(z), The increase in bandwidth w is given by the relation 

f 
w " - — In y Hz (2.18) 

where f is the sampling frequency in Hz. The optimum value of y must 
be determined by suitable listening tests. A commonly used value is 
0.80 at 8 kHz. This corresponds to an increase in bandwidth of approxi­
mately 500 Hz. Fig. 2.13 shows an example of the spectral speech 
envelope and the frequency response of the corresponding error weighting 
filter. The use of the proposed error weighting filter W(z) makes it 
possible to give an alternative representation of the coder structure of 
Fig. 2.1. In this figure the excitation signal v(n) is fed through an 
all-pole filter 1/A(z), and the resulting synthetic signal s(n) is sub­
tracted from the speech signal s(n). The difference signal s(n)-SCn) is 
fed through the weighting filter A(z)/A(z/-j) [see Fig. 2.14(a)]. All 
filters are linear, and by assuming the weighting filter to be a cascade 
of an all-zero filter A(z) and an all-pole filter l/Mz/y), we obtain 
the configuration shown in Fig. 2.14(b). The input signal for the coder 
is now the residual signal r(n). The whole procedure can be considered 
as a weighted residual matching procedure. Note that the pitch predic­
tor filter can be easily added to this representation. 

2.6 Selection Of An Error Criterion fi.7 

1 2 3 
FREQUENCY (kHz) 

Figure 2.13. An example of the spectral speech envelope and the fre­
quency response of the corresponding error-weighting 
filter for different values of y. 

s(n) 

v(n) s(n) e(n) 

1/A(z) ■*{+ A(z)/A(z/Y) 
J 

s(n) 

v(n) 
A(z) 

r(n) 

1/A(Z/Y) 
e(n) 

Figure 2.14. Different structures, (a) speech input, Cb) residual 
input. 
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The impulse response of the cascade of the synthesis filter i/A(z) 
and the error weighting filter V»(z) is used in the minimization pro­
cedure. This impulse response is identical to the impulse response of 
the filter 1/A(Z/-JO, and is given by 

h (n) = j n h(n), n = 0,1,2,... (2.19) 
t 

where h(n) is the impulse response of the synthesis filter 1/A(z). 
Eq.(2.19) follows directly from the exponential weighting property of 
the z-transforro [Oppenheiro and Schafer, 1975]. For ?=1, h (n) is ident­
ical to h(n). For values of -y less than 1 the impulse response is 
exponentially weighted and will decay rapidly. 

The implementation of the filter l/A(z/-y) is straightforward. For 
both the lattice and the direct form structures, the desired transfer 
function can be obtained by inserting a multiplier with a multiplication 
factor % before each delay element. 

2.7 Summary 

In this chapter we described an efficient coder structure for the 
encoding of speech at rates below 16 kb/s. The basic features of this 
coder are the use of adaptive prediction filters to remove the long-term 
and short-term redundancy in speech. The optimum excitation sequence 
for the model filter is found by an appropriate search procedure that 
minimizes the error between the original and the reconstructed signal 
according to a suitable fidelity criterion. This fidelity criterion can 
be incorporated by the use of an appropriate weighting filter, which 
reflects the way human beings treat the error. The predictor coeffi­
cients can be obtained with different procedures, but it was concluded 
that the differences in signal quality were hardly perceptible between 
the different methods. Further, the effect of different predictor 
parameters such as update rate and order were investigated in combina­
tion with the MPE procedure, whereby the best results were obtained with 
a 10 ms update rate and a 16-th order filter. A lower order can be 
used, but it was found that values of p less than 12 introduced distor­
tions. Interpolation techniques can be used to enhance the performance 
of the predictor. The transition effects due to the refreshing of the 
filter coefficients can be reduced by the use of interpolation and 
direct form filters. 
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3. REGULAR-PULSE EXCITATIOW CODES 
3.1 Introduction 

In this section we present a new speech coding method, which can 
provide toll quality speech at medium bit rates. The coder produces 
synthetic speech by exciting a time-varying linear filter with an exci­
tation sequence that has a regular structure. With respect to this reg­
ular excitation structure, the difference between the original and the 
reconstructed signal is minimized. Because of the regular structure of 
the excitation, we refer to this coder as the Regular-Pulse Excitation 
(RPE) coder [Deprettere and Kroon, 1985]. The problem of finding the 
excitation sequence can be phrased in terms of solving a set of linear 
equations, which can be solved in an efficient way. In the remainder of 
this section we describe the RPE coder and the procedure for finding the 
excitation sequence. Further, we describe the effect of the various 
analysis parameters on the synthetic speech quality. We discuss modifi­
cations of the basic RPE scheme and their impact on both the quality of 
the synthetic speech signal and the complexity of the encoding algo­
rithm. Finally, we shall discuss the coder performance according to 
objective and subjective tests. 

3.2 Regular-Pulse Excitation Coding 

In the previous chapter we described an efficient basic structure 
for a speech coder, in which the redundancies of the speech signal can 
be effectively modeled with linear filters. The main problem is how to 
find an appropriate excitation sequence for the modeling filters. 
Rather than searching for the "optimum" sequence from a large selection 
of possible sequences, we can use a parametric approach whereby the 
excitation signal is described by a small set of parameters, and the 
search procedure involves the search for these parameters. We propose 
the following structure for the excitation sequence. Within each exci­
tation frame a limited number of samples may have a non-zero amplitude, 
and all the remaining samples within the frame will have by definition a 
zero amplitude. Moreover, these non-zero samples, which we refer to as 
pulses, are regularly spaced in time with a spacing of NS samples. 
Within a frame the first pulse can be placed on NS different locations, 
but the number of pulses within a frame and the spacing between the 
pulses roust remain constant. Thus, for each excitation frame there are 
NS possible excitation patterns. For every pattern the optimal pulse 
amplitudes have to be determined, such that the weighted mean-squared 
error between s(n) and §(n) is minimized. Finally, the excitation 
sequence that produces a minimum error is selected. Fig. 3.1 shows a 
set of excitation patterns for a frame containing 18 samples and a spac­
ing of NS=3. In this figure the locations of the pulses are marked by 
1's, while the zero valued samples are represented by dots. Fig. 3.2 
gives an example of the original, synthetic and excitation waveforms as 
produced by the RPE coder. The corresponding power spectra of the 
speech signal s(n) and the synthetic signal s(n) are shown in Fig. 3.3 
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Figure 3.1. RPE excitation signal with NDRATE=NSSIZE=24, and NS=3. 
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Figure 3.2. Viaveforms of the original speech (a), the reconstructed 
speech (b), and the excitation signal (c) in the PPE coding 
procedure. 
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Figure 3.3. Power spectra of the original speech segment (solid line) 
and the reconstructed speech segment (dashed line). The 
spectra were obtained from 32 ms segments using a Hamming 
window. 

To give an impression of the signal-to-noise ratio over an complete 
utterance, we show in Fig. 3.4 the segmental SNR computed every 10 ms 
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for the utterance "a lathe is a big tool" spoken by both a female and a 
male speaker. 

D 25 50 75 100 123 150 175 200 

Figure 3.4. Segmental SNR for successive time frames for a female 
speaker (a), and a male speaker (b). The upper curve 
represents the relative speech power + 15 dB. 

For these examples we used the parameter settings as listed in Table 
3.1. 

3.3 Error Minimization Procedure 

3.3.1 Definitions 

As described above, the excitation sequence within a frame of NDRATE 
samples is formed by a set of uniformly spaced pulses (a "grid") with 
spacing NS (Fig. 3.1). The origin of such an excitation "grid" is given 
relative to the beginning of the current frame by the offset parameter 
k, with 1 < k < IB, The spacing NS between the pulses may not exceed 
the frame boundary (1 < NS ( NDRATE), and NDRATE/NS must be an integer 
ratio. The value of k is adjusted every NDRATE samples to minimize the 
weighted squared error over frames of size NMSIZE (see also Chapter 2). 
A value of k not equal to one, disturbs the regularity of the excitation 
signal between adjacent frames; therefore we refer to NDRATE as the dis­
turbance rate. The number of pulses per search frame (NP) is given by 
the ratio of the search frame size NSSIZE and the pulse spacing NS. The 
pulse rate per second, which is closely related to the bit rate, is 
mainly determined by NS. NS has to be chosen optimally for the allowed 
bit rate. 
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In the following we explain the procedure for determining the exci­
tation sequence. We represent a sampled time signal x(n) in a frame of 
L samples by an L-diroensional row vector x. Let v,s,§ and e represent 
the regular-pulse excitation signal, the original speech signal, the 
synthetic speech signal, and the weighted difference signal, respec­
tively. 

The regular-pulse excitation sequence within a frame of size NDRATE 
is characterized by an offset factor k, 1 < k < NS, and a set of ampli­
tudes t>k(i), i = 1,2,..., NP, which form the entries of an NP-
dimensional row vector b, . k 
We denote by M the NP by L position matrix with entries m.., where 

m(i,j) =1 if j • (i-l)NS + k (3.1) 

m(i,j) =0 otherwise 
(kl The excitation vector v can be written as 

(k) , „ v = bk Mk (3.2) 

where the superscript denotes the offset factor. 

3.3.2 Basic Algorithm. 

Let H and I» be L by L matrices whose j-th row contains the impulse 
response caused by a unit impulse S(t-j) of the synthesis filter and 
error weighting filter, respectively. If s is the output of the syn­
thesis filter due to the memory hangover of previous synthesis inter­
vals, we can express the synthetic signal produced by v as: 

sCk) . s(0) _ v ( k ) H t l l k i N p (3 3 ) 

(k) The error signal e , that is, 
(k' f0> (k)m. ,, ., 

e » e - v HV» (3.4) 
where 

e ( 0 ) - (s- S
t 0 ))W (3.5) 

can be written as 
(k) (0) ; = e 

where G is the NP by L matrix defined as follows: 
e = e bkGk (3.6) 

G - M (HW) (3.7) 
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Our objective is to minimize the squared error: 
E(kl . e ( k ) e(k)* (3.8) 

(k) 
where * denotes transpose. E is a function of both the pulse ampli­
tudes b (i) and the offset factor k. For a given value of k the optimal 
amplitudes can be, computed from Eqs. (3.6) and (3.8), by setting the 
derivatives of E with respect to the unknown amplitudes to zero. The 
amplitudes can now be computed by solving b from 

By substituting Eq.(3.9) in Eq.(3.6) and thereafter the resulting 
expression in Eq.(3.8), we obtain the following expression for the 
error: 

_(k) (0)rT *_ -*,-l_ ,„(0)* ,, ln1 
E = e [I - G. IG,G, ] G ]e . (3.10) 

(k 1 
The procedure is to compute E for k=l,..,NS, and select that excita­
tion sequence which produces a minimum error. This error is minimal 
under the given constraints. The optimal excitation vector is entirely 
characterized by the offset factor k and the corresponding amplitude 
vector b, . The whole procedure comprises the solution of NS sets of 
simultaneous equations as given by Eq.(3.9). These equations can be 
solved in a computationally efficient way, as will be shown in Chapter 

In this section we have seen that the optimal excitation sequence 
can be found by a least mean squares procedure. In the following sec­
tion we give an alternative look at this minimization procedure. 

3.4 Another Approach To The RPE Coder 
We note that the regular-pulse excitation sequence bears some resem­

blance to the Base Band Coder (BBC, Section 1.7.1). In this section we 
look at the RPE coder as an optimal version of the Base Band Coder. The 
blocks drawn with solid lines in the diagram of Fig. 3.5 represent the 
conceptual structure of a BBC coder. 



56 REGULAR-PULSE EXCITATION CODER 

r(n) 
F(z) 4 

I ERROR 
MINIMIZATION ' 

Ua-

s(n) 
v(n) 

1/A(z 

I 
-', W(z) 
I 

HV^ 
S(n) i 

i 
i 

— 1 

Figure 3.5. Block diagram of a BBC coder (solid lines), and an HPE 
coder (solid + dashed lines). 

The residual signal, obtained by filtering the speech signal through the 
analysis filter A(z), is band limited by the low-pass filter Flz) and 
down-sampled. At the receiver an approximating residual signal, 
obtained by up-sampling, is feed through the synthesis filter to produce 
the synthetic signal S(n). When the dashed blocks are included in Fig. 
3.5 we obtain the PPE encoding scheme. For each value of k (k=l,NS), 
the filter parameters of the filter F (z) are determined to minimize the 
weighted mean squared error Ee (nT over the minimization interval 
NSSIZE. The subscript k denotes that the filter coefficients depend on 
the value of k. The value of k and the corresponding filter coeffi­
cients of F. (z) that minimize this error are used to generate the KPE 
excitation sequence v(n). In the following we derive the procedure for 
finding the coefficients of the filter F (z): 

Fk(z) 
i=l * 

where 
Ak) (fk fk 

1 1 2 Ü 

(3.11) 

(3.12) 
is the finite impulse response of the filter F, (z). Without loss of 
generality we shall assume that W(z)=l. We recall that the initial 
error e is given by 

(0) (s - s ( 0 ) , (3.13) 

where s is the output of the synthesis filter due to the memory hang­
over of previous synthesis intervals. Let r (i) (1=1,L) denote the set 
of residual samples of the current frame and r_(i), (i=l,L) those of the 
previous frame. Then we can write 
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(k) (0) ,(k) e - e - f 

r0(l) r0(2) . r 0(D 

r_(L) rQ(l) . rQ(L-l) 

r_(L-l) r_(L) . rQ(L-2) 

r (2) r (3) r0(l) 

(3.14) 

where the matrix H was defined in Section 3.3.1. The down-sampled sig­
nal b, (with down-sampling factor N) can be written as 

\ ' f (k) 

rQ(l) r0(N+l) rQ(2N+l) 

rJL) 
r_(L-l) 

r (2) 

r0(N) rQ(2N) 

rQ(nN+l) 

rQ(nN) 

(3.15) 

f(k)B, 

The excitation vector v. can expressed as the product 

.(10 c(k) 

r 0 d ) 

r_(L) 

0 

0 

0 

0 

rQ(N+l) 

rQ(N) 

0 

0 

rQ(nN+l) 

rQ(nN) 

r (2) 

(3.16) 

Hence 
e(k) = e ( 0 , _ f ( k ) ^ ^ 

. e(0) - f ( k W k k 

(3.17) 

where M is the ppsjtion matrix as defined in Eq.(3.1) and H, = M,H. 
Minimizing e e we obtain the expression 

(k) (0) * * -1 
f - e (W [WW ] (3.18) 

When solving this equation for f , the resulting vector b is equal to 



58 REGULAR-PULSE EXCITATION CODER 

the pulse amplitude vector b, obtained via the procedure described in 
Section 3.3.2. 

Proof: 

When the index k is dropped, Eq.(3.18) can be written as 

fR[HH ]R = eluJH R 

Multiplying both sides with R gives 
* * f0) * * fR[HH ]R R ■= e JH R R 

* 
and assuming that RR is non-singular (which will always^be the case for 
speech signals), we get by multiplying both sides by (RR ) 

fR[HH*] = e ( 0 V 
Substituting b ■ fR in the last equation, we obtain Eq.(3.9). 

End of proof. 

Fig. 3.6 shows some examples of the filter spectra obtained with 
real speech data. 

FREQJUICt [kHz) 

Figure 3.6. Power spectra of a 5 ms speech segment (a,c), and the power 
spectra of the corresponding filter F.(z) (b,d). 

From this figure we see that the filters F (z) are rather different from 
those used in the Base Band Coder. 
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3.5 Evaluation Of The RPE Algorithm 

The procedures and test sentences used for evaluating the RPE coder 
have been described in Chapter 2. We used a set of default parameter 
values, while the parameter under investigation was varied. In Table 
3.1 the parameters and their default values are listed. 

spacing between pulses (NS) 4 
disturbance rate (NDRATE) NSSIZE 
search frame size (NSSIZE) 5 ms 
minimization frame size (NMSIZE) 5 ms 
weight factor y 0.80 

TABLE 3.1. Default parameters RPE analysis. 

3.5.1 RPE Analysis Pararr^ters 

The RPE analysis parameters that could affect the final speech qual­
ity are listed below. 

1. predictor parameters, 

2. NS and NDRATE, 

3. search interval size (NSSIZE) and minimization interval size 
(NMSIZE) , 

4. error weighting filter. 

The effects of the predictor parameters were examined in Chapter 2 and 
we will consider only the parameters used for determination of the exci­
tation sequence. 

3.5.1.1 NDRATE And NS We observed earlier that the structure of the 
excitation signal for the case in which there is no disturbance in the 
distance between the pulses (NDRATE=«) looks like the down-sampled resi­
dual signals used in BBC coders. The main difference is that in the RPE 
coder no low-pass filter is used. However, this observation can give us 
a rough estimate of the minimum spacing (NS) between the pulses, 
required for a good synthetic speech quality. Assuming a maximum funda­
mental frequency of 500 Hz, we have to use a sampling rate of minimally 
1000 Hz. For an 8 kHz sampling rate, the RPE coder should use a pulse 
spacing less than or equal to 8. 

Increasing NDRATE will clearly improve the final speech quality, at 
the expense of a higher bit rate. To investigate the effect of dif­
ferent disturbance rates and pulse spacings, we did a set of experiments 
and computed the SNR values of the synthetic speech signals. Fig. 3.7 
shows the averaged segmental SNR values for two female and two male 
speakers for different values of NS and NDRATE. As far as possible, we 
have chosen the same frame sizes for different values of NS. Also shown 
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in this figure are the averaged SNR values obtained with the MPE coder, 
which will be discussed in Chapter 4, for different amounts of pulses 
per 10 ms. 

16 20 21 40 42 80 
NDHATE=NSSIZE 

Figure 3.7. Segmental SNR values 
pitch spacings. 

for different disturbance rates and 

From this figure we can see that for values of NS =4, the RPE coder is 
better than the MPE coder with 8 pulses / 10 ms. Informal listening 
tests confirmed this observation. Increasing the disturbance rate, 
always increases the SNR, but we see that there is no real trade-off 
between the values of NDRATE and NS. Decreasing NDRATE always intro­
duced a greater improvement than increasing NDRATE. For values of NS 
greater than 5, some of the utterances (especially those by female 
speakers) sounded distorted. A similar distortion was observed for MPE 
coded speech with less than 5 pulses per 10 ms. From this experiment, 
we conclude that the RPE coder with NS=4 and NDRATE=5 ms can yield 
results similar to those obtained with the MPE coder operating at the 
same bit rate (NP=8). 

3.5.1.2 Search Frarre Size And Minimization Frame Size The pulses are 
to be located in a frame of size NSSIZE while minimizing the error in an 
interval of size NMSIZE (Fig. 2.2). For the multi-pulse coder we con­
cluded that a minimization frame greater than the search frame intro­
duced a global deterioration in SNR (see Chapter 4). Although a similar 
effect can be expected for the RPE coder, we did some experiments for 
different ratios of NSSIZE/NMSIZE. Fig. 3.8 shows the measured SNR 
values. Again we see that no global improvement can be expected for 
minimization frame sizes greater than the search frame size. 

3.5 Evaluation Of The RPE Algorithm. 61 

NS: 4 

40:40 40:50 40:60 
NSSIZE: NMSIZE 

40:70 
1 

40:80 

Figure 3.8. Segmental SNR values for different ratios of NSSIZE and 
NMSIZE. 

The effect of the size of the search frame is hard to determine. When 
search frame size and minimization frame size are identical, we need 
from a perceptual viewpoint frames greater than or equal to 5 ms. Usu­
ally we take NSSIZE equal to NDRATE. To obtain a certain quality level 
NDRATE is usually bounded by some maximum value. The value of NSSIZE 
need not be equal to NDRATE, but NSSIZE/NDRATE must be an integer ratio 
and NSSIZE >. NDRATE. Within a search frame the possible number of exci­
tation sequences is given by 

C = NS .j NSSIZE/NDRATE (3.19) 

Hence, choosing a search frame greater than NDRATE results in a more 
complex search procedure. Fig. 3.9 shows the possible excitation pat­
terns for NSSIZE=24, NDRATE=12 and NS-3. 
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-* NSSIZE fc-
-*-N D RAT E ^ — t - N D RAT E-*~ 

1: 1.■ 1- ■ 1. • 1.. 1. . 1. . 1.. 1. . 
2: • 1. ■ 1. . 1. . 1.1. . I. . 1. . 1. . 
3 ■' • • 1 ■ ■ 1 • • 1 . . 11 . . 1 . . 1 . . 1 . . 
4: 1. . 1. . 1. . 1. . . 1. . 1. . 1. . 1. 
5: ■ 1. . 1. . 1 .. 1. . 1 . . 1 . . 1. . 1. 
6: ■ • 1. . 1. . 1 .. 1. 1 . . 1. . 1. . 1. 
1 ■ 1. ■ 1. ■ 1. . 1. . 1.1. . 1. . 1. . 1 
S: • 1. . 1. . 1 . . 1. . . 1. . 1. . 1. . l 
3: • ■ 1. . 1.. 1. . 1. . 1. . 1. . 1. . 1 

Figure 3.9. RPE excitation pattern with NDRATE=18, NSSIZE=36, and NS=3. 

Fig 3 10 shows the SNR values for different search frame sizes and a 
fixed disturbance rate. 
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Figure 3.10. Segmental SNF, values for different search frame sizes 
NSSIZE. 

From this figure we see a small improvement in SNR for larger search 
iraroes, at the expense of a much higher complexity. 
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3.5.2 Application Of A Pitch Predictor 

An examination of the regular-pulse excitation (see for example Fig. 
3.2) reveals the periodic structure of the excitation for voiced sounds. 
Obviously, the RPE algorithm aligns the excitation "grid" to the major 
pitch pulses, thereby introducing the possibility that the remaining 
pulses within the grid are not optimally located. If we model the major 
pitch pulses with a pitch predictor, the remaining excitation sequence 
can be modeled by the regular pulse excitation sequence. The analysis 
procedure with a pitch predictor is as follows. The pitch synthesizer 
1/P(z) generates an output signal as a function of past excitation sam­
ples and the pitch predictor parameters {Ê.> and M. This excitation 
signal together with the memory contents of the synthesis filter 1/A(z) 
produces a synthetic signal S (n) that serves as a first approximation 
to the reference signal s(n). Both signals are compared, and the 
resulting weighted difference signal is used to determine the regular-
pulse excitation sequence. The procedure for finding this sequence is 
similar to the procedure described in Section 3.3, except that the 
pulses are fed through both the pitch synthesis and the LPC-synthesis 
filter. The pitch predictor and its parameters were described in detail 
in Chapter 2 and need no further explanation. The pitch predictor 
parameters were determined from the residual signal using the covariance 
method, the range of M was between 16 and 80, and the update rate was 
equal to that of the synthesis filter coefficients. Fig. 3.11 shows the 
SNR values of synthetic speech signals produced by the RPE coder with a 
pitch predictor for different values of the pulse spacings and for dif­
ferent update rates. The corresponding values for the MPE coder with 
and without a pitch predictor are given as reference. 
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Figure 3.11. Segmental SNR values of the RPE and MPE coder with (+pp) 
and without (-pp) pitch prediction for different update 
rates of the predictors (NPRATE=NRATE) and different pulse 
spacings NS (f=female, ro=male). 

From this figure we see that the use of pitch prediction improves the 
performance in terms of SNR. However, this improvement was less percep­
tible in listening tests. 

3.5.3 Error Weighting Filter 

Spectral noise shaping is not a completely understood procedure. 
Although the effect of such a procedure can be heard, the real mechanism 
behind this effect is not clear. The question is whether the proposed 
noise-shaping filter [Eq. 2.17)] is an effective choice or not. We will 
skip this question and will concentrate on the effect of the suggested 
filter and its control parameter y. This weight factor determines the 
degree of de-emphasizing the noise power in the formant regions of the 
speech spectrum. Besides the value of y, the order of the noise-shaping 
filter could also be of importance. By default the order is equal to 
the order of the predictor filter, but a lower order is also possible. 
While reducing the order we nevertheless must take care that the formant 
structure of the filter response is preserved, otherwise the effect of 
noise shaping is lost. Noise shaping reduces the SNR, but improves the 
perceived speech quality. The effect of noise shaping is small, but it 
can be heard. An optimal value for y was found to be between 0.80 and 
0.90 at a 8 kHz sampling rate, which corresponds to a 2 dB decrease in 
SNR. Figs. 3.12 and 3.13 show the power spectra of the speech signal 
s(n) (solid line) and that of the difference signal s(nl-s(n) (dashed 
line) for different values of -Y. 
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FREQUENCY 

Figure 3.12. Power spectra of the speech signal (solid line) and the 
difference signal s(n)-S(n) (dashed line) for y l . 0 . The 
spectra were obtained from a 32 ms segment using a Hamming 
window. 

FREQUENCY (kHz) 

Figure 3.13. Power spectra of the speech signal (solid line) and the 
difference signal s(n)-§(n) (dashed line) for -Y=0.80. 

From this figure that the error increase in the formant regions and 
decreases in the regions between the fortnants. Figs. 3.14 and 3.15 show 
the power spectra of the speech signal s(n) (solid line) and that of the 
difference signal s(n}-s(n) (dashed line) for different values of •*, 
when pitch prediction is applied. 
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FREQUENCY (kHz) 
Figure 3.14. Power spectra of the speech signal (solid line) and the 

difference signal sfn)-s(n) (dashed line) for Y-1.0, and 
pitch prediction. 

FREQUENCY (kHz) 

Figure 3.15. Power spectra of the speech signal (solid line) and the 
difference signal s(n)-S(n) (dashed line) for ?=0.80, and 
pitch prediction. 

From this figures we see that in the case of pitch prediction the error 
power level decreases, and that the error spectrum is more white. 

Vie can describe the RPE coder as a weighted residual matching pro­
cedure (Section 2.6). In that case the error between the regular-pulse 
signal and the residual signal is weighted with the filter 1/A(z/^). 
This filter is time-variant and the order p and the update rate of the 
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filter coefficients are chosen to be equal to those of the synthesis 
filter 1/A(z). fee examined the effect of decreasing the order p of this 
filter l/A(z/-y), and observed that for low orders (2 to 4), the results 
were close to those obtained with a 16-th order filter. The computa­
tional savings obtained by reducing the order of the weighting filter 
are marginal. 

The time varying nature of the weighting filter provides a signifi­
cant contribution to the complexity of the analysis procedure. For 
example, the Cholesky decomposition required for computing the pulse 
amplitudes can be done in advance when we use a time-invariant noise 
weighting filter. The filter parameters of the weighting filter are 
those of the short-time predictor l-A(z). For a fixed filter we can use 
the coefficients of a fixed predictor, as used in DPCM systems (Chapter 
1). These coefficients are based on the averaged spectral characteris­
tics of speech. Table 3.2 shows the predictor coefficients obtained 
from references [Paez and Glisson, 1972] and [Flanagan et al., 1979]. 
In this table the normalized correlation terms and the corresponding a-
parameters and reflection coefficients are shown. 

Flanagan 
1 2 3 

cor . 0.8500 0.5620 0.3080 

p=l -0.8500 
p=2 -1.3416 0.5784 
p=3 -1.4845 0.9099 -0 .2471 

ref . 
coef. 0.8500 -0.5784 0.2471 

Paez/Glisson 
1 2 3 

0.8456 0.5470 0.2680 

-0.8500 
-1.3435 0.5888 
-1.4399 0.8089 -0.1638 

0.8456 -0.5888 0.1638 

TABLE 3.2. Normalized correlation coefficients, predictor coefficients 
and reflection coefficients for speech. 

We carried out comparative listening tests on the results obtained with 
fixed weighting filters of different orders (p=l to 3). The coeffi­
cients were based on data supplied by Flanagan (Table 3.2). Note that 
we still use a weight factor ?=0.8. It was surprising how close these 
results were to those obtained with time-variant weighting filters, 
which agrees with the results reported in [Nayyar, 1983]. The second 
order filter especially produced very good results. The first-order 
filter produced more irregularities than the second- and third-order 
filters but still sounded reasonable. Vie also compared synthetic speech 
obtained with a first-order weight variable weighting filter with speech 
obtained by fixed weighting filters, and preferred second-order fixed 
filters over variable first-order filters. 
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3.6 Complexity Seduction Of The BPE Coder 
The analysis procedure of the RPE coder necessitates the solution of 

NS sets of simultaneous equations, where NS represents the spacing 
between the pulses. However, the matrices G G which have to be 

1979] and inverted have a displacement rank a = NS+2 [Kaifath et al. 
can be solved very efficiently, as we will see in Chapter 8. In this 
section we will look for modifications of the algorithm to reduce the 
complexity without affecting the coder performance. 

The matrix G is obtained by multiplication of the position matrix 
M, [Eq.(3.D] with the impulse response matrices H and W [Eq.(3.7)l. The 
matrix product HW is given by 

HW = 

g(l) g(2) . g(L) 
0 g(l) . g(L-l) 
0 0 . g(L-2) 

0 0 0 g(l) 

(3.20) 

where L denotes the length of the minimization interval and g(n) are 
samples of the impulse response of the cascade of the filters 1/A(z) and 
W(z). The matrix product G G [Eq.(3.9)] depends on the value of k 
(k=l,2,..,NS). Vie shall now reconfigure the structure of the solution 
equations to force the matrix G G, to become a single Toeplitz matrix 
which is independent of the value of the offset factor k. The combined 
impulse response g(n) of the synthesis filter and the weighting filter 
decays rapidly for values of ■% less than one. By choosing a minimization 
frame two times the search frame size and setting the impulse response 
samples g(i) to zero for values of i greater than L=NSSIZE we obtain the 
following matrix HW: 

HW = 

g(l) g(2) 
0 g(l) 
0 0 

g(L) 0 
g(L-l) g(L) 
g(L-2) g(L-l) 

g(l) 

0 
0 
0 

g(L) 0 

(3.21) 

The resulting matrix product G G is now a Toeplitz matrix, independent 
of the value of k. This result will only hold if the impulse response 
is constant within the minimization frame. This condition is not satis­
fied during transitions from one set of filter coefficients to another, 
as is shown in Fig. 3.16 
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2L, 

of the filter Figure 3.16. Structure of the matrix HW and transition 
coefficients. 

For the matrices labeled with "A" the impulse response is invariant. 
For the matrices labeled with "B" the filter coefficients are changed, 
which means that the impulse response is variant. To force the impulse 
response to be constant for the matrices "B", a new set of reflection 
coefficients, which is obtained by linear interpolation between the 
adjacent sets can be used. For example the interpolated set between set 
1 and set 2 can be used for the construction of the matrix Bl. For 
every search frame the GVGV matrix is now Toeplitz and independent of 
the value of k. ~ We refer to this method as RPEM1. 

Instead of minimizing over the interval of size NMSIZE=2*NSSIZE we 
can assume that NMSIZE is infinite and that the data is appropriately 
windowed by a window of size L and is equal to zero outside the window 
(auto-correlation method). For that case we can still use the HW matrix 
defined in Eq.(3.20) and we do not need to interpolate between adjacent 
sets of reflection coefficients. Again we obtain one single Toeplitz 
matrix G G, , which is independent of the value of k. This procedure 
will be referred to as EPEM2 

By observing the matrix G G we noted that its structure is mainly 
diagonally dominant. This structure is due to the fast decaying impulse 
response g(n) (-$■<!). In finding the optimal excitation within a 
search frame, we have to select that k that minimizes E (see 
Eq. 3.10). This is equivalent to searching for the k that maximizes 

„(k) J 0 1r* r e e Gk Gk e 
* G, G, k k 

(0)* 
(3.22) 

If we replace the matrix product G G by a diagonal matrix, the denomi­
nator of Eq.(3.22) becomes constant and we select the k that maximizes 

e(0,G* G,e(0)* (3.23) 
k k 

Once the k has been selected, the excitation string b, is computed 
according to Eq.C3.10), with for G the matrix defined by Eq.(3.20). 
This method is referred to as BPEM3. Fig. 3.17 shows the segmental SNR 
ratios for the different methods. 

http://Eq.C3.10
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Figure 3.17. Segroental SNR ratios for modified RPE algorithms. 

The SNR values were obtained by averaging the SNR values of two utter­
ances by two different speakers. From this figure we see that the 
modifications introduced resulted in a slight decrease in SNR. Informal 
listening tests revealed that almost no differences between the modified 
methods and the original RPE method could be heard. Fig. 3.18 shows the 
segmental SNR values per 10 ms for the modified methods. The solid line 
represents the SNR of the original RPE and the dashed lines represent 
the SNR of the modified RPE coders. 

Figure 3.18. Segmental SNR ratios for RPE (solid line) and modified 
methods (dashed line), (a), RPEM1, (b) RPEM2, (c) RPEM3. 

The advantage of the modified methods is that we need to perform only 
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one matrix inversion. The LU factorization needs to be perforroed only 
once for every search frame. Back substitution has to be done for every 
value of k if RPEM1 or RPEM2 are used. The procedure RPEM3 has to per­
form the back substitution for only the selected value of k. By using 
procedure RPEM3 with a fixed noise weighting filter, a further simplifi­
cation can be obtained, leading to an efficient algorithm that can be 
easily implemented in a signal processor [Sluyter, 19851. The coeffi­
cients of this fixed weighting filter are determined by the long-term 
correlation terms of speech. For such a filter with order p=2 or 3, the 
matrix G G is diagonal dominant, which is due to the fast decaying 
impulse response of the weighting filter. According to Eq.(3.9) the 
amplitude vector b, of a set of pulses is given by 

b k " e ( 0 ) V G k G k r l ( 3 - 2 4 ) 

By replacing the product G.G by a diagonal matrix D, whose diagonal 
elements consist of the first auto-correlation coefficient of the filter 
impulse response, we get 

b, - e(0)G*D_1 (3.25) 
k k 

If we assume the residual signal to be zero outside the minimization 
frame, or equivalently disregard the filter states, we may write e as 

e f 0 ) = rG (3.26) 

where r is the residual signal. Substituting Eq.(3.26) in Eq.13.25) we 
get 

b, = rG, G*D_1 = rC (3.27) 
k k k 

where C is a symmetric band matrix with the element c , on the i-th 
sub-diagonal (i.e. main diagonal is i=0). The coefficients (c.> are the 
normalized auto-correlation coefficients of the impulse response of the 
weighting filter. From Eq.(3.27) it can be easily seen that we can com­
pute a vector b of size NSSIZE and compute the corresponding b by 
down-sampling this vector. The optimal excitation vector is the one 
that minimizes E or equivalently maximizes 

T t k ) = e 1 0 ^ 1 0 1 = bvb* (3.28) 
k k k k 

The whole procedure is now extremely simple. The residual signal r is 
"smoothed" with the smoother represented by the matrix C. The resulting 
output vector is downsampled and the b which maximizes T [ 
Eq.(3.28)] is selected. This procedure is shown in Fig. 3.19. 
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b(n) EXCITATION 
SELECTION 

Figure 3.19. Simplified RPE procedure. 

For comparison the averaged SNRSEG values are shown in Fig. 3.17. The 
RPE coder using a fixed weighting filter is referred to as RPF1, while 
the procedure outlined above is referred to as RPF2. In Fig 3.20 the 
same comparison is made for the SNRSEG as a function of time for both a 
male and a female speaker. 

x 10 ms 

Figure 3.20. Segroental SNR for two RPE coders using a fixed weight 
filter for a female (a) and a male (b) speaker. RPF1 pro­
cedure (solid line), RPF2 procedure fdashed line). 

From this figure it is clear that for a fixed weighting filter procedure 
RPF2 provides a quality comparable to that of procedure RPF1. The advan­
tage of the former is its ease of implementation. 
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3.7 Summary 

This chapter introduced a new coding concept that models the excita­
tion sequence by a regular pulse excitation. The excitation signal is 
determined in such a way that the perceptual error between the original 
and the synthetic signal is minimized. The computational effort is only 
moderate and can be further reduced by using a fixed weighting filter or 
truncating the impulse response. The coder can produce (near) toll qual­
ity speech at bit rates around 9600 b/s by using a pulse spacing equal 
to 4 and quantizing each pulse with 3 bits. The use of pitch prediction 
improves the speech quality, but it was concluded that the RPE coder 
performs adequately without a pitch predictor. 
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4. MULTI-PULSE EXCITATION CODER 
4.1 Introduction 

This chapter describes another parametric approach to finding an 
appropriate excitation sequence. The procedure was proposed in [Atal 
and Remde, 1982] and is referred to as the Multi-Pulse Excitation (MPE) 
coder. The excitation sequence consists of a sequence of non-uniformly 
spaced pulses with varying amplitude (multi-pulse excitation). The 
locations and the amplitudes of the pulses are chosen to be optimal 
according to the selected fidelity criterion. 

Vie shall discuss a number of procedures for determining the multi-
pulse excitation signal. Then, we shall discuss the coder performance 
according to objective and subjective tests. Further, we discuss modif­
ications to the MPE coder to improve the performance of the coder 
without increasing the bit rate. Finally, we describe some alternatives 
for the pulse search procedure to decrease the complexity without too 
much reduction in quality. 

4.2 Multi-Pulse Excitation Coding 

In the previous chapter we described a parametric approach for find­
ing the optimum excitation sequence for the model filter(s), such that 
the weighted squared error between the original and the reconstructed 
signal is minimized. The first successful parametric approach was pro­
posed in [Atal and Remde, 1982], and is called Multi-Pulse Excitation 
(MPE) coding. The excitation sequence consists of a small number of 
non-zero pulses, whose amplitudes and positions have to be determined 
such that the error criterion between the original and the reconstructed 
speech is minimized. The procedure to finding the excitation uses a 
sub-optimal iterative approach, which searches one pulse at a time. In 
Section 4.2 this search procedure is described in detail, but first we 
give some examples of the results that can be obtained with the MPE 
method. 
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V l"- j v 

TT 

Figure 4.1. Viaveforms of the original speech (a), the decoded speech 
(b), and the excitation signal (c). 

Fig. 4.1 shows an example of the original and decoded waveforms, and the 
corresponding excitation signal. The excitation sequence was determined 
using the default procedure as listed in Table 4.1. The corresponding 
power spectra of the original and the reconstructed speech are shown in 
Fig. 4.2. 

1 2 3 4 
FREQUENCY (kHz) 

Figure 4.2. Power spectra of a 32 ms segment of the input speech Csolid 
line) and the reconstructed speech (dashed line). 

The segmental SNB for the utterance "A lathe is a big tool" spoken by 
both a male and a female speaker is shown in Fig. 4.3. 
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Figure 4.3. Segmental SNR for successive time frames for a female 
speaker (a), and a male speaker (b). The upper curve 
represents the signal energy shifted + 15 dB. 

4.3 Error-Minimization Procedures 

4.3.1 Definitions 

The excitation search procedure determines the excitation in frames 
of size NSSIZE, while minimizing the error in frames of size NMSIZE. In 
general, the maximum number of pulses (NP) per search frame is fixed, so 
that we obtain a constant pulse rate for relatively short time intervals 
(10-30 ms). 

V<e represent a signal x(n) in a frame of L samples by an L-
diroensional row vector x. Let v,s,S and e represent the multi-pulse 
excitation signal, the original speech signal, the reconstructed speech 
signal, and the weighted difference signal, respectively. 

The multi-pulse excitation sequence within a search frame is charac­
terized by a set of locations n(i) with corresponding amplitudes b(i), i 
= 1,2,... ,k and 1 < k <. NP. Denoting by M, the k by L position matrix 
with 

m(i ,jl = 1 if j * n(i) (4.1) 

ro(i,j) = 0 otherwise 
and considering the set b(i) as entries in an k-dimensional amplitude 
vector b we can write the excitation signal v as 
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(k) b, M, k k ( 4 . 2 ) 

where the superscript denotes the recursion index. Let H and W be L by 
L matrices whose j-th row contains the impulse response caused by a unit 
impulse 8(t—j) of the synthesis filter and error weighting filter, 
respectively. 

By way of example for k=3 and L=6, we can write v 
TO 0 0 0 1 0 

(3) 

(3) = [btl) b(2) b(3K 

b and M as: 

0 1 0 0 0 0 
0 0 0 1 0 0 

[0 b(2) 0 b(3) b(l) 0] 

4.3.2 Basic Algorithn. 

If § is the output of the synthesis filter due to the memory 
hangover of previous synthesis intervals, we can express the synthetic 
signal produced by k pulses as: 

J k ) s ( 0 ) + v f k ) H , 1 < k < NP 

(k) 
The e r r o r s igna l e , t h a t i s , 

(k) CO) v ( k )H* 

(4.3) 

(4.4) 

with 

„(0) . ftt0',,.; 
e = (s - s )w (4.5) 

can be written as 
(k) e — b. G. k k 

where G is the k by L matrix defined as follows: 

(4.6) 

Gk = Mk CHW) 

Our objective is to minimize the squared error: 
,(k) 

,(k) 

(k) (k)* e e 

(4.7) 

(4.8) 

where * denotes transpose. E , I W is a function of both the pulse ampli­
tudes and the pulse positions. Once the pulse positions have been 
determined, the optimal amplitudes can be.computed from Eqs. (4.6) and 
(4.8), by setting the derivatives of E with respect to the unknown 
amplitudes to zero. The amplitudes can now be computed by solving bv 
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from 

By substituting Eq.(4.9) in Eq.(4.61 and thereafter the resulting 
expression in Eq.(4.8), we obtain the following expression for the 
error: 

E(k) - e(0,[I - A ^ f 1 * , ] . " " * (4.10) 
Thus far we have assumed that the optimal pulse positions were known. 
However, finding the locations of the pulses is the most complicated 
part of the analysis procedure. In the next sections we describe some 
approaches for finding these pulse locations. 

4 .3 .3 Optirral Procedure 

The optimal error minimization procedure for finding the pulses and 
their amplitudes is organized as follows: Vie construct the position 
matrix M for every possible set of pulse combinations and we compute 
the matrix G and the error E using Eqs. (4.7) and (4.10), respec­
tively. The optimum set of NP^pulse locations is the set that 
corresponds to the minimum of E . Solving Eq.(4.9) for the optimal 
set of locations will yield the optimal excitation sequence v . This 
procedure is extremely complex due to the large number of possible sets. 
The number of possible combinations of k pulses in a segment of L sam­
ples is given by 

C = .T . \ \ . , (4.11) 
op (L-k)! k! 

Even for small values of L and k, the number of combinations becomes 
quickly impractical. To avoid this large number of iteration steps, we 
will use sub—optimal solutions. 

4 .3 .4 Sub-Oytirral Procedures 

Instead of finding all the pulses at once, we can determine the 
locations and the amplitudes one pulse at a time. The optimum location 
for any of these pulses is found by computing the error for all possible 
pulse locations in a given interval and by locating the minimum of the 
error. Once the location is known, we can compute the corresponding 
pulse amplitude, update the error and start searching for the next 
pulse. The number of possible positions in which to search for k pulses 
in a segment of L samples is now 

C - \ k(2L - k + 1) (4.12) 

For computing locations and amplitudes one pulse at a time several pro­
cedures exist. The simplest approach is to compute at stage k only the 
location and amplitude of the k-th pulse and assume the locations and 
amplitudes of the previous k-1 pulses to be known. A major drawback of 
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this approach is the interaction between the pulses, resulting in pulse 
amplitudes that are jointly not optimal. New pulses are often required 
to compensate for inaccuracy in earlier stages. Henceforth we refer to 
this procedure as SUB1. To correct for the interaction between the 
pulses, we can compute the jointly optimal pulse amplitudes for all k 
pulses by solving Eq. (4.9) every time a new pulse has been founcL For 
the given set of pulse locations, the resulting squared error E is 
now minimal. We will refer to this procedure as SUB2. A further 
refinement of this approach is to include the jointly optimal pulse 
amplitude computation in the search procedure. For every possible loca­
tion of the new pulse, we compute the optimal amplitudes of all k pulses 
and the resulting error E . The location that produces the minimum 
error will be selected. This fairly complex procedure will be referred 
to as SUB3. Fig. 4.4 illustrates the first 4 steps of the sub-optimal 
error minimization procedure (SUB1). 

vwv vwy vwV vwV 

Figure 4.4. Illustration of the first 4 steps in the SUB1 procedure, a) 
speech segment s(n), b) excitation sequence v(n), c) recon­
structed speech segment s(n) and d) weighted error e(n). 

These different procedures for finding pulse amplitudes and locations 
can also be described in terms of projection operators. The initial 
vector e lies in an L-diroensional space HW, spanned by the row vec-r 
tors of the L by L product matrix HW. The approximation vector y 
defined by 

/".»""« = bkGk (4.13) 
lies in a sub-space of HW spanned by the row vectors.of the matrix G 
[Eg.(4.7)]. Minimizing the mean-squared error E between e and 
y is equivalent to performing an orthoaonal nmior-n iuuiiii«j cne mean-squared error EkK between e and 
y'"\' is equivalent to performing an orthogonal projection of the vector 

on this subspace. This can be easily verified by substituting 
"' - - " - - - - ; a j n 

— i — 
e'"' on this subspace. xni 
Eq.(4.9) in Eq.(4.13) to obtain 

e(0)P , with P = G^GjG*]"^ (4.14) 
where P is called the projection operator. This projection is shown in 
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Fig. 

Figure 4.5. Orthogonal projection of e on G. 

Procedure SUB1 can be represented as an orthogonal projection of the 
error e

f V 1
 o n o n e of the basis vectors of HW, and selecting the error 

vector e that has a minimum norm. The final error vector e is 
built up recursively and need not be orthogonal to y . For SUB2, the 
procedure for finding the pulses is similar to that of SUB1, except that 
after every step we perform an orthogonal projection of e on the 
space containing the partial approximation vector y . The search for 
the next pulse location is not an orthogonal procedure. That is, the 
next pulse location is one that minimizes the error vector obtained by 
projection on one of the basis vectors of HW. Since these basis vectors 
are not orthogonal to the previous solution space, the new error vector 
will not be orthogonal to the previous solution space. The projection 
of the e vector on the new solution space will of course correct for 
this non-optimal decomposition; nevertheless, the last pulse is not 
optimal. This problem is solved in the SUB3 procedure. In this pro­
cedure we project e on every possible subspace obtained by adding one 
of the basis vectors of HW to the previous partial subspace and select 
the error vector that has a minimum norm. Every new pulse is now 
selected in the most optimal way. Procedure SUB3 can also be described 
in a form similar to procedure SUB1 where the error is built up recur­
sively. To make sure that every pulse provides an optimal contribution 
to the minimization of the error, we orthogonalize the basis vectors of 
HW to the space spanned by the partial approximation vector y . The 
new pulse can now be found by performing an orthogonal projection on one 
of the orthogonalized basis vectors of HW. Note that for this procedure 
it is not necessary to recompute amplitudes of previously found pulses. 
After finding all pulse locations the amplitudes of the pulses relative 
to the original set of basis vectors are found by projecting 
e on y 

4.4 Evaluation Of The MPE Algorithm 

The remainder of this section is mainly intended to provide a better 
understanding of the parameters involved in the multi-pulse analysis 
procedure, and the way these parameters are affecting the quality of the 
reconstructed speech signals. In Table 4.1, the MPE parameters and 
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their default values are listed. 

ratio # samples / # pulses 10 
search frame size (NSSIZE) 10 ms 
minimization frame size (NMSIZE) 10 ms 
weight factor y 0.80 
sub-optimal solution method SUB2 

TABLE 4.1. Default parameters settings for MPE analysis. 
4.4.1 MPE Analysis Pararr&ters 

The analysis procedure of the MPE coder involves many parameters 
that could affect the final speech quality. We consider the following 
parameters: 

1. predictor parameters, 

2. number of pulses per time interval, 

3. search interval size (NSSIZE) and minimization interval size 
(NMSIZE), 

4. error weighting filter, 

5. solution method for finding pulse locations and amplitudes. 

The effects of the predictor parameters were discussed in Chapter 2 and 
will not be discussed in this chapter. 

4.4.1.1 Nwber Of Pulses Per Tirr^ Interval The required minimum number 
of pulses per interval can be estimated as follows. The fundamental 
frequency of speech ranges from 50 Hz up to 500 Hz, corresponding to 
pitch periods between 20 and 2 ms, respectively. Assuming that we need 
at least one pulse in every pitch period, we have to provide at least 4 
or 5 pulses for every 10 ms. Although such an estimation can only be 
made for voiced speech segments, it is expected that for an adequate 
representation of unvoiced speech segments more than 4 or 5 pulses for 
every 10 ms are needed. 

As can be seen in Fig. 4.6, the nwber of pulses per tirr^ interval 
has the greatest impact on the quality of the reconstructed speech. 
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Figure 4.6. Segmental SNR values for different numbers of pulses/time 
interval. 

In this figure the upper and lower limits represent maxima and minima, 
respectively over four speakers (two male and two female), and the mid­
dle curve gives mean values (averages over four speakers). Adding more 
pulses always increases the SNRSEG although the increase is smaller for 
high numbers. The quality of the reconstructed speech using 8 pulses 
per 10 ms is close to toll quality for male speakers, but some female 
speakers sound a little bit rough and the pulse rate has to be increased 
to 12 or 16 pulses to get rid of this effect. Beyond 16 pulses per 10 
ms the SNRSEG will still increase, but the sound quality will remain 
constant. The reconstructed signal is then undistinguishable from the 
original signal. 

4.4.1.2 Search Frarr,e Size And Minimization Frarr.e Size The pulses are 
to be located in a frame of size NSSIZE while minimizing the error in an 
interval of size NMSIZE (see Chapter 2, Fig. 2.2). The choice of the 
optimal search frame size depends on both qualitative and computational 
aspects. The computational complexity (in terms of multiply/add opera­
tions) is both a function of the search interval size (NSSIZE) and the 
number of pulses (NP), and increases tremendously for increasing search 
frame sizes. Considering qualitative aspects, it can be argued that the 
search frame size may not be chosen too small (less than 5 ms), to avoid 
non-optimal localized pulses. The following reasoning shows why small 
search frames (less than 5 ms) are not optimal. Suppose we want to 
model low pitched voiced speech. From examining multi-pulse excitations 
we know that many pulses are located around the major pitch pulse. If 
the average pitch period is greater than the search frame size used, 
probably many search frames will contain no major pitch pulse at all. 
If the search frame size is much smaller than the pitch period, we try 
to model a less important part of the pitch period with, say, 4 pulses, 
while 2 pulses would be enough. If the search frame sizes are large 
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enough, so that at least one major pitch pulse falls many times within 
this frame, the MPE algorithm assigns the pulses to the most critical 
places. If the search frames are chosen too large, possibly too much of 
the available pulses are spend on modeling some difficult part within 
the segment, while less difficult parts are simply discarded. In Fig. 
4.7 the averaged SNR values for different search frame sizes and for 
different predictor update rates are shown (NMSIZE=NSSIZE). From this 
figure we see indeed the small increase in SNR for larger search frame 
sizes. 
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Figure 4.7. Segmental SNR values for different search frame sizes. 
Depending on its position and its impulse response length, an allocated 
pulse will have an effect in one or more succeeding search frames. 
Moreover, for equal search frame sizes and minimization frame sizes, the 
contribution of pulses located at the end of the search frame is small, 
resulting in a bias of the pulses located at the beginning of the frame. 
To incorporate both effects, we could choose NMSIZE greater than NSSIZE. 
The ratio NMSIZE/NSSIZE depends on the length of the impulse response of 
the corresponding prediction filter and can be made adaptive. 

Although the predictor frame rates (NRATE) and search frame sizes 
(NSSIZE) can be chosen independently, the complexity will be less if 
NRATE and NSIZE are chosen as integral ratios and the frame boundaries 
are aligned. In this way we avoid problems that could arise if the 
filter coefficients change in the search interval. However, under the 
condition that we use a time varying weighting filter and NMSIZE is 
greater than NSSIZE, we always have to deal with coefficient changes, as 
is illustrated in Fig. 4.8. 

S 
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Figure 4.8. Filter coefficient changes in the MPE procedure. 

In Fig. 4.9 the averaged SNR values for different ratios of NSSIZE and 
NMSIZE are shown. We see from this figure that the averaged SNR 
decreases if NMSIZE is greater than NSSIZE. 
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Figure 4.9. Segmental SNR values for different ratios of NSSIZE and 
NMSIZE. 

Sometimes we find an improvement locally as is shown in Fig. 4.10, which 
gives the SNR as a function of time for a short segment of an utterance 
by a female speaker. 
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Figure 4.10. Differences in segmental SNB for NMSIZE 
line) and NMSIZE > NSSIZE (dashed line). 

NSSIZE (solid 

To find an explanation for this effect, we computed the distribution of 
the allocated pulses within the search frame. Fig. 4.11 shows the his­
tograms, obtained from the multi-pulse analysis of one single female 
speaker, for NMSIZE=NSSIZE (upper histogram) and NMSIZE > NSSIZE (lower 
histogram). For NMSIZE=NSSIZE, we see a small bias for locations at the 
beginning of the search frame. If we choose NMSIZE greater than NSSIZE, 
we get a much larger bias in the opposite direction. 
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Figure 4.11. Distribution of pulses within a search frame for different 
ratios of NSSIZE:NMSIZE. 

An explanation for this effect is that large errors outside the search 
interval are most effectively minimized by locating pulses at the end of 
the search frame. Any pulse located at the end of the search frame has 
only a small contribution to the error minimization within this frame. 
As a result we have a non—optimally placed pulse for both the search 
frame area and for the part of the minimization frame that lies outside 
the search frame. The averaged SNR values indicate that this effect is, 

4.4 Evaluation Of The MPE Algorithm. 87 

viewed globally, a disadvantage. 

4.4.1.3 Error Weighting Filter As noted before, noise shaping reduces 
the SMR, but improves the perceived speech quality. In Fig! 4.12 the 
averaged SNB values for different values of y are shown. Given as well 
is a rating of quality (relative scale) as determined by listening 
tests. 
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Figure 4.12. Averaged segmental SNB values and subjective relative 
preference for different values of y. 

The effect of noise shaping is small, but it can be heard. An optimal 
value for y was found to be between 0.80 and 0.90 at a 8 kHz sampling 
rate. From this figure we see that 0.80 corresponds to a 2 dB decrease 
in SNR. In Fig. 4.13 we show the spectra of the original speech seg­
ment, and the corresponding error spectra for different values of y. 
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FREQUENCY (kHz) 

FREQUENCY (kHz) 

Figure 4.13. Power spectra of a 32 ms segment of the input speech, and 
of the error signal s-ê (dashed line), for different 
values of y. a) 7*1.0, t>)?«0.80. 

From this figure the effect of error weighting is clearly visible. For -&■ 
= 1.0, the coding error energy is larger that the signal error energy, 
especially in the 1 kHz region. The application of error weighting 
increases the error in the formant regions, but decreases the error 
energy around 1 kHz. 

We examined just as with the RPE coder the effect of decreasing the 
order p of the weighting filter l/A(z/-f), and observed that for low ord­
ers (2 to 4 ) , the results were close to those obtained with a 16-th 
order filter. The computational savings obtained by reducing the order 
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of the weighting filter are marginal. We carried out comparative 
listening tests on the results obtained with different order fixed 
weighting filters (p=l to 3). The coefficients were based on data sup­
plied by Flanagan (Table 3.2). Note that we still use a weight factor 
Y»0.80. Similar as with the RPE coder it was surprising how close these 
results were to those obtained with time-variant weighting filters. The 
second order filter especially produced very good results. We preferred 
second-order fixed filters over variable first-order filters. In Sec­
tion 4.6 we will examine the computational requirements of the MPE 
analysis procedure. We will now discuss the computational savings 
obtained through the use of a fixed noise weighting filter. These sav­
ings are small for the initialization and state update procedures. In 
the pulse search procedure we do not need to compute the denominator of 
the second term of Eq.(4.10). However, the biggest saving is obtained 
in the pulse amplitude computation procedure. The Cholesky factors can 
be computed in advance and we only have to do the back-substitution. 
For the error update, we obtain small savings due to the reduced order 
of the weighting filter. 

4.4.1.4 Solution Method For Finding The Pulses As described before, 
different methods exist for finding the pulse locations and amplitudes. 
We consider only the sub-optimal solutions referred to as SUBl, SUB2 and 
SUB3. Sub-optimal solution 1 (SUBl), which computes every pulse ampli­
tude only once, sometimes locates new pulses in previously found loca­
tions. In that case the amplitude of the newly found pulse has to be 
added to that of the already found pulse. This phenomenon usually 
occurs in voiced segments if more than 6 pulses per 10 ms have been 
allocated. For unvoiced segments many more pulses must have been allo­
cated before this effect (pulse doubling) occurs. To avoid pulse dou­
bling we can exclude already allocated locations from future selections 
(SUB1X). If the amplitudes are jointly optimized every time a new pulse 
has been found, the solution for the given set of locations is optimal, 
and the next pulse will not be located on one of the previous found 
locations. Mixed form combinations such as performing SUBl or SUB1X 
analysis are also possible, and once all NP pulses have been found, the 
amplitudes of all pulses are recomputed. These procedures are referred 
to as SUB1R and SUB1XR. Fig. 4.14 lists different possibilities and the 
corresponding SNR values. 
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Figure 4.14. Segmental SNR values for different solution methods. 
From Fig. 4.14 we see that the differences among the different methods 
are small for a low number of pulses, but become more significant for an 
increasing number of pulses. For both cases SUB3, which recomputes the 
amplitudes of all pulses during the search procedure, yields the best 
results. A good alternative to using SUB3 is to use SUB2, or SUB1, to 
inhibit pulse doubling and to make a final amplitude recomputation of 
all pulses found. 

4.5 Improvement Of The MPE Coder 

The MPE coder as described in the previous section can produce good 
quality speech at medium bit rates. However, for parameter settings 
suitable for 10 kb/s rates, degradations in the reconstructed speech 
signal can still be heard. Especially high-pitched (e.g. female speak­
ers) sounds suffer from a perceivable deterioration. In this section we 
describe some of the possible ways to improve the performance of the MPE 
coder, without affecting the bit rate. 

4.5.1 Variable Pulse Rate 

In Section 4.4.1.1 we demonstrated that a pulse rate of 8 pulses per 
10 ms is sufficient for most speakers. Female speakers sometimes need a 
higher rate, which can be explained by the higher fundamental frequency 
of female speakers. Male speakers usually sound very good, except for 
small segments containing transitions or pitch inclinations. A solution 
that reduces these effects is to use a varying number of pulses. The 
error criterion already used in the MPE analysis procedure can also be 
used to determine the appropriate number of pulses within every search 
frame. Obviously this approach is roost suitable for non real-time-
applications such as minimizing memory requirements for speech storage. 
For communication applications, the resulting variable bit rate is 
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usually an undesired feature. For these applications we can impose the 
constraint that the number of pulses per specified time interval must be 
fixed. The size of this interval is chosen to be equal to the maximum 
allowable delay time. For example, the maximum delay time is 30 ms, and 
MPE analysis is done on 10 ms frames. The available number of pulses can 
now be optimally distributed over the three 10 ms frames, thereby avoid­
ing the complexity and possible non-optimality of doing an MPE analysis 
on 30 ms frames at once. The procedure for allocating the number of 
pulses within a search frame is organized as follows. To avoid energy 
gaps due to missing pulses, a minimum number of pulses NPMIN has to be 
placed within every search frame. To determine the required number of 
pulses we used the ratio 

E^k) = Z s2(n) / Z te(k)(n)]2 (4.15) 
n n 

(k) as a measure. In this formula s(n) represents the input signal, e (n) 
the weighted error, and the superscript k the number of pulses. New 
pulses will be added until E reaches some predefined threshold T. To 
prevent an allocation of too many pulses, we limit the maximum amount of 
pulses to NPMAX. Further, to prevent wasting pulses on silent segments, 
we first test whether the energy within the current frame exceeds some 
predefined level, and if not, no more than NPSLNT pulses are allocated. 
Vve also observed that the segmental SNR for voiced segments is much 
higher than for unvoiced segments. This is due to the impossibility of 
approximating a noisy signal with only a few pulses. However, even with 
a small number of pulses per segment, unvoiced frames still sound close 
to the original. During the pulse rate adaptation process we have to 
take care not to assign too many pulses to unvoiced parts. The normal­
ized prediction error, which is defined as the ratio of the residual 
energy and the speech energy, is much higher for unvoiced sounds than 
for voiced sounds [Makhoul, 1973]. This means that the prediction error 
can be utilized as a scaling factor for E . The new measure E' is 
given by 

E^k) - E^kl . Z r2(n) / Z s2(n) (4.16) 
n n 

- Z r2(n) / Z [e(k)(n)l2 
n n 

where s(nl, e(n) and r(n) represent the input speech signal, the 
weighted difference signal ,gi?<3 the residual signal, respectively. Vie 
used both measures E; and E' ar><3 adjusted the threshold T such that 
the average pulse rate was 800 pulses/second, and compared the results 
with those obtained with a fixed pulse rate of 800 pulses/second and 
heard no perceivable differences. Fig. 4.15 shows the behavior of the 
different parameters for an utterance by a female speaker. This utter­
ance was analyzed with NPMAX=10, NPMIN=6 and NSLNT=2. Fig. 4.15(a) 
sbows the energy in dB. In Figs. 4.15b) and 4.15c) the error measures 
E and E_ ' are drawn after locating the pulses. From these figures 
it is clear that E shows a more constant behavior. The dotted lines 
represent the threshold levels of respectively 14 and 3.5. The number 
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of pulses per search frame for the two different measures is shown in 
Figs. 4.15d) and 4.15e), and the resulting segmental SNR values for 
respectively measure E and E' are shown in Figs. 4.15f) and 4.15g). 
The solid line represents the fixed rate, and the dashed line the vari­
able rate. 
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Figure 4.15. Pulse rate adaptation process, a) signal energy in dB, b) 
error E , c) error E , d) and e) number of pulses per 
search frame for respectively E. and E , f) and g) segmen­
tal SNR for fixed rate (solid line) and variable rate 
(dashed line). 

4.5.2 Use Of A Pitch Predictor 

In Chapter 2 we discussed the use of a pitch predictor and the pro­
cedures for determining its parameters. In this section we investigate 
the effect of the use of a pitch predictor [Kroon and Deprettere, 1984]. 
The update rate (NPRATE) of the pitch predictor coefficients is usually 
coupled to the update rate of the short-time prediction coefficients. 
In Fig. 4.16 SNR values for different update rates of the one-tap pitch 
predictor coefficients are shown. The range of M was chosen between 16 
and 80. 
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Figure 4.IS. Segmental SNR values MPE with (+ pp) and without (- pp) 
pitch prediction for different update rates of the one-tap 
pitch predictor parameters (NPRATE=NRATE). 

The improvement in SNR is less for lower rates but is still significant. 
Note that due to the limited range of M, female voices gain more in SNR 
than male voices. Fig. 4.17 shows the effect of pitch prediction on MPE 
analysis for different numbers of pulses. The curves for both a one—tap 
predictor and a three-tap predictor are drawn. For the three-tap pred­
ictor no correction was made for unstable filters. Despite the fact 
that about 7% of the filters were unstable, no undesired effects could 
be heard. A possible explanation is that the filters show a mild form 
of instability, and unstable filters are usually followed by stable 
ones. V»e found that replacing the unstable filters by stable one-tap 
filters had no perceivable effect and introduced a slight decrease in 
SNR. 
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Figure 4.17. Improvement in segroental SNR by using pitch prediction in 
the MPE analysis procedure. 

The effect is really dramatic, in both figures as well as in sound qual­
ity. The quantitative improvement in SNRSEG is about 2 dB for one-tap 
predictors, and about 3 dB for three-tap predictors. The same improve­
ment can be obtained by allowing three to four additional pulses/10 ros. 
Although the three-tap predictor scores better (in terms of SMR) than 
the one-tap version, the perceivable differences between the two ver­
sions are small. If the number of bits required for transmitting the 
pitch prediction parameters is less than the bits required for transmit­
ting these extra pulses, there is talk of a real improvement. Using the 
coding procedure described in [Atal, 1982], we need 10 and 19 bits per 
parameter set for the one-tap and the three-tap predictor, respectively, 
and approximately 8 bits for every pulse. From these figures we con­
clude that the use of a one-tap pitch predictor is really attractive in 
terms of bit rate and quality. Another advantage of pitch prediction is 
that it tends to remove the large pitch pulses, thereby reducing clip­
ping effects in the quantized signal [Makhoul and Berouti, 1979]. This 
effect will be examined in detail in the section on quantization and 
coding. A disadvantage of using pitch prediction is not only additional 
complexity, but also its possible vulnerability to channel errors and 
background noises. 

4.6 Complexity Reduction Of The MPE Coder 

A disadvantage of the MPE analysis procedure is its complexity. The 
number of computations involved in finding the pulses is enormous. In 
this section we describe some alternatives for the pulse search pro­
cedure, which decrease the complexity without too rouch reduction in 
quality. 
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4.6.1 Complexity Analysis 

In this sub-section we consider the complexity of the MPE coder. A 
commonly used procedure for measuring the complexity is to count the 
number of arithmetic operations (e.g. multiplications and divisions). 
Although this measure does not take into account control overhead and 
the attributes of the target processor (e.g special instruction set or 
architecture), it still gives a good impression of the expected complex­
ity. Additions are not counted separately because they can usually be 
combined with multiply/add operations. All complexity counts refer to 
the algorithm described in Section 4.3 (MPE with SUB2 search procedure 
and direct form filters). V»e further choose NSSIZE to be an integral 
ratio of MRATE and NSSIZE=NMSIZE and use the variable L to represent the 
frame size. 

4.6.1.1 Initialization And State Update For every search frame we have 
to compute the initial error e [Eq.(4.6)] and we have tc^update the 
filter states, after finding NP pulses (i.e. computing e . This 
means that we have to filter two tiroes a frame of L samples through both 
the synthesis filter 1/A(z) and the error weighting filter W(z). These 
operations require 2*((p+3p)*L) multiplications, where p represents the 
order of the filters. 

4.6.1.2 Pulse Search Procedure The k-th pulse has to be located in 
such a manner that E is minimized. E as a function of the pulse 
position and the previous error signal e can be obtained froro 
Eq.(4.10): 

_(k) (k-1) (k-1)* Ck-1), *, (k-1), *. . ,. , *, .. ,,. E = e e - e hw (e hw ) / (hw hw ) (4.17) ro m ro ro 
where hw is the irt-th row of the matrix product HV». To minimize the 
squared error E it can be seen that the best position for a single 
pulse is that value of m which maximizes the second term in Eq.(4.17). 
The denominator of the second term in this equation needs to be computed 
only once for every search frame, and requires L multiplications and L 
divisions. In addition, for every pulse the cross—correlation (numera­
tor) has to be computed, which requires L*(l+L)/2 multiplications. 

4.6.1.3 Jointly Optimal Amplitude Computation To compute the jointly 
optimal amplitudes, we have to solve a set of simultaneous linear equa­
tions, given by Eq.(4.9). The correlation matrix G,G, is symmetric and 
positive definite; hence the set of equations can be solved using Chole-
sky decomposition. At first glance, the reader may think that for every 
new pulse we have to perform a Cholesky decomposition. However, the 
matrices G G, for different values of k are related to each other, which 
means that the Cholesky factors of the new matrix are also related. 
According to Cholesky's theorem, a positive definite symmetric matrix Q 
can be factored into the form Q=CC , where C is a lower triangular 
matrix. The Cholesky factor C at iteration step k can be obtained by 
combining the Cholesky factor of step k-1 and a new row. Moreover, the 
back-substitution procedure can be updated for every new iteration step. 
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The total number of operations required for solving the NP equation sets 
will necessitate approximately OtNP ) multiplications. 
4.6.1.4 Error Update After finding a partial set.of pulses (k < NP) , 
we have to compute the new error signal e This can be done by 
filtering, but more efficiently by convolution, which requires approxi­
mately NP *(NP+1) *L/2 multiplications. 

The total number of operations is given in Table 4.2. 

operation #operations 

initialization + state update 
pulse search procedure 
amplitude computation 
error updating 

8*p*L 
NP*LIL+l)/2 + 
0(NP ) 
NP*(NP+l)*L/2 

2*L 

TABLE 4.2. Operation count MPE analysis procedure. 

From this table we see that the complexity of the MPE coder is mainly 
determined by the pulse search procedure. The total number of opera­
tions required depends strongly on the values of the search frame size 
NSSIZE and the number of pulses per search frame (NP). Due to quality 
and bit rate constraints these parameters cannot be changed and other 
ways have to be found to reduce the complexity. In the following sub­
sections we discuss some approaches that reduce the complexity of the 
analysis procedure. 

4.6.2 Auto-Correlation Analysis 

toe minimize the mean-squared error over a frame of NMSIZE samples, 
and make no^assumptions about the signal outside this frame. Here the 
matrix HW(HVi) (Section 4.3.1) is a matrix of covariance terms, and we 
refer to this approach as the covariance method. 

tohen we extend the summation limits to -,» and +a>. and assume the 
speech signal s(n) to be windowed such that it is zero outside the 
minimization frame, the matrix HV»(HV<) will be a Toeplitz matrix of 
correlation terms. This auto-correlation formulation simplifies the 
search procedure, especially when we use the SUB1 approach. The denomi­
nator of the second term in Eq.(4.17) does not depend on m and the error 
E is minimized by searching the position that maximizes Ie hw I. 
This means that we avoid many time-consuming divisions. This approach 
was also described in [Araseki et al., 1983], and was called the maximum 
cross-correlation search algorithm. If we compare the SNR values 
obtained with the auto-correlation method with those obtained with the 
covariance method (Fig. 4.18), 
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Figure 4.18. Differences in segmental SNR between auto-correlation 
method and covariance method. 

we see that the latter gives slightly better results. Listening tests 
revealed that these differences were difficult to hear. In [Berouti et 
al. , 1984] it was noted that for sine wave like inputs, the differences 
between the two methods become more significant. 

4.6.3 Reduction Of Search Frarr,e Size 

In searching for optimal pulse positions, we have to evaluate the 
resulting error for every possible location. This procedure puts a 
major burden on the computational complexity (Section 4.6.1). To reduce 
the complexity, we have somehow to reduce the length of the search 
interval NSSIZE to an effective interval RSSIZE. A possible solution is 
suggested by the following (see also [Kroon and Deprettere, 1983]). 
From computer simulations we have observed that there is a strong correy 
lation between the local minima of the distance function E 
[Eq.(4.10)] as a function of the position of the k-th pulse, and the 
local concentrations of energy in the error signal e . A typical 
example is shown in Fig. 4.19. 
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,(k-l) 

(k) = f le""-1» (n-i) 
i=0 

n=l ,NMSIZE 

Figure 4.19. Error signal e , distance function E as a function 
of the.position of the k-th pulse and smoothed error sig­
nal M 

Hence short-time energy measurements could be used to detect the high-
energy levels in the error signal, which will most likely correspond to 
the positions of the minima in E .Vie used an average, magnitude func­
tion M instead of a short-time energy measurement. M is defined by 

,(k) m 
Z 
i=0 

l e ^ C n - n i n - 1,NMSIZE (4.18) 

where rn is the integration interval. Our approach has been the follow­
ing. If M reaches its maximum value at n=nmax then Eq.(4.10) is only 
evaluated for locations falling within the interval [nmax-RSSIZE+1, 
nmax], where RSSIZE is the effective search interval (RSSIZE < NSSIZE). 
The position of the pulse that produces the minimum error E will then 
be selected. Although RSSIZE will depend on the delay m of the integra­
tor and the impulse response characteristics of the synthesis and error 
weighting filter, we have used reduced search frames with a fixed size. 
The optimal value for RSSIZE has to be determined experimentally, but 
should reduce the complexity without introducing too much degradation. 
The effect of a reduced search frame size for a male and a female 
speaker is shown in Figs. 4.20 and 4.21. In both figures the segmental 
SNR (computed every 10 ms) of the utterance "my father failed many 
tests" is shown. 
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Figure 4.20. Effect of reduced search frame size for a male speaker, a) 
RSSIZE=5, b) RSSIZE=10 and c) RSSIZE=10 + pitch predictor. 
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Figure 4.21. Effect of reduced search frame size for a female speaker. 
d) R3SIZE=5, e) RSSIZE=10 and f) RSSIZE-10 + pitch predic­
tor. 

The solid line represents the segmental SNR of the decoded speech signal 
produced by the original MPE coder. The dashed line represents the 
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segmental SNR of the speech signal produced by the MPE-coder with a 
reduced search interval. The effect of the reduced search frame size on 
the MPE coder with pitch prediction (Section 4.5.2) is also shown. 

(1 
that the signal 
still be followed. 

The order of the integrator has to be chosen such 
e is adequately smoothed, but transitions can 
We found that a fourth-order integrator is a good compromise. Note that 
for every new segment the memory of the integrator is cleared. Fig. 
4.22 shows the averaged segmental SNR values obtained with different 
reduced search frame sizes and with and without a pitch predictor. 

CO cr z 
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Figure 4.22. Segmental SNB values for reduced search frame sizes. 

Observe that for the version with a reduced search frame size, the 
decrease in SNR is larger if NMSIZE > NSSIZE. This effect is due to the 
fact that we determined.the position of the reduced search frame RSSIZE 
from the error e over the search interval NSSIZE, to ensure that 
all pulses were located within the search interval. 

4.6.4 Determination Of The Multi-Pulse Signal From The Residual 

The MPE analysis can be considered as a weighted residual matching 
procedure. To reduce the complexity of the MPE analysis, the residual 
r(n) can be used to determine the multi-pulse excitation signal v(n). 
Two very similar approaches were described in [Jain and Hanqartner, 
1984] [Jain, 1983] [Jain and Hangartner, 1984] and [Parker et al., 
1984], respectively. For both cases, the residual samples with maximum 
absolute values are chosen as estimates for the multi-pulse excitation. 
To incorporate the effect of the estimated pulses on the filter parame­
ters, the linear prediction equations were reformulated and solved after 
finding the pulse excitation. This modified LP analysis can be extended 
to include error-weighting [Jain and Hangartner, 1984]. The whole 
analysis can be done in an iterative manner, until some specified error 
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criterion is met. The resulting speech quality is not discussed in both 
references, but is expected to be substantially less than the results 
obtained with the original coder. The reduction in complexity depends 
on the number of iterations, but can be high. 

Based on the remark in Chapter 2 that the recomputation of the pred­
iction parameters gives only a small improvement in speech quality, the 
following approach could also be useful. Compute the filter parameters 
and the corresponding residual, and feed this residual through a weight­
ing filter l/A(z/-f). Then use the procedure suggested in [Jain and Han­
gartner, 1984] to find the pulse positions and compute the amplitudes of 
the pulses according to Eq.(4.9). Although this procedure was not veri­
fied, a performance close to the other approaches described in this sec­
tion can be expected. 

4.7 Summary 

In this chapter, we examined the multi-pulse coder. We investigated 
the influence of the various analysis parameters on the final speech 
quality using objective and subjective tests. The multi-pulse coder is 
capable of producing near toll-quality speech at medium bit rates. Male 
voices generally sound better than female voices, which can be partly 
explained by the difference in fundamental frequency. For a good qual­
ity of the reconstructed speech at bit rates around 10 kb/s, the follow­
ing parameters are recommended. Eight pulses have to be located in a 
frame of 10 ms in duration, thereby minimizing a frame equal in dura­
tion. A good procedure for finding the pulses is sub-optimal method 
SUB2. Noise weighting slightly improves the perceived quality, when the 
proposed structure is used with a weight factor equal to 0.80. 

We further examined different approaches to either improving the 
performance of the MPE coder or reducing the complexity. The best 
improvement is obtained by using a long-term pitch predictor. The vari­
able number of pulses can be an advantage for non-real-time applica­
tions. Reduction in complexity can be obtained by decreasing the search 
interval size, or using a fixed noise weighting filter whereby both 
methods may introduce a slight degradation in the perceived speech qual­
ity. 
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5. MULTX-PRTH SEftBCH CODING 

5.1 Introduction 

In the previous chapters we described parametric approaches to find­
ing the optimum excitation sequence. The excitation sequence is defined 
by a small number of parameters, whose values have to be determined by 
an appropriate procedure. Although the number of parameters is limited, 
the values of these parameters can have many or an infinite number of 
values, and a separate quantization procedure is required for transmis­
sion and storage purposes. Such a quantization procedure affects the 
quality of the reconstructed speech signal (see also Chapter 6). A 
rather different approach, which does not require a separate quantiza­
tion stage, is to select the excitation sequence from a limited number 
of possibilities. The two key components in such an approach are the 
search procedure and the selection of a collection of possible excita­
tion sequences. In this chapter we discuss possible alternatives and 
report on the simulations done with a stochastic code book approach. 

5.2 Search Procedures And Code Book Populations 

Rather than defining the excitation sequence by a limited set of key 
parameters and searching for the optimal parameter values, we can 
directly search the optimum excitation sequence out of a set of alterna­
tives. Such an approach is referred to as Multi-path Search Coding 
(MSC) [Fehn and Noll, 1982]. In this sub-section we describe two possi­
bilities for implementing the search procedure: code book coding or tree 
and trellis coding. 

A remaining problem is how to choose the appropriate candidate exci­
tation sequences. Two methods that can provide an adequate performance 
are called stochastic and iterative methods [Fehn and Noll, 19821. The 
stochastic method uses a population that is obtained from a random 
source having statistics similar to those of the signal to be encoded. 
The iterative method is based on an optimization procedure that uses a 
set of training data to select a representative set of data to populate 
the code book [Buzo et al., 1980]. The latter method is in general 
superior to the former [Fehn and Noll, 1982], but requires a significant 
amount of training data and becomes quite impractical for large code 
books and large vector sizes. In this chapter we consider only the sto­
chastic approach. 

5.2.1 Code Book Approach 

In the code book approach the possible excitation sequences have 
been stored in a code book of the appropriate size. The optimum excita­
tion sequence is found by trying every code book vector and selecting 
the one that produces the minimum weighted squared error E. The index 
of the selected sequence is transmitted and used at the receiver to 
retrieve the corresponding sequence. The number of bits per sample 
depends on both the size of the code book and the length of the 
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excitation sequence. For vectors of length L and a code book size of N 
the number of bits /sample R is given by 

log N 
P - — r " - bits/sample (5.1) 

For increasing values of N and L the complexity increases exponentially. 
If a mean-squared error distance criterion is used, the number of 
multiply/add operations per sample is 2 

5.2.2 Tree And Trellis Coding 

In tree and trellis coding [Fehn and Noll, 1982] [Stewart et al., 
1982] the excitation sequence cannot be chosen arbitrarily, but 
possesses a structure as determined by the tree or trellis. Fig. 5.1(b) 
shows an example of a tree. The tree can be divided into vertical sets 
of nodes, where each set corresponds to a time index n. 

i 1 1 1 1 i 1 1 1 i 1 1 1 1 
1 2 3 4 5 0 1 2 3 0 1 2 3 4 

n n n 

Figure 5.1. Code book (a), Binary tree (b) and trellis (c). 

For a binary tree each node splits into two branches. Each branch is 
associated with a reconstruction value. The set of all these recon­
struction values form the code book population. To determine a suitable 
excitation sequence all possible path sequences should be tried. The 
number of time samples used during the selection of the optimum path is 
called the tree depth L. The number of multiply-add operations per sam­
ple is 2(2 -1)/L and becomes excessive for large tree depths. In that 
case sub-optimal procedures have to be used. An effective search algo­
rithm is called the M-algorithm [Anderson and Bodie, 1975] which limits 
the number of possibilities by considering only the latest M branches 
that results in a low cumulative error. By using this M-algorithm, the 
tree depth can be chosen larger than in the case of an exhaustive search 
and the net result will be that the performance will be better. 

A trellis is more structured than a tree, and can be searched more 
efficiently. An example of a trellis is shown in Fig. 5.1(c). At each 
time instant only 2^ new elements are added. The value j is called the 
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trellis intensity. To perform an exhaustive search in the trellis, the 
Viterbi algorithm can be used [Forney, 1973].. The number of multiply-
add operations per sample is equal to 2^ and is independent of the 
trellis depth. 

5.3 Delayed Decision Coding Kith Stochastic Code Book Populations 

Both tree and code book coding approaches have been proposed with 
stochastic populations. The short-term correlations in the speech sig­
nal can be removed with a short-term predictor, and the resulting signal 
will have a probability distribution function (pdf) that resembles that 
of a Laplace pdf [Paez and Glisson, 1972]. When both short-term and 
long-term predictors are used the residual will have a pdf close to that 
of a Gaussian pdf [Atal, 1982]. The use of tree coders in the DDC 
scheme of Fig. 2.1 has been proposed in [Atal, 1982] for a Gaussian 
source, and in [Svendsen, 1984] for a Laplace source. 

The use of a code book approach was proposed in [Atal and Schroeder, 
1984]. Every code book vector contained 40 samples (5 ms at 8 kHz) and 
the code book consisted of 1024 vectors. This means that the resulting 
bit rate will be (log 10241/40 = 1/4 bit/sample. Each sequence of 40 
candidate excitation samples is scaled in such a way that the energy of 
the excitation sequence is equal to the energy of the prediction error 
after both short and long delay prediction. The scaled excitation 
sequence is filtered through both the pitch synthesis filter 1/P(z) and 
the speech synthesis filter 1/A(z). The difference between the result­
ing synthetic signal and the original signal is appropriately weighted 
with W(z), and the index of the sequence that produces the minimum error 
is transmitted. The coefficients of the predictors A(z) and P(z) are 
updated every 5 ms. For W(z), a filter similar to that used in MPE and 
RPE analysis can be used. However, in [Atal and Schroeder, 1984] V«(z) 
was chosen to be 

W(z) = Z(z) A(z)/A(z/-y) » [1 + az_1] A(z)/A(z/?) (5.2) 

and a and -j- were chosen to be 1.0 and 0.90, respectively. The effect of 
Z(z) will be that errors in the high frequency region will be de-
emphasized for values of a > 0. 

Another approach is to determine the pitch predictor parameters and 
the gain factor during the error minimization procedure. The pitch 
predictor parameters are computed prior to the search for the optimal 
sequence, and are selected to minimize the initial squared error. Once 
the pitch predictor parameters have been found we search through the 
code book. For each vector the optimal gain value G. is computed as fol­
lows. Let the vector e represent the initial error due to the memory 
hangover of the filters 1/P(z), 1/A(z) and V<(z). Let the vector y. be 
the result of filtering the i-th excitation vector v. through the cas­
cade of 1/P(z), 1/A(z) and Vi(z). The value of G. is determined to 
minimize the squared difference 
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E - (e(0)-G.y.)(ef0)-G.yV (5.3) 

By setting the derivative of Eq. (5.3) with respect to G. equal to zer 
we obtain for the optimal value of G. 

f 0) * * 
G. - (el Vj) / (yiy.) 

(5.4) 

Fig. 5.2 gives an example of the original, reconstructed and excitation 
waveforms as produced by this approach. The excitation sequence is 
encoded with a 1/4 bit per sample. 

—iV—-

Figure 5.2. Waveforms of the original speech (a), the reconstructed 
speech (b), and the excitation signal (c) with a code book 
containing 1024 vectors of 5 ms each. The code book is 
populated with samples from a Gaussian noise generator. 

5.4 Error Minimization Procedure 

5.4.1 Definitions 

5.5 Experimental Evaluation Of The Code book Approach 

In this section we describe the result obtained with the procedures 
explained in the previous section. The procedures are extremely complex 
and due to lack of computing power we carried out the simulations with 
only one utterance of 1.5 s (one male and one female speaker). The 
predictor coefficients were obtained by the auto-correlation method with 
a 20 ms Hamming window. The coefficients were updated every 5 ms and the 
filter order was 16. A 3-tap pitch predictor was used and the coeffi­
cients were chosen to minimize the error over 5 ms frames. The value of 
the delay parameter M was determined using the covariance method (see 
Chapter 21, and the range of M chosen was between 143 and 16. The pro­
cedure described in [Atal and Schroeder, 1984] did not give satisfying 
results. The reconstructed signal was perceived as noisy, and adjustment 
of the values of ■% and a did not lead to improvement. Better results 
were obtained with the procedure that computes the gain factor and the 
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pitch predictor parameters during the minimization procedure. Table 5.1 
lists some of the combinations we have examined. 

label 

aa 
bb 
cc 
ee 
gg 
pp 
33 
qq 

n-tap 

1 
1 
3 
3 
1 
1 
3 
3 

PP 

int 
int 
int 
int 
ext 
ext 
ext 
ext 

range 

16,143 
16,143 
16,143 
16,143 
16,143 
16,143 
16,143 
16,143 

weighting 

Z+W 
W 
z+w 
V, 
z+v. 
h 
Z+V, 

w 

SNRSEG 

11.86 
12.19 
11.42 
12.99 
10.38 
10.01 
10.59 
11.05 

SNRSEG 

12.55 
13.58 
12.38 
14.33 
11.12 
11.54 
11.95 
12.15 

TABLE 5.1. Coder combinations. 

The specification int/ext indicates whether the pitch predictor parame­
ters were determined from the residual signal, or during the analysis, 
i.e. to minimize the weighted error. For all cases the results obtained 
with the additional high-frequency de-emphasis filter were less good 
than those obtained without this filter. The one-tap predictor produced 
the best results if its parameters were determined inside the loop. The 
three-tap predictor was responsible for disturbing pops and clicks if 
the parameters were determined inside the loop. When we switched to 
out-loop computation, these effects disappeared. However, the best 
results were still those obtained with the internal 1-tap predictor 
(bb-versionl. The reconstructed signals sounded quite good, but when 
they were compared to the original signal, differences could be heard. 
In general, the sound is less clear than that of the original, but com­
parable to results obtained with the RPE and MPE coders at a much higher 
rate. The segmental SNR values of the results obtained for the utter­
ance "a lathe is a big tool" with the procedure labeled bb are shown in 
Fig. 5.3. In the same figure the SNR values obtained with an external 
pitch predictor (pp) are shown. 
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Figure 5.3. Seqroental SNR values for a female speaker (a) and a male 
speaker (b) using procedures bb (solid line) and pp (dashed 
line). The upper curve represents the speech power + 25 dB. 

The power spectra of a 32 ros segment input speech and reconstructed 
speech are shown in Fig. 5.4. 

FREQUENCY (kHz) 

Figure 5.4. Power spectra of a 32 ms segment of input speech (solid 
line) and the reconstructed speech segment (dashed line). 

The resulting error spectrum of the difference between s(n) and s(n) is 
shown in Fig. 5.5. 

S.S Experimental Evaluation Of The Code book Approach 109 

FREQUENCY (kHz) 

Figure 5.5. Power spectra of a 32 ms segment of input speech (solid 
line) and of the corresponding error signal s(n) - s(n) 
(dashed line). 

The predictor update rate is fast (5 ms), and many bits are required 
for encoding the predictor parameters. Reducing the update rate to 10 or 
15 ms, and using linear interpolation between the coefficients (see also 
Chapter 2) gave a slight deterioration in synthetic speech quality, but 
the result was still acceptable. Further reduction of the update rate to 
20 ms resulted in unacceptable distortions. 

A reduction in the code book size from 1024 to 512 has no signifi­
cant influence on the SNR and the perceived quality. The SNR values as a 
function of time for the bb-version with different code book sizes are 
shown for both a male and a female speaker in Fig. 5.6. 
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Figure 5.6. Different code book sizes for the bb-procedure. 
(solid line), NCSIZE=512 (dashed line). 

NCSIZE=1024 

From this experiment we concluded that a code book size of 1024 is a 
reasonable choice, and that more efficient code books should be obtained 
by choosing a more appropriate code book population rather than increas­
ing the code book size. Fig. 5.7 shows, for a typical voiced sound, the 
normalized weighted squared error as a function of the code book index. 
The error has been normalized to the initial error e and for each 
code book vector (NCSIZE=512), the resulting error has been drawn. The 
search procedure selects the index that produces the smallest error, and 
it is easily seen that many candidates are alike. 
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Figure 5.7. Normalized error as function of the code book index. 

The use of a uniform noise source to populate the code book gave results 
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that were only slightly worse than those obtained with a Gaussian popu­
lation. When the pitch predictor is not used, and we use a code book 
with a Gaussian population, the resulting decoded signal sounded noisy. 
The SNP values for a coder with and without pitch prediction are shown 
in Fig. 5.8. 

Figure 5.8. Performance of the bb-procedure with (solid line) and 
without pitch predictor (dashed line). 

Using a Laplace source to populate the code book while not using the 
pitch predictor yielded no real improvement. The code book samples in 
our simulations were represented in floating point notations. For prac­
tical realizations, a fixed point representation will be used. The 
number of bits used should be chosen as small as possible to reduce the 
code book size. In [Fehn and Noll, 1982] it was reported that at least 4 
bits should be used to represent a code book sample. 

In another experiment we used the stochastic code book populated 
with Gaussian noise to generate regular-pulse excitation strings. For 
each search frame, NCSIZE regular-pulse excitation strings are generated 
by taking adjacent frames from the code book. This approach is repeated 
for every offset value, resulting in an effective code book of size 
NS*NCSIZE, where NS represents the pulse spacing. For each possibility, 
the optimum gain is computed, and the offset factor and the code book 
index are selected to yield the minimum weighted mean squared error. In 
Fig. 5.9 we show the resulting segmental SNE values for a male and a 
female speaker (solid line). For comparative purposes we have also drawn 
the results obtained with the pp-version (dashed line). 
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O 25 50 75 100 125 150 175 

Figure 5.9. Comparison between the code book approach (solid line), and 
the RPE code book approach (dashed line) 

From this figure we see that the RPE approach produces somewhat better 
results due to the increased code book size. 

5.6 Summary 

In this chapter we described a multi-path search approach to deter­
mining the optimum excitation sequence. Two basic procedures can be dis­
tinguished: the code book approach and the tree or trellis approach. Vie 
described some preliminary experiments with the code book approach, and 
it was concluded that the results are comparable to those of the MPE and 
RPE coders but at a lower bit rate. It was further demonstrated that the 
use of a pitch predictor is mandatory for good results. 
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6. QUANTIZATION AMD CODING 

6.1 Introduction 

To enable the transmission of the speech coder parameters over fin­
ite rate channels, these parameters must be represented by a finite set 
of symbols in such a way that the channel rate is not exceeded. Some 
types of coders inherently produce a limited set of symbols (e.g. code 
book indices in Multi-path Search Coding), while other types need a 
separate quantization stage to map the real valued parameters into a 
finite subset of real values. Each output point of such a quantizer can 
be associated with a binary word suitable for storage or transmission. 
Any quantization procedure that is not incorporated in the encoding 
scheme will adversely affect the coder performance. Obviously, the 
optimal mapping onto a finite set of reals minimizes the number of out­
put symbols without noticeable degradation of the synthetic speech qual­
ity. In this chapter we examine quantization and coding procedures for 
the MPE and PPE coders. Vie investigate the degradation caused by quant­
ization of the coder parameters and describe efficient procedures for 
coding these quantized parameters. The MPE and RPE coders both produce 
two different parameters sets: 

1. excitation samples, 

2. filter coefficients, 

for which different quantization and coding strategies exist. Quantiza­
tion of excitation samples and filter coefficients will be discussed 
separately. 

To protect the data against channel errors extra bits can be added 
for error correction, thereby increasing the total bit rate. In the 
remainder of this chapter error free transmission is assumed. 

6.2 Quantizing And Encoding The Excitation Parameters 

The excitation of the RPE coder consists of frames of regularly 
spaced pulses, with different amplitudes (Chapter 3). At the beginning 
of every new frame, the position of the first pulse relative to the 
beginning of this frame is specified by an offset factor. Within a 
frame the spacing between the pulses is fixed and only the amplitudes 
and the offset factor have to be encoded. The excitation of the MPE 
coder consists of a set of non-uniformly spaced pulses with different 
amplitudes (Chapter 4). For every pulse the position within a frame and 
its amplitude have to be encoded. 

Sample by sample encoding of the excitation signal is very ineffi­
cient due to the high amount of zero valued samples. Coding only the 
non-zero samples is obviously a better approach. We can consider the 
pulse sequence as a discrete-time random sequence with amplitude values 
taken from an infinite (or very large) set of amplitudes. In order to 
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transmit or to store this sequence, the sample values roust be quantized 
to yield a limited set of amplitudes so that they can be represented by 
a finite set of symbols. In quantizing the non-zero pulses a similar 
approach can be followed for both the RPE and MPE coders, and we 
describe this in one single section. The encoding of the pulse positions 
for the MPE signal will be described in a separate section. 

6.2.1 Excitation Signal Statistics 

Before we started our simulations with different quantization tech­
niques we computed some signal statistics from speech samples in a 
representative database. All signals were obtained with the analysis 
procedures summarized in Tables 2.1, 3.1 and 4.1. In computing the 
statistics only the pulse amplitudes are considered and the pulses are 
normalized for frames of 10 ms. The normalization enables us to use 
fixed quantizer ranges and to use the same ranges for computing the his­
tograms. To exclude silent intervals the rms value of a set of pulses 
within a frame must exceed a threshold T (T=-52 dB relative to the max­
imum rms value). A histogram of the amplitude distributions was 
obtained by first dividing the input range up into L equally spaced 
bins, and thereafter counting the number of amplitudes that falls into 
each bin. The signal was normalized to unit variance (<J =1) by 
estimating the variance o from short-time ( 10 ms) energy measurements. 
The range was chosen between -4a and +4<? and 128 histogram bins were 
used (Fig. 6.1). 

Figure 6.1. Amplitude distribution histograms for unit variance signals 
(a) MPE, (b) BPE. 

The MPE signal has a bimodal distribution function, while the BPE signal 
tends more to a Laplace distribution. Both types of signals reveal a 
sparse density for small valued samples, which is more significant for 
the MPE pulses than for the RPE pulses. In Fig. 6.2 the amplitude his­
tograms are given for both signals normalized on the maximum amplitude 
within a 10 ms frame. 
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Figure 6.2. Amplitude distribution histograms for amplitude normalized 
signals (a) MPE, (b) RPE. 

The distribution functions of excitation signals normalized on 20 ros 
frames have the same shape as the functions of Figs. 6.1 and 6.2, but 
the density for large amplitude values is somewhat higher. 

6.2.2 Quantizer Selection 

To match the quantizer characteristics to the variations of the 
input level, the quantizer step size can be adjusted proportional to the 
signal variance [Noll, 1974]. In practical systems the quantizer is 
fixed and the signal is normalized by multiplication with a scale fac­
tor. This scale factor can be computed from samples of the input signal 
and has to be transmitted to the receiver as side information. This 
procedure is called forward estimation. Another possibility is to esti­
mate the scale factor from the quantized samples. This procedure is 
called backward estimation and needs no separate transmission of the 
scale factor but is generally less optimal than forward estimation 
[Noll, 1974]. 

The scale factor of the forward adaptive quantizer is estimated over 
NGSIZE samples and updated for every new frame of NGSIZE samples. The 
rate at which such an adaptation should take place depends on the 
characteristics of the input process. For speech we know that it can be 
considered quasi-stationary for segments of 10 to 20 ms in duration. 
This rate will also be suitable for the adaptation rate of the quan­
tizer. 

To obtain a unit-variance signal, the scaling factor G should be 
proportional to the standard deviation of the input signal. An estimate 
of the standard deviation is given by 

G = 
. NGSIZE ] 7 

2 x^Ci) NGSIZE i = l 
(6.1) 

The quantizer range can be chosen to be n times the standard deviation <J 
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where n represents the load factor. Another method of normalization is 
to use as scale factor the maximum absolute value within the current 
frame 

G - max{lx(l)l> i«l,...jNGSIZE (6.2) 

For both normalization methods the scaling factor follows the dynamic 
range of the input signal. To be able to follow this dynamic range with 
a limited number of bits logarithmic companding techniques such as u-law 
or A-law can be used. To be able to follow the dynamic range of speech 
signals (typically 30 dB) at least 4 bits are required. In our simula­
tions we used 6 bit logarithmic coding of the gain and the range was set 
between 0 and 63 dB. With these characteristics the rrns values and 
amplitude values between 1 and 1333 can be encoded. 

A zero-memory N-level quantizer Q may be defined by specifying a set 
of N+l decision levels x x , ...,x„ and a set of N output points 
Y-. > YJJ • • ■ JYH- If t n e value x of an input sample lies in the i-th 
quantization interval, i.e., 

xeR. = {xl x._. I X < x.}, i=l,...,N (6.3) 

the quantizer produces the output value y.. Since y. is used to approx­
imate samples contained in the interval R., y. is itself chosen to be 
some value in the interval R.. The interval R. is called the quantizer 
step size A and is constant for uniform quantizers. The boundary levels 
x and x^ are chosen to be equal to the smallest and largest values, 
respectively, that the input samples may have. Both uniform and non-
uniform quantizer characteristics can be used. Given the probability 
density function (pdf) of the input signal, a non-uniform quantizer that 
minimizes the quantization noise for a given number of levels N can be 
designed. The design procedure for such a quantizer was independently 
proposed in [Lloyd, 1957] and in [Max, 1960], and this optimum quantizer 
is commonly referred to as a Lloyd-Max quantizer. 

For the mean-square error criterion, with some fixed value of N, the 
optimal values for x , x , ...,x^_ , and y , y , ..., y are found by 
minimizing the mean-square distortion measure D: 

N 1 2 
D = Z | (y. - x) p(x) dx (6.4) 

where p(x) is the probability distribution function of x. By setting 
the derivatives of D with respect to the x. and y. parameters to zero we 
obtain the following conditions: 1 

y i = ƒ x p(x) dx / ƒ p(x) dx i=l,2,...,N (6.5a) 
x- , x. „ 
l-l l-l 
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x; ■ i Cy< + Yf.J ,1=1,2,... ,N-1 (6.5b) 
i * i i+l 

Thus 1) each output point y. roust be the centroid or center of mass of 
the interval R. with respect to the input density p(x); 2) each decision 
level must be halfway between the two adjacent output points. The given 
conditions are necessary but not sufficient conditions for a minimum 
error. An additional condition, i.e. log p(x) is concave, is required 
to assure that the quantizer is indeed optimal [Fleischer, 1964]. This 
condition holds for the Gaussian density as well as for many other com­
mon densities. Viith an iterative procedure [Lloyd, 1957] [Max, 1960] 
the optimal values of x. and y. can be calculated from the conditions in 
Eq.(6.5). A value for y is selected, Eq (6.5a) is solved for x , 
Eq.(6.5b) is solved for y , etc., until a value for y is obtained from 
Eq.(6.5b). The iteration will be stopped if the difference between this 
value and the one obtained from Eq.(6.5a) is small enough. Otherwise y 
is appropriately perturbed and the iteration is continued until the 
desired error criterion is achieved. 

The number of levels can be chosen to be odd or even. Odd numbers 
result in mid-tread quantizers and even numbers in mid-riser quantizers. 
A disadvantage of mid-riser quantizers is their inability to represent 
zero levels, which results in an effect called idle channel noise. Tak­
ing into account the shape of the amplitude distribution function and 
the limited number of pulses (especially for MPE signals) we can neglect 
this effect and use an even number of quantizer levels. The actual 
number of levels depends on the allowed bit rate and the number of 
pulses, and will be about 8 levels for both types of coders at a bit 
rate of around 6400 b/s. 

6.2.3 Location Of The Quantizer 

Vihen we adapt the quantizer step size for every frame of NSSIZE 
samples (forward adaptive quantization), we can include the quantizer in 
the analysis procedure. If the quantization procedure is embedded in 
the pulse search procedure (MPE coder) it is expected that the outcome 
of the search procedure will compensate to a certain extent for quanti­
zation errors. One possibility is to quantize a complete set of pulses 
at once. In this case only the initial error e in the next search 
frame is a function of the quantization process, and there is no possi­
bility that the search procedure can compensate for quantization errors 
in the current frame. The MPE procedure SUB1 (Section 4.3.4) locates 
the pulses one by one, thereby offering the possibility of instantaneous 
quantization, i.e. once a pulse has been found it can be quantized 
immediately. In an extreme case the search procedure (SUB1 or SUB3) can 
be executed with quantized pulses. 

The RPE coder finds all pulses within a search frame at once. Dif­
ferent sets are computed and the set that produces a minimum error is 
selected. If the resulting set is quantized, only the selection of the 
excitation sequence in the next search frame is affected by the quanti­
zation operation. To incorporate the pulse quantization in the 
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minimization procedure we can quantize each set separately, and select 
the quantized set that produces the minimum error. 

6.2.4 Quantizer Parameters 

In our experiments concerning the optimum quantization procedure for 
MPE and RPE coders we did not quantize the reflection coefficients. To 
evaluate the obtained results we again used the segmental SNR measure­
ments between the original and the synthetic speech signal. We are 
aware that these measures need to be interpreted carefully. For exam­
ple, SNR measurements tend to overestimate clipping errors [Makhoul and 
Berouti, 1979]. In addition to these measurements we evaluated all 
experiments with informal listening tests. Three different quantizers 
were used: 

1. Uniform quantizer with normalization to the absolute maximum, 

2. Non-uniform quantizer with normalization to the absolute maximum, 

3. Non-uniform quantizer with normalization to the standard deviation 

The quantizer characteristics are shown in Table 6.1 for normalization 
to the maximum absolute value and in Table 6.2 for normalization to the 
standard deviation. 

1 

0 
1 
2 
3 
4 
5 
6 
7 
8 

Uniform 
X 

-1.000 
-0.750 
-0.500 
-0.250 
0.000 

+0.250 
+0.500 
+0.750 
+1.000 

y 

-0.875 
-0.625 
-0.375 
-0.125 
+0.125 
+0.375 
+0.625 
+0.875 

MPE 
X 

-1.000 
-0.829 
-0.598 
-0.386 
0.003 

+0.375 
+0.583 
+0.816 
+1.000 

y 

-0.954 
-0.704 
-0.492 
-0.280 
+0.273 
+0.478 
+0.688 
+0.944 

PPE 
X 

-1.000 
-0.751 
-0.440 
-0.203 
0.002 

+0.195 
+0.427 
+0.734 
+1.000 

y 

-0.930 
-0.572 
-0.307 
-0.098 
+0.093 
+0.297 
+0.557 
+0.912 

TABLE 6.1. 8-level Lloyd-Max quantizer characteristics for MPE and RPE 
signals normalized to the maximum absolute value (10 ms 
frames). 
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1 

0 
1 
2 
3 
4 
5 
6 
7 
8 

-to 

-1 
-1 
-0 
-0 
+0 
+1 
+1 
+ <o 

MPE 
< 

501 
067 
703 
009 
673 
008 
446 

y 

- i 
- i 
-0 
-0 
+0 
+0 
+1 
+1 

762 
257 
878 
528 
509 
836 
179 
712 

RPE 
X 

— 
-2 
-1 
-0 
-0 
+0 
+1 
+1 
+ OJ 

D 

003 
119 
514 
002 
507 
094 
911 

y 

-2 
-1 
-0 
-0 
+0 
+0 
+1 
+2 

542 
463 
773 
252 
246 
768 
420 
403 

TABLE 6.2. 8-level Lloyd-Max quantizer characteristics for MPE and RPE 
signals normalized to the rms value (10 ms frames). 

The gain was quantized with 6 bits and updated every 10 ms. For each 
coder the pulses within a frame were determined without quantization 
during the search procedure. Once the pulses were found, they were 
quantized and the quantized excitation sequence was used to compute the 
initial error e of the next search frame. Fig. 6.3 shows the SNR 
values obtained by averaging the results of four different utterances 
for the MPE and RPE coder, respectively. 
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Figure 6.3. Segmental SNR values for different quantizers; NQ=not quan­
tized, UMAX=uniform quantizer with normalization to the 
absolute maximum, NUMAX and NUSTD= non-uniform Lloyd-Max 
quantizers with normalization to respectively the absolute 
maximum and the standard deviation. 

A comparison between the SNR for unquantized and quantized signals 
reveals that the difference in SNR is higher for the RPE coder. How­
ever, the ratio in SNR between the MPE and the RPE is retained. Non-
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uniform quantization is better than uniform quantisation and normaliza­
tion to the maximum absolute value is preferred over normalization to 
the standard deviation. These results were confirmed by listening 
tests. 

6.2.5 Quantization During The Minimization Procedure 

As we mentioned in the beginning of this chapter, we can also incor­
porate the quantizer in the minimization procedure. For the MPE coder 
we use minimization procedure SUB1 (Section 4.3.4), which locates one 
pulse at a time and does not perform joint amplitude optimization. 
Every newly found pulse is immediately quantized and the effect of the 
quantized pulse is subtracted from the initial error before proceeding 
with the search for the next pulse. In almost all cases quantized 
amplitude and unquantized pulses are not identical, thereby introducing 
additional sub-optimality. As a result the error minimization procedure 
may allocate the next pulse to the location of the previous pulse. To 
preclude this possibility, we have to exclude the locations of already 
found positions. We refer to the SUB1 quantization procedure as MPEQ2 
and to procedure SUB2 with one quantization step for all pulses as 
MPEQl. Fig. 6.4 shows the differences in SNR for MPEQ1 and MPEQ2. 

18-
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m 

a = MPE 8 pulses/10 ms 
A = MPE 16 pulses/10 ms 
■ = RPE NS:4 

SUB1 SUB2 MPEQl MPEQ2 RPE RPEQ1 RPEQ2 

Figure 6.4. Segmental SNR values for different quantization procedures. 

The scaling factor is normally determined from the whole set of pulses. 
For normalization on the maximum value we need all pulses, but if the 
pulses are quantized one by one the maximum value of the complete set is 
not known. Experiments reveal that the pulse with the maximum value 
within a set usually corresponds to the first pulse found. The maximum 
absolute value within a set is then approximated by the absolute ampli­
tude value of this first pulse. Fig. 6.5 shows the segmental SNR values 
for the different procedures as a function of time. 
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Figure 6.5. Segmental SNR of different quantization procedures for the 
MPE coder; MPEQl (solid line), MPEQ2 (dashed line) for 
female and male speaker. 

From these figures and the listening test we conclude that procedure 
MPEQ2 with pulse by pulse quantization produces somewhat better results 
than procedure MPEQl with segment quantization. In Fig. 4.11 we saw 
that for the unquantized pulses, the difference between minimization 
procedures SUB1 and SUB2 was small for 8 pulses/10 ms but more signifi­
cant for 16 pulses/10 ms). We compared the behavior of the procedures 
MPEQl and MPEQ2 for 16 pulses/10 ms (see Fig. 6.4) and found that even 
for this amount of pulses the performance of MPEQ2 was better than 
MPEQl. The SNR values produced by the RPE coder are also shown in Fig. 
6.4. In the first case (RPEQ1), only the optimal set is quantized, and 
in the second case (RPEQ2) every possible excitation set is quantized 
and the quantized set that produces a minimum error is selected. Fig. 
6.6 shows the SNR as a function of time for the different RPE quantiza­
tion procedures. 

Figure 6.6. Segmental SNR of different quantization procedures for the 
RPE coder; RPEQ1 (solid line), RPEQ2 (dashed line) for 
female and male speaker. 

For both cases the quantizer gain is updated for every search frame 
(typically 5 ms). From these figures we see that RPEQ2 yields a higher 
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SNR, and in listening tests the quality of the synthetic speech of RPEQ2 
was judged to be somewhat better than that of KPEQ1. 

6.2.6 Gain Update Rate 

Obviously, a faster update rate of the gain gives better results. 
Vie noted, however, that the improvements are small if, for example, a 5 
ms rate is used instead of a 10 ms rate. If quantization is applied 
during RPE analysis (RPEQ1 and RPEQ2), we have to use an update rate 
equal to the search frame size (typically 5 ms). In that case the 
number of bits required for the transmission of the gain factor can 
become excessive. One possibility is to use DPCM coding and code the 
differences between adjacent gain factors. Another possibility is the 
following. The scale factor is determined for a large frame (e.g. 20 
ms), and the frame is divided into 2 to 4 sub-frames. For every subframe 
a new gain factor is determined and the resulting gain is coded relative 
to the gain factor of the whole frame. The sub—gain factors can be 
expressed as multiples of the main gain with, for example, 2 bits (1/4, 
2/4, 3/4, and 4/4). If the scale factor of the main frame is not known 
(as is the case with RPE coders), it can be estimated from the residual 
signal. 

6 . 2 . 7 Improved Quantizer Perforrrance 

Quantization of the excitation signal deteriorates the synthetic 
speech quality. In this sub—section we describe methods to reduce these 
effects. 

6.2.7.1 Use Of A Pitch Predictor Figs. 6.7(a) and 6.8(a) show the 
excitation signals corresponding to a voiced signal for the MPE and RPE 
coder, respectively. 

1 — 'T] IT L~W\ 'II m mf—'^"TT ' rV r' T 

Figure 6.7. MPE excitation signals without (a) and with (b) pitch pred­
ictor. 

In both sequences a regular excitation pattern can be recognized. These 
pulses are due to the periodic structure of the input signal (pitch 
pulses). The large values of these pulses make the normalization pro­
cess be dominated by the value of these pitch pulses. As a result the 
remaining, and usually smaller, pulses will be quantized very roughly. 
To obtain a better match between input pulses and the quantizer charac­
teristic we have to remove these large pulses. In Chapter 2 we 
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discussed the use of a pitch predictor for the synthesis of the periodic 
components in the input signal. By the application of a pitch predictor 
we expect that the remaining excitation pulses will show a more smooth 
behavior. Figs. 6.7(b) and 6.8(b) show the corresponding excitation 
signals if a pitch predictor is applied. 

Figure 6.8. RPE excitation signals without (a) and with (b) pitch pred­
ictor. 

From this figure we see that pitch prediction removes to a certain 
extent the large pitch pulses. The resulting signal can now more easily 
be adapted to the quantizer characteristics, and the quantization error 
will be less than without pitch prediction. Fig. 6.9 shows the SNR 
values obtained from MPE and RPE analysis procedures, both incorporating 
a pitch predictor. The pitch predictor coefficients were updated at a 
rate of 10 ms. 

□ = MPE 
A= RPE 
0= MPE+PP 
+ = RPE+PP 

f 

a 

NQ UMAX NUSTD NUMAX 

Figure 6.9. Segmental SNR values for quantization with and without 
pitch prediction. 

From this figure we see that the SNR increases for both coders. In 
Chapters 3 and 4 it was noted that pitch prediction improves the quality 
of the coders. The quality improvement is higher for the MPE method. 
In fact the RPE method performs very well without pitch prediction. But 
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if the pulses are quantized, we found that the difference between RPE 
with and without a pitch predictor was more noticeable. During all 
these experiments the pitch predictor parameters were not quantized, but 
6 was limited to a value between 0 and 1 , and M was in the range of 16 
to 79. 

It is remarkable that the differences in SNR between MPE and RPE 
coders using pitch prediction become less when the excitation signal is 
quantized. An explanation for this effect is that due to the relatively 
high amount of pulses within the RPE excitation signal, quantization 
errors are more likely to occur. A pitch synthesizer uses these quan­
tized pulses to generate the periodic components in the next frame, and 
as a result large errors may occur, which have to be compensated by the 
excitation sequence to be found. To prevent such an undesired effect we 
can determine the pitch predictor parameters from the quantized excita­
tion signal (Section 2.3). The effect of this "internal" computation of 
the pitch prediction parameters is shown in Fig. 6.10. The parameter M 
was chosen between 16 and 79 and & was limited to a value between 0 and 
1. 
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Figure 6.10. Comparison between two procedures for determination of the 
pitch prediction parameters. 

From this figure we see that the RPE coder is benefited more by this 
procedure than the MPE coder. However, for both coders the sound qual­
ity was judged better when compared to synthetic speech obtained with 
"external" determination of the pitch prediction parameters. 

6.2.7.1.1 Quantization Of The Pitch Predictor Parameters The pitch 
predictor parameter set consists of a pitch period M and k predictor 
coefficients (k=l or k=3). V«e demonstrated in Chapters 3 and 4 that a 
pitch predictor is most effective for high pitched voices (M is low). 
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By limiting the range of M we can reduce the number of bits required for 
encoding. A suitable range for M is from 16 to 79 which requires 6 bits 
for encoding. This range was actually used in all simulations with 
pitch predictors and did not degrade the performance of the pitch pred­
ictors. For a one-tap pitch predictor we quantized the coefficient 6 
uniformly with 4 bits and the range was set between 0 and 1. Listening 
tests revealed that for these quantizer characteristics no differences 
could be heard with respect to the unquantized signals. The total set 
of pitch predictor parameters requires 10 bits. In [Atal, 1982] a 
method is described for quantizing the gain coefficients of a three-tap 
pitch predictor. Prior to quantization the coefficients are transformed 
to reduce the dynamic range. The transformed coefficients are quantized 
with 13 bits, which for the complete set gives 19 bits. 

6.2.7.2 Entropy Coding To reduce the bit rate without reducing the 
number of levels of a quantizer entropy coding can be used. The output 
of an N-level quantizer is one of the symbols y y ..., y each hav­
ing a corresponding probability of occurrence. 'Instead of transmitting 
log N bits/sample, variable length coding such as Huffman coding can be 
used [Huffman, 1966]. Such a code assigns a word with a high number of 
bits to a symbol with a low probability and a short word to a symbol 
with a high probability. The resulting average number of bits/sample 
approaches the entropy of the quantizer output 

N 
H - - 2 p. log2 p (6.6) 

i = l 
A disadvantage of entropy coding is that the resulting bit rate is vari­
able, thereby requiring large buffers to yield fixed bit rates. If 
entropy coding is used the optimal uniform quantizer is nearly optimal 
[Gish and Pierce, 1968]. 

Since the pitch period is usually much larger than the sample 
period, large pitch pulses will have a low frequency of occurrence. For 
voiced speech this means that if we use a multi-level quantizer (n>8), 
the outer levels will be occupied less than the inner levels. Entropy 
coding can be used [Makhoul and Berouti, 1979] to reduce the number of 
bits, thereby enabling the use of more quantization levels for a fixed 
output rate. In order to determine how useful such an approach will be, 
we measured the entropy of uniformly quantized MPE and RPE excitation 
signals. Table 6.3 shows the entropy for different levels and different 
normalizations. 
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# levels entropy MPE (bits) entropy FPE (bits) 
normalization to max 

2.80 
2.95 
3.11 

8 
9 
10 

normalizat 
11 
12 
13 
14 

TABLE 6.3. 

ion 

Ent 

to 

.ror 

2.82 
2.97 
3.12 

rms 
2.34 
2.35 
2.49 
2.52 

>y of unifo 

2.65 
2.74 
2.87 
2.94 

Entropy of uniformly quantized MPE and RPE signals. 

Practical implementations of entropy quantizers will result in somewhat 
higher entropy values than those listed in Table 6.3. This means that 
entropy coding is not very suitable for quantizers with normalization to 
the absolute maximum. For quantizers with normalization to the standard 
deviation the entropy can be lowered by extending the quantizer range. 
A range between -4c and +4o will be large enough to avoid peak clipping. 
From Table 6.3 we see that a 14-level quantizer with entropy coding 
requires approximately 3 bits per pulse. Simulations with such a quan­
tizer revealed that there was no improvement over an 8-level quantizer 
with normalization to the maximum absolute value. From these results we 
can conclude that no quality improvement can be obtained from the use of 
quantizers with entropy coding. 

6.3 Coding Of The Pulse Positions Of The MPE Excitation 

The coding of the pulse positions can be done on a frame base. To 
introduce no additional delay we can use the same frame as is used for 
computation of the quantizer gain. For k pulses within a frame of L 
samples there exist 

c =
 k=(dü7kT t6-7) 

possible sets. The minimum number of bits required for coding all these 
positions is given by 

c = l o 9 2
C b i t S (6.8) 

If the position of a pulse is coded as an offset to the frame boundary 
we need c bits per frame where c is given by 

c2 = k log2L bits (6.9) 
For a frame of size 80 and 8 pulses per frame c = 34.75 bits and c = 
50.58 bits, which is approximately 16 bits more than the theoretical 
minimum of Eq.(6.8). In the remainder of this chapter we discuss 
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methods that approximate this theoretical minimum. 

6.3.1 Differential Coding 

If we code the position of the current pulse relative to the posi­
tion of the previous pulse, and the position of the first pulse relative 
to the frame boundary we can speak of differential coding. In theory 
the bit reduction is low, because the maximum number of bits required 
for the coding of the differences is then 

- k log,(L-k) (6.10) 
In practical situations the reduction can be more effective. The histo­
gram of Fig. 6.11 shows the average number of zeros between the pulses 
within a frame obtained from a large database. Each frame of 80 samples 
contained 8 pulses. 

IT^^m^, 
20 30 

Number of zeros 

Figure 6.11. Probability of zero-string lengths. 
From this figure we see that a distance greater than 64 samples never 
occurs. If we do not want to use more than 5 bits for each differential 
position, we can code distances up to a length of 31. However, the pro­
bability of finding distances greater than 31 is small but not zero. 
One solution for this problem is to allow only odd or even positions of 
the pulses. Thus pulses are, for example, only allowed on positions 
1,3,5 etc. This operation also reduces the complexity of the search 
procedure. Listening tests showed that the degradation by this limita­
tion was very small. Fig. 6.12 shows the effect of such a limitation on 
the segmental SNB. 
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Figure 6.12. Segmental SNR of HPE coder with (dashed line) and without 
(solid line) limitation on the possible pulse locations. 

The effective maximum distance that can now be coded with 5 bits is 
equal to 63 and is according to Fig. 6.11 achievable without limitation. 

Another solution to the problem of limiting the maximum distance was 
found by taking precautions during the search procedure. Putting con­
straints on the location of the pulse to be located will of course 
reduce the efficiency of the minimization procedure. To minimize this 
effect the constraints are only used at the latest possible moment. The 
procedure is outlined in Appendix C. Simulations showed that with this 
method the maximum distance could be limited to 21 without introducing 
any audible distortion. Fig. 6.13 shows the effect of a distance limi­
tation to 31. 

150 175 
time X10 msec. 

Figure 6.13. Segmental SNB of MPE coder with (dashed line) and without 
(solid line) distance limitation. 

From these figures and listening tests it was clear that the distance 
limitation procedure performs better than the one using a sub—set of 
possible pulse positions. 
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6.3.2 Enwr^rative Coding 

In (Schalkwijk, 1972) [Cover, 1973] a coding algorithm was proposed 
which can be used for coding the pulse positions. All possible position 
sets [Eq.(6.7)] can be placed on an imaginary list. To code a set of 
positions, the list is searched for the corresponding entry and the 
index is transmitted. At the receiver this index is used to select the 
appropriate position set. This procedure is optimal if the total number 
of position sets is equal to a power of two and all pulse locations have 
the same probability. The encoding can be accomplished by traversing a 
binary tree in which a "1" branch indicates the occurrence of a pulse 
and a "0" branch indicates that there is no pulse at the current posi­
tion. Whenever a "1" is encountered, a counter is incremented, whereby 
the final value of this counter is the code word to be sent. The incre­
ment is given by: 

n\ n* 
' mTTn^mTT f o r n *■ W i 6 A 1 ) 

m/ 
" 0 f o r n < m 

where n is the remaining number of samples and m is the number of pulses 
yet to be found + 1. The basic idea is that this increment equals all 
possible excitation structures that are now precluded; with every incre­
ment the counter makes a jump to a subset of possible code words. For 8 
pulses in a frame of 80 samples, the final value of this counter is the 
35 bit code word to be sent. This procedure is illustrated in Fig. 6.14 
for the case of 2 pulses in a frame of 4 samples. 
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1 = 0 

, I 
1 = 1 I 
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1 = 1 

...~ , 1 
1=3 1=1 

Figure 6.14. Example of enumerative position 
1010. 

coding of the sequence 

Thus, suppose we have the sequence 1010. The occurrence of a "1" in 
the first sample excludes the three excitation sequences which start 
with a zero, namely 0011, 0101 and 0110. Hence an increment of 1=3 is 
obtained. The second sample is zero and therefore no increment is 
required. The third sample is a "1" and hence an additional increment 
equal to 1=1 results. All positions are now detected and the resulting 
code word C is equal to 4. A possible coding algorithm is given by: 

Initialization: 
L = size of excitation frame 
k » number of pulses 
IP(n) = pulse positions 

Coding loop: 
m := k; C :=0; 
for n = 1 to k do 
begin 

i := L-IP(n) 

C := C + 
\m 

m := m - 1 
end 

Figure 6.15. Algorithm 1: Position coding. 

The decoding procedure is complementary to the encoding procedure. For 
every possible position we check whether the corresponding increment is 
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comprehended in the code word. If this test is positive we subtract 
this increment factor from the code word and repeat the testing for the 
remaining positions. Using the same example as before, we will decode 
the code word C=4. For the first sample, a test is needed to find out 
whether the code word is greater than or equal to the increment 1=3 due 
to a "1" on the first position. This test is true, which means that the 
first pulse is located on the first position, and the increment factor I 
is subtracted from the code word C (C=4-3=l). For the second position 
we check whether the residual code word is greater than or equal to the 
increment 1=2. This is not true, which means that the second location 
contains a zero. In the third test a "1" is decoded and C is decre­
mented with 1=1 (C=l-1=0). At the receiver a final zero can be allo­
cated since all k=2 pulses have been decoded. An algorithm for the 
decoding procedure is given by: 

Initialization: 
C = code word 
L = size of excitation frame 
k = number of pulses 
v(n) « array with pulse markers 

ing loop: 
m := k; i := L; 
for n = 1 to L do 
begin 

i := i - 1 

if C >| 

begin 
v(n) 

C : = 

m : = 
end 
else v(n 

end 

Figure 

1 then 
/ 
:- 1 

< ) 
m - 1 

:= 0 

6.16. Algori thro 2 Position decoding. 

Using the enumeration procedure each possible excitation string will be 
assigned an unique code word C with a value between 0 and c-1, where c 
was defined in Eq. 6.7. A proof of the validity of this procedure can 
be found in [Schalkwijk, 1972]. 
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6.3.3 Complexity Of The Coding Algorithir.s 

The complexity of the differential coding algorithm is not high. 
The use of the distance limiting procedure results in an additional com­
plexity of the MPE analysis but is partly compensated by the reduction 
in size of the search frame. The encoding procedure is further straight­
forward . 

The enuroerative encoding procedure does not increase the complexity 
of the MPE analysis but the encoding procedure is more complex than the 
differential encoding procedure. In an excitation seguence of size L 
with k pulses there are (k-1)(L-k+1) combinatorial terms which have to 
be stored. For k=8 and L=80, 511 combinatorial terms consisting of 35 
bits each have to be stored. At the encoder for every pulse, a memory 
reference and an addition of a combinatorial term have to be made. 

At the receiver, L comparisons have to be made between the code word 
and a combinatorial terra which has to be retrieved from memory. 

If the memory space available is limited, the required storage space 
can be reduced by an on-line computation of the combinatorial terms by 
making use of the recursive relation: 

n-l\ /n-l\ 
■H n > m l 1 (6.12) m J \m-l/ 

This recursion can be repeated until combinatorial terms are found in 
appropriate forms such as: 

M M 
(6.13) 

An addition of all these values gives the value of the desired combina­
torial term. 
6.3.4 Corrbined Encoding Of Position And Amplitude 

For the encoding of one single pulse we need for an 8-level quan­
tizer 3 bits for the amplitude and approximately 5 bits for the posi­
tion, resulting in 8 bits/pulse. If the number of bits required for the 
position and amplitude coding are not integers we can save bits by the 
combined encoding of amplitude and position. 

6.3.4.1 Enwr,erative Coding Of Positions And Amplitudes For an excita­
tion sequence of size L with k pulses, each having one out of N possible 
amplitude values, the number of possible combinations is given by: 

L^ k 
N (6.14) M 

Similar to the enumerative coding of the positions, indices can be used 
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to represent these possibilities. With the index as code word and assum­
ing that all possibilities have an equal probability of occurrence, the 
minimum number of bits needed to represent an excitation sequence is 
given by: 

H « log! N - log + k log N bits (6.15) 

It can be seen that both the pulse positions (first term) and the ampli­
tudes (second term) can then be coded optimally. For 8 pulses in a frame 
of 80 samples and a 6 level quantizer the entropy equals H - 55.39 bits, 
so that every frame can be encoded with 56 bits. The position encoding 
procedure of Section 6.3.2 can be modified to incorporate the amplitude 
encoding. For this purpose the "l"'s in the binary tree are replaced by 
the different amplitude values, and the increment then depends on the 
selected amplitude value. Having N amplitudes a(0), a d ) , ..., a(N-l) 
the increment can be represented by: 

I = N™ + j IN™ - 1 , where (6.16) 

n ■ remaining number of samples 
m = number of pulses yet to be found + 1 
j a index of amplitude a(j) 
N a number of amplitude values 

The first term in Eq.(6.16) represents the number of possible excitation 
sequences having a zero at that position. The second term gives an 
additional offset, which depends on the amplitude: if amplitude a(j) is 
detected, the counter is incremented with the number of branches con­
nected to the nodes a(0) to a(j-l). In Fig. 6.17 this procedure is 
illustrated for 2 pulses in a frame of 4 samples. The pulses can have 
either amplitude a(0) or a(l). 
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Figure 6.17. Example of enumerative encoding procedure for position and 

aropl i tude. 

The coding procedure is given by the next algorithm: 

Initialization: 
L • size of excitation frame 
k = number of pulses 
IP(n) = pulse positions 
b(n) = pulse amplitudes 
N • number of amplitude values 
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Coding loop: 
m := k; C :=0; 
for n = 1 to k do 
begin 
i:- N-IP(n) 
for j = 0 to N-l do 
begin 

if b(n) « a(j) then C 

end 
m : • m - 1 

end 

Figure 6.18. Algorithm 3: Pulse position and amplitude coding. 

The complementary decoding procedure is similar to algorithm 1 «here 
only positions were detected; first a test is necessary to determine 
whether a zero or a pulse is to be decoded. Then additional tests are 
required to find out what particular amplitude has to be selected. This 
procedure is given by the following algorithm: 

Initialization: 
C ■ code word 
L = size of excitation frame 
k ■ number of pulses 
v(n) = excitation array 
N ■ number of amplitude values 
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Decoding loop: 
ro •■= k; i : • L; 
for n = 1 to L do 
begin 
i :- i - 1 

,i\ ra 
if C i N then 

begin 
c :^(mK 
found := false 
for j » 0 to N-l while found = false do 
begin 

/ i \ m-1 
if C > j N then 

\ro-l/ 
begin 
v(n) :- a(j) 

/ i\ m-l 
C : = C - j N 

\ro-l] 
m := m - 1 
found :" true 

end 
end 

end 
else v(n):=0 

end 
Figure 6.19. Algorithm 4: Pulse amplitude and position decoding. 

6.3.4.2 Differential Coding With Arr.plitude Coding Viith a combined 
encoding of differential position and amplitude we get the so-called 
variable-length-to-block code, a generalized run-length code [Golomb, 
1966], which was extensively described in [Jelinek and Schneider, 1972]. 
The described algorithm gives a set of source words consisting of a 
string of zeros followed by an amplitude value that need not be dif­
ferent from zero. Each source word is numbered and the number, in binary 
representation, is used as code word. 

As an example of this algorithm we will construct a set of 9 source 
words for the amplitude values -1,0 and +1, and we assume that the pro­
babilities P( . ) of these variables are P(0)»0.9 and P(+l)-P(-l)-0.05. 
Let T denote the number of source words, Vi(T) the set of source words, w 
a source word of Vi(T), c the number of amplitude values and J the set of 
amplitudes values J={-1,0,+1>. 

The first step is to set T=c and Vi(TW. Then choose that w of fci(T) hav­
ing the greatest probability, and make new source words by extending w 
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with the words of J. Combine the new words with the words of W(T), 
thereby excluding w. Next a new set of size T=c+l(c-l) has been formed: 

W(T)={-1,+1,0-1,0+1,001, 

T=c+(c-l)=5. 

The same procedure applied to tof51 gives: 

W(T) = {-1,+1,0-1,0+1,00-1,00+1,000} , 

T=c+2(c-l)=7. 

Vi(9) is found by using W(7) as input and gives: 

WT) = <-1 , + 1 ,0-1,0+1,00-1,00+1,000-1,000+1,0000} , 

T=c+3(c-l)=9. 

It can be shown [Jelinek and Schneider, 1972] that T=c+n(c-l), where n 
denotes the number of extensions. The value n actually represents the 
maximum number of zeros preceding a pulse. The procedure above can be 
repeated until an appropriate value of T has been reached. Using b bits 
per pulse, this value is limited by 

T = c + n(c-l) < 2b (6.17) 

The value of c is equal to the number of different amplitudes within an 
excitation sequence. This means that for symmetrical quantizers with 2n 
and 2n+l (n=l,2,..) levels the value of c for a particular n remains the 
same. Hence, using this code, a 7 level quantizer gives the same bit 
rate as a 6 level quantizer. In Table 6.4 the number of source words T 
and the maximum length n of the string of zeros are listed as a function 
of b and the number of quantizer levels N. 

bits b : 
T : 
n : 

N=6,7 

6 7 8 
61 127 253 
9 20 41 

N-8,9 

6 7 
57 121 
6 14 

8 
249 
30 

TABLE 6.4. T and n as functions of the number of bits b and the number 
of quantizer levels 1. 

The code words representing the source words can be found by ordering 
the source words and using the index as code word. If the source words 
are ordered according to an increasing number of zeros in front of the 
non-zero amplitude values, then any code word C is given by: 

C = Z*N + j , where (6.18) 

file:///ro-l
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2 = number of zeros 
j « index of ampli tude a(j) 
N = number of non-zero amplitude values 

The encoder counts the number of zeros between the pulses and whenever a 
non-zero amplitude value is detected, a code word is computed using 
Eq.(6.18). In case a maximum number of zeros is not followed by an 
non-zero amplitude, a code word C is computed from: 

C = (NZM + 1)*N (6.19) 

where NZM = maximum number of zeros (n in Table 6.4). For 7 bits/pulse 
this happens whenever 21 successive zeros occur. 

The decoding procedure could be accomplished using two memory refer­
ences: the code word extended with a logical 0, being the address of the 
number of zeros to be outputted,and the code word extended with a logi­
cal 1, the address of the pulse amplitude. At the receiver the coding 
table roust be stored as a two-dimensional table, representing the number 
of zeros and the amplitude. In Table 6.5 this is illustrated using the 
source words obtained in the previous example. 

source 
word 

-1 
+1 
0-1 
0+1 

00-1 
00+1 
000 

code­
word 

000 
001 
010 
011 
100 
101 
111 

number 
of zeros 

0 
0 
1 
1 
2 
2 
3 

ampli­
tude 

-1 
+1 
-1 
+1 
-1 
+1 
0 

TABLE 6.5. Example of coding and decoding procedure. 

6.3.5 Computational Complexity 

If the pulse amplitude value and pulse position are jointly coded 
with the enumerative encoding procedure, two memory references to com­
binatorial terms have to be made, after which the increment can be found 
by three multiplications and an addition. This increment has to be 
added to the increment already found. 

At the receiver, L comparisons have to be made between the code word 
and a combinatorial term multiplied by a factor which depends on the 
value of N and the number of pulses which are yet to be found. If a 
pulse is detected then another memory reference to a combinatorial term 
is necessary. For amplitude decoding, a multiplication and several 
additions are required. The total number of additions will depend on 
the actual amplitude and will be L in the worst case. 
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For the variable-length-to-block code no terms have to be stored at 
the encoder since all code words can be computed from the multi-pulse 
signal. At the encoder it is first necessary to test whether a sample 
is a pulse or a zero. If it is a non-zero amplitude value, a multipli­
cation followed by an addition gives the code word. 

At the receiver two memory references per pulse have to be made; the 
first gives its number of preceding zeros,and the second the amplitude 
value. The decoded number of zeros is outputted and followed by a pulse 
of the decoded amplitude. 

6.4 Quantizing And Encoding The Filter Parameters 

The p-th order all-pole synthesis filter 1/A(z) can be uniquely 
specified by different parameter sets [Rabiner and Schafer, 1978, p. 
441]. For example, the auto-correlation coefficients <c(k)>, the filter 
coefficients (a^}( the reflection coefficients <p, } and the poles of 
1/A(z) all specify the same transfer function. In selecting a parameter 
set suitable for quantization we require 1) filter stability upon quant­
ization and 2) a natural ordering of the parameters. The second 
requirement is not mandatory but enables the use of parameter statistics 
for coder design. Reflection coefficients or PARCOR's (PARtial CORrela-
tion coefficients) satisfy both requirements. In [Viswanathan and 
Makhoul, 1975] a comparison was made between various filter parameter 
sets and it was shown that the reflection coefficients are the most 
effective parameters to be used for transmission. Another coefficient 
set that also possesses the required properties is called the Line Spec­
tral Pair (LSP) representation [Soong and Juang, 1984] Oakita, 1981]. 
This coding scheme transforms the set of p poles inside the unit circle 
into a set of p poles on the unit circle. The new poles then become 
automatically ordered by frequency. 

The synthesis filter coefficients parametrize the spectral envelope 
of the speech signal and for a good quality it is necessary to maintain 
the shape of this envelope upon quantization. A distance between the 
log power spectra of the unquantized and the quantized filters can be 
used as a measure for the spectral match. Let the spectrum of the all-
pole model be represented by P(u) = ll/Ate-^ )l and the spectrum of the 
quantized filter by P(u), where u is the normalized frequency. The log 
spectral difference between P(u) and Ptu) is defined as 

AV(w) = In [P(u) - In [P(u)] (6.20) 

The distance d between the log spectra can be defined in terms of an L 
norm , i.e. , q 

1 
d = [ f lAV(u)iq d ^ ] q (6.21) 

—It 

where q is a positive integer. For the L norm, d represents the aver­
age of the absolute value of the difference fspectral deviation) between 
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the two log spectra P(o>) and Pfu). For q»2, d represents the root mean 
square (rms) value of the spectral deviation. 

Quantization changes the values of the reflection coefficients. To 
investigate the effect of these perturbations, it is necessary to deter­
mine the sensitivity of the all-pole model spectrum to small changes in 
the values of the reflection coefficients. The spectral sensitivity for 
the PARCOR coefficient p(i) is defined as 

VTTT ■ H f If-ffrl (6.22) 
3 p ( l ) APfi).0 AP ( l ) 

where AS is the deviation in the all-pole spectrum due to a change Ap(i) 
in the coefficient pti). As a measure of spectral deviation any of the 
L norms can be used. The sensitivity can be determined experimentally 
for the L norm [Viswanathan and Makhoul, 1975], or analytically for the 
L norm [Gray and Markel, 1976]. It appears that the sensitivity is 
high for reflection coefficients with a magnitude close to one and that 
the corresponding sensitivity curve is U shaped. Due to this non-flat 
sensitivity curve, linear quantization of the PARCOR parameters is not 
optimal. One approach to overcoming this difficulty is to reduce the 
sensitivity by pre-emphasizing and windowing the data prior to spectral 
analysis [Tohkura and Itakura, 1979]. Another possibility is to apply a 
non-linear transformation to the reflection coefficients, such that the 
transformed parameters have a flat or constant spectral sensitivity 
behavior. Two proposed transformations are the log area transformation 
[Viswanathan and Makhoul, 1975], 

that yields a set of LAR parameters, and the inverse sine transformation 
[Gray and Markel, 1976] [Gray et al., 1977] 

eti) - sin_1[p(i)] (6.24) 

that yields a set of theta parameters. The transformed parameters are 
then quantized with a uniform or non-uniform quantizer. The quantizer 
features such as number of levels per coefficient and the input range 
are determined by optimization of an appropriate design criterion, such 
as minimizing the maximum spectral deviation [Viswanathan and Makhoul, 
1975] [Gray and Markel, 1976] [Gray et al., 1977] or minimizing the 
expected value or mean of the spectral deviation [Gray et al., 1977]. 
In [Gray and Markel, 1980] the quantizer design procedures for both cri­
teria were described. 

The distributions of the reflection coefficients are shown in the 
histograms of Fig. 6.20. These histograms show the amplitude distribu­
tions of the different reflection coefficients obtained from speech sam­
ples in a representative database. The coefficients were obtained with 
the auto-correlation method with a 25 ms Hamming window and update rates 
of 10,15 and 20 ms. 

6.4 Quantizing And Encoding The Filter Pararr.etevs 143 

i j l r ^ , 

■illllillll llillllllfftiiw 

Jiiïfk_ 



144 QUANTIZATION MID CODING 

Figure 6.20. Histograms of reflection coefficients. 

The first two coefficients show a strong skewing effect towards +1 and 
-1, respectively. This characteristic has been theoretically shown for 
voiced speech [Markel and Gray, 1974]. The bimodal distribution of p(2) 
is due to the inclusion of unvoiced sounds and silence frames. The 
remaining histograms are reasonably well modeled by Gaussian probability 
density curves. The maxima and minima of these parameter distributions 
are listed in Table 6.6, along with mean values and standard deviations. 

Coef. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Minimum 

-0.931 
-0.996 
-0.805 
-0.922 
-0.756 
-0.869 
-0.762 
-0.723 
-0.635 
-0.631 
-0.522 
-0.619 

Maximum 

0.996 
0.800 
0.876 
0.811 
0.770 
0.591 
0.762 
0.694 
0.772 
0.505 
0.464 
0.459 

Mean 

0.682 
-0.301 
0.128 

-0.163 
0.004 

-0.182 
0.010 

-0.003 
0.083 

-0.088 
-0.037 
-0.069 

Standard 
Deviation 
0.407 
0.465 
0.286 
0.308 
0.254 
0.221 
0.223 
0.212 
0.242 
0.164 
0.129 
0.123 

TABLE 6.6. Statistics of reflection coefficients. 

Thus far the reflection coefficients were treated as though they 
were independent of each other and also independent from frame to frame. 
This independence is not a real assumption. The coefficients within a 
frame are correlated and there also exists correlation between coeffi­
cients of adjacent frames. These correlations can be exploited to 
obtain more efficient coding schemes. We speak of scalar quantization 
if the parameters are still treated as single quantities, and vector 
quantization if a whole set of parameters is considered at once. To 
remove the correlations between the parameters within a set, a new set 
of parameters which are linear combinations of the original parameters 
[Segall, 1976] is formed. The transformed parameters are directly 
related to the original parameters by the following equation: 

Qfcx (6.25) 
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where the p-dimensional column vector x represents the set to be quan­
tized and Q the matrix whose columns are the eigenvectors of the covari-
ance matrix C (i.e. C = [xx ]) of the vector x. The new parameter vec­
tor will have p uncorrelated elements. For a 10-th order filter about 3 
bits per set are saved by this transformation [Fussel, 1980]. Every 
decorrelated component can be quantized with a Lloyd-Max quantizer 
[Lloyd, 1957] [Max, 1960], whereby the number of bits for each coeffi­
cient is determined by an appropriate bit allocation procedure [Segall, 
1976]. At the receiver, the vector x can be retrieved from the vector y 
by an inverse transformation 

* ■ Q y (6.26) 
The whole procedure is called optimal scalar quantization. In practice, 
one estimates the covariance matrix C and the corresponding transforma­
tion matrix Q from a representative collection of speech samples. 

The dependence between the predictor parameters of succeeding frames 
can be removed by coding the differences between the coefficients of 
adjacent frames. This approach was first proposed in [Sambur, 1975]. 
For each coefficient a first-order Differential PCM quantizer is con­
structed, which quantizes the difference between the current coefficient 
value and an estimated value. The estimated value is a linear function 
of the coefficient of the previous frame. The predictor coefficient a 
of the quantizer can be adapted to the input signal characteristics 
(e.g. voiced and unvoiced). However, in [Sambur, 1975] it was concluded 
that a fixed value for a (a ■ -1) had a performance quite close to the 
adaptive case. Fig. 6.21 shows the amplitude distribution functions of 
the first four DPCM encoded reflection coefficients. 

—^TTfl^li 

Figure 6.21. Histograms of DPCM encoded reflection coefficients. 
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A fixed predictor with a =-1.0 was used. The maxima and minima of these 
distributions are listed in Table 6.7 along with mean values and stan­
dard deviations. 

Coef. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Minimum 

-1.713 
-1.482 
-1.211 
-1.242 
-1.181 
-0.945 
-0.834 
-0.887 
-0.856 
-0.703 
-0.572 
-0.603 

Maximum 

1.625 
1.403 
1.317 
1.253 
1.114 
0.937 
1.020 
0.916 
0.884 
0.591 
0.662 
0.658 

Mean 

0.002 
0.002 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 
0.000 

Standard 
Deviation 

0.234 
0.253 
0.222 
0.202 
0.194 
0.179 
0.169 
0.165 
0.159 
0.142 
0.128 
0.124 

TABLE 6.7. Statistics of DPCM encoded reflection coefficients. 

The amplitude distribution histograms for the differential values are 
easily modeled by a gamma density for the first coefficient and Laplace 
densities for the higher order coefficients. For these distribution 
functions optimal quantizer characteristics are available [Paez and 
Glisson, 1972]. 

Application of vector quantization (VQ) to the coding of LPC filter 
parameters was first described in [Buzo et al., 1980]. The basic con­
cept of this procedure is shown in Fig. 6.22 

CODE BOOK 
GENERATION 

speech 
vectors 

CODE BOOK 

t 
DISTANCE 

MEASUREMEN T 
vector 
i ndi ces 

Figure 6.22. Basic concept of vector quantization for coding of the 
filter parameters. 

A large database containing filter parameters obtained from different 
speakers is used to generate a code book. The code book may contain 
other parameters than these filter parameters, such as auto-correlation 
coefficients or cepstral coefficients. The code book must be con­
structed in such a way that the average spectral distortion from all the 
input vectors to their best match in the code book vector collection is 
minimized (see also Appendix D). The degree of matching is measured by 
an appropriate distortion measure such as the Itakura measure or the 
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likelihood ratio [Gray et al., 1980]. The quantizer uses the same dis­
tortion measure as was used during the design of the code book, to 
select the code book vector that has the best match to the input vector. 
The corresponding code book index is used as the transmission or storage 
parameter. An objective and subjective evaluation of scalar and vector 
quantization procedures for reflection coefficients can be found in 
[Juang et al., 1982]. The scalar method was based on the minimum devia­
tion method [Gray et al., 1977] [Gray and Markel, 1980], There it was 
stated that 10 bit vector quantization had a performance similar to 24 
bit scalar quantization. In [Roucos et al., 1982] a similar comparison 
between VQ and optimal scalar quantization was made, and it was con­
cluded that the deviations were less dramatic. Vector quantization with 
10 bits/set produced the same mean square error as 15 bits/set optimal 
scalar quantization. Despite the savings in bits, two drawbacks exist 
for the application of vector quantization. First the enormous complex­
ity of the search procedure and second the performance on speech samples 
not used for code book generation. The complexity can be reduced by 
using sub-optimal search procedures (e.g. tree-search) at the expense of 
a slight decrease in performance [fcong et al., 1982]. The effects of 
decreased performance for outside training data can only be minimized by 
using a very large training set that requires enormous computational 
effort. 

6.4.1 Quantization Of The Filter Paratr,eters For The RPE And MPE Coders 

To investigate the effect of filter parameter quantization on the 
synthetic speech quality of MPE and RPE coders, we performed computer 
simulations with different quantization procedures. In these experi­
ments, the excitation signals were not quantized. After LPC analysis, 
the reflection coefficients were quantized and these quantized coeffi­
cients were used in the analysis by synthesis procedures for determining 
the excitation sequence. Obviously, the excitation signal can to a cer­
tain extent correct for quantization errors in the filter parameters, 
but we ignore this effect. Based on our previous experiments, a 12-th 
order filter was chosen, which is considered to be a good choice in 
terms of quality and bit rate. Our main judgement between the different 
methods will be based on informal listening tests by experienced 
listeners. The segmental SNR ratio was not considered very useful for 
the judgement of the spectral differences, so we applied the rms log 
spectral measure for this purpose. In [Gray and Markel, 1976] different 
distance measures and their properties are described and the log rms 
spectral distance was found to be an adequate measure. All quantization 
procedures were implemented in floating point arithmetic so that coeffi­
cient transformation functions such as sine and logarithmic functions 
were performed with full precision. In real-time implementations these 
functions have to be approximated, thereby possibly introducing degrada­
tion in quantizer performance; however some initial experiments showed 
that these effects can be neglected. As a reference quantization pro­
cedure we took the quantization scheme described in [Sluyter et al., 
1984], and listed in Table 6.8. 
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Coef. 

1,2 
3 
4 
5,6,7,8,9,10 
11,12 

Minimum 

-0.999 
-0.580 
-0.850 
-0.700 
-0.400 

Maximum 

0.999 
0.850 
0.580 
0.650 
0.300 

Number of bits 

6 
5 
5 
4 
3 

TJfflLE 6.8. Reference quantization procedure (RP). 

The total number of bits for a twelfth-order filter is 52, resulting in 
a bit rate of 2600 b/s for a 20 ms update rate. A comparison of the RP 
scheme to other quantization schemes found in literature [Tremain, 1982] 
[Atal, 1982] revealed that this number of bits is amply sufficient. In 
our experiments we investigated other quantization procedures with a 
performance equal to the RP scheme but that requiring fewer bits. 

In [Gray and Markel, 1980] two procedures for designing scalar quan­
tizers were described. Both methods minimize the spectral deviation or 
L distance between the unquantized and quantized log spectra 
[Eq.(6.21)]. The first method attempts to minimize the maximum spectral 
deviation (D ) and is called Uniform Sensitivity (US) quantization. The 
second method attempts to minimize the expected value or mean (D ) of 
the spectral deviation and is called Minimum Deviation (MD) quantiza­
tion. Both minimizations are done over all frames of speech in a 
representative database. The derivative of the spectral deviation with 
respect to a single parameter has a magnitude which has been called the 
sensitivity for that parameter [Eq.(6.22)]. The sensitivity curve of 
the parameters is made uniform by transforming the reflection coeffi­
cients to inverse sine coefficients [Eq.(6.24)]. The sensitivity of the 
resulting theta coefficients is determined empirically from a large data 
base. Fig. 6.23 shows the evaluated mean sensitivity, the maximum sen­
sitivity and the mean plus two standard deviation sensitivity. 
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Figure 6.23. Theta coefficient sensitivity. 
The reflection coefficients were obtained from 12-th order auto­
correlation analysis on 25 ms frames with a Hamming window, and update 
rates of 10, 15 and 20 ms. To obtain a good estimation of the sensi­
tivity, the mean sensitivity plus two times the standard deviation sen­
sitivity was used. The number of levels assigned to each theta coeffi­
cient is a function of the sensitivity of that coefficient and the coef­
ficient statistics. For uniform sensitivity quantization, the theta 
coefficients are uniformly quantized over the range of all values from 
the absolute minimum to the absolute maximum and parameter statistics 
are ignored. In [Gray and Markel, 1980] it was suggested that a more 
reasonable approach is to choose statistically meaningful extremes such 
as two standard deviations from the mean value. For the Minimum Devia­
tion quantization, the theta coefficients are non-uniformly quantized 
and the amplitude probability function is explicitly used. To design US 
and MD quantizers, the deviation (D for US and D for MD) is specified 
and the design procedures minimize the number ofalevels/coefficient for 
the given deviation. To obtain a specified number of bits/set the 
design deviation has to be adjusted until the required number of bits is 
obta i ned. 

For the design of optimal scalar quantizers we specify the total 
number of bits per frame, and distribute the available bits over the 
different parameters. The bit allocation procedure is based on the 
assumption that each parameter has a uniform sensitivity and a Gaussian 
amplitude distribution (which is not true for the first two reflection 
coefficients). Once the number of bits for each parameter is known, 
optimal uniform or non-uniform quantizers can be designed. 

Vie used the design procedures described to obtain different quan­
tizer characteristics for the encoding of 12 inverse sine coefficients 

file:///mEAN
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with 44 bits per set. For the DPCM quantizer we used 33 bits per set. 
The bit allocation for each quantizer is shown in Table 6.9. The spec­
tral deviation per coefficient (D), was .68 and .40, respectively, for 
the US and the MD quantizer design procedure. The optimum scalar quan­
tizers (OS) were implemented without parameter decorrelation. The suf­
fices u and nu denote uniform and non-uniform quantizers, respectively. 

coef. 

RP-u 
US-u 
MD-nu 
OS-u 
OS-nu 
DPCM-nu 

1 

6 
7 
7 
5 
5 
5 

2 

6 
6 
5 
5 
5 
5 

3 

5 
5 
5 
4 
4 
4 

4 

5 
4 
4 
4 
4 
4 

5 

4 
4 
4 
4 
4 
3 

6 

4 
3 
4 
3 
3 
3 

7 

4 
3 
3 
3 
3 
2 

8 

4 
3 
3 
3 
3 
2 

9 

4 
3 
3 
4 
4 
2 

10 

4 
4 
2 
3 
3 
1 

11 

3 
4 
2 
3 
3 
1 

12 

3 
4 
2 
3 
3 
1 

SUM 

52 
44 
44 
44 
44 
33 

TABLE 6.9. Bit allocation for different quantizers. 

Fig. 6.24 shows the log spectral distance for the different methods as a 
function of time for both a female and a male speaker. 

Figure 6.24. Log spectral distance as a function of time for US (a), 
OS-u (b), MD (c), OS-nu (d) and RP (dashed line) quantiz­
ers for a female speaker. 
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Figure 6.25. Log spectral distance as a function of time for US (a), 
OS-u (b), MD (c), OS-nu (d) and RP (dashed line) quantiz­
ers for a male speaker. 

The update rate of the coefficients is 20 ms and the distance is com­
puted for every set of coefficients. In each figure the RP results are 
given as a reference (dashed line). From this figure we see that US and 
OS-u produce similar results, which was expected because both minimize 
the maximum spectral deviation. The same is true for MD and the OS-nu 
quantizers. In listening tests the quantizers that produce a constant 
distance such as the RP, MD and OS-nu quantizers were preferred over the 
US and OS-u quantizers. For the female speaker the large deviations in 
spectral distance for the US and OS-u quantizers were clearly perceived 
as distortions. For male speakers the differences between the various 
quantizers were less noticeable. Informal listening tests revealed that 
the performance of the MD quantizer was equal to that of the RP quan­
tizer. 

The spectral distance function of the DPCM coder is shown in Fig. 
6.26 for 10 and 20 ms update rates. 

Figure 6.26. Log spectral distance as function of time for the DPCM 
coder at a 10 ms (a) and a 20 ms (b) update rate. 
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At an update rate of 20 ms these quantizers sometimes produced clicks, 
which was due to a fast change of coefficient values. These clicks 
disappeared when a 10 ms update rate was used. The performance for male 
speakers was better than for female speakers. Generally, the perfor­
mance of the DPCM coders was quite good for the number of bits used. 
The susceptibility to fast coefficient changes can be reduced by making 
the predictor coefficient of the DPCM quantizer less than one and allo­
cating more bits per set. 

To get some insight in the performance of vector quantizers, we used 
the approach proposed in [Roucos et al., 1982], which uses the Euclidian 
distance between Log Area Ratios [Eq.(6.23)] as distance measure. The 
advantage of this measure is its ease of implementation in comparison to 
other distortion measures such as the log-likelihood ratio [Juang et 
al., 1982]. The training data consisted of approximately 70 seconds of 
speech, spoken by two male speakers and one female speaker. The speech 
material was analyzed with the auto-correlation method using 25 ms Ham­
ming windows and an update rate of 10 ms. The resulting 7000 sets of 12 
LAR coefficients each, were used to generate a 10-bit code book (1024 
vectors). The binary split algorithm was used with a perturbation fac­
tor S=0.01 and a convergence threshold £=0.005 (see also Appendix D). 
Two utterances spoken by the same speakers as used for the training data 
were used for evaluation. One of the utterances was actually used for 
training (inside training data), while the other was not (outside train­
ing data). The reflection coefficients were quantized using a full 
search through the code book and the LAR distance measure. Fig. 6.26 
shows the spectral distance function for inside and outside training 
data for both a male and a female speaker. 

Figure 6.27. Log spectral distance as a function of time for a female 
speaker (a,b) and a male speaker (c,d), with outside 
training data (a,c) and inside training data (b,d). 
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Note that the inside training data utterances correspond to the ones 
used in Figs. 6.24, 6.25, and 6.26. The dashed lines represent the 
spectral distances obtained with the reference method. To obtain a sub­
jective impression, we used the quantized coefficients in the RPE pro­
cedure. From listening tests we concluded that the performance with the 
inside training data is quite good. The performance with outside train­
ing data is only satisfactory for the utterances spoken by male speak­
ers. The utterance spoken by a female speaker sounds rough and dis­
torted. This effect is also noticeable in Fig. 6.27, and is mainly due 
to the small training set, and the relative low amount of "female" 
speech. The appropriate size of the training sequence is hard to deter­
mine, but different researchers proposed that the size should at least 
be 50 times larger than the code book size. Furthermore, the training 
sequence should consist of speech samples spoken by many different 
speakers and recorded with different acoustic environments. To further 
improve the performance of VQ, larger code books should be used, which 
requires for sub—optimal search procedures to enable practical implemen­
tations. 

6.5 Summary 

In this chapter we described efficient procedures for encoding the 
positions of the MPE excitation sequence. These procedures possess a 
low complexity and require approximately 5 bits per pulse position. Vie 
further examined the effects of quantization of the parameters of the 
MPE and RPE coders. It was shown that the predictor parameters can be 
efficiently coded with 44 bits per set of 12 coefficients. This results 
in a bit rate of 2200 b/s for a 20 ms rate, which leaves us with approx­
imately 7000 b/s for the encoding of the excitation signal. The excita­
tion signal can be coded with an APCM coder which normalizes to the max­
imum absolute value within a frame. The use of a Lloyd-Max quantizer 
improves the quality of the synthetic signal but good results were also 
obtained with a uniform quantizer. The use of a pitch predictor has a 
positive result on the perceived quality for both the MPE and the RPE 
coder, although the latter also performs equally well without a pitch 
predictor. Using 3 bits/pulse, the excitation signal can be encoded 
with 6400 b/s, so that the total number of bits will not exceed 9600 
b/s. 
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CODER PERFORMANCE EVALUATION 
7.1 Introduction 

In the previous chapter we described efficient quantization and 
encoding procedures for the RPE and MPE coder parameters. In this 
chapter we evaluate the coder performance at various bit rates. We start 
with evaluating the performance at bit rates between 10 and 16 kb/s, in 
which range we aim to encode (near) toll quality speech. We further 
investigate the performance of the coders at lower bit rates (around 5 
kb/s). To enable an adequate coder performance at these low rates, vec­
tor quantization techniques are used for encoding the excitation 
sequence. Another interesting aspect is the performance of the RPE and 
MPE coders at higher sampling rates (16 kHz), to provide wide band 
speech coding (7 kHz bandwidth), which has gained increasingly more 
interest with the advent of additional telephone services such as tele­
conferencing. Furthermore, we tested the coders using speech samples 
corrupted by background noise, and by using multi-speaker inputs. 

7.2 Performance At 9.6 Kb/s 

In Chapter 6 we separately studied the effects of the quantization 
of the filter coefficients and the excitation sequence. In this chapter 
we report on the results if both types of quantization are combined, as 
will be the case for normal coder operation. The quantization parame­
ters are chosen such that the total bit rate of 9600 b/s is not 
exceeded. The parameter values used are listed in Table 7.1. 

MPE and RPE filter coefficients b/s 
update rate 
filter order 
quantization method 
bits/set 

MPE excitation 

20 ms 
12 
minimum deviation 
44 

2200 

method 
pulses/second 
bits/amplitude 
bits/position 
quantization method 
gain normalization 
gain update rate 
bits/gain coefficient 

MPEQ1 
800 
3 
5 
Lloyd-Max non-uniform 

maximum abs. value 
10 ros 
6 

6400 

600 

TOTAL NUMBER OF BITS/SECOND MPE 9200 
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RPE excitation 

method 
pulses/second 
bits/amplitude 
bits/shift factor 
quantization method 
gain normalization 
gain update rate 
bits/gain coefficient 

TOTAL NUMBER OF BITS/SECOND RPE 

RPEQ2 
2000 
3 
2 
Lloyd-Max non-uniform 

maximum abs. 
10 ms 
6 

value 
6400 

600 
9200 

TABLE 7.1. Parameter values for MPE and RPE coders 
b/s 

operating at 9600 

From this table we see that both excitation signals require the same 
amount of bits. However, the RPEQ1 method makes it necessary to update 
the gain for every search frame. It is assumed that by sub-segment gain 
factors or differential coding (see Section 6.2.6) the given rate can be 
obtained. The addition of a pitch predictor will require an additional 
500 bits per second and the 9600 b/s rate will be exceeded. By applying 
variable length coding techniques the MPE excitation signal can be coded 
with 7 bits per pulse, thereby enabling the use of a pitch predictor. 
From informal listening tests we conclude that the overall degradation 
of the synthetic speech signal caused by quantization is small but 
noticeable. This degradation was more perceptible for speech samples 
that were also difficult to encode without quantization. By adding a 
pitch predictor to the MPE coder and using 7 bits/pulse the quality of 
the MPE encoded signals was judged to be comparable to the RPE encoded 
signals (without pitch prediction). 

7.3 Performance At 16 Kb/s 

We described the coder performance at 9600 b/s, and remarked that 
the synthetic speech quality was very close to the 12-bits PCM encoded 
original signal, but that differences could still be heard. If the 
allowed bit rate is 16 kb/s, we expect that coder transparency, i.e. no 
perceptible difference between the original and the synthetic signal, 
can be achieved. If more bits than 9600 b/s are available, a decision 
has to be made about how to spend these bits. For example, the update 
rate of the predictor coefficients may be increased, or the number of 
pulses/second. Obviously, there exists a trade-off among these parame­
ters. In the following we investigate the trade-off between the number 
of pulses/second and the number of quantizer levels. The pulse rate of 
the MPE coder can be varied more gradually than that of the RPE coder, 
where a change in the pulse spacing NS strongly affects the pulse rate. 
This makes it more difficult to adjust the RPE coder to the desired bit 
rate. In Table 7.2 two possible parameter sets are listed for the vari­
ous coders, each resulting in approximately the same bit rate. 
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coder bits/pulse pulses/s b/s 
MPE1 
pred. coefficients 
gain (10 ms rate) 
8 level quantizer 
TOTAL 

(20 ms rate) 

3+5 1600 

2200 
600 

12800 
15600 

MPE2 
pred. coefficients 
gain (10 ms rate) 
16 level quantizer 
TOTAL 

(20 ms rate) 

4+5 1400 

2200 
600 

12600 
15400 

RPE1 ND=40, NS=2 
pred. coefficients 
gain (5 ms rate) 
8 level quantizer 
TOTAL 

(20 ms rate) 

4000 

2200 
1200 
12200 
15600 

RPE2 ND=30, NS=3 
pred. coefficients (15 ms rate) 
gain (3.75 ms rate) 
16 level quantizer 
TOTAL 

2667 

2930 
1600 
11200 
15730 

TABLE 7.2. Possible parameter values for MPE and RPE 
at 16 kb/s. 

coders operating 

Obviously, many other possibilities exist. For example, the coders can 
be extended with a pitch predictor or the update rate of the predictor 
coefficients can be increased. For the parameter settings listed in 
Table 7.2 the versions with 16 level quantizers were preferred over 
those with an 8 level quantizer. We also found that the difference 
between 3 and 4 bit quantizers is more noticeable for the RPE coder, 
which is due to the wide distribution of the pulse amplitudes. 

A comparison between the synthetic speech produced by the coders 
with 4 bit quantizers and the original PCM encoded signals revealed that 
both signals were almost undistinguishable. 

7.4 Performance At Low Bit Rates 

We have shown 
quality speech at 
performance of the 
ous that the qu 
keep this degradat 
have three possi 
separately. First 
second, the code 

that the RPE and MPE coders can provide (near) toll 
rates around 10 kb/s. In this section we describe the 
RPE coder at lower rates. Although it will be obvi-
ality of the synthetic signal will decrease, we aim to 
ion as low as possible. To reduce the bit rate we 
bilities, which can be applied simultaneously or 
the number of coder parameters can be reduced, and, 

■ parameters can be quantized more coarsely. Another 
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possibility is to reduce the sampling frequency, but this rather trivial 
solution is not considered. From the previous chapter we know that a 
considerable amount of the available bits is spent on encoding the exci­
tation sequence. As said before we can reduce the number of parameters 
by decreasing the number of pulses per second. Some resulting bit rates 
for the RPE coder are shown in Table 7.3. Notice that the gain is not 
considered. 

number of b i t s / p u l s e 
pulse spacing ■ 4 
pulse spacing « 5 

4 
8000 
6400 

3 
6000 
4800 

2 
4000 
3200 

1 
2000 
1600 

TABLE 7.3. Bit rates for different pulse spacings and different number 
of bits/pulse. 

From this table we see that the largest reduction is obtained by reduc­
ing the number of bits/pulse. From Chapter 3 we know that a further 
increase in the pulse spacing (NS > 5) leads to rough distorted sounds. 
Hence we stick to a pulse spacing NS=4, and try to improve the quantiza­
tion procedures by the use of Vector Quantization (Appendix D) and pitch 
prediction. The vector quantization procedure proceeds as follows: once 
an amplitude vector b (Section 3.3.1) has been found, it is normalized 
to either its roaximum_absolute value or to its rms value. The normal­
ized excitation vector b is compared to each code book vector_ y,, 
i=l,N. The code book vector that has the smallest distance to b is 
selected, and its index is transmitted. As distance or distortion meas­
ure the squared error is used, that is 

d(x,y.) = (x-y^tx-y. )fc = I >c-y 41 2 (7.1) 

Note that the same criterion is used in the case of scalar quantization. 
When considering the complete excitation vector one could argue that we 
should continue to use the weighted distance between the original and 
the synthetic speech signals. However, this means that we would obtain 
a procedure similar to the multi-path search code book approach (Chapter 
5). By using the mean squared error criterion for the amplitude vec­
tors, a much lower complexity is obtained. 

About 70 seconds of speech spoken by two male speakers and one 
female speaker was analyzed with the RPE method using a pulse spacing 
NS=4 and a search frame size NSSIZE=40. The resulting excitation vec­
tors of dimension 10 were normalized to their maximum absolute value and 
used as a training sequence in the code book design procedure. To inhi­
bit the inclusion of silent intervals, only excitation vectors whose rms 
value exceeded 7 dB were used. A code book of size 1024 was designed 
with the binary split algorithm and a convergence threshold e=0.005 
(Appendix D). The code book size of 1024 results in a bit rate of 1 
bit/ pulse or 1/4 bit sample. To illustrate the effect of vector quant­
ization, we show in Fig. 7.1 the average distortion per pulse when L 
adjacent pulses are quantized as a vector. The parameter L is called 
the vector length. 
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Figure 7.1. Average distortion per pulse for increasing values of L. 

For L-l, we obtain the scalar case. Note that the dimension of the 
amplitude vector remains constant, but that for different values of L , 
groups of L adjacent pulses are considered as a vector. From Fig. 7.1 
we see that by quantizing the vector at once, a large reduction in error 
is obtained compared to scalar quantization, but that scalar quantiza­
tion with 2 bits/pulse still provides better results. The effect of the 
code book size is shown in Fig. 7.2 
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A 
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□ 

A 

1 

a 

A 

1 

.1 .4 .6 
bits/pulse 

Figure 7.2. Average distortion per pulse for different code book sizes 
and different values of L. 

A comparison of Figs. 7.1 and 7.2 reveals that the performance of a vec­
tor quantizer with 6/10 bit pulse (L=10) is equal to that of a scalar 
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quantizer at 1 bit/pulse (L«l). In our experiments we concentrate on 
the one-bit per pulse case, because at these rates the use of VQ is more 
effective. The filter coefficients were not quantized and the excita­
tion sequence is quantized prior to selection of the optimal sequence 
(KPEQ2, Chapter 3 ) . From each test speaker two utterances were 
selected. One utterance belonged to the training set (inside training 
data), and the other was not used for training (outside training data). 
The resulting averaged segmental SNR values for the inside and outside 
training speech samples are shown in Fig. 7.3. 

n 
A 

A 

D 
A 
□ 

4 1 1 
L = l L=5 L=10 L-10 
it it it s t o 

Figure 7.3. Segmental SNR values for different vector sizes L at 1 bit 
per pulse using iterative (it) and stochastic (sto) code 
books. 

From this figure we see that the use of VQ increases the segmental SNR, 
and that thejoest results are obtained by quantizing the complete ampli­
tude vector b in one step (L=10). In listening tests, it was concluded 
that VQ is preferred over scalar quantization, and that the best results 
were obtained with L-10. 

Instead of finding the code book with an iterative procedure (itera­
tive approach), we can populate the code book with samples of a random 
source that has statistics similar to the signal to be encoded (stochas­
tic approach). Vie used a memoryless Gaussian source to populate the 
code book. Each vector of 10 noise samples is normalized to its maximum 
absolute value and stored in the code book. From Fig. 7.3 we see that 
the SNR achieved with stochastic code books is lower than that obtained 
with iterative code books, but that there is still a significant gain 
over the scalar case. To correctly interpret the differences between 
the inside and outside training data, we note that without quantization 
the average SNRSEG for the outside data is approximately 2 dB higher 
than for the inside training data (15.10 dB versus 13.21 d B ) . This 
difference is visible when a stochastic code book is used, and no 
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distinction between inside and outside training data can be made. For 
the scalar quantizer and VQ (L-10), the performance for the inside 
training data is much better than for the outside training data. For VO 
with L=5 this is not the case, and this is mainly due to the ineffi­
ciency of normalizing a vector of size 10 to the maximum absolute value, 
and then quantizing the vector in two steps. 

In previous chapters we discussed the use of pitch prediction to 
remove the long-term correlation in the excitation signals. As a 
result, the signal is less "peaked" and easier to quantize. In Fig. 7.4 
we show the results obtained with different parameter settings of the 
pitch predictor, and both stochastic and iterative code books. 
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Figure 7.4. Averaged segmental SNR values for quantization of the exci­
tation sequence with 1 bit per pulse. Code books are itera­
tive (it) or stochastic (sto), and normalization is done 
either to the absolute maximum value (max) or the rms 
value. 

From this figure we see that at these low rates, the use of pitch pred­
iction dramatically increases the SNR. A one-tap pitch predictor is 
used and the value of 6 is quantized with 4 bits. Two ranges of H have 
been used: M=16:80 (6 bits), and M=16:144 (7 bits). The largest range 
gives the best results in terms of SNR values and listening tests. The 
resulting excitation signal is more easily modeled by a Gaussian signal 
after pitch prediction, and we see from Fig. 7.4 that the performance of 
the stochastic code books is quite close to that of the iterative code 
books. The improvement due to pitch prediction is confirmed by listen­
ing tests. In Fig. 7.4 we also shown the results obtained with normali­
zation to the rms value, and with a stochastic code book. V»e see that 
compared to normalization to the maximum absolute value there is a 
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slight increase in SNR, but in listening tests no differences could be 
heard. From the same figure we see that when the pitch predictor param­
eters are determined from the residual (ext, see also Chapter 2 ) , we 
loose approximately 0.5 dB in SNR. The best results are obtained with 
an iterative code book and M=16,144, but we were impressed by the 
results obtained with the stochastic code book. The SNRSEG as a func­
tion of time for the utterance "a lathe is a big tool" for the procedure 
with the iterative code book and M=16:144 is shown in Fig. 7.5 for a 
male and a female speaker. The dashed line represents the results 
obtained with a scalar Lloyd-Max quantizer. V»e see that with VQ the seg-
mental SNR shows a smooth behavior, and results in a somewhat higher SNR 
than obtained with scalar quantization. 

0 10 20 30 40 SO B0 70 60 00 100 110 120 

Figure 7.5. SNRSEG obtained with pitch prediction (M:16,144) and 1 bit 
per pulse for (a) female and tb) male speaker using a 
scalar Lloyd-Max quantizer tdashed line) or vector quanti­
zation with iterative code book (solid line is) 

At 2 bits/pulse the effect of VQ is less dramatic. Fig. 7.6 shows the 
averaged SNRSEG obtained with and without pitch prediction, for both 
scalar and vector quantizers. The range of M was chosen between 16 and 
144. 
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6 7.6. Averaged SNRSEG values using different quantization pro­
cedures at 2 bits/pulse. 

Viithout a pitch predictor the use of VQ improves the performance, but 
when a pitch predictor is used, the effect of VQ is not significant. 
Note that we used only stochastic code books for the last case. An 
iterative code book may give some improvement, but we think that this 
improvement does not justify the resulting complexity of the code book 
generation procedure. 

In Chapter 5 we described a multi-path search procedure using a sto­
chastic code book approach that also operates at 1/4 bit sample. The 
only difference is that in this chapter the mean squared error between 
the computed excitation vector and the code book vector is minimized. A 
comparison between the SNR values for the utterance "a lathe is a big 
tool" is shown in Fig. 7.7 
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0 10 20 30 40 50 00 70 00 00 100 110 130 

Figure 7.7. Segrnental SNR values using a code book approach with either 
minimization between the excitation sequences (solid line) 
or between the speech sequences (dashed line), a) female, 
b) male speaker. 

The differences are due to the effects caused by the predictor filters, 
which cannot be taken into account if the distortion between excitation 
vectors is minimized. 

The use of VQ gives an improvement in SNB but increases the complex­
ity of the coder. This increase is due to the additional memory require­
ments for code book storage, and the computational effort of finding the 
appropriate code book vector. An alternative is to use more structured 
code books, to enable a more efficient use of memory and the use of fast 
search procedures. Lattice quantizers [Gersho, 1982] have such a regu­
lar structure and can be described as a quantizer whose output set is a 
sub set of a lattice (see also Appendix D). Many interesting lattices 
have been published [Sloane, 1981], and efficient coding and decoding 
algorithms exist for these lattices [Conway and Sloane, 1982]. Gen­
erally, a lattice quantizer can be considered as a uniform vector quan­
tizer. By an appropriate choice of a lattice and a particular subset of 
it, the code book need not be stored, and the encoding and decoding pro­
cedures can be implemented very efficiently [Adoul et al., 1984]. In 
Fig. 7.8 we show some results obtained with the first sphere of lattice 
E (Appendix D). The RPE excitation was computed every 32 samples with a 
pulse spacing NS=8, such that the remaining excitation vector of size 8 
could be quantized by one of the 240 code book vectors (LQ2). In [Adoul 
et al., 1984] a somewhat different definition was given of these 240 
vectors, and 16 additional vectors were added to yield a size 256 code 
book (LQ1). For comparison, we also give the results obtained with a 
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stochastic code book. 
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Figure 7.8. Segrnental SNR values obtained with 1 bit/pulse lattice 
quantizers. 

As can be seen, the performance of the three coders is almost equal, 
which was confirmed by listening tests. In each case a pitch predictor 
is used, and the excitation vector is normalized to the rms value. This 
result makes it very attractive to use lattice quantizers. Moreover, a 
lattice quantizer enables the use of large code books, which need not be 
stored, and may still provide a gain over scalar quantization. 

Using a 1 bit per pulse vector quantizer in the bit allocation 
scheme of Table 7.1, we obtain a 5.2 kb/s rate for the PPE coder without 
a pitch predictor, and a 6.2 kb/s bit rate for the RPE coder with a 
pitch predictor. The use of a pitch predictor ensures that the coder 
provides a good communication quality at approximately 6 kb/s. 

7.5 Viide band Speech Coding 

Recently, several techniques have been developed to handle the prob­
lem of transmitting high quality audio signals [Johnston and Goodman, 
1979] [Bertorello et al., 1982] [Johnston and Chrochiere, 1979] or wide 
band speech [Combescure et al., 1982] [Snyder, 1984] at a bit rate of 64 
kb/s. The evolution towards an integrated digital services network 
[Decina, 1982], however, has created an interest in the development of 
coders which can provide commentary grade quality speech at a rate less 
than 64 kb/s. Also in applications such as tele or video conferencing a 
rate of 64 kb/s is too high and needs further reduction. In this sec­
tion we will examine the suitability of the MPE and RPE coders for 
wide-band speech coding at a rate less than 32 kb/s. 
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speech signals. This result was confirmed by listening tests. 

The noise weighting filter W(z)» A(z)/A(z/-f) is determined by the 
parameter ■%. Decreasing the value of ■% increases the bandwidth of the 
poles of W(z). In Chapters 3, 4 and 5 we concluded that a value of f 
between 0.80 and 0.85 gives the best results. This corresponds to an 
increase in bandwidth of approximately 500 Hz. For a sampling frequency 
of 16 kHz the same increase in bandwidth necessitates a value of 
approximately 0.95. As noted before, noise-shaping reduces the SNR, but 
improves the perceived speech quality. Fig. 7.11 shows the results of 
subjective listening tests for different values of gamma. 
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Figure 7.11. Results of listening tests for different values of f■ 

These listening tests revealed that the effect of noise shaping is small 
but can be heard. An optimal value for -y was found to be between 0.90 
and 0.95. A value of 1.0 is not optimal but the difference in perceived 
speech quality is very small, and because of the reduction in complexity 
this value might be used in real-time implementations. 

7.5.2 Excitation Parameters 

7.5.2.1 Multi-Pulse Excitation Coder As was shown in Chapter 4 the 
best results are obtained when the search frame size is equal to the 
minimization frame size. In the same chapter it was explained why small 
search frames (less than 5 ms) are not optimal. Due to computational 
reasons the search frame size must be chosen as small as possible. So 
the search frame size was chosen to be equal to 5 ms. The number of 
pulses was varied from 8 to 12 and we used the sub-optimal procedure 
SUB2 (Section 4.3), to determine the excitation sequence. The segmental 
SNR increases with these values (see Fig. 7.12), but listening tests 
showed no significant improvement in the perceived speech quality among 
10, 11, and 12 pulses/ 5 ros. 
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Figure 7.12. Segmental SNR for different pulse rates in the MPE and RPE 
sequences. 

7.5.2.2 Regular-Pulse Excitation Coder In order to compare both coders 
and due to the same computational and qualitative reasons as mentioned 
above, the search frame was chosen to be equal to 5 ms. The pulse spac­
ing was varied from 4 to 3. The segmental SNR increases with decreasing 
pulse spacing (Fig. 7.12). However, in listening tests it was hard to 
distinguish between the synthetic speech samples produced with different 
pulse spacings. 

7.5.3 Quantization And Encoding Of The Excitation Pararr&ters 

The amplitude distribution functions of the normalized excitation 
signals of both the MPE and RPE coders are shown in Fig. 7.13. The 
excitation signal was normalized to the maximum absolute value within a 
frame of 5 ros. 

Figure 7.13. Amplitude distribution histograms (a) MPE, (b) RPE. 
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rl rE 

Figure 7.15. Histograms of the first four reflection coefficients. 

The' first two coefficients show an even greater skewing effect towards 
+1 and -1, respectively, than in the 8 kHz case. The distributions of 
the remaining coefficients are reasonably well modeled by Gaussian pro­
bability density curves. 

Before the reflection coefficients were quantized, they were 
transformed into inverse sine coefficients to be able to use the Minimum 
Deviation quantizer design procedure (Section 6.4). The quantizer was 
calculated with a design limit of 0.29 dB, which resulted in 68 
bits/set, and requires an additional 6.8 kb/s for both coders. The bit 
allocation is shown in Table 7.6. 

coeff. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

bits 7 6 6 5 5 5 4 4 4 4 3 3 3 3 3 3 

TABLE 7.6. Bit allocation using an MD quantizer. 

7.5.5 Per-fornan.ee At Rates Below 32 Kb/second 

To enable encoding of commentary grade speech below 32 kb/s, we used 
the parameter settings as listed in Table 7.7. 
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MPE and RPE filter coefficients 
update rate 
filter order 
quantization method 
bits/set 

Gain 

gain normalization 
gain update rate 
bits/gain coefficient 

MPE excitation 
method 
pulses/second 
bi ts/ampli tude 
position bits/set 
quantization method 

10 ms 
16 
Minimum deviation 
68 

maximum abs. 
5 ms 
6 

value 

6800 

1200 

MPEQ2 
2400 
4 
46 
Lloyd-Max non-uniform 

18800 
TOTAL NUMBER OF BITS/SECOND MPE 

RPE excitation 
26800 

method 
pulses/second 
bits/amplitude 
bits/shift factor 
quantization method 

RPEQ2 
4000 
4 
2 
Lloyd-Max non-uniform 

16800 
TOTAL NUMBER OF BITS/SECOND RPE 24800 

TABLE 7.7. Parameter settings for MPE and RPE coders for the encoding 
of wide band speech below 32 kb/s. 

Although both coders operate approximately at the same bit rate, listen­
ing tests revealed that roost listeners had a slight preference for the 
RPE encoded signals. A comparison between PCM encoded signals and the 
RPE encoded signals, revealed that in most cases almost no differences 
could be heard, but that for some test sentences some distortion could 
be heard. Spending more bits on the encoding of the filter coefficients 
or increasing the filter order will possibly improve the quality. 

http://Per-fornan.ee


176 CODER PERFORMANCE EVALUATION 

7.6 Performance For Degraded Speech 
Thus far, all simulations have been performed with non-degraded 

speech signals, where non-degraded means that these samples were 
recorded under ideal conditions without any background noise. In prac­
tice, the input signals for speech coding systems will be more or less 
degraded by background noises due to, for example, background conversa­
tion, air conditioning units, typewriters, etc. Another cause of signal 
degradation can be found when two or more coding systems are connected 
in cascade (tandem operation). In that case, the coder input consists 
of the speech signal corrupted by the encoding distortion of previous 
encoding stages. 

To reduce the effects of background noise special care can be taken 
during the recording procedure by using special microphones, etc. 
Another possibility is to apply pre-processing techniques to reduce the 
noise contents in the speech signal [Lim and Oppenheim, 1978] but these 
techniques produce generally undesired distortions. 

Background noises will change the shape of the signal spectrum and 
will thereby affect the performance of the predictor. In [Sambur and 
Jayant, 1976] it was reported that in the case of additive white noise, 
an SNR greater than 17.5 dB is needed to preserve the spectral charac­
teristics of the original signal. In the class of coders described so 
far, the predictor order was selected to be optimal for speech signals. 
A spectrum rather different from a speech spectrum makes the predictor 
less efficient, and a decrease in performance can be expected. 

Some noise sources have their energy concentrated in a specific fre­
quency band (e.g. telephone ringing), but most background noises have 
their energy equally distributed over the speech frequency band and are 
additive in nature. 

In our simulations, background noise is simulated by adding samples 
of a rnemoryless Gaussian noise source with zero mean and variance a to 
the original speech samples. The SNR of the resulting composite signal 
is given by 

SNR « Zx2fn) / (<?2.n) (7.2) 
n 

where x(n) represent the speech samples and n represents the number of 
samples in an utterance. RPE and MPE analysis is performed on degraded 
speech samples spoken by a male and a female speaker. Fig. 7.16 shows 
the results for different SNR noise levels. 
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Figure 7.16. SNRSEG values for speech degraded by additive white noise. 

All simulations were performed without quantization of the coder parame­
ters. From this figure it is clear that the RPE coder is more affected 
by the noise than the MPE coder is. This result was confirmed by 
listening tests. Especially for a 12 dB SNR, the RPE encoded signals 
exhibited tonal noise effects. For decreasing SNR values, the differ­
ences between the two coders were less perceivable and for the highest 
SNR value a slight preference existed for the RPE coder. The low per­
formance of the RPE coder at a 12 dB SNR is ascribed to the fact that, 
if the predictor is not effective (due to the flat input spectrum), the 
RPE encoding procedure is just a straight down-sampling procedure of the 
input signal, in which the aliasing components introduce the perceivable 
tonal noises. The MPE has the advantage in that case that there is more 
irregularity in the excitation signal, which makes the aliasing com­
ponents less perceivable. 

Another interesting form of degraded speech input is the case of 
multiple speaker input, where two or more speakers are talking at the 
same time. As a result the short-time spectra are more complex than for 
a single speaker, and thus more difficult to model with a low-order 
predictor. Vie simulated multi-speaker input by adding two test utter­
ances of a male and a female speaker. In listening tests no significant 
deterioration could be heard when the signals were encoded with the MPE 
and RPE coders. 

7.7 Suimvary 

In this chapter we demonstrated that the coders provide (near) toll 
quality at a bit rate of 9600 b/s. The excitation sequence is quantized 
with an 8 level quantizer and requires approximately 6400 b/s. The 
remaining bits are used for the encoding of the filter parameters. If a 
16 kb/s rate is allowed, toll quality speech can be obtained by both RPE 
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and MPE coders, using a 4 bit quantizer. Different possibilities exist 
to define the remaining parameters such as the predictor rate and the 
use of a pitch predictor. 

It was shown that both the RPE coder and the MPE coder are suitable 
for wide band speech coding. The filter order need not be higher than 
16 and can be effectively coded with 68 bits/set. The MPE excitation 
needs 12 pulses/frame (5 ms) and all MPE coder parameters can be encoded 
with 26.8 kb/s. The RPE excitation needs 20 pulses/frame (down sampling 
of 4) and the total rate amounts to 24 kb/s. At these rates both coders 
provide commentary quality, and become almost transparent. 

To enable the operation of the RPE coder at approximately 6 kb/s, it 
was demonstrated that the use of VQ and pitch prediction are mandatory. 
The code books can be obtained in an iterative manner, but the perfot— 
mance with stochastic code books or lattice quantizers was considered to 
be comparable. At a 6 kb/s rate the quality is judged to be of good com­
munication quality. 

Some preliminary experiments revealed that both the RPE and MPE 
coders operate quite well for speech corrupted by white noise or for 
multi-speaker inputs. 
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8. EFFICIENT ALGORITHMS 

8.1 Introduction 

In the previous chapters we have described techniques for time-
domain coding of (near) toll quality speech. The given description of 
the coders was adequate for non-real time implementations in a high-
level language on a general purpose computer. However, for practical 
implementations, a more detailed description of the encoding and decod­
ing algorithms is required. Moreover, when these algorithms have to be 
executed in real time with signal processors using fixed point arith­
metic, the following additional requirements are placed on the algo­
rithm: 

- computational efficiency, 

- good numerical properties, 

- suitability for the target hardware. 

The choice of a particular hardware architecture will have consequences 
for the structure of the algorithm, leading to an interaction between 
software efficiency and hardware efficiency. A conventional approach is 
to use a configuration of one or more (general purpose) signal proces­
sors. The analysis procedure is partitioned into different tasks, which 
will be distributed among the available processors. Within each proces­
sor, the task is executed in a sequential fashion. Although this 
approach can be quite successful, there are several drawbacks. For 
example, it is very difficult to exploit all the parallel capabilities 
of a given algorithm, which will result in a loss of efficiency. The 
sequential execution within each processor inhibits the use of high-
throughput pipeline implementations. When it is possible to find an 
algorithmic structure that has parallel and pipeline properties it might 
be advantageous to design (special purpose) hardware, tailored to the 
execution of one or more specific algorithms. With the aid of modern 
VLSI techniques such a mapping of an algorithm onto silicon might be 
highly feasible, and could be more cost effective than an implementation 
with general purpose processors [Kung et al.,1985]. It is important for 
such a mapping to recognize the basic primitive operations of the under­
lying algorithm. The algorithm is decomposed into a set of those primi­
tive operations, which will then be directly mapped onto silicon. In 
this chapter we define the fundamental tasks of a given coder, and we 
describe efficient decompositions of these tasks. 

8.2 Solving A Set Of Linear Equations 

A typical basic task to be performed in speech processing is the 
problem of solving a set of linear equations 

pA = q (8.1) 
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where A is an (n+1) by (n+1) real matrix and p and q are (n+1)-
dimensional row vectors. For example, the determination of the filter 
coefficients of the prediction filter A(z) incorporates the solving of 
such a system. Another example is the computation of a set of pulse 
amplitudes for either the MPE or RPE coder. This system can be solved 
with a Gaussian elimination procedure with a complexity of 0(n ). How­
ever, for the given examples the matrix A will have a special structure, 
which enables us to solve the system in fewer than 0(n ) operations. A 
commonly encountered structure is the symmetric positive Toeplitz struc­
ture 

a.. - a,.,., = ak 0 < k < n (8.2) 
where a.. is the (i,j)-th element of the matrix A. By making use of the 
Toeplitz-' structure, Eq. (8.1) can be solved in 0(n ) operations or even 
less. For example, the Levinson algorithm [Levinson, 1947] recursively 
solves the n-th order equations in 0(n ) operations. The Levinson algo­
rithm constitutes an LU decomposition of the matrix A , namely, 

A-1 = BB* (8.3) 

where B is a lower triangular matrix and * denotes complex conjugate 
transpose. However, the Levinson algorithm is not very suitable for 
parallel execution, as was pointed out in [Kung and Hu, 1983], and we 
have to use a different scheme. 

An appealing algorithm is the Schur algorithm which has been intro­
duced in [Schur, 1917] and in its current version in [Dewilde et al., 
1978]. Unaware of these developments [LeRoux and Gueguen, 1979],, an 
equivalent algorithm , and the Schur algorithm is sometimes referred to 
as the LeRoux-Gueguen algorithm. The Schur algorithm constitutes a 
decomposition of the matrix A 

A = LL (8.4) 

where L is a lower triangular matrix. Then the solution p of Eq. (8.1) 
can be solved explicitly via back substitution 

* q = pL (8.5a) 

p - pL_1 (8.5b) 
If we denote the elements of the first row of the matrix A by <a , 
i=0,..,n) and a unit delay by z , we can write the Schur algorithm as 
follows: 
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Schur Algorithm, 

Initialization: 
(0) 

A0) ,(0) 
80 51 

(0) 
*n 
s(0) 
n 

where 
(0) £(0) a„ 'i i Oi 

For i = 1 to n do 

aoi/[aoo]' i=0,..,n 

(8.6a) 

(8.6b) 

IT. 
G.= 
l 

(i) 
lxi 

n fi(il S(i) 

°lx(i-l) S0 81 

m 

;(i) = 9,-
I 0 

0 Z -1 
i-1 
i-1 

where 

and 

*i - d-Pi) 
-P,-

-Pi 1 

(i-1) /c(i-l) T, /sn 

(8.7) 

(8.8) 

The quantities <p.> are called reflection coefficients which have to 
nice property tnat their absolute value is bounded by one. The matrix 
9. represents a J-rotation or a hyperbolic rotation and has the property 
tnat it is J-orthogonal, that is, 

e.je.=J 
1 1 

J = 
1 0 
0 -1 

wh 
I 
'hich implies that it preserves the norm 
xi . = xJx ). The matrix L is given by 

(8.9) 

in the J-metric (where 

L • A -

.(0) £(1) Sl S0 

s(0) (1) 
n n-1 

,(n) 

(8.10) 
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It is convenient to use a lattice filter representation of the Schur 
algorithm (Fig. 8.1). 

HIU [->[>„> 

Figure 8.1. Lattice representation of the Schur algorithm. 

Each section 8. performs a hyperbolic rotation as defined by Eq. (8.7), 
and for a Toeplitz matrix each section has only two input and two output 
connections. The input is the generator matrix G . 

The Schur algorithm performs a decomposition of the matrix A and not 
of the matrix A [Dewilde et al., 1978]. However, for stationary 
linear prediction problems and the realization of analysis and synthesis 
filters it is sufficient to have the ref lectioncoeff icients, and we do 
not need to compute the Cholesky factors of A . Nevertheless, the 
inverse Cholesky factor L can be easily computed with the lattice 
structure of Fig. 8.1. Once the {p.} have been computed, the lattice is 
inputted with [1/& l/S ] (where a was defined in Eq. (8.6b)), and 
the rows of L are obtained at the delay elements. Hyperbolic rota­
tions can easily be implemented with CORDIC modules [Voider, 1959] 
[Vialther, 1971] (see also Appendix E). Therefore, an architecture based 
on these modules will provide an efficient realization. However, if the 
rotations have to be implemented on a conventional signal processor 
(e.g. TMS320) the square root operations may be very cumbersome. By 
normalizing the initial vector T and A_ to a , changing the factor 
(1-p.)2 in Eq. (8.6c) into (1-p.), and dropping the factor (1-p.) * in 
Eq. (8.6d), we obtain a non-normalized version of the Schur algorithm 
that still possesses good numerical properties [Rajasekaran and Hansens, 
1982]. 

Thus far we have assumed the matrix A to be a Toeplitz matrix. It 
would be disappointing if the algorithms derived could not be used for 
matrices that are not Toeplitz. However, many matrices that arise from 
practical covariance approximation problems will have a structure 
"close" to Toeplitz. In [Kailath et al., 1979] the concept of displace­
ment rank ct (or a-stationarity) was introduced. The displacement rank a 
of a matrix A is defined as 

a = rank{]A} , with )A = A-ZAZ* (8.11) 

where the operator ' ] ' is called a box operator and Z is the lower shift 
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matrix (with ones on the first sub-diagonal and zeros elsewhere). It 
can be shown that it requires Ofan ) operations to invert a matrix A 
with displacement rank a. For the solution of equation sets with dis­
placement rank a we can use one of the procedures described in [Lev-Ari 
and Kailath, 1984]. In the next section we discuss how these procedures 
can be applied to solve the RPE coder equations. 

8.3 Solution Of The BPE Equations 

As described in Chapter 3 the RPE coder requires the solution of 
N=NS sets of linear equations of the form of Eq (8.1). The dimension of 
the matrices A1 (1=1,2,..,N) will be n+1 = NSSIZE/NS, i.e. the number of 
pulses within a search frame. In [Deprettere and Jainandunsing, 1985] 
an efficient procedure that inverts the N matrices with a complexity of 
0((N+2)n ) was developed. The matrix A. is defined as 

A1 = M1fflv(M1HW)* (8.12) 

where the matrices M H and Vi were defined in Section 3.3. The special 
structure of A will allow a simplified version of the procedures 
described in [Lev-Ari and Kailath, 1984] to be used. Furthermore, the 
matrices A., are very close to each other, in the sense that their rank 
distance, defined by 

d = rank(A1+1-A1) , 1=1,N (8.13) 

is equal to one. 

8.3.1 Fast Cholesky Decomposition of A. 

The displacement rank of the matrix A. is according to Eq. (8.11) 
equal to N+2. This means that by using the algorithm described in 
[Lev-Ari and Kailath, 1984] A. can be inverted with 0((N+2)n ) elemen­
tary operations. This algorithm computes L in a first "pass" and L in 
a second one. In [Deprettere and Jainandunsing, 1985] it was shown that 
]A. can be factorized as 

]AX = G1Z1G*, 1 = 1, ...,N, (8.14) 

where G is the (N+2) by (n+1) matrix: 
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m 
01 

J i l l 
On 

(8.15a) 

with 

,(1) 
00 

aoi 
.(i) 

s(i) aoi 30n 

3
(11 
Oi - , 1=0,1,. . . ,n , and 

(aoo »' 
Q = {q\ .' = h(L-i-jN-l+l) I O lil (N-l), O <j< n-1)} 

1 1 =2 ("W 
(8.15b) 

(8.15c) 

where I is the identity matrix of dimension N+l. The proof is 
obtainea straightforwardly by direct calculation. Vihen we drop the 
index "1" the computation of L is as follows: 

Initialize: 

T0 
* 

Go = - ■ 
&0 

(N+l)Xl 

.(0) 

(0) 
h 

P(0) 

(0) 

c(0) 

01 On 

00 01 On 

(8.16a) 
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For i = l,. . . ,n 

•)(N+l)xi '1 [o, 
G.= 
l 

(i) 
■»1 

°lx(i-l) 50 Sl 
where 

o 

)-* 

ci-PiPl) 

(i) 
^n 

,C1) 
n 

IN+1 

"Pi 

hn. ° 

and 

P* - ,ri)<-i) 

r i - i 

V i 
(8.16b) 

(8.16c) 

(8.16d) 

From the positivity of A it follows that Ipl 1 1 . This procedure is 
shown in Fig. 8.2, where the A. [i*0,l,...,n) are the rows of L . 

*-Q:' 

^j lo 

l/.M o—-o 

lo o 

^bj -A 0 ( - i/-008-—o 

c 

s 

0 (-- ^ 

T 

--<>— t> - - - (-. 
> 1 t1 

1 * 

Figure 8.2. Lattice structure for Cholesky factorization of A=LL and 
the computation of L 

L~ is computed as follows: Let v = [-1/SU.,0,...,0,1/3-.]; then 
vG = [1 0.... 0], and 
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For i=l. 

with 

0:i 

[C0:C 

0:0 

= e. 
lmi ° 

lv' = 

i/a oo 

l/S 00 

'0:i-l 

0:i-l 
(8.17) 

(8.18) 

The b .. ti-0,1, ,n) are the rows of L (see Fig. 8.2) We refer to 
[Lev-8ri and Kailath, 1984] for a proof of this result. 

8.3.2 Back Substitution 

The back-substitution procedure is done in two steps. Using the lat­
tice structure shown in Fig. 8.4, a nfw set of reflection coefficients 
{0.} is computed from the elements of L and q, where q is defined as 

=q/ | e ( 0 ) | (8.19) 

and e t 0 ) represents the initial error (see Eq. (3.5)). Once the new 
coefficients have been computed, the coefficients of L are applied 
together with the input [a ? 0 .. 0] to yield the output [E* p ] , where 
E* is a scaling factor, and vector p = p/ET the scaled solution vector. 

t f 
L - . ^ ^ 

^ — ^ _ — — 
o ~ ~' "" ? I 

3 * 

. q|i/WI, o 

Figure 8.3. Lattice structure for the back-substitution procedure. 
1 

Note that the scaling factor E^ is nothing else than the square root of 
the error E (see Eq. (3.10)). 
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8.3.3 Decomposition of 9. 

Fig. 8.4 shows the complete structure for Cholesky factorization and 
back substitution. The matrix 0. [Eq. (8.16c)] can be written as a pro­
duct of elementary rotations via a process similar to diagonalization by 
means of Givens rotations. 

■-Q-

o— o 

q/l[s|l I l/lsll 0—0 

.4. Combined cascade for the Cholesky decomposition and back 
substitution. 

Since 9 is ̂ -unitary (i.e. © ^ 9 = 2), it can be decomposed into N+l 
hyperbolic rotations. Fig 8.5 illustrates this decomposition for 9. 

1 
1 
1 
1 

1 

m l N 

< 
2 I 

W 
• (1-|B|V1/2 

1 - B j 

- » 3 > 

*1 ' 2 

x 2 

Figure 8.5. Decomposition of 9. into a cascade of hyperbolic plane 
rotations. 

It was noted that the basic lattice structure is based on (hyperbolic) 
rotations. These rotations can be realized very efficiently with CORDIC 
processors [Voider, 1959] [Vvalther, 1971] (see also Appendix E ) . In 
[Deprettere et al., 1984] it was shown that even pipeline CORDIC 
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structures can be constructed. 

8.3.4 The Concurrent Solution Of A Set Of N Equations 

In the previous section we have shown how to apply the algorithm of 
Lev-Ari & Kailath for solving one system in Eq. (8.1). The next step is 
to show how this algorithm can be extended for the simultaneous solution 
of all the N systems. The basic idea is to construct a joint matrix 
from the entries of the matrices A (1=1,...,N) such that: 

applying a Cholesky factorization on this matrix yields all the 
lower triangular factors L and L, (1=1,...,N). Jl 
with these factors, all the N solutions 
currently. 

can be obtained con-

8.3.4.1 Construction of the joint rratrix We define the N(n+1) by 
N(n+1) block matrix h as 

A = {AT. 1 0 < i;j (n) (8.20) 

with AD. 
*D 

(1) 
a. . 

j(N) 
ij 

Denoting the lower triangular Cholesky factor of a matrix A by 

(1 (1) (1) .. I 0 < i,j < n), l: = 0 for j > i (8.21) 

it is easily verified that the Cholesky factor of A is the following 
lower triangular N(n+1) by N(n+1) block matrix: 

L = <LD. I 0 < i,j < n>, LD. = 0 for j > i 
i] 'J - ' ij J 

,d) 

(8.22) 

with i] 

"iD 

L(N) 
ij 

Hence, a Cholesky factorization of A will generate the Cholesky factors 
of all A,. 

8.3.4.2 Cholesky Factorization And Back Substitution. Analogous to the 
G EG decomposition of a. matrix A. , we can find a GEG decomposition of 
]A, in order to obtain L and L from G. In [Deprettere and Jainan-
dunsing, 1985] it was derived that the following decomposition holds: 
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fi) the matrix G is the following (N+2) by Nfn+1) matrix: 

(11* 0 0—0 a ' 0—0 

0 

,(U* 
00 

(11* 
o—o a*:J o—o 

where Q is defined as 

( 1 1 * a' o—o On 

• CD* 
30n 0—0 

(8 .23) 

hto 

h'(L-i) 

hlL-N) 

K(L-N-I) 
h(2Nl 

lifex-i) 

Mul 

li(N-i) 

(8 .24) 

(ii) the matrix 1 has rank (N+2) and is of the form 

t - W * x- (8.25) 
Applying a Cholesky factorization on A will yield the matrix L in 

Eq. (8.22). The section for a single recursion step is essentially 
similar to the one in Fig. 8.5. However, because of the diagonal blocks 
in Q , delays have to be inserted between the first N rotors in Fig.8.5. 
This leads, to the structure shown in Fig. 8.6, for a single recursion 
step on G . 
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a) 

XT r"fj° 

Figure 8.6. ta) Section for a single^recursion step on G ; (b) section 
for a recursion step on G . 

The rows of the L. matrices, which are required for the computation of 
the N solution vectors p , appear at the taps. Fig. 8.6(a) can be sim­
plified to Fig. 8.6(b) by making the following two observations. 

1. The delay elements - separating the rotors in a section - can be 
deleted, without affecting the final result. Deleting the delays 
corresponds to compressing each of the n blocks of N columns 
(starting the count from the second column) of G including the 
remaining block of (N-l) columns, into a single column. 

* 
2. It is allowed to permute the rows gf Q (and the corresponding 

columns of Q) since the product QQ will not change. 
From 1) and 2), reversing the row order of 

leads to the following equivalent form of G : 
Q and compressing G 
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a o i 

h * ( L - N + l ) 

h * ( L ) 

AD* 
aoi 

«en* 
• a 0 n 

. h * ( N + l ) 

h*(2N) 

a 0 n 

0 

0 

h (2 ) 

h*(N) 

0 

(8.26) 

AD* 
00 

resulting in the structure of Fjg.8.6(b). The complete cascade is shown 
in Fig. 8.7 with the matrix G as the input data for the Cholesky fac­
torization of A and the matrix o-

D = 

for the calculation of the <£.}, (1=1, ,N). 

(8.27) 

-
- -
. 

,/a1" o 

1 1 

■/agj.o 

11/llS|| , 0 

11/lJSH . 0 

Figure 8.7. Complete cascade for the inversion of A and the computation 
of the N solutions p, ,. . . ,p.,. 1 N 

To obtain all solutions p , 1=1,2,...,N, the vector 

[1/aóo) ° 0 1/S^1 l/le(0)| .l/|e(0)l] (8.28) 

N+2 N 
is applied at the input of the cascade of Fig. 8.7. Observe that this 
cascade is very similar to the one in Fig. 8.4. The only increase in 
complexity has been due to the addition of the back-substitution struc­
ture for p ,...,p The total complexity is therefore almost twice, 
instead of N times, the complexity for a single system of equations. 
The algorithm exhibits pipelining on several levels. For example, the 
pipeline can be implemented on the cascade level, but a hyperbolic 
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rotation can also be implemented in a pipeline fashion [Deprettere et 
al., 1984]. Parallelism is also exhibited in the sense that Cholesky 
decomposition and the back substitution are done in parallel. In 
[Deprettere and Jainandunsing, 1985] a pipeline CORDIC structure that 
implements the algorithm described above was proposed. The configura­
tion consists of two pipelined COKDIC processors and implements the 
pipelining on the rotor level with hyperbolic rotations. The CORDIC 
pipe consists of 13 stages and implements one macro hyperbolic rotation. 
The chip requires approximately 6.5x6.5 mm in a 4 u NMOS process. 

8.4 Correlation Computations 
In the previous sections we described efficient structures for the 

solution of a set of equations of the form of Eq. (8.1). In this sec­
tion we examine how these equations are constructed, as well as the com­
putational effort required for this construction. The matrix A and the 
vector q are both a result of correlation computations. Given a data 
set {x x2 V and a corresponding (n+1) by 2L matrix 

x l 

0 

0 

x2 
xl 

0 

X3 
X2 

0 

• *L 

' XL-1 

' Xl 

0 

*L 

X2 

. 0 

. 0 

. 0 
• XL 

0 

0 
0 
0 

(8.29) 

the correlation matrix is given by 

A = XX (8.30) 

and has a Toeplitz structure. Such a matrix will arise in the auto­
correlation procedure for determining the filter coefficients. If the 
matrix of Eq. (8.30) is reduced to an (n+1) by L matrix by dropping the 
elements on the right-hand side of the dashed line, the resulting corre­
lation matrix will be symmetric but not Toeplitz. Such a matrix struc­
ture is encountered in the RPE equations. The vector x is then equal to 
the impulse response of the cascade of the synthesis filter and error 
weighting filter. The vector q is in the RPE method the result of a 
cross-correlation between the initial error 
M1HW 

and the product matrix 

<5h = e^'tMjHW)* 1=1,. ,M (8.31) 
,(0), Note that by computing the product e (Hto) , all the N vectors q are 

available at once. Suppose that a processor unit that performs a multi­
ply and add operation in one step is available. The number of opera­
tions required for the construction of an (n+1) by (n+1) Toeplitz corre­
lation matrix is given by 
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4;(n+l)(2L-n) (8.32) 

The elements of the first row of this matrix are defined by 
L-i 

c<i) " aoi " a = I x(k)x(k+j) j=0,..,n (8.33) 
J J k=l 

The computation of the non-Toeplitz matrix requires the same number of 
operations. The truth of this can be seen by recognizing the fact that 
the elements on a diagonal are formed by the partial sums of Eq. (8.33). 
Note that for the RPE coder only the correlation coefficients c(0), 
c(NS), ..,C(nNS) are required, resulting in a total number of operations 

£(n+l)(n+2)NS (8.34) 

The computation of the cross-correlation of Eq. (8.31) requires the same 
number of operations as the computation of the correlation matrix. To 
get an estimate of the required multiplication time we consider the RPE 
coder using 10 pulses/5 ms and a 12-th order filter. We assume that the 
coefficients are determined from 25 ms frames and are updated every 20 
ms: 

matrix 

auto-correlation matrix 
correlation matrix 
cross-correlat ion 

total 

# operations /time interval 

2522 / 20 ms 
220 / 20 ms 
820 / 5 ms 

6022 / 5 ms 

requiring a multiplication time of 3.4 us, which is not very difficult 
to obtain with contemporary signal processor chips. 

8.5 An example of an RPE coder architecture 

In the previous sections we found that by decomposing the basic 
algorithms into elementary hyperbolic operations, the resulting struc­
ture could be easily implemented with CORDIC modules. The fact that the 
lattice analysis filter A(z) and lattice synthesis filter 1/A(z) can 
also be expressed in terms of hyperbolic and circular rotations, respec­
tively, will make the use of CORDIC modules even more attractive. 
Correlation computations are more efficiently implemented with a proces­
sor that enables a fast execution of multiply-add operations. A general 
purpose signal processor (e.g TMS 320) will be very suitable. Such a 
processor will also be useful for tasks such as selecting and encoding 
the excitation structure. Provided that the CORDIC chips are able to 
perform the LPC analysis, the filter operations and the RPE analysis in 
a sequential manner, and that the signal processor performs all the 
correlation computations, the whole coder consists, in addition to 
external memory, of only two processor chips. 
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8.6 Summary 

In this chapter we considered some efficient algorithms for solving 
equations of the RPE coder. It was shown that an algorithm can be found 
that has a lot of parallelism, thereby enabling efficient structures 
with a high throughput. An example was given of the decomposition of 
the RPE algorithm into hyperbolic rotations, such that the coder can be 
implemented with a pipelined CORDIC architecture. An examination of the 
number of correlation computations revealed that a separate processor is 
required to perform these computations. Based on these results it was 
estimated that a complete RPE coder can be implemented with a special 
purpose CORDIC chip, a general purpose signal processor and some addi­
tional memory. 
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9. A SOFTWARE ENVIRONMENT FOR SIGNAL PROCESSING 
9.1 Introduction 

Signal processing research, and more specifically, speech and image 
processing research, comprises many computer—based activities. Two 
major activities are the development of algorithmic solutions to prob­
lems and the simulation of these solutions using real-world data. Dur­
ing the algorithm development stage, conceptual systems that usually 
originate from both heuristic and mathematically founded roots are tried 
out. Once a conceptual algorithm has been defined, this structure is 
translated into an algorithmic structure suitable for VLSI implementa­
tion. During the simulation stage, both the conceptual and the practi­
cal systems are submitted to stringent performance studies using a large 
set of test data. To be able to concentrate on research activities 
rather than on software development, it is crucial to have a suitable 
software environment. The complexity of such an environment can vary 
from very simple (e.g. the availability of a small library with basic 
procedures), to very complex (e.g. an integrated software and hardware 
environment). 

Historically, signal processing software design has not been of 
major concern. Of course, computer code for classical signal processing 
algorithms, such as filter design programs and Fourier transform pro­
cedures, can be found in literature, but a collection of such "callable" 
functions as can be found in [IEEE Press, 1979] does not provide a 
software environment for signal processing. It was no earlier than 1980 
when the first "portable" commercial software package for signal pro­
cessing (ILS) became available [Signal Technology, 1980]. ILS is an 
interactive environment consisting of many modules that each performs a 
single task. By combining these basic tasks more complicated operations 
can be performed. The communication between the different programs is 
maintained by a common memory area. A few years later similar packages 
appeared such as DT-DATS [Data Translation, 1982] and I*S*P [Bedford 
Research, 1983]. Obviously, many non-commercial packages have been 
developed, but these are in most cases difficult to obtain and suffer 
from a lack of support. All the packages mentioned will run on commonly 
used computer systems and operating systems without the requirement for 
special hardware (with the exception of data-acquisition equipment and 
graphic display systems). Viith the advance of sophisticated work sta­
tions using bit-mapped graphic displays and user-interfaces such as 
mouses, a more integrated approach becomes feasible. A good example of 
the latter is the Integrated Signal Processing System (ISP) [Kopec, 
1984]. 

During the early stage of our research work, we recognized the need 
for a suitable software environment, and we started to develop our own 
package called SPPACK [Kroon, 1983] [Kroon, 1983]. At that time we were 
unaware of the existence of other systems, but later it became clear 
that the basic philosophy of our system was not really different from 
that used in other packages. Moreover, we find that the SPPACK system is 
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better suited to our needs and has the advantage that it can easily be 
modified to provide further support of our research work. In this 
chapter we describe the general considerations used on the design of 
such an interactive system for signal processing and we describe how the 
desired features have been incorporated in SPPACK. 

9.2 Design Considerations For h Software Package 
As we stated in the introduction the package must provide a powerful 

experimental environment to allow the user to develop new programs, and 
to do preliminary experiments. This reguires an interactive environ­
ment. On the other hand, once an analysis procedure has been esta­
blished, simulation runs using a large collection of test data will 
require a batch mode. Besides these general characteristics, many other 
features such as portability and user friendliness are desirable. A 
portable system means that the package can be run on different computer 
or operating systems with little or no modification. The term "user 
friendliness" is a little vague and can be interpreted in many ways. In 
our opinion it means a system that can be easily used by both novice and 
expert users. The command language used for controlling the jobs should 
be easy to learn and use. On-line help should be available and addi­
tional documentation has to be provided. Further, an extensive error 
detection mechanism is required, which checks for illegal user responses 
and actions, and enables the users to correct his or her mistakes. 
Another important requirement is extensibility. The package should 
comprise many basic operations such as data acquisition, data manipula­
tion, graphics etc. However, some operations are not available and have 
to be supplied by the user. If this task can be accomplished in a sim­
ple way, the package will become more valuable and will even suit future 
users. 

9.3 Description Of SPPACK 
The signal processing package SPPACK is a modular file oriented 

interactive software system. The package provides many basic signal 
processing tasks such as data acquisition, digital filter design, signal 
transformation, data manipulation etc. Each of these elementary func­
tions in SPPACK is implemented as a single program, referred to as 
"module", which carries out only one definable function. Each SPPACK 
module produces output in a form suitable for use by other modules. 
Each module can be used separately, with interactive parameter selection 
by the user. Based on the results of the previous steps, the user may 
invoke other modules or commands with the parameters appropriately set. 
In this manner the system is capable of supporting a high level of man-
machine interaction in signal processing. More complicated tasks can be 
performed by combining a set of modules in a user selected order. The 
program parameters will then be given by interaction or a control pro­
gram. A simple control command language is provided to "glue" the 
modules together into a sequence of modules, executing a complicated 
task. This building block approach allows natural development of com­
plex signal processing functions and programs. Most input and output 

9.3 Description Of SPPACK 201 

data is stored in standard disk files. Sometimes other devices such as 
the user terminal, AD and DA converters, or graphic displays are used as 
input/output device. Data files play an important part in the SPPACK 
system. Each file consists of a file header followed by the actual 
data. The file header contains information about the file contents such 
as data type and the procedure used for generation of the data. This 
header can be read and/or modified by both user and programs, thereby 
providing a method for inter-program communication. Each module or pro­
gram can be invoked in several ways. Without any additional parameters 
the module will operate in the query mode, and will prompt the user for 
options. This mode is intended for inexperienced users. More experi­
enced users can specify additional parameters to bypass the prompting 
mode. In both cases an extended error checking and recovery mechanism 
is active to protect the user against illegal procedures. To improve 
the accessibility of the system, it is to some extent integrated in the 
host operating system. For example, the SPPACK data files can usually 
be treated as any other file of the host system. This means that many 
standard file utilities such as copying a file or deleting a file can be 
used directly. Most operating systems provide some control language 
which can be used for "gluing" modules together. With this approach 
SPPACK may somewhat differ on different operating systems, but new 
SPPACK users will become familiar with the package more easily. The 
system was developed under the ESX-11M* operating systems and is almost 
completely written in the Fortran language. Versions that operate under 
FT—11*, VMS* and UNIX** are available but in our examples we stick to 
the FSX-11M version. In the following sub—sections we describe typical 
features of the system, and some of the design considerations. Finally, 
we give some examples. For a more detailed descriptions of the available 
modules the reader is referred to the SPPACK manuals [Kroon, 1983} 
[Kroon, 1983]. 

9.4 Command Format And Processing 

As explained above, SPPACK consists of many modules that perform a 
specific operation. Each module is actually an independent program that 
runs under control of the operating system. The name of a module resem­
bles as much as possible the operations that it performs. A module is 
invoked by specifying its name. For example, to perform a Fast Fourier 
Transform, the command FFT has to be issued. Most commands require the 
specification of additional parameters such as the data to be acted upon 
and optional modifications to the basic command. For example, the FFT 
command will require the specification of the input data and a 

* FSX-11M, FT-11 and VMS are trademarks of the Digital Equipment 
Corporation. 

** UNIX is a trademark of Bell Laboratories. 
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specification of the location in which to store the output data. Addi­
tional parameters define the size and the type of the data window to be 
used. The complete command can consist of the following items: 

1. module name, 

2. range specification, 

3. options, 

4. file specifications. 

Only the first item is mandatory for each SPPACK command. 

To accommodate both experienced and unexperienced users the follow­
ing approach has been used. The most simple procedure for invoking a 
program is to specify its name. The program will then be in the prompt­
ing mode and will prompt the user to supply specific information. Each 
guery also displays its default response, which will be used if the user 
responds with a carriage return <CR> . The defaults are selected to 
reflect the normal use of the program. The most efficient way to invoke 
a program, however, is to use the single line format. In this mode all 
command attributes such as parameters and file names are specified on 
one single line. The program will then start execution immediately 
without prompting. This single line format is also used when complex 
programs are built from many basic modules. Intermediate forms between 
the prompting format and the single line format are also possible. In 
that case a user can invoke a module by typing its name and file specif­
ications on a single line and the program prompts for the missing 
specifications. All programs will prompt for the non-specified attri­
butes rather than use the default responses. This approach ensures that 
the user always has to confirm the actions he or she wants to take. 
However, by the use of a DEFAULT option it is still possible to specify 
within the single line format the use of defaults. 

From the description above it is hopefully be clear that a "module", 
a "program" and a "command" are synonyms. However, there are some 
exceptions. Most modules perform one single task and return to the mon­
itor after execution. In this case a module is eguivalent to a program. 
We call these programs l-level programs. Sometimes, it is guite imprac­
tical to have a separate program for each task. For example, a graphi­
cal display program plots data. The basic plot command can be modified 
by options such as drawing mode, pen color or scaling factor. However, 
associated interactive commands such as drawing axes or displaying text 
are more easily incorporated as sub-commands than as separate programs. 
Another aspect is that these programs reguire a lot of user interaction, 
and it would be very inconvenient if the user had to specify the same 
command many tiroes. For these kinds of programs we introduce the con­
cept of 2-level programs. A 2-level program is invoked as a l-level 
program, but rather than returning to the monitor after execution, it 
remains in the program and accepts commands on level 2. 
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Vie said above that complex programs can be built from basic modules 
by the use of a control language. Most operating systems provide such a 
control language (e.g. command file processor for DEC-systems, shell 
procedures for UNIX systems). The simplest use of control languages is 
to use them to specify a set of single line commands and store those 
lines in a control file. Upon execution of the control file, the com­
mands are executed in the specified order. This approach works well for 
all l-level commands. However, to be able to use a similar procedure 
for commands that have to be issued at the second level of a 2-level 
program, we used a mechanism called CDF (CommanD File). This mechanism 
allows the user to store level-2 commands in a file and execute them 
automatically when desired. Fig. 9.1 shows the different ways of 
interaction. 

l-level module 2-level module 

monitor 

level 1 execution 

monitor 

USER or CONTROL program 

USER or CDF mechanism -> 

monitor 

level 1 execution 

level 2 execution 

monitor 

Figure 9.1. Interaction between user and 1- and 2-level programs. 

A typical example of a single line command is: 

FFT 1:5 /DEF/V.INDOVi:2/SIZE:128 PI P2 

name range options files 

As can be seen from this example the command and option names are 
English words that suggest the intended action. For the option words it 
is not necessary to type the full name. Any abbreviation that is not 
ambiguous will be accepted. For a description of the complete command 
syntax, the reader is referred to the SPPACK manuals. 

9.4.1 Input/Output Files 

"Input file" represents the file on which the action is to be taken. 
"Output file" represents the file that is to receive the results of the 
operation. If the file types are not specified the program defaults to 
an appropriate type. If only one file is specified while two files are 
expected the program assumes this one to be the input file. 
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9.4.2 Range Specification 

For some commands, it is required to specify what portion of the 
file to use. This portion is called the "range". A range can be as large 
as an entire file or as small as a single frame, where a frame is a con­
text or user defined number of adjacent data elements. There are three 
general types of range specifications: single, variable and compound 
range specifications. Single range specifications allow the specifica­
tion of one frame of data. Variable range specifications allow the 
specification of an indeterminate number of contiguous frames. Examples 
are: all frames in the current file, and all frames between the current 
frame and the end of the file. Compound range specifications allow for 
the specification of a group of adjacent frames. Examples are: all the 
frames between two specified frames, and a group consisting of a speci­
fied number of frames following a specified frame. 

9.4.3 Options 

Command options enable the user to control the command execution or 
to specify actions that the program is to take when the execution has 
been completed. Each detailed SPPACK command description includes a 
description of each option that is allowed with the command. Some 
options require an argument to be specified. The argument can be 
according to the syntax: 

an integer argument e.g. 

a number argument e.g 

a string argument e.g. 
(maximally 4 characters) 

/opt 
/opt 
/opt 
/opt 
/opt 
/opt 

on:32767 
on: 3 
on:-172 
on:173 
on:173. 
on:17.3El 

/option:text 
/option :abl 

9.5 Error Checking And Recovery 

Vve stated in the beginning of this chapter that it is important to 
have an extended error checking and recovery system in each module. The 
simplest form of error detection is to check the user input for spelling 
and syntactical errors, and to produce appropriate diagnostic messages. 
Such a detection mechanism should be active during all times the user 
could possibly make an error. Once an error has been detected, facili­
ties should be provided to correct this error. It is important that the 
error should be detected directly after its occurrence. It is very 
annoying to answer many prompts, and to have a message about an error in 
the first input line not appear until the last question. Error detec­
tion mechanisms should also detect, as far as possible, logical errors 
such as conflicting responses to options. The file header system allows 
additional logical checking. For example, the program FFT can check for 
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a time-frequency transform, if the input file really contains time 
domain data. As a result the system will detect many possible errors 
and will warn the user at the time of the detection. A different form 
of error recovery is required during program execution. For example, 
execution errors such as data overflow or divide by zero will on roost 
systems cause a program dump. In an environment that uses compiled 
code, continuation of a dumped program is difficult or impossible. How­
ever, to some extent it is possible to intercept dumps, and display an 
appropriate message. A difficulty is that these procedures might 
involve many operating system features, thereby reducing the portability 
of the system. 

9.6 Help Utility ftnd Documentation 

The on-line help utility enables the user to list information on 
SPPACK and system commands, command syntax, and options. The general 
format for the help command is: 

HELP tqualifierl] [qualified] [... qualified] 

Help interprets its command line in a strictly nested fashion. Keywords 
may be abbreviated up to the minimum number of characters that are 
needed to make the keyword unique. The help utility prints an error mes­
sage if an abbreviation is not unique. Besides the on—line documenta­
tion we have the off-line documentation. Vie can distinguish two forms 
of documentation: 

1. Inter-program documentation, such as comments. 

2. Documentation separated from the program itself. 

Here we will consider only the first category. In this category program 
code and comments are stored in the same file, which will improve 
maintenance. Standards have been defined for the layout of the code and 
the use of comments. A set of names has been adopted for variables that 
are frequently used throughout the system, and the use of these names is 
mandatory so that there may be consistency among programs. This also 
serves the purpose of aiding programmers with software development and 
maintenance. A person familiar with the conventional names has an easier 
time reading programs. According to our conventions every program, sub­
routine or function begins with a number of comment lines, which we call 
the (program) header. The standard layout of this header improves rea­
dability and makes it possible to use software tools for documentation 
(e.g. automatic change of modification date or extraction of help 
files). The general structure of a program header is as follows: 

1. Identification part, 

2. Brief functional description, 
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3. Global and common parameter description, 

4. List of external files and sub-programs, 

5. Usage, 

6. Process description. 

The identification part lists attributes such as program name, 
programmer's name, modification date, implementation language, and host 
system. Usage explains the use of the program and this part will also 
be used by the help utility. Process Description gives additional 
details about the algorithm in plain text or an appropriate description 
language. 

9.7 Data File Structures tod Types 

SPPACK distinguishes two general classes of files: 

1. Text files, 

2. Unformatted binary data files. 

The first class of files contains readable text and can be created and 
modified by any conventional text editor. Files that belong to this 
class are: command files, directory files, help files and module 
description files. 

Unformatted binary data files are used for storage of input and out­
put data of the SPPACK programs. One of the main features of SPPACK is 
the high degree of standardization of data file structures. In the next 
sections the organization of the data files will be discussed in more 
detail. 

9.7.1 Data Files 

Data files are unformatted binary data files, each with a 256 (16 
bit) word file header containing information that is global to the file. 
Conventions have been set down as to what gets stored in the header and 
where it is located. There is no restriction on the length of the file 
other than that it roust fit on the disk. To access only certain por­
tions (frames) of the data, software has been implemented to provide for 
data access in terms of variable length records referred to as "frames". 
The length of a frame can be defined by the user according to what is 
convenient for the application at hand. The location of data in a data 
file can now be specified in terms of its starting frame and number of 
frames (duration). Notice that for each frame length, frame 1 always 
refers to the beginning of the data immediately after the header. 
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9.7.2 File Header Forrrat 

The file header consists of 256 words, located at the beginning of a 
data file. The header contents serve as identification for the stored 
data. To cover a wide range of data types and their characteristic 
features, SPPACK provides the concept of header modules. The header con­
sists of a fixed part containing global data features and a variable 
part (module) containing characteristic features of the stored data. 
These modules can be user defined to allow a maximum of flexibility for 
new applications. The global layout of a header is 

Fixed header part (75% of the header space) 
text strings 
command line 
modification date 
statistical information 
file identification 
general data description 

Modular header part (25% of the header space) 

The first part of the header contains three text strings of 80 char­
acters each. These strings can be filled by the user and could contain 
descriptive information about the data stored in the file. The contents 
of these text strings can be read and changed with the utility program 
HEADER. 

Every program that creates or modifies a data file will write its 
cormand line in the data file header. The command will be stored as a 
single line command even in case it was issued in the prompting format. 
If the input file header already contained a command line, this line 
will be copied to the text string part before writing the new command 
line to the file. This facility enables the user to examine the "his­
tory" of the file up to a maximum of four command lines. 

Usually, the operating system records the creation date of a data 
file. However, modifying the data within an existing file will not 
affect this creation date. To be able to find out the last time a modif­
ication has been made to the stored data, the header contains the last 
modification date. 

Statistical information will be written into the header by SPPACK's 
statistical programs. This information comprises the maximum and 
minimum values and their corresponding locations within the file, aver­
age value and variance and the number of 256 word blocks used for com­
puting these parameters. The information will be used by other programs 
such as plot modules. 

General data descriptors will give information about the data domain 
(e.g. time or frequency domain), and the sampling frequency in Hz. 
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9.7.3 File Types 

SPPACK defines different file types for different applications. For 
example the file type of a file storing filter coefficients will be dif­
ferent from the file type of a file used for the storage of sampled 
data. Before we describe the existing file types, we make a division 
between different data types. SPPACK supports four different data 
types. 

1. INTEGER 

2. REAL 

3. COMPLEX 

4. DOUBLE PRECISION 

File types are represented by a negative integer number in the range 
-32000:-28000. Every data type is mapped into a small area of this 
range, according to table 9.1. 

data type file type range user definable range 

INTEGER 
REAL 
COMPLEX 
DOUBLE 
PRECISION 

-28999:-28000 
-29999:-29000 
-30999:-30000 
-31999:-31000 

-28999:-28500 
-29999:-29500 
-30999:-30500 
-31999:-29500 

TABLE 9.1. Data types and file type ranges. 

A file type can be defined by choosing a number in the range correspond­
ing to the data type used. For example, SPPACK uses file type -28000 for 
data files containing sampled data. To avoid conflicts between user 
defined file types and SPPACK file types, the user must stay within the 
range given in Table 9.1. Some commonly used file types are: sampled 
data files, analysis files and filter coefficient files. Sampled data 
files are used for storing sampled data coming from such sources as the 
analog-to-digital converter or a digital filter program. Analysis files 
store data from different speech analysis programs. Analysis outputs are 
stored as fixed length vectors with one vector for each consecutive win­
dow of analysis. Conventions have been established for the position of 
data within a vector, such as linear prediction coefficients, RMS energy 
and pitch frequency. Filter coefficient files store filter coefficients 
as polynomials of rational transfer functions. Filter coefficient files 
can be created with SPPACK's filter design programs or manually entered 
by the user. 

The last part of the file header is modular and is called the header 
rr.odu.le. The contents of this module depend on the file type involved, 
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and every file type has its own header module. A user can define new 
file types and header modules to accommodate his or her research activi­
ties. The layout of a header module can be described with the aid of a 
Header Module Description file (HMD). This file enables the HEADER com­
mand to display the contents of a file header module together with an 
adequate description. 

9.8 Implementation Issues 

SPPACK was developed on a PDP-11/34A computer under the RSX-11M and 
BT-11 operating systems. Although both operating systems have a lot in 
common, it was clear at an early stage that the package should hide 
operating system features as much as possible to facilitate portability. 
Portability has been achieved by using as much as possible a high-level 
language. Fortran-IV was chosen as the target language due to the 
already available programs and the availability of an efficient Fortran 
compiler. Only when no other possibility existed were programs written 
in assembly language (e.g. bit operations and data acquisition). 
Although Fortran is a non-structural language, it is very convenient for 
signal processing operations. However, for other tasks such as string 
and list processing it is a very cumbersome language and one might con­
sider other languages such as C more suitable. The command interpreta­
tion procedures and the error detection mechanism will place a burden on 
memory and CPU time. However, we feel that these issues are very impor­
tant for user-friendly systems, and should never be omitted for the sake 
of a faster execution time or a reduced memory use. Two practical 
issues that affect the portability of the system are the use of special 
terminal features such as cursor control, and graphic displays. The 
best solution is to have device independent software, but in most cases 
this possibility depends on the capabilities of the operating system. 
In our current implementation, the display program depends completely on 
the graphic device used. Future implementations, however, will use 
intermediate representations (e.g. GKS for graphics) and the use of dif­
ferent device drivers for different devices. 

The command syntax allows only the specification of two files. This 
was not found to be a limitation. Wien a program requires more external 
files, we use fixed file names for these additional files. 

9.9 Creation And Modification Of Modules 

Despite the flexibility of the SPPACK system, many situations could 
arise in which a desired task is not available, and can not be con­
structed from the available modules either. In that case the user has 
to supply his or her own programs. Our basic philosophy is that if 
these programs will obey the SPPACK format (i.e. command syntax and file 
structure), the capability of the system will increase gradually. 
Another advantage is that the user can still use all the available 
SPPACK modules together with his own programs. Such an approach is only 
possible under the condition that it is easy to write programs in SPPACK 
style. toe solved the problem as follows. Each module consists as much 

http://rr.odu.le
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as possible of many sub-modules, which will usually correspond to sub­
programs of the programming language in use. All sub-programs are 
stored in a library, which is accessible by all users. Furthermore, the 
basic module consists of many parts that are common to most programs, 
for example, command initialization, command processing, file handling. 
As a result, it is not to difficult to provide a source code that acts 
as a skeleton for the new program. Little modification is then required 
to make the new program. A further refinement would be a program gen­
erator that requires as input the names of commands and options, and 
that part of the code that is specific for the intended task. Such a 
program is currently implemented for the Unix system. 

9.10 Examples 

First we illustrate the difference between the prompting mode and 
the command line mode. Both examples will have the same result. 

FFT l/SI:1024/RA:1024/Vi:0/M:3/RE:1024 R0 FRO 
and 

FFT 
Input-file ? <*.DAT> :R0 
Output-file? <*.DAT> :FR0 
Start frame number < 1> : 
End frame number? < 1> : 
Window? 0=No,l=Han,2=Haro,3=Bar < 0> : 
Mode? 1=M, 2-LM, 3=NLM < 3> : 
Frame size? < 1024> i 
Resolution? < 1024> : 
Frame rate? < 1024> : 

A more complete example is the following illustration of a filter design 
procedure. A band-pass elliptic filter is designed to extract the second 
harmonic of a square wave. Comment is preceded by an exclamation mark. 

TFUN /M:7/D/PU:10/OF:-500/PER:20 DEMOl !Create test signal 
FFT 1/D/Vi:2 DEMOl DEM02 ! Compute spectrum 
PLOT2 DEMOl "Plot time signal 

'-"UUUWUUWWUl 
i 1 1 1 I 1 1 1 1 1 — 

0 25 SO 75 100 125 150 175 200 225 250 

time -> 
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PLOT2 DEK02 !Plot spectrum 

0.30 0.40 
normalized freq. 

EFI 4,.5,10,.1,2,-40 FILTER 
ZPLANE /D FILTER 

!Design filter 
!Plot pole/zero diagram 

TFUN /M:7/PU:l/PER:1024/DE P0 
FILTER %WH/D P0 PI 
FFT l/D PI P2 

PLOT2 PI 

!Create impulse 
(Filter impulse 
!Compute spectrum 

!Plot impulse response 
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PL0T2 P2 •Plot spectrum 

0.30 O.JO 
normalized freq. 

FILTER %WH/D DEMOl DEM03 
PLOT2 DEM03 

(Filter test signal 
IPlot filtered signal 

s-̂ WWVWWWVWWWWWWWWWWWW 

For other examples we refer to the SPPACK manuals. 

9.11 Sunroary 

In this chapter we described an interactive software environment 
suitable for speech research. The package was used for the development 
of the coders described in this thesis and it is considered to be very 
adequate. Some interesting features of the package include the capabil­
ity of constructing new programs by "gluing" existing programs together, 
the different prompting formats, and the header module concept. This 
last feature enables the user to accommodate new data file headers to 
new programs. The development of programming generators and documenta­
tion tools will result in a suitable research environment for most 
users. 
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process, quite good results were obtained with 1/4 bit per sample. As a 
result the coder enables the encoding of (near) toll quality speech at 
approximately 5 kb/s. 

A performance evaluation of the investigated coders revealed that 
both the RPE and MPE coding techniques are very suitable for applica­
tions such as mobile telephony, where channel rates around 10 kb/s are 
available. The multi-path search approach produced good results but the 
complexity of the encoding procedure is enormous and not suitable for 
real-time implementations. Vie further examined the performance of the 
BPE coder for operations at bit rates around 6 kb/s, and we demonstrated 
that with the use of vector quantization techniques quite reasonable 
results can be obtained. Another interesting aspect is the performance 
of the coders for wide-band speech signals. Both BPE and MPE coders are 
able to obtain near transparency at approximately 25 kb/s. 

The synthesis procedure for all coders is very straightforward, 
which makes them attractive for applications in voice-response systems. 
Vihen the coders are used for wide-band speech coding applications, the 
lower complexity of the BPE coder makes it more attractive than the MPE 
coder. 

A study has been made of the possibility of mapping the coder algo­
rithm onto silicon. The BPE algorithm is particular suitable for VLSI 
implementation using pipeline and parallel structures. An advantage of 
the solution described using COBDIC processor elements is that other 
related algorithms such as LPC and lattice filters can be effectively 
implemented. Another advantage of the proposed structure is that a high 
throughput can be obtained, which is mandatory for wide-band applica­
tions. 

Finally, we conclude with some suggestions for future research. 
First, we are of the opinion that the error weighting procedure should 
be investigated in more detail and that more and better perceptual solu­
tions should be searched for. Another interesting point of research 
should focus on better code book structures for vector quantization. The 
use of, for example, lattice quantizers in a multi-path search approach 
enables the realization of large code books, with hardware of a moderate 
complexity. Further investigations in these directions will finally 
further push down the bit rates required for the encoding of toll qual­
ity speech. 
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A. APPEHDIX ft: SPEECH QUALITY EVALUATION 
A.l Introduction 

The speech quality of the investigated coders was evaluated by using 
objective and subjective measures and real speech data. The speech 
material consists of ten English sentences spoken by both a male and 
female speaker and thirteen Dutch sentences spoken by both a male and a 
female speaker. Totally four different speakers were used. The sen­
tences were recorded with professional equipment in a broadcast studio. 
The utterances were low-pass filtered (3400 Hz cut-off frequency) and 
sampled with a 12-bit linear converter at an 8 kHz sampling rate. For 
every utterance, the sound level was adjusted to use the full quantizer 
range without clipping. This procedure equalized the peak power level 
of the four speakers over all sentences. 

A.2 Speech Haterial 

The English and Dutch sentences were taken from [Goodman et al., 
1976] and [Plomp and Mimpen, 1979], respectively. Each is a simple 
declarative sentence that can be spoken in about two seconds. The lists 
shown in tables A.l and A.2 include all the phonemes of English and 
Dutch in initial, final, and intervocalic position. 

1. A lathe is a big tool. 

2. Grab every dish of sugar. 

3. An icy wind raked the beach. 

4. Her father failed many tests. 

5. Joe brought a young girl. 

6. The chairman cast three votes. 

7. The boy was mute about his task. 

8. Beige woodwork never clashes. 

9. Both teams started from zero. 

10. My cap is off for the judge. 

TABLE A.l. The 10 English sentences spoken by 2 speakers each. 
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1. De bal vlooq over de schutting. 

2. Morgen wil ik maar een liter melk. 

3. Deze kerk moet gesloopt worden. 

4. De spoortrein was al gauw kapot. 

5. De nieuwe fiets is gestolen. 

6. Zijn manier van werken ligt mij niet. 

7. Het slot van de voordeur is kapot. 

8. Dat hotel heeft een slechte naam. 

9. De jongen werd stevig aangepakt. 

10. Het natte hout sist in het vuur. 

11. Zijn fantasie kent geen grenzen. 

12. De aardappels liggen in de schuur. 

13. Alle prijzen waren verhoogd. 

TABLE A.2. The 13 Dutch sentences spoken by 2 speakers each. 

A.3 Objective Quality Measurement 

A widely used quality measurement applied in waveform coders and 
related coders (e.g. hybrid coders) is the signal-to-noise ratio, 
evaluated over an utterance of speech. If x(n) and x(n) represent the 
input and output signals of the coder, respectively, then the conven­
tional SNP- is 

2 
SNB - Ï *-LrLI dB (A.l) 

n [x(n) - x(n)] 
It has also long been known that in many situations the SNR measure does 
not correlate well with subjective performance [Goodman et al., 1976]. 
Another approach that correlates better with subjective performance is 
the segmental SNP (SNRSEG) [Noll, 1974] [Goodman et al. , 1976]. The 
measure is the average of SNR measurements made up of segments of speech 
that are typically about 10-20 ms in duration. Thus 

1 N 
SNRSEG - e: £ (SNR). dB (A. 2) 

N i-1 X 

where (SNR). corresponds to the signal-to-noise ratio in decibels for a 
segment i and N represents the number of segments in the utterance. To 
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prevent any slight noise in low energy intervals (e.g. silent intervals) 
from causing large negative (SNR)., and thereby dominating the average 
in Eq. (A.2), we exclude these segments from this average by a thres­
hold. A segment i will be included in the computation of SNRSEG if its 
energy p. defined by 

1 k 2 p. " J* £ x (n) (A.3) 
n=l 

exceeds a threshold T, where k represents the number of samples in the 
i-th segment. Furthermore, to prevent any one segment from dominating 
the average, we also limit the value of (SNR). to a range of -10 to +80 
dB. In our tests we set T to 5 and used 10 ms segments. 

A.4 Subjective Quality Tests 

To evaluate the subjective quality of the coders, listening tests 
have been used. The Diagnostic Rhyme Test (DRT) [Voiers, 1977] was not 
considered useful, due to the high quality of the synthetic signals. A 
more meaningful test is the Mean Opinion Score (MOS) procedure [Dauroer, 
1982] [Goodman and Nash, 1982], but a disadvantage is that it is very 
time consuming, and that many experienced listeners are required to pro­
vide reliable results. For our tests we used a more practical procedure, 
which we refer to as the Paired Comparison Test (PCT). The Paired Com­
parison Test is intended to rank a set of sentences processed in dif­
ferent ways. Each of the processed words and sentences is compared to 
the different versions by randomly playing pairs to the listener(s). The 
pairs are chosen so that all the permutations of the processed material 
are played exactly once. The partial score 1 is attributed to the pre­
ferred word and 0 to the other one. Finally, all these partial scores 
are summed, and averaged over the number of listeners and the number of 
test sentences. A final normalization is done by dividing them by the 
maximum attainable score. The systems under test are then listed in 
order of preference. Note that no absolute scores are obtained with this 
method, but that the PCT is very suitable for quickly determining the 
optimum values of specific system parameters. 
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B. APPENDIX B: TIME-VARYING LINEAR FILTERS 

The all-zero analysis filter A(z) and the all-pole synthesis filter 
1/A(z), where A(z) is defined as 

P -k 
A(z) « 1 + 2 a, z (B.l) 

k-1 k 

can be implemented by different filter structures. Two well known 
structures commonly used in speech analysis and synthesis procedures are 
direct form filters [Oppenheim and Schafer, 1975], and lattice filters 
[Gray and Markel, 1973] [Makhoul, 1978]. Fig. B.l shows the different 
structures for the all-zero synthesis filter A(z). 

Figure B.l. Direct form (a) and lattice form (b) all-zero filters. 

When disregarding finite word length effects, both types of filter 
structures realize the same transfer functionj they are equivalent real­
izations. However, for speech synthesis applications, where the filter 
coefficients are refreshed at regular intervals, both filters show a 
different behavior, as we will demonstrate in this appendix. 

The refreshment of the filter coefficients is organized as follows. 
For every frame of NSSIZE samples the filter coefficients are kept 
fixed. Before the samples of the next frame are computed, all the 
filter coefficients of the previous frame are replaced by the coeffi­
cients belonging to the new frame. To ensure continuous filtering, the 
states of the filters are not cleared when a new set of coefficients is 
dumped. The process of filtering a signal through such a time—varying 
filter is reversible by using the inverse filter with a similar struc­
ture and whose coefficients have the same time dependency (Fig. B.2). 
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s ( n ) 
A ( z ) 

r ( n ) 
1/A(z) 

sQO 

filter coeffi ci ents 

Figure B.2. Filtering and inverse filtering with time-varying filters. 

Vie describe the filter transfer functions in the form of state-space 
equations: 

xCn+1) = A(n)x(n) + BCn)u(n) (B.2) 

y(n) = C(n)x(n) + D(n)u(n) 
where x,y and u represent the state vector, the output vector and the 
input vector, respectively, n is a time index and A,B,C, and D are sys­
tem matrices of appropriate dimensions. The state-space equations of 
the direct form all—zero filter A(z) are given by: 

A = 

0 0 

1 0 

0 1 

0 0 

0 0 

a i a 2 

0 

0 

0 

0 

1 

0" 

0 

0 

0 

0 

a 
P 

B = 

] D = 

"1" 

0 

0 

0 

0 

I 

The state-space equations of the lattice all-zero filter A(z) are 
given by 

1 

A = 

0 
1 

P lP 2 

plp3 

0 
0 
1 

PoP 2̂ 3 

LP lPp-l P2PP-1 

0 0" 
0 0 
0 0 
0 0 

1 0 

~p? 

J p-1 

c - [ -Pl -P2 -v D = 1 
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The correspondence between the state-space matrices of the direct-form 
and lattice filter is given by the invertible matrix T. 

direct form (A, B, C, D) 

lattice form ( TAT , TB, TC, D) 

The output for the current frame depends on the initial state of the 
filter and the current input. The relation between the initial state xn 
and the past data values y_ can be expressed as 

Xo = Cy" with 
C = [B AB A B .. ?F~ B] 

where for finite impulse response filters A -0. For the direct form 
filter C will be an identity matrix I , which means that the initial 
state is represented by the previous data^ values. The output in the 
current frame due to the initial state can be related by the matrix O 

y+ - 0 x0 

The matrices O and C for the lattice filter can be obtained by the 
transformat i ons 

C' » TC = TI » T P 
O' ■ OT_1 

Hence we can write the output in the current frame due to past data as 

y = Oy_ direct form 

y ■ OT T_y_ lattice form 
In the stationary case T_ = T , and both outputs will be the same. In 
the non-stationary case T_ and T are not equal and the outputs will 
differ. The behavior of the lattice filter may cause undesired transi­
tion effects, which will affect the performance of coders employing 
these structures. However for practical situations, other aspects such 
as numerical stability will play a role, and the net result may be in 
favor of the lattice structure. 
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C. APPENDIX C: DISTAKCE LIMITATION ALGORITHM MPE CODER 

C.l Introduction 

This appendix describes the algorithm which ensures that the dis­
tance between two succeeding pulses within a search frame does not 
exceed a certain maximum. This option can be useful for coding pur­
poses. For example, when using variable-length-to-block coding to 
encode an excitation sequence of size NSSIZE=80 with NP=8 pulses, 7 
bits/pulse are required if the maximum distance is limited to 20 succes­
sive zeros. Hence a critical distance of NZM=21 or more zeros has to be 
avoided. This is done by checking distances between pulses. If a crit­
ical distance is detected, a search interval is computed in which a 
pulse has to be located to cancel it. To reduce a possible sub—optimal 
performance of the search procedure, this position limitation is only 
imposed at the latest possible instant. Below we shall first describe a 
method for finding the search intervals and their boundary points. 
After that, the minimal number of pulses which are necessary to cancel 
every possible critical distance is determined. Then we will describe 
in detail when the limitation has to be imposed. In the last section, a 
Nassi-Schneiderman diagram of the algorithm is given. 

C.2 Search Intervals tod Their Boundary Points 
The multi-pulse excitation sequence within a search frame is found 

sequentially. At every step a new pulse is located by trying all loca­
tions within the search frame, and selecting that location which yields 
a minimum error. Wien it is necessary to cancel a critical distance, 
search intervals in which pulses have to be located are computed. Sup­
pose a critical distance is found between the positions 10 and 40. The 
boundary points of the search intervals, using NZM=21, are then given 
by: 

GBP(l) = 40 - NZM - 19 
GRP(2) - 10 4 NZM - 31 

If a pulse is located in the search interval (19,31) the critical dis­
tance is canceled. For a larger critical distance, two or more search 
intervals have to be used. Suppose a critical distance is found between 
the positions 10 and 60. Then the 4 boundary points are found by: 

GRP(l) = 60 - 2*NZM = 18 
GRP(2) = 10 + NZM » 31 
GRP(3) - 60 - NZM = 39 
GRP(4) = 10 + 2*NZM = 52 

Hence 2 pulses have to be located in the intervals (18,31) and (39,52), 
respectively, to cancel this critical distance. In general, a distance 
of less than (k+l)*NZM zeros can be canceled using k pulses. 
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c.3 Momant Of Imposing Constraints 

In Section C.2 a possible way to overcome a critical distance is 
given. To reduce the degradation introduced by this limitation pro­
cedure, we want to use it as late as possible. Suppose we want to use 
it when NSTART pulses still have to be located. Then the largest possi­
ble critical distance equals (NSSIZE - NP - NSTART) zeros. This criti­
cal distance can be canceled with NSTART pulses, if 

(NSSIZE - NP - NSTART) < (NSTART + 1)*NZM ( C D 

since (k+l)*NZM zeros can be canceled by k pulses. Rewriting Eq. (C.1) 
gives for NSTART: 

NSTART > (NSSIZE - NP -NZM) / (NZM +1) (C.2) 

The smallest integer value satisfying Eq. (C.2) equals the number of 
pulses which is sufficient to overcome every possible critical distance. 
For an excitation sequence of NSSIZE=80 samples and with NP=8 pulses to 
be located, it is necessary to consider distances only when NSTART=3 or 
less pulses still have to be located. 

For every critical distance the number of pulses necessary to cancel 
it is computed. Once the total number of pulses NPNEC necessary for 
removing critical distances is known, it is checked whether the amount 
of pulses to be placed is greater than NPNEC. In that case it is not 
necessary to use a placing constraint, and care only has to be taken to 
prevent any critical distance from being created. For example, suppose 
NPNEC* 1 while 2 pulses are to be located. Then it is not necessary to 
define a reduced search interval for the 7th pulse to be placed. How­
ever, if the position of the right-most pulse is, say, equal to 40, then 
locating the 7th pulse at position 70 would create a second critical 
distance. A boundary point at position 61 must then be used, reducing 
the search frame size to 61 samples. 

C.4 Diagram Of The Algorithm 

As was mentioned before, the location of a pulse is selected one 
pulse at a time in a search frame of size NSSIZE. If a distance limita­
tion is necessary, the search interval is redefined. The search pro­
cedure can be represented by: 

SEARCH (GRP,NGRP) 

GRP contains successively the starting point and the ending point of 
search frames, and NGRP defines the number of elements in GRP. For a 
search between the locations 1 and NSSIZE, we have to set 
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GRP(l) 
GBP(2) 
NGRP 

■ 1 
- NSSIZE 
« 2 

The procedure LIMIT will redefine the search intervals if necessary. 
This procedure has the following parameters: 

Global Input Parameters: 

NSSIZE - Size of a search frame 
NP = Total number of pulses which will be 

located 
NPFND ■ Number of pulses already located 
BEP(i) = Array of locations of the NPFND pulses, 

BEP(1)=0 is the beginning of a frame, 
BEP(2) is the position of the first pulse etc. 

NZM - Smallest critical distance, i.e. a number 
of NZM or more zeros has to be avoided 

NSTART « Remaining number of pulses, which after 
the algorithm LIMIT will be used. 

Global Output Parameters: 

GRP(i) ■ Array of boundary points of search intervals 
NGRP ■ Number of boundary points 

Local Parameters: 

NPNEC ■ Number of pulses needed to cancel 
all critical distances 

M ■ Number of pulses which can be located without 
using the search interval constraints 
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Distance limitation algorithm: 

Critical distance > j*NZM zeros; 
j pulses are needed to remove it 

For L - 1 (1) j 

Compute boundary points. 

GRP(NGRP-1+2L):=BEP(i)-(j+l-L)*NZM 
GRP(NGRP+2L): -BEP( i-1 )+L*NZM 

NGRP:= NGRP+2*j 
NPNEC:-NPNEC + j 

NPNEC < NP - NPFND 

M := NP - NPFND - NPNEC 
K : = BEP(NPFND+1) + M*NZM 

K < NSSIZE 

GRP(1):-1 GRP(l) :=1 
GRP(2):=NSSIZE GRP(2) : =K 
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D. APPENDIX D: VECTOR QUANTIZATION 
D.l Introduction 

Vector quantization (VQ) [Gray, 1984] can be viewed as a generaliza­
tion of Pulse Code Modulation techniques (PCM) and can be basically 
described as follows. An ordered set of k samples (k-diroensional vec­
tor) is mapped onto one of a finite set of representative (output) vec­
tors. The index of the resulting output vector is used for transmission 
or storage purposes. At the decoder this index is used to reproduce the 
corresponding output vector, which approximately reconstructs the origi­
nal input vector. Some difficulties associated with VQ are how to 
choose a representative set of output vectors and how to find the 
appropriate output vector as fast as possible. 

D.2 Basic Structure Of A Vector Quantizer 

A vector quantizer maps a k-dimensional Euclidean space P. onto a 
finite subset Y of P. . 

Q:Rk -» Y (D.l) 

where Y = {y , y , ...,y > and y., called an output point, is in R for 
each i. Associated with every N point quantizer in P. is a partition 

Pl' R2' •••'RN (D-2) 

where 
Ri " Q 1(yi) " <X€Rk:Q(x)=y1} (D.3) 

With this definition, it follows that 
N k 
U R. - B and F.r"|R. * 0 for i*j (D.4) 
i-l 1 l 3 

The partitions {R.} in R are called Voronoi cells or regions and the 
set of N output vectors {y.> is called a code book of size N. An 
appropriate choice of the code book vectors and the corresponding Voro­
noi regions is crucial for the performance of a vector quantizer. The 
mapping of an arbitrary input vector onto one of a limited set of output 
vectors will introduce a distortion d(x,y), and we have to use a code 
book that minimizes the average distortion between input and output vec­
tors. The design of optimal vector quantizers from empirical data was 
proposed in [Linde et al., 1980]. This algorithm uses a training set of 
random vectors generated from a source for which the quantizer is to be 
optimized. Vector quantizers that use a code book obtained from real 
samples (training data) usually lack any structure within the code book, 
and the quantizers are referred to as random quantizers. In the 
remainder we first examine this type of VQ's in more detail. 
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D.3 Code Book Generation Procedures For Vector Quantizers 
The procedure for generating a code book depends on the search pro­

cedure used. Vie distinguish two search procedures: full search and 
binary search [Gray and Linde, 1982]. The flowchart for the full search 
procedure is given in Fig. D.l 

1 1 
dmin ■= « ; index = 1; 

for i = 1 , N do 

compute d(x,y.) 

I dmin = d(x,y.) 
I index = i 

{ q(xl - ̂ index 

Figure D.l. Full search vector quantizer. 

Due to the enormous complexity for large code books, a simplification of 
the search procedure is required, ft useful technique is called tree 
searched VQ (TSVQ) [Buzo et al., 1980]. A TSVQ is most easily visual­
ized as a tree which is labeled with vectors and is searched by the 
coder. The tree structure is completely specified by an m-dimensional 
rate vector B « [r,,r_...,r ]. The number of code book vectors at a 

m 1 2' ' m r. 
node on level 1 is given by N. ■ 2 . The search procedure selects 
among the vectors of the first level (m=l) the one that yields the 
lowest distortion. For the second level, only the vectors connected to 
the node of the previously selected vector are considered. Again, the 
vector that yields the minimum distortion is selected. A tree search 
reduces the number of comparisons at the expense of sub-optimality (not 
all vectors are searched), and an increase in storage space. The 
address of the selected vector is given by specifying the path vector b: 

b - (b^bj,...,^) l > 0 

b = 0 for 1 - 0 

The search procedure is shown in Fig. D.2. 
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q(x) = y index 

Figure D.2. Tree search vector quantizer. 
D.4 Code Book Generation Procedures 

Code book generation procedures that use a training set are all 
based on a generalization of the Lloyd algorithm. 

Step 0: Given a training sequence and an initial decoder 

Step 1: Encode the training sequence; if the average distortion is 
small enough then quit. 

Step 2: Replace each reproduction code word by the centroid of all 
training vectors that mapped onto that code word. Goto step 1 

Two basic approaches exist to generate the initial code book: 

1. start with a simple (i.e. lower dimension) code book of the 
correct size ("random" codes, product codes); 

2. start with a simple small code book (with the correct dimension) 
and recursively construct larger ones (splitting). 

D. 4.1 Randorr. Codes 

Use the first N vectors in the training sequence or select widely 
spaced vectors. 
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D.4.2 Product Codes 

A product code book C=C.XC. is defined as the collection of all M 
possible concatenations or ro words drawn successively from the m code 
books C.. For waveform coding procedures an alternative product code 
[Abut et al., 1982] is more suitable. This procedure is outlined as 
follows: start with a scalar quantizer C , using CLXC as an initial 
guess. Design a two—dimensional code book. Use the resulting code book 
as an initial guess for the 3-dimensional code book (i.e. C XCn). 

For i - 1 , k do 

C (k)=C(k-l)*C(l) 

m « 0 D-r- DD-

while DD > € 

C (k)=cen<S,} ,1-1,11 m 1 
For 1 = 1 , N 

I Sx = {x'k):d(x'k)'y1) < dlx!k|,yn) ,1/n 
L-l D = L X 1 d(x[kl,q(x[k))) 
i=0 

DD - CD . - D )/D m-1 m m 
m - m + 1 

Figure D.3. Product method for the generation of a code book for full 
search VQ. 

The design procedure is shown in Fig. D.3. The initial scalar quantizer 
is given by Q(l). The subscript m of the code book C (k) represents the 
code book obtained after the ro-th iteration. The training sequence con­
sists of L k-dimensional vectors 

x ! k l 

i 
, i - i , with L=J/k CD.5) 
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D.4.3 Split Codes 

The splitting technique constructs codes of a chosen dimension by 
starting with one code word. Splitting this word by perturbing its value 
with a factor S gives an initial code book of double size. The result­
ing two-word code book is again split, resulting in an initial code book 
of size 4, etc. An algorithm for this procedure is shown in Fig. D.4. 
The initial code word is found by computing the centroid of the complete 
training set. The number of splitting operations is given by B=log N. 

Cn(k) = L 1 I x m 

° 1-1 1 
For i = 1 , R do 

For j - 1 , N do 

y1+N - y-jd+s) 
N - 2 * N 

D-l= DD= 

while DD > € 

Cm(k)=cen{S1> ,1-1,M 
For 1 - 1 , N 

I S, - {x'k):d(x ,(k), tk) --:d(x-"yi) < d(x^',yn) ,1/n 

D_ = t/1 £ d(x!k),q(xfk))) 
i-0 m 

DD - (D , - D )/D m-1 m m 
m = m + 1 

Figure D.4. Splitting procedure for the generation of a code 
full search VQ. 

book for 

To generate a code book suitable for tree search, we can use a modified 
split algorithm. The procedure is outlined as follows. Suppose there 
are m levels in a tree, and at each level there are r. branches 
f 3-1,..,IB). 
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a. An r full search code book is first generated. 
b. The training data are partitioned into r subsets, each containing 

all the training vectors matched to one of the r code words. 

c. For each subset, an r size full search code book is generated. 

d. Steps b) and c) are repeated for r and r and so on, until all of 
the code words are generated at the bottom of the tree. 

The total number of code words stored for such a code book is 
m i 
2 H r CD.6) 
i=l 3=1 J 

D.4.4 Empty Cells 

During the design of a code book, we will sometimes encounter empty 
cells. This effect is often found if the training set is small in rela­
tion to the number of output values. But even for large training sets 
empty cells can still be encountered, which means a waste of the avail­
able bits. Here we describe some procedures to reduce or to avoid empty 
cells. For example, after the clustering operation the number of input 
vectors assigned to every cluster is checked. If a cell is empty, the 
corresponding output point is deleted and a new output point is defined 
by "splitting" the output point representing the cluster with the 
highest distortion. In [Babiner et al., 1983] the binary split algo­
rithm was used, and for an empty cluster, the "largest" cluster is split 
into two clusters. The convergence test is bypassed to ensure a reclas-
sification in which each cluster is non-empty. Note that this check is 
done during the classification iterations. In [Linde et al., 1980] the 
binary split algorithm was used and for an empty cluster the new code 
word was set to the old code word. In [Gray and Linde, 1982] empty 
clusters are treated by choosing the new output value equal to a per­
turbed value of the centroid of all training data. For a second empty 
cluster the corresponding output value is set to another perturbed value 
of the initial centroid. 

D.5 Vector Quantization Of LPC Filter Coefficients 
In the previous sections we described various techniques for gen­

erating code books. In this section we consider the application of VQ 
for encoding LPC filter coefficients. The choice of an appropriate dis­
tortion measure is very important. For LPC quantization, the distortion 
measure should be consistent with the residual energy minimization con­
cept of LPC. Three distortion measures having this property are [Gray 
et al., 1980] the Itakura-Saito measure, the Itakura measure, and the 
likelihood ratio measure. In [Viong et al., 1982] [Juang et al., 1982] 
the likelihood ratio was chosen as distortion measure. A significant 
advantage of this measure is that the gain term is separated from the 
filter, so it can be quantized separately, thereby reducing the size of 
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the code book. Let a represent the residual energy resulting from 
inverse filtering the speech signal X(z) with the optimal p-th order LPC 
filter A (z). Also, let 1/A(z) be any p-th order all-pole model. 
Inverse filtering XfZ) with Afz) will result in a residual energy a, 
Q >. Q because a is minimized by A (z). The likelihood ratio measure is 
defined for the two unity gain model spectra as 

+7T . „ 
c^fl/A ,1/A) = | IA(e3a)/A (e3")! ;f - 1 (D.7) 

r —n r 

- *-- i 
p 

The evaluation of D can be carried out with a scalar product [Buzo et 
al., 1980]: L K 

-1 P cL_(l/A ,1/A) = a i[r (0)r (0) + 2 E r (i)r (i)] - 1 (D.8) LR p p x a . . x a i = l 
where r (i) and r (i) denote the auto-correlation sequences of the input 
speech data and the polynomial coefficients of A ( z ) , respectively. In 
[Roucos et al., 1982] the Euclidian distance on LARs was proposed as an 
alternative distance measure, and it was reported that in informal 
listening tests no differences could be heard between VQ using such a 
LAR measure and a quantizer using an Itakura distance measure. 

D.6 Lattice Quantizers 

Lattice quantizers are considered as a special class of vector quan­
tizers that possess a structured set of output vectors [Gersho, 1982]. 
The output points of a lattice quantizer lie in a bounded region of a 
lattice. The basic theory of lattices, a branch of geometric number 
theory, is presented in [Cassels, 1971]. A lattice in k dimensions is 
defined by a non-singular k by k matrix M, the so-called generator 
matrix, and the lattice consists of all integer combinations of the rows 
of M. The lattice points form a regularly spaced array of points in a 
k-dimensional space and the origin is always a lattice point. The Voro-
noi cells for all lattice points are congruent and, equivalently, the 
lattice quantizer is a uniform quantizer. 

In [Sloane, 1981] tables are given for a set of basic or root lat­
tices. The normalized moment of inertia of a lattice determines the 
performance of a lattice guantizer when the mean-square error distortion 
measure is used. In [Conway and Sloane, 1982] the values of these 
moments of inertia are tabulated for different lattice structures. 

An interesting lattice is called E [Sloane, 1981] and may be 
obtained by applying construction method A to the extended Hamming code 
of length eight. Construction method A goes as follows: if C is a 
binary code of length n, then the set of centers 
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c + 2x (ceC, X€Zn) (D.9) 

forms a sphere packing in R . Most of the properties of this packing 
can be obtained directly from the code C. The extended Hamming code is 
given by 
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1 
1 

0 
1 
1 
0 
1 
0 
0 
1 
0 
1 
1 
0 
1 
0 
0 
1 

0 
1 
0 
1 
1 
0 
1 
0 
1 
0 
1 
0 
0 
1 
0 
1 

0 
1 
1 
0 
0 
1 
1 
0 
1 
0 
0 
1 
1 
0 
0 
1 

(D.10) 

and can be spanned by the following base: 

0 0 0 0 0 0 0 0 

1 1 1 0 1 0 0 0 
0 1 1 1 0 1 0 0 (D.ll) 
0 0 1 1 1 0 1 0 
1 1 1 1 1 1 1 1 

The component 2x ensures that all vectors with even coordinates belong 
to the lattice. This is the space spanned by 

(D.12) 

By combining the sets of Eqs. (D.. ) and (D. ) and removing the dependent 
vectors, we obtain the following generator matrix M: 

2 
0 
0 
0 
0 
0 
0 
c 

0 
2 
0 
0 
0 
0 
0 
0 

0 
0 
2 
0 
0 
0 
0 
0 

0 
0 
0 
2 
0 
0 
0 
0 

0 
0 
0 
0 
2 
0 
0 
0 

0 
0 
0 
0 
0 
2 
0 
0 

0 
0 
0 
0 
0 
0 
2 
0 

c 
0 
0 
0 
0 
0 
0 
2 
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M . | 

0 0 
0 0 

0 0 0 

0 0 
1 1 

0 0 0' 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
1 0 0 
0 1 0 
1 1 1 . 

CD.13) 

The normalization factor \ will normalize the value of the sphere radius 
to p-£. The lattice points of ER are located on concentric shells with 
radius m around the origin. In [Sloane, 1981] the number of points for 
a given value of m are tabulated. If we drop the factor \ the value of 
p will become equal to 1. The radius of the first shell will be equal 
to 4p = 4. The value of N equals 240, which means that we have to 
find 240 vectors generated by trie matrix M. By subtracting the vectors 
of Eq. (D.12) from those of Eq. CD.11) we obtain the following combina­
tions: 

All 14 vectors of Eq. (D.10) with norm 4 

1 
0 
0 

41 
±1 
0 

±1 
±1 
±1 

0 
tl 
±1 

±1 
0 
tl 

0 
±1 
0 

0 
0 
±1 

0 
0 
0 

> 14 * 16 - 224 

all perturbations of 
±2 0 0 0 0 0 0 0 2 * 16 

Total: 240 
The algorithms for finding the closest point of a lattice to an arbi­
trary point xcH can be simple. For example, to find the closest point 
of the integer lattice Z (i.e. the lattice consisting of all points 
with integer coordinates in the space B ) to an arbitrary point x, we 
round each coordinate of the vector x to the nearest integer to obtain 
the vector f(x), which points to the closest point of the lattice Z . 
In [Conway and Sloane, 1982] algorithms for the other root lattices can 
be found. When the subset of the lattice consists of a shell with 
radius m, more efficient algorithms [Adoul et al., 1984] can be found. 
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E. APPENDIX E: 00RDIC ALGORITHM 

The CORDIC (Coordinate Rotation Digital Computer) technique [Voider, 
1959] [Walther, 1971] is a digital shift-and -add bit recursive comput­
ing technique to execute a specific set of functions including plane 
rotations on two dimensional vectors, trigonometric functions, loga­
rithms, multiplications and divisions. 

Let the quantity m characterize one of the following coordinate sys­
tems: circular (m=l), linear (m=0), and hyperbolic (m=-l). Within each 
coordinate system the norm lul and angular component a of a vector 
u=(x,y) are given by 

r 2 2,i 
lul « (x + my ) 2 

l -i l m2 tan (rtpy/x) 
(E.l) 

(E.2) 
This vector u can be rotated over an angle Q by a multiplicative norm-
preserving operator R (<*), that is, if 

R (ct) u -
m 

then 

i 1 4 cos(m2a) -m2sin(m2ct) 
n 2sin(rn2ci) 

■ cos(m2 a) 

cos(m2a) 

Vtan(A) 
Ttan(ro2G) 

(E.3) 

Ivl lul (E.4) 
and 

+ a (E.5) 
The rotations in the different coordinate systems are shown in Fig. E.l. 
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m=l m = 0 

\ x=(x,y) 
/ 
/ 

0 x 

Figure E.l. Rotation in different coordinate systems. 

Different functions can now be obtained in two different modes. In the 
first mode, the coordinate components of a vector and an angle of rota­
tion are given, and the coordinate components of this vector, after 
rotation through the given angle, are computed. This mode is called 
rotation. In the second mode, called vectoring, the coordinate com­
ponents of a vector are given and the magnitude and angular argument of 
this vector are computed. For example, the circular rotation (m=l) is 
given by 

cos a 
sin a 

-sin a 
cos a (E.6) 

First we introduce an auxiliary variable z that accumulates the total 
rotation a 

n z0 + a (E.7) 

In the rotation mode we set z equal to -a, and rotate the vector until 
z -» 0. The values of x , y and z will become n n n n 

yn - xnsin <* + y0
cos tt 

z = 0 n 
In the vectoring mode, the vector u = (xQ yQ) is rotated through an 
angle a until u = (x 0), and z will be equal to the net rotation a 
provided it was initially equal to zero. 

y.sin a = 0 tan (y0/x0) 
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yn - x0sin o + y0cos a - tx^+y*)* 

zn - zQ + tan-1(y0/x0) 

By choosing either vectoring mode or rotation mode and using different 
coordinate systems (m=0,-l,l), we obtain the functions listed in Fig. 
E.2. 

x -| x I- x cos z - y sin z 
I I 

y -I y I- y cos z + x sin z 
I I 

z -I z I- o 

CIRCULAR (m=l):z -> 0 

y + xz 

0 

LINEAR (m=0):z -. 0 
H + 

x -I x I- x cosh z - y sinh z 
I I 

y -I y I- y cosh z + x sinh z 
I I 

z -I z I- 0 
H Y 

x -

y -

z -

4 Y 
1 X 1-

y l-
z 1-

1 Y 

CIRCULAR(m 

x -

y -

Z -

X | — 

y i -

z 1-

LINEAR(m=0 

X -

y -I 

z -1 

Y 
X 1-

y i -

z 1-

(x2 

0 

z + 

= 1): 

X 

0 

z + 

+ y 2 

tan 

y - 0 

x/y 

:y -t 0 

(X 2 

0 

z + 

2 
- y 

tanh 

1Cy/xl 

* 

1(y/x 

HYPERBOLIC (m=-l):z -. 0 HYPERBOLIC (m=-l):y -. 0 

Figure E.2. The CORDIC functions. 

The basic idea of the CORDIC technique is to factor the rotation opera­
tor R (a) into a fixed length sequence of "elementary" rotations, that 

Vtt) -V'oVo' V i V i ' ' .R (<7 Q ) 
nr p m,p 

(E.8) 

where the & m . form an ordered set of positive angles for each of the 
coordinate systems, with 

■ia < a . . < Q 2 m,i - m,i+l - m,i (E.9) 
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and the {<?.} form a set of sign parameters (a. = il) such that the value 
of a is approximated by 

P Z <7 .a m,i m,i CE.10) 
i=0 

and 

la 1-0 m,i ra,i - m,p (E.ll) 

By choosing the basic angles a. equal to integral powers of two, the 
micro rotations R (o.a .) can lie performed as shift and add operations, 
instead of multiplications. Thus 

m *tan m*a 2 ro'1 , s . > 0 ro,i _ (E.12) 
The rotation R (a) can then be written as m 

P 
n 
i-0 

IM. 2 
l ,ro 

l ,ro 
l ,ro 

(E.13) 

The factor K ro 
K = n cos(roT& .) - n tl + m tan (roTa .)] T ro i=Q m,i ,=0 m,i (E.14) 

depends only on the values of ro and {a .} and is independent of the 
value of a and can thus be considered as a constant scale factor. 
Instead of performing a multiplication by this factor, the inverse scal­
ing procedure can be incorporated in the micro rotations [Haviland and 
Tuszynski, 1980]. For example, the scaling factor K can be approxi­
mated by 

p -s. K - n il - me.. 2 'm) m . rt l ,m i=0 
(E.15) 

where the values of £. are either 0 or 1. By performing after each 
micro rotation a scaling cycle 

i+1 1 - w €< m
2 l .m 

i,m 

l-m«. 2 l ,ro 

i+1 
(E.161 

the final vector [x y ] will have a norm equal to [x Yn3. Note that 
this scaling is only required for the circular and hyperbolic rotations 
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(ro=l,-l). Furthermore, to obey to Eq. (E.ll) on a given interval and 
with equal accuracy, the CORDIC function evaluation time will depend on 
the system parameter ro. To be able to use CORDIC modules in a pipeline 
fashion the following features are required. 

1. The execution time is constant and independent of the parameter ro 

2. The hyperbolic and circular rotations have a common function 
domain 

3. The norm scaling factor K can be written as a single radix 2 
shift K = 2 ro 

In [Deprettere et al., 1984] it was shown that these conditions can be 
met by choosing 

nT*tan(m*tt . ) = 2 Itl'1 - u .2 ">'1 (E.17) 
ro, l m , l 

where u is either 0 or 1 and s . and r are positive integers. 
The shi S(m) for the scale factor is -2,0,1 for m= -1,0 and 1 ,respec­
tively. 
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F. APPENDIX F: DESCRIPTION OF DEMONSTRATION RECORD 

All speech files, except the wide—band examples have been filtered 
to a bandwidth of 0-3400 Hz. Unless otherwise indicated the predictor 
parameters were determined according to the parameter settings listed in 
Table 2.1. The coder analysis parameters for the RPE and MPE coders were 
listed in Tables 3.1 and 4.1 respectively. Two utterances (see Table 
F.1) spoken by a male and a female speaker are used in the following 
examples. 

A lathe is a big tool. (27 = female, 37 = male) 
An icy wind raked the beach. (29 = female, 39 = male) 

F.1. Utterances used for demonstration record. 
Different Coder Structures 

The following examples have been generated without quantization of 
the coder parameters. 

a) PCM encoded signals (12-bit quantizer, 8 kHz sampling frequency). 
These utterances were used as coder input in all simulations. 

b) RPE coder (pulse spacing 4). 

c) RPE coder + pitch predictor (pulse spacing 4). 

d) RPE coder (pulse spacing 4, Toeplitz modification RPEM1, see Chapter 
3). 

e) RPE coder (fixed weighting filter, procedure RPF2, see Chapter 3). 

f) MPE coder ( 8 pulses per 10 ms). 

g) MPE coder + pitch predictor ( 8 pulses per 10 ms). 

h) MPE coder signals ( Toeplitz modification). 

i) Multi-path Search Coder 

1. bb version (see Chapter 5). 

2. as bb version but without pitch predictor. 

j) Speech degraded by additive white noise (SNR=12 dB). Examples played 
in pairs (RPE-MPE coder). 
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EPE Coding Combined With Vector Quantization 

In the following examples the regular-pulse excitation signal is 
quantized using scalar and vector quantizers. The quantizer characteris­
tics have been generated with the aid of an iterative procedure. The 
utterances "27" and "37" were not contained in the training sequence. In 
all examples the excitation sequence is quantized with 1 bit per pulse. 
(i.e 1/4 bit per sample). 

k) RPE + pitch predictor (iterative code books). 

1. scalar L=l. 

2. vector L=10 (normalization to the absolute maximum value). 

1) RPE + pitch predictor (NSSIZE= 4 ms) (lattice quantizer LQ1, 
Chapter 7). 

RPE and HPE performance at 10 kb/s and 16 kb/s 

In the following examples all coder parameters have been quantized. 

ro) RPE coder 9.6 kb/s (bit allocation as listed in Table 7.1). 

n) RPE coder + pitch predictor 10 kb/s (bit allocation in Table 7.1 + 
pitch parameters). 

o) MPE coder 9.6 kb/s (bit allocation as listed in Table 7.1). 

p) MPE coder + pitch predictor 10 kb/s (bit allocation in Table 7.1 + 
pitch parameters). 

q) RPE coder 16 kb/s (Table 7.2 , procedure RPE2). 

r) MPE coder 16 kb/s (Table 7.2, procedure MPE2). 

Wide-band Speech 

The wide-band speech examples have been sampled with a 16 kHz sam­
pling frequency (0-7200 Hz bandwidth, 12 bit quantizer). All parameters 
have been quantized according to the procedures in Table 7.7. 

s) 

1. PCM 

2. RPE 25 kb/s 

3. MPE 25 kb/s 
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HET CODEREN VAN TELEFOONKWALITEIT SPRAAK IN HET TIJDDOMEIN 
MET BITSNELHEIDEN LAGER DAN 16 KB/S 

Peter Kroon 

Technische Hogeschool Delft, 
Mekelweg 4, 2628 CD Delft 

SAMENVATTING 

Het gebruik van digitale technieken in communicatie systemen heeft tal­
rijke voordelen. Met name de mogelijkheid om zowel spraak- als 
controle-signalen roet een digitale code te kunnen weergeven, leidt tot 
systemen met een betere kwaliteit en een hogere betrouwbaarheid dan de 
traditionele "analoge" systemen. De laatste 15 jaar is er veel onder­
zoek gedaan naar methodes voor het efficient coderen van spraak sig­
nalen, maar veel van de ontwikkelde methodes waren praktisch niet real­
iseerbaar. De opkomst van de VLSI techniek, maakt het nu mogelijk dat 
zelfs vrij ingewikkelde methodes geimplementeerd kunnen worden tegen 
relatief lage kosten. 

In dit proefschrift valt de nadruk op tijd-domein technieken welke 
geschikt zijn voor de codering van telefoonkwaliteit spraaksignalen met 
bitsnelheden lager dan 16 kb/s. De basis van de onderzochte methode 
bestaat uit een Vertraagd Beslissingssysteem in combinatie met adap­
terende voorspellers. De voorspellers verwijderen zoveel mogelijk de in 
het spraak signaal aanwezige correlatie. De resterende voorspellings 
fout is vervangen door een zuiniger codeerbaar excitatie signaal, waar­
bij de juiste keuze hiervan gebaseerd is op een vetraagde beslissing. 
De keuze van de juiste procedure voor het vinden van het juiste excita­
tie signaal bepaalt in niet geringe mate het gedrag van de coder. 

Een recentelijke in de literatuur voorgestelde methode, de multi-
puls excitatie (MPE) coder [Atal en Remde, 1982], is diepgaand bestu­
deerd en diverse modificaties zijn onderzocht. 

Tijdens het promotieonderzoek is een alternatieve methode ontwikkeld 
welke reguliere-puls excitatie (RPE) codering wordt genoemd. De kwali­
teit van deze coder is vergelijkbaar met die van de RPE coder, maar de 
laatsgenoemde bezit een lagere complexiteit en is veel beter geschikt 
voor VLSI implementatie. 

De RPE en MPE methoden kunnen beschouwd worden als een 
geparametriseerde benadering van het excitatie signaal. Een alternatief 
is om het meest geschikte signaal te zoeken uit een verzameling kandi­
daat excitaties. Deze aanpak is wel de meest complexe, maar kan bij een 
lage bit snelheid beter resultaten geven dan de RPE and MPE methodes. 
Deze manier van coderen is voornamelijk onderzocht om te dienen als 
referentie voor de RPE en MPE coders. 
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Om de coder parameters roet een beperkt aantal bits te kunnen weer­
geven is het noodzakelijk om deze te quantiseren. De quantisatie pro­
cedure heeft invloed op de uiteindelijke kwaliteit van het spraak sig­
naal en diverse alternatieven zijn onderzocht. Tevens zijn efficiënte 
procedures onderzocht voor de codering van het MPE excitatie signaal. 

Een evaluatie van de diverse onderzocht coderings systemen onthult 
dat zowel de RPE als de MPE coder bijna telefoon kwaliteit spraak produ­
ceren bij 10 kb/s. De kwaliteit van de RPE coder is zelfs bij lage 
bitsnelheden rond 6 kb/s vrij goed. Het is dan wel noodzakelijk om vec­
tor quantisatie technieken te gebruiken. Een ander interessant aspect 
van de RPE en de MPE coders is dat zij ook zeer geschikt zijn voor de 
codering van breed-bandige spraak (7 Khz) bij bitsnelheden onder de 32 
kb/s. 

De RPE methode heeft de meest aantrekkelijke eigenschappen voor VLSI 
implementatie, en diverse algoritmische structuren worden beschreven. 
Uiteindelijk is er een geschikte realisatie gevonden, welke gebaseerd is 
op OORDIC bouwstenen. 

Tenslotte beschrijven we de programmatuur die ontwikkeld is voor het 
uitvoeren van het onderzoek. Hierbij is getracht een software omgeving 
te ontwerpen die zo algemeen mogelijk is en ook gebruikt kan worden voor 
diverse andere soorten signaalonderzoek. 
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STELLINGEN 

1. De RPE methode codeert spraak met een kwaliteit die 
vergelijkbaar is met die van de MPE methode, maar 
bezit een geringere complexiteit. 

2. Het is niet juist dat het gebruik van een tijd-
varierend fout weegfilter essentieel is voor de in dit 
proefschrift onderzochte coderingssystemen. 

3. Het negeren van het verschijnsel pitch bij het 
ontwerpen van spraakcoderingssystemen leidt tot een 
inefficient gebruik van de beschikbare hoeveelheid 
bits. 

4. Verbale beschrijvingen van de kwaliteit van een 
spraakcoderings- systeem zijn ontoereikend indien deze 
beschrijvingen niet vergezeld gaan van audio 
materi aal. 

5. Ieder voor zich en UNIX voor ons allen. 

6. Omdat het verkeersgedrag van de meeste automobilisten 
sterke overeenkomst vertoont met hun (vroegere) 
fietsgedrag, is het aan te bevelen om voor een 
veiliger verkeersbeeld de fietsers meer discipline bij 
te brengen. 

7. Dat de "juiste tijd" ook voor bezitters van een 
elektronisch uurwerk maar een betrekkelijk begrip is, 
is bij lezingen e.d. duidelijk hoorbaar op de hele 
uren. 

8. Tekstverwerkings faciliteiten zijn een noodzakelijke 
maar niet voldoende voorwaarde voor het schrjven van 
wetenschappelijke publikaties. 

9. Om in het treinverkeer de stoptijden op de stations te 
minimaliseren, is het aan te bevelen om het in en 
uitstappen alleen toe te staan bij respectievelijk de 
voor en achterkant van het treinstel. 

10. Het feit dat de computer in de wetenschappelijke 
wereld steeds meer als een normaal hulpmiddel wordt 
gezien, wordt bevestigd doordat in huidige publicaties 
de gebruikte computer en bedrijfssysteem niet meer met 
naam en toenaam worden genoemd. 

11. Het verdient aanbeveling om in de toelatingseisen voor 
een universitaire studie het bezit van een diploma 
machineschrijven op te nemen. 
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12. Dat sportparachutisrae een gevaarlijke bezigheid is 
wordt alleen maar beweerd door mensen die liever met 
beide benen op de grond blijven staan. 

13. Het toelaten van geen ABN sprekende 
omroeppresentatoren dient beperkt te worden tot 
regionale zenders. 

14. De in de universitaire wereld veel gebruikte kreet 
"wat niet geschreven is, is niet", moet verstaan 
worden als "wat niet in het Engels geschreven is, is 
niks". 

15. Het gezegde "hardlopers zijn doodlopers" kan steeds 
meer letterlijk worden genomen, naarmate het aantal 
trimmers dat s'avonds gebruik maakt van onverlichte 
wegen e.d. toeneemt. 

Peter Kroon 

Delft, 21 Mei 1985 


