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The application of interface elements and enriched or
rate-dependent continua to micro-mechanical analyses
of fracture in composites

), C. J. Schellekens, R. de Borst

Abstract Micromechanical analyses are presented of matrix fracture and fibre-matrix debonding in
carbon-epoxy composites. The fibres and the matrix are connected by special interface elements which
allow for a geometric discontinuity (debonding) to arise. Two different models for the fibres and the
matrix of the composite structure are used: firstly an elasto-plastic Cosserat continuum and secondly

a visco-plastic continuum. In the micro-mechanical analyses of matrix fracture it is demonstrated that,
upon mesh-refinement, the load deflection curves converge to a unique solution when these regularised
continua are applied, and that the width of the localisation band remains finite. When the interaction
between matrix cracking and debonding is investigated the same observations hold.

1

Introduction

The structural performance of fibre-reinforced materials depends to a major extent upon the interfacial
bonding between fibres and matrix material. Debonding often marks the onset of matrix cracking and
may play a crucial role in the locations at which matrix cracking is initiated. At further stages of the
loading process we observe joining of matrix cracks as well as of matrix cracks and debonded fibre-
matrix interfaces until complete loss of structural integrity finally occurs.

To obtain qualitative information on the progress of debonding and the influence of the interfacial
bond properties on the structural performance of the composite material micromechanical analyses can
be carried out. In numerical micromechanical analyses the fibres as well as the matrix are modelled by
continuum elements and the interface is represented by special interface elements (Ngo and Scordelis
1967; Goodman et al. 1968; Schifer 1975; Beer 1985; Rots 1988; Schellekens 1992; Schellekens and de Borst
1993a). In the undamaged state (fully bond) a sufficiently high dummy stiffness ensures that no
additional deformations occur in the interface, which is assumed to have a zero thickness. After the
tensile strength, or another equivalent strength measure, has been exceeded, the originally fully intact
area gradually evolves into a geometric discontinuity, i.e. an internal stress-free boundary (at full
debonding). In the formulation chosen here the strength/stiffness degradation occurs gradually. During
the debonding process energy is dissipated. The quintessence of the approach for debonding is that
the amount of dissipated energy is assumed to be equal to the critical energy release rate G, of the
interface that fractures. This model ensures a correct energy dissipation during debonding, so that
below a certain discretisation, the crack propagation is independent of the fineness of the mesh. At the
same time, the model results in a correct treatment of size effects (Schellekens 1992; Schellekens and
de Borst 1993b).

The strength degradation in the matrix is modelled using a strain-softening Von Mises plasticity
model. An inherent difficulty of any strain-softening model when utilised in a standard,
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rate-independent continuum setting is, that under quasi-static loading conditions the field equations
cease to be elliptic, Well-posedness of the rate boundary value problem is lost and the mathematical
model is no longer a proper description of the physics. In finite element simulations this loss of
well-posedness becomes apparent through an extreme mesh sensitivity. Near failure all deformation
concentrates in the smallest possible zone that can be resolved by the grid. Upon mesh refinement the
failure zone collapses into a discrete plane (localisation) and the energy consumption during the failure
process tends to zero. When the failure zone is known in advance interface elements as also used for
the fibre-matrix interface can be located at the expected crack path. Together with a specification of
the fracture energy that is dissipated in the crack a mesh-insensitive numerical solution can then be
obtained.

If the crack path is not known in advance, two solutions are possible, Firstly, one can adaptively
remesh during the non-linear process such that the correct crack path is aligned with the element
boundaries (Larsson 1990). Secondly, and this approach is followed here, enriched or rate-dependent
continuum models can be adopted (commonly named regularisation strategies). The two methods that
will be adopted in this contribution to regularise the strain-softening Von Mises plasticity model are
the Cosserat continuum (E. and F. Cosserat 1909; Glinther 1958; Schifer 1962; Miihlhaus and
Vardoulakis 1987) and visco-plasticity (Loret and Prevost 1990; Sluys 1992). Both approaches
intrinsically introduce an internal length scale in the continuum and have the effect that the rate
boundary value problem remains well-posed also after the onset of strain softening for the matrix
material, Accordingly, physically meaningful numerical solutions can be obtained.

The paper is organised as follows. Firstly, a concise treatment is given of the continuum models that
have been used to model the matrix. The Cosserat approach and the visco-plastic model are briefly
recapitulated. Then, the interface elements and the constitutive model for the debonding process are
described in detail, whereby allowance is made for the rotational degrees of freedom that emerge in the
Cosserat continuum description. Finally, a typical example is analysed in detail, whereby ample
attention is given to issues like the sensitivity of the solution to mesh refinement and the interaction
between debonding and matrix cracking,

2

Formulation of the elasto-plastic Cosserat continuum

In this section we will present the derivation of the element stiffness matrix for Cosserat elements in
a plane deformation state. Purthermore a softening plasticity model based on a /, flow theory is
included. A detailed description of the radial return algorithm employed to integrate the plastic strain
rate vector and the associated consistent tangent stiffness relation for the elasto-plastic Cosserat
continuum has been given in De Borst (1991). For more elaborate discussions on the Cosserat
continuum the reader is referred to Giinther (1958), Schéfer (1962), Miihlhaus and Vardoulakis (1987),
Miihlhaus (1988-1990).

241

Element formulation

As already mentioned in the introduction the salient feature of a Cosserat continuum is that the set of
translational degrees of freedom is augmented by nodal rotations, which introduces a length scale
parameter in the continuum formulation. In a two-dimensional continuum the kinematic relations are
defined as

Ou du dw Jdu du dw
611:'@}? 812:5&?““’3 7613='5?: 622:5;2 511:"5}‘:‘*‘(03 ’Cza=”a’é (1)
with , the micro-rotation around the x;-axis (see Fig. 1), u,, the continuous displacements and ¥, and
x,, the micro-curvatures. In a similar fashion we can define the conjugate stress components d,, G
0,y O, Oy and moment-stresses m,, and m,, (see Fig. 1) which are conjugate to the micro-curvatures.
Note that due to the introduction of the micro-rotations the stress and strain tensor are in general
non-symmetric. If the nodal displacement vector 4 is defined as

T
a=(a,a...,ar,ay,a,. . .,a" Wy, wh. .., 05"), (2)
the strain tensor &= (&, &, 535 35 65, K, K6y) " can be determined according to

£=Ba (3)
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Fig. 1. Statics and kinematics for a Cosserat continuum

where the strain-displacement matrix B reads:

’ 0
L S LN S
ox, 0x,
on an
BT = 0 — 0 — 0 0 0 I
ox, 0x, (4
0 0 0 n +n On  On
dx, 0Ox,

where 1= (N,,N,,..., N, )" are the interpolation functions.

nno

For plane deformations the matrix D, that relates the elastic strain tensor to the stress tensor

0= (01> Ty Tapp Oy Oy My 1y,)", is given by
© 2pc, 2pc, 2pc, 0 0 0 0 7
2ue, 2uc, 2puc, 0 0 0 0
2uc, 2uc, 2uc 0 0 0 0
D.= 0 0 0 u+p, p—p, 0 0 (5)
0 0 0 p—p, pt+p, 0 0
0 0 0 0 0 2ull 0
- 0 0 0 0 0 0 2uld

with ¢, = (1 — v)/{(1 — 2v) and ¢, = v/(1 — 2v) respectively. We observe that two parameters, additional
to the conventional elasticity constants u (shear modulus) and v (Poisson’s ratio), enter the continuum
formulation: p,, the Cosserat shear modulus and [, a length parameter which is the essential feature
of the Cosserat continuum model. The term 22 can be considered as the bending modulus (Schifer
1962). Finally, with B and D, the element stiffness matrix can be determined as:

K= |B"DBdS. (6)
§

with § the element surface.

2.2
Cosserat elasto-plasticity
For a J,-flow theory the yield condition @*can be written as

@ = ((3/2) 6" Po)"* — G (xc), (7)

with & the equivalent yield stress which is a function of a hardening/softening parameter x and P the
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projection matrix given by (De Borst 1991):

r 23 =13 —1/3 0 0 0 0
—-1/3 23 —-1U3 0 0 0 0
—-1/3 —13 2/3 0 0 0 0
P= 0 0 0 12 12 0 0 (8)
0 0 0 12 12 0 0
0 0 0 0 0 UR o
L0 0 0 0 0 0 Pd

The constitution of P ensures that in absence of couple-stresses (m,; = m,, =0), ¢,, = g,,, the classical
Von-Mises plasticity model is retrieved. At the same time this reveals one of the limitations of the
Cosserat continuum. The regularising effect vanishes when no couple stresses are present. For an
associated flow rule the plastic strain rate tensor is obtained from

ol
=1

=]
oo’

(9)

as in a standard continuum, with 1 the rate of plastic multiplier. If we define the time derivative
of the hardening/softening parameter x as

&= ((2/3)(&™M)T P&y, (10)
we obtain:
k=1 ' (11)

which is also obtained for a classical continuum,

3

Strain softening visco-plasticity

As a second regularisation technique we shall employ a visco-plastic continuum model for which we
shall briefly recall the basic equations (Simo et al. 1988; Loret and Prevost 1990; Sluys 1992). In this
study we shall utilise the Duvaut-Lions (Duvaut and Lions 1922) model of visco-plasticity, according to -
which the rate dependent response of the continuum is defined by:

!
& =£IL;31)[D”] No—a,) (12)
and
i
kY= — H(n@f’ ) (x—x,) {13)

where £" is the visco-plastic strain rate, £ the visco-plastic hardening/softening parameter, 7 the
relaxation time and H is a step function (H(®?') = 1 if @*' >0 else H(P") =0). @, is the projection of
the trial stress vector on the yield surface in rate independent plasticity. In Eq. (13) «, is the rate
independent hardening/softening parameter of which the rate is again defined by Eq. (10), but now with

203 —13 —13 0
~13 23 —13 0 |
P=0 s —ws 23 o | ()

0 0 0 2

Using additive strain decomposition and denoting £* as the elastic strain rate, the total strain rate in
time step i can be expressed as:

. . . 1 . .
&y =&+ & (15)

71




72

Computational Mechanics 14 (1994)

As a consequence we may write for the stress rate 4,
0 =D&, — &5) (16)

with the matrix D defining the elastic stress strain behaviour. If we integrate Eq. (16) over the time we
obtain for the incremental stress tensor

Agy, =D(Ag, —Agf) (17)
with the incremental visco-plastic strain tensor determined as:
Agh=At((1— O) e+ Ogf,,) (18)

where @ is an integration constant; 0 < @ < 1. At is the time interval for step i(At =1, —t,). The
unknown visco-plastic strain rate at £?, ,, can be approximated by a Taylor’s series expansion, truncated
after the linear terms:

& oer
g2 = +—LAe., +—2Aq .. (19)
(i+1) (i) (i) ny(i)
Jdo do,

With the definition of the visco-plastic strain rate as in Eq. (12) this expression can be elaborated as
follows:

. . | P
3{:’11) = 3(?; +H[D [] (A Lt _Ao'n,(n)- (20)
If we introduce this result in Eq. (18) the visco-plastic strain increment becomes
Ae? = 374 e Del -1 A A A
&=\ &)t —,1'[ 17(Agy—Aag,,) At (21)

which after substituting in Eq. (17) yields the final stress increment A

Aoy, =DfAg, —Aqf (22)
where

V) 71 1)
Df=— D¢

0 1+ OAt (23)
and

v, n el nv, OAt

Aq(x{ =————~77 n @At(D l&'(ifAt—TAO'",(’-)>. (24)

The vector Aq¥ is an incremental “pseudo load” vector which has to be added to the right hand side
of the equilibrium equations. The value of «c at t= ¢, , is determined using the closed form solution
of Simo (Simo et al. 1988) and is given by

= gc g~ (Bt - (Ath
Kiay = Kge G+ (1 —e” WMy, (25)

4

Numerical modelling of the fibre-matrix interface

In this section a formulation of interface elements is presented and an orthotropic softening plasticity
model is described which defines the relation between strength and stiffness degradation and crack
opening in the interface elements (Schellekens 1992).
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Interface element formulation

We consider a nno-noded line interface element as presented in Fig. 2. In a 2D configuration each node
has two translational degrees-of-freedom, 0, and a, normal and tangential to the interface side
respectively. In the case that the interface elements are used together with Cosserat continuum elements
an additional rotational degree of freedom has to be added to each element node. This leads to an
element nodal displacement vector a

—_ 1 2 1 2 1 2 T
a=(a,a...,al" a,a,...,a", w;w5...,03")", (26)

where n denotes the direction normal to the interface surface and t denotes the direction
tangential to the interface surface as can be seen in Fig. 2. The continuous displacement field is denoted
as

u=(ulyu, ulyuy)" - ()
where the superscripts 4 and [ indicate the upper and lower side or plane of the interface respectively.
With aid of the interpolation polynomials n = (N,,N,,...,N, )" the relation between the continuous

2 Vunol2

displacement field and the nodal displacement vector is derived as
u=Ha (28)

in which H contains the interpolation polynomials according to

n 0 0 0 In O
00n 00 0 In

=10 0 n 0 0 o0 (29)
00 0 n 0 0

The scalar [ is the length of the element. To relate the continuous displacement field to the relative
displacements an operator matrix L is introduced

-1 +1 0 0
L‘[ 0 0 -1 +1}' (ze)

When the relative displacement vector v is defined as v = (v,, v,)" we obtain
v="Lu. (31)

The relation between nodal displacements and relative displacements for interface elements is now
derived from Egs. (28) and (31) as

v=LHa—v=Ba (32)

where the relative displacement-nodal displacement matrix B reads

-nn 0 0 —~In In
B_[ 0 0 —n n O 0} (33)

n Gn
w3
4
%t;:z a,
et

X3

linear line interface quadratic line interface nodal degrees of freedom
& b ¢

Fig. 2. Line interface elements
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If we consider an element in which the local coordinate systems in the integration points coincide with
the global coordinate system, no transformations are necessary. For an arbitrary oriented interface
element the matrix B has to be transformed to the local tangential coordinate system of the integration
point or node-set. If the matrix R contains the local coordinate axes in the integration point, the
transformation of the matrix B, from the global coordinate system to the local axes (B)) in the
integration point is given by B,= B,R".

When the matrix D, is used to denote the relation that describes the elastic constitutive behaviour
of the interface element

d, 0

the traction-relative displacement relation becomes
t=Dv (35)

in which ¢ = (¢, t,)" represents the traction vector.

In interface elements tractions and relative displacements are evaluated between the upper and the
lower interface sides or planes. The components of the traction and relative displacement vector are
determined by the orientations of the element sides, and are thus fixed. The virtual work equation for
an interface element can be written as

SW=[5v1,dS (36)
§

with S the surface of the interface element. In a nonlinear analysis the traction vector at the end of an
iteration j can be expressed as

t =ty T Drdv, (37)

where dv, denotes the iterative change in the relative displacement vector, and D; is now a properly
linearised tangent operator. It can be demonstrated that variation of the relative displacement vector
results in 6v;, = 6(dv,;). Introducing Eq. (37) in the virtual work expression and invoking (32) yields

5(da(j))TjBTD}B dSda, = — 8(dag,)" [B™t;_,ds. (38)
S

S

The element stiffness matrix K and the internal force vector f;_,, are now defined as

K= !BTD§BdS and f; ,=— j'BTt(j_l)dS. (39)
N

For numerically integrated interface elements the integrals in Eq. (39) are replaced by an integration
over the {so-parametric coordinates & and #. For the element stiffness matrix this gives

§=+1 d . 2 9 2 2\ 112
K=b§=j—1BTD;B((—aZC~> +<5-xf—>) d. (40)

where b is the width of the interface.

4.2

A constitutive model for interface debonding

Far the modelling of mode-I interface fracture the discrete crack model described in Rots (1988) is
sufficient. However, when the fracture in the interface is not purely of a mode-I type, and energy is also
released in mode-II and mode-I1I, this discrete crack model is no longer applicable (Schellekens 1992).
To describe mixed-mode failure a constitutive model is required in which both components of the
traction vector ¢ are involved. An orthotropic hardening/softening plasticity model now is proposed
for the modelling of mixed-mode fracture in composities, The yield condition for interface plasticity is
given by

D (t, k) =C, 12+ C,t2 + C,t,— FH (k) =0 (41)

nmm-n
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with C; and C, a set of material constants, 7 a normalised yield traction and x the hardening/softening
parameter. ¢, and ¢, are the components of the traction vector. If ¢ and I}, denote the compressive and

tensile yield tractions in the direction normal to the interface side and if 7, is the shear yield traction

we obtain:
[& r? 2 1?
Cph=== C,== C=——=. 2
KT N )
Recasting Eq. (41) in matrix-vector notation yields
! 1 T T 72
o4 (t,rc)=5t Pt+1'P—F (i) =0 (43)

in which ¢ = (¢,,t,), P =diag(2C,,, 2C,) and p" = (C,

n?

0).

As soon as this condition is satisfied, the total relative displacement rate ¥ is decomposed into an

“elastic” part, v, and a “plastic” part, ¥, as follows:

V=4 v (44)
The elastic relative displacement rate is related to the traction rate by

t=D,i”, (45)
and the assumption of an associated flow rule yields for the plastic relative displacement rate:

V= iggﬂ. (46)
For the present orthotropic yield criterion (43) this gives:

W = (Pt +p). (47)
Purthermore, the scalar x in the case of a work hardening/softening hypothesis reads

k=[kdt with r=¢"¥" (48)
4.2.1

Integration of the elasto-plastic relations

For finite increments of loading, Eqs. (44) to (48) can be recast as:

Avy =845+ AV, (49)
Avg)=D; At (s0)
Avfl = A, (Pt + p) (s1)
Axy=1t5A v (52)
A combination of these relations yields

Dy Aty — Avy, + Ay (P, +p) =0 (53)
and finally

ty= (D' + DAy P) ™ (v + Ay — Adgyp). (54)

Substitution of this expression for ¢, . the yield condition (43) results in a nonlinear equation in

Al P(AJ, ;) =0, which can be solved by a local Newton~Raphson procedure:
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k+1 k ijl
A)‘(J') = A/’l'(‘i) ) @ (AL) (55)

OAL |z,

in which k is the local iteration number. The derivative of @#( AZ(D) with respect to A4, ) in Eq. (55)
reads

6(171”(A/{U-)) - aor\" ot +6(DP’ 0x (56)
AL, Oty ) 0AA,  Ox LY
and can be elaborated to give:
D7 (AA,; -
_ﬁfﬁz ~ (Pt +p)" (D7 + AL, P) ' (D7 + Ad, P)™'P
)
(Vi + Avy—Adgp) +p) =, (57)
where
oD LoD
=g 8
h= =% o G8)

is the hardening/softening modulus. The hardening/softening parameter « is then updated according to
Axgy= Ay 5Pty +p). : (59)

4.2.2
The consistent tangent operator for orthotropic plasticity
The derivation of the consistent tangent stiffness relation for orthotropic hardening/softening plasticity
in interface elements is outlined below. Due to the hardening or softening type of response additional
terms occur in the nonlinear equations which eventually results in a non-symmetric tangent stiffness
relation.

The total relative displacement vector at the end of iteration j is given by

- y I
Vi = Vi +AVG+ AV, (60)

where v, is the relative displacement vector at the beginning of the time step. With the relations for
the incremental elastic and plastic relative displacements

. ~ il
Avy =Dt —t,) and Avl= A/l("’Ft; (61, 62)
j
the traction-relative displacement relation can be written as
B o
Vi = Yo+ D7, — 1) + A4y, oty “
i
The time derivative of Eq. (63) reads
o vt 0 P!
L oy
Vi =Dr 1 + A’]‘(i)_a'ai(j) + ’137(; - (64)
j i

Introducing the relation for the plastic relative displacement rate in the consistency condition

. 0 D\ oQr
PI:: — ¢ ——— e =
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leads to

. P\ oM [ i \Tera! . oD ([ O \ToPH

P = — Vb AL —— — | ——1. | = | —=0. 66
(at(j,> 0T A% (avg;’,) o2, TR (avg;.;) o1, (66)

From this relation the time derivative of the plastic multiplier A can be solved to be

.1 [dDP\T o@r( dic \T oM
1(;)“@((3}(‘}_)‘) + Ak \57{31)) ) )t(i) (67)

(%)

in which & is given by Eq. (s8). Substituting the above expression for / in Eq. (66) subsequently yields
for the relative displacement rate ¥,

P 10@P OPM\T AL, 0D [ oD ok \'o* @
V.= D14+ AL, A — | — |E .. 68
g [ AR ot +hat<j)<atu)) Th ok <atu)>(a"5'l)> ot :| v ()

At this point a matrix H is introduced

FP"  AA; 6(D"1(8(DF’>( dx )Té”d)‘”

wEZ (SN ) S (69)
, )
oty J\0vhy) oK,

H=D;'+ A

©eE, " Th ox

The underlined part in Bq. (69) introduces the non-symmetry in the matrix H, which renders the
tangential stiffness matrix to be non-symmetric (see Eq. (71)). With Eq. (69), Eq. (68) can conveniently
be rewritten as

1008 (d@P\T ;
Vo= H¥+—-——| — . 0
v l: i oty ( atu)> :| v 7ol
Use of the Sherman-Morrison-Woodbury formula then yields the consistent tangent stiffness relation
()
, - at, at,; )
by=| H' = U §) . (1)

V.
PI\T pl (VN
h+(a(p ) H_1<a(p >
ot ot
4.3

Assumptions for the debonding model

Due to the fact that we intend to model both plasticity and craking in the interface we can no longer
regard the inelastic deformations (v*') as being purely plastic. Therefore, we define the inelastic relative
displacements as crack relative displacements (v) except for the mode-I inelastic relative

!
el
vib (Ve
r
v ' _
n ; t;
. dil
{ ,'I GC
{
s I s
dn 1) dn
v
dy
Fig. 3. Traction relative displacement diagram
15 for the mode-I component {4 and 4 denote
" the elastic and secant stiffness respectively)
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displacements that are induced by a compressive loading. These are considered as plastic (see Fig. 3).
The degradation of the elastic properties of the interface is coupled with the inelastic relative
displacement due to cracking (v*). In this case the stiffness that determines the tractions in unloading
or reloading is the so-called secant stiffness matrix denoted by D;. From the moment of crack-closure
(defined by v, < '), that is in the compressive loading regime, the initial elastic stiffness governs the
interface behaviour. For the calculations shown in this contribution, it is assumed that due to the
irreversible plastic relative displacements that may occur, the traction relative displacement diagram
shifts horizontally over a distance v (see Fig. 3). Furthermore the assumption is made that degradation
of the equivalent yield traction 7 is not influenced by yielding in compression. Thus the amount of
inelastic work that is used to determine the values of  and C, is defined as i = [ { ¥ dt. In the analyses
that are presented in the next section a linear relation between x and 7 has been assumed:

f=1F,(1 — x/G,), where I, denotes the initial transverse tensile strength of the interface and G, denotes
the fracture toughness of the interface. A physical interpretation of the work-softening model is that
once the fracture toughness of the interface has been released as free-surface energy, the strength and
stiffness of the interface will have completely reduced to zero.

5

Analyses of matrix fracture and debonding

Since a poor bonding between fibres and matrix limits the possibilities of composites that contain high
performance fibres, at present much effort is put in understanding the interaction between fibres and
matrix and improving the interface bonding. In this section we shall present the results of
micro-mechanical analyses of matrix fracture and the interaction between matrix fracture and
fibre-matrix debonding. In the analyses the fibres and the matrix are modelled as a visco-plastic
continuum and as a micro-polar Cosserat continuum. Special interface elements are used to provide
the bond between the fibres and the matrix. For the matrix a linear relation between the equivalent

L :
: :
L. o
" L
j E TRERS
3 | ol
L | L
o o A A
4 3
o 3
] 3
9 J 7]
N - - L I I G L B G I L) SR A A A A R A A AR I A N A A S EANLT,
5
12.5 12,5
=0.5,%,=0.45 "
x10°* Load N/ym ! & x1075 Load N/ym
10,0 - 10.0 —
£, =0,0031 Vs
7.5 —f 7.5 —
5.0 — N 7=106=01 5.0 —| X
mesh 1 e mesh [ S ey
I A mesh 2 p=05x=01 | | / --=--- mesh2 &) =0,00156 U/s
2.5 ~— ——e——  mesh3 25— —~—«— mesh3
& = 0.0031 1/s x, =01, 7=10
u = R gy
0.0 l I T T 0 1 ] T I
0 0.04 0.08 0.12 0.16 ¢ 0.2 7 0 0.04 0.08 0.12 016 um 032
6

Figs. 4~7. 4 Geometry of the reference volume element, s Finite element discretisation of RVE. 6 Load displacement
curves for the right boundary. Effects of variation of i and «,. 7 Load displacement curves for the right boundary,
Influence of the strain rate on the RVE response
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yield stress (5) and the softening parameter is assumed (& = &,(1 — k/k,)). First the results for the
visco-plastic continuum modelling are discussed followed by the results from analyses in which the
Cosserat continuum is applied.

5.1

Micro-mechanical analyses using visco-plasticity

We start with the investigation of matrix fracture in a carbon-epoxy composite. In the composite we

assume a periodic arrangement of the fibres which results in a natural choice for the reference volume

element (RVE). The uni-directional composite (50% fibre volume fraction) is loaded in transverse

tension as shown in Fig. 4. The material properties for the Apollo IM 43-750 carbon fibres and the Ciba-

Geigy Araldite Epoxy matrix are listed in Table 1. Also the material properties for the interface

elements, which enter the model at a later stage, are included in Table 1. 79

Table 1. Properties for the matrix,

Fibres  Matrix Interface elements
fibres and the interface t

E [N/mm?] 12000 3200  d,,d, [N/mm’] 100.0
v 0.3 0.37 F =1 [N/mm?’] 85.0
&, IN/mm?] — 850 F:=1F, [N/mm?*] 85.0
%, [mm/mm] — 0.1 G, [J/m?] 100.0
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Fig. 8. A Contour plots of equivalent plastic strains for mesh 1 at a displacement of 0.2 pm. Left diagram:
4, =0.0031 1/s. Right diagram: ¢ =0.00156 1/s. B Contour plots of equivalent plastic strains for mesh 3 at
a displacement of 0.2 pm. Left diagram: & = 0.00311/s, Right diagram: £ = 0.00156 1/s
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Due to symmetry only a quarter of the RVE was discretised using 170 (mesh 1), 336 (mesh 2) and
1348 (mesh 3) quadratic plane-strain triangles respectively, as is shown in Fig. 5. In the vertical direction
free contraction of the RVE is allowed whereas an equal displacement constraint was imposed on the
nodes of the right boundary. The response of the three meshes was calculated taking different values
for the relaxation time #, the ultimate value for the softening parameter «, and for the loading rate £

The results of the mesh-refinement study are presented in Figs. 6 and 7 in terms of load-
displacement curves for the right boundary of the RVE. We observe that the response of the RVE
converges to a unique solution upon mesh refinement. This is the result of the regularising effect of
the visco-plastic continuum model. Furthermore Figs. 6 and 7 show that for decreasing loading rates
and for the lower value of the relaxation time the difference in response of the three discretisation
slightly increases. This is explainable since for the limit cases of §,, =0 and # — 0 respectively, the
standard (mesh-sensitive) continuum solution is obtained. Figures 8A and 8B present the contour plots
the equivalent plastic strains in meshes 1 and 3 corresponding to the curves of Fig. 7. It is shown that
the width of the localisation band remains finite and approximately constant upon mesh-refinement,
although a slight decrease in width is observed for the right diagrams which correspond to the lower
loading rate.

In the next series of analyses the attention is focused on the interaction between fibre-matrix
debonding and matrix fracture. At this point the interface elements are introduced in the finite element
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x107 Load N/um
10.0 —
-
7.5 —
]
5.0 — . . .
mesh 1 including debonding
————— mesh 2
25— ——— mesh3
£17=0.0031 1/s,7=1.0,K,=0.1
0.0 T T T l
S 0 0.04 0.08 0.12 0.16 um 02

0.5} mesh1, 170 elements. 71 I mesh 3, 1348 elements.

i

0 s - " " 1 " A M 4
00 05 10 15 20 25 30 0005 10 15 20 25 30

10

Figs. 9-10. 9 Load displacement curves for the right boundary. Influence of fibre matrix debonding on the
RVE-response. 10 Contour plots of equivalent plastic strains at a displacement of 0.2 pm. Strain rate 0,0031
1/s.nn =10, x,=0.1
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Figs. 11-13. 11 Load displacement curves for the right boundary using a Cosserat continuum. 12 Contour
plots of equivalent plastic strains for a Cosserat continuum, Displacement; 0.2 pm, 13 Load displacement
carves for the right boundary using a Cosserat continuum
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Fig. 14, Contour plots of equivalent plastic strains for a Cosserat continuum including interface elements.
Displacement: 0.2 pum

‘model. The three meshes of Fig. 5 have been analysed again with the material data set specified in

Table 1. Figure 9 shows the load displacement curves for the three discretisations. It is observed that
when fibre-matrix debonding is taken into account the results also converge to the same solution. As
a reference the results for perfect bonding have been included in Fig. 9 and it can be seen that the
influence of the fibre-matrix bond strength on the response of the RVE is significant. Finally, the
contour plots of the equivalent plastic strains (Fig. 10, meshes 1 and 3) demonstrate that size of the
localisation zone is not affected by the mesh refinement. Hence mesh-insensitive results have been
obtained for the analysis of the interaction between matrix fracture and debonding.

5.2

Micromechanical analyses using a Cosserat continuum model

In this section the results for the Cosserat continuum are discussed. For the length scale parameter of
the Cosserat continuum model a value equal to [, = 0.25 um was chosen arbitrarily, whereas the
Cosserat shear modulus g, for both the fibres and the matrix was chosen equal to their conventional
shear modulus. The hardening/softening parameter x, was taken equal to 0.45.

Figure 11 presents the load displacement curves of the right boundary of the RVE for the different
discretisations. We now observe that there is a distinct different in response upon mesh refinement.
This is mainly the result of the fact that the mode-I component of the stress and strain vectors disturbs
the regularising effect of the Cosserat model. Also the contour plots in Fig. 12 show mesh-sensitivity of
the results. However the width of the localisation band remains finite and does not reduce to zero upon
mesh-refinement, as is the case for a classical continuum.

However, the results for the analyses in which fibre-matrix debonding has been taken into account
show exactly the opposite as can be seen in from Figs. 13 and 14. Here we show the load displacement
curves and the contour plots for the Cosserat continuum including interfaces. Similar to the results for
visco-plasticity presented in Sect. 5.1, a mesh-insensitive response of the RVE has been obtained using
the Cosserat continuum.
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