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Abstract— Network signal coordination control is a crucial 

means to improve the traffic operation efficiency of the overall 

roadway network. Accurate identification of critical paths does 

play an important role in determining the scope of network 

coordination control. Therefore, this paper proposed the 

definition of critical path from the perspective of traffic control 

and management. Under the detection environment of 

connected vehicle (CV), a comprehensive quantitative indicator 

system for path criticality evaluation from three aspects, supply 

side, demand side and operation side, which are arranged in the 

form of a tower structure. A critical path identification method 

(CPIM) was then proposed based on the analytic hierarchy 

process (AHP) theory, which was hereinafter referred to as 

AHP-CPIM. In order to evaluate the feasibility and 

effectiveness of the proposed method, a case study set in an 

urban network in Tongxiang, Zhejiang Province in China, is 

conducted through simulation models built through VISSIM 

and Synchro. Two scenarios were set, one is coordination 

control based on the coordination subarea obtained from 

Synchro (namely without critical path identification), and 

another one is coordination control with critical paths obtained 

from AHP-CPIM. Results showed that, compared with the 

control of Synchro and Multiband method under the scenario of 

coordination control without critical path identification, 

network signal coordination control optimization based on 

AHP-CPIM improved about 37.9% and 35.9% in average delay, 

respectively, justifying the effectiveness of CV-driven critical 

path identification for network signal coordination control. 

I. INTRODUCTION 

Network signal coordination control is an important 
measure to improve the efficiency of urban traffic control and 
management. Under the circumstance of limited temporal and 
spatial resources, accurate identification of critical elements 
(intersection, link, path, etc.) help determine the scale of 
coordination control, which is thus significant to the 
optimization of network signal control.  

Compared with critical intersection and critical link, 
current studies on critical path are rarely seen. Existing 
research generally defines the criticality of roadway network 
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elements based on social network analysis theory, system 
resilience theory and information transmission theory. The 
connotation of criticality is three-fold, the first is the 
importance of network topology characteristics [1][2], the 
second is the service capability to meet the traffic demand 
[3][4], and the third is the function reliability against risk and 
disturbance [5][6]. Based on this, the evaluation and 
identification methods of critical intersection or links are also 
derived from these original theories. As intersections and links 
are both zero dimensional elements from the perspective of 
topology and they are interchangeable, thus the evaluation and 
identification methods are similar. The most common method 
is to propose a criticality index based on several quantitative 
indicators and thus a ranking of intersections or links can be 
obtained according to the criticality values. Apart from the 
method of composite criticality index, different methods have 
been developed to establish the mapping between the 
quantitative indicators and the criticality of network elements, 
such as analytic hierarchy process (AHP) method [2], TOPSIS 
(Technique for Order Preference by Similarity to Ideal 
Solution) method [7], maximal entropy method [3], clustering 
method [8]-[10], machine learning method [3][11]-[14]. In 
essence, such a variety of methods transform the identification 
of critical intersections or links into classification problems or 
regression problems. In terms of traffic evacuation under 
emergence, simulation-based methods are usually used to 
apply seriatim disturbance analysis for each intersection or 
link by comparing the overall traffic progression efficiency 
between normal network situation and the network removing 
the element of interest. The intersection or link with the largest 
efficiency difference is thus determined as the critical one 
[15]-[16]. Whereas, such methods are limited in application as 
the method of removing certain element from the network is 
infeasible in reality, and the computation cost may surge once 
the scale of the network becomes larger, which leads to 
various designs of the whole network troubleshooting process, 
including Latin hypercube sampling, Monte Carlo simulation, 
user optimum assignment iteration, etc.[5][17]-[18]. 

Regarding research on critical path in signalized network, 
the definition and connotation is still not unitary. Zain et al. 
[19] defined the critical path as the combination of critical 
flows, while Li and Yang [20] further declared that the critical 
path of an intersection cluster is the path with the larger traffic 
demand and dominates in the overall traffic efficiency, which 
should be the prior optimization object of coordination control. 
From a macroscopic perspective, Hari et al. [21] pinpointed 
the critical path of a transportation network to be the one with 
the highest importance in terms of trip cost, trip risk, safety 
and infrastructure configuration. 
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For critical path evaluation and identification, Li et al. 
[20][22] and Song [23] transformed it into a similarity 
matching problem for the time-varying flow curves of critical 
flows. Using the 5-min loop flow data as input, a clustering 
method is applied to the high frequency coefficients obtained 
by flow data processed by discrete wavelet transform, the 
combination of flows classified as the same type were thus 
identified as the critical path. However, the method only 
applied to arterial intersection cluster. Liu et al. [24] defined a 
relevance indicator as the sum of path discreteness and 
retardation. Based on the real-time origin-destination (OD) 
path set detection, the path discreteness index was calculated 
using the OD flow and time headway, while the path 
retardation index was calculated using the queue length of 
each link along the path. The critical path was identified as the 
one with the largest relevance. Identification methods using 
relevance indicator have been developed, with a variety in the 
generation of path set, like Bayesian network [25], depth-first 
search [26][27], etc. Moreover, the relevance indicator is also 
used for sub-area division and network coordination control 
optimization, which control idea is to realize significant 
improvement by optimizing the signal timing of only several 
intersections [28]. Hari et al. [21] adopted an AHP method to 
quantify the path criticality through criteria of cost, time, risk, 
non-availability of facilities and insecurity. Then a ranking 
method combining TOPSIS and fuzzy decision theory was 
used to sort all the paths to obtain the critical path. 
Nevertheless, the method was applicable to long-term 
evaluation of highway network. Wang et al. [29] quantified 
the path criticality as the average link relevance which is 
calculated using the link inflow, outflow and travel time, and 
identified the critical path as the one with the largest relevance. 
Shou et al. [30] defined a link impedance index using link 
length, speed and flow, while the critical path is determined as 
the one whose link set had the minimal impedance between 
the path OD using the Dijkstra searching algorithm. Chen et al. 
[31] conducted a spillover analysis over all the links based on 
the queue length and quantify the relevance of consecutive 
links using a frequent pattern growth algorithm. From the 
perspective of traffic signal control, the critical path is 
identified as the sub-path consisting of consecutive 
spillover-prone links according to a predefined threshold of 
spillover risk. 

In summary, current studies on critical path are less mature 
than those of critical intersections or links, and mostly regard 
the critical path as the simple combination of critical 
intersections or links. Identification of critical path is realized 
through the ranking of a composite criticality indicator 
without regard to the overall traffic characteristics of the path. 
The difficulty of critical path evaluation lies in that path is a 
one-dimension topologic shape, which has more complicated 
intercorrelation patterns (like merging and diverging) than the 
simple connectivity pattern of the zero-dimensional 
intersection and link topology. Thus, the key problem in 
critical path evaluation and identification is how to select the 
representative evaluation indicators from both static (spatial 
topology) and dynamic (traffic operation) aspects. 

With the development of techniques like vehicle 
positioning, smartphone-based navigation and connected 
vehicles (CVs), substantial real-time trajectory data are 
becoming available. Compared with fixed detector data, these 

high-resolution CV data can provide more individual vehicle 
information, e.g., origin, destination, route choice, etc., which 
enjoy broad application prospects in traffic operation 
evaluation [32][33] as well as signal control optimization [34], 
meanwhile providing a new tool to enrich the study of 
path-level traffic management. 

Therefore, based on the current development of network 
critical elements, the definition of critical path is proposed. A 
comprehensive evaluation indicator system consisting of 
quantitative indexes selected from the aspects of supply, 
demand and operation is established considering the CV 
detection environment, and then the critical path identification 
is realized through an AHP method. Simulation evaluation is 
conducted based on an empirical network is done to 
demonstrate the effectiveness of the proposed method through 
a horizontal comparison of coordination control between with 
and without critical path identification. 

II. CRITICAL PATH EVALUATION AND IDENTIFICATION 

Based on the general definition of critical intersection and 
critical link, a critical path is defined from the perspective of 
signal control as the path with important topological 

characteristic, high relevance with other network elements, 
large traffic demand and predominant influence in the 
overall network traffic operation efficiency in the roadway 
network. According to this definition, quantitative indicators 
are selected to describe the path criticality for further 
evaluation and identification, which is introduced as below. 

A. Path Criticality Evaluation Indicator 

The definition of critical path not only inherits the 
connotation of criticality from critical intersections and critical 
links regarding topological characteristics and service 
capability, but also reflects the dynamic representation of path 
flow in temporal and spatial dimensions. Correspondingly, the 
quantification of path criticality is realized through three 
aspects, traffic supply, traffic demand and traffic operation, 
which are further interpreted as follows. 

 Traffic supply aspect refers to the passage space or 

right-of-way providing spatial and temporal resources for 

road users. The contribution of traffic supply to path 

criticality lies in the service capacity bestowed by its 

inherent topological structure and traffic rules set by 

transport departments. 

 Traffic demand aspect refers to the traffic demand loaded 

onto the road network as well as its temporal-spatial 

distribution within the network. The contribution of traffic 

demand to path criticality lies in the expected usage of the 

path resulted from the route choice of all kinds of road user 

groups. 

 Traffic operation aspect refers to the actual traffic flow 

properties reflecting the interaction between supply and 

demand within the scale of the road network. The 

contribution of traffic operation to path criticality lies in the 

direct illustration visible or perceivable to the road users and 

traffic practitioners, which is a specialized characteristic 

from the domain of traffic control and management, 

different from the supply and demand aspects transferred 

from other domains. 
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Based the information provided by CV detection, the 
following 13 indicators in Table I are selected for 
quantification of path criticality, including 6 indicators in the 
traffic supply aspect, 3 indicators in the traffic demand aspect 
and 4 indicators in the traffic operation aspect. As for the 
traffic supply indicators, the first three reflect the spatial 
resource supply information which can be obtained by 
geographic information system (GIS), while the last three 
reflect the temporal resource supply information which can be 
obtained by signal timing scheme data. The indicators of 
traffic demand and traffic operation aspects can be calculated 
or estimated using the available CV data. 

TABLE I.  PATH CRITICALITY EVALUATION INDICATOR 

Aspect No. Indicator Meaning 

Traffic 
supply 

1 Path length 
The travel distance between 
the origin and destination of 

the path 

2 
Intersection 

number 
The number of intersections in 

the path 

3 
Controlled flow 

number 
The number of signalized 

flows of each link in the path 

4 
Maximal cycle 

length 

The maximum of the cycle 
lengths of the signalized 
intersections in the path 

5 Maximal split 

The maximum of the splits of 
the controlled flows at 

signalized intersections in the 
path 

6 Path capacity 
The minimum of the flow 

capacity of the flows in the 
path 

Traffic 
demand 

7 Path flow 
The actual number of vehicles 

which travel along the path 

8 
Average degree 

of saturation 
(DS) 

The average value of the ratios 
between the link flow and the 
flow capacity of all the links in 

the path 

9 
Flow 

non-equilibrium 
factor 

The ratio between the path 
flow (from origin to 

destination) and the path flow 
in inverse direction (from 

destination to origin) 

Traffic 
operation 

10 
Average travel 

delay 

The average travel delay of all 
the CVs travelling along the 

path 

11 
Average travel 

speed 

The average travel speed of all 
the CVs travelling along the 

path 

12 
Average 

number of stops 

The average number of stops 
of all the CVs travelling along 

the path 

13 
Average queue 

length 
proportion 

The average ratios between 
the queue length and the link 
length of all the links in the 

path 

B. Critical Path Identification 

Based on the selected indicators, a tower structure is 
adopted for the establishment of an evaluation indicator 
system to describe the parallel relationship of all three aspects. 
Correspondingly, an AHP method is used to evaluate the 
criticality of each path and identify the critical path in the 
network, as shown in Figure 1. Given the path set of the road 
network and CV data as input, the path criticality is calculated 
as a weighted sum of the selected indicators through two 

criterion layers. The detailed steps of AHP-CPIM are given as 
below. 

Critical paths

Path 

length

Intersection 

number

Maximal 

cycle 

length

Path 1 Path 2 Path 3 Path ……

Objective layer

Criterion layer 1

Scheme layer

Criterion layer 2

Traffic

supply

Traffic 

demand

Traffic 

operation

Path 

flow

Average 

degree of 

saturation

Flow non-

equilibrium 

factor

Average 

travel 

delay

Average 

travel 

speed

Average 

number 

of 

stops

Average 

queue 

length 

proportion

Maximal 

split

Controlled 

flow 

number

Path 

capacity

 
Figure 1 Hierarchical structure for path criticality evaluation 

 

Algorithm 1: AHP-CPIM 

Input: Network topology data, signal timing data, CV data 

Output: Critical paths 

Step 1: Based on the hierarchical structure shown in Figure 

1, construct a pairwise comparison matrix for 

criterion layer 1, where  denotes the relative importance 

of  over .  means  and  are equally important. 

Step 2: Normalize each column and calculate the average 

value of each row to obtain the weight vector , as given by 

Eq. (1) ~ (2). 

 (1) 

 

(2) 

Step 3: Check consistency ratio of the weight vectors. 

Calculate the maximal eigenvalue of matrix  using Eq. (3), 

and the consistence index ( ) using Eq. (4). Then calculated 

the consistency ratio (CR) using Eq. (5) by looking up the 

value of Saaty random consistency index ( ). If , 

it means the consistence requirement is met, thus can be used 

as the weight vector of the criterion layer. 

 

(3) 

 
(4) 

 
(5) 

Step 4: Calculation weight vectors of criterion layer 2 and 

apply consistence check. Construct a pairwise comparison 

matrix  regarding the factors  for a certain aspect 

in criterion layer 2 for  paths in the scheme layer. Similarly, 

calculate the eigenvectors  and for each 

evaluation indicator, Thus the criticality weight of each path 

can be obtained using Eq. (6).  

 (6) 
 

III. EVALUATION 

Evaluation of the proposed AHP-CPIM method was 
conducted using a simulation case built over an empirical 
roadway network in Tongxiang, China. The criticality indexes 
of all paths in the network were calculated and sorted to obtain 
the critical paths in the network. The control performance 
through coordination control optimization using the identified 
critical paths was evaluated and compared with that without 
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critical path identification, in order to prove the effectiveness 
of AHP-CPIM using CV data. 

As shown in Figure 2, a simulation network model was 
built by VISSIM based on a 4×4 network in Tongxiang, 
Zhejiang, China, which included a total of 26 intersections, 16 
of which were signalized intersections and installed with 
lane-based license plate recognition (LPR) detectors. The LPR 
data and the corresponding video detector data from 7:00 to 
9:00 on December 3rd, 2020, were collected to calibrate 
demand level of the simulation model. Besides, the floating 
car data from September 20th to September 27th were also 
collected to calibrate the OD set and path set of the network, 
where there were 25 traffic generation points, 28 traffic 
attraction points and 215 paths under these OD pairs. From 
empirical detection, the detection rate of LPR system was 
about 96.5%, which made sure that the simulation was close 
enough to the real traffic condition.  

 

Figure 2 Topology information of Tongxiang network 

The simulation period was set as 9000s while the first 900s 
and the last 900s were warm-up periods, thus the 7200s in 
between was used for evaluation. Based on the calibrated 
traffic demand and route choice, the traffic condition was 
restored. 

A. Critical Path Identification Results 

Through the simulation, the vehicle trajectory data were 
extracted and sampled with a penetration rate of 0.1 to 
simulate the sampled CV data available from car-hailing 
corporations in reality. Based on the hierarchical structure of 
path criticality evaluation in Figure 1 and the AHP-CPIM 
algorithm, the relative weight was determined by the expert 
scoring method and the criticality weight of each path was 
calculated. It is noted that the quantity of 215 paths of 
Tongxiang network was quite a large number, thus the scheme 
layer was divided into 25 sub-layers according to the origin of 
the paths. The AHP-CPIM was applied first to the paths in 
each sub-layer and then the paths with the largest criticality 
weight were selected from each sub-layer to form a high-level 
scheme layer for criticality evaluation using AHP-CPIM again. 
For consistence check of the criterion layer, the number of 
paths in the high-level scheme layer was set as 7 [35]. 
Eventually, the paths with the largest criticality weight in all 
the high-level scheme layers were determined as the critical 
path set of the study site. As shown in Figure 3, four critical 
paths (CPs) were obtained eventually. It is noted that apart 
from CP 2 and CP 3 which are the mainline paths of the 
arterial North Qinfeng Road, as well as CP 4 which is the 
southbound path of the mainline of Shiji Avenue, the scale of 
CP 1 covers two arterials and includes two turning flows along 

the intersections it passes, which is unlike the default 
coordination objective of the common arterial or network 
coordination control strategies.   

CP 1
CP 2 CP 3 CP 4

 
Figure 3 The critical paths identified through AHP-CPIM 

B. Coordination Control Performance Considering CPs 

To further demonstrate the effectiveness of critical path 

identification on network coordination control, a comparison 

was conducted here between the network signal control 

performance with and without critical path identification.  

For network signal control regardless of critical path 

identification, which is actually the common practices, two 

methods, Synchro and Multiband were selected as the 

representative of bandwidth-based methods and 

measure-of-efficiency (MOE) based methods in coordination 

signal control. As the Multiband model only optimizes the 

offset and common cycle length, the splits were first 

optimized using through Synchro to be the given input. For 

MOE-based method, the sub-area-based optimization 

strategy was adopted in Synchro, thus the sub-area division 

scheme was obtained as shown in Figure 4.  Based on the 

divided sub-areas, the signal timing schemes were optimized 

aimed at the optimal MOE of each sub-area in Synchro. As 

for the Multiband method, the network signal control was 

transformed into the arterial coordination control problems of 

four arterials as the scale of four sub-areas were exactly the 

scale of four main longitudinal arterials. 

 
Figure 4 Sub-area division scheme obtained through Synchro 

By contrast, network signal control considering critical 
path identification was realized through a divide-and-rule 
strategy. The intersections of the critical paths (namely CP 1 ~ 
4) were optimized using the Multiband model, while isolated 
intersection control optimization was applied to the remaining 
intersections (namely Int. 2 ~ 4 in Figure 3) using the Synchro 
model. 
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For all three signal control methods, the boundaries of 
cycle lengths were set as [60s, 200s], and the output optimal 
signal timing schemes were input into the VISSIM simulation 
model to test the control performance. Three indicators, 
average delay, average number of stops and throughput, were 
selected for horizontal comparison, as shown in Table II. It is 
obvious that the control performance of network signal control 
considering critical path identification is better than that 
without critical path identification by over 30% and 20% in 
terms of average delay and average number of stops, 
respectively. Though the improvement in throughput is 
relatively trivial, the network coordination control scheme 
using AHP-CPIM has the largest throughput. 

Horizontally, the control performance of each sub-area 
under the Multiband scheme is better than that under the 
Synchro scheme, whereas the average delay only decreases by 
about 3.0% and the average number of stops increases by 
about 13.7%. Such phenomenon proves that the mainline 
two-way progression takes absolute priority over the other 
paths in the Multiband model, which inevitably sacrifices the 
efficiency of other paths. The Synchro scheme aims at the 
optimum of the sum of MOEs for all the sub-areas, but the gap 
between the Synchro scheme and the AHP-CPIM scheme 
shows that the optimization objective of the Synchro method 
may not be positively associated with the global optimum 
objective within the scale of the network. The traffic flows of 
the mainline two-way paths of the four arterials (sub-areas) 
may not be dominant enough to govern the control efficiency 
of the whole network through only optimizing the progression 
of mainline paths, which leads to the limited effectiveness of 
both the Multiband scheme and the Synchro scheme. 
Although the performance of AHP-CPIM scheme is not the 
best in each sub-area, the superiority in terms of global 
network control performance demonstrates that the identified 
critical paths can better capture the traffic demand distribution 
pattern, so that the corresponding divide-and-rule control 
strategy is able to adaptively optimize their signal control 
parameters.  

In summary, critical path identification using AHP-CPIM 
is effective for network signal control, especially applicable to 
scenarios where the traffic demand pattern cannot fit in the 
default mainline- or sub-area-oriented pattern of the 
traditional control methods. 

IV. CONCLUSION 

This study proposes the definition of critical path from the 

perspective of traffic control and management, then 

establishes a quantitative evaluation indicator system 

covering traffic supply, traffic demand and traffic operation 

aspects considering a CV detection environment. An analytic 

hierarchy process-based critical path identification method is 

proposed, with a divide-and-rule control strategy for network 

signal coordination control optimization. Through a 

simulation case study, the effectiveness of the proposed 

method is evaluated and results show that the control 

performance based on the identified critical paths is superior 

over the network control without critical path identification 

by over 30% in terms of average delay. 

Regarding future study, the evaluation indicator system 

can be extended to include more data sources and be 

evaluated under more diversified scenarios. Besides, the 

generality and stability of the AHP-CPIM method is expected 

to be evaluated using more different control models to 

explore its applicability and further develop a comprehensive 

control framework providing fit-for-purpose solutions for 

different control needs. 
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TABLE II.  EVALUATION INIDICATOR COMPARISON OF DIFFERENT CONTROL METHODS 

Method Indicator 
Wenhua 

Road 

North 

Fuxing 

Road 

North 

Qinfeng 

Road 

Shiji 
Avenue 

Network 
Improvement of 
considering CPs 

Without 

critical path 

identification 

Synchro 

Common cycle length (s) 78 78 78 83 / / 

Average number of stops 1.38 1.28 1.32 1.69 2.40 21.3% 

Throughput (veh) 1007 876 1999 753 23591 2.8% 

Average delay (s) 55.33 34.45 58.90 33.14 110.89 37.9% 

Multiband 

Common cycle length (s) 98 80 98 60 / / 

Average number of stops 1.48 1.19 0.86 0.98 2.73 30.7% 

Throughput (veh) 1010 875 2005 756 23799 1.9% 

Average delay (s) 38.93 21.5 23.61 14.61 107.5 35.9% 

With critical 

path 

identification 

AHP-CPIM + 
divide-and-rule 

Common cycle length (s) 69 69 98 60 / / 

Average number of stops 2.85 1.84 0.91 0.96 1.89 / 

Throughput (veh) 1005 875 2005 755 24255 / 

Average delay (s) 59.99 52.31 41.48 23.67 68.86 / 
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