
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Efficient Dynamic
Exemplar Selection for
NLP and Reasoning
Tasks
Master Thesis (IN5000)
Cem Levi

Efficient Dynamic
Exemplar Selection

for NLP and
Reasoning Tasks

by

Cem Levi

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on 03/09/2025

Information:
Project duration: December, 2024 - September, 2025
Program: Master Computer Science
Track: Artificial Intelligence
Student number: 4683625

Thesis Supervision:
Thesis Chair, Supervisor: Prof. Dr. Avishek Anand
Daily co-supervisor: Venktesh Viswanathan
Committee Member: Dr. Jan van Gemert

Initial credits:
Cover: Generated on https://chatgpt.com/
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

https://chatgpt.com/
http://repository.tudelft.nl/

Abstract

Large Language Models (LLMs) have demonstrated impressive capabilities on wide range of tasks
including tasks that entail complex reasoning. They also demonstrate the ability to adapt to new
tasks without further training but with the help of exemplars demonstrating how to solve the complex
reasoning task. This is due to emergent capabilities such as In-Context Learning (ICL) where the model
learns the skills required for a task through the demonstration samples provided. These methods can
be categorized as static methods where exemplars are selected offline or dynamic (Instance-level) where
exemplars are selected on a per test query basis. Dynamic, instance-level exemplar selection has been
shown to be more accurate than static, task-level methods, but it is hard to use in practice because it
requires a lot of computing power. In order to mitigate this issue we propose a novel perspective for
selecting exemplars by casting it into a ranking problem and use LTR models trained on automatically
generated BERTScore-based relevance labels to assign utility to the exemplars. However, randomly
selecting and receiving llm feedback for exemplars may not yield the best data to train LTR models.
Hence, principled exploration of the exemplar space is critical to learn a selection policy offline that can
be easily employed for dynamic exemplar selection during inference. We tackle with these problems in
this paper by proposing CASE Rank, a novel non-linear gap-index bandit framework that cuts down on
inference-time overhead by learning an exemplar utility estimator offline without hurting performance.
CASE Rank solves these problems by combining a gap-index based bandit framework and LTR using
PiRank, a lightweight neural ranking model, as a non-linear surrogate loss function within the bandit
framework. CASE Rank is a bandit based selection approach to judiciously sample LLM feedback
and learn offline policy using a differentiable sorting algorithm. This approach allows for quick and
tailored selection of exemplars for each instance during inference. Experiments conducted on datasets
such as GSM8K, AQUA-RAT, and WMT19 indicate that CASE Rank enhances reasoning performance
compared to previous methods, while also substantially lowering computational requirements. Our
results highlight that principled, efficient exemplar selection can be achieved through a combination of
exploration strategies and learning-to-rank models tailored to LLM response behavior.

i

Contents

Abstract i

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Research Questions . 2
1.3 Contribution . 3
1.4 Thesis Outline . 3

2 Background and Related Work 4
2.1 Exemplar Selection . 4

2.1.1 Task-level Exemplar Selection . 4
2.1.2 Instance-level Exemplar Selection . 5

2.2 Multi-armed Bandit (MAB) Algorithms . 5
2.2.1 Linear Bandits . 5

2.3 Bandit-Based Exemplar Selection . 6
2.3.1 CASE . 6

2.4 Learning to Rank . 6
2.4.1 Surrogate Objectives for LTR . 7
2.4.2 PiRank . 7
2.4.3 AllRank . 7
2.4.4 NeuralNDCG . 8

3 Method 9
3.1 Problem setup . 9
3.2 LTR Dataset for Exemplar Selection . 10

3.2.1 Relevance Score Collection . 10
3.2.2 Feature Derivation . 11

3.3 CASE Rank . 12
3.3.1 Updating Means . 12
3.3.2 Gap Calculation . 17
3.3.3 Variance Calculation . 17
3.3.4 Uncertainty Calculation . 18

4 Experimental Setup 19
4.1 Dataset . 19
4.2 Evaluation metrics . 19
4.3 Hardware configuration . 20
4.4 Baselines . 20
4.5 Relevance Score Generation Details . 21
4.6 Implementation Details . 22

5 Results 24
5.1 Reasoning performance of online dynamic exemplar selection and LTR approaches com-

pared to that of offline exemplar selection approaches 24
5.2 Multi-armed bandit selection using non-linear surrogate loss function improves instance-

level exemplar selection . 25
5.3 Relevance score approach effects CASE Rank performance 27
5.4 LTR model as a non-linear surrogate loss makes offline policy exemplar selection more

efficient than online optimization and LTR approaches 28

ii

Contents iii

6 Conclusion 30
6.1 Conclusion . 30
6.2 Limitations and Assumptions . 31
6.3 Future Works . 31
6.4 Disclosure . 32

References 33

A Appendix 37
A.1 Dataset prompts . 37
A.2 Mistral:v0.1 Results . 37
A.3 Qualitative analysis . 37
A.4 Mean calculation proof . 37
A.5 Inference time speed comparison between CASE Rank and AllRank Neural NDCG . . . 40

List of Figures

2.1 Overview of CASE[40] pipeline . 6
2.2 Example LTR dataset . 7
2.3 Schematic of the proposed model architecture by [37]. Input is a list of real-valued vectors.

Output is the list of real-valued scores. 8

3.1 Relevance score collection pipeline used in LTR dataset generation for exemplar ranking. 11
3.2 Complete pipeline of proposed CASE Rank algorithm. 14

5.1 Inference Time comparison between CASE Rank and Static CASE using Llama3.2:3b for
each of the datasets. Inference time is measured in seconds and is calculated per instance. 29

A.1 Prompt for Aqua . 37
A.2 Prompt for GSM8K . 38
A.3 Prompt for WMT19 . 38
A.4 Inference Time comparison between CASE Rank and AllRank Neural NDCG 41

iv

List of Tables

4.1 Details of hyperparameters used in different LTR model configurations. Categorized by
loss function and framework. 22

4.2 Part of LLM response that was used for scoring for each dataset 22

5.1 Demonstration example selection results across 3 datasets for different Learning-to-Rank
models and Dynamic CASE using llama3.2:3b . 25

5.2 Demonstration example selection results across 3 datasets (we use 5-shot for all methods).
Percentage improvements are reported over Dynamic CASE 26

5.3 Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b
for a particular AquaRat test instance where CASE Rank had a correct answer and the
AllRank NeuralNDCG model did not. 27

5.4 Demonstration example selection results across 3 datasets (we use 5-shot for all methods)
in different settings. Percentage improvements are reported over next best performing
model. 28

5.5 Inference Time comparison between CASE Rank and Dynamic CASE using Llama3.2:3b
for each of the datasets. Inference time is measured in seconds and is calculated per
instance. 28

A.1 mistral:v0.1 results across 3 datasets (we use 5-shot for all methods). 39
A.2 Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b

for a particular AquaRat test instance where CASE Rank had a correct answer and
AllRank NeuralNDCG model did not . 39

A.3 Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b
for a particular AquaRat test instance where CASE Rank had a correct answer and
AllRank NeuralNDCG model did not . 40

A.4 Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b
for a particular AquaRat test instance where CASE Rank had a correct answer and
AllRank NeuralNDCG model did not . 41

A.5 Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b
for a particular AquaRat test instance where CASE Rank had a correct answer and
AllRank NeuralNDCG model did not . 42

v

Nomenclature

Abbreviations
Abbreviation Definition
NLP Natural Language Processing
BERT Bidirectional encoder representations from trans-

formers
CASE Challenger Arm Sampling for Exemplar selection
LTR Learning to rank
GSM8K Grade School Math 8K
AquaRat Algebra Question Answering with Rationales
NDCG Normalized Discounted Cumulative Gain
WMT19 Workshop on Statistical Machine Translation 2019
LLM Large language model
ICL In-context learning

Synonyms Explanation
{exemplar,
demonstration
example, demo}

Task demonstration examples given with the prompt
to the LLM for ICL. If examples include the input-
rationale-output triplet, they are called exemplars.
If they don’t include the rationale, the task demon-
strations are called demonstration examples. To not
periphrase by specifying which of the definitions was
meant all the time, the two definitions were used to-
gether.

vi

1
Introduction

1.1. Background and Motivation
Large Language Models (LLMs) [42][6][54][48] have demonstrated remarkable capabilities in handling
a wide range of problems and tasks through conditioning on a small number of demonstrations in the
input prompt, a paradigm referred as in-context learning (ICL) [9][5]. ICL allows these models to
learn from a limited number of examples without the need for parameter updates. ICL streamlines
the adaptation of a general-purpose LLM to a specific task without the need for feature engineering or
additional model training.
Despite [50][49] shows the ICL superior potential for various scenarios, the performance of ICL heavily
relies on the careful example selection [28] [44][46][56]. Recent work [13] [38] has also shown the perfor-
mance of ICL is sensitive to changes in prompts. Thus, the example selection plays a vital role in the
behavior of ICL, and an important question in the field of in-context learning is how to improve the
selection of in-context exemplars to enhance the performance of LLMs [29]. This has sparked interest
in prompt retrieval, where, given a test instance, training examples are chosen for the prompt based on
some similarity metric.
Researchers have proposed various heuristic and trial-and-error methods to address these limitations in
example selection, including criteria such as entropy [32], influences, and uncertainty. However, only a
few studies have taken a more principled approach [51]. Exemplars for In-Context Learning (ICL) can
be categorized into two types: task-level, where a fixed set of exemplars representative of the task is
chosen for inference, and instance-level, where exemplars are dynamically selected for each test instance.
Static and dynamic methods for principled exemplar selection have been developed to address these
challenges [53, 32]. Some methods require annotated data and the training of multiple models for exem-
plar selection. There has been principled approaches researched for task-level exemplar selection. some
task-level exemplar selection methods here . Espicially bandit based approaches outrank the others.
[40] proposes CASE and [39] proposes EXPLORA as the sampling algorithms for selecting exemplar
subsets.

Both [39, 40] model the problem of selecting exemplars as top-m exemplar subset-selection problem.
However, both algorithms are used in task-level exemplar selection. [40] uses a linear function based on
sentence similarities between the in-context examples and validation examples as the surrogate model
for the reward model for a multi-armed bandit-based exemplar selection scheme. This leads to the
formulation of selection of top-m exemplar subsets as the problem of identification of top-m arms [43]
in the stochastic linear bandit setting [2].

Despite the fact that dynamic exemplar selection often involves additional computational cost and over-
head during inference time, task-level exemplar selection may not capture task variations or drift over
time, also fixed exemplars may become suboptimal for new learning conditions. This can lead to subpar
performance in ICL. Instance-level exemplar selection focuses on specific data points rather than entire
tasks. Moreover, the reliability of a model’s performance can vary when applied to different datasets. In

1

1.2. Research Questions 2

more specialized domains, most mistakes tend to occur in rare or unusual cases that are often overlooked
by methods that focus solely on the overall task. When examples are ranked individually, especially
those the model finds confusing or tends to misclassify, the available budget for labeling or memory can
be spent on the most important examples. Focusing resources in this way helps the model adjust more
quickly as new data becomes available. It also makes it possible to add new or uncommon examples
precisely where they are needed. In practice, this approach tends to improve accuracy and reliability
on edge cases, at the cost of some extra computation. To the best of our knowledge there is not a prin-
cipled approach to instance-level exemplar selection. Instance-level approaches often rely on statistical
similarity [44, 51] and diversity-based strategies to identify the most appropriate exemplars for each
test instance. These approaches do not model interactions between exemplars.

Our goal is to propose a principled and sample-efficient selection scheme for instance-level exemplar
selection. Since the explore-exploit nature of bandit algorithms naturally fit the exploration of the large
exemplar subsets space, we adapt a gap-index-based top-m arm selection bandit framework to perform
instance-level (dynamic) exemplar selection. Moreover, while existing linear stochastic bandits assume
the reward structure is locally linear, the structure of real-world rewards, such as LLM feedback, are
non-linear. Hence, our goal is to also model this non-linearity through the surrogate design in the
gap-index bandit framework, which to the best of our knowledge has not been explored. Additionally,
following the approach adopted by CASE [40], we also adopt challenger arm sampling.

One direction that can be taken for a sample-efficient instance-level exemplar selection scheme is just to
apply bandits online. This can be done by doing the whole bandit optimization online. However, that
can lead to huge computational costs. Thus, the resulting scheme would be computationally inefficient.
The reason for the huge computational costs is the number of LLM calls. With online optimization,
the algorithm could make the same number of LLM calls original CASE made per instance. Offline
optimization algorithm makes 1000-500 LLM calls in total. Most of these LLM calls come from arm
evaluation. 1000-5000 calls for each test instance brings substantial computational cost. Therefore, it
is determined that online inference with online optimization is too expensive an approach to pursue.
For this reason, it was decided an exemplar selection approach that does online inference with offline
optimization should be explored.

Another alternative scheme could be viewing exemplar selection as a learning to rank problem. Learning
to Rank models can be used for offline optimization and online inference for exemplar selection as well.
Thus, we propose modeling the exemplar selection problem as learning to rank problem. To the best
of our knowledge there has not been any research on this approach.

Moreover, though many learning to rank algorithms exists [47, 36], naively applying these algorithms will
not result in the optimal performance because they do not perform exploration of the space. Learning-
to-rank systems typically do not explore the search space because they are trained on logged interactions
from previously deployed rankers, which biases the data toward items that were already shown. Their
standard pointwise, pairwise, or listwise losses optimize accuracy on observed labels and provide no
incentive to try unobserved documents or alternative orderings. At serving time, inference is usually
deterministic over a fixed candidate set from retrieval, so items outside that set are never considered,
and low-scoring items are rarely surfaced.

Hence, we propose CASERank (Challenger Arm Sampling for Exemplar Ranking), which integrates a
differentiable sorting or learning-to-rank module as a nonlinear surrogate within the bandit algorithm.
This surrogate directly ranks exemplars, estimates their utilities, and captures the nonlinear structure
of LLM feedback-based rewards. Consequently, we cast dynamic exemplar selection as a nonlinear
stochastic bandit problem rather than a linear one. Also, we propose this in a learning to rank setting
to rank exemplars. So once we collect sufficient data for the nonlinear surrogate using our bandit
framework, this can be used train the network, which is trained offline. It can be used online at
inference time for selection

1.2. Research Questions
To address the discussed shortcomings in instance-level exemplar selection, the following research ques-
tions are proposed:

1.3. Contribution 3

(1) RQ1: Can online dynamic exemplar selection and LTR approaches lead to better performance in
reasoning tasks compared to offline exemplar selection approaches?

(2) RQ2: How can instance-level exemplar selection be improved through efficient multi-armed bandit
selection

(3) RQ3: How does offline policy exemplar compare to offline and online optimization in terms of
efficiency-performance tradeoff?

1.3. Contribution
The contributions of this work, derived from addressing the proposed research questions, are as follows:

(1) Novel way to generate relevance scores for A LTR datasets: Using LTR models for exemplar
ranking requires dedicated LTR data. As there are no publicly available ICL datasets designed
for this purpose, we introduce our own approach.

(2) A framework to model LTR problem as an exemplar selection problem: We propose a method
that frames the exemplar-selection problem as a learning-to-rank (LTR) task. This allows LTR
models to be trained to rank exemplars and then deployed for online use.

(3) Introduction of non-linear differentiable sorting surrogate in gap-index based bandit framework:
We introduce a dynamic exemplar-selection algorithm that uses an LTR model as a nonlinear
surrogate for the bandit algorithm. This more accurately models the LLMs nonlinear rewards,
while a bandit routine explores the search space and selects training data for the LTR model.

1.4. Thesis Outline
The report is laid out in the following way. Chapter 2 discusses current related work relevant to the
research objectives of this study. Chapter 3 dives into the methodology used to collect relevance scores,
LTR dataset feature generation, and CASE Rank algorithm. Chapter 3 explains the LTR generation
pipeline, modelling a LTR model for exemplar selection, and using a non-linear surrogate for a gap-
index-based bandit algorithm. Chapter 4 discusses the experiments conducted and the implementation-
tion specification used to answer the research questions. Chapter 5 discusses the results obtained and
relates them to the research questions and existing literature. Finally, Chapter 6 concludes the thesis
while discussing limitations and directions for future improvements.

2
Background and Related Work

2.1. Exemplar Selection
Large Language Models (LLMs) [42][6][54][48] excel on many problems by using a small number of
prompt-based demonstrations, a paradigm called in-context learning (ICL) [9][5], which enables learning
from limited examples without any parameter updates. ICL makes it much easier for a general-purpose
language model to take on new tasks. There is no need for complicated feature engineering or extra
rounds of training. Instead, the model learns to handle a variety of tasks by picking up on helpful hints
from just a few examples. ICL demonstrates flexibility, allowing LLMs to handle a wide variety of nat-
ural language processing (NLP) tasks, including text classification, question answering, and reasoning
problems [50].
Despite [50][49] shows the ICL superior potential for various scenarios, the performance of ICL heavily
relies on the careful example selection [28] [44][46][56]. Recent work [13] [38] has also shown the per-
formance of ICL is sensitive to changes in prompts. Thus, exemplar selection plays a vital role in ICL
behavior, and an important question in the field of in-context learning is how to improve the selection
of in-context exemplars to enhance the performance of LLM [29]. This has sparked interest in prompt
retrieval, where, given a test instance, training examples are chosen for the prompt based on some
similarity metric.
Researchers have proposed various heuristic and trial-and-error methods to address these limitations in
exemplar selection, including criteria such as entropy [32], influences, and uncertainty. However, only a
few studies have taken a more principled approach [51]. Exemplars for In-Context Learning (ICL) can
be categorized into two types: task-level, where a fixed set of exemplars representative of the task is
chosen for inference, and instance-level, where exemplars are dynamically selected for each test instance.
Static and dynamic methods for automatic exemplar selection have been developed to address these
challenges [53, 32].

2.1.1. Task-level Exemplar Selection
Early techniques such as Chain-of-Thought (CoT) prompting put a strong emphasis on showing clear,
step-by-step examples of reasoning. This approach has proven to be much more effective than older
prompting methods. Chain-of-Thought (CoT) prompting breaks down difficult reasoning problems into
smaller, more manageable steps. This method has led to top results on challenging benchmarks like
GSM8K. Still, early versions of CoT depended on examples created by hand, which made it hard to
scale and use widely in real-world situations.

To overcome these challenges, task-level exemplar selection methods have become simpler and more
general. For example, Zero-Shot-CoT prompting, introduced by [24], uses a single, widely applicable
prompt such as "Let’s think step by step" that helps the model choose examples as it reasons through
a problem, without needing to provide specific examples upfront. This approach enables the model
to reason more effectively on various tasks, even when it is not provided with specific examples. It
highlights how much can be gained by letting the model choose its own examples based on its own
reasoning process.

4

2.2. Multi-armed Bandit (MAB) Algorithms 5

Further refining exemplar selection, [17] proposed complexity-based prompting, which systematically
selects exemplars according to the complexity of their reasoning chains. Their research demonstrated
performance improvements over traditional selection methods, including manually-tuned and retrieval-
based strategies. Similarly, [14] selects task-specific exemplars using uncertainty-based metrics to im-
prove few-shot chain-of-thought prompting. Unlike prior approaches relying on fixed or randomly
chosen exemplars, Active-Prompt introduces a principled selection mechanism that enhances reasoning
performance across diverse tasks through targeted annotation of high-uncertainty queries.

2.1.2. Instance-level Exemplar Selection
Instance-level exemplar selection methods in in-context learning (ICL) focus on dynamically selecting
the most informative exemplars for individual queries. [44] introduced Efficient Prompt Retrieval (EPR),
a method that takes advantage of a pre-trained language model to label training examples as suitable
or unsuitable prompts based on their predicted efficacy. Contrastive learning allows EPR to tell which
prompts are helpful and which are not, making it easier to find the best examples and improve how
well the system works on future tasks.

It is also emphasized that it is important to choose examples that are both different from each other and
work well together. [53] highlighted the importance of selecting diverse exemplars, showing that LLMs
benefit from varied reasoning processes demonstrated by multiple exemplars. Their maximal marginal
relevance-based approach constructs exemplar sets that balance both relevance and diversity, improving
performance across multiple reasoning tasks. Similarly, [51] introduced DQ-LoRe, a dual-query and
dimensionality-reduction-based re-ranking method, which leverages low-rank approximations to improve
the quality of exemplar selection. This method also makes the system more reliable, especially in the
cases of distribution shifts.

Moreover, [31]introduced a method based on reinforcement learning (PROMPTPG) to dynamically
select in-context examples via policy gradient learning. This method interacts directly with language
models, optimizing the selection of prompts to maximize predictive performance. Such adaptive selec-
tion strategies not only outperform static or random methods but also reduce performance variability.

2.2. Multi-armed Bandit (MAB) Algorithms
Multi-armed bandit (MAB) algorithms are a fundamental framework for sequential decision-making
under uncertainty. They are also widely used in resource allocation and optimization tasks. The
classical MAB problem focuses on balancing exploration (learning about arm rewards) and exploitation
(selecting the best-known arm) to maximize cumulative rewards [4]. Over time, extensions of the
classical framework have been developed to address diverse scenarios, such as contextual bandits [25]
and linear bandits [2], which incorporate feature vectors for arms to model their rewards.
In pure exploration settings, MAB algorithms are employed to identify the best or top-m arms instead
of maximizing rewards. Algorithms like LUCB [23] and UGapE [19] focus on adaptive sampling to
identify optimal arms efficiently.

2.2.1. Linear Bandits
Linear bandit algorithms address sequential decision-making problems where, at each time step, an
action is selected from a set of available actions, and a stochastic reward is received, whose expected
value is a linear function of the chosen action’s features. The equation for the true reward Yt received
when selecting an action (arm) Xt at time t in the linear bandit setting is:

Yt = ⟨Xt, θ∗⟩+ ηt (2.1)

where Xt is the action vector chosen at time t, θ∗ is the unknown parameter vector representing the
true relationship between actions and expected rewards, and nt is stochastic noise with zero mean.
Optimism-in-the-face-of-uncertainty ideas were extended to linear models, yielding UCB-style methods
such as OFUL with provably sub-linear regret [2]. Bayesian approaches, notably Thompson Sampling
for linear payoffs, also achieve near-optimal problem-dependent guarantees [3]. More recently, gap-
index-based algorithms have become central for pure exploration (fixed-confidence identification), using
confidence-enhanced gap indices to concentrate sampling on the most informative comparisons. The
linear best-arm identification problem was formulated by [45], and a fully adaptive gap-based algorithm

2.3. Bandit-Based Exemplar Selection 6

(LinGapE) was introduced by [52]. Subsequent work refined the sample complexity and moved toward
problem-dependent optimality [15, 12]. To unify and extend these ideas, [43] developed a general
framework for top-m identification in linear bandits, showing how exploiting feature structure and gap
indices can further reduce sample complexity.

2.3. Bandit-Based Exemplar Selection
Bandit-based approaches cast exemplar selection as an exploration-exploitation problem, where the ob-
jective is to identify exemplar subsets that maximize model performance with minimal query overhead.
Notably, [39] introduces a novel formulation of exemplar subset selection as a top-m arm selection
problem in the stochastic linear bandit framework. Each arm corresponds to a candidate subset of
exemplars, and rewards are inversely related to the validation loss induced by using that subset in the
ICL prompt.
EXPLORA employs a sampling-based bandit algorithm that iteratively estimates a scoring function
over subsetsmodeled as a linear function of similarity featuresto identify high-performing exemplar com-
binations while drastically reducing the number of expensive LLM calls. Complementary to this, [26]
adopts a bandit-driven two-stage selection strategy, focusing first on individual exemplar informative-
ness and then selecting a balanced final set. Unlike EXPLORA, however, LENS depends on output
probabilities and does not account for inter-exemplar interactions, limiting its applicability in black-box
or subset-sensitive scenarios.

2.3.1. CASE
Challenger Arm Sampling for Exemplar Selection (CASE), proposed by [40], formulates exemplar sub-
set selection as a top-m best-arm identification problem in a stochastic linear bandit setting. CASE
manages an exponentially large search space of exemplar subsets by maintaining a shortlist of "chal-
lenger" subsets considered potential candidates for the top-performing exemplars. At each iteration,
CASE selectively evaluates only one subset from the shortlist or the current top candidates, signif-
icantly reducing computational complexity and the number of language model evaluations [40]. Its
overall algorithm can be found in Figure 2.1. This approach leverages a linear reward model to evaluate
the quality of exemplar subsets by measuring sentence similarity between exemplars and validation
examples. Empirical results demonstrate that CASE achieves up to sevenfold reductions in runtime
and the number of LLM calls without sacrificing performance compared to state-of-the-art exemplar
selection methods like EXPLORA and LENS.

Figure 2.1: Overview of CASE[40] pipeline

2.4. Learning to Rank
Learning to Rank (LTR) refers to machine learning methods designed to help build ranking models for
information retrieval and recommendation systems. These models work by arranging items so that the
most relevant results appear at the top, based on what the user is looking for or prefers. Over the past
two decades, substantial research has evolved in this domain, leading to significant advancements in both
theoretical and practical aspects [30]. Each example in a learning-to-rank dataset is a query-document
pair and contains: a query ID, a list of indexed feature values, and a relevance label (usually an integer:
0 = not relevant, higher = more relevant). These labels can be obtained through manual annotation,

2.4. Learning to Rank 7

Figure 2.2: Example LTR dataset

implicit user feedback (like clicks or dwell time), or heuristic/synthetic methods. An example LTR
dataset can be seen in Figure 2.2.

2.4.1. Surrogate Objectives for LTR
Initially, LTR methods were categorized broadly into pointwise, pairwise, and listwise approaches. The
pointwise approaches view ranking as a regression or classification task by individually predicting the
relevance of each item without explicitly considering item relationships [18]. Pairwise methods, on the
other hand, learn to optimize rankings by minimizing errors associated with pairs of documents, exem-
plified by algorithms such as RankNet [7]. However, pairwise models often overlook the holistic ranking
structure, leading to the development of listwise methods that directly optimize the entire ranked list
according to metrics such as NDCG (Normalized Discounted Cumulative Gain) or MAP (Mean Average
Precision).
Among notable listwise methods, LambdaRank and LambdaMART emerged as prominent models, lever-
aging gradient boosting frameworks and approximating direct optimization of ranking measures through
lambda gradients [7]. LambdaMART, in particular, has been extensively utilized in web search and
recommender systems due to its performance and ability to generalize across diverse datasets [8]. In re-
cent years, advancements in deep neural networks have significantly influenced LTR methods, leading to
novel deep learning architectures tailored explicitly for ranking tasks. These neural ranking models, such
as DRMM (Deep Relevance Matching Model) and BERT-based rankers, leverage semantic matching
and attention mechanisms to enhance the representation of queries and documents, improving ranking
quality [21]; [34].

2.4.2. PiRank
PiRank addresses the central challenge in learning-to-rank (LTR) by introducing a scalable and differ-
entiable surrogate loss function designed to closely approximate non-differentiable ranking metrics like
NDCG and ARP. Traditional LTR methods rely heavily on surrogate losses loosely connected to true
ranking metrics, limiting their effectiveness and scalability. In contrast, PiRank utilizes a temperature-
controlled differentiable relaxation of the sorting operator, allowing direct optimization of the exact
ranking metrics as the relaxation temperature approaches zero. Formally, the PiRank surrogate loss
function for NDCG is defined as follows:

LPiRank-NDCG = 1−
ˆDCG(y, ŷ, τ)

DCG(y, π∗)
(2.2)

where ˆDCG is the relaxed Discounted Cumulative Gain calculated via a differentiable sorting opera-
tor controlled by temperature parameter τ , y represents the ground-truth relevance scores, denotes
predicted scores, and π∗ corresponds to the optimal ranking obtained by sorting ground-truth scores
in descending order. PiRank uses a divide-and-conquer approach similar to the way merge sort works.
This clever strategy makes the training process much more efficient and manageable, even when working
with very large datasets.

2.4.3. AllRank
The self-attentive ranker introduced in AllRank is an advancement in neural learning-to-rank by ex-
plicitly modeling inter-document dependencies using self-attention. Unlike traditional ranking models
that score each document independently, the self-attentive ranker processes the entire list of documents
jointly. Its architecture is based on stacked multi-head self-attention layers. Inspired by the Transformer
encoder, each documents representation is updated in context with other documents in the same rank-

2.4. Learning to Rank 8

ing list. This allows the model to capture relative relevance and positional relationships effectively. The
output is passed through a feed-forward layer to compute final ranking scores. The model architecture
can be seen in Figure 2.3.

Figure 2.3: Schematic of the proposed model architecture by [37]. Input is a list of real-valued vectors. Output is the list
of real-valued scores.

2.4.4. NeuralNDCG
In recent years, optimizing Learning to Rank (LTR) systems using ranking metrics such as Normalized
Discounted Cumulative Gain (NDCG) has been hindered by the non-differentiability of these metrics,
which depend on sorting operations. The NeuralNDCG framework addresses this by introducing a
differentiable surrogate for NDCG using a relaxed sorting operator called NeuralSort. Instead of relying
on discrete permutation matrices, NeuralNDCG uses a continuous approximation of the sorting operator,
enabling gradient-based optimization of ranking metrics. The surrogate loss function for NDCG is
defined as:

NeuralNDCG(τ)
k (s, y) = 1

maxDCGk

k∑
j=1

(
scale(P̂) · g(y)

)
j
· d(j) (2.3)

where P̂ is the relaxed permutation matrix obtained via NeuralSort with temperature parameter τ ,g(y)
is the gain function applied to the relevance vector y, d(j) = 1

log2(j+1) is the discount function for position
j,scale(P̂) denotes a column-wise normalization of P̂ via Sinkhorn scaling,maxDCGk is the maximum
achievable DCG at rank k. To solve the problem of distortion introduced by non-column-stochasticity
in the relaxed permutation matrix, NeuralNDCG applies Sinkhorn scaling to enforce doubly stochastic
constraints. Empirical evaluations demonstrate that NeuralNDCG surpasses existing methods such as
ApproxNDCG.

3
Method

3.1. Problem setup
In-context learning (ICL) enables large language models (LLMs) to quickly gain proficiency in a specific
task by using only a few examples, without modifying the model’s parameters. In this approach, the
LLM is given a prompt that includes an input-rationale-output triplet, called exemplars, which guide the
model in performing the task. In the case that the task is not a reasoning task, such as translation, the
prompt only includes input-output couple and is called a demonstration example instead of an exemplar.

Because processing long contexts is financially and computationally expensive, it is often impractical
to include all n training examples. Instead, exemplar selection methods choose a small subset that
maximizes overall accuracy.

Formally, let X = {xi, zi, yi}n
i=1 represent the full set of n training samples (potential exemplars), and

let xtest denote the test input. The goal is to predict the test output ytest.

Let S ⊆ X be the subset of k exemplars selected for predicting xtest. The prompt P is then constructed
as

P = [S, xtest] = [(xi1 , zi1 , yi1), . . . , (xik
, zik

, yik
), xtest].

The ICL process involves two main steps: (1) a response generator f , and (2) a post-processing step
(decoding) δ. The response generator produces multiple responses r from the distribution pLLM , and
the post-processing step δ is applied to the output of f(P) to derive the final prediction for ytest:

ŷtest = δ(f([S, xtest])) where f(P) = G(pLLM (r|P)).

In the instance-based demonstration example subset selection(DESS) for ICL setup, the objective is
to dynamically determine, for each test instance utest, an optimal subset of exemplars from a larger
candidate pool that maximizes the performance of in-context learning with large language models
(LLMs). Given a task with a set X = {(ui, vi)}n

i=1 of potential exemplars—each comprising an input
ui, an output vi, and optionally a rationale—the method aims to select, for every utest, a subset
Stest ⊂ X of fixed size k. The selection is governed by an instance-specific prompt generator π, which
uses the similarity, diversity, or other relevance criteria between utest and candidate exemplars to form
the prompt P = [Stest, utest]. The LLM f processes this prompt to produce a response, which is then
post-processed by δ to yield the predicted output v̂test. The quality of the selection strategy is assessed
on a validation set V by computing the average accuracy A(π(·), V) across all test instances, where A
evaluates how well each dynamically chosen subset Stest supports correct prediction for its associated
utest. The instance-based DESS problem can thus be expressed as learning a selection policy π∗ that
maximizes

1
|V |

∑
(u′,v′)∈V

1
(
v′ = δ(f(π(X, u′)))

)
.

9

3.2. LTR Dataset for Exemplar Selection 10

3.2. LTR Dataset for Exemplar Selection
The DESS problem described above can be solved by modeling LTR framework as a demonstration
subset selection problem. Let Q denote a set of queries. For each query q ∈ Q with candidate documents
Dq = {dq,1, . . . , dq,nq

}, Each candidate dq,j is represented by a feature vector xq,j ∈ Rm, and is paired
with a relevance label rq,j ∈ {0, 1, . . . , G} (graded relevance). A learning-to-rank model fθ : Rm→R
maps features to a scalar score

sq,j = fθ(xq,j), (3.1)

and induces a predicted ranking π̂q by sorting {sq,1, . . . , sq,nq
} in descending order. For convenience,

define the per-query design matrix Xq ∈ Rnq×m whose j-th row is x⊤
q,j , and the label vector yq =

(yq,1, . . . , yq,nq
). The objective is to learn parameters θ that maximize ranking quality on unseen queries

according to standard IR metrics (e.g., NDCG@k, MAP, MRR). In an exemplar selection setting, the
query is replaced with a validation sample, the ground truth is replaced with a relevance score, and the
document is replaced with an exemplar subset.

X = {(ui, vi)}n
i=1 → Dq = {dq,1, . . . , dq,nq

}, yq,j ∈ {0, 1, . . . , R}
uval →q ∈ Q

(3.2)

Collecting relevance scores first is required for generating an LTR dataset for exemplar selection. Since
it is not possible to do either human annotations or collect click data in this setting, an alternative
approach is required. The following section presents an alternative novel way to collect relevance scores
for the generation of LTR datasets.

3.2.1. Relevance Score Collection
In order to collect relevance scores, first k-means clustering is applied on the training data. Then,
to form a demonstration example subset, k different demonstration examples are randomly sampled
from each cluster. M subsets are sampled to be used for each query. The same M subsets are used
as documents for each of the queries. Relevance scores are obtained by inputting each demonstration
subset as a k-shot demonstration example to an LLM and then obtaining the LLM’s feedback on the
question of the validation sample. The process so far can be formularized, following [40]’s notation, as:

r ∼ f (P)), where P = [S, uval] (3.3)

where

• f(P): Response generator function representing LLM inference. It samples a response r from the
LLM distribution:

f(P) ∼ PLLM(r | P)

• P : The full prompt given to the LLM.
• S = {(u1, v1), (u2, v2), . . . , (u5, v5)}: One of M randomly sampled subsets of demonstration exem-

plars.
• uval: The validation input example for which a response is desired.
• [S, uval]: Concatenation of exemplars in S with the validation input uval to form the final prompt.

After the response is post processed, v̂val is obtained. The final form of the LLM inference equation
looks like this:

v̂val = δ (f (P)) (3.4)

where v̂val is the predicted output for the validation input uval, and δ is post-processing function applied
to the LLM output (e.g., regex extraction).
Relevance scores are collected by evaluating the post-processed answer. F1 BertScore from BertScore[55]
is used for evaluation. The F1 score between a post-processed answer x = {x1, x2, . . . , xm} and a
ground truth y = {y1, y2, . . . , yn} where each token is represented as a contextual BERT embedding, is
computed as:

3.2. LTR Dataset for Exemplar Selection 11

P = 1
|x|

∑
xi∈x

max
yj∈y

cos(xi, yj) (3.5)

R = 1
|y|

∑
yj∈y

max
xi∈x

cos(yj , xi) (3.6)

F1(x, y) = 2 · P ·R
P + R

(3.7)

where

• x = {x1, x2, . . . , xm}: Post-processed answer containing m tokens.
• y = {y1, y2, . . . , yn}: Ground truth containing n tokens.
• xi, yj ∈ Rd: Contextual embedding vectors of tokens xi and yj obtained from a pre-trained BERT,

where d is the embedding dimension.
• cos(xi, yj): Cosine similarity between the embeddings of token xi and yj .
• P : BERTScore Precision for each token xi in the answer, the maximum similarity to any token

yj in the ground truth, averaged over all xi.
• R: BERTScore Recall for each token yj in the ground truth, the maximum similarity to any

token xi in the answer, averaged over all yj .

After obtaining F1 BertScore for each dataset instance F1 score is multiplied by 10 and then rounded
to the nearest integer to attain a dataset with range y ∈ {0, 1, · · · , R}:

Relevance score = ⌊(F1×R)⌉ (3.8)

This final calculated value is the relevance score used for an instance of an LTR data set. The overall
relevance score collection process can be seen in Figure 3.1.

Figure 3.1: Relevance score collection pipeline used in LTR dataset generation for exemplar ranking.

3.2.2. Feature Derivation
Each demonstration example subset needs to have a single set of features for an LTR dataset. This is
because each subset formed from k-different demonstration samples corresponds to a single document.
Also, as can be seen from Figure 2.2, a dataset instance includes the features of query too. This means
that features for a single LTR dataset instance include document features as well. So, a k-dimensional
vector along with a single-dimensional one must be projected into a single dimension vector to fit into
an LTR dataset structure. Feature derivation is performed to obtain features with a single dimension.
A simple feature derivation method was chosen to first determine whether this approach would work:
Let x1, x2, x3, · · · , xk ∈ R1×h be k row vectors representing an element of a demonstration subset. h is
an array dimension. Row vectors are stacked into a feature matrix:

A =


x1
x2
x3
...

xk

 ∈ Rk×h (3.9)

3.3. CASE Rank 12

where h = 768 and xk is demonstration example k of the demonstration subset. Then, the column-wise
mean of the matrix is calculated:

x̄ = 1
k

k∑
i=1

xi (3.10)

equivalently,
1
k

k∑
i=1

Ai,: = 1
k

1⊤
k A ∈ R1×h. (3.11)

Finally, the mean of the feature vectors of the demonstration subset is added to the validation sample,
used as the query, embedding is obtained from SentenceBert. The sum is the final feature vector in
LTR dataset.

xf = x̄ + xval (3.12)

3.3. CASE Rank
There are several shortcomings of the previously mentioned methods. Firstly, even though it has a
performance increase, Dynamic CASE is a very expensive method. It’s performance is also not high
enough to justify its cost. Since CASE models the rewards linearly, it uses a linear loss function. This
approach, even though effective enough in a cost-effective static setting, puts a ceiling on performance.
This is because, in reality, the rewards are non-linear since they are LLM responses. Since LLMs are
non-linear models, their responses are also non-linear. Thus, modeling the rewards non-linearly may
increase model performance. To model rewards as non-linear, a non-linear loss function must be used.
However, LTR approaches also have a performance limit because of the lack of enough training data
and their sampling approach. Data generation is expensive because it takes an LLM call to collect
each relevance score. On the other hand, it can be said that randomly sampling training data does not
work well especially in similar amounts that used for the experiments in section 5.1. Therefore, a more
sophisticated approach needs to be taken to pick training data for an LTR model.
Therefore, we propose a novel bandit-based algorithm for instance-based exemplar selection. Algorithm
1 describes the proposed bandit-based demonstration example selection method CASE Rank. CASE
Rank corrects the shortcomings of these two approaches by first using a non-linear loss to model LLM-
based reward, which has a non-linear structure. Thus, CASE Rank uses a non-linear surrogate in a
gap-index-based bandit algorithmic framework. It specifically uses a differentiable sorting / LTR model
as a surrogate, which models the utility of the exemplar subsets through a ranking function. Secondly,
CASE Rank adapts the gap-index based bandit algorithm from [40] to pick and collect additional train-
ing data for the LTR model. Then, a trained LTR model is used for instance-level inference. Hence,
CASE Rank does offline training with online inference.The pipeline can be seen in Figure 3.2.

3.3.1. Updating Means
The DESS problem can be posed as the top-m arm selection problem in stochastic non-linear bandits.
In the current setting, the arms correspond to the exemplar subsets S, and actions(pulling an arm)
correspond to selecting an exemplar subset. Rewards are LLM response accuracies, which we try to
maximize cumulatively. The goal is to select the most rewarding option, which is the best performing
exemplar subset
A multi-armed bandit-based approach is taken to solve the DESS problem defined above. Let a ∈ {0, 1}n

with ∥a∥0 = k represent the onehot indicator of a size-k exemplar subset drawn from the candidate pool
X (where |X | = n). A multi-armed bandit whose arms are defined with arms which are the subsets
ai ∈ S(X) for i ∈ {1, . . . , |S(X)|}. The number of arms grows exponentially in both k and n. The
reward of an arm a is the accuracy A(π(a),V), where π denotes the prompt induced by the subset
encoded by a, and V is the validation set.

Simij =
ϕ(ui)⊤ϕ(u′

j)
∥ϕ(ui)∥ ∥ϕ(u′

j)∥
, (3.13)

3.3. CASE Rank 13

Algorithm 1 CASE Rank
Require: X : training exemplars, k: prompt size, S: all k-subsets of X , a ∈ S: an arm, D: training

dataset, G: D generator function, N : query size, Fθ: LTR model, θ: model parameters, η: learning
rate

Ensure: UT : top-m arms with highest reward
1: Define: Ut: set of currently estimated top-m arms.
2: Nt: set of currently estimated next best-m arms.
3: bt: the most ambiguous arm from Ut.
4: st: the most ambiguous sampled arm from Nt.
5: Initialize U0 ← set of random m arms from S, t← 1, α⃗1 ∼ N (0, 1)
6: Initialize D ← set of random M subsets from G(X)
7: while Bt(st, bt) ≤ ϵ do
8: nt ← arg mina∈Ut−1 ρ̂t(a)
9: ct ← arg maxa∈Nt−1 ρ̂t(a)

10: if ρ̂t(ct) ≥ ρ̂t(nt) then
11: Swap nt and ct between Ut−1 and Nt−1
12: Ut, Nt ← updated sets
13: else
14: Ut, Nt ← Ut−1, Nt−1
15: end if
16: Mt ← s′ ∼m′ (Ut ∪Nt−1)c ▷ Randomly sample
17: Nt ← topm′(Mt ∪Nt−1; ρ̂t) ▷ Update Nt

18: Compute the revised most ambiguous arms for convergence
19: bt+1 ← arg maxb∈Ut

maxa∈Nt
Bt(a, b)

20: st+1 ← arg maxs∈Nt
Bt(s, bt+1)

21: Pull selected arm, receive reward, and update parameters
22: at+1 ← selection_rule(Ut, Nt)
23: rt+1 ← A(π(a(t)),V) ▷ LLM inference call
24: D ← D ∪ {G(rt+1, at+1,X)}
25: for ∨x ∈ D do
26: ŷi ← Fθ(xi) ▷ Forward pass
27: ℓi ← L(ŷi, yi) ▷ Compute loss
28: θ ← θ − η∇θℓi ▷ Gradient step
29: end for
30: for ∨a ∈ S do
31: for i = 1, 2, . . . , N do
32: ŷai

= Fθ(xai
)

33: end for
34: end for
35: for ∨a ∈ S do
36: ρ̂t(a)←

∑N

i=1
ŷai(t)

N
37: end for
38: t← t + 1
39: end while
40: Output: Fθ∗ Trained PiRank model

3.3. CASE Rank 14

Figure 3.2: Complete pipeline of proposed CASE Rank algorithm.

where ϕ(u) is the sentence-embedding produced by a pre-trained transformer model (e.g., Sentence-
BERT). where ϕ(u) is the sentence-embedding produced by a pre-trained transformer model (e.g.,
SentenceBERT). CASE Rank also keeps a set D for training. Whenever an arm is pulled in the
CASE Rank algorithm, the data of the arm is put into the set D(line 3 in Algorithm 1). The set D
contains all the data that is going to be used in the LTR model training.

D′ = D ∪ {G(a)}, where D = {(u1, v1), (u2, v2), . . . , (un, vn)} (3.14)

The observed reward when pulling an arm is defined in [40]:

ρ̂(a; α) = ρ(a; α) + η (3.15)

where:

• ρ̂(a) is the observed reward.
• ρ(a) is the expected reward.
• η is zero-mean sub-Gaussian noise.

ρ(a) is defined in [40] as:
ρ(a; α) = α⊤xa (3.16)

where

• a: An arm, corresponding to a subset of k exemplars selected from a pool X of n total exemplars.
It is represented as a binary vector of length n, where a(i) = 1 if exemplar i is included, and 0
otherwise.

3.3. CASE Rank 15

• α ∈ Rn: A vector of learnable coefficients that represent the importance of each exemplar in
contributing to reward.

• xa ∈ Rn: The feature vector for arm a, constructed using similarity scores between exemplars
and validation inputs. Specifically,

xa(i) = a(i) ·

 1
n′

n′∑
j=1

Simij


where Simij is the cosine similarity between the embeddings of exemplar ui and validation input
u′

j .
• η: A zero-mean sub-Gaussian noise term, capturing the randomness and uncertainty inherent in

LLM outputs.

In CASE Rank, the expected reward is defined as:

ρ(a, W) = f(G(a)) (3.17)

where, G(·) is the LTR data generator function and f(·) is the LTR model, defined as:

f(x) = W(4) ReLU
(

W(3) ReLU
(
W(2) ReLU(W(1)a + b(1)) + b(2)) + b(3)

)
+ b(4). (3.18)

where:

• x ∈ Rn: input vector
• W(1) ∈ Rh1×n and b(1) ∈ Rh1 : weights and bias for layer 1
• W(2) ∈ Rh2×h1 and b(2) ∈ Rh2 : weights and bias for layer 2
• W(3) ∈ Rh3×h2 and b(3) ∈ Rh3 : weights and bias for layer 3
• W(4) ∈ Rm×h3 and b(4) ∈ Rm: weights and bias for the output layer
• ReLU(z) = max(0, z): activation function applied element-wise

Therefore, equation (3.3.1) can be considered the non-linear surrogate function.

The MAB learning algorithm iteratively estimates the unknown coefficients Wl, such that the empirical
estimate of reward ρ̂(a) ≡ ρ̂(a, W) ≈ ρ(a, W) for the high scoring arms a and a large time index t > τ .
Iterative estimation is done by training and evaluating the LTR model.

Originally in CASE, the reward is used in the model update through the vector bt in the ridge regression
equation. This observed reward from Equation (3.16) is used in the computation of the vector bt:

bt =
∑

a∈At

Naxaρ̂(a) (3.19)

which is then used in the model update:

α̂t = Σ−1
t bt (3.20)

with the design matrix:

Σt = λI +
∑

a∈At

Naxax⊤
a (3.21)

In lines 22-26, CASE Rank updates the means by first doing one epoch of training. All of the data
in D is used for doing a forward and a backward pass through LTR model, which can be modeled for
training as:

3.3. CASE Rank 16

ŷ = W(4) ·
(

m(3) ⊙ ReLU
(

W(3) ·
(
m(2) ⊙ ReLU

(
W(2)·

(m(1) ⊙ ReLU(W(1) · x + b(1))) + b(2)))
+ b(3)

))
+ b(4).

(3.22)

where, m is dropout. Newly seen arm information allows the neural networks weights to be updated
with :

W(l)
new = W(l)

old − η
∂L

∂W(l)

b(l)
new = b(l)

old − η
∂L

∂b(l)

(3.23)

Like in CASE, in CASE Rank the means of the arms are stored as a numerical value. To calculate the
new means using updated weights, arms should be reevaluated. This is done by getting predictions for
N different queries for each arm using an updated neural network(lines 27-31 in Algorithm 1). For arm
a, the estimated mean is:

ρ̂a(t) ≜
∑N

i=1 ŷi(t)
N

(3.24)

where N is query/validation sample number(lines 32-34 in Algorithm 1). In order to align LLM inference
feedback and new means, queries used for pulling arms and for making predictions are kept the same.
We were inspired by [40] when determining how to calculate the new means. The algorithm we adapted
averages N different validation samples to calculate the reward for an arm. Then, the algorithm uses
those rewards to linearly update the means. CASE Rank calculates the means by getting predictions
to the same N validation samples. So, the intuition behind both approaches is to measure an arms
overall performance using these N validation samples. Moreover, CASE Rank uses LTR model as the
surrogate, so it can not use validation score accuracy as the reward. This is because LTR-style datasets
require a single score per query, unlike a linear surrogate where an average can be used for an accuracy
score. Thus, the LTR model observes the rewards as subset performance on individual queries rather
than N queries like the algorithm it adapts. Averaging prediction scores to obtain the mean in CASE
Rank allows the model to observe the overall performance of an arm.
The other reason for averaging predictions for different queries to calculate mean is because of efficiency
concerns. Instead of this approach, if the prediction for a single query was collected multiple times, it
would make updating the means very costly. If, for example, ten predictions were to be done per query
instead of one, the algorithm would be 10 times slower.
One could argue that obtaining means by averaging predictions for N different queries do not result
in calculating true means. This could be because different queries may result in vastly different LTR
scores, resulting in an imbalance in scores. Thus, one could say calculating arm mean by averaging
the scores for a single could yield better results. However, this approach would result in the algorithm
having a bias toward a single arm for each query. That is because that arm would do best for that
particular query when means are calculated. Thus, that one arm would always get the highest mean.
An additional proof for showing information is not lost when means are calculated this way can be seen
in section A.4. It should be noted that for predictions, the dataset from section 3.2 does not contain any
relevance scores. Also in order to maintain consistency in predictions, LTR model was set to inference
mode, in which there was no dropout.

The problem of identifying top-m arms can be solved using the Gap-index methods, which are unified
by the GIFA framework [43]. The GIFA framework defines an iterative family of algorithms that keeps
a set Ut of the current estimates of the m-best arms. At iteration t, it selects the most ambiguous arm
in Ut,

bt = arg max
b∈Ut

max
a∈Uc

t

Bt(a, b),

and the most ambiguous arm in the complement U c
t (the challenger),

ct = arg max
c∈Uc

t

Bt(c, bt).

3.3. CASE Rank 17

The algorithm then pulls whichever of bt or ct exhibits the larger variance and updates the model
parameters. Here Bt(a, b) denotes the gap index between arms a and b.

3.3.2. Gap Calculation
The gap calculation stays the same since CASE Rank also holds a list of arm means like CASE:

∆̂i,j(t) ≜ ρ̂i(t)− ρ̂j(t) (3.25)

where ρ̂i(t), ρ̂j(t) are estimated rewards for arms i and j respectively.

3.3.3. Variance Calculation
The gap-index between two arms (i, j) is defined in [40] as:

Bt(i, j) = ρ̂t(i)− ρ̂t(j) + Wt(i, j) (3.26)

where the confidence term is defined as: Wt(i, j) = Ct,δ

(
∥xi∥Σ̂λ

t
+ ∥xj∥Σ̂λ

t

)
,where

Ct,δ =

√
2 ln

(
1
δ

)
+ N ln

(
1 + (t + 1)L2

λ2N

)
+
√

λ

σ
S, (3.27)

and S and L are constants, N is the total number of arms pulled, and Σ̂λ
t = σ2(Vt)−1[40].

Equation 3.27 can also be written in UCB-form as:

Wt(i, j) := β (σ̂t(i) + σ̂t(j)) (3.28)

where σ̂t(i) is ∥xi∥Σ̂λ
t

=
√

x⊤
i Σ̂λ

t xi, and β is Ct,δ. Thus, the two formulations of (Wt(i, j) are func-
tionally equivalent, with the first being more precise and the second more computationally efficient.
Therefore, Equation 3.28 was referenced when calculating confidence bound for CASE Rank.
To calculate the confidence bound W (i, j) between two arms i and j, first the surrogate loss function
PiRank model is put in training mode, where dropout is turned on. The equation for the model in that
setting can be seen 3.22. The reason behind using dropout when calculating confidence bounds is so
that the variance between predictions can be measured. In order to have variance between predictions,
dropout must be utilized during a forward pass.

Dropout randomly sets a fraction of the neurons’ outputs to zero in each forward pass. A forward pass
through a layer with some layer h looks like:

h̃ = m⊙ h (3.29)

where ⊙ denotes element-wise multiplication, and m ∈ {0, 1}1×d is a binary mask vector sampled from
a Bernoulli distribution.

D ∼ Bernoulli(1− p) (3.30)
Having enabled dropout, a prediction is made for N different queries for each arm. Using these predic-
tions the confidence term between two arms i and j can be expressed as:

W (i, j) = cnew ·

√√√√ 1
N

N∑
k=1

(
y

(k)
i − y

(k)
j − d̄

)2
(3.31)

where cnew is a scalar confidence multiplier (hyperparameter that scales the standard deviation):

ct = ct-1√
t

, if t > 0

ct = 1.96, otherwise
(3.32)

and,

3.3. CASE Rank 18

• y
(k)
i : The k-th observed score for arm i.

• y
(k)
j : The k-th observed score for arm j.

• d̄: The empirical mean of the pairwise differences, defined as:

d̄ = 1
n

n∑
k=1

(
y

(k)
i − y

(k)
j

)
• N : The number of samples or observations used to estimate the difference.

The rest of the gap-index equation is the same, as the gap calculation does not change.
Ideally, estimating uncertainty is most accurate when multiple predictions per sample can be made.
In our setting, however, an arms mean is computed across multiple validation samples. In our case,
we define an arm’s mean as the average score across multiple validation samples, so repeated bandit
rounds already incorporate dropout-driven variability. Computing a standard deviation from a single
validation sample would both overfit to that example and create a mismatch with how we compute
the mean. Estimating variance across the validation set instead reduces overfitting, while repeated
evaluations on the same arms and samples also capture dropout-based variance.

3.3.4. Uncertainty Calculation
Uncertainty is used to determine in which direction in the input domain to explore. In line 19, un-
certainty is used to select which arm to pull. It is calculated per arm. Like confidence bound, also
for uncertainty, the loss model is used with dropout turned on. For arm i, N predictions are collected.
Using these predictions, uncertainty for arm i is calculated as:

uncertainty =

√√√√ 1
N

N∑
k=1

(
ŷ(k) − ȳ

)2 (3.33)

where:

ȳ = 1
N

N∑
k=1

ŷ(k) (3.34)

also,

• ŷ(t): The prediction vector from the t-th model (or forward pass).
• T : Total number of predictions (e.g., number of ensemble members or MC dropout samples).
• ȳ: The mean prediction across all T samples.

As all the changes, including updating means, gap, variance, and uncertainty, were explained, the overall
pipeline can be described. First, the LTR model is pre-trained with data from randomly selected M
groups. Then, the pre-trained LTR model replaces the linear surrogate of the bandit algorithm, resulting
in a bandit algorithm with a non-linear differentiable surrogate. The pre-training data is then used to
initialize D. In lines 5-6 in Algorithm 1, the two most ambiguous arms nt, ct are taken from Ut and
Nt, respectively, and their gap is calculated. If their gap is not lower than ϵ, subsets are swapped
between Ut and Nt (lines 7-12 in Algorithm 1). This is done based on which subsets/arms nt, ct have
the lowest mean and which have the highest mean. The algorithm then uniformly samples m arms from
(Ut ∪ Nt1)c , to generate the set Mt. Mt is used to select the top-m arms from Mt ∪ Nt1 to generate
the updated Nt(lines 13-17). Then, the selection rule is used to decide which arm to pull from Nt ∪Ut,
the high-reward selected set. Using the arm, LLM feedback is obtained. Afterwards, the training set
is updated as in 3.14. In lines 22-24, the training set is then used for one forward pass through the
surrogate, which is then used to reestimate the means as described in subsection 3.3.1. Then again, the
convergence criterion is checked. When the algorithm converges, it returns the re-trained LTR model.
Finally, the LTR model is used for online inference.

4
Experimental Setup

4.1. Dataset
Experiments were performed on two tasks. For natural language understanding, reasoning experiments
were performed. For natural language generation , machine translation experiments were performed.

GSM8K and AQUA-RAT datasets were utilized for reasoning experiments.
GSM8K[10]. GSM8K (Grade School Math 8K) is a dataset containing 8.5K high-quality, linguistically
diverse math word problems designed for grade school students. Each of its instances contains a string
for the grade-school level math question and a string for the corresponding answer with multiple steps of
reasoning and calculator annotations. An example GSM8K prompt can be seen in Figure A.2. GSMK8K
dataset consists of 7473 training and 1319 validation samples. Since GSM8K does not have any test
samples, its validation samples are used for testing and a 30% split is performed on training samples to
obtain 5231 training and 2242 validation samples. Because vanilla dynamic exemplar selection makes
several hundred LLM calls per test sample, to perform all experiments in time, only 300 test samples
were used for GSM8K instead of all available test samples.

AquaRat[27]. The AQUA-RAT dataset consists of about 100,000 algebraic word problems with natural
language rationales. Each AQUA-RAT instance contains a question, option, rationale, and an answer.
An example AQUA-RAT prompt can be seen in Figure A.1.AQUA-RAT consists of 97467 training, 254
validation, and 254 test samples.

Machine translation experiments were conducted using the dataset WMT19. Machine translation ex-
periments were done from English to Simplified Chinese.
WMT19[16]. For the task of machine translation, we used the dataset WMT19, and experimented on
translation from English to Simplified Chinese. An example WMT19 prompt can be seen in Figure A.3.
WMT19 has 98726 training, and 3981 validation samples. Because WMT19 does not have any test
samples, its validation samples are used for testing and a 30% split is performed on training samples to
obtain validation samples.
All datasets are utilized for the following during this research: training, validation, LTR dataset rele-
vance score collection, CASE algorithm and evaluation.

4.2. Evaluation metrics
Exemplar selection is a thoroughly researched field with standards for evaluation metrics. To ensure
comparability of our results with existing studies, we adapt these standard metrics where applicable.
Evaluation metrics used for this research can be categorized into three: evaluation metrics for inference,
evaluation metrics for arm accuracy, and evaluation metrics for LTR model training.

Exact match (EM) is the first inference metric used in this evaluation. It returns 1 if the models output

19

4.3. Hardware configuration 20

is identical to the reference string and 0 otherwise, making it appropriate when strict fidelity to a single
ground-truth answer is required. EM is applied to evaluate GSM8K and AquaRat, and it is also used
to compute arm accuracy for the dynamic and static CASE algorithms on these datasets.

This study adopts the F1 variant of BERTScore as the second evaluation metric when using WMT19
dataset. BERTScore uses contextual representations from advanced language models that have already
been trained, known as Transformer-based models, to measure how similar a candidate text is to a
reference text. The F1 version of BERTScore focuses on both precision and recall by comparing the
similarity of individual words from the candidate to those in the reference, and vice versa, in a way that
aims to capture the best possible matches between the two texts. The F1 score is then computed from
these precision and recall components to capture a balanced view of semantic alignment. The equation
for F1 BertScore can be seen in Equation 3.2.1.

F1 BertScore is also used to compute the arm accuracy for CASE Rank for all datasets. On the other
hand, it is only used to compute arm accuracy for Dynamic and Static CASE on WMT19 dataset.

The final metric and only metric used in training of LTR models is normalized Discounted Cumula-
tive Gain (nDCG), described in Equation 4.1. This metric stems from Discounted Cumulative Gain
(DCG) [22], which is is specifically intended to capture gradient relevancy labels. It measures user
satisfaction by rewarding the most relevant (gradient) results to appear first. nDCG compares the
DCG from the actual ranking against an ideal ranking, in which the passages are perfectly sorted by
decreasing relevance.

DCG(y, π̂) =
L∑

j=1

2yπ̂j − 1
log2(1 + j)

NDCG(y, π̂) = DCG(y, π̂)
DCG(y, π∗)

(4.1)

Higher values of DCG and NDCG correspond to better ranking quality. Truncated versions, DCG@k
and NDCG@k, are obtained by replacing L with a cutoff value k in Eq. (4.1), restricting evaluation to
the top-k ranked items.

4.3. Hardware configuration
The experiments were conducted using both DelftBlue[1] cluster nodes and Kaggle-hosted cloud GPUs.
On DelftBlue, the hardware was provisioned via two Slurm partitions: gpua100 and gpua100small.
Nodes in the gpua100 partition feature dual Intel Xeon E56448Y processors (totaling 64 CPU cores),
500 GB of system RAM, and 1.5 TB of local SSD storage. Each node is equipped with 4 × NVIDIA A100
Tensor Core GPUs, each offering 80 GB of HBM2 memory, delivering high throughput for compute-
intensive modeling. The gpua100small partition utilizes a single NVIDIA A100 GPU configured with
NVIDIAs Multi-Instance GPU (MIG) mode into 28 separate GPU instances, each with 10 GB of
dedicated memoryproviding, fine-grained, shortduration compute access.

For embedding generation tasks, additional resources were leveraged via Kaggle notebooks, which pro-
vided access to two NVIDIA Tesla T4 GPUs. Each T4 GPU is based on the Turing architecture and
includes 2,560 CUDA cores and 320 Tensor cores, with 16 GB of GDDR6 memory and a memory band-
width of approximately 320 GB/s.

4.4. Baselines
The following section describes the training details, hyperparameters used, and other details concerning
each baseline.

Static CASE experiments were conducted using CASE algorithm with the parameterization used in the
original work. The number of top arms to be identified was set to m = 10, and the total number of
available arms was K = 5. The confidence parameter was fixed at δ = 0.05, controlling the probability

4.5. Relevance Score Generation Details 21

of incorrectly identifying the top-m arms. The minimum gap for switching the arms between Ut and
Nt was also kept at ε = 0.1.

Dynamic CASE method is obtained by applying CASE algorithm, used by Static CASE, specifically
for each test instance instead of all of the test dataset. Thus, in Dynamic CASE feature matrix is
newly formed for each test instance from training and test embeddings instead of forming once from
training and validation embeddings. Moreover, the hyperparameters utilized during experiments for
CASE algorithm are the same as Static CASE configuration.

PiRank is the first baseline deployed for using LTR models for demonstration example selection. Pi-
Rank is also used as the LTR model of CASE experiments. PiRank was chosen because it is both small
and has good performance. The ranking temperature parameter τ = 5 controlled how sharp or smooth
the differentiable sorting approximation was. Lower values made the ranking distribution more focused,
while higher values made it smoother. Each input slate was restricted to a list size of 500, ensuring
a fixed-length representation for efficient batch computation. The model architecture consisted of a
sequence of fully connected hidden layers with sizes of (256,256,128,64) and ReLU activation function
after each layer, processing 768-dimensional feature vectors for each item in the slate. These same
parameter values were used also for the PiRank model that was used for non-linear surrogate of CASE
Rank.
Optimization was performed using Adam with a learning rate of 1 × 104, balancing stability and con-
vergence speed for this architecture. The training ran for 100 epochs with a batch size of 16.

AllRank is the second baseline utilized in LTR models for demonstration example selection. The
model architecture consisted of a shared fully connected pre-projection layer of size 128, followed by a
Transformer encoder with 4 blocks (N), 2 attention heads (h), a feed-forward width of 512 (dff), and
dropout probability of 0.3. A final shared linear layer produced a single relevance score per item. Input
slates were padded or truncated to a 240 and batch size was 64.
Training was carried out for 100 epochs with no early stopping. The optimizer was Adam with a
learning rate of 1×10−3, paired with a StepLR scheduler with decay rate 0.1 every 50 epochs. Gradient
clipping was not applied. The primary validation metric was NDCG@5, aligning model selection with
the intended emphasis on shallow-ranked items. The main hyperparameters reported here are for the
Neural NDCG loss configuration. However, this study also covered experimentation with alternative
listwise and differentiable ranking objectives, including ListNet, LambdaRank, Neural NDCG with
normalized data, and NDCGLoss 2++. Parameter values for each loss setting can be seen in Table 4.1.

CASE Rank uses PiRank as the LLM for non-linear surrogate loss of the gap-index-based bandit
algorithm. The hyperparameters used for the PiRank model in CASE Rank are the same as those of
the PiRank baseline. The CASE Rank algorithm performs pre-training and later training in each CASE
iteration on PiRank. The training details are the same as the PiRank baseline. As CASE Rank adapts
the CASE algorithm to train the PiRank model, the algorithm uses the same CASE configuration as
the other bandit-based baselines.
Also, in Case Rank algorithm, the core procedural components from the original Case framework were
retained to ensure theoretical consistency and comparability of results. Specifically, the computation
of the set Jt, estimated m best arms at t, was kept identical to the original Case definition. Similarly,
the computation of bt, the most ambiguous arm from Ut, follows the same formulation as in Case, and
keeps its important function in directing how the arm selection process works. The stopping rule, which
terminates sampling once the confidence intervals separate the top-m arms from the rest by at least
ε, was also kept unchanged. Finally, the selection rule, choosing the next arm to sample based on the
maximization of the elimination potential as in the original CASE algorithm, was preserved without
modification.

4.5. Relevance Score Generation Details
k is selected to be 5 to comply with the choice of using 5-shot demonstration examples, so that a single
example is selected from each cluster. M = 500 subsets are sampled for each query. Also, the LLM
response is be post-processed depending on the dataset for which the relevance scores are collected. For

4.6. Implementation Details 22

Table 4.1: Details of hyperparameters used in different LTR model configurations. Categorized by loss function and
framework.

Framework Loss function Transformer Architecture FC Linear Layer
PiRank PiRank surrogate loss - (256, 256,128,64)

AllRank

Neural NDCG

N = 2,
dff = 384,

h = 1,
dropout = 0.1

(768,96)

ListNet

N = 4,
dff = 512,

h = 2,
dropout = 0.3

(768,128)

LambdaRank

N = 2,
dff = 384,

h = 1,
dropout = 0.1

(768,96)

Neural NDCG

N = 4,
dff = 512,

h = 4,
dropout = 0.3

(768,96)

Neural NDCG With
Normalized data

N = 2,
dff = 384,

h = 1,
dropout = 0.1

(768,96)

NDCGLoss 2++ - (256, 512, 1024, 512, 256)

the dataset WMT19, [16], no post-procesing is done since LLM response contains the whole translation
sentence that is desired to be compared tothe ground truth. AquaRat and GSM8K are reasoning dataset
with numerical answers, but post processing was done only for GSM8K. For responses of the GSM8K
dataset, a post processing function was used to extract the numerical answer from the LLM response.
AquaRat responses has no post-processing done, and the whole output with rationale was used. In the
Table 4.2, part of the output that was scored for each dataset can be seen. The corresponding ground

Scored part of the response Dataset
Final answer GSM8K
Complete output/Rationale AquaRat
Complete output WMT19

Table 4.2: Part of LLM response that was used for scoring for each dataset

truths are numerical answers, ground truth rationale, and correct simplified Chinese translation for
datasets GSM8K, AquaRat, and WMT19, respectively.

Finally, for the collection of the relevance score of the datasets AquaRat and GSM8K, bert-base-uncased
was used. On the other hand, for WMT19 bert-base-chinese was used. The relevance score is mul-
tiplied by R = 10 to obtain the final relevance score. Thus, the range of relevance scores is 10.

4.6. Implementation Details
llama3.2:3b was chosen as the small LLM model for the experiments. It is a 3-billion-parameter,
pretrained, and instruction-tuned generative model. llama3.2:3b[20] was used for all inference exper-
iments where a demonstration example set is selected using some sort of method, including dynamic
CASE, static CASE, LTR model, or CASE Rank. Then this selected exemplar set is used for 5-shot
in-context learning. Inference is done by getting a response from llama3.2:3b following the 5-shot
example and a new query. The temperature parameter of the llama inference model was set to 0.25,

4.6. Implementation Details 23

with a max new tokens of 256. The tokens are generated by sampling with a top k value of 10 and a
top p value of 1.0.

Mistral was chosen as the larger LLM model for the experiments. Mistral is a 7-billion-parameter
model, available in both instruction and text completion. Its versions mistral:v0.1 and mistral:v0.3
were used specifically. As llama3.2:3b, they were also used in all inference experiments, generating
the 5-shot response to be evaluated. The temperature parameter of both the mistral inference models
was set to 0.25, with max new tokens of 256 sampled with a top k value of 10 and a top p value of 1.0.
hatali

5
Results

5.1. Reasoning performance of online dynamic exemplar selection
and LTR approaches compared to that of offline exemplar se-
lection approaches

To address RQI, Dynamic CASE and LTR models are compared with static CASE. The results are
presented in Table 5.1. As it can be seen from Table 5.1, Dynamic CASE outperforms Static CASE,
and LTR models outperform both Dynamic CASE and Static CASE. Dynamic CASE outperforming
Static CASE is expected, as instead of choosing a single set of exemplars for all test instances, an
exemplar set is chosen specifically for each test instance with the cost of huge computational overhead.
Moreover, in Table 5.1, we observe that LTR models outperform both dynamic and static CASE when
the best performing model is taken for each dataset. This higher performance over dynamic and static
CASE can be explained by two reasons. Firstly, in both dynamic and static CASE, it is assumed that
rewards are stochastically linear, which is empirically not true. Rewards used by the bandit algorithm
come from LLM, which is a non-linear model. LTR models are neural networks, which are non-linear.
So they do a better job in modeling the rewards from LLM calls. Secondly, LTR models are trained
on the ranking metric NDCG, so they improve the actual target of interest. Whereas, CASE tries to
decrease the ambiguity of each arm and the gap between arms while also choosing a better set of arms.
Thus, the LTR model’s goal aligns better with the goal of selecting the best exemplar for each instance
than that of CASE.

Insight: CASE Rank outperforms static and dynamic CASE because it focuses on optimizing the goal
itself.

On the other hand, the results in Table 5.1 also demonstrate that the ceiling for using a learning to rank
model to select exemplars dynamically is limited in this setting. Firstly, a typical benchmark learning
to rank dataset like [41] has 30,000 search queries, whereas all datasets used for this experiment, as
explained in 4, were trained with datasets with only 35 queries but 500 groups. Therefore, the amount
of data used for training may not be enough for any of the LTR models to converge with proper
generalization, resulting in diminished results. Yet, one could argue that because PiRank is a relatively
small-sized model with a hidden size of 3, the data used should be enough for it to converge with
generalization. Therefore, the data at hand should be enough to train the PiRank model properly.
This implies that the method of random sampling data is not helpful for the training process. It
can be deduced that randomly sampling data to generate training data may not result in getting the
best training data in this setting. Although novel and not as expensive, data generation for exemplar
selection with learning to rank models is costly. Because of this, it can be said that random sampling
data for data generation for this task is not a good option if only a small portion of data can be
generated. Therefore, if LTR models are to be utilized to their full potential for the task of exemplar
selection, a more advanced method, other than random sampling, should be employed.

24

5.2. Multi-armed bandit selection using non-linear surrogate loss function improves
instance-level exemplar selection 25

Table 5.1: Demonstration example selection results across 3 datasets for different Learning-to-Rank models and Dynamic
CASE using llama3.2:3b

Method GSM8K AquaRat WTM19

Task level
Static CASE(Llama2) 67.00 25.90 65.40
Instance level
Dynamic CASE 70.00 36.40 71.70
Learning To Rank
PiRank 69.30 37.00 71.30
NeuralNDCG 72.23 44.09 71.13
ListNet 70.30 43.30 71.26
LambdaRank 67.30 44.09 71.22
NDCGLoss 2++ 70.00 43.70 72.56
NeuralNDCG with Normalized Data 71.33 45.66 71.80

5.2. Multi-armed bandit selection using non-linear surrogate loss
function improves instance-level exemplar selection

To address RQII, the study compares the proposed CASE Rank algorithm with Dynamic CASE and
learning-to-rank (LTR) baselines. As shown in Table 5.2, CASE Rank outperforms both Dynamic
CASE and the LTR models. This improvement arises from addressing limitations in each baseline.
Static CASE implicitly assumes that rewards from the LLM are linear, which is misaligned with the
inherently non-linear behavior of LLMs. LTR models, when trained on randomly sampled data, exhibit
a ceiling in exemplar-selection performance irrespective of dataset size. CASE Rank replaces linear
matrix scoring with the PiRank loss and trains PiRank on data sampled using the CASE procedure.
In effect, CASE Rank combines the strengths of both approaches while mitigating their shortcomings,
yielding superior performance. Post-training, PiRank can also be viewed as a decoder that estimates
the quality of the LLMs response for each exemplar set.

Insight: PiRank learns to estimate the qualities of each exemplar post-training so that it can rank them
to select which is best.

To further support the claim that CASE Rank selects more representative instance-specific exemplars,
qualitative analysis is done on exemplars selected by both the AllRank NeuralNDCG model and CASE
Rank. Table 5.3 presents the exemplar subsets selected by both methods for a particular AquaRat test
instance where CASE Rank had a correct answer and AllRank NeuralNDCG model did not.
For an LLM to learn from context for a specific test instance, it needs demonstration examples that
have a similar context. Context can be categorized in this setting by the type of question asked, since
the question type determines the rationale. Different types of mathematical questions require different
types of thinking. For an LLM to learn from context, the number of demonstration examples that are
similar to the test instance should be as many as possible. However, it should also be kept in mind
that the exemplar subsets are formed by randomly sampling an element from each cluster. Thus, the
chances of having exemplars that are all similar in an exemplar set are very low. That is because each
exemplar needs to have similar rationales while having different contextual embeddings that capture
semantic and syntactic information. Therefore, it can be said that in this setting, theoretically, the
more a subset has questions and rationales that are similar to those of a test instance, the greater the
chance it has to get a correct answer. This can also be seen in Table 5.3.
The test instance from the example at Table 5.3 is a Profit, Loss & Interest problem that requires
algebra, in particular linear equations. Thus, exemplars with similar questions and similar skills are

5.2. Multi-armed bandit selection using non-linear surrogate loss function improves
instance-level exemplar selection 26

Table 5.2: Demonstration example selection results across 3 datasets (we use 5-shot for all methods). Percentage
improvements are reported over Dynamic CASE

Method GSM8K AquaRat WTM19

LLama3.2:3b
Instance level
Dynamic CASE 70.00 36.40 71.70
Task level
Static CASE(Llama2) 67.00 25.90 65.40
Learning To Rank
NeuralNDCG 72.23 44.09 71.13
Our Approach
CASE Rank 73.60(▲3.60%) 51.18(▲14.78%) 78.49(▲6.79%)

required from each subset. The subset chosen by the AllRank NeuralNDCG model has only one such
exemplar, which is the last exemplar in the list. It is a Profit, Loss & Interest problem that requires
solving linear equations. On the other hand, CASE Rank chose a subset with two similar exemplars.
Hence, it adds additional information to solve a particular question from the test instance that the LLM
encounters during inference. Second exemplar of the subset of CASE Rank, even though not a Profit,
Loss & Interest problem, requires solving linear equations. Also, the fourth exemplar of the subset is a
Profit, Loss & Interest problem that requires solving linear equations. The same pattern can be seen in
Table A.2, where the test instance is a proportionality problem. CASE Rank manages to select a subset
with 2 proportionality questions (1.,2.), which is more than a single one(3.) AllRank chose. Therefore,
it can be concluded that having more similar exemplars helps a subset in getting correct LLM responses
by giving additional information to LLM. This pattern is further seen in Tables A.3, A.4, A.5.

Insight:CASE Rank outperforms its competition by selecting subsets with more skills similar to that of
test instance.

To corroborate the results in Table 5.2 and address RQII, AllRank NeuralNDCG and CASE Rank are
compared against Static CASE for exemplar selection using mistral:v0.3. Due to the computational
cost and the larger model size of mistral:v0.3, no Dynamic CASE experiments were conducted. The
results, shown in Table 5.4, indicate that CASE Rank consistently outperforms Zero-Shot CoT [24] and
Few-Shot CoT [6], which rely on no or hand-picked exemplars and do not account for interactions among
exemplars. This suggests that CASE Rank effectively selects instance-level exemplars that yield addi-
tional in-context gains for the LLM. CASE Rank also surpasses both AllRank NeuralNDCG and Static
CASE, although the relative improvements are smaller than those observed with llama3.2:3b. The
reduced gains across datasets with mistral:v0.3 likely reflect cross-model instability of instance-level
selection: what constitutes a good demonstration is model-specific. Differences in preferred reasoning
style, full chain-of-thought vs. brief rationales vs. answer-only and prompt formatting and exemplar or-
der (headers, role tags, separators, whitespace, numbering, and recency/primacy effects), which change
how models parse the prompt, can all shift effectiveness across models. Also, sampling parameters
(temperature, top-p/top-k, repetition penalties), stop sequences, and max tokens interact with exem-
plars. So, parameters that work for one model arent optimal for another. Moreover, llama3.2:3b is
not specifically a reasoning model, but multiple sources [35, 11, 33] state that it has superior reasoning,
which explains its superior performance in reasoning compared to mistral models.

To further evaluate the performance of CASE Rank and the LTR baselines on a larger, different lan-
guage model, exemplarselection experiments were conducted with mistral:v0.1. Results for static and
dynamic demonstration selection across methods are reported in Table A.1. CASE Rank outperforms

5.3. Relevance score approach effects CASE Rank performance 27

Table 5.3: Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b for a particular
AquaRat test instance where CASE Rank had a correct answer and the AllRank NeuralNDCG model did not.

Question A travel company wants to charter a plane to the Bahamas. Chartering the plane costs $5,000.
So far, 12 people have signed up for the trip. If the company charges $200 per ticket, how many
more passengers must sign up for the trip before the company can make any profit on the charter?

Method Exemplars

AllRank Question: A group consists of 4 couples in which each of the 4 boys has one girlfriend. In how
many ways can they be arranged in a straight line such that boys and girls occupy alternate
positions?
Question: A man cycling along the road noticed that every 12 minutes a bus overtakes him and
every 4 minutes he meets an oncoming bus. If all buses and the cyclist move at a constant speed,
what is the time interval between consecutive buses?
Question: Find large number from below question. The difference of two numbers is 1365. On
dividing the larger number by the smaller, we get 6 as quotient and the 15 as remainder?
Question: A certain sum is invested at simple interest at 18% p.a. for two years instead of
investing at 12% p.a. for the same time period. Therefore the interest received is more by
Rs. 840. Find the sum?

CASE Rank Question: 64, 81, 100, 144, 196, ?, Find the missing number(?).
Question: In a school 10% of the boys are same in number as 1/2th of the girls. What is the
ratio of boys to the girls in the school?
Question: Anna left for city A from city B at 5.20 a.m. She traveled at the speed of 80 km/hr
for 2 hrs 15 min. After that the speed was reduced to 60 km/hr. If the distance between two
cities is 350 kms, at what time did Anna reach city?
Question: If a number when divided by 44, gives 432 as quotient and 0 as remainder. What will
be the remainder when dividing the same number by 34?
Question: On a sum of money, the S.I. for 2 years is Rs. 660, while the C.I. is Rs. 696.30, the
rate of interest being the same in both the cases. The rate of interest is?
Question: How many options are there for license plate numbers if each license plate can include
2 digits and 3 letters (in that order) or 3 digits and 2 letters (in that order)? (Note: there are
26 letters in the alphabet?)

Rationale is not shown to conserve space. However, in our experiments, all exemplars for AquaRat include rationales.
The test instance is a Profit, Loss & Interest problem that requires algebra. Subset selected by CASE Rank contains
two similar questions(2.,4.), whereas AllRank NeuralNDCG one(5.).

both LTR methods as well as zero-shot CoT [24] and manual few-shot CoT [6]. However, both CASE
Rank and the LTR methods achieve lower exemplarselection performance with mistral:v0.1 than with
llama3.2:3b. Moreover, while CASE Rank still improves over LTR, the gains are smaller than with
llama3.2:3b, indicating that providing higher-quality demonstrations yields limited additional benefit
for mistral:v0.1.

Insight:llama3.2:3b is the stronger model overall and leverages in-context examples more effectively
than mistral.

5.3. Relevance score approach effects CASE Rank performance
Table 5.2 highlights the relative gains CASE Rank provides in performance compared to Dynamic
CASE. It can be seen from Table 5.2 that each dataset has different relative gains. The relative gains
for datasets AquaRat and WMT19 are much higher than those of GSM8K. Since two of three datasets
have relative gains much higher than 5%, one could expect that the third dataset would have at least
close to 5%. This difference between relative gains can be explained by the difference between relevance
score generation approaches for each dataset. As it was previously presented in Table 4.2 in Chapter
3 when generating the relevance score for each dataset, a different part of the LLM output was scored
by BERTScore. Table 4.2 shows that the extracted final answer is the scored part to obtain the final
relevance score for the dataset GSM8K. The extracted final answer contains much less information
compared to the rationale of an LLM few-shot output of AquaRat or a whole text translation of
WMT19. Since it contains much less information, there is also less information change between answers

5.4. LTR model as a non-linear surrogate loss makes offline policy exemplar selection more
efficient than online optimization and LTR approaches 28

Table 5.4: Demonstration example selection results across 3 datasets (we use 5-shot for all methods) in different settings.
Percentage improvements are reported over next best performing model.

Method GSM8K AquaRat WTM19

Mistral-7B-v0.3
Task level
Zero-shot-COT 41.47 25.00 64.50
Manual Few-shot COT 36.66 30.31 71.81
Learning To Rank
NeuralNDCG 45.00 35.80 75.90
Our Approach
CASE Rank 50.30(▲5.30%) 36.43(▲0.63%) 77.00(▲1.10%)

that are going to be scored. For example, if the extracted final answer is 169 and the ground truth
is 163 this affects the relevance score by very little. In the case of a very different answer relevance
score becomes zero. Thus, the whole dataset ends up having a relative score range of 3. Not having
a lot of variance in relevance score makes it difficult for PiRank model to differentiate between good
and better. This is because bad exemplar subsets will be eliminated by getting zero; however, some
of the two different exemplar subsets that have non-zero relevance scores will have very similar subset
scores for GSM8K. This causes PiRank model to struggle to identify the best exemplar subsets, which
causes less performance gain in selection. On the other hand, both AquaRat and WMT19 have better
quality relevance scores since their relevance scores are more informative. For obtaining relevance scores
for AquaRat and WMT1,9, whole outputs are used for comparison, which allows much more diversity
in relevance scores. This diversity allows better performance when using CASE Rank for exemplar
selection, resulting in higher relative gains.

5.4. LTR model as a non-linear surrogate loss makes offline pol-
icy exemplar selection more efficient than online optimization
and LTR approaches

To address RQIII, the study compares the efficiency of CASE Rank with Dynamic CASE, Static CASE,
and an LTR baseline. Efficiency is measured as inference time (seconds). As shown in Table 5.5, CASE
Rank substantially reduces inference time relative to Dynamic CASE approximately 100 × faster. The
speedup arises because CASE Rank executes the CASE procedure once, whereas Dynamic CASE re-
runs CASE for every test instance, incurring considerable overhead. In conclusion, CASE Rank not
only accelerates inference but also improves performance, making the overall improvement substantial.

Inference Time[s] GSM8K AquaRat WMT19
Dynamic CASE 1554.19 2378.04 106.54

CASE Rank 11.74 10.59 1.68

Table 5.5: Inference Time comparison between CASE Rank and Dynamic CASE using Llama3.2:3b for each of the
datasets. Inference time is measured in seconds and is calculated per instance.

To measure CASE Rank’s efficiency better, it is compared with the fastest overall exemplar selection
algorithm, Static CASE. Inference time speed comparison between CASE and Static CASE is presented
in Figure 5.1. With the exception of the AquaRat dataset, Static CASE attains the lowest inference
time. The AquaRat outlier may be explained by latency spikes in several LLM responses that inflate
the average. Static CASE’s efficiency dominance is expected, as it is a task-level method: At inference,
it simply queries the LLM once with a pre-selected exemplar. By contrast, CASE Rank selects an exem-

5.4. LTR model as a non-linear surrogate loss makes offline policy exemplar selection more
efficient than online optimization and LTR approaches 29

plar subset at inference using PiRank predictions, which introduces additional computational overhead.
Even so, the difference in inference time between the two methods is modest. Figure 5.1 also displays
the fact that CASE Rank is fastest when performing machine translation using WMT19 dataset. This is
expected as large language models are already very good at machine translation without any fine-tuning
or in-context learning. This is because LLMs are pre-trained on massive bilingual or parallel corpora
LLMs, especially multilingual models trained with translation tasks in their pretraining objective, have
seen large quantities of translation pairs.

Insight:The incremental additional cost of CASE Rank is justified by its performance gains over Static
CASE.

Figure 5.1: Inference Time comparison between CASE Rank and Static CASE using Llama3.2:3b for each of the
datasets. Inference time is measured in seconds and is calculated per instance.

Figure A.4 reports inference times across datasets for Static CASE as well. It should be noted that as
a result of an outlier due to high latency, average inference times are larger than the median. From
Figure A.4, it can be established that CASE Rank is faster in inference time, thus more efficient than
LTR model. Therefore, it is concluded that offline policy exemplar selection can be more efficient than
online optimization and learning-to-rank approaches when using CASE Rank. The inference time speed
difference can be explained by the fact that LTR models are larger than PiRank. PiRank is a 3-layer
neural network, whereas LTR models are transformers. So, PiRank has many fewer parameters than a
transformer. Because of this, a forward pass takes longer for a transformer than for PiRank. Therefore,
it can be said that model size is decisive in determining efficiency in this setting.
Moreover, it can also be said that both the AllRank LTR model and CASE Rank’s inference times when
performing arithmetic reasoning are lower than those of GSM8K. This is unexpected since AquaRat
is more diverse and has challenging math problems that often include algebra, logical reasoning, and
distraction choices. These results can only be explained by the structure of the datasets. AquaRat
offers rationale and multiple choices per question, whereas each GSM8K problem has only a single
numerical answer. Thus, the more informative structure of AquaRat results in inference time speedup
when performing in-context learning.

6
Conclusion

6.1. Conclusion
In this study, three different approaches to demonstration example selection for in-context learning
were investigated in the context of instance-level exemplar selection. The first approach examined is
Dynamic CASE, an application of the CASE algorithm from [40] to an instance-level setting. Dynamic
CASE outperforms static CASE by using the CASE algorithm to select a demonstration example group
for each test instance. However, experiments also showed that Dynamic CASE is much more expensive
than its static counterpart because it makes the same number of LLM calls that static CASE does per
test instance. Even though Dynamic CASE outperforms the original CASE, its performance increase
is not high enough for it to be worth using as a tool over the original CASE algorithm.

To address the limitations associated with the inefficiency of Dynamic CASE, a novel framework for
using LTR models for demonstration example selection is introduced. By using LLM feedback and
BertScore F1 evaluation metric, relevance scores are collected, allowing LTR data for exemplar selec-
tion generation. Using an LTR model overcomes the problem of efficiency since a trained LTR model
can be used for prediction for each test instance. Because the prediction process is very fast, efficiency
is not a problem in this setting.

Empirical findings indicate that LTR models trained for exemplar selection outperform Dynamic CASE
while also being more efficient. It can be emphasized that LTR models trained on optimizing the actual
goal rather than decreasing uncertainty while also choosing the highest reward is the reason Dynamic
CASE is outperformed. On the other hand, this approach has a performance ceiling in this setting
because of the relevance score generation cost. Since no more data can be generated, training can not
be improved by randomly sampling more data. Therefore, this approach is more effective in settings
where a small amount of data can be afforded to generated. Nonetheless, LTR models proves to be an
alternative and efficient method to select exemplars for in-context learning.

Third and final approach introduced, CASE Rank, addresses the limitations of both CASE algorithm
and LTR models. CASE Rank introduces a non-linear differentiable surrogate in gap-index framework.
It uses an LTR model as a non-linear surrogate function to eliminate the problem of not modeling loss
non-linearly. Also, the CASE algorithm is used to select training data to overcome the random sampling
obstacle.
Experimental results show that CASE Rank is better in terms of performance than both approaches.
Using a LTR model as non-linear surrogate for the adapted-CASE algorithm while using the algorithm
to select training data for LTR model proves to be beneficial. However, it is observed that the relevance
score collection approach determines the performance increase magnitude. Depending on which part of
the LLM response is used for evaluation, the spread of relevance scores changes. More spread allows
higher-quality training data.

30

6.2. Limitations and Assumptions 31

Finally, the inference time speed of each of the three approaches and Static CASE was investigated
and compared by measuring the inference time speed per instance in seconds of each approach. CASE
Rank is shown to be the fastest approach out of the three. Dynamic CASE is expected to be slowest
because CASE Rank uses LTR model for prediction. Using a smaller neural network makes CASE Rank
faster than the vanilla LTR model approach. These results highlight the efficiency of the CASE Rank
approach. Even though CASE Rank is slower than Static CASE at inference time, the difference in
inference time between the two methods is modest. This suggests that the incremental cost of CASE
Rank may be justified by its performance gains over Static CASE.

Even though its relative gains can be unpredictable across models and generating a lot of training data
is costly, CASE Rank proves to be efficient and beneficial to exemplar selection for domain-specific
in-context learning in scenarios where the computational resources are scarce.

6.2. Limitations and Assumptions
Choice of hyperparameter values
This section details the studys limitations and the assumptions embedded in its experimental design.
Owing to resource constraints, experiments were conducted using a single hyperparameter configuration.
Hyperparameters for the inference LLMs, the CASE algorithm, and the relevance-score collectionalong
with CASE-specific parameterswere predetermined. These selections constitute design choices rather
than values substantiated by prior literature. No ablation studies were performed to assess the impact
of these hyperparameters.

LTR data generation
As it was stated before, to collect each relevance score, an LLM call needs to be made. Because of
resource constraints, generating 50 queries for 500 groups takes several days. This amount is below
standard, where benchmark datasets have over 300,000 queries. Thus, a small amount of data was
used for training LTR models. This limited LTR model training. The cost of LTR data generation
prevented from generating more data to increase performance and try various different experiments.
On the other hand, instead of 500 groups, for fewer groups relevance score could be collected, allowing
data generation involving more queries. However, it was reasoned that using a large number of groups
would allow generating more varied data.

Below average LLM size
Since LLM response time depends on the model size, to efficiently conduct experiments, smaller LLMs
were chosen. Due to resource constraints, using larger LLMs was not an option since not all of the
experiments would be done in time. Smaller LLMs tend to have worse performance than larger LLMs.
Therefore, the performance increase when using methods like CASE Rank is limited in experimental
results when using smaller LLMs.

6.3. Future Works
Dynamic Exemplar Selection Across Steps
While this thesis casts exemplar (prompt) selection as a one-shot bandit with a nonlinear LLM surrogate,
a natural next step is to model reasoning as a sequential decision process over multiple possible response
paths. In complex queries, the system may need to decompose the task into sub-questions, each requiring
its own exemplar set; moreover, for any chosen prompt, the LLM can produce diverse continuations,
yielding a branching space of trajectories rather than a single outcome. To capture this, we propose
extending the framework beyond gap-index linear bandits to more general bandit formulations, in
particular, the restless bandit setting, where the value of each arm evolves over time even when not
selected due to changes in the intermediate reasoning state and the distribution of potential LLM
continuations. This model supports careful planning across steps. It lets the system allocate pulls
across subquestions. It can reselect exemplars as new evidence appears. In practice, we learn state
representations from intermediate LLM outputs. We specify how each arm transitions between states.

6.4. Disclosure 32

We then optimize activation policies that act over trajectories rather than single pulls. This aligns
exemplar selection with multistep LLM reasoning in large, branching search spaces.

Using CASE Rank in other domains
Beyond in-context learning, the proposed bandit-based exemplar selector is a generic subset selection
primitive. A natural extension is to study it as a data curation tool for pretraining, dataset distillation,
and active learning, where the algorithm adaptively chooses informative subsets under budget con-
straints. The LLM-based surrogate used here can be replaced with domain reward models, simulators,
or human preference models, enabling deployment in settings that do not rely on LLMs. Promising ap-
plications include drug discovery and repurposing (selecting candidate compounds for costly assays) and
protein design or folding (prioritizing sequences or structures), where the search space is large and eval-
uations are expensive and noisy. Also, comprehensive benchmarks across domains would demonstrate
the algorithms value as a drop-in selection module, independent of ICL, and clarify how to amortize
evaluation costs at scale.

Dataset size vs performance
Since the number of training data for LTR models was limited, the performance of LTR models in
selecting exemplars for in-context learning was limited. To better measure their performance, future
research should aim to generate more data for training. With more training data the performance of
LTR models when using different amounts of training data can be investigated as well.

6.4. Disclosure
In line with TU Delft’s publishing policies1, I acknowledge the use of AI tools powered by ChatGPT to
assist in rephrasing certain sections of this thesis.

1TU Delft publishing policies: https://www.tudelft.nl/library/actuele-themas/open-publishing/about/policies

References

[1] Delft High Performance Computing Centre (DHPC). DelftBlue Supercomputer (Phase 2). https:
//www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2. 2024.

[2] Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. “Improved algorithms for linear stochas-
tic bandits”. In: Proceedings of the 25th International Conference on Neural Information Pro-
cessing Systems. NIPS’11. Granada, Spain: Curran Associates Inc., 2011, pp. 2312–2320. isbn:
9781618395993.

[3] Shipra Agrawal and Navin Goyal. “Thompson Sampling for Contextual Bandits with Linear Pay-
offs”. In: Proceedings of the 30th International Conference on Machine Learning. 2013, pp. 127–
135.

[4] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time Analysis of the Multiarmed
Bandit Problem”. In: Mach. Learn. 47.23 (May 2002), pp. 235–256. issn: 0885-6125. doi: 10.
1023 / A : 1013689704352. url: https : / / doi - org . tudelft . idm . oclc . org / 10 . 1023 / A :
1013689704352.

[5] Iz Beltagy et al. “Zero- and Few-Shot NLP with Pretrained Language Models”. In: Proceedings
of the 60th Annual Meeting of the Association for Computational Linguistics: Tutorial Abstracts.
Ed. by Luciana Benotti et al. Dublin, Ireland: Association for Computational Linguistics, May
2022, pp. 32–37. doi: 10.18653/v1/2022.acl-tutorials.6. url: https://aclanthology.org/
2022.acl-tutorials.6/.

[6] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv: 2005.14165 [cs.CL].
url: https://arxiv.org/abs/2005.14165.

[7] Christopher JC Burges. “From ranknet to lambdarank to lambdamart: An overview”. In: Learning
11.23-581 (2010), p. 81.

[8] Olivier Chapelle and Yi Chang. “Yahoo! Learning to Rank Challenge Overview”. In: Proceedings
of the Learning to Rank Challenge. Ed. by Olivier Chapelle, Yi Chang, and Tie-Yan Liu. Vol. 14.
Proceedings of Machine Learning Research. Haifa, Israel: PMLR, June 2011, pp. 1–24. url: https:
//proceedings.mlr.press/v14/chapelle11a.html.

[9] Aakanksha Chowdhery et al. PaLM: Scaling Language Modeling with Pathways. 2022. arXiv:
2204.02311 [cs.CL]. url: https://arxiv.org/abs/2204.02311.

[10] Karl Cobbe et al. Training Verifiers to Solve Math Word Problems. 2021. arXiv: 2110.14168
[cs.LG]. url: https://arxiv.org/abs/2110.14168.

[11] CrewAI. url: https://docs.crewai.com/en/concepts/llms#meta-llama.
[12] Rémy Degenne et al. “Gamification of Pure Exploration for Linear Bandits”. In: Proceedings of the

37th International Conference on Machine Learning. Vol. 119. Proceedings of Machine Learning
Research. 2020, pp. 2432–2442.

[13] Mingkai Deng et al. RLPrompt: Optimizing Discrete Text Prompts with Reinforcement Learning.
2022. arXiv: 2205.12548 [cs.CL]. url: https://arxiv.org/abs/2205.12548.

[14] Shizhe Diao et al. Active Prompting with Chain-of-Thought for Large Language Models. 2024.
arXiv: 2302.12246 [cs.CL]. url: https://arxiv.org/abs/2302.12246.

[15] Tanner Fiez et al. “Sequential Experimental Design for Transductive Linear Bandits”. In: Advances
in Neural Information Processing Systems. Vol. 32. 2019.

[16] Wikimedia Foundation. ACL 2019 Fourth Conference on Machine Translation (WMT19), Shared
Task: Machine Translation of News. url: http : / / www . statmt . org / wmt19 / translation -
task.html.

33

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi-org.tudelft.idm.oclc.org/10.1023/A:1013689704352
https://doi-org.tudelft.idm.oclc.org/10.1023/A:1013689704352
https://doi.org/10.18653/v1/2022.acl-tutorials.6
https://aclanthology.org/2022.acl-tutorials.6/
https://aclanthology.org/2022.acl-tutorials.6/
https://arxiv.org/abs/2005.14165
https://arxiv.org/abs/2005.14165
https://proceedings.mlr.press/v14/chapelle11a.html
https://proceedings.mlr.press/v14/chapelle11a.html
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://docs.crewai.com/en/concepts/llms#meta-llama
https://arxiv.org/abs/2205.12548
https://arxiv.org/abs/2205.12548
https://arxiv.org/abs/2302.12246
https://arxiv.org/abs/2302.12246
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html

References 34

[17] Yao Fu et al. Complexity-Based Prompting for Multi-Step Reasoning. 2023. arXiv: 2210.00720
[cs.CL]. url: https://arxiv.org/abs/2210.00720.

[18] Norbert Fuhr. “Optimum polynomial retrieval functions based on the probability ranking prin-
ciple”. In: ACM Trans. Inf. Syst. 7.3 (July 1989), pp. 183–204. issn: 1046-8188. doi: 10.1145/
65943.65944. url: https://doi-org.tudelft.idm.oclc.org/10.1145/65943.65944.

[19] Victor Gabillon, Mohammad Ghavamzadeh, and Alessandro Lazaric. “Best arm identification: a
unified approach to fixed budget and fixed confidence”. In: Proceedings of the 26th International
Conference on Neural Information Processing Systems - Volume 2. NIPS’12. Lake Tahoe, Nevada:
Curran Associates Inc., 2012, pp. 3212–3220.

[20] Aaron Grattafiori et al. The Llama 3 Herd of Models. 2024. arXiv: 2407.21783 [cs.AI]. url:
https://arxiv.org/abs/2407.21783.

[21] Jiafeng Guo et al. “A Deep Relevance Matching Model for Ad-hoc Retrieval”. In: Proceedings of
the 25th ACM International on Conference on Information and Knowledge Management. CIKM16.
ACM, Oct. 2016, pp. 55–64. doi: 10.1145/2983323.2983769. url: http://dx.doi.org/10.
1145/2983323.2983769.

[22] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated gain-based evaluation of IR techniques”. In:
ACM Trans. Inf. Syst. 20.4 (Oct. 2002), pp. 422–446. issn: 1046-8188. doi: 10.1145/582415.
582418. url: https://doi-org.tudelft.idm.oclc.org/10.1145/582415.582418.

[23] Shivaram Kalyanakrishnan and Peter Stone. “Efficient selection of multiple bandit arms: theory
and practice”. In: Proceedings of the 27th International Conference on International Conference on
Machine Learning. ICML’10. Haifa, Israel: Omnipress, 2010, pp. 511–518. isbn: 9781605589077.

[24] Takeshi Kojima et al. Large Language Models are Zero-Shot Reasoners. 2023. arXiv: 2205.11916
[cs.CL]. url: https://arxiv.org/abs/2205.11916.

[25] John Langford and Tong Zhang. “The Epoch-Greedy algorithm for contextual multi-armed ban-
dits”. In: Proceedings of the 21st International Conference on Neural Information Processing Sys-
tems. NIPS’07. Vancouver, British Columbia, Canada: Curran Associates Inc., 2007, pp. 817–824.
isbn: 9781605603520.

[26] Xiaonan Li and Xipeng Qiu. “Finding Support Examples for In-Context Learning”. In: Findings
of the Association for Computational Linguistics: EMNLP 2023. Ed. by Houda Bouamor, Juan
Pino, and Kalika Bali. Singapore: Association for Computational Linguistics, Dec. 2023, pp. 6219–
6235. doi: 10.18653/v1/2023.findings-emnlp.411. url: https://aclanthology.org/2023.
findings-emnlp.411/.

[27] Wang Ling et al. Program Induction by Rationale Generation : Learning to Solve and Explain
Algebraic Word Problems. 2017. arXiv: 1705.04146 [cs.AI]. url: https://arxiv.org/abs/
1705.04146.

[28] Jiachang Liu et al. “What Makes Good In-Context Examples for GPT-3?” In: Proceedings of Deep
Learning Inside Out (DeeLIO 2022): The 3rd Workshop on Knowledge Extraction and Integra-
tion for Deep Learning Architectures. Ed. by Eneko Agirre, Marianna Apidianaki, and Ivan Vuli.
Dublin, Ireland and Online: Association for Computational Linguistics, May 2022, pp. 100–114.
doi: 10.18653/v1/2022.deelio-1.10. url: https://aclanthology.org/2022.deelio-1.10/.

[29] Pengfei Liu et al. Pre-train, Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing. 2021. arXiv: 2107.13586 [cs.CL]. url: https://arxiv.org/abs/
2107.13586.

[30] Tie-Yan Liu. “Learning to Rank for Information Retrieval”. In: Found. Trends Inf. Retr. 3.3
(Mar. 2009), pp. 225–331. issn: 1554-0669. doi: 10 . 1561 / 1500000016. url: https : / / doi -
org.tudelft.idm.oclc.org/10.1561/1500000016.

[31] Pan Lu et al. Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical
Reasoning. 2023. arXiv: 2209.14610 [cs.LG]. url: https://arxiv.org/abs/2209.14610.

[32] Yao Lu et al. Fantastically Ordered Prompts and Where to Find Them: Overcoming Few-Shot
Prompt Order Sensitivity. 2022. arXiv: 2104.08786 [cs.CL]. url: https://arxiv.org/abs/
2104.08786.

https://arxiv.org/abs/2210.00720
https://arxiv.org/abs/2210.00720
https://arxiv.org/abs/2210.00720
https://doi.org/10.1145/65943.65944
https://doi.org/10.1145/65943.65944
https://doi-org.tudelft.idm.oclc.org/10.1145/65943.65944
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://doi.org/10.1145/2983323.2983769
http://dx.doi.org/10.1145/2983323.2983769
http://dx.doi.org/10.1145/2983323.2983769
https://doi.org/10.1145/582415.582418
https://doi.org/10.1145/582415.582418
https://doi-org.tudelft.idm.oclc.org/10.1145/582415.582418
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://arxiv.org/abs/2205.11916
https://doi.org/10.18653/v1/2023.findings-emnlp.411
https://aclanthology.org/2023.findings-emnlp.411/
https://aclanthology.org/2023.findings-emnlp.411/
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://arxiv.org/abs/1705.04146
https://doi.org/10.18653/v1/2022.deelio-1.10
https://aclanthology.org/2022.deelio-1.10/
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://arxiv.org/abs/2107.13586
https://doi.org/10.1561/1500000016
https://doi-org.tudelft.idm.oclc.org/10.1561/1500000016
https://doi-org.tudelft.idm.oclc.org/10.1561/1500000016
https://arxiv.org/abs/2209.14610
https://arxiv.org/abs/2209.14610
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786
https://arxiv.org/abs/2104.08786

References 35

[33] Meta-Llama. Llama 3.2 3b instruct (free) - API, providers, stats. url: https://openrouter.ai/
meta-llama/llama-3.2-3b-instruct%3Afree?utm_source=chatgpt.com.

[34] Rodrigo Nogueira and Kyunghyun Cho. Passage Re-ranking with BERT. 2020. arXiv: 1901.04085
[cs.IR]. url: https://arxiv.org/abs/1901.04085.

[35] NVIDIA. url: https://build.nvidia.com/meta/llama-3.2-3b-instruct/modelcard.
[36] Przemyslaw Pobrotyn and Radoslaw Bialobrzeski. “NeuralNDCG: Direct Optimisation of a Rank-

ing Metric via Differentiable Relaxation of Sorting”. In: ArXiv abs/2102.07831 (2021).
[37] Przemyslaw Pobrotyn et al. “Context-Aware Learning to Rank with Self-Attention”. In: CoRR

abs/2005.10084 (2020). arXiv: 2005.10084. url: https://arxiv.org/abs/2005.10084.
[38] Reid Pryzant et al. Automatic Prompt Optimization with "Gradient Descent" and Beam Search.

2023. arXiv: 2305.03495 [cs.CL]. url: https://arxiv.org/abs/2305.03495.
[39] Kiran Purohit et al. “EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning”.

In: Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing. Ed.
by Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen. Miami, Florida, USA: Association for
Computational Linguistics, Nov. 2024, pp. 5367–5388. doi: 10.18653/v1/2024.emnlp-main.307.
url: https://aclanthology.org/2024.emnlp-main.307/.

[40] Kiran Purohit et al. Sample Efficient Demonstration Selection for In-Context Learning. 2025.
arXiv: 2506.08607 [cs.LG]. url: https://arxiv.org/abs/2506.08607.

[41] Tao Qin and Tie-Yan Liu. “Introducing LETOR 4.0 Datasets”. In: CoRR abs/1306.2597 (2013).
url: http://arxiv.org/abs/1306.2597.

[42] Alec Radford et al. “Language Models are Unsupervised Multitask Learners”. In: OpenAI (2019).
Accessed: 2024-11-15. url: https://cdn.openai.com/better-language-models/language_
models_are_unsupervised_multitask_learners.pdf.

[43] Clémence Réda, Emilie Kaufmann, and Andrée Delahaye-Duriez. “Top-m identification for lin-
ear bandits”. In: Proceedings of The 24th International Conference on Artificial Intelligence and
Statistics. Ed. by Arindam Banerjee and Kenji Fukumizu. Vol. 130. Proceedings of Machine Learn-
ing Research. PMLR, Apr. 2021, pp. 1108–1116. url: https://proceedings.mlr.press/v130/
reda21a.html.

[44] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. “Learning To Retrieve Prompts for In-
Context Learning”. In: Proceedings of the 2022 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies. Ed. by Marine
Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz. Seattle, United States:
Association for Computational Linguistics, July 2022, pp. 2655–2671. doi: 10.18653/v1/2022.
naacl-main.191. url: https://aclanthology.org/2022.naacl-main.191/.

[45] Maria-Florina Balcan Soare, Alessandro Lazaric, and Rémi Munos. “Best-Arm Identification in
Linear Bandits”. In: Advances in Neural Information Processing Systems. Vol. 27. 2014, pp. 828–
836.

[46] Hongjin Su et al. Selective Annotation Makes Language Models Better Few-Shot Learners. 2022.
arXiv: 2209.01975 [cs.CL]. url: https://arxiv.org/abs/2209.01975.

[47] Robin Swezey et al. PiRank: Scalable Learning To Rank via Differentiable Sorting. 2021. arXiv:
2012.06731 [cs.LG]. url: https://arxiv.org/abs/2012.06731.

[48] Hugo Touvron et al. Llama 2: Open Foundation and Fine-Tuned Chat Models. 2023. arXiv: 2307.
09288 [cs.CL]. url: https://arxiv.org/abs/2307.09288.

[49] Xuezhi Wang et al. Self-Consistency Improves Chain of Thought Reasoning in Language Models.
2023. arXiv: 2203.11171 [cs.CL]. url: https://arxiv.org/abs/2203.11171.

[50] Jason Wei et al. Emergent Abilities of Large Language Models. 2022. arXiv: 2206.07682 [cs.CL].
url: https://arxiv.org/abs/2206.07682.

[51] Jing Xiong et al. DQ-LoRe: Dual Queries with Low Rank Approximation Re-ranking for In-Context
Learning. 2024. arXiv: 2310.02954 [cs.CL]. url: https://arxiv.org/abs/2310.02954.

https://openrouter.ai/meta-llama/llama-3.2-3b-instruct%3Afree?utm_source=chatgpt.com
https://openrouter.ai/meta-llama/llama-3.2-3b-instruct%3Afree?utm_source=chatgpt.com
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://arxiv.org/abs/1901.04085
https://build.nvidia.com/meta/llama-3.2-3b-instruct/modelcard
https://arxiv.org/abs/2005.10084
https://arxiv.org/abs/2005.10084
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://doi.org/10.18653/v1/2024.emnlp-main.307
https://aclanthology.org/2024.emnlp-main.307/
https://arxiv.org/abs/2506.08607
https://arxiv.org/abs/2506.08607
http://arxiv.org/abs/1306.2597
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://proceedings.mlr.press/v130/reda21a.html
https://proceedings.mlr.press/v130/reda21a.html
https://doi.org/10.18653/v1/2022.naacl-main.191
https://doi.org/10.18653/v1/2022.naacl-main.191
https://aclanthology.org/2022.naacl-main.191/
https://arxiv.org/abs/2209.01975
https://arxiv.org/abs/2209.01975
https://arxiv.org/abs/2012.06731
https://arxiv.org/abs/2012.06731
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2310.02954
https://arxiv.org/abs/2310.02954

References 36

[52] Longbo Xu, Junya Honda, and Masashi Sugiyama. “A Fully Adaptive Algorithm for Pure Ex-
ploration in Linear Bandits”. In: Proceedings of the 21st International Conference on Artificial
Intelligence and Statistics. Vol. 84. Proceedings of Machine Learning Research. 2018, pp. 843–851.

[53] Xi Ye et al. “Complementary Explanations for Effective In-Context Learning”. In: Findings of the
Association for Computational Linguistics: ACL 2023. Ed. by Anna Rogers, Jordan Boyd-Graber,
and Naoaki Okazaki. Toronto, Canada: Association for Computational Linguistics, July 2023,
pp. 4469–4484. doi: 10.18653/v1/2023.findings-acl.273. url: https://aclanthology.org/
2023.findings-acl.273/.

[54] Susan Zhang et al. OPT: Open Pre-trained Transformer Language Models. 2022. arXiv: 2205.
01068 [cs.CL]. url: https://arxiv.org/abs/2205.01068.

[55] Tianyi Zhang et al. BERTScore: Evaluating Text Generation with BERT. 2020. arXiv: 1904.09675
[cs.CL]. url: https://arxiv.org/abs/1904.09675.

[56] Yiming Zhang, Shi Feng, and Chenhao Tan. “Active Example Selection for In-Context Learning”.
In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.
Ed. by Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang. Abu Dhabi, United Arab Emirates:
Association for Computational Linguistics, Dec. 2022, pp. 9134–9148. doi: 10.18653/v1/2022.
emnlp-main.622. url: https://aclanthology.org/2022.emnlp-main.622/.

https://doi.org/10.18653/v1/2023.findings-acl.273
https://aclanthology.org/2023.findings-acl.273/
https://aclanthology.org/2023.findings-acl.273/
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/2205.01068
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://arxiv.org/abs/1904.09675
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://doi.org/10.18653/v1/2022.emnlp-main.622
https://aclanthology.org/2022.emnlp-main.622/

A
Appendix

A.1. Dataset prompts
AQUA Prompt

Instruction:You are a helpful, respectful, and honest assistant helping to solve math word
problems or tasks requiring reasoning or math. Follow given examples and solve the
problems in step by step manner.

Exemplars :
[Question]: The average age of three boys is 45 years and their ages are in proportion 3:5:7. What is
the age in years of the youngest boy?
[Options]: A) 9, B) 10, C) 11, D) 12, E) 13
[Explanation]: 3x + 5x + 7x = 45,
x = 3,
3x = 9
[Answer]: The option is A
. . .
. . .

Test Input : Question: Options:
Explanation: [INS] Answer: [INS]

Figure A.1: Prompt for Aqua

A.2. Mistral:v0.1 Results
A.3. Qualitative analysis
A.4. Mean calculation proof
Even though only a single prediction for a query is taken into account, since each time means are
updated a new prediction for that same query will be obtained for each arm. By the time the number
of iterations is equal the number of validation samples/queries, the information obtained by calculating
means this way will be same as calculating the mean of an arm for each query individually. Thus, this
approach does not result in information loss. Take matrix Ya, predictions for arm a over time and

37

A.4. Mean calculation proof 38

GSM8K Prompt

Instruction:You are a helpful, respectful and honest assistant helping to solve math word
problems or tasks requiring reasoning or math. Follow given examples and solve the
problems in step by step manner.

Exemplars :
[Question]: Samir just turned half the age Hania was 10 years ago. If in five years Hania will be 45
years old, what will Samirs age be five years from now?
[Explanation]: If in five years, Hania will be 45 years old, currently she is 45 − 5 = 40 years old. Samir just
turned half the age Hania was 10 years ago, which means she is 30/2 = 15 years old. In five years, Samir
will be 15 + 5 = 20 years old.
[Answer]: 20 years old
. . .
. . .

Test Input : Question:
Explanation: [INS] Answer: [INS]

Figure A.2: Prompt for GSM8K

Figure A.3: Prompt for WMT19

different queries:

Ya =

y11 y12 y13

y21 y22 y23

y31 y32 y33


qu

er
y

iteration

(A.1)

Rows are predictions over time for single query and columns are predictions for different queries for
a single iteration. When iteration number and query number is equal, the mean of arm a when first
averaging per query is:

µ̂t=nq
=

y11+y12+y13
3 + y21+y22+y23

3 + y31+y32+y33
3

3
µ̂t=nq

= y11 + y12 + y13 + y21 + y22 + y23 + y31 + y32 + y33

9

(A.2)

And, the mean of arm a when first averaging per iteration is:

A.4. Mean calculation proof 39

Table A.1: mistral:v0.1 results across 3 datasets (we use 5-shot for all methods).

Method GSM8K AquaRat WTM19

Mistral-7B-v0.1
Task level
Static CASE 32.60 21.20 74.63
Zero-shot-COT 7.42 18.89 61.28
Manual Few-shot COT 22.36 14.90 -
LENS 26.08 14.17 -
Learning To Rank
NeuralNDCG 29.33 18.90 74.80
Our Approach
CASE Rank 34.33 23.62 76.01

Table A.2: Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b for a particular
AquaRat test instance where CASE Rank had a correct answer and AllRank NeuralNDCG model did not

Question Three birds are flying at a fast rate of 900 kilometers per hour. What is their speed in miles per
minute? [1km = 0.6 miles]

Method Exemplars

AllRank Question: In certain year in Country C, x sets of twins and y sets of triplets were born. If there
were z total babies born in Country C in this year, and x and y were both greater than 0, which
of the following represents the fraction Q of all babies born who were NOT part of a set of twins
or triplets?
Question: The perimeter of a rhombus is 68 cm and one of its diagonals is 16 cm. Find its area?
Question: A rectangular lawn of dimensions 90 m × 60 m has two roads each 10 m wide running
in the middle of the lawn,one parallel to the length and the other parallel to the breadth. What
is the cost of traveling the two roads at Rs.3 per sq/m?
Question: a is the hundreds digit of the three digit integer x, b is the tens digit of x, and c is
the units digit of x. 3a = b = 3c, and a > 0. What is the difference between the two greatest
possible values of x?
Question: he population of a town is 10000. It increases annually at the rate of 20% p.a. What
will be its population after 3 years?

CASE Rank Question: Machine A can make 350 widgets in 1 hour, and machine B can make 250 widgets in
1 hour. If both machines work together, how much time will it take them to make a total of 800
widgets?
Question: If two trains are 120 miles apart and are traveling toward each other at constant rate
of 30 miles per hour and 40 miles per hour, respectively, how far apart will they be 1 hour before
they meet?
Question: If 2a = 3b and ab0, what is the ratio of a/3 to b/2?
Question: An businessman earns an income of Re 2 on the first day of his business. On every
subsequent day, he earns an income which is just double of that made on the previous day. On
the 20th day of business, he earns an income of?
Question: Four of the five parts numbered (a), (b), (c), (d) and (e) are exactly equal. Which of
the parts is not equal to the other four? The number of that part is the answer.

Rationale is not completely shown for some questions to conserve space. However, in our experiments all exemplars
include rationales.

µ̂t=nq =
y11+y21+y31

3 + y12+y22+y32
3 + y13+y23+y33

3
3

µ̂t=nq = y11 + y21 + y31 + y12 + y22 + y32 + y13 + y23 + y33

9

(A.3)

A.5. Inference time speed comparison between CASE Rank and AllRank Neural NDCG 40

Table A.3: Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b for a particular
AquaRat test instance where CASE Rank had a correct answer and AllRank NeuralNDCG model did not

Question Let A, B and C denote the vertices of a triangle with area 10. Let point D be on side AB, point
E be on side BC and point F be on side CA with AD = 2 and DB = 3. The area of △ABE and
the area of quadrilateral DBEF are the same. What is the value of this area?

Method Exemplars

AllRank Question: In a certain tournament certain rules are followed: any player is eliminated the moment
he losses for the third time (irrespective of how many wins he has), any player can play another
player any number of times. If 512 contestants enter the tournament what is the largest number
of games that could be played?
Question: Car A runs at the speed of 33 km/h & reaches its destination in 7 h. Car B runs at
the speed of 44 km/h & reaches its destination in 5 h. What is the respective ratio of distances
covered by Car A & Car B?
Question: What is the sum of all the 4 digit numbers that can be formed using all of the digits
2, 3, 5 and 7?
Question: A certain companys profit in 1996 was 20 percent greater than its profit in 1995, and
its profit in 1997 was 20 percent greater than its profit in 1996. The companys profit in 1997 was
what percent greater than its profit in 1995?
Question: Evaluate: 13 +

√
−4 + 5 × 3 ÷ 3 = ?

CASE Rank Question: The ratio of number of boys and girls in a class is 3 : 2. In the 1st semester exam 20%
of boys and 25% of girls get more than or equal to 90% marks. What percentage of students get
less than 90% marks ?
Question: Two trains of length 120 m and 280 m are running towards each other on parallel lines
at 42 km/h and 30 km/h respectively. In what time will they be clear of each other from the
moment they meet? If 525 · 413 = 2 × 10n, what is the value of n?
Question: If 525 · 413 = 2 × 10n, what is the value of n?
Question: Rs. 1200 divided among P, Q and R. P gets half of the total amount received by Q and
R. Q gets one-third of the total amount received by P and R. Find the amount received by R?
Question: What is the greatest 6-digit number when divided by 6, 7, 8, 9, and 10 leaves a
remainder of 4, 5, 6, 7, and 8 respectively?

Rationale is not completely shown for some questions to conserve space. However, in our experiments all exemplars
include rationales.
The test instance is ratio problem that requires algebra. Subset selected CASE Rank by contains two similar ques-
tions(1.,4.), whereas AllRank NeuralNDCG one(2.).

Since addition is commutative, it can be concluded that equations are the same. This means that the
information seen for the means is exactly the same for an arm when enough iterations have elapsed. In
the case when the number of iterations is not equal to number of queries, there are two possibilities:
number of iterations is either larger or lower than number of queries. When the number of iterations is
lower than number of queries than it means that there is less information per arm than there are arms.
This may introduce uncertainty in mean calculation in first iterations. In the other case, there should
not be any uncertainty coming from this approach since there have been enough predictions contributed
for an arm mean.

A.5. Inference time speed comparison between CASE Rank and All-
Rank Neural NDCG

A.5. Inference time speed comparison between CASE Rank and AllRank Neural NDCG 41

Table A.4: Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b for a particular
AquaRat test instance where CASE Rank had a correct answer and AllRank NeuralNDCG model did not

Question Glenn gains 10% from selling her scarf at $44. Her mom tells her she’ll buy it from her but only
after a family discount of 5%. What is Glenn’s gain percent if she sells the scarf to her mom?

Method Exemplars

AllRank Question: Dawson and Henry are in a relay race. Dawson runs the first leg of the course in 38
seconds. Henry runs the second leg of the course in 7 seconds. What was the average time they
took to run a leg of the course?
Question: A man can row his boat with the stream at 16 km/h and against the stream in 12
km/h. The man’s rate is?
Question: Can you find the smallest non fractional number such that If the number gets divided
by 9 , we get the remainder of 1; If the number gets divided by 10 , we get the remainder of 2
If the number gets divided by 11 , we get the remainder of 3; If the number gets divided by 12 ,
we get the remainder of 4.
Question: Ravi purchased 20 dozens of toys at the rate of Rs. 360 per dozen. He sold each one
of them at the rate of Rs. 33. What was his percentage profit?
Question: If w,x,y,z represents the respective results obtained from rounding off the figure
8623.293 to the nearest thousand, hundred, ten and one, which of the following statements
is accurate?

CASE Rank Question: If population of certain city increases at the rate of 3%. If population in 1981 was
138915, then population in 1980 was?
Question: The train travels at an average speed of 25km/h, to the top of the hill where the
midpoint of the trip is. Going down hill, train travels at an average speed of 5km/h. Which of
the following is the closest approximation of train’s average speed, in kilometers per hour, for
the round trip?
Question: For a,w,d are the positive integers, and d|a means that a is divisible by d, if d|aw,
which of the following must be true?
Question: A person purchased a TV set for Rs. 16000 and a DVD player for Rs. 6250. He sold
both the items together for Rs. 34710 . What percentage of profit did he make?
Question: Which number is the odd one out ? 9654 4832 5945 7642 7963 8216 3649

Rationale is not completely shown for some questions to conserve space. However, in our experiments all exemplars
include rationales.
The test instance is applied percentage / profitdiscount problem. Subset selected by contains two similarques-
tions(3.,4.), whereas AllRank NeuralNDCG one(4.).

Figure A.4: Inference Time comparison between CASE Rank and AllRank Neural NDCG

A.5. Inference time speed comparison between CASE Rank and AllRank Neural NDCG 42

Table A.5: Exemplar subsets selected by AllRank NeuralNDCG and CASE Rank using LLama3.2:3b for a particular
AquaRat test instance where CASE Rank had a correct answer and AllRank NeuralNDCG model did not

Question David bought 13 BMW cars for a total price of 1,105,000 dollars. If he wants to make a profit of
39,000 dollars in the deal, at what price should he sell one car?

Method Exemplars

AllRank Question: If the length of a rectangular field is 30 metres more than its breadth and the perimeter
of the field is 540 metres, what is the area of the field in square metres?
Question: Express a speed of 56 kmph in meters per second?
Question: What is the smallest positive integer x such that 108x is the cube of a positive integer?
Question: A man purchased 3 blankets @ Rs.100 each, 5 blankets @ Rs.150 each and two blankets
at a certain rate which is now slipped off from his memory. But he remembers that the average
price of the blankets was Rs.150. Find the unknown rate of two blankets?
Question: Each of the integers from 0 to 8, inclusive, is written on a separate slip of blank
paper and the ten slips are dropped into hat. If the slips are then drawn one at a time without
replacement, how many must be drawn to ensure that the numbers on two of the slips drawn
will have a sum of 10?

CASE Rank Question: The calender for the year 2007 will be the same for the year:
Question: A train 100 m long crosses a platform 125 m long in 15 sec; find the speed of the train?
Question: If x=2y=4z, what is y-z, in terms of x?
Question: An investor can sell her MicroTron stock for 36$ per share and her Dynaco stock for
60$ per share, If she sells 300 shares altogether, some of each stock, at an average price per share
of 40$, how many shares of Dynaco stock has she sold?
Question: The letters of the word WOMAN are written in all possible orders and these words
are written out as in a dictionary ,then the rank of the word ’WOMAN’ is

Rationale is not completely shown for some questions to conserve space. However, in our experiments all exemplars
include rationales.
The test instance is applied profit/markup problem that requires algebra. Subset selected by CASE Rank contains
two similar questions(1.,1.), whereas AllRank NeuralNDCG one(4.).

	Abstract
	Introduction
	Background and Motivation
	Research Questions
	Contribution
	Thesis Outline

	Background and Related Work
	Exemplar Selection
	Task-level Exemplar Selection
	Instance-level Exemplar Selection

	Multi-armed Bandit (MAB) Algorithms
	Linear Bandits

	Bandit-Based Exemplar Selection
	CASE

	Learning to Rank
	Surrogate Objectives for LTR
	PiRank
	AllRank
	NeuralNDCG

	Method
	Problem setup
	LTR Dataset for Exemplar Selection
	Relevance Score Collection
	Feature Derivation

	CASE Rank
	Updating Means
	Gap Calculation
	Variance Calculation
	Uncertainty Calculation

	Experimental Setup
	Dataset
	Evaluation metrics
	Hardware configuration
	Baselines
	Relevance Score Generation Details
	Implementation Details

	Results
	Reasoning performance of online dynamic exemplar selection and LTR approaches compared to that of offline exemplar selection approaches
	Multi-armed bandit selection using non-linear surrogate loss function improves instance-level exemplar selection
	Relevance score approach effects CASE Rank performance
	LTR model as a non-linear surrogate loss makes offline policy exemplar selection more efficient than online optimization and LTR approaches

	Conclusion
	Conclusion
	Limitations and Assumptions
	Future Works
	Disclosure

	References
	Appendix
	Dataset prompts
	Mistral:v0.1 Results
	Qualitative analysis
	Mean calculation proof
	Inference time speed comparison between CASE Rank and AllRank Neural NDCG

