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Ce qu’il y a souvent de plus difficile à apprécier et à comprendre, c’est ce qui se passe sous
nos yeux.

What is often most difficult to appreciate and understand is what takes place directly
under our own eyes.

Alexis de Tocqueville





SUMMARY

This thesis studies advanced and accurate discretization schemes for relevant partial dif-
ferential equations (PDEs) in finance. We start with techniques which may be particu-
larly useful for the pricing of so-called vanilla financial options, European or American,
and then move on to more complex models for the pricing of exotic options.

The most popular model used to price options in finance is the Black-Scholes model
which consists in assuming that the underlying asset follows a geometrical Brownian
motion. Under the pure Black-Scholes model, European vanilla options can be priced
and hedged with a simple analytical formula. This is one of the key reasons of the suc-
cess of the Black-Scholes model. On the market, vanilla options on single stocks are very
regularly traded in their American variety, for example on the Chicago Board Options
Exchange. In contrast with an European option, the holder of an American option can
exercise his right at any time prior to the maturity date. This small change in the contract
translates the problem of pricing an option into a non-linear optimization problem. In
Chapter 2, we apply the Trapezoidal Rule with a Second Order Backward Difference For-
mula (TR-BDF2) finite difference scheme on the Black-Scholes-Merton PDE. American
option convergence and Greeks stability are both studied against popular alternatives,
namely Crank-Nicolson and Rannacher time-marching schemes. We then show that the
TR-BDF2 scheme can be applied to other, more complex non-linear PDEs arising in fi-
nance such as the Hamilton-Jacobi-Bellman PDE of the uncertain volatility model.

The Black-Scholes-Merton framework assumes a constant volatility parameter across
option strikes and maturities. In reality, the volatility implied by the market option prices
is far from constant and arbitrage-free models are needed to capture the shape of the im-
plied volatilities, known as smile by practitioners. In the interest rates derivatives mar-
ket, practitioners use the stochastic alpha beta rho (SABR) model of Hagan et al., which
captures the swaptions implied volatility smile with a flexible dynamic. In the current
low rates environment, the classic SABR formula, used to compute the swaptions Black-
Scholes implied volatilities, leads to arbitrage. Hagan et al. recently proposed a new
arbitrage-free SABR solution, based on a finite difference discretization of an expansion
of the probability density. They rely on a Crank-Nicolson discretization, which can create
undesirable oscillations in the option price. In Chapter 4, we apply a variety of second-
order finite difference schemes to the SABR arbitrage-free density problem and explore
alternative formulations. It is found that the TR-BDF2 and Lawson-Swayne schemes
stand out on this problem in terms of stability and speed. A PDE is also derived for the
so-called free-boundary SABR model, which allows for negative interest rates without
any additional shift parameter, leading to a new arbitrage-free solution for this model.
Finally, the free-boundary model behavior is analyzed. For many other stochastic volatil-
ity models, it is possible to find an expansion of the marginal probability density which
follows a one-dimensional Fokker-Planck PDE. In order to keep the arbitrage-free prop-
erty numerically, it is particularly important to use a positivity preserving finite differ-
ence scheme. With a discontinuous initial condition like a Dirac delta function, many
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schemes will produce oscillations or negative densities. By looking at the density located
at the Dirac point in time, we give, in Chapter 3, simple conditions on the discretization
grid to preserve positivity for a few schemes related to backward Euler, namely the BDF2,
Lawson-Morris and Lawson-Swayne schemes applied to the specific problem of a diffu-
sion with Dirac initial condition.

The four parameters of the SABR model don’t always allow to capture accurately
the implied volatility smile of equity or equity index options, as the market may quote
the prices for more than a hundred option strikes per maturity. In Chapters 5 and 6,
we explain how to apply the stochastic collocation technique to obtain a smooth and
arbitrage-free representation of the market option prices, with either a specific mono-
tonic polynomial or a monotonic B-spline parameterization, which preserves the first
moment of the implied distribution exactly. The technique also allows for a fast joint
calibration of the constant maturity swap (CMS) convexity adjustment with the market
swaptions prices, as the CMS convexity adjustment has then a simple closed-form ex-
pression. Similarly, it also allows for a simple joint calibration of variance swap prices
and vanilla option prices.

A smooth and arbitrage-free representation is also the key ingredient of the Dupire
local volatility model. While the local volatility model solves the inconsistency of the
Black-Scholes model with regards to the implied volatility smile, it suffers however from
an unrealistic dynamic of the smile in time. In practice this means that forward start-
ing options are mispriced under this model. A different approach is to assume that the
volatility is stochastic. Several stochastic volatility models that retain some analytical
and numerical tractability have been explored over the years, the most popular being
the model from Heston. They all suffer from similar issues: they don’t allow to match
the implied volatility smile for short maturities very well and they may be challenging
to calibrate. A fix for the former issue is to mix stochastic and local volatilities together
at the cost of increasing the computational complexity. Grzelak proposes another alter-
native with the collocating volatility model (CLV), where the model prices are calibrated
to the market options with the stochastic collocation technique, used as a convenient
representation of the terminal distribution. A specific dynamic is added in the form of
a stochastic driver process, which allows more control over the prices of forward start-
ing options. This is reminiscent of the Markov functional models. Grzelak uses a single
factor Ornstein-Uhlenbeck process as the driver for the CLV model, and Fries a single
factor Wiener process with time-dependent volatility in his equity Markov functional
model. Van der Stoep et al. consider a Heston stochastic volatility driver process and
show it offers more flexibility to capture the forward smile in the context of foreign ex-
change options. In Chapters 7 and 8, we discuss all aspects of derivative pricing under
the Heston-CLV model: calibration with an efficient Fourier method, a Monte-Carlo sim-
ulation with second-order convergence and accurate PDE pricing through implicit and
explicit finite difference methods.

With the work in this thesis, one is able to use new techniques to price and hedge
vanilla options under simple one-factor models, as well as exotic options under more
complex multi-factor models, with a focus on stability and efficiency. Most of the work
developed in this thesis is based on journal articles, which have either been published
or are submitted for publication.



SAMENVATTING

Dit proefschrift bestudeert geavanceerde en nauwkeurige discretisatieschema’s voor re-
levante partiële differentiaalvergelijkingen (PDE’s) in financiële wiskunde. We beginnen
met technieken die met name nuttig kunnen zijn voor de prijsstelling van zogenaamde
vanilla financiële opties, Europees of Amerikaans, en gaan vervolgens over op com-
plexere modellen voor de prijsstelling van exotische opties.

Het meest populaire model dat wordt gebruikt om opties in de financiële sector te
prijzen, is het Black-Scholes model dat erin bestaat aan te nemen dat de onderliggende
waarde een geometrische Brownse beweging volgt. Onder het pure Black-Scholes model
kunnen Europese vanille-opties worden geprijsd en afgedekt met een eenvoudige ana-
lytische formule. Dit is een van de belangrijkste redenen voor het succes van het Black-
Scholes model. Op de markt worden vanille-opties op afzonderlijke aandelen zeer regel-
matig verhandeld in hun Amerikaanse variëteit, bijvoorbeeld op de Chicago Board Op-
tions Exchange. In tegenstelling tot een Europese optie kan de houder van een Amerikaanse
optie zijn recht op elk moment vóór de vervaldatum uitoefenen. Deze kleine wijziging in
het optiecontract vertaalt het probleem van de prijsbepaling van een optie in een niet-
lineair optimalisatieprobleem.

In Hoofdstuk 2 passen we de trapeziumregel met een eindig differentieschema van
de tweede orde, de achterwaartse differentieformule (TR-BDF2) toe op de Black-Scholes-
Merton PDV. Convergentie van de Amerikaanse optie en stabiliteit van berekende afgelei-
den worden beiden bestudeerd en vergeleken met populaire alternatieven, namelijk de
Crank-Nicolson en Rannacher tijdsdiscretisatie schema’s. Vervolgens laten we zien dat
het TR-BDF2-schema kan worden toegepast op andere, meer complexe niet-lineaire
PDV’s die in de financiële sector voorkomen, zoals de Hamilton-Jacobi-Bellman PDV
voor het onzekere volatiliteitsmodel.

Het Black-Scholes-Merton raamwerk gaat uit van een constante volatiliteitsparam-
eter voor verschillende uitoefenprijzen en looptijden van opties. In werkelijkheid is de
volatiliteit die wordt geïmpliceerd door de marktoptieprij-zen verre van constant en zijn
betere arbitragevrije modellen nodig om de vorm van de impliciete volatiliteit vast te
leggen, door professionals bekend als volatility smile. Op de markt voor rentederivaten
gebruiken experts het stochastische alpha beta rho (SABR) model van Hagan et al., dat
de swaptions implicit volatility smile vastlegt met een flexibele dynamica. Echter, in het
huidige renteklimaat met lage rentes leidt de klassieke SABR-formule, die wordt gebruikt
om de Black-Scholes swaptions impliciete volatiliteit te berekenen, tot arbitrage. Ha-
gan et al. stelde onlangs een nieuwe, arbitrage-vrije SABR oplossing voor, gebaseerd op
een eindige differentiediscretisatie van een uitbreiding van de PDV voor de bijbehorende
kansdichtheid. Ze baseren op een Crank-Nicolson discretisatie, die ongewenste schom-
melingen in de optieprijs kan veroorzaken. In Hoofdstuk 4 passen we een aantal eindige
differentieschema’s van de tweede orde toe op het SABR arbitragevrije PDV probleem
en onderzoeken we alternatieve formuleringen. Het blijkt dat de TR-BDF2 en Lawson-
Swayne schema’s positief opvallen voor dit probleem in termen van stabiliteit en snel-
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heid.

Een PDV wordt ook afgeleid voor een alternatief SABR model, dat negatieve rente-
tarieven mogelijk maakt zonder enige extra parameters. Dit leidt tot een nieuwe arbitrage-
vrije oplossing voor dit model. Ten slotte wordt het gedrag van dit alternatieve model ge-
analyseerd. Voor veel andere stochastische volatiliteitsmodellen is het mogelijk om een
uitbreiding van de marginale kansdichtheid te vinden die volgt uit een een-dimensionale
Fokker-Planck PDV. Om de arbitrage-vrije eigenschap numeriek te behouden, is het bi-
jzonder belangrijk om een differentieschema met positiviteit voor te stellen. Met een
discontinue initiële toestand zoals een Dirac delta-functie, zullen veel schema’s oscil-
laties of negatieve dichtheden produceren. Door te kijken naar de dichtheid die zich
op het Dirac-punt bevindt, geven we, in Hoofdstuk 3, eenvoudige voorwaarden voor het
discretisatierooster om de positiviteit te behouden voor een paar schema’s gebaseerd op
het achterwaartse Euler schema, namelijk de BDF2, Lawson-Morris en Lawson-Swayne
schema’s toegepast op het specifieke probleem van een diffusie met een Dirac initiële
toestand.

De vier parameters van het SABR model laten niet altijd toe om de implied volatil-
ity smile van aandelen- of aandelenindexopties nauwkeurig vast te leggen, aangezien
de markt de prijzen voor meer dan honderd uitoefenprijzen per looptijd kan citeren.
In de Hoofdstukken 5 en 6 leggen we uit hoe de stochastische collocatietechniek kan
worden toegepast om een soepele en arbitrage-vrije weergave van de marktoptieprij-
zen te verkrijgen, met een specifiek monotoon polynoom of een monotone B-spline
parameterisering, waardoor het eerste moment van de impliciete verdeling exact be-
houden blijft. De techniek maakt ook een snelle gezamenlijke kalibratie mogelijk van
een convexiteitsaanpassing van een constante maturiteitsswap (CMS) met de prijzen
van markt swaptions, omdat de convexiteitsaanpassing van de CMS dan een eenvoudige
uitdrukking in gesloten vorm heeft. Evenzo maakt het ook een eenvoudige gezamenlijke
kalibratie van variantie swapprijzen en vanille optieprijzen mogelijk.

Een flexibele en arbitrage-vrije weergave is ook het belangrijkste ingrediënt van het
lokale volatiliteitsmodel van Dupire. Hoewel het lokale volatiliteitsmodel de inconsis-
tentie van het Black-Scholes model met betrekking tot de implied volatility smile oplost,
lijdt het echter aan een onrealistische dynamica van de smile in de tijd. In de praktijk
betekent dit dat zogenaamde voorwaartse startopties onder dit model verkeerd wor-
den geprijsd. Een andere benadering is gebaseerd op de aanname dat de volatiliteit
stochastisch is. Verschillende stochastische volatiliteitsmodellen, die enige analytische
en numerieke traceerbaarheid behouden, zijn in de loop der jaren onderzocht, de meest
populaire is het model van Heston. Deze modellen hebben allemaal dezelfde proble-
men: ze laten niet toe om de implied volatility smile vanuit de marktobservaties voor
korte optielooptijden goed te reproduceren en ze kunnen een uitdaging zijn om te kali-
breren. Een oplossing is het combineren van stochastische en lokale volatiliteit, echter
ten koste van het verhogen van de computationele complexiteit.

Lech Grzelak stelt een alternatief voor met het zogeheten collocating volatility model
(CLV), waarbij de modelprijzen worden gekalibreerd naar de marktopties met behulp
van de stochastische collocatietechniek, die wordt gebruikt als een nauwkeurige weer-
gave van de distributie op de eindtijd van de optie. Een specifieke dynamica wordt
toegevoegd in de vorm van een stochastisch stuurproces, dat meer controle mogelijk
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maakt over de prijzen van de voorwaartse startopties. Dit doet denken aan de func-
tionele modellen van Markov. Grzelak gebruikt een Ornstein-Uhlenbeck proces met één
factor als basis voor het CLV model, en Christian Fries een Wiener-proces met één factor
met tijdsafhankelijke volatiliteit in zijn functionele Markov model. Van der Stoep et al.
overwegen een Heston stochastisch volatiliteitsstuurproces en laten zien dat het meer
flexibiliteit biedt om de voorwaartse smile vast te leggen in de context van wisselkoer-
sopties.

In de Hoofdstukken 7 en 8 bespreken we alle aspecten van derivaten prijzen volgens
het Heston-CLV model: kalibratie met een efficiënte Fourier-methode, een Monte-Carlo
simulatie met tweede-orde convergentie en nauwkeurige PDV-prijsstelling door impli-
ciete en expliciete eindige differentiemethoden.

Met het werk in dit proefschrift is het mogelijk om nieuwe technieken te gebruiken
om vanilla opties te prijzen en te hedgen onder eenvoudige één-factor modellen, eve-
nals exotische opties onder meer complexe multi-factor modellen, met een focus op sta-
biliteit en efficiëntie. Het grootste deel van het werk dat in dit proefschrift is ontwikkeld,
is gebaseerd op tijdschriftartikelen, die zijn gepubliceerd of worden ingediend voor pub-
licatie.
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1
INTRODUCTION

1.1. VANILLA OPTIONS
A European vanilla option is a financial instrument that gives the holder the right, but not
the obligation, to buy (call) or sell (put) an asset S at a specific price, known as the strike
price K , on a specified date T , the maturity date. In exchange for this right, the buyer
of the option pays a fixed amount, the premium, usually a few days after the contract
start date, while the settlement of the option payoff occurs a few days after the maturity
date. In some markets, the premium may be settled a few days after the maturity date.
The buyer of a call option would normally choose to exercise his right if the asset price
is higher than the strike price at maturity, as the option payoff, max(S −K ,0), is then
strictly positive. When the underlying asset is a stock, the option may be settled in cash
or physically. When cash-settled, the closing price of the underlying stock is most often
chosen to compute the settlement amount.

We define the price of an option at a given valuation date as the theoretical price one
would pay at the valuation date to buy the option. In the Black-Scholes-Merton model,
the underlying asset follows a lognormal distribution. The corresponding stochastic dif-
ferential equation reads

dS(t ) = µ̄(t )S(t )dt +σ(t )S(t )dW (t ) . (1.1)

where we allow for time-varying drift µ̄ and volatility σ. Under the risk-neutral measure,
we have µ̄(t ) =µ(t ) = rg (t )−q(t ), where rg is the deterministic growth short rate and q is
the instantaneous dividend yield. Note that in practice, a stock grows at the repurchase
agreement contract (repo) rate rg , which is typically lower than the risk-free interest rate
r , and derivative contracts on the asset S may be discounted with the agreed overnight
rate rc paid on collateral among dealers under a so-called credit support annex agree-
ment (CSA), when fully collateralized [170]. In order to simplify the equations in this
thesis, we will not make the distinction between the various interest rates involved and
consider r = rg = rc . We will however keep distinct the discounting part, so that the
reader may deduce the correct interest rate to use.

Let V (t ,S) be the price of a financial derivative contract depending on the price of
the asset S at a set of dates up to the maturity date of the contract. Let B(0, t ) be the de-

terministic discount process defined by B(0, t ) = e−
∫ t

0 r (s)ds . According to the risk-neutral
pricing formula [180, Equation (5.2.31), p.218], B(0, t )V (t ,S(t )) is a martingale under the
risk-neutral measure Q and we thus have

B(0, t )V (t ,S(t )) = EQ [B(0,T )V (T,S(T ))] . (1.2)

1
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Let us recall the Feynman-Kaç theorem [180, Theorem 6.4.1, p.268], which establishes
the link between stochastic differential equations and partial differential equations.

Theorem 1.1.1 (Feynman-Kaç). Consider the stochastic differential equation

dS(u) =β(u,S(u))du +γ(u,S(u))dW (u) .

where β(u, s),γ(u, s) are given functions. Let h(y) be a Borel-measurable function. Fix
T > 0 and let t ∈ [0,T ] be given. Define the function

g (t , s) = E [ h(S(T ))|S(t ) = s]

Assuming E [ |h(S(T ))||S(t ) = s] <∞ for all t and s, then g (t , s) satisfies the partial differ-
ential equation

∂g

∂t
(t , s)+β(t , s)

∂g

∂s
(t , s)+ 1

2
γ2(t , s)

∂2g

∂s2 (t , s) = 0,

and the terminal condition g (T, x) = h(x) for all x.

An application of the Feynman-Kaç theorem with g (t ,S) = B(0, t )V (t ,S) leads to the
Black-Scholes PDE

∂V

∂t
+ 1

2
σ2(t )S2 ∂

2V

∂S2 +µ(t )S
∂V

∂S
− r (t )V = 0. (1.3)

For a European vanilla call or put option, the terminal condition is respectively V (T,S) =
max(S−K ,0) and V (T,S) = max(K−S,0). The solution to the PDE is then known explicitly
and reads

V (t ) = ηB(t ,T )
[
F (t ,T )Φ

(
ηd1

)−KΦ
(
ηd2

)]
, (1.4)

where η= 1 for a call option, η=−1 for a put option, Φ is the cumulative normal distri-
bution function, and d1 and d2 are defined by

d1 =
ln F (t ,T )

K + 1
2 σ̄

2(T − t )

σ̄
p

T − t
, d2 = d1 − σ̄

p
T − t ,

with σ̄ =
√

1
T−t

∫ T
t σ2(u)du. Under deterministic rates, the discount factor is B(t ,T ) =

e−
∫ T

t r (s)d s and the forward price is F (t ,T ) = S(t )e
∫ T

t µ(s)d s . In order to simplify the equa-
tions, we ignored the payment lag, in reality, the discounting is from the valuation date
to the settlement date, which is typically one business day after the maturity date.

The implied volatility of a vanilla option is the value σ̄ used in Equation (1.4) in order
for the Black-Scholes-Merton option price to be equal to the market price.

On the market, vanilla options on single stocks are also very regularly traded in their
American variety, for example on the Chicago Board Options Exchange. In contrast with
the European option, the holder of an American option can exercise its right at any time
prior to the maturity date. This small change in the contract translates the problem of
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pricing an option into a non-linear optimization problem. The price of an American
option satisfies the following linear complementarity problem [111, 122]

∂V

∂t
+µ(t )S

∂V

∂S
+ 1

2
σ(t )2S2 ∂

2V

∂S2 − r (t )V ≤ 0

V −h ≥ 0(
∂V

∂t
+µ(t )S

∂V

∂S
+ 1

2
σ(t )2S2 ∂

2V

∂S2 (t )− r (t )V (t )

)
(V −h) = 0


(1.5)

with h(S) = max
(
η(S −K ),0

)
.

1.2. BEYOND BLACK-SCHOLES DYNAMICS
In Chapter 2, we will apply the Trapezoidal Rule with second-order Backward Difference
Formula (TR-BDF2) finite difference scheme to the more general PDE problem

∂V

∂t
+µ(S, t )S

∂V

∂S
+ 1

2
σ(S, t )2S2 ∂

2V

∂S2 − r (S, t )V ≤ 0

V −h ≥ 0(
∂V

∂t
+µ(S, t )S

∂V

∂S
+ 1

2
σ(S, t )2S2 ∂

2V

∂S2 (S, t )− r (S, t )V (t )

)
(V −h) = 0


(1.6)

where we let µ, r , σ depend also on the asset price. This encompasses models beyond
Black-Scholes-Merton, such as the Dupire local volatility model [55], which allows to
capture the smile shape of the market implied volatilities, as well as various single fac-
tor short rate models when S represents an interest short rate. The TR-BDF2 scheme
possesses several characteristics that makes it particularly attractive:

• it is second-order accurate,

• it is L-stable, which means that rapid transients in the solution will be damped in
a single time step,

• it consists of two-stages, but is a single-step scheme, as opposed to traditional
multi-step schemes such as the second-order backward difference (BDF2) scheme.

We will also apply the TR-BDF2 scheme to the non-linear Hamilton-Jacobi-Bellman
(HJB) PDE corresponding to the uncertain volatility model developed in [17]. This model
supposes that the volatility is uncertain but bounded between a minimum volatilityσmin

and a maximum volatility σmax. Under this model one can find the prices of a derivative
product for a worst long strategy or a best long strategy. The corresponding PDE is

∂V

∂t
− sup
σ∈{σmin,σmax}

{
µ(t )S

∂V

∂S
+ 1

2
σ2S2 ∂

2V

∂S2 − r (t )V

}
= 0. (1.7)

It is shown in [171] that the Crank-Nicolson scheme does not necessarily converge to the
correct solution, when applied to this problem. In Chapter 2, we show, that, on the same
example, the TR-BDF2 scheme has no such issue.
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1.3. SMILES, SWAPTIONS AND THE SABR MODEL
Let F be the stochastic process of the underlying forward price, A is the volatility process
eventually correlated to F and L is a function of F which may be used to define a specific
dynamic, and is often taken to be L(F ) = Fβ with some β ∈ R. For example, in the SABR
model, the underlying forward price follows

dF = AL(F )dW1 , (1.8a)

dA = νA dW2 , (1.8b)

with initial volatility A(0) =α and where ν is the volatility of volatility parameter (vol-of-
vol), W1, W2 are two correlated Brownian motions with correlation ρ.

In many popular stochastic volatility models, including generalized versions of the
SABR [85] and Heston [91] models, the marginal density Q satisfies an effective forward
equation of the form [86]

∂Q

∂T
= 1

2
α2σ2(T )

∂2

∂F 2

[(
1+ 2b(T )z

α
+ c(T )z2

α2

)
L2(F )Q

]
, (1.9)

with initial condition
lim
T→0

Q(T,F ) = δ(F − f ) ,

where

z =
∫ F

f

du

L(u)
.

The marginal density is defined by

Q(T,F ) =
∫ ∞

0
p(0, f ,α,T,F, A)dA , (1.10)

where p is the probability density at F (T ), A(T ) and time T , given that F (0) = f , A(0) =α.
The coefficients σ(T ),b(T ),c(T ) are determined from the model parameters by singular
perturbation analysis, with the constant α chosen so that σ(0) = 1. In particular, for the
standard SABR model (Equation 1.8), we have [84]

σ(T ) = e
1
2ρναL′( f )T , b(T ) = ρν , c(T ) = ν2 .

Once the effective forward equation (1.9) is solved, for example with a finite differ-
ence method, European option prices are obtained by a simple one-dimensional inte-
gration over the marginal density. In comparison, the straightforward approach to com-
pute the European option prices for a set of strike prices would instead involve either
the solution of the two-dimensional backward PDE resulting from the application of the
multi-dimensional Feynman-Kaç theorem for each option strike, or the solution of the
two-dimensional forward Komolgorov PDE for to the given stochastic volatility model.
The expansion of the marginal density thus allows to calibrate efficiently any stochas-
tic volatility model (eventually with parametric local volatility component) to European
option prices.
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A positive valued numerical marginal density is however a prerequisite to obtain an
arbitrage-free representation in practice. With a discontinuous initial condition like a
Dirac delta function, many schemes will produce oscillations or negative densities. By
looking at the density located at the Dirac in time, we give in Chapter 3 simple conditions
on the discretization grid to preserve positivity for a few schemes related to the back-
ward Euler scheme, namely the BDF2, Lawson-Morris and Lawson-Swayne schemes on
the specific problem of a diffusion with a Dirac delta initial condition. We also derive
an equivalence relation between the TR-BDF2 and the Lawson-Swayne schemes in the
presence of constant coefficients.

In order to price and hedge interest rate swaptions, the market practice is to use the
SABR model of Hagan et al. [85], as it gives a satisfactory representation of the implied
volatility smile, and is flexible enough to capture the implied volatility dynamics in time.
The SABR formula1 for the Black-Scholes implied volatility of a swaption with strike price
K and maturity τex reads

σ(K ) = 1

x(ζ(K ))
ln

(
f

K

)[
1+

(
g (K )+ 1

4
ρναβ f

β−1
2 K

β−1
2 + 1

24
(2−3ρ2)ν2

)
τex

]
, (1.11)

with

g (K ) = 1

24
(β−1)2 f β−1K β−1α2 ,

ζ(K ) = ν

α(1−β)

(
f 1−β−K 1−β

)
,

x(ζ) = 1

ν
ln

(√
1−2ρζ+ζ2 −ρ+ζ

1−ρ

)
,

and where f is the initial forward swap rate for the maturity τex . At t = 0 we have f =
F (0). Under this representation, the marginal probability density of the forward rate F
between t = 0 and t = τex may be computed with the help of the undiscounted Black-
Scholes vanilla option prices V with volatility σ(K ) via the identity [28]

Q(τex ,K ) = ∂2V

∂K 2 . (1.12)

The above equation may also be directly derived by differentiating twice the risk-neutral
pricing formula (1.2).

The SABR formula is not exact, but is based on a small volatility expansion, where
both the initial volatility α and the "vol-of-vol" parameter ν are considered small. With
the advent of low interest rates, it was noticed that the classic Hagan expansion for im-
plied volatilities in the SABR model often led to butterfly spread arbitrage, or equiva-
lently to a negative probability density [84]. An example is given in Figure 1.1. Hagan
et al. therefore propose to use the marginal density approach and solve the SABR PDE
corresponding to Equation (1.9) in order to guarantee arbitrage-free option prices. In

1Equation 1.11 is not exactly the formula presented in [85], but the variation from Obloj [162], which has the
advantage of being consistent when β→ 1. The negative density issue is shared by all popular SABR approxi-
mations.
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Chapter 4, we will apply a variety of second-order finite difference schemes to this prob-
lem and explore alternative formulations. It is found that the TR-BDF2 and Lawson-
Swayne schemes stand out on this problem in terms of stability and speed. A PDE is also
derived for the so-called free-boundary SABR model, which allows for negative interest
rates without any additional shift parameter, leading to a new arbitrage-free solution for
this model. Finally, the free-boundary model behaviour is analyzed.
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Figure 1.1: Probability density implied by the Hagan formula (1.11) using the SABR parameters of Andreasen
and Huge [13]: α= 0.0873,β= 0.7,ρ =−0.48,ν= 0.47 with an initial forward swap rate f = 0.025 and a

maturity τex = 10.0.

1.4. ARBITRAGE-FREE STOCHASTIC COLLOCATION METHOD
The financial markets provide option prices for a discrete set of strike prices and ma-
turity dates. In order to price over-the-counter vanilla options with different strikes,
or to hedge complex derivatives with vanilla options, it is useful to have a continuous
arbitrage-free representation of the option prices or, equivalently, of their implied volatil-
ities.

A rudimentary, but popular representation is to interpolate market implied volatili-
ties with a cubic spline across option strikes. Unfortunately this may not be arbitrage-
free as it does not preserve the convexity of option prices in general. Convex interpola-
tions of the call option prices by quadratic splines or rational splines are also not satis-
factory in general since they may generate unrealistic oscillations in the corresponding
implied volatilities, as evidenced in [109]. Kahale [116] designs an arbitrage-free inter-
polation of the call prices, which however requires convex input quotes, employs two
embedded non-linear minimizations, and it is not proven that the algorithm for the C 2

interpolation function converges. In reality, it is often not desirable to strictly interpolate
option prices as those fluctuate within a bid-ask spread. As per Equation (1.12), a direct
interpolation will lead to a noisy estimate of the probability density.

More recently, Andreasen and Huge [12] have proposed to calibrate the discrete piece-
wise constant local volatility corresponding to a single-step finite difference discretiza-
tion of the forward Dupire equation. In their representation of the local volatility, the
authors use as many constants as the number of market option strikes for an optimal fit.
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It is thus sometimes considered to be "non-parametric". Their technique works well but
often yields a noisy probability density estimate, as the prices are typically over-fitted.
Furthermore, the output of their technique is a discrete set of option prices, which, while
relatively dense, must still be interpolated carefully to obtain the price of options whose
strike falls in between nodes.

An alternative is to rely on a richer underlying stochastic model, which allows for
some flexibility in the implied volatility smile, such as the Heston or SABR stochastic
volatility models. While semi-analytic representations of the call option price exist for
the Heston model [91], the model itself does not allow to represent short maturity smiles
accurately. The SABR model is better suited for this, but has only closed-form approxi-
mations for the call option price, which can lead to arbitrage (Figure 1.1). Furthermore,
the small number of parameters of such models is not always adequate to represent
volatility surfaces, particularly for liquid equity or equity index options.

Grzelak and Oosterlee [78] use stochastic collocation to fix the Hagan SABR approxi-
mation formula defects and produces arbitrage-free option prices starting from the Ha-
gan SABR formula. Collocation methods are commonly used to solve ordinary or partial
differential equations [138]. The underlying principle is to solve the equations in a spe-
cific finite dimensional space of solutions, such as polynomials up to a certain degree. In
contrast, the stochastic collocation method [151] consists in mapping a physical random
variable Y to a point X in an artificial stochastic space. Collocation points xi are used to
approximate the function mapping X to Y , Φ−1

X ◦ΦY , typically by a polynomial, where
ΦX ,ΦY are respectively the cumulative distribution functions (CDF) of X and Y . Thus
only a small number of inversions of Y (and evaluations of ΦY ) are used. This allows
the problem to be solved in the "cheaper" artificial space. Using a Gaussian distribution
for X , European option prices are obtained by a simple closed-form formula, for any
strike. A necessary condition for the prices to be free of arbitrage, is for the mapping to
be monotonic, otherwise the collocated CDF may decrease. This is, a priori, not guaran-
teed with the approach of Grzelak [78], where a Lagrange polynomial on Gauss-Hermite
nodes is used.

Chapter 5 explores how to calibrate the stochastic collocation polynomial directly to
market prices, without going through an intermediate model. A specific isotonic param-
eterization is used to ensure the monotonicity of the collocation polynomial as well as
the conservation of the zero-th and first moments transparently during the optimiza-
tion, guaranteeing the absence of arbitrage.

The isotonic polynomial stochastic collocation leads to a smooth, implied probabil-
ity density, without any artificial peak, even with a high degree of the collocation poly-
nomial. The technique may also be applied to interest rate derivatives, as it leads to a
closed-form formula for CMS convexity adjustments, which can thus be easily calibrated
jointly with interest rate swaptions.

The stochastic collocation technique is of particular interest to the richer Heston col-
located local volatility (Heston-CLV ) model, which allows to price exotic options through
Monte-Carlo or finite difference methods [77]. In this model, the financial asset S follows
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S(t ) = g (t , X (t )) , (1.13a)

dX (t ) = (r (t )−q(t ))X (t )dt +
√

V (t )X (t )dWX (t ) , (1.13b)

dV (t ) = κ (θ−V (t ))+σ
√

V (t )dWV (t ) , (1.13c)

with WX and WV being two Brownian motions with correlation ρ, r, q the instantaneous
growth and dividend rates, and g (t , x) a collocation function. According to Equations
(1.13b) and (1.13c), the driver process X follows the Heston stochastic volatility model
[91]. The collocation function g is typically a polynomial or a spline, which will be cal-
ibrated to the market using the stochastic collocation technique. Robust and efficient
pricing of vanilla options is obtained by applying the adaptive Filon quadrature of Chap-
ter 7 on a specific payoff.

1.4.1. SPLINES
The use of a polynomial may however be problematic as the (lognormal) Heston model
suffers from moment explosions [8]. The moment E [S(t )m] for m ≥ 1 may become in-
finite after some finite time. In those cases, which are quite common when the Heston
model is calibrated to the market, the first moment of the Heston-CLV model is not de-
fined. While it is always possible to constrain the Heston parameters to a region where
the moments are well defined, such a constraint places a severe limitation on the Hes-
ton model quality of fit (see, for examples, Figures 8.3.1a and 8.3.1b). This has potential
consequences on the martingale conservation properties of the Heston-CLV model.

A known deficiency of Markov functional models is that they do not respect the mar-
tingale property [30, 108]. The Heston-CLV model is similar to a Markov functional
model: the collocation function only captures the terminal distribution at each maturity
date and is then applied at different dates independently, without taking into account
any joint distribution between the dates. Yet, the driver is a calibrated Heston model,
whose joint distribution is close to the market distribution. We may thus expect the col-
location function to provide a second-order correction and the martingale property to be
reasonably well preserved. This is confirmed on our example calibration towards SX5E
options as of February 26, 2016 (Table 8.4.2 and Figure 8.4.3b). The measured drift is an
order of magnitude smaller than with one-dimensional Markov functional models.

Another drawback of the use of polynomials in the stochastic collocation technique,
independently of the Heston-CLV model, relates to their difficulties in capturing multi-
modal distributions. Although, theoretically, as proven in Chapter 5, we can always find
a polynomial to capture multi-modal distributions, such a polynomial may be required
to be of a prohibitively high degree to match accurately the distribution, which renders
the technique not practical.

Instead of collocating on a polynomial, Chapter 6 explores various ways to use a
monotonic spline, including B-spline parametrizations which preserve the first moment
exactly. This allows for a richer representation, with as many parameters as there are
market option strikes.

A first consequence is the ability to capture more complex implied probability dis-
tributions such as multi-modal distributions. Over-fitting is avoided by adding an ap-
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propriate regularization, whose optimal value may be found with the L-curve method of
Hansen [88]. This is reminiscent of the penalized B-spline technique for volatility mod-
elling of Corlay [38], where a B-spline parameterization of the Radon-Nikodym deriva-
tive of the underlying’s risk-neutral probability density with respect to a roughly cali-
brated base model is used. Concretely, Corlay’s method translates to an explicit prob-
ability density representation where the probability density is a spline multiplied by a
base probability density function, such as the lognormal or normal probability density
function. Corlay’s technique however seriously restricts the implied volatility shapes al-
lowed, and often requires the use of a more elaborate base probability density function,
such as the one stemming from the SVI parameterization of Gatheral [72], to properly fit
the market in practice. The stochastic collocation on a spline is more flexible and can fit
the market accurately when collocating to a simple Gaussian variable.

A second consequence of the use of splines is to remove the restrictions on the He-
ston parameters with regards to the first moment explosion in the Heston-CLV model:
with a linear extrapolation, there will be no first moment explosion.

1.4.2. PRICING UNDER THE HESTON-CLV MODEL

The Monte-Carlo simulation of the Heston-CLV model is straightforward: we use a good
discretization scheme for the Heston model in order to discretize the X process; then
we obtain the value of S on each path by applying directly the collocation function to
each path of X (Equation 8.1a). Unlike the case of the stochastic local volatility model,
there is no need to use very small time-steps. The discretization error is entirely due to
the Heston process discretization. The quadratic exponential (QE) scheme of Andersen
[6] is widely used to discretize the Heston process. Its convergence properties are how-
ever not known (on a concrete example, we measure a convergence order between 1.3
and 1.7). Instead, in Chapter 8, we present a minor modification of the DVSS2 scheme
of Lenkšas and Mackevičius [135], which has a proven second-order convergence, and
stays computationally efficient.

We also explore in Chapter 8 different ways of solving the Heston-CLV partial dif-
ferential equation (PDE): directly through the L-stable second-order finite difference
scheme of Lawson and Swayne [125], through an alternating direction explicit method,
through the explicit Runge-Kutta-Legendre scheme, as well as with various alternating
direction implicit (ADI) methods. When using the simpler Heston driver process coordi-
nate, barrier options impose an implicitly defined time-varying boundary, which is then
very challenging to take into account by second-order finite difference schemes, while
keeping their order of convergence intact. We thus apply the various finite difference
methods to the PDE in the asset coordinate. We then put in evidence the oscillations
that may appear in the greeks, measure the order of convergence, accuracy and perfor-
mance of each scheme on a practical example.

1.5. CONCLUSION
We propose, analyse and evaluate new, less well-known numerical techniques, and check
their applicability and suitability for financial PDEs and for other financial equations.
The financial PDE problems are not only the commonly well-known academic financial
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PDEs, but also industrially relevant PDEs with features that are important for the finan-
cial industry. So, PDE techniques are evaluated regarding their suitability in industrial
practice. At the same time, we aim to understand, and confirm the corresponding prop-
erties of the favourable schemes.
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TR-BDF2 SCHEME FOR FAST STABLE AMERICAN OPTION

PRICING

The Trapezoidal Rule with Second-Order Backward Difference Formula (TR-BDF2) finite
difference scheme is applied to the Black-Scholes-Merton PDE on a non-uniform grid.
American option convergence and Greeks stability is studied against popular alternatives,
namely Crank-Nicolson and Rannacher time-marching.

Keywords: Finite Difference · American option · Crank-Nicolson · TR-BDF2 · Rannacher.

2.1. INTRODUCTION
It is well-known that discontinuities in the payoff function or its derivatives can cause in-
accuracies for numerical schemes when financial contracts are priced. For a vanilla (or
digital) option, to avoid discretization errors, several ad-hoc remedies can be applied,
for example, placing the strike price on a grid node, or applying smoothing or projection
techniques to the payoff [172, 188]. Additionally, the scheme itself can introduce unwel-
comed inaccuracies. The Crank-Nicolson scheme can introduce spurious oscillations in
the greeks [73]. Rannacher smoothing is a known fix for European options. However, we
show here that it does not work as well for American (or Bermudan) options. In contrast,
the Trapezoidal Rule with Second Order Backward Difference Formula (TR-BDF2) does
not produce any spurious oscillations for European, Bermudan or American options,
and is, like backward Euler (and unlike the Crank-Nicolson scheme), mathematically L-
stable.

Estimating precisely the Gamma and Delta is key as those greeks are the most com-
monly used greeks for hedging.

2.1.1. WHERE IS TR-BDF2 BEING USED?
TR-BDF2 has been in use for more than 25 years in various domains. It was first used
in electronics by Bank et al. to solve the coupled system of nonlinear partial differential
equations that model the transient behavior of silicon VLSI device structures [19]. It re-
mains a popular scheme in electronics [70] and has been studied extensively [149, 197].
In biology, Tyson et al. used the scheme to solve a chemotaxis model [193]. In me-
chanical engineering, Bathe studied its application for the transient response solution
of structures when large deformations and long time durations are considered [21].

This chapter is based on the article ’TR-BDF2 for Fast Stable American Option Pricing’, published in Journal of
Computational Finance, 17(3):31–56, 2014 [127].

11
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The author is unaware of any previous use of TR-BDF2 within computational fi-
nance.

2.1.2. A-STABILITY AND L-STABILITY
For a finite difference method, A-stability (or absolute stability) is defined using the sim-
ple test problem:

u′(t ) =λu(t ) , (2.1)

where λ is a complex number. The application of a numerical scheme to this problem
will lead to a condition on z = kλ, where k is the time step, in order to ensure conver-
gence [137]. For the forward Euler scheme, the discretization leads to u j+1 = (1+kλ)u j ,
its stability region will be defined by |1+ z| ≤ 1. When the stability region contains the
whole left half plane, the method is said to be A-stable. Backward Euler is A-stable, but
forward Euler is not: its stability region is a disc of radius 1 around the point 1.

L-stability is a stronger requirement than A-stability: a numerical method is L-stable
if, for the same simple problem (2.1), it is A-stable and

u j+1

u j
→ 0 as |z| →∞ [137]. With

L-stability, rapid transients in the solution will be damped in a single time step.

2.2. TR-BDF2 SCHEME

2.2.1. WHAT IS TR-BDF2?
The Trapezoidal Rule with second-order Backward Difference Formula (TR-BDF2) is a
second-order accurate fully implicit Runge Kutta method.

For a time discretization defined by (t j ) j∈{0,..,n}, k j = t j − t j−1, where t0 is typically
the valuation time and tn the option expiry, there are two stages at each time step: the
first stage is the trapezoidal method (Crank-Nicolson) applied from t j to t j−α = t j −αk j ;
the second stage is the two-step BDF method applied to the first stage output and the
initial data, and will give the value at t j−1. Let L be the Black-Scholes-Merton operator
defined by:

L (v(x, t ), x, t )) =−µ(x, t )x
∂v

∂x
− 1

2
σ(x, t )2x2 ∂

2v

∂x2 + r (x, t )v(x, t ) , (2.2)

where x is the underlying price, µ is the underlying drift, σ its volatility and r the interest
rate, and V (x) = v(x, tn) the option payoff at maturity.

The Black-Scholes-Merton equation is:

∂v

∂t
(x, t ) =L (v(x, t ), x, t ) . (2.3)

The TR-BDF2 method, backward in time, can be written as [137]:

v∗ = vn + αkn

2

(
L (vn)+L (v∗)

)
, (2.4)

vn−1 = 1

2−α
(

1

α
v∗− (1−α)2

α
vn + (1−α)knL (vn−1)

)
. (2.5)
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Even though there are two stages, this is still a one-step method. Any full step only
depends on the previous full step. This is an important difference with the standard
second-order backward difference scheme (BDF2) that depends on the two previous
time steps and can lose its accuracy [199] with variable time steps and linear comple-
mentarity problems. This scheme does not suffer from such drawbacks.

Using the simple problem (2.1), the TR-BDF2 stability region is defined by [19]:∣∣∣∣ (1+ (1−α)2)z +2(2−α)

α(1−α)z2 + (α2 −2)z +2(2−α)

∣∣∣∣≤ 1. (2.6)

It is unconditionally A-stable: its stability region includes the whole imaginary plane. It
is also L-stable while the Crank-Nicolson scheme is only A-stable [47]. In practice, the
non L-stability manifests itself by spurious oscillations in the first and second spatial
derivatives with Crank-Nicolson. This phenomenon will not appear with TR-BDF2 or
with Backward Euler (which is also L-stable).

Figure 2.1: BDF2 has overlapping input over different time steps while TR-BDF2 has not

2.2.2. CHOICE OF α
There are two popular choices for α:

α= 1

2
,

α= 2−p
2.

The choice of α = 1
2 makes the first stage to be the Crank-Nicolson scheme [137],

while the choice of α = 2−p
2 is known to give the least truncation error among all α,

proportional linear systems [19], and the largest stability region [48]. With proportional
linear systems the underlying algorithm can be faster and is simpler to implement.

In practice, we did not find any significant difference in accuracy between the two
when TR-BDF2 is applied to the Black-Scholes PDE. We will therefore use α= 2−p

2.
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2.2.3. DISCRETIZATION OF THE BLACK-SCHOLES PDE
For a space discretization defined by (xi )i∈{0,..,m} , hi = xi − xi−1 The central difference
operator Dx is defined as:

Dx vi , j =
vi+1, j − vi−1, j

hi+1 +hi
. (2.7)

The central second difference operator D2
x is defined as:

D2
x vi , j = 2

hi vi+1, j − (hi+1 +hi ) vi , j +hi+1vi−1, j

hi hi+1 (hi+1 +hi )
. (2.8)

For i ∈ {1, ...,m−1}, j ∈ {1, ...,n}, let Li , j = (ri , j I−µi , j xi Dx− 1
2σ

2
i , j x2

i D2
x ) be the discrete

differential operator where µi , j is the drift, σi , j the volatility and ri , j the interest rate on
the interval [t j−1, t j ]. The various rates are only taken at the initial grid points, and not at
the t j−α. This allows to keep the proportional same left-hand side linear system for each
stage.
The Trapezoidal stage is given by

vi , j−α− vi , j

−αk j
= 1

2
(Li , j vi , j +Li , j vi , j−α) . (2.9)

This leads to the following tridiagonal system for the unknown vi , j−α :

ai , j vi−1, j−α+bi , j vi , j−α+ ci , j vi+1, j−α =−ai , j vi−1, j +b∗
i , j vi , j − ci , j vi+1, j ,

with

ai , j =
αk j

2(hi+1 +hi )

(
µi , j xi −

σ2
i , j x2

i

hi

)
, (2.10)

bi , j = 1+ αk j

2

(
ri , j +

σ2
i , j x2

i

hi hi+1

)
, (2.11)

ci , j =− αk j

2(hi+1 +hi )

(
µi , j xi +

σ2
i , j x2

i

hi+1

)
, (2.12)

b∗
i , j = 1− αk j

2

(
ri , j +

σ2
i , j x2

i

hi hi+1

)
. (2.13)

The BDF2 stage reads

(2−α)vi , j−1 − 1

α
vi , j−α+ (1−α)2

α
vi , j =−(1−α)k j Li , j vi , j−1 . (2.14)

The approximation vi , j−α is the result of the first stage. For the second stage we have
the following tridiagonal system:

ai , j vi−1, j−1 +bi , j vi , j−1 + ci , j vi+1, j−1 = 1

2−α
(

1

α
vi , j−α− (1−α)2

α
vi , j

)
,
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using the same ai , j , bi , j and ci , j as above, because we have imposedα= 2−p
2. The left-

hand side tridiagonal matrix can be reused. We have found that in practice, this leads to
an important performance improvement as a good portion of the overall time is spent to
just build the matrices.

2.2.4. BOUNDARY CONDITIONS

We consider here the boundary condition, where we assume that ∂2v
∂x2 = 0 at the bound-

aries. This is true for all payoffs linear at the boundaries, which is a reasonable assump-
tion for most payoffs [200]. The Black-Scholes equation becomes:

∂v

∂t
(x, t )+µ(x, t )x

∂v

∂x
(x, t ) = r (x, t )v(x, t ) . (2.15)

We will discretize the derivative by an order-1 approximation in x. This is reasonable
because the first-order error in x is proportional to the Gamma, which we assumed to be
0:

D+
x vi , j =

vi+1, j − vi , j

hi+1
. (2.16)

With our choice of α, the boundaries are the same for both stages.

LOWER BOUNDARY

For the lower boundary, we find

v0, j−α− v0, j

αk j
= 1

2
(L0, j vi , j +L0, j v0, j−α) , (2.17)

b0, j v0, j−α+ c0, j v1, j−α = b∗
0, j v0, j − c0, j v1, j ,

with

b0, j = 1+ αk j

2

(
r0, j +

µ0, j x0

h1

)
, (2.18)

b∗
0, j = 1− αk j

2

(
r0, j +

µ0, j x0

h1

)
, (2.19)

c0, j =−αk j
µ0, j x0

2h1
. (2.20)

UPPER BOUNDARY

For the upper boundary, we have

am, j vm−1, j−α+bm, j vm, j−α =−am, j vm−1, j +b∗
m, j vm, j ,

with:

am, j =αk j
µm, j xm

2hm
, (2.21)

bm, j = 1+ αk j

2

(
rm, j −

µm, j xm

hm

)
, (2.22)

b∗
m, j = 1− αk j

2

(
rm, j −

µm, j xm

hm

)
. (2.23)
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2.3. AMERICAN OPTION SPECIFICS
The early-exercise feature of the option adds a free boundary on top of the Black-Scholes
partial differential equation. Let v be the option price, the following system of partial
differential inequalities should be satified [122]:

∂v

∂t
(x, t )+µ(x, t )x

∂v

∂x
(x, t )+ 1

2
σ(x, t )2x2 ∂

2v

∂x2 (x, t ) ≤ r (x, t )v(x, t )(
∂v

∂t
(x, t )+µ(x, t )x

∂v

∂x
(x, t )+ 1

2
σ(x, t )2x2 ∂

2v

∂x2 (x, t )− r (x, t )v(x, t )

)
(v −V ) = 0

v ≥V


(2.24)

Let M j be the tridiagonal matrix with lower diagonal ai , j for i ∈ {1, ...,m}, upper di-
agonal ci , j for i ∈ {0, ...,m − 1} and main diagonal bi , j for i ∈ {0, ...,m}, with ai , j , bi , j ,
ci , j defined by equations (2.10), (2.11), (2.12). Let us define v j = (v0, j , ..., vm, j ), g j =
(g0, j , ..., gm, j ) with

gi , j =−ai , j vi−1, j +b∗
i , j vi , j − ci , j vi+1, j ,

and h j = (h0, j , ...,hm, j ) with

hi , j = 1

2−α
(

1

α
vi , j−α− (1−α)2

α
vi , j

)
.

We discretize the linear complementarity problem (2.24) with TR-BDF2 stage by stage,
for j = n, ...,1:

M j v j−α ≥ g j

v j−α ≥V(
M j v j−α− g j

)> (v j−α−F ) = 0

 Trapezoidal stage, (2.25)

M j v j−1 ≥ h j

v j−1 ≥V(
M j v j−1 −h j

)> (v j−1 −V ) = 0

 BDF2 stage. (2.26)

Alternatively, we could solve the linear complementarity problem only in the BDF2
stage (2.26). While it might improve speed a little, it would however result in a larger
error.

There are many ways to solve (2.25) and (2.26), the most popular being the Brennan-
Schwartz algorithm [29] (however, with known shortcomings [111] - it does not work
on the following payoff V (x) = |x −K | ), Front-Tracking [165], the Penalty Method [159],
Operator Splitting [101], and Projected SOR [198].

The simplest way is to solve the tridiagonal system without considering the free bound-
ary and to then apply the early-exercise condition through

v j−α = max(V , v j−α) , v j−1 = max(V , v j−1) .
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While this keeps the second-order accuracy for the explicit scheme, it is only first-order
accurate in time in general [164].

As a higher-order method, for the sake of simplicity, we will only consider the Brennan-
Schwartz algorithm. The results are similar with other solution techniques. In particular,
we evaluated SOR. SOR has the disadvantage of a slightly increased complexity due to
two additional parameters: the relaxation factor ω and the global error acceptance.

The Brennan-Schwartz method is only valid if the matrix M j has the following prop-
erties [111]:

• the lower and upper diagonals are negative: ai , j ≤ 0 and ci , j ≤ 0 for i ∈ {1, ...,m−1},
c0, j ≤ 0, am, j ≤ 0,

• the main diagonal is dominant: ai , j +bi , j +ci , j ≥ 0 for i ∈ {1, ...,m−1}, b0, j +c0, j ≥ 0,
am, j +bm, j ≥ 0 and bi , j > 0 for i ∈ {0, ...,m}.

In other terms, M j must be an irreducible Minkowski matrix. For our TR-BDF2 dis-
cretization, this translates to, for i ∈ {1, ...,m −1},

−
σ2

i , j xi

hi+1
≤µi , j ≤

σ2
i , j xi

hi
, (2.27)

0 ≤ 1+ αk j

2
ri , j , (2.28)

and for the boundaries:

µ0, j ≥ 0, (2.29)

µm, j ≤ 0. (2.30)

Except for the boundaries, those conditions are almost always verified in practice. Fur-
thermore, one can always make hi small enough so that (2.27) holds. The Crank-Nicolson
and backward Euler schemes would need to verify almost the same conditions, the only
difference being the factor in front of r in Equation (2.28), which is anyway always ver-
ified for r ≥ 0. For the boundaries, a possible solution to produce a Minkowski matrix
is to use a Dirichlet condition at x = xm or x = x0 depending on the sign of µ0, j or µm, j .
Indeed, a Dirichlet boundary at x = x0 will result in c0, j = 0 and b0, j = 1, a Dirichlet
boundary at x = xm will result in am, j = 0 and bm, j = 1.

In practice, the ∂2v
∂x2 = 0 boundary conditions can be used and it is commonly ob-

served that the Brennan-Schwartz algorithm still works. We have found no discernable
error when compared to a solution solved by SOR for the American put option using
various parameters, not even on a small grid, where the boundaries play an important
role.

In the case of Bermudan options, one would use the standard tridiagonal solver [37]
for non-exercisable dates, or alternatively set the SOR or Brennan-Schwartz solver lower
boundary for the price to 0 instead of the payoff at maturity V . As the exercisable dates
will be among the ti and the first stage result does not correspond to one of those, the first
stage will always be solved without considering the linear complementarity problem.
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2.4. GREEKS STABILITY

2.4.1. GAMMA FOR A BERMUDAN PUT
In order to better understand what is happening with the American put option gamma
we first look at the simpler case of the Bermudan put option. It is well-known that the
Crank-Nicolson scheme may distort the greeks because of oscillations in the scheme
[73], especially as the payoff at maturity has a discontinuity in its first derivative at the
strike price. TR-BDF2 does not have this issue.

As an example, we give the gamma of a one-year Bermudan put option of strike K =
100 with spot S = 100, 40% volatility, 5% interest rate that can be exercised in six months
and in one year. We choose the following boundaries for the grid:

xm = Se3σ
p

T ,

x0 = Se−3σ
p

T .

It corresponds to 3 standard deviations up and down the spot price. We also make sure
that the strike is on the grid by slightly shifting the grid if necessary. The free boundary
problem is solved by Brennan-Schwartz algorithm.
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Figure 2.2: Gamma of an at-the-money Bermudan put option.

The Rannacher smoothing introduces two half steps of the backward Euler scheme at
maturity, to smooth out the payoff function before the Crank-Nicolson time-marching
scheme is employed[173]. When Rannacher smoothing is only applied at maturity, it
does not fix all Crank-Nicolson oscillations. If we applied Rannacher smoothing at all
Bermudan exercise dates, we would have a smooth gamma in a similar fashion to TR-
BDF2. Contrary to TR-BDF2, for Bermudan options, the Rannacher smoothing requires
the knowledge of the early-exercise dates to be efficient. D’Halluin et al. [46] observed
the same phenomenon on callable bonds. This flexibility of TR-BDF2 can be important
if one is required to solve other kinds of linear complementarity problems.

2.4.2. GAMMA FOR AN AMERICAN PUT
We compute the gamma of a one-year American put option of strike price K = 160 with
spot value S = 100, 40% volatility, 5% interest rate on a grid composed of 500 space steps
and 80 time steps. The option is therefore in the money. The boundary is set up the same
way as in Subsection 2.4.1.
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Figure 2.3: Gamma of an In-The-Money American put option with strike at 160 and 80 time steps.

The gamma with TR-BDF2 is smooth while Crank-Nicolson presents oscillations at
the payoff discontinuity.

The Rannacher smoothing works well for European options [73]: it produces smooth
greeks and improves the convergence. However, this is not true for American (or Bermu-
dan) options, as shown in Figures 2.2b and 2.3c.

If the Rannacher smoothing is only applied at maturity, some oscillations are left:
the ones that correspond to the early-exercise boundary. In order to have smooth greeks
for American options, one would need to add backward Euler steps after every potential
discontinuity introduced by the early-exercise feature (see Figure 2.3d). We name this
scheme Continuous Rannacher. The problem is that the Continuous Rannacher scheme
loses one order of accuracy (see Figure 2.4).

2.5. CONVERGENCE

2.5.1. CONVERGENCE FOR A FIXED SPACE STEP

As O’Sullivan [164], we look at the convergence for a 1 year American put option of strike
price K = 100 with a spot value S = 100, a discount rate of 5%, and a volatility of 20%.
We fix the space step size at 1.0. This corresponds to 500 space steps. Note that this
places the strike and the spot on the grid, which is important to avoid the introduction
of additional errors from the payoff discretization in the grid [172].

We use the same theoretical value of 6.0874933186 as in their paper. We verified its



2

20 2. TR-BDF2 SCHEME FOR FAST STABLE AMERICAN OPTION PRICING

accuracy by an explicit scheme going progressively to 5 million time steps (6.087493609042786).
Note that this is not the exact American option price because we have fixed the space
step size. We compare the convergence of TR-BDF2 (named "TRBDF2"), Crank-Nicolson
(named "CN") and Rannacher (named "RAN"), with the order-1 approximation of the
free boundary as well as with the Brennan-Schwartz solver (named with prefix "BS_").

Finally, we also consider a simple Richardson extrapolation in time of the TR-BDF2
scheme solved by the order-1 method (named "RE_TRBDF2") in the spirit of [164].
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Figure 2.4: Convergence for an American put with a fixed space step. TR-BDF2 "TRBDF2", Crank-Nicolson
"CN", Rannacher "RAN" and Continuous Rannacher "C_RAN", with the order-1 approximation of the free

boundary as well as with the Brennan-Schwartz solver (with prefix "BS_").

From Table 2.A.1, we see that TR-BDF2 is about 1.5 times slower than Crank-Nicolson.
This is because we have to solve a linear system twice per time step. However, it is always
as accurate or more accurate than Crank-Nicolson. It is particularly more accurate than
Crank-Nicolson and Rannacher when combined with a precise linear complementarity
problem solver. The Richardson extrapolation allows to gain an order in magnitude for
the convergence of the order-1 free boundary approximation method, although we can
see some oscillations in the convergence.



2.5. CONVERGENCE

2

21

2.5.2. ORDER OF CONVERGENCE
Like Forsyth and Vetzal [65], we look at the convergence on a successively refined grid in
order to determine the global order of convergence. We use the same American option,
with the same number of spacesteps and time steps as in [65]. The grid is uniform and
varies in space from x0 = 0 to xm = 350. TR-BDF2 does not attain quadratic convergence
but is not far from it: a quadratic convergence would correspond to a ratio of 4.0 in Table
2.1.

Spatial steps Time steps Value Change Ratio Time(s)

Rannacher with order-1 solver

68 25 14.626460 2.82e-04
135 50 14.662090 3.56e-02 8.53e-04
269 100 14.672618 1.05e-02 3.4 2.40e-03
537 200 14.676338 3.72e-03 2.8 7.82e-03

1073 400 14.677771 1.43e-03 2.6 2.83e-02
TR-BDF2 with order-1 solver

68 25 14.631221 1.83e-03
135 50 14.663649 3.24e-02 6.76e-03
269 100 14.673209 9.56e-03 3.4 1.22e-02
537 200 14.676556 3.35e-03 2.9 1.00e-02

1073 400 14.677855 1.30e-03 2.6 3.80e-02
Rannacher with Brennan-Schwartz solver

68 25 14.635640 3.68e-04
135 50 14.667110 3.15e-02 7.82e-04
269 100 14.675363 8.25e-03 3.8 2.37e-03
537 200 14.677766 2.40e-03 3.4 8.48e-03

1073 400 14.678514 7.48e-04 3.2 4.00e-02
TR-BDF2 with Brennan-Schwartz solver

68 25 14.641161 3.09e-04
135 50 14.669421 2.83e-02 9.65e-04
269 100 14.676294 6.87e-03 4.1 3.16e-03
537 200 14.678149 1.85e-03 3.7 1.24e-02

1073 400 14.678668 5.19e-04 3.6 5.04e-02

Table 2.1: Value of an American put option, T = .25, r = .10, K = 100, S = 100. "Change" is the difference in the
solution from the coarser grid. "Ratio" is the ratio of the changes on successive grids. Constant time steps.

The strike is on the grid.

However, when the payoff at maturity is smoothed by averaging, as described in
[172], the TR-BDF2 convergence decreases to nearly order 3

2 , even though the error is
lower than without averaging (Table 2.A.2). This is likely because the error coming from
the exercise boundary discontinuity dominates and is not quadratic. Still, even in this
case, TR-BDF2 has better convergence than Rannacher time stepping.

We will see in the next section that the ratio of convergence also depends on the grid
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geometry.

2.5.3. CONVERGENCE ON VARIOUS GRID GEOMETRIES

We now look at the convergence for a 1 year American put option of strike price K = 100
with a spot value S = 100, a discount rate of 5%, and a volatility of 40%. We use the
same boundaries as in Subsection 2.4.1. Like Giles and Carter [73], on a log-uniform grid
centered on the strike, we look at the maximum error in price and gamma as a function
of the ratio λ = m

n computed by TR-BDF2 and Rannacher, using the Brennan-Schwartz
solver. The reference is an American option price obtained by an explicit scheme on a
very fine grid (10K space steps and 10M time steps).
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Figure 2.5: Maximum error in the price of an American put option with a fixed λ

The maximum price error is a little lower for the TR-BDF2 scheme, than for the Ran-
nacher scheme (Figure 2.5). In both cases, the convergence decreases as λ increases,
this is particularly clear in Table 2.A.3. It suggests that an adaptive time stepping strat-
egy, like the one in [65] could be useful to restore quadratic convergence. Richardson
extrapolation allows to increase the order of convergence, and is nearly quadratic even
with the order-1 free boundary approximation and with smoothing of the payoff by av-
eraging (see Table 2.A.4). It also is more effective for the TR-BDF2 scheme than for the
Rannacher scheme.

The gamma graphs of Figure 2.6 reveal another important aspect of Rannacher time-
stepping: the gamma computed with Rannacher smoothing does not converge when λ

is high. In our settings this happens with a ratio λ ≥ 4. This divergence corresponds to
the oscillations related to the exercise boundary that we observed in Figure 2.3c. The
maximum gamma error does not happen at the strike price, unlike the European option
case.
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Figure 2.6: Maximum error in the gamma of an American put option with a fixed λ

In contrast, the gamma computed with TR-BDF2 always converges, independently
of the grid ratio λ. This is because TR-BDF2 is L-Stable, while Rannacher time-stepping
is only A-stable.

It is common for more complex payoffs to use a non-uniform grid with more points
near the payoff discontinuities [188]: typically for a barrier option, a higher concentra-
tion of points around the barrier will speed up convergence significantly. With such a
grid, Crank-Nicolson oscillations will be problematic and seriously impact the accuracy
of the greeks as there will be regions where λ is high. TR-BDF2 does not have this defect.

2.6. WHEN BDF2 BREAKS
The second-order backward difference (BDF2) scheme, another popular L-stable scheme,
while simpler than TR-BDF2 has been shown not to be a good candidate in option pric-
ing in general [199]. We give the example of a simple Bermudan option, where BDF2
breaks down.

We consider a one-year Bermudan put option of strike price K = 100, with spot value
S = 100, 40% volatility , 5% interest rate, which can be exercised in six months and in
one year. The theoretical price of 13.386303 has been computed using an explicit finite
difference scheme with more than 4 millions time steps and 5120 space steps. BDF2 is
initialized with one backward Euler step.

Brennan-Schwartz and the order-1 free boundary approximation have the same con-
vergence because there is only one date where the linear complementarity problem is
solved.

BDF2 converges, but to a wrong price (13.506 instead of 13.386)! TR-BDF2 has no
such issue and converges quadratically, like Crank-Nicolson, to the correct price. This
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Figure 2.7: Relative error of the price of a Bermudan put option on a grid withΛ= 0.5

example shows a key difference between BDF2, a multistep scheme, and TR-BDF2, a
1-step scheme.

In this simple example, there is a simple fix for BDF2, one needs to restart BDF2 just
before the early-exercise date, i.e. to apply a backward Euler step instead of a BDF2 step
at this date. We call this scheme BDF2R . Another similar example where naive BDF2
fails is the case of an American option with discrete dividends, as the exercise boundary
is then discontinuous. The authors in [163] also fix this by restarting the scheme at each
dividend date. All multistep schemes will suffer from these issues. For a standard Amer-
ican option, BDF2 will converge to the correct result, but with lower convergence than
Crank-Nicolson or TR-BDF2.

In more complex cases like the shout option in [199], the fix for BDF2 might not be
so trivial.

2.7. HAMILTON-JACOBI-BELLMAN PDE
Contrary to Backward Euler, TR-BDF2 is not a monotone scheme. In theory, this could
be a problem when dealing with nonlinear Hamilton-Jacobi-Bellman (HJB) partial dif-
ferential equations. The uncertain volatility model developed in [17] is an example of
an HJB equation in finance. It supposes that the volatility is uncertain but bounded be-
tween a minimum volatilityσmi n and a maximum volatilityσmax . Under this model one
can find the prices of a derivative product for a worst long strategy or a best long strategy.
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The optimal control problem is given by:

∂v

∂t
(x, t )− sup

σ∈σ̂
{µ(x, t )x

∂v

∂x
+ 1

2
σ2x2 ∂

2v

∂x2 − r (x, t )v(x, t )} = 0, , (2.31)

where x is the underlying price, µ is the underlying drift, σ its volatility and r the interest
rate, σ̂= {σmi n ,σmax } and V (x) = v(x, tn) the option payoff at maturity.

Spatial steps Time steps Value Change Ratio

TR-BDF2

60 25 2.299723
120 50 2.303857 4.13e-03
240 100 2.298947 -4.91e-03 -0.8
480 200 2.298005 -9.42e-04 5.2
960 400 2.297767 -2.37e-04 4.0

1920 800 2.297705 -6.21e-05 3.8
Backward Euler

60 25 2.362552
120 50 2.333157 -2.94e-02
240 100 2.313157 -2.00e-02 1.5
480 200 2.305099 -8.06e-03 2.5
960 400 2.301314 -3.78e-03 2.1

1920 800 2.299479 -1.83e-03 2.1

Table 2.2: Value of a butterfly spread option. "Change" is the difference in the solution from the coarser grid.
"Ratio" is the ratio of the changes on successive grids. Constant time steps.
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Figure 2.8: Gamma of a butterfly spread option with m = 400 spacesteps and n = 20 time steps on a uniform
grid from x0 = 0 to xm = 200

Like Pooley, Forsyth and Vetzal [171], we price a butterfly spread option under the
uncertain volatility model using the same parameters and using a uniform grid in space
from x0 = 0 to xm = 300 doubling the size in both the space dimension and the time
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dimension in order to look at the convergence. A butterfly spread corresponds to a long
position in 2 calls at strike K1 and K2 and a short position in 2 calls at strike K1+K2

2 . Our
butterfly spread option is defined with the strikes K1 = 90 and K2 = 110 expiring at T =
0.25 years. The interest rate is r = 0.1, and the volatility is between σmi n = 0.15 and
σmax = 0.25. We solve the HJB via the same Newton method as in [171], only replacing
the scheme by TR-BDF2. This means that we solve the non-linearity in the same Newton
iteration for the 2 stages. We limit the number of Newton iterations to 3 per time step,
otherwise, because TR-BDF2 is not monotone, the Newton method might not converge
when the time step is large.

Table 2.2 shows that in practice, TR-BDF2 converges. The price given in [171] for the
worst long strategy of the same option is 2.29769. In this case, it converges better than the
Backward Euler scheme, even if the gamma has major oscillations after the first time step
(Figure 2.8a) when the ratio of time steps over spacesteps λ is high. This is because with
time, the oscillations are quickly damped, in contrast to the Crank-Nicolson scheme.

2.8. EXACT CALIBRATION TO DISCOUNT BONDS AND FORWARD

PRICES
Most academic papers and books use a constant drift when describing the valuation of
financial derivatives. Andersen et al. considers the effect of non-constant rates and divi-
dends in the theta finite difference method in the context of the local volatility model [7].
In particular, the authors show that one should not use the rates coming from the curves
directly. In order to reproduce the bond and forward contract prices, the rates should
be converted according to the chosen discretization for the finite difference scheme (in
their case, the theta scheme) to take into account the effect of discretization.

2.8.1. EXACT BOND PRICE

Let P j = P (0, t j ) be the prices of zero-coupon bonds maturing at times t j . They satisfy
the Black-Scholes partial differential equation with terminal payoff P (S) = $1. We con-
sider at time step t j the bond maturing at t j+1 of price:

P (t j , t j+1) = P (0, j +1)

P (0, j )
= P j+1

P j
. (2.32)

At t j+1, P (t j+1, t j+1) = 1. The bond price P is independent of the asset S.
A naive approach is to rely on the continuous PDE solution directly, leading to the

inaccurate forward bond rate between t j and t j+1.:

r (t j ) =− 1

k j
ln

(
P j+1

P j

)
, (2.33)

where k j = t j − t j−1 is the time step size between times t j−1 and t j .
This however does not take the effect of the discretization on the bond prices into

account. To achieve exact bond prices, we require that the bond prices satisfy the finite
difference equations. For TR-BDF2, we wish the bond prices to follow the Equations (2.4)
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and (2.5) corresponding to each stage, i.e.

P j+1

P∗ = 1− αk j

2

(
r j + r j

P j+1

P∗

)
, (2.34)

and
P j+1

P j
= 1

2−α
(

1

α

P j+1

P∗ − (1−α)2

α
− (1−α)k j r j

P j+1

P j
)

)
. (2.35)

Eliminating P∗ = 1+ 1
2αk j r j

1− 1
2αk j r j

P j+1 leads to a quadratic equation in r j :

1

2
α(1−α)

P j+1

P j
k2

j r 2
j +

1

2

(
(2−α2)

P j+1

P j
+1+ (1−α)2

)
k j r j + (2−α)

(
P j+1

P j
−1

)
= 0.

Let a = 1
2α(1 −α)

P j+1

P j
, b = 1

2

(
(2−α2)

P j+1

P j
+1+ (1−α)2

)
, and c = (2 −α)

(
P j+1

P j
−1

)
, the

unique positive solution is:

r j = −b +
p

b2 −4ac

2ak j
. (2.36)

With this choice of r j , the value of a contract paying $1 is exact at every node of the finite
difference grid: the scheme is in a sense perfectly calibrated to the discount curve.

2.8.2. EXACT FORWARD PRICE
We consider here a contract at time t j which pays out v j+1(S) = S at time t j+1. The value
of this contract at t j is:

v j (S) = SP (t j , t j+1)e
∫ t j+1

t j
µ(u)du = S

P j+1

P j

F j+1

F j
, (2.37)

where F j (S) = Se
∫ t j

0 µ(u)du is the forward to t j . The derivatives of this contract are:

∂2v j

∂S2 (S) = 0,

∂v j

∂S
(S) = P j+1

P j

F j+1

F j
.

Similarly to the bond case, a naive approach is to rely on the direct solution of the
Black-Scholes PDE, leading to the growth rate:

µ(t j ) = 1

k j
ln

(
F j+1

F j

)
. (2.38)

Instead, for the TR-BDF2 scheme, we wish the forward contract prices to satisfy both
Equations (2.4) and (2.5), i.e.

v∗ = v j+1 −
αk j

2

(
(r j −µ j )v j+1 + (r j −µ j )v∗)

, (2.39)
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and

v j = 1

2−α
(

1

α
v∗− (1−α)2

α
v j+1 − (1−α)k j (r j −µ j )v j

)
. (2.40)

This leads to the same quadratic equation as for the bonds, but replacing
P j+1

P j
by

v j

v j+1

and r j by r j −µ j . The solution is:

r j −µ j = −b′+
p

b′2 −4a′c ′

2a′k j
(2.41)

with a′ = 1
2α(1−α)

P j+1

P j

F j+1

F j
, b′ = 1

2

(
(2−α2)

P j+1

P j

F j+1

F j
+1+ (1−α)2

)
, and c ′ = (2−α)

(
P j+1

P j

F j+1

F j
−1

)
.

Then

µ j = r j − −b′+
p

b′2 −4a′c ′

2a′k j
. (2.42)

Table 2.3: Price for a forward of maturity 10 years of strike k = 100 under TR-BDF2 with constant rates on a
logarithmic grid of 10 time steps and 50 points per time step. "Raw" denotes the direct use of the constant

rates in the scheme discretization, and "Discrete" denote the use of the discrete rates r j and µ j .

r µ Spot Price Error

Raw rates

0.05 0.00 100 -3.8E-14 3.8E-14
0.05 0.00 110 6.064999 3.1E-4
0.05 0.02 100 13.431025 2.3E-3
0.05 0.02 110 20.839127 2.2E-3

Discrete rates

0.05 0.00 100 -4.6E-14 4.6E-14
0.05 0.00 110 6.0653066 8.5E-14
0.05 0.02 100 13.428756 2.4E-13
0.05 0.02 110 20.836938 3.4E-13

With this choice of µ j and r j , forward contract prices are exact at every node of the
finite difference grid. This is confirmed by the numerical results presented in Table 2.3.

2.8.3. PUT-CALL PARITY

Let V j
C , V j

P be the solutions of the Equations (2.4) and (2.5) at time t j with respective final
payoffs |S −K |+ and |K −S|+. At maturity tn , the put-call parity relation V n

C −V n
P = S −K

holds as long as the final payoffs are not smoothed so that at each node Si , we have
|Si −K |+−|K −Si |+ = Si −K . At tn−1, by linearity of the operator L , we have:

V ∗
C −V ∗

P =V n
C −V n

P − αk j

2

(
L (V n

C −V n
P )+L (V ∗

C −V ∗
P )

)
, (2.43)
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V n−1
C −V n−1

P = 1

2−α
(

1

α
(V ∗

C −V ∗
P )− (1−α)2

α
(V n

C −V n
P )− (1−α)kn−1L (V n−1

C −V n−1
P )

)
.

(2.44)
In other words, V n−1

C −V n−1
P is the solution of (2.4) and (2.5) at time tn−1 with terminal

payoff K −S. One can apply the same logic recursively to find that V 0
C −V 0

P is the solution
of (2.4) and (2.5) at time t0 with terminal payoff K −S. A forward contract of strike K and
maturity tn is solution the Black-Scholes PDE with the same terminal payoff. Therefore
V 0

C −V 0
P is exactly the discretized forward contract price.

As the forward contract price is exactly preserved at each node by the TR-BDF2 dis-
cretization (Section (2.8.2)), V 0

C −V 0
P is exactly the forward contract price at t0, and the

put-call parity relation holds. Table 2.4 confirms that the put-call parity is preserved in

Table 2.4: Put-call parity for options of maturity 10 years of strike k = 100 under TR-BDF2 with constant rates
r = 0.05 and µ= 0.02 on a logarithmic grid of 10 time steps and 50 points per time step.

Spot Call Price VC Put Price VP Parity VC −VP Parity Error

90.0 18.990086 12.969512 6.020574 3.3E-13
100.0 24.241044 10.812288 13.428756 3.4E-13
120.0 35.824349 7.579229 28.245121 2.4E-13

practice on a non-uniform, shifted grid.

2.9. CONCLUSION
In this chapter, we have shown how the TR-BDF2 scheme can be applied to option pric-
ing. It does not suffer from Crank-Nicolson oscillations problems, that are particularly
visible in the greeks. It is more resilient to the grid geometry and to the underlying PDE in
general. Moreover the Rannacher time-marching, while an interesting fix of the Crank-
Nicolson discretization scheme for European options, does not work as well for Ameri-
can options.



APPENDIX

2.A. REFERENCE VALUES

Steps Scheme Price Error Time(s) Steps Price Error Time(s)

20 CN 6.0494286 3.81e-02 0.00044 640 6.0866566 8.37e-04 0.01362
RAN 6.0586066 2.89e-02 0.00046 6.0866193 8.74e-04 0.01335
TRBDF2 6.0607239 2.68e-02 0.00064 6.0866508 8.42e-04 0.02056
BS_CN 6.0728822 1.46e-02 0.00054 6.0874802 1.31e-05 0.01779
BS_RAN 6.0827446 4.75e-03 0.00060 6.0874470 4.63e-05 0.01673
BS_C_RAN 6.0679704 1.95e-02 0.00083 6.0869083 5.85e-04 0.02587
BS_TRBDF2 6.0871552 3.38e-04 0.00085 6.0874881 5.27e-06 0.02713
RE_TRBDF2 6.0853986 2.09e-03 0.00097 6.0875271 3.37e-05 0.03049

40 CN 6.0746091 1.29e-02 0.00084 1280 6.0870732 4.20e-04 0.02637
RAN 6.0730455 1.44e-02 0.00086 6.0870623 4.31e-04 0.02659
TRBDF2 6.0738304 1.37e-02 0.00125 6.0870716 4.22e-04 0.04036
BS_CN 6.0869160 5.77e-04 0.00106 6.0874891 4.26e-06 0.03425
BS_RAN 6.0855687 1.92e-03 0.00117 6.0874786 1.47e-05 0.03315
BS_C_RAN 6.0778191 9.67e-03 0.00177 6.0872025 2.91e-04 0.05264
BS_TRBDF2 6.0873354 1.58e-04 0.00185 6.0874901 3.17e-06 0.05439
RE_TRBDF2 6.0869369 5.56e-04 0.00212 6.0874923 1.01e-06 0.06063

80 CN 6.0809446 6.55e-03 0.00182 2560 6.0872819 2.11e-04 0.05278
RAN 6.0803442 7.15e-03 0.00202 6.0872790 2.14e-04 0.05242
TRBDF2 6.0806670 6.83e-03 0.00277 6.0872814 2.12e-04 0.08018
BS_CN 6.0871705 3.23e-04 0.00245 6.0874902 3.08e-06 0.06633
BS_RAN 6.0866839 8.09e-04 0.00236 6.0874876 5.75e-06 0.07576
BS_C_RAN 6.0827291 4.76e-03 0.00376 6.0873484 1.45e-04 0.10143
BS_TRBDF2 6.0873887 1.05e-04 0.00379 6.0874922 1.09e-06 0.11260
RE_TRBDF2 6.0875036 1.03e-05 0.00422 6.0874913 2.02e-06 0.12679

160 CN 6.0841717 3.32e-03 0.00346 5120 6.0873885 1.05e-04 0.10427
RAN 6.0839144 3.58e-03 0.00333 6.0873856 1.08e-04 0.10411
TRBDF2 6.0840889 3.40e-03 0.00498 6.0873883 1.05e-04 0.15996
BS_CN 6.0873924 1.01e-04 0.00404 6.0874926 7.06e-07 0.13479
BS_RAN 6.0871779 3.15e-04 0.00419 6.0874909 2.44e-06 0.13545
BS_C_RAN 6.0851193 2.37e-03 0.00617 6.0874212 7.21e-05 0.20462
BS_TRBDF2 6.0874683 2.50e-05 0.00658 6.0874939 5.58e-07 0.22144
RE_TRBDF2 6.0875107 1.74e-05 0.00793 6.0874952 1.87e-06 0.23932

320 CN 6.0858019 1.69e-03 0.00643 10240 6.0874410 5.23e-05 0.20819
RAN 6.0857199 1.77e-03 0.00660 6.0874401 5.33e-05 0.20794
TRBDF2 6.0857746 1.72e-03 0.00992 6.0874409 5.24e-05 0.31736
BS_CN 6.0874354 5.79e-05 0.00885 6.0874931 2.13e-07 0.27313
BS_RAN 6.0873654 1.28e-04 0.00811 6.0874922 1.12e-06 0.29584
BS_C_RAN 6.0863136 1.18e-03 0.01345 6.0874573 3.60e-05 0.41086
BS_TRBDF2 6.0874880 5.33e-06 0.01389 6.0874933 5.01e-08 0.44853
RE_TRBDF2 6.0874603 3.30e-05 0.01554 6.0874936 2.62e-07 0.47768

Table 2.A.1: TR-BDF2 and Crank-Nicolson convergence for an American put, the reference value of
6.0874933186 has been obtained via [164]. CN, RAN, TRBDF2 denote respectively the Crank-Nicolson,

Rannacher and TR-BDF2 schemes with the order-1 approximation for the free boundary problem. BS_CN,
BS_C_RAN, BS_TRBDF2, BS_RAN are respectively the Crank-Nicolson, Rannacher (applied at each

time-step), TR-BDF2 and Rannacher schemes solved by Brennan-Schwarz. RE_TRBDF2 is Richardson
extrapolation in time applied to TR-BDF2 with the order-1 approximation.
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Spacesteps Timesteps Value Change Ratio Time(s)

Rannacher with order-1 solver

68 25 14.656895 3.31e-04
135 50 14.669132 1.22e-02 8.82e-04
269 100 14.674421 5.29e-03 2.3 2.61e-03
537 200 14.676791 2.37e-03 2.2 7.46e-03

1073 400 14.677882 1.09e-03 2.2 2.81e-02
TR-BDF2 with order-1 solver

68 25 14.661263 2.03e-03
135 50 14.670690 9.43e-03 6.80e-03
269 100 14.675000 4.31e-03 2.2 1.59e-02
537 200 14.677007 2.01e-03 2.1 9.90e-03

1073 400 14.677966 9.60e-04 2.1 3.66e-02
Rannacher with Brennan-Schwartz solver

68 25 14.665532 3.57e-04
135 50 14.674220 8.69e-03 8.60e-04
269 100 14.677160 2.94e-03 3.0 2.72e-03
537 200 14.678218 1.06e-03 2.8 8.83e-03

1073 400 14.678625 4.07e-04 2.6 3.27e-02
TR-BDF2 with Brennan-Schwartz solver

68 25 14.671270 4.04e-04
135 50 14.676364 5.09e-03 1.19e-03
269 100 14.678075 1.71e-03 3.0 3.90e-03
537 200 14.678598 5.23e-04 3.3 1.53e-02

1073 400 14.678779 1.81e-04 2.9 4.91e-02

Table 2.A.2: Value of an American put option, T = .25, r = .10, K = 100, S = 100. "Change" is the difference in
the solution from the coarser grid. "Ratio" is the ratio of the changes on successive grids. Constant time steps.

The payoff is smoothed at maturity.
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Spacesteps Timesteps Max Gamma Error Max Error Time(s) Ratio

Rannacher, λ= 1

40 40 6.01e-05 1.80e-02 7.40e-03
80 80 1.33e-05 5.47e-03 2.70e-02 3.3

160 160 2.38e-06 1.67e-03 5.58e-02 3.3
320 320 7.41e-07 5.69e-04 9.78e-03 2.9
640 640 2.43e-07 2.01e-04 3.86e-02 2.8

1280 1280 8.36e-08 7.41e-05 1.32e-01 2.7
2560 2560 2.92e-08 2.75e-05 4.84e-01 2.7

Rannacher, λ= 4

40 10 1.44e-04 3.75e-02 2.48e-04
80 20 3.77e-04 1.38e-02 4.24e-04 2.7

160 40 6.66e-04 5.29e-03 9.97e-04 2.6
320 80 5.57e-04 2.09e-03 3.05e-03 2.5
640 160 7.50e-04 8.58e-04 1.04e-02 2.4

1280 320 8.50e-04 3.56e-04 3.27e-02 2.4
2560 640 7.45e-04 1.48e-04 1.17e-01 2.4

TR-BDF2, λ= 1

40 40 6.27e-05 1.51e-02 3.24e-03
80 80 1.43e-05 4.17e-03 1.12e-02 3.6

160 160 2.67e-06 1.16e-03 1.36e-02 3.6
320 320 4.77e-07 3.33e-04 1.20e-02 3.5
640 640 1.36e-07 1.00e-04 4.76e-02 3.3

1280 1280 4.07e-08 3.17e-05 1.70e-01 3.1
2560 2560 1.18e-08 9.81e-06 6.84e-01 3.2

TR-BDF2, λ= 4

40 10 7.11e-05 1.46e-02 1.54e-04
80 20 1.18e-05 4.89e-03 2.88e-04 3.0

160 40 2.10e-06 1.61e-03 7.95e-04 3.0
320 80 7.25e-07 6.16e-04 2.84e-03 2.6
640 160 2.73e-07 2.48e-04 1.25e-02 2.5

1280 320 1.08e-07 1.03e-04 4.31e-02 2.4
2560 640 4.30e-08 4.32e-05 1.76e-01 2.4

Table 2.A.3: Maximum error in the price and gamma of an American put option, T = .25, r = .05, K = 100,
S = 100, σ= 0.4. Ratio is the ratio of the error in price on successive grids. λ is the ratio spacesteps over time

steps. The linear complementarity problem is solved by Brennan-Schwartz.
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Spacesteps Timesteps Max Gamma Error Max Error Time(s) Ratio

Rannacher with Richardson Extrapolation, λ= 1

40 40 1.20e-04 1.46e-02 1.29e-03
80 80 3.17e-05 3.56e-03 4.11e-03 4.1

160 160 5.45e-06 9.71e-04 9.81e-03 3.7
320 320 9.29e-07 2.40e-04 1.18e-02 4.1
640 640 1.49e-07 5.41e-05 3.76e-02 4.4

1280 1280 6.11e-08 1.28e-05 1.45e-01 4.2
2560 2560 1.08e-07 2.43e-06 5.80e-01 5.2

Rannacher with Richardson Extrapolation, λ= 4

40 10 9.52e-03 3.62e-02 2.33e-04
80 20 2.30e-02 1.90e-02 3.25e-04 1.9

160 40 5.95e-02 9.43e-03 7.92e-04 2.0
320 80 8.45e-02 3.35e-03 2.62e-03 2.8
640 160 1.18e-01 1.19e-03 9.56e-03 2.8

1280 320 1.80e-01 4.30e-04 3.73e-02 2.8
2560 640 2.44e-01 1.54e-04 1.45e-01 2.8

TR-BDF2 with Richardson Extrapolation, λ= 1

40 40 1.12e-04 1.53e-02 1.94e-03
80 80 4.34e-05 4.00e-03 9.82e-03 3.8

160 160 1.71e-06 1.08e-03 8.93e-03 3.7
320 320 9.35e-07 2.82e-04 1.41e-02 3.8
640 640 1.08e-07 7.07e-05 5.04e-02 4.0

1280 1280 2.71e-08 1.79e-05 1.97e-01 4.0
2560 2560 5.11e-09 2.82e-06 7.89e-01 6.3

TR-BDF2 with Richardson Extrapolation, λ= 4

40 10 2.26e-03 2.20e-02 2.36e-04
80 20 3.13e-04 5.58e-03 3.61e-04 3.9

160 40 5.89e-06 1.95e-03 9.90e-04 2.9
320 80 7.45e-07 5.25e-04 3.32e-03 3.7
640 160 2.16e-07 1.63e-04 1.31e-02 3.2

1280 320 6.06e-08 4.96e-05 4.99e-02 3.3
2560 640 1.55e-08 1.33e-05 1.97e-01 3.7

Table 2.A.4: Maximum error in the price and gamma of an American put option, T = .25, r = .05, K = 100,
S = 100, σ= 0.4. Ratio is the ratio of the error in price on successive grids. λ is the ratio spacesteps over time

steps. The linear complementarity problem is solved by the order-1 approximation and the payoff is
smoothed by averaging at maturity. Richardson extrapolation is applied using a value computed with half of

the time steps.
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POSITIVE SECOND-ORDER FINITE DIFFERENCE METHODS FOR

FOKKER-PLANCK EQUATIONS WITH DIRAC INITIAL DATA

One approach to price financial derivatives in an arbitrage free manner is to start from
the probability density function. For many models, it is possible to find an expansion of
the density that follows a Fokker-Planck partial differential equation. In order to keep
the arbitrage-free property numerically, it is particularly important to use a positivity pre-
serving finite difference scheme. With a discontinuous initial condition like a Dirac delta
function, many schemes will produce oscillations or negative densities. This chapter ana-
lyzes the behavior of a few simple schemes related to the backward Euler scheme, namely
the BDF2, Lawson-Morris and Lawson-Swayne schemes on the specific problem of a dif-
fusion with Dirac delta initial condition. The case of the arbitrage free SABR model for
interest rate derivatives is then evaluated.

Keywords: SABR · Fokker-Planck · Dirac · BDF2 · finite difference method.

3.1. INTRODUCTION
One approach to price financial derivatives in an arbitrage free manner is to start from
the probability density function. For many models, it is possible to find an expansion of
the density that follows a Fokker-Planck partial differential equation (PDE), for example
following Andreasen and Huge [13] or Hagan et al. [84].

The first-order backward Euler scheme (BDF1) is known to be monotone and positiv-
ity preserving. Those are particularly important properties when the partial differential
equation represents a density with a discontinuous initial condition like a Dirac delta
function. Many higher-order finite difference schemes will produce oscillations or neg-
ative densities, including the popular A-stable Crank-Nicolson scheme.

The second-order backward difference scheme (BDF2) or even a simple Richardson
extrapolation are not positivity preserving in a general setting [27, 96]. However, on the
more specific problem of a Fokker-Planck partial differential equation, we will see that
much less restricting conditions for positivity are possible.

This chapter analyzes the behavior of a few simple schemes related to the backward
Euler, Crank-Nicolson, BDF2, Lawson-Morris schemes, as well as the L-stable Lawson-
Swayne and TR-BDF2 schemes on the specific problem of a diffusion with Dirac delta
initial condition. For the sake of analytical tractability, a constant diffusion coefficient
and infinite boundaries are considered. Our analysis is similar to a von Neumann sta-
bility analysis. We are however not interested in the amplification factor relating the L2-
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norm of the solution at subsequent time steps, but we focus our analysis on the discrete
probability density values at the Dirac delta location, and whether they stay positive, or
whether they oscillate. While this seems overly restrictive, we find that in practice, it ex-
plains well the phenomenology of more realistic Fokker-Planck PDEs, for example, the
arbitrage-free SABR PDE of [84, 131], under the various time stepping schemes.

3.2. BACKWARD EULER ATTENUATION OF A DIRAC INITIAL CON-
DITION

We focus our analysis on a Fokker-Planck like partial differential equation (PDE):

∂Q

∂t
= 1

2
σ2 ∂

2Q

∂x2 , (3.1)

with lim
t→0

Q(x, t ) = δ(x − f ) and δ is the Dirac delta function. σ corresponds to a constant

volatility parameter.
Let us consider a uniform discretization defined by (x j ), j ∈ {−m, ..,m}, h = x j −x j−1,

and define the central second difference operator D2
x as:

D2
x f j ,l =

f j+1,l −2 f j ,l + f j−1,l

h2 . (3.2)

The backward Euler finite difference scheme results in

(I − 1

2
σ2kD2)Qn+1 =Qn , (3.3)

with initial conditions Q0
0 = 1

h , Q0
j = 0, for j 6= 0, and where k = tn+1 − tn is the time step

size betwenn tn and tn+1, Qn is the vector of discrete probability density values.
The mixed discrete/continuous Fourier transform pair reads [73, 185]

Qn
j = 1

2πh

∫ π

−π
Q̂n(u)e i j u du , (3.4)

Q̂n(u) = h
+∞∑

j=−∞
Qn

j e−i j u . (3.5)

The Fourier transform of equation (3.3) is given by

Q̂n+1(u) = 1

1+2αsin2( u
2 )

Q̂n(u) , (3.6)

with α= σ2k
h2 . Let us apply the inverse transform to go back to Q at the first time step.

Q1
j =

1

2πh

∫ π

−π

Q0
j (u)

1+2αsin2( u
2 )

e i j u du . (3.7)

In particular, for the first step, we have at the spike ( j = 0)

Q1
0 = 1

2πh

∫ π

−π
1

1+2αsin2( u
2 )

du = 1

h
p

2α+1
. (3.8)
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And for the second step, we obtain

Q2
0 = 1

2πh

∫ π

−π
1(

1+2αsin2( u
2 )

)2 du = (1+α)

h (2α+1)
3
2

. (3.9)

Of course, we notice that Q1
0 ,Q2

0 are strictly positive for any α> 0.

3.3. SECOND-ORDER SCHEMES

3.3.1. NEGATIVE DENSITY WITH CRANK-NICOLSON SCHEME
The trapezoidal method (Crank-Nicolson scheme) can be expressed as [137].

(I − 1

4
σ2kD2)Qn+1 = (I + 1

4
σ2kD2)Qn . (3.10)

Applying the Fourier transform for this equation leads to

Q1
0 = 1

2πh

∫ π

−π

1−αsin2( u
2 )

1+αsin2( u
2 )

du = 1

h

(
2p
α+1

−1

)
(3.11)

The density at the first step Q1
0 will be negative when α> 3, or equivalently when

h2 < 1

3
σ2k . (3.12)

This condition is quite restrictive: in order to avoid a negative density at the spike, at the
first time step, the number of time steps must increase quadratically with the number of
spatial steps, very much like the explicit Euler scheme.

3.3.2. RANNACHER SMOOTHING
In order to fix the Crank-Nicolson scheme issues with discontinuous initial data, a smooth-
ing with two half time steps of BDF1 from t = t0 to t = t 1

2
and t 1

2
to t1 before applying the

Crank-Nicolson scheme is proposed in [173]. From Equations (3.9) and (3.11), we de-
duce the exact discrete probability density after the first Crank-Nicolson step, at t = t2:

Q2
0 = 1

2πh

∫ π

−π

1−αsin2( u
2 )(

1+αsin2( u
2 )

)3 du = 1

h

1+ 1
2α+ 1

4α
2

(1+α)
5
2

, (3.13)

and therefore Q2
0 is positive for all α≥ 0. By iteration, the exact discrete probability den-

sity at tn is

Qn
0 = 1

2πh

∫ π

−π

(
1−αsin2( u

2 )
)n−1(

1+αsin2( u
2 )

)n+1 du . (3.14)

It can be shown that Qn
0 is always positive. Note that the oscillations related to the dis-

continuous initial conditions may still be present (see Figure 3.3.1). Giles and Carter [73]
recommend four half time steps for a proper damping (see Figure 3.3.2).
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Figure 3.3.1: Density at the spike j = 0 for the Rannacher scheme with 2 half-steps BDF1
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Figure 3.3.2: Density at the spike j = 0 for the Rannacher scheme with 4 half-steps BDF1

3.3.3. SQUARE-ROOT CRANK-NICOLSON SCHEME

Reisinger [174] proposes a τ = p
t time transform in order to follow the natural time of

the Brownian motion. Equation (3.1) becomes

∂Q

∂τ
=σ2τ

∂2Q

∂x2 . (3.15)

Let k = kn = τn+1 −τn , the Crank-Nicolson scheme results in the following linear system

(I − 1

2
σ2τn+1kD2)Qn+1 = (I + 1

2
σ2τnkD2)Qn . (3.16)
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Applying the Fourier transform to this equation leads to

Qn
0 = 1

2πh

∫ π

−π

n−1∏
j=0

1−2ατ j sin2( u
2 )

1+2ατ j+1 sin2( u
2 )

du

= 1

2πh

∫ π

−π

n−1∏
j=0

1−2α j k sin2( u
2 )

1+2α( j +1)k sin2( u
2 )

du

= 1

2πh

∫ π

−π
1

1+2αnk sin2( u
2 )

n−1∏
j=1

1−2α j k sin2( u
2 )

1+2α j k sin2( u
2 )

du . (3.17)

And after the first time step, the exact discrete probability density is given by

Q1
0 = 1

h

(
1p

2ατ1 +1

)
. (3.18)

As τ0 = 0, Q1
0 is always positive. Note that BDF1 applied to Equation (3.15) would

have resulted in the exact same Q1 as the right-hand side simply equals Q0 at the first
time step.

The probability density at the second time step reads

Q2
0 = 1

h

(
3p

4αk +1
− 2p

2αk +1

)
. (3.19)

As 3
2 > 2p

2
, and Q2

0 is a decreasing function in k, Q2
0 is always positive. At the third time

step,

Q3
0 = 1

h

(
10p

6αk +1
+ 3p

2αk +1
− 12p

4αk +1

)
. (3.20)

As 10p
6
+ 3p

2
−6 > 0, and Q3

0 is a decreasing function in k, Q3
0 is always positive.

It can be shown that the density is always positive at the spike, at every step, inde-
pendently of the time step size: Qn

0 > 0.
The density however oscillates slightly at the spike when αk > 2 (see Figure 3.3.3).

Reisinger [174] suggests that choosing αk ≤ 1
2 will result in a non-oscillating scheme, a

much nicer condition than with the standard Crank-Nicolson scheme as it depends only
on the ratio k

h instead of k
h2 .

3.3.4. POSITIVE DENSITY WITH BDF2 SCHEME
The second-order backward difference scheme (BDF2) reads [137]

3Qn+2 −4Qn+1 +Qn =σ2kD2
xQn+2 , (3.21)

or equivalently, (
I − σ2k

3
D2

x

)
Qn+2 = 4

3
Qn+1 − 1

3
Qn . (3.22)

The first step relies on backward Euler (BDF1). The second step can be seen as another
backward Euler step of size 2k

3 on a different initial condition. The density will be guar-
anteed positive if the right-hand side is positive, that is if

4Qn+1
j −Qn

j > 0. (3.23)
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Figure 3.3.3: Density at the spike j = 0 for the time-changed Crank-Nicolson scheme

In the specific case of the Dirac delta initial condition, this translates to

Q1
0 > 1

4h
, (3.24)

at the first time step. Q1
j corresponds to a backward Euler step and from Equation (3.8),

the above inequality is equivalent to

h2 < 2

15
σ2k . (3.25)

This is very restrictive, similarly as for the Crank-Nicolson scheme. Instead of starting
from the inequality (3.23), we may compute the exact discrete value by applying the
Fourier transform to Equation (3.22). This leads to(

1+ 4α

3
sin2 u

2

)
Q̂2

0 = 4

3
Q̂1

0 −
1

3
Q̂0

0 , (3.26)

where Q̂1
0 is the backward Euler value obtained in Equation (3.8) and Q̂0

0 = 1 for a Dirac
delta function. We then obtain

Q2
0 = 1

6πh

∫ π

−π

(
4

1+2αsin2 u
2

−1

)
1

1+ 4α
3 sin2 u

2

du

= 1

h

 4p
1+2α

− 3√
1+ 4

3α

 . (3.27)

It can be easily shown that Q2
0 > 0,∀α ∈R+ (see Figure 3.3.4).
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Figure 3.3.4: Density at the spike j = 0 after one full step

3.3.5. POSITIVE DENSITY WITH LAWSON-MORRIS SCHEME AND RICHARD-
SON EXTRAPOLATION

The Lawson-Morris scheme [124] consists in applying locally, at each step, a Richardson
extrapolation [177] on the BDF1 scheme. Between tn−1 and tn , we compute the solution

Qn,k implied by one time step of size k in the BDF1 scheme, and the solution Q2n, k
2

implied by one time step of size k
2 to compute

Qn = 2Q2n, k
2 −Qn,k . (3.28)

On the problem with the Dirac delta initial condition, we apply Equation (3.8) to obtain
the exact value at the first time step

Q1
0 = 1

h

(
2

1+ 1
2α

(α+1)
3
2

− 1

(2α+1)
1
2

)
= 1

h

(
2+α

(α+1)
3
2

− 1

(2α+1)
1
2

)
. (3.29)

It can be easily shown that Q1
0 > 0,∀α ∈R+ (see Figure 3.3.4).

3.3.6. L-STABLE SCHEMES

The definition of L-stability implies that Q1
0 → 0 when α→+∞ [56].

LAWSON-SWAYNE SCHEME

Let b = 1−
p

2
2 , the Lawson-Swayne scheme consists in applying two implicit Euler steps

with time step of bk and an extrapolation on the values at those two steps [125]:(
I − 1

2
bσ2kD2

)
Qn+b =Qn , (3.30)(

I − 1

2
bσ2kD2

)
Qn+2b =Qn+b , (3.31)

Qn+1 = (
p

2+1)Qn+2b −p
2Qn+b . (3.32)
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EQUATIONS WITH DIRAC INITIAL DATA

We apply the Fourier transform to Equations (3.30), (3.31), (3.32) and use the BDF1 Equa-
tions (3.8) and (3.9) to obtain the exact discrete probability density after the first time
step

Q1
0 = 1

2πh

∫ π

−π

p
2+1(

1+2bαsin2( u
2 )

)2 −
p

2

1+2bαsin2( u
2 )

du

= (
p

2+1)(1+bα)

h (2bα+1)
3
2

−
p

2

h
p

2bα+1

= 1−bα(
p

2−1)

h (2bα+1)
3
2

. (3.33)

The density is however negative when α> 2
3
p

2−4
.

TR-BDF2 SCHEME

The TR-BDF2 scheme is a two-stage method where the first stage consists in applying
the (weighted) trapezoidal rule (the Crank-Nicolson scheme) and the second stage con-
sists in applying the second-order backward difference scheme (BDF2) on the first stage
result and the first stage initial input [19, 137]:(

I − 1

2
bσ2kD2

)
Qn+2b =

(
I + 1

2
bσ2kD2

)
Qn , (3.34)(

I − 1

2

1−2b

2−2b
σ2kD2

)
Qn+1 = 1

2b(2−2b)
Qn+2b − (1−2b)2

2b(2−2b)
Qn . (3.35)

The choice b = 1−
p

2
2 gives proportional Jacobians and results in the best stability among

all b ∈R [48]. With this specific choice, the scheme reads(
I − 1

2
bσ2kD2

)
Qn+2b =

(
I + 1

2
bσ2kD2

)
Qn , (3.36)(

I − 1

2
bσ2kD2

)
Qn+1 = 1

2
(
p

2+1)Qn+2b − 1

2
(
p

2−1)Qn . (3.37)

Let A = (
I − 1

2 bσ2kD2
)
. If we multiply the last stage of the Lawson-Swayne scheme

(Equation 3.32) by A2 and use Equations (3.30) and (3.31), we obtain

A2Qn+1 =
[

(
p

2+1)I −p
2A

]
Qn . (3.38)

If we multiply the last step of the TR-BDF2 scheme (Equation 3.37) by A and use Equa-
tion (3.36), we obtain

A2Qn+1 = 1

2
(
p

2+1)[2I − A]Qn − 1

2
(
p

2−1)AQn

=
[

(
p

2+1)I −p
2A

]
Qn . (3.39)

The density is thus exactly the same as with the Lawson-Swayne scheme with this spe-
cific choice of b. The schemes are equivalent when the volatility σ is time-independent.
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POSITIVE DENSITY AFTER THE SECOND STEP

Under the Lawson-Swayne scheme, the density at the spike for the time step n is:

Qn
0 = 1

2πh

∫ π

−π

[ p
2+1(

1+2bαsin2( u
2 )

)2 −
p

2

1+2bαsin2( u
2 )

]n

du . (3.40)

At the second time step (and all even time steps), the density at the spike will be
positive as the integrand is positive. It turns out that already at the third step, the density
at the spike stays positive (see Figure 3.3.5a), for any positiveα. Furthermore, there is no
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Figure 3.3.5: Density at the spike j = 0 for Lawson-Swayne and TR-BDF2

oscillation after the second time step (Figure 3.3.5b).

3.4. CONCLUSION
On the simple problem of a diffusion with a constant volatility and a Dirac delta initial
condition, the BDF2, Lawson-Morris and BDF1 Richardson extrapolation schemes pre-
serve the positivity of the density at the spike at every time step, for any time step size.
The Lawson-Swayne and TR-BDF2 schemes preserve the positivity from the second time
step onwards, for any time step size. Finally, the Rannacher smoothing also preserves
positivity with an initialization of two half time steps of BDF1, but requires four half time
steps of BDF1 to overcome the oscillations at the spike.

The conjecture that those results stay valid away from the spike is presented in the
following appendix. Further refinements are left for future research.



APPENDIX

3.A. BDF2 SCHEME GLOBAL POSITIVITY
We focused so far on the positivity at the spike, let’s look here at the positivity everywhere,
starting with the second time step. We have:

Q2
j =

1

3πh

∫ π

0

(
4

1+2αsin2 u
2

−1

)
1

1+ 4α
3 sin2 u

2

cos( j u)du . (3.41)

We know that when α is small, Q j is positive as the scheme becomes monotone. When

α is large, let us define u0 = 2arcsin
√

3
2α , with 0 < u0 <π. This specific value of u makes

the integrand of equation (3.41) to be zero. Let us consider the case where u0 < π
2 , we

have then

3πhQ2
j ≥

∫ u0

0

(
4

1+2αsin2 u
2

−1

)
1

1+ 4α
3 sin2 u

2

cos( j u0)du −
∫ π

u0

1

1+ 4α
3 sin2 u

2

du

≥ 14p
4α+1

arctan

p
4α+1sin u0

2

cos u0
2

cos( j u0)− 8p
2α+1

arctan

p
2α+1sin u0

2

cos u0
2

cos( j u0)

− πp
4α+1

+ 2p
4α+1

arctan

p
4α+1sin u0

2

cos u0
2

=QL .

When α → +∞, arctan
p

4α+1sin
u0
2

cos
u0
2

→ arctan(
p

6), arctan
p

2α+1sin
u0
2

cos
u0
2

→ arctan(
p

3) and

the right hand side QL behaves like

QL ∼
(
8arctan(

p
6)− 8p

2
arctan(

p
3)− π

2

)
1p
α

. (3.42)

The right hand side is greater than 1.97096 1p
α

and therefore Q2
j > 0 for sufficiently large

α for any j .

3.B. LAWSON-MORRIS SCHEME GLOBAL POSITIVITY

Q1
j =

1

πh

∫ π

0

[
2(

1+αsin2( u
2 )

)2 − 1

1+2αsin2( u
2 )

]
cos( j u)du . (3.43)

We proceed similarly as with the BDF2 scheme and consider u0 = 2arcsin
√

1+p2
α that

makes the integrand zero, u0 ∈ (0,π). Let us consider α large enough so that u0 ∈ (0, π2 ),

44



3.B. LAWSON-MORRIS SCHEME GLOBAL POSITIVITY

3

45

0.00

0.05

0.10

0.15

0.20

0.0 2.5 5.0 7.5 10.0

alpha

Figure 3.A.1: BDF2 scaled density hQ2
j with j = 1. Other j give a similar shape.

πhQ1
j ≥

∫ u0

0

[
2(

1+αsin2( u
2 )

)2 − 1

1+2αsin2( u
2 )

]
cos( j u0)du

+
∫ π

u0

2

(1+α)2 − 1

1+2αsin2( u
2 )

du =QL

The right-hand side QL can be computed in closed form:

QL =+2

p
α+1(α+2)

(
αsin2( u0

2 )+1
)

arctan
(p
α+1tan( u0

2 )
)

(α+1)2 +α(α+1)2 sin2( u0
2 )

cos( j u0)

+2
αcos( u0

2 )sin( u0
2 )

(α+1)+α(α+1)sin2( u0
2 )

cos( j u0)

− πp
2α+1

+ 2(π−u0)

(1+α)2 .

When α→+∞,

QL ∼2(2+p
2)arctan(

√
1+p

2)+2
√

1+p
2

(2+p
2)
p
α

− πp
2α

. (3.44)

The right-hand side is greater than 0.6866p
α

and therefore Q1
j is positive for sufficiently large

α.





4
FINITE DIFFERENCE TECHNIQUES FOR THE ARBITRAGE-FREE

SABR MODEL

In the current low rates environment, the classic SABR formula used to compute option
implied volatilities lead to arbitrage. Hagan et al. recently proposed a new arbitrage-free
SABR solution, based on a finite difference discretization of an expansion of the probability
density function. They rely on a Crank-Nicolson discretization, which can lead to unde-
sirable oscillations in the option price. In this chapter, we apply a variety of second-order
finite difference schemes to the SABR arbitrage-free density problem and explore alterna-
tive formulations. It is found that the TR-BDF2 and Lawson-Swayne schemes stand out
on this problem in terms of stability and speed. The probability density formulation is
the most stable and benefits greatly from a variable transformation. A partial differential
equation is also derived for the so-called free-boundary SABR model, which allows for neg-
ative interest rates without any additional shift parameter, leading to a new arbitrage-free
solution for this model. Finally, the free-boundary model behavior is analyzed.

Keywords: stochastic volatility · SABR · arbitrage · TR-BDF2 · Crank-Nicolson · finite
difference method · finance.

4.1. INTRODUCTION
It is now well-known that the original SABR analytic formula from Hagan et al. [85]
used to compute option implied volatility is not arbitrage-free as the probability den-
sity can become negative for low strike prices and long maturities. Given the current
low rates environment, many authors have proposed various improvements to the orig-
inal formula [23, 114, 162, 167]. A single step finite difference method is proposed by
Andreasen and Huge in [13], which leads to an arbitrage-free ‘SABR-like’ model. Whilst
the approach from Andreasen and Huge converges for short maturities to the original
SABR analytic formula, it is (deliberately) different for longer expiries, even at the money.
Through an expansion of the probability density, Doust [51] describes another arbitrage-
free SABR method, but the required absorption probability involves costly numerical
computations.

Hagan et al. [84] recently proposed a new arbitrage-free SABR solution, based on a
finite difference discretization of the probability density. This approach provides a solu-

This chapter is based on the article ’Finite Difference Techniques for Arbitrage-Free SABR’, published in Journal
of Computational Finance, 20(3):51–79, 2017 [131].
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tion very close to the original, widely used, SABR analytic formula, while being arbitrage-
free by construction, and thus allowing pricing with low rates. The authors use a Crank-
Nicolson time stepping scheme, which is known to have oscillation issues [52, 73] as it
is only A-stable but not L-stable [137]. We will show that this issue arises in the con-
text of SABR pricing, and propose alternative schemes that are not very well known in
computational finance, and yet are effective on this problem.

Speed and accuracy were key ingredients in popularising the original SABR formula.
Given that for a 30 year cap on a 3M LIBOR rate, there are potentially 119 PDEs to solve,
we will focus our attention on the performance of the proposed schemes, as well as to
what extent the discretization grid can be reduced in size.

Negative interest rates are now a common feature of the market. As a consequence,
dealers quote swaptions in terms of basis point volatilities (b.p. vols) or in terms of
shifted lognormal volatility. In terms of modeling with the popular SABR model of Ha-
gan et al. [85], one possibility is to use the so-called normal SABR model, with β= 0, that
naturally allows negative forwards. Practitioners prefer however to use a shifted SABR
model that allows for negative forwards up to a shift b, as in [84], while keeping β free.
Both can be summarized in the following framework:{

dF = AL(F )dWF ,

d A = νAdWA ,
(4.1)

where F is the forward swap rate1 in time for a given maturity date and swap tenor, with
WF ,WA correlated Brownian motions with correlation ρ. In the normal case, we have:

L(F ) = 1. (4.2)

In the shifted lognormal case, we have:

L(F ) = (F +b)β. (4.3)

In order to handle negative interest rates without an additional shift parameter, while
still keeping control over the backbone2 through the β SABR parameter, Antonov et al.
[14] propose an alternate SABR model they call free-boundary SABR model. It is defined
with:

L(F ) = |F |β. (4.4)

The authors derive a semi-analytical formula, involving double numerical integration.
While the formula is shown to be reasonably accurate in practice, it is not, a priori,
arbitrage-free. To illustrate the flexibility of the arbitrage-free PDE approach, we will
apply it to this model as well.

4.2. MATHEMATICAL MODELS

4.2.1. ARBITRAGE FREE SABR MODEL
Hagan et al. [84] use asympotic techniques to reduce the SABR model from two dimen-
sions to one dimension. Pricing, with SABR parametersα,β,ρ,ν and initial forward swap

1The forward swap rate is the forward rate that would apply between the maturity of the option and the tenor
of the underlying swap such that the swap, at the maturity date, would have a present value of zero.

2The backbone is the change in at-the-money implied volatility for a change in the forward rate.
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rate F (0) = f for the maturity τex , then relies on the solution of the Fokker-Planck3 PDE
on the probability density Q:

∂Q

∂T
(T,F ) = ∂2M(T,F )Q(T,F )

∂F 2 and

{
∂QL
∂T (T ) = limF→Fmin

∂M(T,F )Q(T,F )
∂F ,

∂QR
∂T (T ) = limF→Fmax

∂M(T,F )Q(T,F )
∂F ,

(4.5)

with

M(T,F ) = 1

2
D2(F )E(T,F ), E(T,F ) = eρναΓ(F )T , Γ(F ) = Fβ− f β

F − f
, (4.6)

D(F ) =
√
α2 +2αρνy(F )+ν2 y(F )2Fβ, y(F ) = F 1−β− f 1−β

1−β , (4.7)

and initial condition
lim
T→0

Q(T,F ) = δ(F − f ). (4.8)

Undiscounted vanilla option prices can then be computed through the Breeden-
Litzenberger formula [28]:

Vcall(T,K ) =
∫ Fmax

K
(F −K )Q(T,F )dF + (Fmax −K )QR (T ), (4.9)

Vput(T,K ) = (K −Fmin)QL(T )+
∫ K

Fmin

(K −F )Q(T,F )dF . (4.10)

4.2.2. FORWARD DUPIRE MODEL

The term M(T,F ) represents the diffusion coefficient, and so, in financial terms, D(F )
p

E(T,F )
can be regarded as the normal local volatility. In [13], a slightly simpler (less accurate for
long maturities) expansion of the local volatility is found and directly used in the normal
Dupire forward PDE on the call prices Vcall:

∂Vcall
∂T

(T,F ) = 1

2
ϑ2(T,F )

∂2Vcall
∂F 2 (T,F ) , (4.11)

with initial condition Vcall(0,F ) = ( f −F )+ and

ϑ(T,F ) = D(F ). (4.12)

Both approaches are strikingly similar if the same local volatility approximation as
well as the same PDE discretization is used. One difference lies in the boundary con-
ditions: Hagan uses an absorbing condition at Fmin and Fmax, while Andreasen and
Huge use the standard Hagan expansion formula at the boundaries. It is also possible

3At a later time, the probability density will follow a different Fokker-Planck equation, as the forward f will
have moved. The true underlying process can not be represented by a one-dimensional diffusion, only its
realization at a specific time can, which is precisely what we care about numerically here. This is not to be
confused with the 2D Fokker-Planck equation stemming from the classical SABR model stochastic differential
equations.
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to use the more classic linear boundaries condition ∂2Vcall
∂F 2 (Fmin) = ∂2Vcall

∂F 2 (Fmax) = 0 in the
Dupire forward PDE, which is even closer then to an absorbing condition in the proba-
bility density, since the marginal probability density Q satisfies Q(Fmin) = Q(Fmax) = 0,
and the marginal probability density corresponds to the second derivative of the undis-
counted option prices.

While our focus is mainly on the PDE in probability density, we will also have a quick
look at the nearly equivalent Dupire representation in order to find out if one approach
is more efficient or not.

4.2.3. FREE-BOUNDARY PDE
The difference between the classic SABR PDE and the free-boundary SABR PDE formu-
lations lies in the formulae related to L(F ) and in the choice of Fmin. The probability
density Q is the solution of:

∂Q

∂T
(T,F ) = ∂2M(T,F )Q(T,F )

∂F 2 and

{
∂QL
∂T (T ) = limF→Fmin

∂M(T,F )Q(T,F )
∂F ,

∂QR
∂T (T ) = limF→Fmax

∂M(T,F )Q(T,F )
∂F ,

(4.13)

with

M(T,F ) = 1

2
D2(F )E(T,F ), E(T,F ) = eρναΓ(F )T , (4.14)

D(F ) =
√
α2 +2αρνy(F )+ν2 y(F )2|F |β , (4.15)

using

Γ(F ) = |F |β−| f |β
F − f

, (4.16)

y(F ) =
∫ F

f

du

L(u)
= sgn(F )|F |1−β− sgn( f )| f |1−β

1−β , (4.17)

and initial condition
lim
T→0

Q(T,F ) = δ(F − f ). (4.18)

In effect, only L, Γ, and y have changed compared to the classic SABR model with
absorption at 0. Furthermore, instead of placing the left boundary at 0 (or at a shift −b),
the left boundary should be located far enough on the negative side, a typical choice
would be Fmin = −Fmax. It is important to keep the absorbing behaviour at the bound-
aries, even if the absorption should be in practice quite small, as it allows to preserve the
zero-th and first moments (corresponding to cumulative density and forward) exactly
numerically (proof in Section 4.4).

4.3. CHANGE OF VARIABLES

4.3.1. TRANSFORMATION OF THE FOKKER-PLANCK PDE
One practical difficulty that arises with the arbitrage-free PDE described in Equations
(4.5) is the choice of Fmax. Hagan et al. [84] propose a formula to estimate the required
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Fmax, that, for some parameters is not suitable. It can be very large for long term option
contracts and as a consequence the discretization requires a very large number of points
to obtain an acceptable accuracy. The technique becomes inefficient. However, this type
of problem is not new and a common approach is to consider a change of variables as
a remedy. The Lamperti transform consists in a change of variables that makes the PDE
closer to a unit diffusion PDE, and thus the solution, closer to a Gaussian density func-
tion [123]. The technique has been applied in finance in [9, p. 292 Section 7.4]. On this
particular problem, the following change of variables works well whilst still preserving
the moments [83]:

z(F ) =
∫ F

f

du

D(u)
. (4.19)

This leads to a PDE in θ(T, z) =Q(T,F (z))D(F (z)) =Q(T,F (z))C (z) with C (z) = D(F (z)):

∂θ

∂T
(T, z) = 1

2

∂

∂z

{
1

C (z)

∂C (z)E(T,F (z))θ(T, z)

∂z

}
and

{
θ(T, z) = 0 as z → z− = z(Fmin) ,

θ(T, z) = 0 as z → z+ = z(Fmax) ,

(4.20)

with initial condition
lim
T→0

θ(T, z) = δ(z − z(y( f ))) . (4.21)

The probabilities of absorption PL ,PR at z = z− and z = z+ boundaries accumulate ac-
cording to

∂PL

∂T
(T ) = lim

z→z−
1

2

1

C (z)

∂C (z)E(T,F (z))θ(T, z)

∂z
, (4.22)

∂PR

∂T
(T ) = lim

z→z+
−1

2

1

C (z)

∂C (z)E(T,F (z))θ(T, z)

∂z
. (4.23)

With the change of variable defined by Equation (4.19), the relation between the forward
swap rate F and the new coordinate z reads

F (y) =
[

f 1−β+ (1−β)y
] 1

1−β , (4.24)

with

y(z) = α

ν

[
sinh(νz)+ρ(cosh(νz)−1)

]
, (4.25)

and where f is the initial forward swap rate .
As a result, the effect of the diffusion term D has almost been cancelled, and the

probability density θ is closer to a Gaussian in z. The values z+ and z− are then naturally
chosen to be ±nsd

p
τex , corresponding to nsd standard deviations above and below the

forward located at z = 0 (taking care of truncating at the barrier F = 0 if necessary). Fig-
ure 4.3.1 shows that the probability density will be computed with a high concentration
of points around the forward, and a much lower number near the upper boundary.
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Figure 4.3.1: F (z) with α= 35%,β= 0.25,ρ =−10%,ν= 100%,τex = 1.

The call and put prices are obtained by integrating on the transformed density:

Vcall(T,K ) =
∫ z+

z(K )
(F (z)−K )θ(T, z)d z + (Fmax −K )PR (T ), (4.26)

Vput(T,K ) = (K −Fmin)PL(T )+
∫ z(K )

z−
(K −F (z))θ(T, z)d z. (4.27)

For some extreme SABR parameters, the change of variables allows high accuracy
with a small number of points. The uniform discretization of Q in F can require approx-
imately 1000 times more points to reach a similar accuracy (Table 4.3.1). The number

Uniform discretization of Q in F
Fmax Points Steps Price Vol

5 10 5 0.65010 87.205
50 100 10 0.78769 155.773

500 1000 20 0.79782 191.658
5000 10000 160 0.79835 196.930

Discretization of θ in z
nsd Points Steps Price Vol

3 10 5 0.79848 198.504
3 100 10 0.79853 199.148
4 100 20 0.79847 198.338

10 10000 160 0.79845 198.134

Table 4.3.1: Price by the Lawson-Swayne method without and with variable transformation for extreme SABR
parameters: α= 100%,β= 0.30,ρ = 90%,ν= 100%,τex = 10, f = 1.

of points used can not be too small: the forward should not be at the boundary. This
restriction is much stricter for the uniform discretization of Q than for the discretization
in the changed variable θ.



4.3. CHANGE OF VARIABLES

4

53

4.3.2. COORDINATE TRANSFORMATION FOR THE FORWARD DUPIRE PDE
The same variable transformation (4.19) can be applied to the Dupire forward PDE where
ϑ2(T,F ) = D2(F )E(F,T ) resulting in:

∂Vcall
∂T

(T, z) = 1

2
C (z)E(T,F (z))

∂

∂z

{
1

C (z)

∂Vcall(T, z)

∂z

}
(4.28)

with initial condition Vcall(T = 0, z) = ( f −F (z))+, and C (z) = D(F (z)), where D(F ), E(F )
are defined in Equations (4.6), (4.7) .

A slightly simpler alternative approach consists in using an equivalent non-uniform
grid in F inside a finite difference discretization of the forward Dupire PDE (4.11) as de-
scribed in [9]. The equivalent non-uniform grid is defined by F (z), where z is a uniform
discretization. Care must be taken to place the forward f in the middle of two nodes in
order to decrease the numerical error [188]. Another technique to reduce the numerical
error is to smooth out the hockey-stick payoff at maturity by averaging, but this would
not preserve the put-call parity.

Let’s define a uniform grid in the coordinate z, for j = 0, ..., J +1:

z̃ j = z−+ j h , h = 1

J +1
(z+− z−). (4.29)

Using Equations (4.25) and (4.24), the corresponding grid in F would be:

F̃ j = F
(
y(z̃ j )

)= F

(
y

(
z−+ j

J +1

(
z+− z−)))

. (4.30)

To place the initial forward f in the middle of two consecutive points, we first locate the
index j0 so that F̃ j0 ≤ f < F̃ j0+1, that is:

j0 =
⌊

z(y( f ))− z−

h

⌋
. (4.31)

Then we shift the grid by a distance d , defined by:

d = z(y( f ))− z

(
y

(
1

2
(F̃ j0 + F̃ j0+1)

))
. (4.32)

This leads to a new grid (z j ) j=0,...,J+1 or equivalently (F j ) j=0,...,J+1 with

F j = F
(
y(z−+ j h +d)

)
, (4.33)

for j = 1, ..., J . In addition, we make sure to keep the original domain boundaries, this
is especially important as z− often corresponds to the absorbing barrier by forcing F0 =
F (y(z−)) and F J+1 = F (y(z+)).

Finally, to compute the price of an option in between two grid nodes, we interpolate
the discrete prices using a natural cubic spline in order to preserve the continuity of
the second derivative (and therefore the continuity of the probability density function)
everywhere.
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4.3.3. TRANSFORMATION OF THE FREE-BOUNDARY PDE
We rely on the same variable transform (Equation 4.19) as in the case of the standard
arbitrage-free SABR PDE. This leads to a PDE in θ(z) =Q(T,F (z))D(F (z)) =Q(T,F (z))C (z)
with C (z) = D(F (z)):

∂θ

∂T
(T, z) = 1

2

∂

∂z

{
1

C (z)

∂C (z)E(T, z)θ(T, z)

∂z

}
and

{
θ(T, z) = 0 as z → z− = z(Fmin) ,

θ(T, z) = 0 as z → z+ = z(Fmax) ,

(4.34)

with initial condition
lim
T→0

θ(T, z) = δ(z − z(y( f ))) . (4.35)

Note that z(y) is unchanged with respect to the arbitrage-free case as, in this coordi-
nate, it is independent of the variable L(F ):

z(y) =
∫ y(F )

y( f )

d y ′√
α2 +2αρνy ′+ν2 y ′2 . (4.36)

Therefore y(z) is also given by Equation 4.25. Only F (y) is modified by the free-boundary
model. We just invert Equation (4.17):

F (y) = sgn(y − ȳ)
[
(1−β)|y − ȳ |] 1

1−β (4.37)

with ȳ = y(F = 0) =− sgn( f )| f |1−β
1−β .

Again, the boundary z− should now be taken simply as z− = −z+ = −nsd
p
τ where

nsd is a number of standard deviations. In practice nsd = 4 is highly accurate.

4.4. ALTERNATIVE DISCRETIZATION SCHEMES
We will focus our analysis on the PDE in θ, but similar conclusions can be drawn for the
PDE in Q. For a constant step size h, let us define for j = 1, ..., J :

z j = z−+ j h , F̂ j = F

(
y

(
z j − h

2

))
, (4.38)

Ĉ j = D(F̂ j ) , Γ̂ j =
L(F̂ j )−L( f )

F̂ j − f
, Ê j (T ) = eρναΓ̂ j T . (4.39)

For j = 0 and j = J +1, let Fmin = F (y(z0)), Fmax = F (y(z J )) we define the shadow points
F̂0 and F̂ J+1 as:

F̂0 = 2Fmin − F̂1 , F̂ J+1 = 2Fmax − F̂ J . (4.40)

We also define for n = 0, ..., N −1:

tn = nδ with δ= τex

N
, (4.41)
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θ j (T ) = 1

h

∫ z j

z j−1

θ(z,T )d z, and θn
j = θ j (tn). (4.42)

Note that we would obtain the same results with the definition θ j (T ) = θ(z j − h
2 ,T ). In

order to preserve the zero-th and first moments of F , the PDE (4.20) is discretized in z as
in [83]:

∂θ j

∂T
(tn) =L n

j θ j (tn) , (4.43)

for j = 1, ..., J with L n
j the discrete operator defined by

L n
j θ j (tn) = 1

2h

Ĉ j−1

F̂ j − F̂ j−1
Ê j−1(tn)θ j−1(tn)

− 1

2h

(
Ĉ j

F̂ j+1 − F̂ j
+ Ĉ j

F̂ j − F̂ j−1

)
Ê j (tn)θ j (tn)

+ 1

2h

Ĉ j+1

F̂ j+1 − F̂ j
Ê j+1(tn)θ j+1(tn) , (4.44)

and for the boundaries at j = 0 and j = J +1:

Ĉ0

F̂1 − F̂0
Ê0(T )θ0(T ) =− Ĉ1

F̂1 − F̂0
Ê1(T )θ1(T ) (4.45)

Ĉ J+1

F̂ J+1 − F̂ J
Ê J+1(T )θJ+1(T ) =− Ĉ J

F̂ J+1 − F̂ J
Ê J (T )θJ (T ) , (4.46)

The boundary condition described by Equations (4.45) and (4.46) is applicable to all
schemes considered in this section as it is independent of the time stepping. The defini-
tion of the shadow points F̂0 and F̂ J+1 makes sure that θ(z(Fmin), tn) = 0 and θ(z(Fmax), tn) =
0.

The probability accumulated at the boundaries (Equation 4.22) is discretized as:

∂PL

∂T
(T ) = Ĉ1

F̂1 − F̂0
Ê1(T )θ1(T ) , (4.47)

∂PR

∂T
(T ) = Ĉ J

F̂ J+1 − F̂ J
Ê J (T )θJ (T ) . (4.48)

Zero-th moment conservation. Let Sn
j = Ĉ j Ê j (tn)θ j (tn), summing Equation (4.43)
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over the nodes j along with the probability accumulated at the boundaries leads to:

∂PL

∂T
(tn)+

∫ zmax

zmin

∂θ

∂T
(z, tn)d z + ∂PR

∂T
(tn) =∂PL

∂T
(tn)+

J∑
j=1

∂θ j

∂T
(tn)h + ∂PR

∂T
(tn)

= Sn
1

F̂1 − F̂0
+

J∑
j=1

L n
j θ j (tn)h +

Sn
J

F̂ J+1 − F̂ J

= Sn
1 −Sn

0

2(F̂1 − F̂0)
+

J−1∑
j=0

1

2

Sn
j

F̂ j+1 − F̂ j

−
J∑

j=1

1

2

(
Sn

j

F̂ j+1 − F̂ j
+

Sn
j

F̂ j − F̂ j−1

)

+
J+1∑
j=2

1

2

Sn
j

F̂ j − F̂ j−1
+

Sn
J −Sn

J+1

2(F̂ J+1 − F̂ J )

=0.

where we used the boundary conditions (4.45) and (4.46). Therefore, the total probability
stays constant, i.e., equal to 1.

First moment conservation. Regarding the conservation of the first moment, we
find,

Fmin
∂PL

∂T
(tn)+

∫ zmax

zmin

F (z)
∂θ

∂T
(z, tn)d z +Fmax

∂PR

∂T
(tn)

=Fmin
Sn

1

F̂1 − F̂0
+

J∑
j=1

F̂ j L
n
j θ j (tn)h +Fmax

Sn
J

F̂ J+1 − F̂ J

= (F̂1 + F̂0)Sn
1

2(F̂1 − F̂0)
+

J−1∑
j=0

F̂ j+1

2

Sn
j

F̂ j+1 − F̂ j
−

J∑
j=1

F̂ j

2

(
Sn

j

F̂ j+1 − F̂ j
+

Sn
j

F̂ j − F̂ j−1

)

+
J+1∑
j=2

F̂ j−1

2

Sn
j

F̂ j − F̂ j−1
+

(F̂ J + F̂ J+1)Sn
J

2(F̂ J+1 − F̂ J )

= (−F̂1 + F̂0)Sn
1

2(F̂1 − F̂0)
+ (F̂2 − F̂1)Sn

1

2(F̂2 − F̂1)
+

J−1∑
j=2

1

2

(
F̂ j+1 − F̂ j

F̂ j+1 − F̂ j
− F̂ j − F̂ j−1

F̂ j − F̂ j−1

)
Sn

j

+
(−F̂ J + F̂ J+1)Sn

J

2(F̂ J+1 − F̂ J )
+

(F̂ J−1 − F̂ J )Sn
J

2(F̂ J − F̂ J−1)

=0

where we used the definition of F̂0 and F̂ J+1 (Equation 4.40) as well as the boundary
conditions (4.45) and (4.46). Therefore, the first moment is conserved over time and is
equal to the initial forward swap rate f .

Lower boundary. It is suggested that the lower boundary Fmin for the standard SABR
model is placed at or near zero. However, the finite difference grid starts at F̂0, poten-
tially requiring the evaluation of functions that are not well-defined for negative values
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of F̂0. Fortunately, only the product Ĉ0Ê0(T )θ0(T ) is used in the discretization of Equa-
tion (4.43) and it is entirely defined by Ĉ1Ê1(T )θ1(T ) because of the mirror-like bound-
ary condition imposed at the fictitious point Fmin described by Equation (4.45). By direct
application of the latter equation, Ĉ0Ê0(T )θ0(T ) will take the value −Ĉ1Ê1(T )θ1(T ). An-
other alternative would be to place the grid so that F̂0 = Fmin and use boundary condition
θ0(T ) = 0 there. The probability of absorption PL could then be evaluated with a forward
finite difference first derivative estimate. The scheme would still be moment preserving.
However, this comes at the cost of a slight loss of accuracy as, effectively, the derivative

would be estimated using θ(z1,T ) = θ(h,T ) instead of θ
(
z1 − h

2 ,T
)
= θ

(
h
2 ,T

)
.

The formula for Γ is also undefined for F = f , in which case we just use Γ( f ) = ∂C
∂F ( f ).

Call and put prices. The undiscounted call and put prices are obtained by integrating
with the mid-point method. Let z∗ = z(y(K )). We first suppose that z− < z∗ < z+. Let k
be the index such that z−+ (k −1)h < z∗ ≤ z−+kh and Fk = F (y(z−+kh)). Then

Vcall(K ,T ) =
∫ zk

z∗
(F (z)−K )θ(z)d z +

J−1∑
j=k+1

(F̂ j −K )hθ j + (Fmax −K )PR , (4.49)

Vput(K ,T ) =
∫ zk

z∗
(K −F (z))θ(z)d z +

k∑
j=1

(K − F̂ j )hθ j + (K −Fmin)PL . (4.50)

For the call option case, note that the first term of Equation (4.49) is approximated as
follows. We have ∫ zk

z∗
(F (z)−K )θ(z)d z =

∫ Fk

K
(F −K )

θ(z(F ))

D(F )
dF . (4.51)

We then assume θ to be constant between zk−1 and zk , and make the approximation

D(F ) = ∂F
∂z ≈ 2 Fk−F̂k

h (we found that this choice preserved a smoother numerical density).
This leads to ∫ zk

z∗
(F (z)−K )θ(z)d z ≈ h

4(Fk − F̂k )
(Fk −K )2θk . (4.52)

When z∗ ≤ z−, Vcall = f −K and Vput = 0. When z∗ ≥ z+, Vcall = 0 and Vput = K − f .

Equations (4.49) and (4.50) preserve the put-call parity exactly:

Vcall(K ,T )−Vput(K ,T ) = (Fmin −K )PL +
J−1∑
j=1

(F̂ j −K )hθ j + (Fmax −K )PR

= FminPL +
J−1∑
j=1

F̂ hθ j +FmaxPR −K

[
PL +

J−1∑
j=1

hθ j +PR

]
= F −K ,

where we used the conservation of the zero-th and first moments to obtain the last
equality.
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4.4.1. MOMENT PRESERVING IMPLICIT EULER SCHEME
The backward Euler time stepping scheme applied to Equation (4.43) leads to:

θn+1
j −θn

j = δL n+1
j θn+1

j , (4.53a)

PL(tn+1)−PL(tn) = δ Ĉ1

F̂1 − F̂0
Ê1(tn+1)θn+1

1 , (4.53b)

PR (tn+1)−PR (tn) = δ Ĉ J

F̂ J+1 − F̂ J
Ê J (tn+1)θn+1

J , (4.53c)

for j = 1, ..., J and n = 0, ..., N − 1, where θ is the transformed probability density and
PL ,PR are the probabilities of absorption at z = z− and z = z+.

4.4.2. MOMENT PRESERVING CRANK-NICOLSON SCHEME
The trapezoidal time stepping applied to Equation 4.43 leads to:

θn+1
j −θn

j = δ

2

(
L n+1

j θn+1
j +L n

j θ
n
j

)
, (4.54a)

PL(tn+1)−PL(tn) = δ

2

Ĉ1

F̂1 − F̂0

(
Ê1(tn+1)θn+1

1 + Ê1(tn)θn
1

)
, (4.54b)

PR (tn+1)−PR (tn) = δ

2

Ĉ J

F̂ J+1 − F̂ J

(
Ê J (tn+1)θn+1

J + Ê J (tn)θn
J

)
, (4.54c)

for j = 1, ..., J and n = 0, ..., N −1.

4.4.3. CRANK-NICOLSON OSCILLATIONS WITH THE SABR MODEL
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Figure 4.4.1: Probability density in Hagan PDE discretized with Crank-Nicolson with 500 points.
α= 35%,β= 0.25,ρ =−10%,ν= 100%,τex = 1

We use the same parameters as the example of negative density with the standard
SABR formula in [84]: α= 35%,β= 0.25,ρ =−10%,ν= 100% and forward swap rate f = 1
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at τex = 1, a relatively fine discretization in the rate dimension (500 points, that is h =
0.01005) and large time steps (40 steps, that is δ= 0.025). The authors in [84] recommend
between 200 and 500 points and 30 to 100 time steps.

Figure 4.4.1a shows strong oscillations around the forward. To guarantee the ab-
sence of oscillations, the Courant number should be small enough Ψ ≤ 1 (Theorem 2.2
in [157]). For the uniform discretization of Q(F ),ΨQ = M δ

h2 . This corresponds directly to
the stability of the explicit Euler part of Crank-Nicolson. In practice, a higher value is ac-
ceptable because of a slight damping in the Crank-Nicolson scheme [124]. Although, as
per Equation (4.6), M depends on F , we can use the at-the-money value corresponding
to F = f , as the spike is located there; that is,

ΨQ = 1

2
α2 f 2β δ

h2 , (4.55)

Ψθ = f β
δ

h2 . (4.56)
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Figure 4.4.2: First 4 time steps of the probability density in Hagan PDE discretized with Crank-Nicolson

In our example, in Figures 4.4.1a and 4.4.2a ΨQ ≈ 15 while Figure 4.4.2b shows that
indeed when Ψ < 1 there are no oscillations. The Crank-Nicolson oscillations are even
stronger with the PDE in θ as forα¿ 1, we haveΨθ ÀΨQ . Using the same SABR param-
eters and nsd = 3 (corresponding to Fmax ≈ 5), Ψθ ≈ 250. In the next sections it is shown
that a much smaller number of time steps can be used with other finite difference time
stepping techniques whilst still preserving good accuracy.

4.4.4. RANNACHER TIME STEPPING
A common fix for Crank-Nicolson oscillations related to non smooth initial data is the
Rannacher time stepping [73, 172, 173]. It consists of introducing two half time steps of
implicit Euler time stepping before applying the Crank-Nicolson scheme, because the
implicit Euler scheme has much stronger damping properties. This comes at a cost in
accuracy as implicit Euler is an order-1 scheme in time, especially when only a few time
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steps are needed. The SABR density discretization will still be moment preserving if we
discretize the Euler half steps as:

θ
n+ 1

2
j −θn

j = δ

2
L

n+ 1
2

j θ
n+ 1

2
j , (4.57a)

PL(tn+ 1
2

)−PL(tn) = δ

2

Ĉ1

F̂1 − F̂0
Ê1(tn+ 1

2
)θ

n+ 1
2

1 , (4.57b)

PR (tn+ 1
2

)−PR (tn) = δ

2

Ĉ J

F̂ J+1 − F̂ J
Ê J (tn+ 1

2
)θ

n+ 1
2

J , (4.57c)

for j = 1, ..., J and n = 0, 1
2 ,1, 3

2 . The next steps are Crank-Nicolson steps for n = 2, ..., N−1.

4.4.5. BDF2 SCHEME
The second-order backward difference scheme (BDF2) is an A-stable and L-stable multi-
step implicit scheme and will therefore damp any oscillation very quickly. Multi-step
schemes have however severe limitations: instabilities will occur for sudden changes in
the system variables, and initialization by another method is needed for the first steps
[199]. For example they can not be applied to linear complimentary problems like the
pricing of American options through the discretization of the Black-Scholes PDE [127].
Those issues don’t arise with the SABR density PDE. The first moments will be preserved
with the following discretization:

3θn+2
j −4θn+1

j +θn
j = 2δL n+2

j θn+2
j , (4.58a)

3PL(tn+2)−4PL(tn+1)+PL(tn) = 2δ
Ĉ1

F̂1 − F̂0
Ê1(tn+2)θn+2

1 , (4.58b)

3PR (tn+2)−4PR (tn+1)+PR (tn) = 2δ
Ĉ J

F̂ J+1 − F̂ J
Ê J (tn+2)θn+2

J , (4.58c)

for j = 1, ..., J and n = 0, ..., N −2. The implicit Euler scheme is used to compute θ1
j ,P 1

L ,P 1
R

at n = 0.

4.4.6. IMPLICIT RICHARDSON EXTRAPOLATION
A simple Richardson extrapolation in time [177] on implicit Euler will also provide a
nearly order-2 scheme in time, keeping strong damping properties of the implicit Euler
scheme at the cost of increased computational load: the implicit Euler scheme (Equa-
tions 4.57) is evaluated with δ

2 and δ. In practice, it is around twice as slow as the Crank-
Nicolson scheme. At T = Nδ= τex , we apply:

θ(z) = 2θ̄
δ
2 (z)− θ̄δ(z) (4.59a)

PL = 2P̄
δ
2

L − P̄δ
L (4.59b)

PR = 2P̄
δ
2

R − P̄δ
R (4.59c)

where the θ̄δ, P̄δ
L , P̄δ

R are the approximations of θ,PL ,PR , computed with the implicit
Euler scheme and a time step of δ.
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4.4.7. LAWSON-MORRIS-GOURLAY SCHEME
A local Richardson extrapolation in time of second- and third-order is proposed in [124]
and [76]. In practice, it is a faster alternative to the standard Richardson extrapolation
because the tridiagonal matrix stemming from the finite difference discretization can be
reused, while keeping L-stability and thus strong damping properties.

For the second-order scheme, at each time step, Equation (4.59) is applied. For the
third-order scheme, at each time step we apply:

θ(F ) = 4.5θ̄
δ
3 (F )−4.5θ̄

2δ
3 (F )+ θ̄δ(F ) (4.60a)

PL = 4.5P̄
δ
3

L −4.5P̄
2δ
3

L + P̄δ
L (4.60b)

PR = 4.5P̄
δ
3

R −4.5P̄
2δ
3

R + P̄δ
R (4.60c)

where θ̄
δ
3 is θ computed by implicit Euler with 3 time steps of size δ

3 and θ̄
2δ
3 is θ com-

puted by implicit Euler with a time step of 2δ
3 and δ

3 . Being linear combinations of im-
plicit Euler, those schemes are moment preserving.

4.4.8. LAWSON-SWAYNE SCHEME
A slightly faster second-order unconditionally stable scheme is presented as a remedy to

Crank-Nicolson in [124, 125]. With a = 1−
p

2
2 , it consists in applying two implicit Euler

steps with time step of aδ and an extrapolation on the values at those two steps.

First stage:

θn+a
j −θn

j = aδL n+a
j θn+a

j ,

PL(tn+a)−PL(tn) = aδ
Ĉ1

F̂1 − F̂0
Ê1(tn+a)θn+a

1 ,

PR (tn+a)−PR (tn) = aδ
Ĉ J

F̂ J+1 − F̂ J
Ê J (tn+a)θn+a

J .

(4.61a)

Second stage:

θn+2a
j −θn+a

j = aδL n+2a
j θn+2a

j ,

PL(tn+2a)−PL(tn+a) = aδ
Ĉ1

F̂1 − F̂0
Ê1(tn+2a)θn+2a

1 ,

PR (tn+2a)−PR (tn+a) = aδ
Ĉ J

F̂ J+1 − F̂ J
Ê J (tn+2a)θn+2a

J .

(4.61b)

And finally:

θn+1
j = (

p
2+1)θn+2a

j −p
2θn+a

j ,

PL(tn+1) = (
p

2+1)PL(tn+2a)−p
2PL(tn+a) ,

PR (tn+1) = (
p

2+1)PR (tn+2a)−p
2PR (tn+a) ,

(4.61c)
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for j = 1, ..., J and n = 0, ..., N −1.
The scheme is moment-preserving as it can also be seen as a linear combination of

implicit Euler schemes.

4.4.9. TR-BDF2 SCHEME
TR-BDF2 is a two-stage method where the first stage consists in applying the (weighted)
trapezoidal rule (Crank-Nicolson) and the second stage consists in applying the second-
order backward difference scheme (BDF2) on the first stage result and the first stage
initial input [19, 137]. It is second-order accurate in time and L-stable.

First stage:

θn+a
j −θn

j = aδ

2

(
L n+a

j θn+a
j +L n

j θ
n
j

)
,

PL(tn+a) = PL(tn)+bδ
Ĉ1

F̂1 − F̂0

(
Ê1(tn+a)θn+a

1 + Ê1(tn)θn
1

)
,

PR (tn+a) = PR (tn)+bδ
Ĉ J

F̂ J+1 − F̂ J

(
Ê J (tn+a)θn+a

J + Ê J (tn)θn
J

)
.

(4.62a)

Second stage:

θn+1
j = 1

2−a

(
1

a
θn+a

j − (1−a)2

a
θn

j +δ(1−a)L n+1
j θn+1

j

)
,

PL(tn+1) = 1

2−a

(
1

a
PL(tn+a)− (1−a)2

a
PL(tn)+δ(1−a)

Ĉ1

F̂1 − F̂0
Ê1(tn+1)θn+1

1 )

)
,

PR (tn+1) = 1

2−a

(
1

a
PR (tn+a)− (1−a)2

a
PR (tn)+δ(1−a)

Ĉ J

F̂ J+1 − F̂ J
Ê J (tn+1)θn+1

J )

)
.

(4.62b)

The weight a can be chosen to match Crank-Nicolson (a = 1
2 ) or to have proportional

Jacobians (a = 2−p
2). The latter provides optimal stability [48].

This can be extended to three-stages, with two stages of the trapezoidal rule and one
stage of third-order backward difference scheme (BDF3) as in [22], resulting in a method
with even stronger damping properties that we will name “Bathe”:

θ
n+ 1

3
j = θn

j +
δ

6

(
L n

j θ
n
j +L

n+ 1
3

j θ
n+ 1

3
j

)
, (4.63a)

θ
n+ 2

3
j = θn

j +
δ

6

(
L

n+ 1
3

j θ
n+ 1

3
j +L

n+ 2
3

j θ
n+ 2

3
j

)
, (4.63b)

θn+1
j = 1

11

(
18θ

n+ 2
3

j −9θ
n+ 1

3
j +2θn

j +2δL n+1
j θn+1

j

)
. (4.63c)

4.4.10. OPTIMIZING FOR PERFORMANCE
The function E(T,F ), defined in Equation (4.6), needs to be computed for every grid
point

(
F j , tn

)
. The performance of the overall algorithm can be greatly improved by min-

imising the number of evaluations of the pow and exp functions as those are expensive.
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The quantities D(F ) and Γ(F ) are constant in time and can thus be cached between time
steps. A further improvement is to decompose tn+1 as tn +δ, then

eρναΓtn+1 = eρναΓtn eρναΓδ (4.64)

We can therefore just compute e j = eρναΓ(F j )δ for j = 0, ..., J + 1 once, and at each step
simply update E as:

E n+1
j = e j E n

j (4.65)

with initial value E 0
j = 1. This can be easily extended to multiple time step sizes used in

multi-stage schemes. We used the above optimization for the tests presented in the next
section.

For multi-stage schemes, another approach is to consider E as piecewise constant
between full time steps and thus to avoid its computation for fractions of time steps. In
our tests, the latter technique led to a slightly decreased accuracy and little performance
gain. In particular, the increase in error was particularly visible for long term options
and large time steps, and we thus did not use it in our tests.

4.5. NUMERICAL RESULTS

4.5.1. OSCILLATIONS
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Figure 4.5.1: Probability density in Hagan PDE using a total of 5 time steps, compared to the probability
density implied by the Hagan formula at tN = τex .

With the same parameters as in Section 4.4.3, Figure 4.5.1 shows a smooth positive
probability density using only a total of 5 time steps when the Rannacher smoothing
is applied to the Crank-Nicolson scheme. The density computed using the second- or
third-order Lawson-Morris-Gourlay (LMG2, LMG3), BDF2, Lawson-Swayne (LS), TR-
BDF2 schemes or Richardson extrapolation on the implicit Euler scheme (RE) would
look very similar. Figure 4.5.2b shows no apparent oscillations in the first steps for the
Rannacher scheme. BDF2 and LMG2 would look the same. The Lawson-Swayne scheme
shows a nearly imperceptible oscillation at the first step, and no more afterwards (Fig-
ure 4.5.2c). The TR-BDF2 and Bathe schemes behave similarly. In contrast, the Crank-
Nicolson scheme had strong oscillations visible at T = τex with 40 time steps for the PDE
in Q and even stronger oscillations with 80 time steps for the PDE in θ.
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Figure 4.5.2: Transformed density for the first 4 time step in Hagan PDE discretized with various finite
difference scheme using a total of 5 time steps.

4.5.2. PERFORMANCE

Hagan example. With the same parameters as in Section 4.4.3, Figure 4.5.3 displays the
maximum error in the probability density with a varying number of time steps and 500
points for the rate dimension. The reference is the probability obtained by the Crank-
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Figure 4.5.3: Performance on Hagan example

Nicolson scheme with 5120 points for the rate dimension and enough time steps to en-
sure that Φθ < 1. All schemes, except Crank-Nicolson and Bathe exhibit a second order
convergence. The Crank-Nicolson scheme shows a very low convergence below 100 time
steps while the Bathe scheme shows higher than order-2 convergence. Because we use a
fixed number of points in the rate dimension, around ten times smaller than for the ref-
erence values, the maximum error in θ is floored for a large number of time-steps. The
performance of each scheme is better assessed on the plot of the error against the com-
putational time. On this example, The BDF2, TR-BDF2 and Lawson-Swayne schemes
exhibit the best performance vs accuracy.

Other tests we performed using the implied volatility maximum error or even the
at-the-money implied volatility error lead to similar conclusions. Furthermore, a Black
implied volatility with an absolute error below 0.1% was achieved with only 3 time steps
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for Bathe, 6 for Lawson-Swayne and TR-BDF2, 10 for LMG2, and 12 for BDF2 and RAN.
Lawson-Swayne is the most efficient scheme on this problem, closely followed by TR-
BDF2, Rannacher and BDF2.

Higher-order schemes like BDF3, LMG3 or a third-order Richardson extrapolation
were found to be no better performing than their second-order variation on this prob-
lem.

Andreasen-Huge example. We consider the SABR parameters used in [13]: α= 0.0873,β=
0.7,ρ =−0.48,ν= 0.47 with a forward of f = 0.025 and a maturity τex = 10.0 and look at
the maximum error in implied volatility between 0.2 f and 2 f using 500 points for the
rate dimension, and varying the number of time steps.
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Figure 4.5.4: Performance on Andreasen-Huge example

Only 3 time steps are enough to achieve a Black implied volatility accuracy better
than 0.1% with Lawson-Swayne and Bathe schemes, 4 time steps for TR-BDF2, 5 for
LMG2, 12 for RAN and BDF2 (Figure 4.5.4a).

4.5.3. DUPIRE FORWARD PDE
The two different approaches result in the same smile, even with a relatively small num-
ber of time steps. With the Lawson Swayne finite difference method, the difference in
implied volatility between the two approaches with 5 time steps and J = 50,nsd = 4 is al-
ways below 0.04%. Figure 4.5.5a displays the probability density computed by numerical
differentiation of the prices, using the SABR parameters of Andreasen-Huge.

If one pushes the number of time steps smaller yet, then a difference appears in
favour the the probability density approach (Figure 4.5.5b with 2 steps).

The probability density approach is more accurate with fewer time steps, and more
stable. With only two time steps, the Dupire approach leads to a large oscillation in prob-
ability density. As Lawson-Swayne is strongly L-stable, it disappears very quickly: with
three time steps or more.
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Figure 4.5.5: Numerical Probability Density on Andreasen-Huge example
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Figure 4.5.6: Black implied volatility on Andreasen-Huge example

4.6. FREE-BOUNDARY SABR MODEL BEHAVIOR

4.6.1. IMPLIED VOLATILITY SMILE

We first consider the same parameters as in [14] to validate the PDE approach presented
in Section 4.2.3. The arbitrage-free PDE (4.13) reproduces the same probability density
(Figure 4.6.1a). We observe a bigger and narrower spike around zero than Antonov et
al. [14]. We would obtain a smaller spike had we employed larger steps to compute
the density. Note that this spike is not the result of a numerical error propagated in the
finite difference scheme, but is inherent to the free-boundary SABR model. The finite
difference scheme actually behaves very well presenting no oscillation around the spike.
Furthermore, the option delta stays smooth around the spike, near f = 0 or K = 0.

The presence of such a spike might look unnatural at first. This spike is a feature of
the free-boundary and ensures that rates are ’sticky’ around zero in the model. This is
viewed a strength of the free-boundary approach, as stickiness in rates near 0 has been
observed in historical rates [142, 181], the spike in the probability density corresponds
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Figure 4.6.1: Lawson-Swayne on the free-boundary SABR PDE with f = 50 b.p.,
β= 0.1,α= 0.5 f 1−β,ρ =−30%,ν= 30%,τex = 3

to this stickiness. Stickiness at a positive rate −b could be represented by a shifted free-
boundary model where L(F ) = |F +b|β with the shift b being negative. The β parameter
controls the stickiness intensity.

Table 4.6.1 shows that the normal volatilities are quite close to the reference values of
Antonov et al. [14]. The maximum error from their analytic approximation on the same

K Lawson-Swayne Reference Difference

-0.95 30.72 30.93 -0.21
-0.80 29.70 29.95 -0.25
-0.65 28.69 28.97 -0.28

-0.5 27.70 27.99 -0.29
-0.35 26.74 27.04 -0.30

-0.2 25.87 26.15 -0.28
-0.05 25.21 25.46 -0.25

0.1 25.71 25.85 -0.14
0.25 26.65 26.69 -0.04

0.4 27.43 27.39 0.04
0.55 28.06 27.97 0.09

0.7 28.58 28.45 0.13
0.85 29.03 28.87 0.16

1.0 29.42 29.25 0.17
1.15 29.79 29.60 0.19

1.3 30.14 29.94 0.20
1.45 30.48 30.29 0.19

1.6 30.84 30.63 0.21
1.75 31.20 30.99 0.21

1.9 31.58 31.37 0.21

Table 4.6.1: PDE accuracy with f = 50 b.p., β= 0.25,α= 0.5 f 1−β,ρ =−30%,ν= 30%,τex = 3.The reference
values are obtained by Monte-Carlo simulation in [14].

data is 0.20 b.p. while the PDE leads to a maximum error of 0.30 b.p. when compared to
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their Monte-Carlo reference values. When compared to the classic normal SABR formula
from Hagan et al. [85], the error is slightly lower for positive strikes: the PDE, stemming
from an expansion of the same order as the one used in Hagan normal formula, stays
closer to it rather than to Monte-Carlo prices, which realises the theoretical SABR model.
This is particularly true in the right wing K ≥ f where the error in b.p. vol compared to
the normal Hagan formula is between 0.20 and 0.03, while the error against Monte-Carlo
is between 0.17 and 0.21.

Figure 4.6.1b shows that the smile presents an inflection point at F = 0. This is a typ-
ical behavior of the free-boundary SABR model under low rates. In contrast, the shifted
SABR model assumes that this point is not special as absorption occurs at a different
point, the shift F =−b that no forward rate is supposed to be able to reach.

4.6.2. THE ABSENCE OF KNEE
Different recent studies show that the at-the-money normal volatilities observed in the
market have a knee like shape [44, 93]: they are linear under very low-rate and are rea-
sonably constant from low to high forward rates.

Hagan explains that this has led people to believe that the market switches from nor-
mal to lognormal when the rates become very low, but that in reality, absorption at zero
creates this behavior even in the normal model [84]. We reproduce the example in the
normal SABR case β = 0, with absorption at F = 0 and see that the free-boundary SABR
model behaves just like the standard normal SABR model without absorption in this case
(Figure 4.6.2a).
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Figure 4.6.2: At-the-money b.p. volatilities with f = 1,α= 0.35,ρ = 0%,ν= 100%,τex = 1

An increase of β results in only a very mild knee (Figure 4.6.2b).

4.7. CONCLUSION
It is possible to accurately compute option prices under the arbitrage-free SABR ap-
proach with very few time steps, even for long maturities. The Rannacher smoothing is a
particularly simple way to improve accuracy significantly compared to Crank-Nicolson
on this problem. However, as the number of time steps decreases, the lower conver-
gence of the Euler smoothing steps becomes more apparent. The simpler BDF2 scheme
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is more efficient on this problem. Other less well known schemes such as TR-BDF2 or
Lawson-Swayne further increase the efficiency. In our experiments, the TR-BDF2 and
Lawson-Swayne schemes were robust and had similar stability and convergence prop-
erties.

Thus, with a careful choice of finite difference scheme, the arbitrage-free PDE of Ha-
gan et al. [84] is particularly competitive to the one step finite difference approach of
Andreasen and Huge [13]. It can also lead to arbitrage-free pricing of alternative SABR
models such as the free-boundary SABR model.



APPENDIX

4.A. POSITIVE DENSITY ON THE ARBITRAGE-FREE SABR OF HA-
GAN

We have seen in the previous chapter, that on the pure diffusion equation with Dirac
initial condition, the BDF2 scheme always leads to a positive density at the Dirac loca-
tion, regardless of the ratio of time steps over space-steps. Similarly, we have seen that
the Lawson-Swayne leads to a positive discrete density after the second time step. Let
us look now, in practice, on the arbitrage-free SABR PDE, when does the density stay
positive.

As an example, we choose the parameters of Hagan et al. [84], namely α = 35%,β =
25%,ρ =−10%,ν= 100%, f = 1 with a dense grid in the transformed coordinate z (num-
ber of space-steps N = 50000), varying the time to expiry T with only 2 time steps in order
to assess the at-the-money positivity of the density Q when the ratio of space-steps over
time steps, that is, when k

h2 is very large.
Our implementation of BDF2 leads to a positive density for T ≤ 91 and to a negative

density for T ≥ 92. Interestingly, it will lead to negative density as soon as N ≥ 81, which
suggests an IEEE 754 double accuracy representation issue of our implementation in-
stead of an inherent instability of the scheme related to the ratio k

h2 (see Table 4.A.1). In
any case, a time to expiry of more than 90 years is very extreme, and under more realistic
parameters, there is no negative density.

T k
h2 Positive

91 6.62 ·102 Yes
91 2.84 ·108 Yes
92 2.87 ·108 No
92 6.62 ·102 No

Table 4.A.1: Probability density positivity with SABR parameters: α= 35%,β= 25%,ρ =−10%,ν= 100%, f = 1

In contrast, the Crank-Nicolson scheme will always lead to a negative density as the
space-step size h is itself dependent on the time-to-maturity T and k

h2 can not be made

small enough without increasing the number of time steps (we don’t have k
h2 → 0 when

T → 0).
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5
STOCHASTIC COLLOCATION FOR AN ARBITRAGE-FREE

IMPLIED VOLATILITY, PART I

This chapter explains how to calibrate a stochastic collocation polynomial against market
option prices directly. The method is first applied to the interpolation of short maturity
equity option prices in a fully arbitrage-free manner and then to the joint calibration of
the constant maturity swap convexity adjustments with the interest rate swaptions smile.
To conclude, we explore some limitations of the stochastic collocation technique.

5.1. INTRODUCTION
The financial markets provide option prices for a discrete set of strike prices and ma-
turity dates. In order to price over-the-counter vanilla options with different strikes,
or to hedge complex derivatives with vanilla options, it is useful to have a continuous
arbitrage-free representation of the option prices, or equivalently of their implied volatil-
ities. For example, the variance swap replication of Carr and Madan consists in integrat-
ing a specific function over a continuum of vanilla put and call option prices [31, 33].
More generally, Breeden and Litzenberger [28] have shown that any path-independent
claim can be valued by integrating over the probability density implied by market option
prices. An arbitrage-free representation is also particularly important for the Dupire lo-
cal volatility model [55], where arbitrage will translate to a negative local variance. In
this chapter, we describe a new technique to interpolate the market option prices in an
arbitrage-free manner.

A rudimentary, but popular representation is to interpolate market implied volatili-
ties with a cubic spline across option strikes. Unfortunately this may not be arbitrage-
free as it does not preserve the convexity of option prices in general. A typical convex
interpolation of the call option prices by quadratic splines or rational splines is also not
satisfactory in general since it may generate unrealistic oscillations in the corresponding
implied volatilities, as evidenced in [109]. Kahale [116] designs an arbitrage-free inter-
polation of the call prices, which however requires convex input quotes, employs two
embedded non-linear minimizations, and it is not proven that the algorithm for the in-
terpolation function of class C 2 converges. In reality, it is often not desirable to strictly
interpolate option prices as those fluctuate within a bid-ask spread. Interpolation will

This chapter is based on the article ’Model-Free Stochastic Collocation for an Arbitrage-Free Implied Volatility,
Part I’, published in Decisions in Economics and Finance, 2019 [132].
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lead to a noisy estimate of the probability density (which corresponds to the second
derivative of the undiscounted call option price).

More recently, Andreasen and Huge [12] have proposed to calibrate the discrete piecewise-
constant local volatility corresponding to a single-step finite difference discretization of
the forward Dupire equation. In their representation of the local volatility, the authors
use as many constants as the number of market option strikes for an optimal fit. It is
thus sometimes considered to be "non-parametric". Their technique works well but
often yields a noisy probability density estimate, as the prices are typically over-fitted.
Furthermore the output of their technique is a discrete set of option prices, which, while
relatively dense, must still be interpolated carefully to obtain the price of options whose
strike falls in between nodes.

An alternative is to rely on a richer underlying stochastic model, which allows for
some flexibility in the implied volatility smile, such as the Heston or SABR stochastic
volatility models. While semi-analytic representations of the call option price exist for
the Heston model [91], the model itself does not allow to represent short maturity smiles
accurately. The SABR model is better suited for this, but has only closed-form approxi-
mations for the call option price, which can lead to arbitrage [84, 85].

Grzelak and Oosterlee [78] use stochastic collocation to fix the Hagan SABR approx-
imation formula defects and produce arbitrage-free option prices starting from the Ha-
gan SABR formula. Here, we will explore how to calibrate the stochastic collocation poly-
nomial directly to market prices, without going through an intermediate model.

This is of particular interest to the richer collocating local volatility (CLV) model,
which allows to price exotic options through Monte-Carlo or finite difference methods
[77]. A collocation polynomial calibrated to the vanilla options market is key for the ap-
plication of this model in practice.

Another application of our model-free stochastic collocation is to price constant ma-
turity swaps (CMS) consistently with the swaption implied volatility smile. In the stan-
dard approximation of Hagan [82], the CMS convexity adjustment consists in evaluating
the second moment of the distribution of the forward swap rate. It can be computed in
closed-form with the stochastic collocation. This allows for an efficient method to cali-
brate the collocation method jointly to the swaptions market implied volatilities and to
the CMS spread prices.

The outline of the chapter is as follows. Section 5.2 presents the stochastic colloca-
tion technique in detail. Section 5.3 explains how to calibrate the stochastic collocation
directly to market prices, and how to ensure the arbitrage-free calibration transparently,
through a specific parameterization of the collocation polynomial. We also describe a
general technique to create an arbitrage-free discrete set of option prices from an initial
set of quotes, which may contain arbitrage. Section 5.4 reviews some popular option im-
plied volatility interpolation methods, and illustrates the various issues that may arise
with those on a practical example. Section 5.5 applies the direct collocation technique
on two different examples of equity index option prices. Section 5.6 introduces the joint
calibration of CMS convexity adjustments and swaption prices in general. Section 5.7
applies the model-free stochastic collocation on the joint calibration of CMS and swap-
tion prices. Finally, Section 5.8 explores some limitations of the stochastic collocation
technique along with possible remedies.
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5.2. OVERVIEW OF THE STOCHASTIC COLLOCATION METHOD
Collocation methods are commonly used to solve ordinary or partial differential equa-
tions [138]. The underlying principle is to solve the equations in a specific finite dimen-
sional space of solutions, such as polynomials up to a certain degree. In contrast, the
stochastic collocation method [151] consists in mapping a physical random variable Y
to a point X in an artificial stochastic space. Collocation points xi are used to approxi-
mate the function mapping X to Y ,Φ−1

X ◦ΦY , typically by a polynomial, whereΦX ,ΦY are
respectively the cumulative distribution functions (CDF) of X and Y . Thus only a small
number of inversions of Y (and evaluations of ΦY ) are used. This allows the problem to
be solved in the "cheaper" artificial space.

In the context of option price interpolation, the stochastic collocation allows us to
interpolate the market CDF in a better set of coordinates. In particular, we follow Grzelak
and Oosterlee [78] and use a Gaussian distribution for X .

In [78], the stochastic collocation is applied to the survival distribution function Φ̄Y ,
where Φ̄Y (y) = 1−ΦY (y) withΦY being the cumulative density function of the asset price
process. When the survival density function is known for a range of strike prices, their
method can be summarized by the following steps:

1. Given a set of collocation strikes yi , i = 0, ..., N , compute the survival density pi at
those points: pi = Φ̄Y (yi ).

2. Project on the Gaussian distribution by transforming the pi using the inverse cu-
mulative normal distributionΦ−1 resulting in xi =Φ−1(1−pi ).

3. Interpolate (xi , yi ) with a monotonic and derivable function g on R. Grzelak and
Oosterlee [78] use a Lagrange polynomial for g but the technique can be applied to
any derivable and monotonic function. Further on, we will consider a monotonic
spline.

4. Price by integrating the density with the integration variable x = Φ−1(1− Φ̄Y (y)),
using the approximation g to map the coordinates x to the strikes y .

In order to illustrate the mapping involved in the stochastic collocation technique,
we consider four options with strikes y0 = 40, y1 = 70, y2 = 120, y3 = 215 and maturity
time T = 2 in the Black-Scholes model with constant volatilityσ= 20% and forward price
to maturity F = 100. Figure 5.2.1a details the mapping from the four market strikes yi to
the cumulative probability density pi (step 1) and Figure 5.2.1b shows the mapping from
the coordinate xi to yi (step 2). The initial goal of step 3 is to find a smooth function that
approximates well the theoretical mapping in the coordinates from x to y . The mapping
function only needs to be monotonic, and to conserve the first moment, in order for the
collocation method to be arbitrage-free.

The figures show the mapping with the Black-Scholes model, which constitutes the
reference, and with the polynomial collocation presented in this chapter, based on the
four options. The cumulative density for the B-spline collocation is obtained after com-
puting the optimal collocation cubic polynomial in the x, y coordinates, based on the
four points (xi , yi )i=0,...,3.
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Figure 5.2.1: Mapping in the stochastic collocation technique for the Black-Scholes model with volatility
σ= 20%.

In reality, we are really interested in minimizing the error in terms of option prices
(or equivalently implied volatilities). The discrete set of reference option prices either
comes directly from the financial markets, or from a prior model. And this is where step
4 becomes also critical.

Let us now detail step 4. The undiscounted price of an option with strike price K is
obtained by integrating over the probability density [28]:

Vcall(K ) =
∫ +∞

0
max

(
y −K ,0

)
φY (y)d y ,

where φY the probability density implied by the options prices. We then perform the
change of variable x =Φ−1(1− Φ̄Y (y)) to obtain

Vcall(K ) =
∫ Φ−1(1)

Φ−1(0)
max

(
Φ̄−1

Y (1−Φ(x))−K ,0
)
φ(x)d x .

As g (x) ≈ Φ̄−1
Y (1−Φ(x)), we have

Vcall(K ) ≈
∫ ∞

−∞
max

(
g (x)−K ,0

)
φ(x)d x

=
∫ ∞

xK

(
g (x)−K

)
φ(x)d x , (5.1)

where φ(x) is the Gaussian density function and

xK = g−1(K ) .
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The change of variables is valid when the survival density is continuous and its derivative
is integrable. In particular, it is not necessary for the derivative to be continuous.

In this chapter, we will focus on the collocation towards a polynomial gN of degree
N and will use the notation g (x) = gN (x). As shown in [98], a polynomial multiplied by
a Gaussian can be integrated analytically as integration by parts leads to a recurrence
relationship on the partial moments mi (b) = ∫ ∞

b xiφ(x)d x. This idea is also the basis of
the Sali tree method [92]. The recurrence is given by

mi+2(b) = (i +1)mi (b)+bi+1φ(b) , (5.2)

with m0(b) =Φ(−b),m1(b) =φ(b). We have then:

Vcall(K ) =
N∑

i=0
ai mi (xK )−Φ(−xK )K , (5.3)

where ai are the coefficients of the polynomial in increasing powers.
According to Equation 5.2, the term mi (xK ) can be computed with O(i ) multiplica-

tions and additions, as well as the knowledge of φ(xK ) and Φ(−xK ). The overall compu-
tational cost for pricing one vanilla option can be approximated by the cost of finding
xK and the cost of one normal density function evaluation plus one cumulative nor-
mal density function evaluation. For cubic polynomials, xK can be found analytically
through Cardano’s formula [161] and the cost is similar to the Black-Scholes formula. In
the general case of a polynomial gN of degree N , the roots can be computed in O(N 3)
operations as the eigenvalues of the associated Frobenius companion matrix M , defined
by,

M(gN ) =



0 0 · · · 0 − a0
aN

1 0 · · · 0 − a1
aN

0 1 0 − a2
aN

...
...

. . .
...

...
0 0 · · · 1 − aN−1

aN

 .

We have indeed det(λI −M) = gN (λ). This is, for example, how the Octave or Matlab
roots function works [155]. Note that for a high degree N , the system can be very ill-
conditioned. A remedy is to use a more robust polynomial basis such as the Chebyshev
polynomials and compute the eigenvalues of the colleague matrix [75, 190]. Jenkins and
Traub solve directly the problem of finding the roots of a real polynomial in [112].

A simple alternative, particularly relevant in our case as the polynomial needs to be
invertible and thus monotonic, is to use the third-order Halley’s method [68] with a sim-
ple initial guess xK =−1n, if K < F (0,T ), or xK = 1, if K ≥ F (0,T ), with F (0,T ) the forward
price of the asset to maturity T . In practice not more than three iterations are necessary
to achieve an accuracy around machine epsilon.

The put option price is calculated through the put-call parity relationship, namely

Vcall(K )−Vput(K ) = F (0,T )−K ,

where Vput(K ) is the undiscounted price today of a put option of maturity T .
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5.3. CALIBRATION OF THE STOCHASTIC COLLOCATION TO MAR-
KET OPTION PRICES

A Lagrange polynomial gN can not always be used to interpolate directly on the collo-
cation points implied by the market option strikes (yi )i=0,...,N , because on one side N
might be too large for the method to be practical (there are typically more than hun-
dred market option prices on the SPX500 equity index for a given maturity), and on the
other hand, there is no guarantee that the Lagrange polynomial will be monotonic, not
even for a small number of strikes. Grzelak and Oosterlee [78] propose to rely on a set
of collocation points (xi )i=0,...,N determined in an optimal manner from the zeros of an
orthogonal polynomial. It corresponds to the set of the Hermite quadrature points in the
case of the Gaussian distribution. This presupposes that we know the survival distribu-
tion function values at strikes which do not correspond to any quoted market strike. In
[78], those values are given by the SABR model. Even with known survival distribution
function values at the Hermite collocation points, the resulting polynomial is not guar-
anteed to be monotonic. For example, we consider options expiring in 20 years on an as-
set with spot price S = 100 that follows the Black-Scholes model with a constant volatility
σ= 25%. The Lagrange collocation polynomial of degree N = 3 or N = 5 implied by the
Gauss-Hermite nodes is not monotonically increasing, we have g ′

5(−2.34) = −15.2 (see
Table 5.3.1 for the polynomial details). Another simple example we encountered comes
from fitting SPX500 options of maturity 10 years, with the Gatheral SVI parametrization
[72]. In the SVI parameterization, the implied variance σ2 for a given option maturity is
represented by

σ2(k) = a +b
[
ρ(k −m)+

√
(k −m)2 + s2

]
,

where k = ln K
F (0,T ) is the log-moneyness for the strike price K . Our example corresponds

to the following SVI parameters a = 0.004, b = 0.027, s = 0.72, ρ = −0.99 m = 1.0. The
Lagrange quintic polynomial obtained at the Gauss-Hermite nodes implied by those SVI
parameters decreases around x =−2.36 as we have g ′

5(−2.36) =−16.5.

Table 5.3.1: Collocation polynomials at the Gauss-Hermite nodes for the Black-Scholes model with volatility
25%, and for the SVI parameters corresponding to a least squares fit of SPX500 options of maturity 10y. The

polynomial is expressed by the coefficients ci as gN (x) =∑5
i=0 ci xi .

xi pi Black-Scholes 20y SVI 10y

yi ci yi ci

-3.324257433552119 0.999556728408099 1.302 56.569 0.000608 88.616
-1.889175877753710 0.970565867070729 6.475 60.296 1.196 90.181
-0.616706590192594 0.731285863197276 26.861 24.385 39.392 12.040
0.616706590192594 0.268714136802723 106.662 11.119 146.921 -8.065
1.889175877753710 0.029434132929270 442.452 6.348 255.167 -0.267
3.324257433552119 0.000443271591900 2201.299 1.210 378.042 0.457

Here, we don’t want to assume a prior model. Instead of using a Lagrange polyno-
mial gN to interpolate on well-chosen (xi )i=0,..,N as in step 3 of the collocation method
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described in Section 5.2, we will directly calibrate a monotonic polynomial gN to the
market option prices at strikes (yi )i=0,..,m , with m typically much larger than N . The
monotonicity will be guaranteed through a specific isotonic parametrization. The pro-
posed parametrization will also conserve the first moment of the distribution exactly.

In order to apply the stochastic collocation directly to market option prices, we thus
need to:

• find an estimate of the survival density from the market option prices (correspond-
ing to the step 1 of the collocation method described in Section 5.2),

• find a good initial guess for the monotonic polynomial gN ,

• optimize the polynomial coefficients so that the collocation prices are closest to
the market option prices.

We will detail each step.

5.3.1. A ROUGH ESTIMATE OF THE MARKET SURVIVAL DENSITY
Kahale [116] proposes a straightforward estimate. Let (yi )i=0,...,m be the market strikes
and (ci )i=0,...,m the market call option prices corresponding to each strike, with y0 < y1 <
... < yn ., the call price derivative c ′i towards the strike Ki can be estimated by

c ′i ≈
li + li+1

2
where li = ci − ci−1

yi − yi−1
(5.4)

for i = 1, ...,m −1, and with c ′0 = l1, c ′m = lm .
Lemma 1 of Kahale [116] states that there is no arbitrage in those prices if and only if

−1 < ci − ci−1

yi − yi−1
< ci+1 − ci

yi+1 − yi
< 0, for i = 1, ...,m −1. (5.5)

To be more precise, we should also have max(F−yi ,0) < ci < F , where F is the underlying
forward price to the option maturity.

When Equation (5.5) holds, it is guaranteed that −1 < c ′i < 0 and the c ′i are increasing.
A more precise estimate consists in using the parabola that passes through the three
points ci−1,ci ,ci+1 to estimate the slopes:

c ′i ≈
li (yi+1 − yi )+ li+1(yi − yi−1)

yi+1 − yi−1
where li = ci − ci−1

yi − yi−1
(5.6)

for i = 1, ...,m −1, and with c ′0 = l1, c ′m = lm . It will still lead to −1 < c ′i < 0 and increasing
c ′i .

We can build a continuous representation of the survival density by interpolating
the call prices (yi ,ci )i=0,...,m with the C 1 quadratic spline interpolation of Schumaker
[179], where additional knots are inserted to preserve monotonocity and convexity1. By
construction, at each market strike price, the derivative will be equal to each c ′i .

1A C 1 polynomial spline on a fixed set of knots can not preserve monotonicity and convexity in the general
case [166].
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The survival density corresponds to

Φ̄Y (y) =−∂Vcall
∂y

(y) , (5.7)

or equivalently through the undiscounted put option prices Vput:

Φ̄Y (y) = 1− ∂Vput
∂y

(y) . (5.8)

In practice one will use out-of-the-money options to compute the survival density using
alternatively the Equations (5.7) and (5.8). While in the case of the SABR model, it is
important to integrate the probability density (or the second derivative of the call price)
from y to ∞ [78], here we are only interested in a rough guess2.

From the survival density at the strikes yi , it is then trivial to compute the normal
coordinates xi .

5.3.2. MAKING MARKET CALL PRICES ARBITRAGE-FREE
For each strike and maturity, at a given time, the market quotes two prices for an option
contract: the bid price and the ask price. In order to calibrate directly the collocation
function (a polynomial or a spline) to the market quotes, we need a single estimate of
the implied cumulative probability density. It is common practice to use the average of
the bid and ask prices, the mid price for this purpose. Alternatively, we could also build
two distinct representations: one for the bid prices and one or the ask prices.

When considered separately, the bid, ask or mid prices are not guaranteed to be
arbitrage-free in theory: there can be some theoretical arbitrage within the bid-ask spread
that can not be taken advantage of in practice. Like most financial models, the colloca-
tion method is really only well defined in the absence of arbitrage: the implied cumula-
tive probability density needs to be monotonic. We will explore in this section different
ways to smooth the quotes and make them arbitrage-free. While the polynomial calibra-
tion method we propose will still work well on a non-convex set of call prices, starting
the optimization from a convex set has two more general advantages: a better initial
estimate of the survival density and thus a better initial guess, and the ability to use a
monotonic interpolation of the survival density.

When the undiscounted call option prices ci contain some arbitrage, we need to
solve the following quadratic programming problem:

c̃ = argmin
z∈Rn+1

‖W · (z − c)‖2
2 (5.9)

subject to

−1 < zi − zi−1

yi − yi−1
< zi+1 − zi

yi+1 − yi
< 0, for i = 1, ...,m −1, (5.10)

where W is a diagonal matrix of weights. For equal weights W is the identity matrix In+1.
We can include information on the bid-ask spread, for example by taking wi to be the
inverse of the bid-ask spread at strike yi .

2Integration is still possible with the quadratic spline interpolation approach.
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We have

‖W · (z − c)‖2
2 = zT W T W z −2(W T W c)T z + (W c)T W c .

The minimization problem can thus be formulated as a quadratic programming prob-
lem:

c̃ = argmin
z∈Rn+1,Gz≤h

1

2
zT Qz +qT z (5.11)

with

Q =W T W ,

q =−W T W c ,

and the elements Gi , j of the matrix G , that specifies the linear constraints in (5.11), are

Gi ,i−1 =− 1

yi − yi−1
, Gi ,i = 1

yi − yi−1
+ 1

yi+1 − yi
, Gi ,i+1 =− 1

yi+1 − yi
,

for i = 1, ...,n −1, and

G0,0 = 1

y1 − y0
, G0,1 =− 1

y1 − y0
,

Gn,n = 1

yn − yn−1
, Gn,n−1 =− 1

yn − yn−1
.

and the vector h by h0 = 1.0− ε, hi = −ε for i > 0. The constant ε defines a maximum
acceptable slope and ensures that the call prices are strictly convex.

In order to tune the smoothing of option prices, we could add a Tikhonov regulariza-
tion, using the matrix of second-order differences as Tikhonov matrix. This is however
not necessary for the B-spline collocation, as we already add a regularization when com-
puting the B-spline representation based on the initial guess.

Once the quadratic programming problem has been solved3, we can estimate the call
price slope c ′i at each strike yi using the parabola that passes through the three points
c̃i−1, c̃i , c̃i+1 (Equation 5.6) for i = 1, ...,m − 1, and with c ′0 = l1, c ′m = lm . It will lead to
−1 < c ′i < 0 and increasing c ′i , as the call prices c̃i obeys the conditions of lemma 1 of
Kahale [116]. This gives a direct estimate of the survival density pi =−c ′i and thus of the
abscissa xi .

Another approach to find an initial guess, is to rely on a very rough estimate, which
may be a good starting point for the optimization. A straightforward initial guess for
the implied cumulative probability density is to consider the density implied by a flat
Bachelier volatility. The at-the-money market implied volatility is a natural choice. For a
given option price, the Bachelier implied volatility σN possesses a simple expression in

3We used quadprog [192] in our numerical examples.



5

80 5. STOCHASTIC COLLOCATION FOR AN ARBITRAGE-FREE IMPLIED VOLATILITY, PART I

terms of rational functions, with machine epsilon accuracy [129]. The collocation points
can then be obtained directly:

xi =− F − yi

σN
p

T
. (5.12)

With a constant Bachelier volatility, x is an affine function of y .

5.3.3. FILTERING OUT THE MARKET CALL PRICES QUOTES
In the previous subsection, we proposed a quadratic programming approach to build
a convex set that closely approximates the initial set of market prices. It may however
be relatively slow when the number of market quotes is very large. Using the quadprog
solver, the algorithm takes 9 milliseconds on a Core i7 7700U, for the 174 SPX500 option
prices as of January 23, 2018 from our example in Section 5.5.

When the goal is to calibrate a polynomial (as opposed to a spline), a much simpler
approach is to merely filter out problematic quotes, i.e. the quotes that will lead to a call
price derivative estimate lower than -1 or positive. We assume that the strikes (yi )0≤i≤m

are sorted in ascending order. The algorithm starts from a specific index k ∈ {0, ...,m}. We
will use k = 0 but we let the algorithm to be more generic. The forward sweep to filter
out problematic quotes consists then in:

1. Start from strike yk . Let the filtered set be S = {
(yk , xk )

}
. Let j? = k,

2. Search for the next lowest index j , such that −1+ ε< c j −c j?

y j −y j?
<−ε and j? < j ≤ m.

Replace j? by j ,

3. Add (y j? ,c j? ) to the filtered set S . Repeat steps (ii) and (iii).

In our examples, we set the tolerance ε = 10−7 to avoid machine epsilon accuracy is-
sues close to −1. A small error in the derivative estimate near −1 or near 0 will lead to a
disproportionally large difference in the coordinate x.

While the above algorithm will not produce a convex set, we will see that it can be
surprisingly effective to compute a good initial guess for the collocation polynomial.

We could also derive a similar backward sweep algorithm, and combine the two al-
gorithms to start at the strike yk close to the forward price F (0,T ). For our examples, this
was not necessary.

5.3.4. AN INITIAL GUESS FOR THE COLLOCATION POLYNOMIAL
In order to obtain an arbitrage-free price, it is not only important that the density (zero-
th moment) sums up to 1, which the collocation method will obey by default, but it is
also key to preserve the martingale property (the first moment), that is∫ ∞

−∞
gN (x)φ(x) = F (t ,T ) . (5.13)

Using the recurrence relation (Equation (5.2)), this translates to

a0 +
N−1

2∑
i=1

a2i (2i −1)!! = F (t ,T ) . (5.14)
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Instead of trying to find directly good collocation points, a simple idea for an initial guess
is to consider the polynomial hN (x) = ∑N

k=0 bk xk corresponding to the least-squares fit
of xi , yi :

b0, ...,bN = min
(a0,...,aN )∈RN+1

{
m∑

i=0

[(
N∑

k=0
ak xk

i

)
− yi

]2}
, (5.15)

with the additional martingality constraint. This is a linear problem and is very fast to
solve, for example by QR decomposition. Unfortunately, the resulting polynomial might
not be monotonic.

As we want to impose the monotonicity constraint by a clever parameterization of
the problem, we will only consider the least-squares (with additional martingality con-
straint) cubic polynomial as the starting guess. The following lemma helps us determine
if it is monotonic.

Lemma 5.3.1. A cubic polynomial a0 + a1x + a2x2 + a3x3 is strictly monotonic and in-
creasing on R if and only if a2

2 −3a1a3 < 0.

Proof. The derivative has no roots if and only if the discriminant a2
2 −3a1a3 < 0.

If our first attempt for a cubic initial guess is not monotonic, we follow the idea of
Murray [158] and fit a cubic polynomial of the form A+B x +C x3. For this specific case,
the linear system to solve is then given by1 0 0

0
∑m

i=0 x2
i

∑m
i=0 x4

i
0

∑m
i=0 x4

i

∑m
i=0 x6

i

A
B
C

=
 F (t ,T )∑m

i=0 xi yi∑m
i=0 x3

i yi

 . (5.16)

In our case, Lemma 1 reduces to B > 0 and C > 0. As the initial guess, we thus use the
cubic polynomial with coefficients a0 = A = F (t ,T ), a1 = |B |, a2 = 0, a3 = |C |.

5.3.5. THE MEASURE
The goal is to minimize the error between specific model implied volatilities and the
market implied volatilities, taking into account the bid-ask spread. The implied volatil-
ity error measure corresponds then to the weighted root mean square error of implied
volatilities:

Mσ =
√∑m

i=0 w2
σi

(σ(ξ,Ki )−σi )2√∑m
i=0 w2

σi

, (5.17)

where σ(ξ,Ki ) is the Black implied volatility4 obtained from the specific model consid-
ered, with parameters ξ, σi is the market implied volatility and wσi is the weight associ-
ated to the implied volatility σi . In our numerical examples, we will choose wσi = 1. In
practice, it is typically set as the inverse of the bid-ask spread.

4Fast and robust algorithms to obtain the implied volatility from an option price are given in [110, 140]. When
no implied volatility corresponds to the model option price, which can happen because of numerical error,
we just fix the implied volatility to zero.
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An alternative is to use the root mean square error of prices:

MV =
√∑m

i=0 w2
ci

(Vcall(ξ,Ki )− ci )2√∑m
i=0 w2

ci

, (5.18)

where Vcall(ξ,Ki ) is the model5 option price and ci is the market option price at strike Ki .
Although this is not necessary in the context of the stochastic collocation method, it may
be preferable in general to use only out-of-the-money options in the above measure, i.e.
to use Vput instead of Vcall and market put prices instead of ci for Ki < F (0,T ), in order to
reduce the numerical errors related to the limited machine precision.

We can find a weight wci that makes the solution similar to the one under the mea-
sure Mσ by matching the gradients of each problem. We compare

m∑
i=0

2w2
ci

∂Vcall
∂ξ

(ξ,Ki ) (ci −Vcall(ξ,Ki )) ,

with
m∑

i=0
2wσi

2 ∂σ

∂ξ
(ξ,Ki ) (σi −σ(ξ,Ki )) .

As we know that ∂Vcall
∂ξ = ∂σ

∂ξ
∂Vcall
∂σ , we approximate ∂Vcall

∂σ by the market Black-Scholes Vega,

the term (ci −Vcall(ξ,Ki )) by ∂Vcall
∂ξ (ξopt −ξ), and (σi −σ(ξ,Ki )) by ∂σ

∂ξ (ξopt −ξ) to obtain

wc i ≈
1
∂ci
∂σi

wσi . (5.19)

In practice the inverse vega needs to be capped to avoid taking into account too far
out-of-the money prices, which won’t be all that reliable numerically and we take

wci = min

(
1

νi
,

1

νmin

)
wσi , (5.20)

where νi = ∂ci
∂σ is the Black-Scholes vega corresponding the market option price ci and

νmin is a vega floor. We will take νmin = 10−6F (0,T ) for the collocation method.

5.3.6. OPTIMIZATION UNDER MONOTONICITY CONSTRAINTS
We wish to minimize the error measure MV while taking into account the martingality
and the monotonicity constraints (Lemma 1) at the same time. The polynomial gN is
strictly monotonically increasing if its derivative polynomial is strictly positive. We fol-
low the central idea of Murray [158] and express gN in an isotonic parameterization:

gN (x) = a0 +
∫ x

0
p(x)d x , (5.21)

5In the case of the stochastic collocation, ξ corresponds to the coefficients of the collocation polynomial.
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where p(x) is a strictly positive polynomial of degree N−1 = 2Q. It can thus be expressed
as a sum of two squared polynomials of respective degrees at most Q and at most Q −1
[176]:

p(x) = p1(x)2 +p2(x)2 . (5.22)

As in the case of the cubic polynomial, we can refine the initial guess by first finding
the optimal positive least-squares polynomial with the sum of squares parameterization.
Let (β1,0, ...,β1,q ) ∈ Rq+1 be the coefficients of the polynomial p1 and (β2,0, ...,β2,q−1) ∈
Rq be the coefficients of the polynomial p2. The coefficients (γk )k=0,...,N−1 of p can be
computed by adding the convolution of β1 with itself to the convolution of β2 with itself,
that is

γk =
k∑

l=0
β1,lβ1,k−l +

k∑
l=0

β2,lβ2,k−l , (5.23)

with β1,l = 0 for l > q and β2,l = 0 for l > q −1. The martingality condition leads to

gN (x) = F (t ,T )−
N−1

2∑
k=1

γ2k−1

2k
(2k −1)!!+

N∑
k=1

γk−1

k
xk . (5.24)

Lemma 5.3.2. The gradient of gN towards (β1,0, ...,β1,q ,β2,0, ...,β2,q−1) can be computed
analytically and we have

∂gN

∂βl , j
(xi ) = 2

q∑
k=0

βl ,k x j+k+1
i

k + j +1
−

q∑
k=1

(2k −1)!!

k
βl ,2k− j−1 , (5.25)

with βl ,k = 0 for k < 0 and β1,k = 0 for k > q and β2,k = 0 for k > q −1.

Proof.

gN (x) = a0 +
∫ x

0

2q∑
k=0

k∑
l=0

β1,lβ1,k−l xk +
2q−2∑
k=0

k∑
l=0

β2,lβ2,k−l xk d x

= a0 +
2q∑

k=0

1

k +1

k∑
l=0

β1,lβ1,k−l xk+1 +
2q−2∑
k=0

1

k +1

k∑
l=0

β2,lβ2,k−l xk+1 .

We thus have

ak+1 =
{

1
k+1

(∑k
l=0β1,lβ1,k−l +

∑k
l=0β2,lβ2,k−l

)
for 0 ≤ k ≤ 2q −2,

1
k+1

∑k
l=0β1,lβ1,k−l for k = 2q −1,2q .

We recall that the martingality condition implies

a0 = F (t ,T )−
q∑

k=1
a2k (2k −1)!! .

We have

∂a0

∂βl , j
=−

q∑
k=1

(2k −1)!!
∂a2k

∂βl , j
,
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and

∂ak+1

∂β1, j
= 1

k +1
2β1,k− j for j ≤ k ≤ 2q ,

∂ak+1

∂β2, j
= 1

k +1
2β2,k− j for j ≤ k ≤ 2q −2,

∂ak+1

∂βl , j
= 0 for k < j and l = 1,2.

Thus

∂a0

∂βl , j
=−

q∑
k=1

(2k −1)!!

k
βl ,2k− j−1 ,

with βl ,k = 0 for k < 0 and β1,k = 0 for k > q and β2,k = 0 for k > q −1.

In particular, for a cubic polynomial, we have

∂g3

∂β1,0
(xi ) = 2β1,0xi +β1,1x2

i −β1,1 ,
∂g3

∂β2,0
(xi ) = 2β2,0xi ,

∂g3

∂β1,1
(xi ) =β1,0x2

i +
2β1,1

3
x3

i −β1,0 ,

and for a quintic polynomial,

∂g5

∂β1,0
(xi ) = 2β1,0xi +β1,1x2

i +
2β1,2

3
x3

i −β1,1 ,

∂g5

∂β2,0
(xi ) = 2β2,0xi +β2,1x2

i −β2,1 ,

∂g5

∂β1,1
(xi ) =β1,0x2

i +
2β1,1

3
x3

i +
β1,2

2
x4

i −β1,0 − 3

2
β1,2 ,

∂g5

∂β2,1
(xi ) =β2,0x2

i +
2β2,1

3
x3

i −β2,0 ,

∂g5

∂β1,2
(xi ) = 2β1,0

3
x3

i +
β1,1

2
x4

i +
2β1,2

5
x5

i −
3

2
β1,1 .

The cubic polynomial initial guess can be rewritten in the isotonic form as follows,

a0 +a1x +a2x2 +a3x3 = a0 +
∫ x

0

(
a1 +2a2t +3a3t 2)d t

= a0 +
∫ x

0

(√
3a3t + a2p

3a3

)2

+
√

a1 −
a2

2

3a3

2

d t . (5.26)

Based on the initial guess (refined or cubic), we can use a standard unconstrained
Levenberg-Marquardt algorithm to minimize the measure MV , based on the isotonic
parameterization. This results in the optimal coefficients (β1,0, ...,β1,q ) and



5.4. EXAMPLES OF EQUITY INDEX SMILES

5

85

(β2,0, ...,β2,q−1), which we then convert back to a standard polynomial representation, as
described above.

The gradient of the call prices towards the isotonic parameters can also be computed
analytically from Equation (5.1), as we have

∂Vcall
∂βl , j

(K ) = ∂xK

∂βl , j
(K )Vcall(K )+

∫ ∞

xK

∂gN

∂βl , j
(x)φ(x)d x ,

where xK is the integration cut-off point defined by Equation (5.2). As ∂gN
∂x (β, xK ) > 0, we

can use the implicit function theorem to compute the partial derivatives ∂xK
∂βl , j

(K ):

∇xK (β) =− 1
∂gN
∂x (β, xK )

∇gN (β, xK ) ,

where ∇xK =
(
∂xK
∂β1,0

, ..., ∂xK
∂β2,q−1

)
and ∇gN =

(
∂gN
∂β1,0

, ..., ∂gN
∂β2,q−1

)
.

5.4. EXAMPLES OF EQUITY INDEX SMILES
We consider a set of vanilla option prices on the same underlying asset, with the same
maturity date. As an illustrating example, we will use SPX500 option quotes expiring on
March 7, 2018, as of February, 5, 2018 from appendix 5.C. The options’ maturity is thus
nearly one month. The day before this specific valuation date, a big jump in volatility
across the whole stock market occurred. One consequence is a slightly more extreme
(but not exceptional) volatility smile.

5.4.1. A SHORT REVIEW OF IMPLIED VOLATILITY INTERPOLATIONS
Let us recall shortly some of the different approaches to build an arbitrage-free implied
volatility interpolation, or equivalently, to extract the risk neutral probability density.

We can choose to represent the asset dynamics by a stochastic volatility model such
as Heston [91], Bates [20], Double-Heston [36]. This implies a relatively high compu-
tational cost to obtain vanilla option prices and thus to calibrate the model, especially
when time-dependent parameters are allowed. Furthermore, those models are known
to not fit adequately the market of vanilla options with short maturities. Their implied
volatility smile is typically too flat.

Many practitioners revert to a parameterization based on, or inspired from a stochas-
tic volatility model, such as the Hagan SABR expansion [85], or the Gatheral SVI model
[63, 72]. These are much faster to calibrate. SVI is one of the most popular parameteri-
zations to represent the equity option volatility smile, because of its simplicity, its rela-
tion to stochastic volatility models asymptotically, and its almost arbitrage-free property.
However, as we shall see, the fit for options on equities can still be poor (Figure 5.4.1a).
SVI manages to fit only a part of the left wing and fails to represent well the market quotes
in the region of high implied volatility curvature. SVI and SABR are usually much better
at fitting longer option maturities.

Another approach is to not assume any underlying model, and use an exact inter-
polation. A cubic spline interpolation of the implied volatilities is not arbitrage-free,
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Figure 5.4.1: SVI and Andreasen-Huge calibrations on 1m SPX500 options as of February, 05, 2018.

although it is advocated6 by Malz [150]. Kahale [116] proposes an arbitrage-free spline
interpolation of the option prices. Unfortunately, it is not guaranteed that his algorithm
for C 2 interpolation, necessary for a continuous probability density, converges. Further-
more, it assumes that the input call option quotes are convex and decreasing by strike.
However, the market quotes are not convex in general, mainly because of the bid-ask
spread. While we propose in Section 5.3.2 a quadratic programming based algorithm to
build a convex set that closely approximates the market prices, it may be relatively slow
when the number of option quotes is large. Finally, the resulting implied probability
density will be noisy, as evidenced by Syrdal [186].

A smoothing spline or a least-squares cubic spline will allow to avoid overfitting the
market quotes. For example, Syrdal [186], Bliss and Panirgitzoglou [25] use a smoothing
spline on the implied volatilities as a function of the option deltas7, with flat extrapola-

6Malz precises that the challenge of his approach is to find a good filter for the quotes, which he does not
describe.

7Especially for options on a foreign exchange rate, the implied volatility may be parameterized as a function
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tion. Smoothing is ensured by adding a penalty multiplied by the integral of the second
derivative of the spline function to the objective function. The smoothing parameter
is challenging to pick. In fact, Syrdal reverts to a manual ad-hoc choice of this param-
eter. Furthermore, the interpolation is a priori not arbitrage-free. In order to make it
arbitrage-free, an additional non-linear penalty term against butterfly spread arbitrage
needs to be added to the objective function. Instead of a smoothing parameter, the least-
squares spline requires to choose the number of knots and their locations, which can
also seem arbitrary. A slightly different approach is taken by Wystup in [202, p. 47] for
the foreign exchange options market, where a Gaussian kernel smoother is applied to
the market volatilities as a function of the option delta. The kernel bandwidth is fixed
and the number of kernel points (specific deltas) is typically lower than the number of
market option strike prices. Wystup recommends to use up to 7 kernel points. While a
larger number of points leads to a better fit on our example, it may also lead to a neg-
ative density. With the Gaussian kernel smoothing, the shape of the implied volatility
looks unnatural8 around the point of high curvature (Figure 5.4.2a), and the density can
become negative (Figure 5.4.2b). It is thus not always arbitrage-free.

In order to guarantee the arbitrage-free property by construction and still stay model-
free, Andreasen and Huge [12] use a specific one-step implicit finite difference where a
discrete piecewise-constant local volatility function is calibrated against market prices.
While it is simple and fast, it leads to a noisy implied density, even if we replace the
piecewise constant parameters by a cubic spline (Figure 5.4.1b). This is because, by de-
sign, similarly to a spline interpolation, the method overfits the quotes as the number of
parameters is the same as the number of market option quotes.

Finally, we can model directly the risk-neutral probability density (RND). Many pa-
pers use the double lognormal mixture of Bahra [15, 18] to represent the RND. The dou-
ble lognormal mixture is not flexible enough to capture our example of short maturity
smile (Figure 5.4.3a). This is extended in [35] to a mixture of multiple lognormal dis-
tributions. With a mixture of 6 lognormal distributions, the root mean square error of
the model volatilities against market volatilities is nearly as low as with Andreasen-Huge
(table 5.4.1), and the RND is very smooth. Furthermore, the model is also fully arbitrage-
free by construction. But, in a similar fashion as the Gaussian kernel smoother [202], the
mixture of lognormal distributions tends to create artificial peaks in the RND (Figures
5.4.2b and 5.4.3b), just to fit the input quotes better on our example.

Compared to the Gaussian kernel smoothing, the mixture of lognormal distributions
results in fewer peaks as the volatility of each distribution is optimized, but there are
still clearly multiple modes in the density. In reality, as we will see with the collocation
method, there is no particular reason to have multiple modes. Mixtures of normal or
lognormal distributions will, by their nature, tend to create multi-modal densities.

Let us give more details about the setup of each technique on our example. For the
SVI parameterization, we use the quasi-explicit calibration method described in [203],
which leads to the parameters of table 5.4.2. For the Andreasen-Huge method, we use

of the option delta, instead of the option strike. Note that the delta is itself a function of the implied volatility,
see appendix 5.A.

8This could be remedied by a kernel smoothing on the strikes instead of the deltas, but then the probability
density goes negative in more places. We thus preferred to stay close to Wystup’s original idea.
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Figure 5.4.2: Gaussian kernel smoothing calibrations on 1m SPX500 options as of February, 05, 2018.

Table 5.4.1: Root mean square error (RMSE) of the calibrated model volatilities against the market volatilities.

Model Free parameters RMSE

SVI 5 0.00757
Andreasen-Huge 75 0.00088
Gaussian smoothing kernel 7 0.00400
Gaussian smoothing kernel 12 0.00175
Mixture of 2 lognormals 4 0.01807
Mixture of 4 lognormals 10 0.00252
Mixture of 6 lognormals 16 0.00094

a dense log-uniform grid composed of 800 points, solve the probability density (the
Fokker-Planck equation) instead of the call prices. We then interpolate in between grid
points by integrating the density to obtain the call option prices to preserve the arbitrage-
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Figure 5.4.3: Mixture of lognormal distributions calibration on 1m SPX500 options as of February, 05, 2018.

free property everywhere in a similar spirit as [84, 131]. We minimize the error measure
MV with the Levenberg-Marquardt algorithm. The Gaussian kernel smoother calibra-
tion is described in appendix 5.A. We use respectively 7 and 12 kernel points, with a
bandwidth of 0.5 and 0.3. When the bandwidth is too large for the number of kernel
points considered, the problem becomes ill-conditioned numerically as the optimal ker-
nel weights α become very large numbers (table 5.4.3), while the result of the kernel is a
volatility of the order of 10%. Our multiple lognormal mixture optimization is described
in appendix 5.B and the calibrated parameters in table 5.B.1. Note that the optimization
problem becomes very challenging numerically for a mixture of more than 7 lognor-
mal distributions, because, on one side, the number of free parameters is relatively high
(3n −2 free parameters for n lognormal distributions) and on the other side, the highly
non-linear structure of the problem creates multiple local minima.



5

90 5. STOCHASTIC COLLOCATION FOR AN ARBITRAGE-FREE IMPLIED VOLATILITY, PART I

Table 5.4.2: SVI parameters resulting of the calibration against 1m SPX500 options as of February, 05, 2018.

a b ρ s m

0.000 0.794 -0.492 0.0537 0.0554

Table 5.4.3: Optimal kernel observations αi resulting of the Gaussian kernel smoothing against 1m SPX500
options as of February, 05, 2018, for different bandwidths λ .

Number of points λ min |αi | max |αi |
7 0.5 4.8E03 1.1E05

12 0.292 2.5E05 1.3E08
12 0.5 1.6E10 1.2E13

5.5. POLYNOMIAL COLLOCATION OF SPX500 OPTIONS
Previous litterature has explored the calibration of stochastic collocation against market
quotes for interest rates swaptions, in the case of the SABR model in [78] as well as for
FX options. In both cases, the set of quotes is relatively small (usually less than 10) and
the risk of arbitrage in the quotes, related to the bid-ask spread size is very low. In the
world of equity options, the quotes are denser (it is not unusual to have 50 quotes for
liquid equity indices), or less liquid, and thus have a higher probability of containing
small theoretical arbitrages.

Here, we consider the quotes of vanilla options on the index SPX500, expiring on
February 23, 2018 as of January 23, 2018 for 174 distinct strikes.We first take a look at
the cubic polynomial guess, least-squares quintic polynomial guess, and optimal quin-
tic polynomial that are calibrated to the market quotes. Figure 5.5.1 shows that without
any preprocessing, the cubic and quintic polynomial guesses are of relatively poor qual-
ity, because of a few outliers. Filtering out the problematic quotes by imposing hard
boundaries on the resulting slope estimates is enough to fix this (see Figure 5.5.2b). The
preprocessing to produce a convex set of quotes through quadratic programming results
in a better quintic polynomial guess but a worse cubic polynomial initial guess (Figures
5.5.2a and 5.5.2b). This is because the cubic polynomial guess has not been refined: it
has not been optimized with the monotonicity constraint. Otherwise, it would fit better
than the cubic polynomial optimized against our simple filtered quotes. The difference
in the polynomial guesses between the two methods is however not large. Table 5.5.1
shows that the first three moments9 of the quintic refined guess with the forward sweep
filter or with the convexity filter are close to the moments corresponding to the optimal
quintic polynomial collocation. On this example, the convexity filter improves the esti-
mate of the kurtosis significantly.

Let us take a look at the quality of the fit in terms of implied volatilities. In Figures
5.5.3 and 5.5.4, the reference implied volatilities include all market options, i.e., they
are unfiltered, even when afterwards, we process those in order to apply the collocation

9Here, we calculate the statistics of the underlying asset price distribution, as implied from the option prices.
We are not interested in the statistics of the market options prices themselves.
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Figure 5.5.1: Strike as a function of x =Φ−1(p) where p is the cumulative density for SPX500 options expiring
on February 23, 2018, without applying any convexity filter .
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Figure 5.5.2: Strike as a function of x =Φ−1(p) where p is the cumulative density for SPX500 options expiring
on February 23, 2018, using a filter on the quotes.

method. On the SPX500 option quotes from January 23, 2018, Figure 5.5.3 shows that
Gatheral SVI parameterization does not fit very well. While SVI is generally quite good
at fitting medium and long maturities, it is often not very well suited for short matu-
rities such as the one-month maturity we consider here. The cubic collocation, which
has fewer parameters fits better than SVI, and the quintic collocation provides a nearly
perfect fit on this example, which is impressive since it has the same number of free pa-
rameters as SVI.

We now consider the same SPX500 option quotes expirying on March 7, 2018, as of
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Table 5.5.1: Mean, variance, skew and kurtosis corresponding to quintic polynomial collocation of SPX500 1m
options as of February 5, 2018, for different filtering of market quotes.

Collocation polynomial Mean Variance Skew Kurtosis

refined quintic guess on raw quotes 2839.00 102.59 -1.59 14.72
refined quintic guess with forward sweep 2839.00 93.36 -2.74 58.97
refined quintic guess on convex quotes 2839.00 88.06 -2.63 38.87
optimal quintic polynomial collocation 2839.00 88.92 -2.71 38.52
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Figure 5.5.3: SPX500 smile.

February, 5, 2018 as in Section 5.4.1, and listed in appendix 5.C. The option maturities
are still one month, but the valuation day corresponds to one day after a big jump in
volatility across the whole stock market. The smile is more complex. Figure 5.5.4 shows
that the curvature is much higher at the lowest point, and that the left wing is slightly
concave. SVI manages to fit only a part of the left wing and fails to represent well the
market quotes in the region of high curvature. The quintic polynomial achieves a rea-
sonably good fit. In order to illustrate that our calibration technique still works well with
a higher degree polynomial, we also calibrate a nonic polynomial. It results in a nearly
perfect fit, despite the very strong curvature.

We show the corresponding probability density in Figure 5.5.5, and observe a high
and narrow spike in the region where the implied volatility has a strong curvature. Con-
trary to the stochastic collation method, SVI does not allow to capture this spike properly.
The density is also markedly different from the one obtained by the mixture of lognor-
mal distributions in Figure 5.4.3b. In particular, it does not exhibit multiple peaks. This
stays true for collocations on a polynomial of higher degree. The root mean square error
(RMSE) of implied volatilities with a cubic polynomial collocation is smaller than with
SVI which has two more free parameters (table 5.5.2 against table 5.4.1). The nonic poly-
nomial collocation has a RMSE similar to the results from the Andreasen-Huge method
and the mixture of 6 lognormal distributions model, while the collocation has again sig-
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Figure 5.5.4: implied volatility smile of SPX500 1m options as of February 5, 2018.
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Figure 5.5.5: Implied probability density of SPX500 1m options as of February 5, 2018.

nificantly fewer free-parameters.

Table 5.5.2: Root mean square error (RMSE) of the collocation method implied volatilities against the market
implied volatilities of the SPX500 1m options as of February 5, 2018.

Model Free parameters RMSE

Cubic collocation 3 0.00538
Quintic collocation 5 0.00280
Nonic collocation 9 0.00110
11-th degree collocation 11 0.00099

So far, we have considered individual smiles corresponding to a specific option ma-
turity. In order to build a full volatility surface, a linear interpolation of the collocat-
ing polynomial in between maturities will preserve the arbitrage-free property across
strikes as the intermediate polynomial will still be monotonic. Such an interpolation
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could however introduce arbitrage in time, as it does not guarantee, a priori, that the
call prices will increase with the maturity for a fixed log-moneyness. The alternative is
to fit each expiry independently, and interpolate linearly in total variance across a fixed
log-moneyness.

5.6. CALIBRATION OF CMS CONVEXITY ADJUSTMENTS
A constant maturity swap (CMS) is a swap where one leg refers to a reference swap rate
which fixes in the future (for example, the 10 year swap rate), rather than to an interest
rate index such as the LIBOR. The other leg is a standard fixed or floating interest rate
leg.

By quoting the spread of the CMS rate against the equivalent standard swap rate, as
well as prices of swaptions for a finite set of strike prices and maturities, the market pro-
vides information on the implied volatilities of the standard swap rates. However, even
when assuming some prior interpolation of the swaption implied volatility cube, not ev-
ery swaption has quotes away from at-the-money strikes, and when present, those are
typically too few to allow for a robust, consistent bootstrap of the whole cube. Similarly,
CMS swap spreads are only available for a few swap maturities and CMS tenors. Further-
more, the implied volatilities far from the at-the-money swaption directly influence the
CMS convexity adjustments, which define the CMS spreads. It is thus important to be
able to represent implied volatilities for strikes outside the quoted ones, and to be able
to value CMS convexity adjustments consistently with the swaption smile.

Here, we will evaluate the quality of the stochastic collocation method on the prob-
lem of calibrating the constant maturity swaps jointly with the interest rate swaptions to
the market quotes.

For a maturity Ta , the fixed rate Sa,b for an interest rate (forward) swap exchanging
interest payments at the future dates Ta+1, ...,Tb as of date t reads [10]

Sa,b(t ) = P (t ,Ta)−P (t ,Tb)

τ
∑b

j=a+1 P (t ,T j )
, (5.27)

where τ is the year fraction for a period (τ= 1 in the 30/360 daycount convention in our
examples) and P (t ,T ) is the discount factor from t to T .

In the Ta + δ forward measure, the convexity adjustment for the swap rate Sa,b is
given by

CA(Sa,b ,δ) = ETa+δ [
Sa,b(Ta)

]−Sa,b(0) , (5.28)

where δ is the accrual period of the swap rate. It depends on the entire evolution of the
yield curve. Following Hagan’s standard model [82], Mercurio and Pallavicini [152, 153]
approximate the convexity adjustment by using a linear function of the underlying swap
rate for the Radon-Nikodym derivative in order to express the value in the forward swap
measure associated to Sa,b . This leads to

CA(Sa,b ,δ) ≈ Sa,b(0)θ(δ)

Ea,b
[

S2
a,b(Ta)

]
S2

a,b(0)
−1

 , (5.29)
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where

θ(δ) = 1− τSa,b(0)

1+τSa,b(0)

(
δ

τ
+ b −a(

1+τSa,b(0)
)b−a −1

)
. (5.30)

Now Ea,b
[

S2
a,b(Ta)

]
can be derived from the market swaption prices. In [82, 152, 153],

the replication method is used. We will see in Section 5.7, that this expectation has a very
simple closed-form expression with the collocation method. This will simplify and speed
up the calibration.

As explained in [153], the market quotes the spreads Xm,c which sets to zero the no-
arbitrage value of CMS swaps starting today and paying the c-year swap rate S′

i ,c from
ti−1 to ti−1 + c with t0 = 0. We have

Xm,c =
∑m

i=1

(
S′

i ,c (0)+CA(S′
i ,c ,δ)

)
P (0, ti )∑m

i=1 P (0, ti )
− 1−P (0, tm)

δ
∑m

i=1 P (0, ti )
. (5.31)

We will consider the example market data from Mercurio and Pallavicini [153] as of
February 3, 2006, where δ corresponds to a quarter year and the CMS leg is expressed
in Actual/360 while the floating leg and the spread are in 30/360 daycount convention.

In order to compute the CMS spread Xm,c , the convexity adjustments are needed
for many dates not belonging to the market swaption expiries. We follow Mercurio and
Pallavicini [153] and interpolate the convexity adjustments at the swaption expiries by a
cubic spline (with an adjustment of zero at t = 0).

The market swaptions are expressed in Black volatility, and can be priced through
the standard Black formula on the forward swap rate.

Mercurio and Pallavicini [152, 153] describe a global calibration, where the swaption
volatility errors for each market swaption expiry and strike, plus a penalty factor multi-
plied by the CMS spread error for each quoted market CMS spread are minimized in a
least-squares fashion. This is a single high-dimensional minimization. We will see how
to apply the collocation method to this methodology, as well as a new alternative cali-
bration.

5.7. JOINT CALIBRATION OF SWAPTIONS AND CMS CONVEXITY

ADJUSTMENTS WITH THE STOCHASTIC COLLOCATION
In Section 5.6, we have described the calibration of swaptions and CMS convexity ad-
justments from Mercurio and Pallavicini [153]. A key estimate for their method is an ap-

proximation of the expectation Ea,b
[

S2
a,b(Ta)

]
from Equation (5.29). Instead of using the

replication method, when a collocation polynomial is calibrated to the market swaption
prices, this expectation can be computed by a direct integration:

Ea,b
[

S2
a,b(Ta)

]
=

∫ ∞

−∞
g 2

N (x)φ(x)d x . (5.32)

The coefficients (b0, ..,b2N ) of g 2
N correspond to the self-convolution of the coefficients

(a0, ..., aN ) of gN . Similarly to the calculation of the first moment, the recurrence relation
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(Equation (5.2)) leads to the closed-form expression

Ea,b
[

S2
a,b(Ta)

]
= b0 +

N∑
i=1

(2i −1)!!b2i . (5.33)

There are two ways to include the CMS spread in the calibration of the smile to the
swaption quotes, which we will label as the global and the decoupled approach. The
collocation method can be used in the global approach from Mercurio and Pallavicini
[153], by first computing an initial guess in the form of a list of isotonic representations,
out of the market swaption quotes for each expiry according to Section 5.3. Then the
least-squares minimization updates the isotonic representations iteratively.

Tables 5.7.1 and 5.7.2 show that the error with a quintic collocation polynomial is as
low as with the SABR interpolation10. Compared to the SABR interpolation however, the
advantages of stochastic collocation are: it is arbitrage-free by construction, while the
SABR approximation formula has known issues with low or negative rates [84]; the accu-
racy of the fit can be improved by simply increasing the collocating polynomial degree;
and the calculation of the CMS convexity adjustment is much faster as it does not involve
an explicit replication.

Table 5.7.1: Absolute differences (in bp) between market and model swaptions implied volatilities. Strikes are
expressed as absolute differences in basis points w.r.t the at-the-money values.

Strike -200 -100 -50 -25 0 25 50 100 200

SABR

5x10 1.1 0.2 0.3 0.5 0.2 0.2 0.8 0.2 0.4
10x10 0.2 0.1 0.4 0.3 0.1 0.2 0.4 0.5 0.3
20x10 0.8 0.6 0.4 0.4 0 0.3 0.3 0.5 0.5

Quintic Global

5x10 0.1 -0.4 0.3 0.4 0.2 -0.5 -0.3 0.3 0.0
10x10 0.4 -1.8 0.4 1.0 1.3 0.2 -0.5 -1.7 1.0
20x10 0.7 -1.7 0.8 1.2 1.1 0.5 -0.7 -1.8 1.3

Quintic Decoupled

5x10 0.0 -0.3 0.2 0.3 0.2 -0.5 -0.3 0.4 -0.1
10x10 0.1 -0.6 0.2 0.3 0.6 -0.2 -0.3 -0.4 0.3
20x10 0.4 -2.0 0.6 1.0 1.0 0.5 -0.6 -1.6 0.9

The decoupled calibration procedure consists of the following two steps:

1. Find the optimal convexity adjustment for each market swaption expiry

• Compute the initial guess for each convexity adjustment by fitting the swap-
tion smile at each expiry as described in Section 5.3, without taking into ac-
count any CMS spread price.

10The SABR numbers come from Mercurio and Pallavicini [153]. For the Black model, our numbers differ
slightly from Mercurio and Pallavicini, likely because of the handling of holidays.
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Table 5.7.2: Absolute differences (in bp) between market CMS swap spreads and those induced by the SABR
functional form, the Black model and the collocation of a quintic polynomial for the 10y tenor.

Maturity SABR Black Quintic Global Quintic Decoupled

5y 0.8 0.0 0.3 0.3
10y 1.7 2.3 1.2 1.4
15y 1.8 3.2 1.3 1.7
20y 1.3 4.0 1.3 1.8
30y 2.1 6.3 2.3 1.9

• Compute the cubic spline which interpolates the convexity adjustments across
the expiries. Minimize the square root of CMS spread errors, by adjusting the
convexity adjustments and recomputing the cubic spline, for example, with
the Levenberg-Marquardt algorithm.

2. Minimize the square of the swaption volatility error plus a penalty factor multi-
plied by the convexity adjustment error, against the optimal convexity adjustment
for each expiry independently.

The penalty factor allows to balance the swaption volatilities fit with the CMS spread fit.
The decoupled calibration involves n +1 independent low-dimensional minimizations,
with n being the number of swaptions expiries.

Table 5.7.3 presents the optimal convexity adjustments for CMS swaps of tenor 10y
using the market data of Mercurio and Pallavicini resulting from the first step of the de-
coupled calibration method. With a cubic spline interpolation on these adjustments, the
error in market CMS spreads is then essentially zero. The adjustments resulting from the
second step are also displayed for indication.

Table 5.7.3: CMS convexity adjustments (in bp) for different expiries for the 10y tenor.

Expiry 1y 5y 10y 20y 30y

Optimal CA (step A) 1.75 10.62 20.24 35.02 49.41
Decoupled CA (step B) 1.75 10.63 20.52 37.14 60.41

As evidenced in the tables 5.7.1 and 5.7.2, the error in the swaptions volatilities and
in the CMS spreads is as small as, or smaller than the decoupled calibration when com-
pared to the global calibration. In Figure 5.7.1, we look at the smile generated by the
quintic collocation calibrated with a penalty of 1 (which corresponds to a balanced fit of
market CMS spreads versus swaption volatilities as in table 5.7.2) and a penalty of 10000
(which corresponds to a nearly exact fit to the CMS spreads).

Instead of using a monotonic quintic polynomial, we could have used a monotonic
cubic polynomial with quadratic left and right C 1-extrapolation. Two parameters of each
extrapolation would be set by the value and slope continuity conditions, and the remain-
ing extra parameter could be used to calibrate the tail against the CMS prices. Overall,
it would involve the same number of parameters to calibrate and would likely be more
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Figure 5.7.1: 20x10 swaption smile, calibrated with a penalty factor of 10000 (exact CMS spread prices) and a
penalty factor of 1 (balanced fit corresponding to table 5.7.2).

flexible. The calibration technique would however remain the same: all the parameters
would need to be recalibrated as changes in the extrapolation result in changes in the
first two moments of the distribution as well.

5.8. LIMITATIONS OF THE STOCHASTIC COLLOCATION
A question which remains is whether the stochastic collocation method can also fit multi-
modal distributions well?

Theorem 5.8.1. For any continuous survival distribution function Φ̄Y , there exists a stochas-
tic collocation polynomial gN which can approximate the survival distribution to any
given accuracy ε> 0 across an interval [a,b] of R.

Proof. The function g (x) = Φ̄−1
Y (1−Φ(x)) is continuous and monotone on R. Wolibner

[201] and Lorentz [146] have shown that for any η > 0, there exists a monotone polyno-
mial gN ,η such that

sup
x∈[a,b]

∥∥g (x)− gN ,η(x)
∥∥≤ η

on any interval [a,b] of R. From Equation (5.1), the approximate survival distribution
corresponding to the collocation polynomial gN ,η is GN ,η = 1−Φ◦g−1

N ,η where the symbol
◦ denotes the function composition.

Let I = [gN ,η(a), gN ,η(b)], Φ◦ g−1
N ,η and thus GN ,η are also monotone and continuous

on I . Let J = [1−Φ(b),1−Φ(a)], and hN ,η = gN ,η ◦Φ−1 ◦ (1− i d) where i d is the identity
function. We have Φ̄−1

Y = g ◦Φ−1 ◦(1− i d). AsΦ−1 ◦(1− i d) is continuous and monotone,
we have

sup
y∈J

∥∥Φ̄−1
Y (y)−hN ,η(y)

∥∥≤ η .



5.8. LIMITATIONS OF THE STOCHASTIC COLLOCATION

5

99

As h−1
N is continuous and monotone on I , we also have

sup
x∈I

∥∥∥Φ̄−1
Y ◦h−1

N ,η(x)−x
∥∥∥≤ η . (5.34)

The uniform continuity of Φ̄Y implies that for each ε> 0, we can find an η> 0 such that,
if Equation (5.34) holds, then

sup
x∈I

∥∥∥h−1
N ,η(x)− Φ̄Y (x)

∥∥∥≤ ε .

Simple multi-modal distributions can be challenging to approximate in practice, as
they might require a very high degree of the collocation polynomial for an accurate rep-
resentation. In order to illustrate this, we consider an equally weighted mixture of two
Gaussian distributions of standard deviation 0.1 centered respectively at f1 = 0.8 and
f2 = 1.2. We can price vanilla options based on this density, simply by summing the
prices of two options using a forward at respectively f1 and f2 under the Bachelier model.
We set the forward F (0,T ) = 1 and consider 20 options of maturity T = 1 and equidistant
strikes between 0.5 and 1.5.

The Black volatility smile implied by this model is absolutely not realistic (Figure
5.8.2), but it is perfectly valid and arbitrage-free theoretically, and we can still calibrate
our models to it.

Figure 5.8.1a shows that the cubic and quintic polynomial collocations do not allow
to capture the bimodality at all. The nonic polynomial does better in this respect, but
the implied distribution is still quite poor.

0

1

2

3

4

5

0.50 0.75 1.00 1.25 1.50

Strike

P
ro

b
a
b
ili

ty
 d

e
n
s
it
y

Method

Cubic

Kernel

Nonic

Quintic

(a) Polynomial collocation.
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(b) Spline collocation.

Figure 5.8.1: Probability density obtained by the stochastic collocation of a reference bimodal distribution.

One solution, here, is to collocate on a monotonic cubic spline (Figure 5.8.1b). The
simple algorithms [50, 99] to produce monotone cubic splines are only guaranteed to be
of class C 1. While the stochastic collocation can be applied to C 1 functions, the proba-
bility density will then only be of class C 0. The more difficult issue is the proper choice
of the knots of the spline. How many knots should be used? If we place a knot at each
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Figure 5.8.2: Implied volatility smile for a bimodal distribution and the calibrated stochastic collocation
smiles with a quintic and a nonic polynomial.

market strike, we will overfit and end up with many wiggles in the probability density,
like with the Andreasen-Huge method (Figure 5.4.1b).

Furthermore, the problem of optimizing the spline is numerically more challenging
given that the parameterization does not enforce automatically monotonicity or moment-
preservation. Regarding monotonicity, in the case of the algorithm from Hyman [100] or
Dougherty et al. [50], a non-linear filter is applied, which could make the optimizer get
stuck in a local minimum. Finally, there is the issue of which boundary conditions and
which extrapolation to choose. A linear extrapolation, combined with the so-called natu-
ral boundary conditions would result in a smooth density11, but the linear extrapolation
still has to be of positive slope in order to guarantee the monotonicity over R. A priori,
this is not guaranteed. An alternative is to rely on the forward difference estimate as the
slope, along with clamped boundary conditions, at the cost of loosing the continuity of
the probability density at the boundaries.

5.9. CONCLUSION
We have shown how to apply the stochastic collocation method directly to market op-
tions quotes in order to produce a smooth and accurate interpolation and extrapolation
of the option prices, even on challenging equity options examples. A specific parame-
terization was described, which ensures the monotonicity of the collocation polynomial
as well as the conservation of the zero-th and first moments transparently during the
optimization, thus guaranteeing the absence of arbitrage.

The polynomial stochastic collocation leads to a smooth implied probability density,
without any artificial peak, even with high degrees of the collocation polynomial. We also
applied the technique to interest rate derivatives. This results in a closed-form formula
for CMS convexity adjustments, which can thus be easily calibrated jointly with interest
rate swaptions.

Finally, we illustrated, on a theoretical example, how the polynomial stochastic col-
location had difficulties in capturing multi-modal distributions.

11Although this makes the model relatively rigid towards the wings representation
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5.A. GAUSSIAN KERNEL SMOOTHING
Let (xi , yi )i=0,...,m be m +1 given points. Using the points (x̂k )k=0,...,n , which are typically
within the interval (x0, xm), a smooth interpolation is given by the function g defined by

g (x) = 1∑n
k=0ψλ(x − x̂k )

n∑
k=0

αkψλ(x − x̂k ) , (5.35)

for x ∈R, n ≤ m and where ψλ is the kernel. The Gaussian kernel is defined by

ψλ(u) = 1

λ
p

2π
e−

u2

2λ2 . (5.36)

The calibration consists in finding the αi that minimizes the given error measure on
the input (xi , yi )i=0,...,m . The solution can be found by QR decomposition of the linear
problemψλ(x0 − x̂0) ψλ(x0 − x̂1) . . . ψλ(x0 − x̂n)

...
... . . .

...
ψλ(xm − x̂0) ψλ(xm − x̂1) . . . ψλ(xm − x̂n)


α0

...
αn

=

 y0
∑n

k=0ψλ(x0 − x̂k )
...

ym
∑n

k=0ψλ(xm − x̂k )

 .

(5.37)
The xi are typically option strikes, log-moneynesses or deltas. The yi are the corre-

sponding option implied volatilities. Wystup [202] applies the method in terms of option
deltas. There are multiple delta definitions in the context of volatility interpolation, we
use the undiscounted call option forward delta:

∆=Φ
(

1

σ
p

T
ln

F (0,T )

K
+ 1

2
σ
p

T

)
, (5.38)

where Φ is the cumulative normal distribution function, F (0,T ) is the forward to matu-
rity T , K is the option strike and σ is the corresponding option volatility.

When the points are defined in delta, we need to find the delta for a given option
strike in order to compute the option implied volatility or the option price for a given
strike. But the delta is also a function of the implied volatility. This is a non-linear prob-
lem. Equation (5.38), with σ= g (∆), is solved by a numerical solver such as Toms348 [1]
or a simple bisection, starting at ∆= 0.5, in the interval [0,1].

Wystup recommends a bandwidth of 0.25, we find that a bandwidth of 0.5 minimizes
the root mean square error of implied volatilities on our example.

5.B. MIXTURE OF LOGNORMAL DISTRIBUTIONS
Let (xi , yi )i=0,...,m be m +1 given points. Using the points (x̂k )k=0,...,n , which are typically
within the interval (x0, xm), a kernel estimate of the density on the points x̂k is given by

g (x) =
n∑

k=0
αkψλk

(x, x̂k ) , (5.39)

101
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where ψλk
is a kernel of bandwidth λk , along with the condition

∑n
k=0αk = 1 and αk ≥ 0

for k = 0, ...,n.
In our case, (yi )i=0,...,m are option prices, and we want to estimate the underlying

distribution. We then consider that ψλk
(x) is a Gaussian and x is a logarithmic function

of the option strike K , x = ln(K ). In order to map the kernel exactly to the Black-Scholes
probability density, we use

ψλk
(x, x̂k ) = 1

λk
p

2π
e
−

(
x−x̂k+ 1

2 λ
2
k

)2

2λ2
k

−x̂k
. (5.40)

The option price V of strike K = ex is then given by

V (x) =
n∑

k=0
αkVBlack(ex ,e x̂k ,λk ,1) , (5.41)

where VBlack(K , f ,λ,T ) is the price of a vanilla option of maturity T and strike K given
by the Black-76 formula for an asset of forward f and volatility λ.

The calibration consist then in finding the parameters αk , x̂k ,λk that minimize the
measure MV . In the calibration, we will also add the martingality constraint, which will
ensure that the put-call parity holds exactly in the mixture model. This translates to the
additional constraint

n∑
k=0

αk e x̂k = F (0,T ) , (5.42)

where F (0,T ) is the underlying asset forward to maturity.
We can enforce the constraints by a variable transformation. The

p
αk are located on

the hypersphere of radius R = 1 in Rn+1. Let θ ∈ Rn , a point u ∈ Rn+1 is on the hyper-
sphere if and only if

uk = R cos(θk )
k−1∏
j=0

sin(θ j ) , (5.43)

for k = 0, ...,n−1 and un =∏n
j=0 sin(θ j ). We thus use the transformαk = u2

k . It is invertible
and the inverse is

θk = π

2
−arctan

 uk√∑n
j=k+1 u2

j

 , (5.44)

or directly in terms of αk :

θk = π

2
−arctan

(√
αk∑n

j=k+1α j

)
. (5.45)

The martingality condition can be enforced the same way, using the intermediate vari-
able zk =αk e x̂k . Indeed, Equation (5.42) means that zk is located on the hypersphere of
radius R =p

F (0,T ) in Rn+1.
This allows the use of an unconstrained algorithm such as Levenberg-Marquardt to

minimize the error measure MV on R3n+1. As initial guess, we useαk = 1
n+1 , x̂k = F (0,T ),
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λk =σATM
p

T , where σATM is the implied volatility of the option whose strike is closest
to the forward price.

If negative strikes are allowed, we can replace lognormal distributions by normal dis-
tributions, and the Black-Scholes formula by the Bachelier one. Note that if the band-
width (λk ) and the mean (x̂k ) are fixed in advance, the problem becomes a quadratic
programming problem.

Table 5.B.1: Calibrated mixture of lognormal distributions against 1m SPX500 options as of February, 05, 2018,
for different number of distributions .

Mixture of 2 lognormals
α 0.1664 0.8336
e x̂ 2208.46 2713.91
λ 0.1561 0.04033

Mixture of 4 lognormals
α 0.09789 0.2739 0.3489 0.2793
e x̂ 2203.35 2523.00 2701.93 2793.91
λ 0.2467 0.06519 0.02442 0.006543

Mixture of 6 lognormals
α 0.02164 0.1121 0.2480 0.2593 0.1794 0.1795
e x̂ 2045.69 2242.37 2551.67 2696.07 2812.76 2771.53
λ 0.5711 0.1129 0.04712 0.01909 1.576e-05 0.008333

5.C. IMPLIED VOLATILITY QUOTES FOR VANILLA OPTIONS ON

SPX500 EXPIRING ON MARCH 7, 2018, AS OF FEBRUARY,
5, 2018

The implied volatilities were obtained by using the mid-price of call and put options.
The forward price is implied from the put-call parity relationship.
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Table 5.C.1: Implied volatility quotes for SPX500 options expiring on March 7, 2018, as of February, 5, 2018. In
ACT/365, the option maturity is T = 0.082192. The implied forward price is F (0,T ) = 2629.80. The interest rate

is r = 0.97%.

Strike Logmoneyness Implied vol. Strike Logmoneyness Implied vol.

1900 -0.325055 0.684883 2650 0.007651 0.280853
1950 -0.299079 0.6548 2655 0.009536 0.277035
2000 -0.273762 0.627972 2660 0.011417 0.273715
2050 -0.249069 0.604067 2665 0.013295 0.270891
2100 -0.224971 0.576923 2670 0.01517 0.267889
2150 -0.201441 0.551253 2675 0.017041 0.264533
2200 -0.178451 0.526025 2680 0.018908 0.262344
2250 -0.155979 0.500435 2685 0.020772 0.258598
2300 -0.134 0.474137 2690 0.022632 0.2555
2325 -0.123189 0.461716 2695 0.024489 0.25219
2350 -0.112493 0.445709 2700 0.026343 0.249534
2375 -0.101911 0.433661 2705 0.028193 0.246659
2400 -0.09144 0.42016 2710 0.03004 0.243553
2425 -0.081077 0.407463 2715 0.031883 0.240202
2450 -0.070821 0.393168 2720 0.033723 0.236588
2470 -0.062691 0.381405 2725 0.03556 0.234574
2475 -0.060668 0.3793 2730 0.037393 0.230407
2480 -0.05865 0.377109 2735 0.039223 0.227866
2490 -0.054626 0.372471 2740 0.041049 0.223049
2510 -0.046626 0.360294 2745 0.042872 0.219888
2520 -0.04265 0.354671 2750 0.044692 0.218498
2530 -0.03869 0.350533 2755 0.046509 0.214702
2540 -0.034745 0.34419 2760 0.048322 0.210506
2550 -0.030815 0.339273 2765 0.050132 0.208175
2560 -0.026902 0.333069 2770 0.051939 0.205508
2570 -0.023003 0.328206 2775 0.053742 0.199967
2575 -0.021059 0.324314 2780 0.055542 0.199007
2580 -0.019119 0.322041 2785 0.057339 0.195062
2590 -0.015251 0.3168 2790 0.059133 0.190547
2600 -0.011397 0.310914 2795 0.060923 0.188427
2610 -0.007559 0.305042 2800 0.062711 0.185893
2615 -0.005645 0.302416 2805 0.064495 0.182878
2620 -0.003734 0.299488 2810 0.066276 0.179292
2625 -0.001828 0.29609 2815 0.068053 0.175001
2630 7.5E-05 0.292378 2835 0.075133 0.185751
2635 0.001974 0.289516 2860 0.083913 0.207173
2640 0.00387 0.28584 2900 0.097802 0.225248
2645 0.005762 0.283342



6
STOCHASTIC COLLOCATION FOR AN ARBITRAGE-FREE

IMPLIED VOLATILITY, PART II

This chapter explores the stochastic collocation technique, applied on a monotonic spline,
as an arbitrage-free and model-free interpolation of implied volatilities. We explore vari-
ous spline formulations, including B-spline representations. We explain how to calibrate
the different representations against market option prices, detail how to smooth out the
market quotes and choose a proper initial guess. The technique is then applied to concrete
market options and the stability of the different approaches is analyzed. Finally we con-
sider a challenging example where convex spline interpolations lead to oscillations in the
implied volatility and compare the spline collocation results with those obtained through
the technique of Andreasen and Huge.

6.1. INTRODUCTION
In the previous chapter, we showed how to apply the stochastic collocation technique,
using a specific isotonic and moment-preserving polynomial representation, to produce
an arbitrage-free interpolation and extrapolation of market option prices, without rely-
ing on a prior model. We however noticed that a polynomial, while often satisfactory,
may not be able to always reproduce the market implied volatilities with enough accu-
racy. This may be especially critical in the context of the collocating local volatility (CLV)
model of Grzelak [77].

In this chapter, instead of collocating on a polynomial, we explore various monotonic
spline representations, including B-spline parametrizations. This allows for a richer rep-
resentation, with as many parameters as there are market option strikes. A direct conse-
quence is the ability to capture more complex implied probability distributions such as
multi-modal distributions. We pay attention to avoid over-fitting by adding some appro-
priate regularization. This is reminiscent of the penalized B-spline technique for volatil-
ity modelling of Corlay [38], where a B-spline parameterization of the Radon-Nikodym
derivative of the underlying’s risk-neutral probability density with respect to a roughly
calibrated base model is used. Concretely, Corlay’s method translates to an explicit prob-
ability density representation where the probability density is a spline multiplied by a
base probability density function, such as the lognormal or normal probability density

This chapter is based on the article ’Model-free stochastic collocation for an arbitrage-free implied volatility,
Part II’, published in Risks, 2019 [134].
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function. Corlay’s technique however limits the implied volatility shapes allowed, and
often requires the use of a more elaborate base probability density function, such as the
one stemming from the SVI parameterization of Gatheral [72], to properly fit the market
in practice. We will see that the stochastic collocation on a spline is more flexible and
can fit the market very well when collocating to a simple Gaussian variable.

The outline of this chapter is as follows. Section 6.2 presents how to apply the stochas-
tic collocation on a monotonic cubic spline, while still preserving the first moment ex-
actly. The collocation on an exponential spline is explored in Section 6.3, which results
in analytical formulas not only for the price of vanilla options but also for the price of
variance swaps. Section 6.4 considers B-spline representations which take into account
the monotonicity and the martingale constraints explicitly. Section 6.5 details the cal-
ibration towards market option prices of each kind of representation. Finally, Section
6.6 explores the stability of the calibration on concrete market data, for the different
parametrizations considered. We compare the quality of fit and the implied probabil-
ity density with the Andreasen-Huge technique, regularized. In Section 6.7, we look at
a challenging example of Jäckel [109], where interpolation splines applied to call prices
lead to oscillations in the interpolation.

6.2. SPLINE COLLOCATION
When g is a piecewise cubic polynomial defined on the knots (xi , yi )i=0,...,N , the call op-
tion price can be obtained analytically. Let g (x) = gi (x) = ai +bi (x − xi )+ ci (x − xi )2 +
di (x − xi )3 for x ∈ [xi , xi+1], and k the index such that yk ≤ K < yk+1, assuming that
0 ≤ i < N exists, Equation (5.1) becomes

Vcall(K ) = I (x̃−1, x0)+ I (x̃N ,∞)−KΦ(−x̃k )

+
N−1∑
i=k

[
ai − (bi +di (x̃2

i +3))xi + ci (x2
i +1)

]
(Φ(−x̃i )−Φ(−x̃i+1))

+
N−1∑
i=k

[
bi + ci (x̃i −2xi )+di (3x2

i −3x̃i xi + x̃2
i +2)

]
φ(x̃i )

−
N−1∑
i=k

[
bi + ci (x̃i+1 −2xi )+di (3x2

i −3xi x̃i+1 + x̃2
i+1 +2)

]
φ(x̃i+1) , (6.1)

with x̃k = g−1(K ), x̃−1 = x0 and x̃i = xi for i > k. The integral I corresponding to the left
and right extrapolations is defined by

I (a,b) =
∫ b

a
g (x)φ(x)d x .

In the case of a linear extrapolation with slope s and starting at the point (x, y), we have

IL(a,b) = (y − sx)(Φ(b)−Φ(a))− s(φ(b)−φ(a)) .

with abuse of notation Φ(∞) = 1,Φ(−∞) = 0 and φ(∞) = φ(−∞) = 0. We use s = sL , and
x = x0, y = y0 for the left wing extrapolation, and s = sR , and x = xN , y = yN for the right
wing extrapolatioin.
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When K < y0 and in the case of a linear extrapolation, Equation (6.1) is still valid, but

with x̃−1 = K−y0
sL

+x0. When K > yN , CK = IR (x̃N ,∞) with x̃N = K−yN
sR

+xN .

The cut-off point x̃k = g−1
k (K ) can be found analytically through Cardano’s formula

[161].
The first moment is given by

M1(g ) = I (−∞, x0)+ I (xN ,∞)

+
N−1∑
i=0

[
ai − (bi +di (x2

i +3))xi + ci (x2
i +1)

]
(Φ(xi+1)−Φ(xi ))

+
N−1∑
i=0

[
bi − ci xi +di (x2

i +2)
]
φ(xi )

−
N−1∑
i=0

[
bi + ci (xi+1 −2xi )+di (3x2

i −3xi xi+1 +x2
i+1 +2)

]
φ(xi+1) . (6.2)

In practice, the preservation of the martingale property (and the put-call parity relation)
imposes M1 = F where F is the market forward price to maturity T .

The put option price is calculated through the put-call parity relation, namely

Vcall(K )−Vput(K ) = F −K , (6.3)

where Vput(K ) is the undiscounted price today of a put option of maturity T , and F is the
forward price to maturity.

When put option prices are very small, and assuming that the first moment equals
exactly the forward price, it is preferable to use a more direct approach. Equation (6.3)
does not allow to compute prices below machine epsilon. Using the same change of
variables as for the call option (Equation 5.1), we have for a put option with strike K :

Vput(K ) =
∫ +∞

0
max

(
K − y,0

)
f (y)d y

=
∫ xK

−∞
(g (x)−K )φ(x)d x .

This leads to

Vput(K ) = KΦ(x̃k )− I (−∞, x̃−1)− I (x̃N , xN )

+
k−1∑
i=0

[
ai − (bi +di (x2

i +3))xi + ci (x2
i +1)

]
(Φ(x̃i+1)−Φ(x̃i ))

+
k−1∑
i=0

[
bi + ci (x̃i −2xi )+di (3x2

i −3xi x̃i + x̃2
i +2)

]
φ(x̃i )

−
k−1∑
i=0

[
bi + ci (x̃i+1 −2xi )+di (3x2

i −3xi x̃i+1 + x̃2
i+1 +2)

]
φ(x̃i+1) , (6.4)

with x̃k = g−1(K ), x̃−1 = x0 and x̃i = xi for 0 ≤ i < k.
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6.3. EXPONENTIAL SPLINE COLLOCATION

6.3.1. VANILLA OPTIONS

Instead of interpolating on the strikes (the points (xi , yi )i=0,...,N ), we will interpolate the
log strikes (the points (xi , ln yi )i=0,...,N ) with a piecewise polynomial. This presupposes
that the strikes are strictly positive and that the probability of the asset being negative
equals zero. The undiscounted call price of an option with strike K is then

Vcall(K ) =
∫ ∞

−∞
max(eg (x) −K ,0)φ(x)d x , (6.5)

where g is a monotonic piecewise polynomial function interpolating (xi , ln yi )i=0,...,N .
We can not obtain a closed-form formula for a general g function, if we assume that g is a
quadratic spline. Let (x̄ j ) j=0,...,M be the spline knots, and g (x) = a j+b j (x−x̄ j )+c j (x−x̄ j )2

on [x̄ j , x̄ j+1], with k the index such that ȳk ≤ K < ȳk+1, we have then

Vcall(K ) = I (x̃−1, x̄0)+ I (x̃M ,∞)+KΦ(−x̃k )

+
M−1∑
j=k

e
a j −b j x̄ j +c j x̄2

j + 1
2 m2

j
Φ

(
x̄ j+1

√
1−2c j −m j

)−Φ(
x̃ j

√
1−2c j −m j

)√
1−2c j

,

with m j = b j −2c j x̄ jp
1−2c j

and defining x̃k = g−1(lnK ), x̃i = x̄i for i > k. When 1−2c j < 0, we

can use the imaginary error function erfi as we have for a,b ∈R,

−i
Φ(ib

√
2c j −1)−Φ(ia

√
2c j −1)√

2c j −1
=

erfi

(
b
√

2c j −1
2

)
−erfi

(
a
√

2c j −1
2

)
2
√

2c j −1
.

For a linear extrapolation with slope s and passing by the point (x, y), corresponding to
g (u) = s(u −x)+ y , we find

I (a,b) =
∫ b

a
e s(u−x)+yφ(u)du

= e y−sx+ 1
2 s2

(Φ(b − s)−Φ(a − s)) , (6.6)

with some abuse of notation Φ(−∞) = 0, Φ(∞) = 1. The left wing extrapolation corre-
sponds to x = x̄0 and y = ȳ0, with s = sL a free parameter and the right wing extrapola-
tion corresponds to x = x̄M , y = ȳM with s = sR . In order to keep the continuity of the
derivative at the boundaries, we choose sR = g ′(xN ) and sL = g ′(x0).
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The first moment is given by

M1 =
∫ ∞

−∞
eg (x)φ(x)d x

= I (−∞, x̄0)+ I (x̄M ,∞)

+
M−1∑
j=0

e
a j −b j x̄ j +c j x̄2

j + 1
2 m2

j
Φ

(
x̄ j+1

√
1−2c j −m j

)−Φ(
x̄ j

√
1−2c j −m j

)√
1−2c j

= I (−∞, x̄0)+ I (x̄M ,∞)

+
M−1∑
j=0

e
a j +

b2
j −2b j x̄ j +2c j x̄2

j
2(1−2c j )

Φ
(
x̄ j+1

√
1−2c j −m j

)−Φ(
x̄ j

√
1−2c j −m j

)√
1−2c j

. (6.7)

6.3.2. VARIANCE SWAP

Variance swaps contracts allow a buyer to receive the future realized variance of the price
changes until a specific maturity date against a fixed strike price, paid at maturity. Con-
ventionally, these price changes are daily log returns of a specific stock, equity index, or
exchange rate based upon the most commonly used closing price (or exchange rate reset
price). Variance swaps became particularly popular after Demeterfi et al. showed that
a single contract could be statically replicated by a portfolio of vanilla options [45]. In
the absence of jumps1 and assuming the observations to be continuous, the problem of
pricing a variance swap can be reduced to the pricing of a log-contract. The price V of a
variance swap, by continuous replication, has a particularly simple closed-form expres-
sion with the exponential spline parametrization. For a newly issued variance swap with
zero strike, and a transition probability density f from t = 0 to t = T , following Carr and
Lee [31], we have

V (0,T ) =− 2

T

∫ ∞

0
ln

[
y

F (0,T )

]
f (y)d y

=− 2

T

∫ ∞

−∞
(
g (x)− lnF (0,T )

)
φ(x)d x . (6.8)

In Equation (6.8), g̃ = g −F (0,T ) is a piecewise quadratic spline. The value of the inte-
gral corresponds to the first moment of the collocation variable with the spline g̃ , which
is given explicitly by Equation (6.2). The standard replication formula from Carr and
Madan [33] implies to choose an integration cut-off and the use of a numerical quadra-
ture, typically an adaptive Gauss-Lobatto quadrature. This is not necessary with the ex-
ponential spline collocation approach. The price of the variance swap can be adjusted
by changing the slope of the linear extrapolation. This allows for a fast joint calibration
of the collocating B-spline to market option prices and variance swaps. The market vari-
ance swap prices give some additional information on the tail of the distribution, not
covered by vanilla options.

1Although such a hypothesis may seem very strong, most practitioners value the variance swaps by replication.
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6.4. B-SPLINE COLLOCATION
We recall that the goal of the stochastic collocation is to find a smooth monotonic func-
tion to represent the function g mapping the abscissas (xi )i=0,...,N to the ordinates (the
strikes) (yi )i=0,...,N (see Figure 5.2.1b), by minimizing the error in option prices in a least-
squares sense. From the previous sections, we now know how to price vanilla options
by collocating on a spline, which passes through the specific points (xi , yi )i=0,...N . We
can then choose to optimize either the abscissas or the ordinates of those points in or-
der to minimize the least squares error in option prices, at the condition that we use a
monotonicity preserving spline and make sure to conserve the first moment in the opti-
mization.

Instead of using an exact interpolation function on a set of points, and optimizing
this interpolation through the choice of points, we can rely on a B-spline representation
and optimize directly the B-spline coefficients. The method will work both on the direct
strikes, or on the log strikes. We consider a quadratic B-spline representation, that is,
B-splines of order k = 3. The B-spline representation of g on N +1+k knots reads [43]

g (x) =
N∑

i=0
αi Bi ,3(x) . (6.9)

We choose the nearly optimal knots ti+3 = xi+1+xi+2
2 for i = 0, ..., N −3 according to [43, p.

193] with the boundary knots t0 = t1 = t2 = x0 and tN+1 = tN+2 = tN+3 = xN . This choice
of knots ensures that g is C 1 on [x0, xN ].

Because the derivative of the equivalent piecewise polynomial representation is lin-
ear between two distinct knots, g will be monotonically increasing on an interval [ti−1, ti ]
if and only if the derivative at the endpoints is positive. And thus, g will be monotonically
increasing on the interval [x0, xN ] if and only if αi −αi−1 > 0 for i = 1, ..., N in Equation
(6.9).

It is then particularly simple to impose the monotonicity constraints when we opti-
mize the coefficients αi during the calibration to market quotes. Furthermore, a least-
squares fit of g directly to some input (xi , yi )i=0,...,N reduces to a simple quadratic pro-
gramming problem:

α̃= argmin
α∈RN+1

1

2
αT Qα+qTα , (6.10)

subject toαi −αi−1 > 0 for i = 1, ..., N , with Q = P T P , q =−P T y and P the matrix defined
by Pi , j = Bi ,3(y j ). In particular P is a banded matrix [43].

The quadratic programming problem is fast to solve using a standard optimization
library such as CVXOPT [11], OSQP [183] or quadprog [192], when compared to the to-
tal time taken to calibrate the spline. This will allow to start the optimization from a
reasonable initial guess.

In order to price an option or to evaluate the first moment, we simply transform the
B-spline representation to a piecewise quadratic polynomial [43, p. 117-119] and rely on
sections 6.2 and 6.3 of this thesis, for respectively a direct B-spline collocation, and an
exponential B-spline collocation.

In the case of the direct B-spline collocation, the first moment is a linear combina-
tion of the B-spline coefficients. Indeed, the first moment is a linear combination of the
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piecewise polynomial coefficients in Equation (6.2) and the piecewise polynomial coef-
ficients themselves are a linear combination of the B-spline coefficients:

a j =
t j+2 − t j+1

t j+3 − t j+1

(
α j+1 −α j

)+α j , (6.11)

b j = 2
α j+1 −α j

t j+3 − t j+1
, (6.12)

c j = 1

t j+3 − t j+2

(
α j+2 −α j+1

t j+4 − t j+2
+ α j −α j+1

t j+3 − t j+1

)
. (6.13)

We can thus add the martingale constraint directly to the quadratic programming prob-
lem as an additional equality constraint.

6.5. CALIBRATION OF THE SPLINE COLLOCATION TO MARKET

QUOTES
We wish to minimize the weighted `2 error norm between the volatilities implied from
the prices obtained by spline collocation and the market implied volatilities. For this,
we can optimize the location of either the spline knots abscissas xi or the spline knots
ordinates yi , or in the case of the B-spline representation, the coefficients αi .

6.5.1. COORDINATE TRANSFORMATION
In order to preserve the order of the knots, we rely on the following mapping:{

zi = xi −xi−1 , for i > 0,

z0 = x0 ,

and enforce zi ≥ 0 as box constraints in the least-squares minimization. Box constraints
can be added in a relatively straightforward manner to any Levenberg-Marquardt algo-
rithm, such as the one of Klare and Miller [120], through the projection technique de-
scribed in [118].

We use the same mapping if the ordinates or the B-spline coefficients are optimized,
using yi , respectively αi , instead of xi in the above equations.

6.5.2. MOMENT CONSERVATION
We also wish to preserve the first moment exactly in order for the spline representation
to be fully arbitrage-free. Let M1(g ) be the first moment computed by Equation (6.2) and
F be the market forward price to the option maturity time T . In order to make M1 match
F , we shift the coefficient ai of each piecewise polynomial (gi )i=0,...,N−1 and use

âi = ai +F −M1 , for 0 ≤ i ≤ N . (6.14)

For the exponential spline representation on M +1 unique knots, the adjustment is al-
most the same, but based on the log values; we use

âi = ai + lnF − ln M1 , for 0 ≤ i ≤ M . (6.15)
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The new spline ĝ with updated coefficients âi will satisfy exactly M1 = F .
With this adjustment, there is a fundamental difference between the optimization of

the abscissas xi and the ordinates yi : when the abscissas are optimized, the adjustment
will also implicitly adjust the yi as we have yi = âi . Furthermore, when optimizing the
ordinates yi or the B-spline coefficients αi , the first coordinate y0 (respectively α0) can
be directly deduced from the martingale adjustment. Indeed, the adjustment only im-
pacts the value of z0 and has no effect on zi = u−1(yi − yi−1) for i > 0. This allows to
reduce the number of dimensions of the optimization problem by one.

6.5.3. CHOICE OF COORDINATES
In our experiments, the optimization of the abscissas (xi )i=0,...,N appeared to be the least
stable. In particular, the outcome was highly dependent on the initial guess. Only with a
proper regularization and a good smooth initial guess (for example, the constant Bache-
lier guess) was the outcome satisfactory.

In comparison, the optimization of the ordinates (yi )i=0,...,N was found to be more
stable, and the optimization of the B-spline coefficients was the most stable of all choices.
One reason for this stability, is the initial guess for the B-spline coefficients respects the
martingale constraint. Another is that the B-spline formulation is simply more stable
than the piecewise-polynomial version [43]. Values from the B-spline representation are
obtained from a linear combination of the coefficients, while values obtained from the
monotonic cubic spline representation are neither a linear combination of the abscissas
nor of the ordinates, because of the monotonicity constraint.

The flexibility of choosing a different variety of monotonic splines such as the cubic
spline of Hyman [100] or Huynh [99] when optimizing the knots abscissas or ordinates
does not translate to a better fit of the reference option prices. In some specific cases,
such as the one we explore in Section 6.7, the optimization of the abscissas led to a better
fit, but this consists in fitting towards the prices of a pre-existing model at hypothetical
strikes, and not directly towards the market prices.

From now on, for clarity, we will thus focus only on the B-spline or exponential B-
spline collocations where the B-spline coefficients are optimized.

6.5.4. REGULARIZATION
We will see by means of real examples that it can be useful to add regularization to the
minimization as well, in order to avoid an implied probability density with many spikes.
An interesting candidate for the regularization is to minimize the strain energy of a beam
that is forced to pass through the given data points [74]:

E =
m∑

i=0
µ2

i (σ(ξ,Ki )−σi )2 +λ2
m−1∑
i=0

µ2
i g ′′(xi )2[

1+ g ′(xi )2
] 5

2

(xi+1 −xi ) , (6.16)

where σ(ξ,K ) is the implied volatility corresponding to the option prices obtained with
the spline collocation andσi is the market implied volatility at strike Ki . For the maturity
T considered, m+1 is the number of market strikes. We allow the number of strikes to be
greater than or equal to the number of spline interpolation nodes N +1. The parameter
ξ represents a specific spline configuration on N +1 nodes. For a B-spline, we have ξ =
(α j ) j=0,...,N , where (α j ) j=0,...,N are the coefficients of the B-spline representation.



6.6. EXAMPLE OF CALIBRATION ON TSLA OPTIONS

6

113

The first term of the objective E corresponds to the square of the RMSE, while the
second term is the regularization. The regularization parameter λ controls the smooth-
ness of the spline interpolation.

In the case of the B-spline representation, Eilers and Marx [57] propose a simpler reg-
ularization. Their penalized spline (P-spline) minimizes the total variation of the second
derivative. This regularization, expressed in terms of the B-spline coefficients, reads

E =
m∑

i=0
µ2

i (σ(ξ,Ki )−σi )2 +λ2
N−1∑
j=1

4µ2
i

(t j+2 − t j+1)2

(
α j+1 −α j

t j+3 − t j+1
+ α j−1 −α j

t j+2 − t j

)2

, (6.17)

where (t j ) j=0,...,N+3 are the spline knots. In particular, the latter regularization is linear in
the coefficients (α j ) j=0,...,N and can thus be directly included in the quadratic program-
ming problem described in Section 6.4.

6.6. EXAMPLE OF CALIBRATION ON TSLA OPTIONS
We consider options on the stock with ticker TSLA expiring on January 17, 2020 as of
June 15, 2018. We first imply the forward price from the put-call parity relation at-the-
money and then imply the Black-Scholes volatility from the mid price for each option
strike (Table 6.A.1). In this example, the options mid prices are not arbitrage free.

We will measure the RMSE between the volatilities implied by the calibrated stochas-
tic collocation and the market implied volatilities, with and without regularization. We
use equal weights in this example. Although it is not particularly realistic, it has the ad-
vantage of making the plots of the implied volatility more explicit.

The calibration consists firstly in computing an arbitrage-free (convex) set of call op-
tion prices from the market mid quotes according to Section 5.3.2, secondly in comput-
ing the B-spline initial guess following Section 6.4, and thirdly in minimizing the error
measure represented by Equation (6.16) with a Levenberg-Marquardt minimizer.

6.6.1. B-SPLINE
With a small (or zero) regularization parameter λ, the resulting implied probability den-
sity possesses many spurious spikes (Figure 6.6.1a). The use of a larger regularization pa-
rameter λ, during the non-linear minimization of the objective E described in Equation
(6.16), helps smoothing the spikes, but it increases the RMSE slightly (see table 6.6.1).

Table 6.6.1: Root mean square error (RMSE) of the collocation method implied volatilities against the market
implied volatilities of the TSLA 1m options as of June 18, 2018.

Method Regularization RMSE Time(ms)

Exponential B-spline collocation λ= 1 ·10−3 0.00437 43
B-spline collocation λ= 6 ·10−6 0.00397 71
Andreasen-Huge none 0.00356 890
Exponential B-spline collocation λ= 1 ·10−7 0.00345 150
B-spline collocation λ= 1 ·10−10 0.00326 37
Schumaker quadratic spline none 0.00313 0.5
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(a) Probability density implied by the prices obtained with a calibrated B-spline collocation.
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(b) Volatility smile implied by the prices obtained with B-spline collocation with regularization
λ= 6 ·10−6.

Figure 6.6.1: Implied probability density and implied volatility for the B-spline collocation, calibrated to 1m
TSLA options.

In Table 6.6.1, we also compute the RMSE with a simple convexity preserving quadratic
spline [179] on the filtered market option prices (Equation 5.11). This interpolation leads
to a positive and piecewise-constant probability density. On convex prices, the interpo-
lation is exact. The RMSE is thus purely due to the filtering of the market quotes by
quadratic programming.

Andreasen and Huge [12] propose a different non-parametric arbitrage-free volatility
interpolation, where a discrete local volatility is calibrated to market option prices in a
one-step finite-difference discretization of the forward Dupire partial differential equa-
tion. The number of free parameters corresponds effectively to the number of quotes, as
in the spline collocation, and their technique will also tend to overfit. It is known to lead
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to a nearly exact interpolation on arbitrage-free option prices. It does however not lead
to a more accurate representation of the market implied volatilities than the B-spline
collocation with a small regularization constant. The corresponding implied probability
density also possesses spikes.

The B-spline collocation is not only at least as accurate as the technique of Andreasen
and Huge [12] on this example, it is also significantly faster. In the latter, the involved fi-
nite difference grid must be relatively large (we used 800 points) and the corresponding
tridiagonal system must be solved for each set of piecewise constant volatilities consid-
ered by the minimizer. Furthermore, the B-spline collocation offers a continuous in-
terpolation of the option prices. In the technique of Andreasen and Huge [12], options
prices are given only at the finite difference grid points. Another careful2 arbitrage-free
interpolation must be used to compute the price in between grid points. Finally, the B-
spline collocation offers the ability to tune the probability density smoothness against
the RMSE.

The optimal regularization parameter can be found using the L-curve method [88].
On Figure 6.6.2b we plot the L-curve for the calibrated B-spline collocation, that is the
regularization norm against residual norm, in logarithmic scale, or equivalently, the sec-
ond sum against the first sum of Equation (6.17), varying the regularization parame-
ter λ. For most regularization techniques, such a curve is L-shaped, because, on linear
problems, the regularization norm is a strictly decreasing function of the regularization
parameter λ, and the residual norm is a strictly increasing function of λ. A good regular-
ization parameter will achieve a good compromise between the two errors, and will cor-
respond to a regularized solution near the "corner" of the L-curve. On non-linear least-
squares problems in general, the regularization and residual norms will not be strictly
monotonic, they will however be nearly monotonic and the L-curve method may still be
applied [16, p. 241].

Our choice λ = 6 · 10−6 is the point located in the corner of the L-curve (see Figure
6.6.2b). Performing multiple calibrations to find the optimal regularization parameter,
following one of the algorithms of Hansen [89], may be time-consuming. An alternative
is to apply the L-curve method to the B-spline initial guess based on the convex option
prices3 (Figure 6.6.2a).

6.6.2. EXPONENTIAL B-SPLINE

The exponential B-spline initial guess does not preserve the first moment. As a con-
sequence, its calibration tends to be less stable than the calibration of the regular B-
spline. The choice of initial guess plays then an important role, and the inclusion of the
regularization in the calculation of the exponential B-spline initial guess is particularly
important. The RMSE in the implied volatilities is comparable to the one obtained by
the Andreasen and Huge technique, and is larger than the RMSE of the regular B-spline
collocation (Table 6.6.1). In spite of the larger error, the implied probability density is
not as smooth as the one implied from the regular B-spline collocation (Figure 6.6.3). A

2In practice, we solve the Fokker-Planck forward PDE instead of the Dupire forward PDE, and then integrate
the option payoff on the known probability density as in [84, 131] in order to obtain arbitrage-free prices
everywhere.

3We use inverse Vega weights to fit the B-spline guess to the option prices.
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(b) Calibrated collocation.

Figure 6.6.2: L-curves of the B-spline corresponding to the initial guess, and the calibration result on TSLA
options.

smoother initial guess, such as the constant Bachelier volatility is then preferable.
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Figure 6.6.3: Implied probability density for the exponential B-spline collocation, calibrated to 1m TSLA
options, with different regularization constants.

6.6.3. STARTING FROM ARBITRAGE-FREE PRICES
It is also interesting to take the filtered convex option prices (from Equation 5.11) as a ba-
sis to compare the different techniques. We expect the RMSE to be lower, eventually zero
if the interpolation is exact at the market strikes. For example, the convexity preserving
Schumaker quadratic spline results in an RMSE of exactly zero (but the associated im-
plied probability density is a staircase). The B-spline collocation results in an RMSE of
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around 0.0005 without regularization constant. This is lower than the RMSE produced
by the Andreasen-Huge technique. In theory, their technique should be able to attain a
lower RMSE, but the number of strikes, and thus the number of constants to optimize is
relatively large on our problem and this creates difficulties for the numerical optimiza-
tion. The collocation on an exponential B-spline leads to an RMSE similar to the one
obtained with the Andreasen-Huge technique (Table 6.6.2). Of course, with a small reg-
ularization constant, the corresponding probability density possesses many spikes and
is not very practical.

Table 6.6.2: Root mean square error (RMSE) of the collocation method implied volatilities against the implied
volatilities of the TSLA 1m options as of June 18, 2018, based on convexity adjusted prices.

Method Regularization RMSE Time (ms)

Exponential B-spline collocation λ= 10−3 0.00287 35
B-spline collocation λ= 6 ·10−6 0.00239 39
Exponential B-spline collocation λ= 10−7 0.00118 160
Andreasen-Huge none 0.00112 890
B-spline collocation λ= 10−10 0.00042 78
Schumaker quadratic spline none 0 0.02

On other market data, for example, options on NFLX from July 2018, the same con-
clusions can be drawn.

6.7. A MORE EXTREME EXAMPLE - WIGGLES IN THE IMPLIED

VOLATILITY
Jäckel [109] shows that undesired oscillations can appear in the graph of the implied
volatility against the option strikes when the option prices are interpolated by a mono-
tonic and convex spline. Table 6.A.2 in appendix 6.A presents a concrete example4. Here,
the option quotes are not direct market quotes, but the solution of a sparse finite differ-
ence discretization of a local stochastic volatility model: the market never quotes so far
out-of-the-money option prices. His data has a few interesting properties:

• some of the option prices are extremely small: the interpolation must be very ac-
curate numerically.

• the option prices are free of arbitrage. In theory, an arbitrage-free interpolation
can be exact.

• a cubic spline interpolation on the volatilities or the variances, often used by prac-
titioners, is not arbitrage-free.

• a convexity preserving C 1-quadratic, or C 2-rational spline results in strong oscil-
lations in the implied volatility.

4We are grateful to Peter Jäckel for kindly providing this data.
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The interpolation proposed in [109] possesses unnatural spikes at the points of clamp-
ing, in particular, the implied density is not continuous.

For this example, the B-spline collocation leads to a relatively large RMSE when com-
pared to Andreasen-Huge method. As a consequence, we can see an oscillation of small
amplitude in the corresponding implied volatility for large strikes (Figure 6.7.1b). This is
very mild compared to the spline interpolations presented in [109]. The higher error is
mostly located in the left wing. The exponential B-spline collocation results in a much
lower RMSE, albeit still larger than the Andreasen and Huge technique (Table 6.7.1). The
volatility implied by the exponential B-spline collocation does not oscillate.
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(b) Volatility smile for moneyness larger than one.

Figure 6.7.1: Implied probability density and implied volatility for the spline collocations of the market data of
Table 6.A.2 in appendix 6.A.

The optimal implied probability density is relatively smooth, but possesses a few vis-
ible modes (Figure 6.7.1a). This makes the monotonic polynomial collocation of chapter
5 ineffective, even when using a high degree polynomial. Polynomials of degree seven
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and higher lead to a RMSE larger than one vol point.

Table 6.7.1: Root mean square error (RMSE) of the collocation method implied volatilities against the implied
volatilities of Table 6.A.2 in Appendix 6.A.

Method Regularization RMSE Time (ms)

Septic polynomial none 1 ·10−2 230
B-spline λ= 10−12 2 ·10−4 10
Exponential B-spline λ= 10−7 6 ·10−5 10
Andreasen-Huge (800 nodes) none 1 ·10−6 25
Andreasen-Huge (3200 nodes) none 9 ·10−8 67
Schumaker convex spline none 0 0.02

It is possible to obtain a better fit with the B-spline collocation with a better choice
of knots, for example, if we compute the knots implied by the calibrated B-spline collo-
cation, and calibrate one more time. In Table 6.7.2, we denote this technique as "Best".
It improves significantly the accuracy on the example of Peter Jäckel, but not on the fil-
tered and non filtered TSLA market option quotes, where the different choices for the
initial knots lead to a very similar RMSE.

Table 6.7.2: Root mean square error (RMSE) of the collocation method implied volatilities starting the
calibration with the Bachelier, the convex, or the "best" initial guess, and using a small regularization

constant.

Market data Collocation method Bachelier Convex Best

Peter Jäckel B-spline 0.00063 0.00025 0.00001
Exponential B-spline 0.00016 0.00006 0.00003

TSLA raw B-spline 0.00330 0.00326 0.00322
Exponential B-spline 0.00343 0.00345 0.00343

TSLA convex B-spline 0.00054 0.00042 0.00034
Exponential B-spline 0.00108 0.00118 0.00108

On Peter Jäckel’s example, the optimal implied probability density is relatively smooth
everywhere, and especially for strike moneyness larger than one. Figure 6.7.2 shows
however that the probability density implied by technique of Andreasen and Huge ex-
hibits a staircase shape when zoomed-in. This is due to the interpolation in between
the finite difference grid nodes. In contrast, the probability density implied by the (ex-
ponential) B-spline collocation stays very smooth, and is continuous by construction.

6.8. CONCLUSION
The monotonic B-spline and exponential B-spline collocations allow a more flexible
arbitrage-free representation as compared to the monotonic polynomial collocation.
They can capture multi-modal distributions well. In practice, when the goal is to fit mar-
ket option prices, we have shown that is important to add a regularization during the
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Figure 6.7.2: Implied probability density for the exponential B-spline collocation and Andreasen-Huge
techniques, for strike moneyness K ∈ [2.5,3.0], calibrated to the market data of Table 6.A.2 in Appendix 6.A.

The B-spline has a knot located at K = 2.679.

optimization in order to stabilize the calibration and produce a smooth implied proba-
bility density, and we have described which regularization is appropriate.

We have also presented a simple non-parametric technique to de-arbitrage a set of
option prices, which may be used independently of the B-spline collocation method.

In some specific cases, such as the example from Jäckel [109], the outcome of the
B-spline calibration may be dependent on the choice of the initial fixed knots. On the
latter example, the exponential B-spline collocation behaved better however.

On actual market options quotes, corresponding to various equity or equity indices,
we did not observe this strong dependence on the choice of initial knots. We observed
a quality of fit in terms of implied volatilities similar to or better than the best non-
parametric arbitrage-free methods such as the technique of Andreasen and Huge [12].
Compared to the latter, the spline collocation has the advantage of providing a nat-
ural continuous interpolation and extrapolation. The technique from Andreasen and
Huge is based on a fine discretization of the problem, and requires an additional careful
arbitrage-free interpolation scheme to compute the prices for option strikes not placed
on the discretization grid. The B-spline collocation is also less computationally inten-
sive, as the Andreasen and Huge technique mainly works well on a dense grid, typically
composed of thousand points or more.

An additional interesting property of the exponential B-spline representation is the
simple analytical expression we obtain for the price of a variance swap. The latter is a lin-
ear combination of the B-spline parameters. This allows to include the market prices of
variance swaps very easily into the calibration and thus to obtain a better representation
of the wings of the implied volatility.

Finally, the B-spline and exponential B-spline collocations can be used directly to
price exotic derivatives within the collocated local volatility model of Grzelak and Oost-
erlee [77].

We leave for further research the definition of an algorithm for an automatic selection
of the best B-spline knots, as well as an extension to B-splines of order four.



APPENDIX

6.A. MARKET DATA

Table 6.A.1: Implied volatilities against strikes K for TSLA options expiring on January 17, 2020 as of June 15,
2018. This corresponds to a maturity T = 1.59178 and the forward is f = 356.73.

Strike Implied volatility Strike Implied volatility

20 1.21745 330 0.50712
25 1.15297 335 0.50429
50 1.00135 340 0.50140
55 1.00870 350 0.49619
75 0.90559 360 0.49145

100 0.81965 370 0.48571
120 0.77970 380 0.48210
125 0.75393 390 0.47766
140 0.72553 400 0.46823
150 0.70370 410 0.46913
160 0.68709 420 0.46520
175 0.66315 430 0.46210
180 0.65428 440 0.45970
195 0.63100 450 0.45614
200 0.62320 460 0.45418
210 0.61545 470 0.45155
230 0.58662 480 0.44542
240 0.57838 490 0.44528
250 0.56250 500 0.44304
255 0.56255 510 0.43939
260 0.55723 520 0.44132
270 0.54852 550 0.43363
275 0.54561 580 0.42971
280 0.54006 590 0.42844
285 0.53848 600 0.42411
290 0.53253 650 0.42227
300 0.52224 670 0.42034
310 0.52024 680 0.41934
315 0.51684 690 0.41935
320 0.51274 700 0.41759
325 0.51004
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Table 6.A.2: Implied volatilities against moneyness K
F for an option of maturity T = 5.0722, example 1 of

Jäckel [109].

Moneyness Implied volatility

0.03512 0.64241
0.04910 0.62168
0.06862 0.59058
0.09592 0.55314
0.13408 0.51140
0.18741 0.46670
0.26196 0.42023
0.36617 0.37330
0.51182 0.32756
0.71542 0.28511
1 0.24933
1.39778 0.22897
1.95380 0.22086
2.73099 0.21876
3.81733 0.21874
5.33580 0.21843
7.45829 0.21720

10.42507 0.21574
14.57200 0.21462
20.36849 0.21411
28.47074 0.21458



7
AN ADAPTIVE FILON QUADRATURE FOR STOCHASTIC

VOLATILITY MODELS

The valuation of European options under the Heston model, or under other stochastic
volatility models where the characteristic function is known analytically, involves the com-
putation of a Fourier transform type of numerical integration. This chapter describes
adaptive Filon and adaptive Flinn quadrature to calculate this integral efficiently in ac-
cordance with a user-defined accuracy. It continues with a comparison in terms of ac-
curacy and performance with quadrature rules commonly used for this problem such as
the Lord and Kahl optimal alpha method. Finally, it concludes with the concrete case of
model calibration on different market data.

7.1. INTRODUCTION
The valuation of European options under the Heston model, or under other stochas-
tic volatility models where the characteristic function is known analytically, involves the
computation of a Fourier transform type of numerical integration. Many variations ex-
ist. Heston derived the initial valuation formula from a probabilistic interpretation in
[91], while Carr and Madan developed a more direct Fourier transform approach, which
enabled the use of the fast Fourier transform (FFT) algorithm in [32]. Their damping
parameter α also spun off a family of alternative valuation formulas, with better conver-
gence properties than the original Heston formula. The Lewis formula, corresponding to
α=− 1

2 is particularly popular as it is simple to evaluate, is well-defined everywhere and
has quadratic denominator [139]. We should also mention the choice α = −1 proposed
by Attari, which requires special treatment around zero, and the choice α = 0 studied
by Joshi and Yang [115]. Joshi and Yang combined this specific choice of α along with
matching the value and first derivative of the characteristic function at z = −i with a
Black-Scholes control variate1, which they found was improving the efficiency of real-
time calibration. A procedure to find the optimal (strike and maturity dependent) α,
leading to the ability of pricing extremely out-of-the-money options, including those
whose prices are beyond machine epsilon, is described in [145].

This chapter is based on the article ’An adaptive Filon quadrature for stochastic volatility models’, published
in Journal of Computational Finance 22:3, 2018 [130].
1The value of the characteristic function at the integration boundary z = −i always matches with the choice
α= 0, independently of the parameters.
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In terms of integration, Kilin [119] showed that the FFT method was not competitive
against a simple quadrature with cached characteristic function values. There is however
no real consensus on the quadrature to be used. Andersen and Piterbarg advocate for the
simplest trapezoidal method with a good truncation [9]. Kahl and Jaeckel, as well as Lord
and Kahl propose the adaptive Gauss-Lobatto of Gander and Gautschi combined with a
log-transform [117], while Joshi and Yang use the Gauss-Laguerre quadrature.

The Filon quadrature is particularly suited to the computation of Fourier integrals
[61, 191]. A generalisation of this method has been applied to the problem of pricing
options under the displaced lognormal Heston model in [49]. Their proposed algorithm
however involves many specific choices of parameters. In this chapter, we will look at a
particularly simple and effective adaptive Filon method, where the adaptive integration
points are reusable across strikes, for a given maturity. A similar technique has been used
in seismology in [87] and in finance the context of volatility swap pricing in [128]. We
will evaluate its behavior against popular Heston integration methods on challenging
Heston parameters. Finally, we will take a look at the full volatility surface calibration
performance and stability.

While this chapter focuses on the Heston stochastic volatility model, the proposed
technique is more general and can be applied other models with closed form character-
istic functions like Bates [20], Schöbel-Zhu [178], or Double-Heston [36].

7.2. CHARACTERISTIC FUNCTIONS
The Heston stochastic volatility model for an asset F is described by the following system
of stochastic differential equations [91]:

dF =p
vF dWF , (7.1)

d v = κ(θ− v)d t +σpvdWv , (7.2)

with dWF dWv = ρd t . For an equity of spot price S, and maturity T , F represents the
forward to maturity F (t ) = S(t )e(r−q)(T−t ), with r the relevant interest rate, and q the
dividend yield.

In order to avoid complex discontinuities, we rely on Jim Gatheral’s formulation of
the normalized Heston characteristic function [144]:

ψ(z) = e
v0
σ2

1−e−DT
1−Ge−DT (κ−iρσz−D)+ κθ

σ2

(
(κ−iρσz−D)T−2ln( 1−Ge−DT

1−G )
)

, (7.3)

with

D =
√

(κ− iρσz)2 + (z2 + iz)σ2 , (7.4)

G = κ− iρσz −D

κ− iρσz +D
. (7.5)

The standard characteristic function is then just E[e iz ln(F (T ))] = e iz ln(F (0))ψ(z).
In the Black-Scholes model, the asset F follows dF = σB F dW and the normalized

Black-Scholes characteristic function with volatility σB is given by

ψB (z) = e−
1
2σ

2
B T (z2+iz) . (7.6)

We will see, that it can be used as a control variate for stochastic volatility models.
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7.3. PRICING FORMULAS
Originally, Heston proposed a Black-Scholes like formula in [91]. The vanilla call option
price can be expressed as [32]:

Vcall(F,K ,T ) = Fe−r T

[
1

2
+ 1

π

∫ ∞

0
ℜ

(
e−iukψ(u − i)

iuψ(−i)

)
du

]
+K e−r T

[
1

2
+ 1

π

∫ ∞

0
ℜ

(
e−iukψ(u)

iu

)
du

]
,

(7.7)
where k = ln(K ). In order to obtain a square-integrable function based on the Call price,
Carr and Madan [32] propose2 a formula based on a damped option price:

Vcall(F,K ,T ) = Rα(F,K )+F
e−αx e−r T

π

∫ ∞

0
ℜ

(
e−iux ψ(u − (α+1)i)

(α+ iu)(α+1+ iu)

)
du , (7.8)

where α is a damping parameter, x = ln( K
F ), and

Rα(F,K ) = e−r T
[

F ·1α≤0 −K ·1α≤−1 − 1

2
(F ·1α=0 −K ·1α=−1)

]
.

A method to find the optimalα, allowing to price extremely out-of-the-money options is
described in [145]. For put options, one can just use the same formula, but with α<−1.

A popular alternative formulation with a quadratic denominator was found by [139]:

Vcall(F,K ,T ) = Fe−r T −
p

F K e−r T

π

∫ ∞

0

ℜ(
e−iuxψ(u − i

2 )
)

u2 + 1
4

du . (7.9)

This is equivalent to taking α = − 1
2 in Carr-Madan formula. It is a method of choice in

[9], where they introduce a Black-Scholes control variate to significantly improve con-
vergence:

Vcall(F,K ,T ) =BS(F,K ,T,
p

v0)+
p

F K e−r T

π

∫ ∞

0
ℜ

(
e−iux ψB (u − i

2 )−ψ(u − i
2 )

u2 + 1
4

)
du .

(7.10)
Put options can be priced with the same formula but using the Black-Scholes put

option price instead of the call option price. Finally, a recent formula with Black-Scholes
control-variate is studied in [115].

Vcall(F,K ,T ) =BS(F,K ,T,σB )+ e−r T

π

∫ ∞

0
ℜ

(
e−iux ψB (u − i)−ψ(u − i)

u(u − i)

)
du , (7.11)

where BS represents the option price obtained by the Black-Scholes formula for an asset
of spot price F , strike price K , maturity T and volatility σB . This is similar to taking
α= 0 in Carr-Madan formula. The authors also find that the optimal choice of volatility
σB used in the control variate corresponds to ψ′

B (−i) = ψ′(−i). Without this choice of
control variate, the formula would require special treatment at 0.

2This is not strictly the Carr-Madan formula: it is scaled by the forward.
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7.3.1. TRUNCATION OF THE INTEGRATION RANGE

A DOMAIN TRANSFORMATION

One immediate issue with the integration is the infinity of the range of integration. A
possibility is to use a log transform z(u) as proposed in [117, 145] combined with some
adaptive integration algorithm, for example the adaptive Gauss-Lobatto quadrature of
[69]. Defining:

u(z) =− ln(z)

C∞
, (7.12)

the Lewis pricing formula (Equation 7.9) can be rewritten as

∫ ∞

0

ℜ(
e−iuxψ(u − i

2 )
)

u2 + 1
4

du =
∫ 1

0

ℜ(
e−iu(z)xψ(u(z)− i

2 )
)

(u(z)2 + 1
4 )(u(z)C∞)

d z . (7.13)

The constant C∞ is chosen so that the transformed variable z(u) has same asymp-
totic behavior as the characteristic function at ∞:

lim
u→+∞

1

u
ln(ψ(u − (α+1)i)−ψB (u − (α+1)i)) =−(C∞+ iD∞), (7.14)

with

C∞ = v0 +κθT

σ

√
1−ρ2 , (7.15)

D∞ = v0 +κθT

σ
ρ. (7.16)

This can be applied to any of the formulas.

ANDERSEN-PITERBARG APPROACH TO LEWIS FORMULA

Another possibility is to find a good truncation and integrate directly, as proposed in [9],
relying on the following approximation when umax is sufficiently large:

∫ ∞

umax

∣∣∣∣∣ψ(u − i
2 )−ψB (u − i

2 )

u2 + 1
4

∣∣∣∣∣du ≤ e−C∞umax

∫ ∞

umax

du

u2 . (7.17)

Both methods actually rely on the same number C∞. For a relative tolerance of εu ,
the truncation limit umax is found by solving:

e−C∞umax

umax
= εu , (7.18)

or, to avoid numerical overflow:

−C∞umax − ln(umax) = ln(εu) . (7.19)
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SHORT EXPIRIES

The truncation can be invalid for short expiries (T < 0.1) as, then, e−D(umax)T 6¿ 1. A
Taylor expansion around T = 0 gives the Black-Scholes like characteristic function:

ln(ψ(u)) =−1

2
v0T (u2 + iu)+O (T 2) .

Then, our approximation for short expiries is ûmax that solves:

− 1

2
v0T û2

max − ln(ûmax) = ln(εu). (7.20)

We found that a good practical rule for the full range of expiries is just to use

ûmax = max(umax, ûmax) .

Similarly, the log-transform is not always well-behaved for short expiries. While the
integrand is well-behaved around z = 0, this is not always true around z = 1 as the char-
acteristic function becomes Black-Scholes like for short expiries. In practice, an adaptive
quadrature might require the evaluation of the integrand at very closely spaced points
near z = 1, sometimes of distance smaller than the machine epsilon. As a work-around,
we can use the transform of Lord and Kahl [145] for the Black-Scholes characteristic
function and cap C∞ to

C̄∞ =
√

v0T

2
. (7.21)

Let us illustrate the importance of our modifications for the short expiries with the
Heston parameters v0 = 0.826,κ = 0.254,θ = 0.320,σ = 0.344,ρ = −0.557 on an option
of maturity T = 0.0182 with forward and strike F = 1000,K = 1400. Table 7.3.1 shows
that without the adjustment to the truncation, the price is just wrong. The adjustment
to C∞ is particularly important for the non-adaptive quadrature schemes: a Simpson
quadrature with 10000 points has a huge error (of around 40% of the reference price).
The adaptive Gauss-Lobatto quadrature of Espelid [58] still works with the non capped
C∞ but requires many more points (almost 10000).

Table 7.3.1: Price with the Lewis formula and Black-Scholes control variate of volatility σB =p
v0 with the

following Heston parameters: v0 = 0.826,κ= 0.254,θ = 0.320,σ= 0.344,ρ =−0.557 on an option of maturity
T = 0.0182 with forward and strike F = 1000,K = 1400.

Quadrature Points Truncation Price

Simpson 10000 umax = 12.69 0.0651248
Simpson 10000 ûmax = 56.04 0.1073414
Simpson 10000 None / C∞ = 1.998 0.0685957
Simpson 10000 None / C̄∞ = 0.086 0.1073414
Gauss-Lobatto 1487 (Adaptive) ûmax = 56.04 0.1073414
Gauss-Lobatto 9107 (Adaptive) None / C∞ = 1.998 0.1073414
Gauss-Lobatto 5087 (Adaptive) None / C̄∞ = 0.086 0.1073414
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This is a key weakness of the domain transformation. While our fix improves the
behaviour in general, it is not clear if it stays always well-behaved near z = 0, and our
choice of applying the cap for T < 0.1 is somewhat arbitrary.

Interestingly, on this example, the non-transformed, truncated integral is much faster
to evaluate with the Gauss-Lobatto quadrature than the log-transformed equivalent. We
found this to be generally the case for short expiries, while for longer expiries, the log
transform was more beneficial.

7.4. THE FILON QUADRATURE

7.4.1. DEFINITION
The Filon quadrature is commonly used to evaluate integrals containing a trigonometri-
cal form such as

Ic =
∫ b

a
f (p)cos(xp)d p , Is =

∫ b

a
f (p)sin(xp)d p , (7.22)

where f (p) is a known function of p. When x is not small, the rapid oscillations of the
trigonometric function are particularly challenging for ordinary quadrature formulas,
such as Simpson’s rule, which require a division of the range of integration into such
small steps that the associated computational cost is prohibitive. The idea of Filon is to
fit f by a parabola at three equidistant points, as in Simpson’s method, but to integrate
exactly the terms in pk cos(xp), pk sin(xp). Applied to a subdivision in 2n parts of the
original interval [a,b] this results in the following formula:

Ic = h
{
α

[
f (b)sin(xb)− f (a)sin(xa)

]+βCce +γCco
}

, (7.23)

Is = h
{−α[

f (b)cos(xb)− f (a)cos(xa)
]+βCse +γCso

}
, (7.24)

where h = b−a
2n , and Cce is the sum of even ordinates of f (p)cos(px) minus half the end

ordinates

Cce = 1

2

(
f (a)cos(pa)+ f (b)cos(pb)

)+n−1∑
j=1

f
(
a +2 j h

)
cos

(
pa +2 j ph

)
,

and Cco is the sum of odd ordinates of f (p)cos(px):

Cco =
n−1∑
j=0

f
(
a + (2 j +1)h

)
cos

(
pa + (2 j +1)ph

)
.

Similarly, Cse is the sum of even ordinates of f (p)sin(px) minus half the end ordinates,
Cso is the sum of odd ordinates of f (p)sin(px). Finally, the variables α,β,γ are defined
as follows

θ3α= θ2 +θ sinθcosθ−2sin2θ , (7.25)

θ3β= 2
[
θ

(
1+cos2θ

)−2sinθcosθ
]

, (7.26)

θ3γ= 4[sinθ−θcosθ] , (7.27)
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with θ = hx.
Chase and Fosdick [34] derived a robust numerical algorithm taking special care of

the case where θ is small. A more thorough description of the Filon quadrature is pre-
sented in [189].

7.4.2. LOCAL ERROR
Let us analyze the error on a single panel [ui ,ui+1]. In order to keep the equations simple,
we reduce the problem to the interval [0,2h] with h = ui+1−ui

2 through the translation
g (t ) = ui + t . Stirling’s interpolation formula on the points {0,h,2h} gives:

f (p+h) = f (h)+δ1
h p+δ2

h

p2

2
+δ3

h

p(p2 −h2)

6
+δ4

h

p2(p2 −h2)

24
+δ5

h

p(p2 −h2)(p2 −4h2)

120
+...

(7.28)
where δi

h is the i -th central difference of the function f around h.
Filon’s formula corresponds to the integration of the first three terms from −h to h.

The next omitted terms lead to

E3 = δ3
h

∫ h

−h

p(p2 −h2)

6
cos

(
x(p +h +ui )

)
d p

= δ3
h cos(xh +xui )

∫ h

−h

p(p2 −h2)

6
cos(xp)d p −δ3

h sin(xh +xui )
∫ h

−h

p(p2 −h2)

6
sin(xp)d p

= 0−δ3
h sin(xh +xui )h4

(
2h2 x2 −6

)
sin(hx)+6hx cos(hx)

3x4h4 .

When h → 0, a Taylor expansion gives

E3 = δ3
h

2xh5

45
sin(xui +xh)+O(h7) . (7.29)

Contrary to the Simpson formula (case x = 0), it is not zero in general. The next term
of the series is of the same order:

E4 = δ4
h

∫ h

−h

p2(p2 −h2)

24
cos

(
x(p +h +ui )

)
d p

= δ4
h cos(hx +ui x)

∫ h

−h

p2(p2 −h2)

24
cos(px)d p −δ4

h sin(hx +ui x)
∫ h

−h

p2(p2 −h2)

24
sin(px)d p

=−δ4
h cos(hx +ui x)h5

(
10h2 x2 −24

)
sin(hx)+ (

24hx −2h3 x3
)

cos(hx)

12h5x5 −0.

When h → 0, a Taylor expansion gives

E4 =−δ4
h

h5

90
cos(xui )+O(h7) . (7.30)

When h → 0, the local error is of the same order as the one of Simpson’s rule, but is
larger in general due to the term in δ3

h .
As suggested by Linz [143], a Richardson extrapolation between the original panel

[ui ,ui +2h] and the two half-width panels [ui ,ui +h] and [ui +h,ui +2h] can be used
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to remove the error due to δ3
h . Let ρ be the ratio between the δ3

h related error e1 of the

Filon quadrature on the full panel I1 and the δ3
h related error e2 on the two panels I2, the

extrapolation consists in using IR defined by

IR = I2 + I2 − I1

ρ−1
, (7.31)

where

ρ = δ3
h

∫ h
−h

p(p2−h2)
6 cos

(
x(p +h +ui )

)
d p

δ3
h

∫ h
2

− h
2

p

(
p2−

(
h
2

)2
)

6 cos
(
x

(
p + h

2 +ui

))
d p +δ3

h

∫ h
2

− h
2

p

(
p2−

(
h
2

)2
)

6 cos
(
x

(
p + 3h

2 +ui

))
d p

.

Using the trigonometric identity cos(a + b) = cos(a)cos(b)− sin(a)sin(b) and noticing
that the cosine term is zero for the numerator due to symmetry and cancels out in the
denominator, we obtain

ρ = δ3
h sin(xh +xui )

∫ h
−h

p(p2−h2)
6 sin(xp)d p

2δ3
h sin(xh +xui )

∫ h
2

− h
2

p

(
p2−

(
h
2

)2
)

6 sin(xp − xh
2 )d p

,

which simplifies to

ρ =
(
4h2x2 −12

)
sin(hx)+12hx cos(hx)(

h2 x2 −12
)

sin(hx)+6hx cos(hx)+6hx
. (7.32)

This will cancel out E3 completely, making the integration of cubic polynomials exact3,
but will not cancel out E4.

When hx → 0, ρ→ 16, as expected from an error in O(h5). This is the same ratio as
with the Simpson quadrature. Using ρ = 16 will be effective on both error terms E3 and
E4 when h is small.

7.4.3. FILON QUADRATURE FOR THE LEWIS FORMULA
The Lewis formula (Equation 7.9) can be rewritten as:

Vcall(F,K ,T ) = Fe−r T −
p

F K e−r T

π

∫ ∞

0

ℜ(
ψ(u − i

2 )
)

u2 + 1
4

cos(ux)+ ℑ(
ψ(u − i

2 )
)

u2 + 1
4

sin(ux)du .

(7.33)
To compute the vanilla option price, we can therefore apply the cosine and sine Filon
quadrature formulas respectively to the functions

f (u) = ℜ(
ψ(u − i

2 )
)

u2 + 1
4

, g (u) = ℑ(
ψ(u − i

2 )
)

u2 + 1
4

. (7.34)

A significant property of the functions f (u) and g (u) is that they are not dependent on
the log-moneyness x.

3a numerical implementation of the extrapolation will benefit from the use of a Taylor expansion of ρ around
zero to ensure numerical stability.
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7.5. FLINN’S IMPROVEMENT

7.5.1. DEFINITION
Instead of fitting a quadratic polynomial as in Filon’s quadrature, Flinn [62] uses a fifth-
order polynomial to fit the middle and end point values and first derivatives, resulting
not only in a higher-order quadrature, but also in one that works better on larger inter-
vals. The resulting formula is not much more complicated:

Ic = h
{
S

[
f (b)sin(xb)− f (a)sin(xa)

]+hP
[

f ′(b)cos(xb)− f ′(a)cos(xa)
]

+RCce +hQC ′
se +NCco +hMC ′

so

}
, (7.35)

Is = h
{−S

[
f (b)cos(xb)− f (a)cos(xa)

]+hP
[

f ′(b)sin(xb)− f ′(a)sin(xa)
]

+RCse −hQC ′
ce +NCso −hMC ′

co

}
, (7.36)

where C ′
ce is the sum of even ordinates of f ′(p)cos(px) minus half the end ordinates,

C ′
co is the sum of odd ordinates of f ′(p)cos(px), C ′

se is the sum of even ordinates of
f ′(p)sin(px) minus half the end ordinates, C ′

so is the sum of odd ordinates of f ′(p)sin(px).
We refer the reader to Flinn’s paper [62] for the specific values of the constants M , N ,P,Q,R,S.
It also provides expansions useful for the case where θ is small.

7.5.2. LOCAL ERROR
Flinn’s approximation corresponds to a Hermite interpolation of f on three points. The
Hermite polynomial on x1, x2, ..., xN is given by

H(x) =
N∑

i=1
l 2

i (x)
[(

1−2l ′i (xi )(x −xi )
)

f (xi )+ (x −xi ) f ′(xi )
]

, (7.37)

where li are the Lagrange polynomials li (x) =ΠN
i=1,i 6= j

x−x j

xi−x j
. The quintic Hermite quadra-

ture on the panel [ui ,ui +2h] is:

IH = h

15

[
7 f (ui )+16 f (ui +h)+7 f (ui +2h)+h

(
f ′(ui )− f ′(ui +2h)

)]
, (7.38)

and the error in Hermite interpolation is

f (x)−H(x) = f (2N )(ξ)

(2N )!
ΠN

i=1(x −xi )2 , (7.39)

where ξ belong to the smallest interval containing (xi )i=1,...,N and x. The error in the
Hermite quadrature on a single panel of width 2h using N = 3 points at {ui ,ui +h,ui +2h}
is thus

EH =
∫ h

−h

f (6)(ξ(p +ui +h))

6!
(p −h)2p2(p +h)2d p = f (6)(ξi )

4725
h7 , (7.40)

where the second equality comes from the use of the first mean value theorem for in-
tegrals as (p −h)2p2(p +h)2 ≥ 0, and ξi ∈ [ui ,ui + 2h]. For the Flinn quadrature, this
becomes

EF =
∫ h

−h

f (6)(ξ(p +ui +h))

6!
(p −h)2p2(p +h)2 cos

(
x(p +ui +h)

)
d p

= f (6)(ξi )cos(xλi )

4725
h7 , (7.41)
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where λi ∈ [ui ,ui +2h]. In particular,if f (6) does not vary much on the interval, we have
|EF | ≤ |EH |.

In similar fashion as with the Filon quadrature, we could derive an extrapolation
scheme that makes the integration of sextic polynomials exact. It would lead to a ra-
tio ρ = 64 for h → 0. Numerical tests however did not show any strong improvement of
the accuracy with this extrapolation in cases of practical interest.

7.5.3. FLINN QUADRATURE FOR THE LEWIS FORMULA
It is not much more costly to evaluate both the characteristic function ψ and its deriva-
tive ψ′. The first derivative can be computed at the same time by simple analytical dif-
ferentiation, reusing most of the costly intermediate variables.

To compute the vanilla option price, we can therefore apply the cosine and sine Flinn
quadrature, respectively, to the functions

f (u) = ℜ(
ψ(u − i

2 )
)

u2 + 1
4

, f ′(u) = ℜ(
ψ′(u − i

2 )
)

u2 + 1
4

−2
ℜ(
ψ(u − i

2 )
)

(
u2 + 1

4

)2 u , (7.42)

and

g (u) = ℑ(
ψ(u − i

2 )
)

u2 + 1
4

, g ′(u) = ℑ(
ψ′(u − i

2 )
)

u2 + 1
4

−2
ℑ(
ψ(u − i

2 )
)

(
u2 + 1

4

)2 u. (7.43)

7.5.4. MAKING IT ADAPTIVE
The similarity between Simpson’s and Filon’s methods suggests to apply the same adap-
tive technique as for Simpson’s rule. We simply apply the adaptive Simpson algorithm to
the computation of the two integrals

Īc =
∫ umax

0
f (u)du , Īs =

∫ umax

0
g (u)du (7.44)

and record the abscissae ui and function values ( fi , gi ) (eventually along with the deriva-
tive values) in a map structure. We then sort the values by abscissa and use the Filon
or the Flinn quadrature to the intervals defined by the abscissae, three points by three
points. In practice, the Filon constants α,β,γ in Equations (7.25), (7.26), (7.27) can be
reused across adjacent intervals, unless the step size has changed. The cost of evaluat-
ing the trigonometric functions can be further reduced by taking advantage of the iden-
tities cos(u+θ) = cos(u)cos(θ)−sin(u)sin(θ), sin(u+θ) = cos(u)sin(θ)+sin(u)cos(θ) and
evaluating the cos and sin integrals together.

The underlying assumption is that an adaptive Simpson algorithm is going to ap-
proximate f and g well enough so that the Filon or the Flinn quadrature on the same
points is accurate enough. The two integrals of Equation (7.44) correspond to the Lewis
formula at-the-money, that is, where x = 0.

There are various adaptive Simpson algorithms. A somewhat popular one, squank, is
based on [147, 148], which refines the Simpson method with a Richardson extrapolation
and uses interval bisection. Gander and Gautschi [69] propose an alternative algorithm
adaptsim with a different local error control relying on an initial estimate of the integral
by a five points Monte-Carlo integration. Espelid [58] wrote a more recent algorithm
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modsim using directly a five points Newton-Cotes formula (which is equivalent to the
extrapolated Simpson formula) with refined local error control based on Null rules. This
later algorithm can be transformed to a globally adaptive algorithm the same way the
author transforms its locally adaptive coteda to the globally adaptive coteglob.

While, in practice, the choice of adaptive algorithm matters little for the stability
of the overall adaptive Filon method, we found that Gander and Gautchi’s adaptsim
was in general failing much more than the squank or modsim algorithms, when applied
directly to the Lewis formula instead of the Filon reduction. This is mostly due to a
bad initial estimate of the integral. Furthermore the modsim algorithm was in general
faster than squank (requiring less points), even more so with global error control. Fi-
nally, adaptquin is a modification of the Gander and Gautchi adaptsim algorithm that
uses the Hermite quintic quadrature instead of the Simpson quadrature, and extrapo-
lates with ρ = 64 instead of ρ = 16.

The precomputed abscissae and function values can be reused to value options at
different strike prices. In contrast with the standard adaptive quadrature methods ap-
plied directly to the Lewis formula, the adaptivity is independent of the strike price here.

7.6. NUMERICAL RESULTS

7.6.1. CHALLENGING HESTON PARAMETERS

MEDIUM MATURITY

We consider an option of maturity T = 1 and strike price K = 0.25 on an asset following
the Heston stochastic volatility model with parameters v0 = 0.0225,κ= 0.1,θ = 0.01,σ=
2.0,ρ = 0.5,F = 1. The option is therefore very out of the money. We have set the trun-
cation level at 10−8, and use the same accuracy for the various adaptive quadrature
schemes considered. Except for the Cos method of Fang and Oosterlee [59], and the
Lord-Kahl optimal α method, we rely on the Lewis formula with Black-Scholes control
variate of volatility σB =p

v0.
Under those settings, Table 7.6.1 shows that the doubly adaptive Newton-Cotes quadra-

ture coteda of Espelid [58] has a very high error, well above the tolerance for a tolerance
of 10−8 (but is fine with a tolerance of 10−7 or 10−9). The adaptive Gauss-Lobatto modlob
has no such issue but requires a large number of points (over 10000). The Cos method
requires a truncation at L = 30 to achieve a reasonable accuracy with 1000 points, well
above the recommended L = 8 of their paper. The Flinn method requires 485 points with
the globally adaptive Simpson quadrature and only 121 points with the adaptive quin-
tic Hermite quadrature adaptquin to achieve an accuracy of 10−10 per unit notional,
which is as accurate as the direct modlob with more than 10000 points. Even with the
use of Lord and Kahl optimal-α, oscillations remain in the integrand on this example4,
and the number of quadrature points used does not decrease significantly compared to
the use of the Lewis formula with a control variate.

Interestingly, using the adaptive Simpson modsim directly on the Lewis formula re-
quires many more points than our adaptive Flinn method (close to 9000) for a lower
overall accuracy.

4The optimal α usually helps, especially to compute very small prices of out-of-the-money options, because
of the scaling, but it does not always remove oscillations.
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Table 7.6.1: 1Y put option of notional 100,000 and strike price 25% with Heston parameters
v0 = 0.0225,κ= 0.1,θ = 0.01,σ= 2.0,ρ = 0.5 under various numerical methods.

Method Tolerance Points Price

modlob Lord-Kahl 1e-8 7947 119.385327
coteda 1e-8 1361 99.666129
modlob 1e-8 10987 119.385324
modlob Log 1e-8 9527 119.385347
modsim 1e-8 8853 119.324143
modsim Filon 1e-8 733 119.385917
globsim Flinn 1e-8 485 119.385352
adaptquin Flinn 1e-8 121 119.385406
Cos L=12 1000 0.0
Cos L=16 1000 123.033165
Cos L=30 1000 119.387924

SHORT MATURITY

We use here the same parameters as in Table 7.3.1 but set the tolerance at 10−8 instead
of 10−12. The Gauss-Lobatto quadrature requires much fewer points with this tolerance
level. For the same accuracy, the adaptive Flinn method needs only a quarter of the
number of points used by the direct modlob (see Table 7.6.2).

Table 7.6.2: Call option of maturity T = 0.0182 with forward and strike price F = 1000,K = 1400 and Heston
parameters v0 = 0.826,κ= 0.254,θ = 0.320,σ= 0.344,ρ =−0.557 under various numerical methods with error

tolerance 10−8.

Method Points Price

modlob Lord-Kahl 257 0.107341448
modsim 645 0.107341552
modsim Filon 329 0.107341554
globsim Flinn 125 0.107341551
adaptquin Flinn 49 0.107341552

On options of longer maturities the number of points used by modlob and by our
adaptive Flinn quadrature is similar.

7.6.2. PERFORMANCE
Let us look at the performance and accuracy of the various quadrature schemes, using
the Lewis formula with the Black-Scholes control variate of volatility σB =p

v0. We use
an accuracy of 10−6 for the adaptive quadrature schemes while the truncation is done
for a relative tolerance of 10−9. The reference is the Lord-Kahl method, with an adaptive
quadrature of accuracy 10−10.

We price hundred put options of different strike prices but same maturity with realis-
tic Heston parameters for an equity. Table 7.6.3 shows that the adaptive Flinn method is
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up to twenty times faster than a direct adaptive Gauss-Lobatto quadrature. This should
not be too surprising since the adaptivity is independent of the strike price with the Flinn
method, but not with the direct approach.

Table 7.6.3: Performance and Accuracy of the various integrations to price 100 put options of strike prices
between 0.4 and 1.6 with the following Heston parameters: κ= 1.0,θ = 0.1,σ= 1.0, v0 = 0.1,ρ =−0.9.

Method RMSE Total Time(ms)

Maturity of 2 weeks

modlob Lord-Kahl 4.53E-06 17.0
modlob Log 1.74E-11 20.3
modlob 2.91E-11 13.8
modsim Filon 1.82E-10 3.6
globsim Flinn 4.15E-12 1.6
adaptquin Flinn 1.57E-10 0.4

Maturity of 2 years

modlob Lord-Kahl 6.46E-06 23.7
modlob Log 2.27E-09 9.9
modlob 4.45E-12 7.3
modsim Filon 7.89E-12 4.0
globsim Flinn 6.57E-12 2.6
adaptquin Flinn 1.19E-08 0.4

In the Lord-Kahl method, the optimal alpha is strike-dependent, and thus any caching
the characteristic function will be useless. This is why their method tends to be the slow-
est. Furthermore the accuracy is now relative to the scaling by the optimal alpha. This
explains the higher (absolute) root mean square error with the Lord-Kahl method on this
test.

7.6.3. HESTON CALIBRATION

ERROR MEASURE

The calibration of the Heston model consists in minimizing the difference between the
market implied volatilities (or option prices) and the model implied volatilities (or op-
tion prices).

Our implied volatility error measure will simply be the weighted root mean square
error in the implied volatilities Mσ described in Section 5.3.5, Equation (5.17) with equal
weights wσi = 1.

An alternative is to use the root mean square error in the option prices MV of Equa-
tion (5.18). For the Heston calibration, equal weights in the measure MV result in a sig-
nificantly low quality of fit for shorter maturities as option prices increase with the ma-
turity. We will instead use the equivalent weights given by Equation (5.20) with a vega
floor at νmin = 10−3F , where F is the forward price corresponding to the option maturity.
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A SMART INITIAL GUESS

From five well-chosen option implied volatilities, corresponding to the shortest-expiry
at-the-money volatility, 2 calendar spreads between t1 and t2 of log-moneyness −x0 and
x0, Forde and Jacquier [64] show how to find the Heston parameters by solving a sim-
ple linear system for a Heston small-time expansion that passes exactly through those
points. Their expansion of the Black implied volatility σB in terms of the log-moneyness
x reads

σ2
B (x, t ) = v0

(
1+ ρσx

2v0
+

(
1− 7

4
ρ2

)
σ2x2

12v2
0

)
+ t

2

(
ρσv0

2
− σ2

6
+ ρ2σ2

24
+α−κv0

)
+ ρσxt

24v0

(
σ2 −σ2ρ2 +ρσv0 −2α−2κv0

)
+ σ2x2t

7680v2
0

(
σ2 (

176−712ρ2 +521ρ4)+40σρ3v0 +80α(13ρ2 −6)−80κρ2v0
)

(7.45)

with α= κθ.
Chosen option strikes and maturities can make a big difference on the initial guess.

A good rule is +/- 20% (and sometimes +/- 5%) around the money and discard the first
maturities. In practice, we found that taking the best guess of the two log-moneyness
+/-5% and +/-20% was successful as initial guess on a wide variety of implied volatility
surfaces. When the options are chosen closer to at-the-money, we noticed that a virtual
butterfly spread arbitrage could arise, modifying the formula to ensure the value of the
butterfly (noted C in [64, p. 8]) is positive was enough to make the algorithm robust.

We can then apply a Levenberg-Marquardt minimizer [156] with our choice of error
measure to find the optimal Heston parameters for given market option prices.

An alternative would be to rely on the differential evolution algorithm [184] to find a
good initial guess. This has however the risk to be less stable and is much slower than
the smart initial guess that was found to work well in general in [126].

CALIBRATION TRAPS

Cui et al. [41] notice that the Heston calibration problem intrinsically does not have mul-
tiple local minima and advocate the use of an analytical gradient. The use of analytical
gradients is commendable, but it really helps to avoid falling into the numerical finite
difference trap: the finite difference step size needs to be chosen in accordance with the
numerical quadrature accuracy as described in [106] and [160, p. 196]. This explains why
the use of adaptive quadrature schemes, where the tolerance level can be set, is partic-
ularly important. In their paper, Cui et al. test quadrature schemes with a fixed number
of points and must then rely on analytical gradients.

Analytical gradients for the Heston characteristic function and the Lewis pricing for-
mula calculated with the Filon quadrature are trivial to compute using forward auto-
matic5 differentiation [169], even when manually applying the technique.

Another source of calibration problems is the parameters space. For example, a
straightforward implementation of the characteristic function will not be reliable for

5A simple implementation based on (vectorized) dual numbers is efficient.
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very low vol-of-vol parameter due to numerical noise, a Taylor expansion must then be
used. In a similar fashion, very large (exploding) parameters will be a source of numeri-
cal errors and can even lead in some cases to prices beyond the range of machine repre-
sentable numbers. Furthermore, the correlation must obey ρ ∈ [−1,1]. The Levenberg-
Marquardt minimizer does not allow box constraints. A common practice is to use a
domain transformation from R to an interval [a,b] (closed or open) such as a hyperbolic
transformation h(x) = a + b−a

1+e−x or a cosine transformation h(x) = a+b
2 + a−b

2 cos(x). Un-
fortunately, transformations have side-effects. For example, it is possible that in the first
Levenberg-Marquardt iterations, the correlation parameter moves close to the boundary
at −1, because it is optimal considering the value of the other parameters at that point.
In later iterations, with the hyperbolic transformation, it will be almost impossible to
move back from the boundary as the derivative of the transformation is extremely small
close to the boundary. The calibration is then stuck on one of the boundaries.

The cosine transformation behaves much better in this regard, but can still lead to
nearly local minima. For example, in the flat region of Figure 7.6.1, the vol-of-vol pa-
rameter σ changes of only 10−4 between each iteration. The calibration then needs a
quadrature that ensures a good accuracy of the gradient. It will also require a large num-
ber of iterations to converge, in this case, 484. On this specific calibration example, the
Levenberg-Marquardt minimizer can easily move towards high κ and σ as the RMSE
near v0 = 0.0001, θ = 0.0215, ρ =−0.620 is smallest there, when the other parameters are
kept fixed (Figure 7.6.2). This behavior is typical for a small initial variance v0.
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Figure 7.6.1: Heston parameters and RMSE per iteration of the Levenberg-Marquardt minimization of SPX500
options from Kahale [116] under the inverse vega weighted price error measure Mv using the cosine

transformation with initial guess v0 = 0.98,κ= 0.088,θ = 0.34,σ= 0.88,ρ =−0.82.

When the initial guess is far from the minimum, an unconstrained calibration will
very quickly be pushed towards the infeasible region, possibly at the first iteration as in
the example of Table 7.6.4.

With the smart initial guess, the minimizer will take only small steps towards the
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Figure 7.6.2: Inverse vega weighted price error measure Mv using v0 = 0.0001, θ = 0.0215, ρ =−0.620 and
varying κ and σ on the market data from Kahale [116].

Table 7.6.4: Unconstrained Levenberg-Marquardt calibration with the price error measure and analytical
gradient on the market data from Kahale [116].

V0 κ θ σ ρ

Guess 0.5655 3.8982 0.7010 0.9823 0.8414
Iteration 1 -0.3516 27.0406 -0.1825 16.3636 -8.8685

minimum, as it is never too far off. The problem of extreme parameters and boundaries
disappears.

RESULTS

We first consider the market data of Kahale [116], r = 0.06. We use a relative tolerance
of 10−6 for the adaptive quadrature schemes, and a truncation tolerance of 10−9. We re-
move the options of price (normalized by the spot) lower than the quadrature tolerance
from the data. On this data, this corresponds to a single point of expiry T = 0.175 and
strike K = 826. This cleaning step is particularly important to ensure the stability of the
calibration using the volatility error measure.

The calibration of the Heston model using the volatility error measure Mσ is not
slower than the calibration using the inverse vega weighted price error measure MV (Ta-
ble 7.6.5 vs Table 7.6.6). It could actually be faster when the initial guess is not as good.
But it is also less stable: slightly different Heston parameters (especially v0 and κ) can
lead to a very similar error measure and as a consequence, the calibrated parameters can
fluctuate depending on the method or its tolerance level, this is especially true if small
option prices are not filtered out. In [126] it was found necessary to add more weight to
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near-the-money options in order to stabilise the calibration.

Table 7.6.5: Heston calibration under the volatility error measure for the option data of Kahale [116].

Method v0 κ θ σ ρ RMSE Time(ms)

Smart guess 0.0128 1.581 0.0329 0.381 -0.400 0.018551 0.065
simpson 0.0158 1.357 0.0251 0.357 -0.557 0.007511 329
Cos L=12, M=128 0.0139 2.521 0.0240 0.510 -0.596 0.023186 110
modlob 0.0095 5.441 0.0232 0.932 -0.584 0.005199 346
modlob Log 0.0095 5.448 0.0232 0.933 -0.584 0.005199 605
modlob Lord-Kahl 0.0095 5.442 0.0232 0.932 -0.584 0.005199 490
modsim Filon 0.0095 5.444 0.0232 0.933 -0.584 0.005199 174
globsim Flinn 0.0095 5.435 0.0232 0.932 -0.584 0.005199 107
adaptquin Flinn 0.0095 5.449 0.0232 0.933 -0.584 0.005199 44

The calibration using the weighted price error measure is much more stable, we
found that changing the weights to increase the importance of near-the-money options
did not change much the outcome of the calibration.

Table 7.6.6: Heston calibration under the weighted price error measure for the option data of Kahale [116].

Method v0 κ θ σ ρ RMSE Time(ms)

Smart guess 0.0128 1.581 0.0329 0.381 -0.400 0.11152 0.06
simpson 0.0132 2.310 0.0243 0.438 -0.645 0.01460 69
Cos L=12, M=128 0.0132 2.332 0.0243 0.442 -0.645 0.01463 43
modlob 0.0131 2.420 0.0242 0.454 -0.644 0.01445 377
modlob Log 0.0131 2.420 0.0242 0.454 -0.644 0.01445 689
modlob Lord-Kahl 0.0131 2.420 0.0242 0.454 -0.644 0.01445 525
modsim Filon 0.0131 2.420 0.0242 0.454 -0.644 0.01445 230
globsim Flinn 0.0131 2.420 0.0242 0.454 -0.644 0.01445 144
adaptquin Flinn 0.0131 2.420 0.0242 0.454 -0.644 0.01445 35

On a 2.5Ghz Intel Core i5-3210M with Go 1.9, the calibration with the adaptive Flinn
method is around ten times faster than the modlob or Lord-Kahl methods. It is also faster
than the Simpson 3/8 rule with 101 points and cached characteristic function evalua-
tions and faster than the Cos method with M = 128 points and a truncation level L = 12.
Both Simpson and Cos methods are not accurate enough to converge to the correct min-
imum under the volatility error measure (Table 7.6.5).

In order to obtain a better calibration with the Cos method, more quotes would need
to be filtered out6, or a higher truncation level L = 24 and a larger number of points
M = 256 need to be used. The doubling of the number of points translates to a doubling
of the time required to price an option.

6If we filter out more quotes, we could also relax the tolerance of the adaptive quadrature schemes.
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In appendix 7.A, we also consider SPX500 options as of October 2010. The relative
performance of each pricing method is similar as on the example of Kahale [116].

7.7. CONCLUSION
We have described a simple adaptive Filon method with better performance against ac-
curacy behavior than popular alternatives to price options under the Heston model. It
is particularly interesting in the context of model calibration, where many options of
different strike prices but same maturity are priced.

Being adaptive, it does not suffer from having to choose a non-obvious parameter
value, typically the number of points of non-adaptive quadrature schemes, or the trun-
cation level for the Cos method.

The technique can easily be transposed to any stochastic volatility model that pos-
sesses an analytical characteristic function.



APPENDIX

7.A. HESTON CALIBRATION FOR OPTIONS ON SPX500 FROM

OCTOBER 2010
On SPX500 options from October 2010, the calibration on equally weighted volatilities
would be even more unstable without removing too small option prices from the data.
With the cleaning up procedure, the calibration results are very stable and slightly faster
than the calibration on the weighted price error measure (Table 7.A.1 against Table 7.A.2).

Table 7.A.1: Heston calibration under the volatility error measure for options on SPX500 in October 2010.

Method v0 κ θ σ ρ RMSE Time(ms)

Smart guess 0.0736 0.450 0.100 0.208 -0.756 0.01770 0.05
simpson 0.0718 1.430 0.080 0.569 -0.372 0.00503 128
modlob 0.0718 1.430 0.080 0.569 -0.372 0.00503 435
modlob Log 0.0718 1.430 0.080 0.569 -0.372 0.00503 810
modlob Lord-Kahl 0.0718 1.430 0.080 0.569 -0.372 0.00503 550
modsim Filon 0.0718 1.430 0.080 0.569 -0.372 0.00503 260
adaptquin Flinn 0.0718 1.430 0.080 0.569 -0.372 0.00503 53

Again, the price error measure makes the problem better behaved (we could even not
filter out any option if desired as the inverse vega cap is going to minimize the impact of
very small option prices in the calibration).

Table 7.A.2: Heston calibration under the price error measure for options on SPX500 from October 2010.

Method v0 κ θ σ ρ RMSE Time(ms)

Smart guess 0.0736 0.450 0.100 0.208 -0.756 0.14384 0.06
simpson 0.0715 1.053 0.082 0.484 -0.382 0.04321 130
modlob 0.0715 1.053 0.082 0.484 -0.382 0.04321 485
modlob Log 0.0715 1.053 0.082 0.484 -0.382 0.04321 920
modlob Lord-Kahl 0.0715 1.053 0.082 0.484 -0.382 0.04319 601
modsim Filon 0.0715 1.053 0.082 0.484 -0.382 0.04321 284
adaptquin Flinn 0.0715 1.053 0.082 0.484 -0.382 0.04321 50
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8
NUMERICAL TECHNIQUES FOR THE HESTON COLLOCATING

VOLATILITY MODEL

In the collocating volatility model (CLV), the stochastic collocation technique is used as a
convenient representation of the terminal distribution of the market option prices. A spe-
cific dynamic is added in the form of a stochastic driver process, which allows more control
over the prices of forward starting options. This is reminiscent of the Markov functional
models. Grzelak uses a single factor Ornstein-Uhlenbeck process as the driver for the CLV
model, and Fries a single factor Wiener process with time-dependent volatility in his eq-
uity Markov functional model. Van der Stoep et al. consider a Heston stochastic volatility
driver process and show it offers more flexibility to capture the forward smile in the con-
text of foreign exchange options. In this chapter, we discuss all aspects of derivative pric-
ing under the Heston-CLV model: calibration with an efficient Fourier method, a Monte-
Carlo simulation with second-order convergence and accurate PDE pricing through im-
plicit and explicit finite difference methods.

8.1. INTRODUCTION
In the standard Black-Scholes model, the underlying asset follows a geometrical Brown-
ian motion [24]. The model is typically applied to obtain the prices and hedges of finan-
cial derivative contracts, such as options on a foreign exchange rate, a stock price or a
swap rate. For a given maturity date, the market price of a vanilla option for each quoted
strike price does not match the assumption of a constant Black-Scholes volatility. The
volatilities implied by the market exhibit a smile. This is also true in the maturity dimen-
sion, where the market implies a particular term-structure of volatilities. Furthermore,
the implied volatilities vary in time.

In order to solve this discrepancy, Dupire [55] proposed a model where the volatility
is made local: it is a function of the asset price and a particular time. This model however
requires a smooth and continuous arbitrage-free Black-Scholes implied volatility repre-
sentation across the time and asset price dimensions. Finding a good representation is
the principal challenge of this model. The local volatility model also suffers from an un-
realistic dynamic of the smile in time [85]. In practice this means that forward starting
options are mispriced under the local volatility model.

This chapter is based on the article ’Numerical techniques for the Heston collocated volatility model’, submit-
ted for publication in Journal of Computational Finance, 2019 [133].
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A different approach is to assume that the volatility is stochastic. Several stochas-
tic volatility models that retain some analytical and numerical tractability have been ex-
plored over the years, the most popular being the model from Heston [91]. They all suffer
from similar issues: they don’t allow to match the implied volatility smile for short ma-
turities very well and they may be challenging to calibrate properly. A fix for the former
issue is to mix stochastic and local volatilities together [2] at the cost of increasing the
computational complexity, which involves either an iterative partial differential equa-
tion technique as in [175] or the particle method for Monte-Carlo simulation[80]. A good
local volatility representation is a prerequisite for the stochastic local volatility model.

Grzelak [77] proposes another alternative with the collocated volatility model (CLV),
where the model prices are calibrated to the market options with the stochastic collo-
cation technique, used as a convenient representation of the terminal distribution. A
specific dynamic is added in the form of a stochastic driver process, which allows more
control over the prices of forward starting options. This is reminiscent of the Markov
functional model of Hunt and Kennedy [98], initially derived for interest rate models and
extended to equity models in [66]. Grzelak [77] uses a single factor Ornstein-Uhlenbeck
process as the driver, and Fries [66] a single factor Wiener process (with time-dependent
volatility). Van der Stoep et al. [194] consider a Heston stochastic volatility driver process
and show it offers more flexibility to capture the forward smile in the context of foreign
exchange options. How to implement this model for equity derivatives in practice? How
to calibrate it in a stable manner? Which numerical schemes are most appropriate? What
are the model’s limitations? We aim in this chapter to discuss all aspects of derivative
pricing under the Heston-CLV model: calibration with a Fourier method, Monte-Carlo
simulation and accurate partial differential equation (PDE) pricing.

The outline of the chapter is as follows. Section 8.2 introduces the CLV model with
a Heston driver process and explains its relationship with the Markov functional model.
Section 8.3 derives efficient pricing formulas for the calibration of the Heston-CLV model
to the market prices of vanilla options. We also propose an extension of the collocation
technique to assets that can not move below a boundary. For example, a stock price
must stay positive. This is particularly important as many equity derivative contracts
are written on a future performance. Section 8.4 applies the second-order discretization
scheme of Lenkšas and Mackevičius [135] for the Monte-Carlo simulation of the Heston-
CLV model. We put in evidence some flaws of the original scheme, propose a simple
modification to resolve those and compare the convergence of the new scheme to the
one of the quadratic exponential scheme of Andersen [6]. In Section 8.5, we discretize
the Heston-CLV PDE with several finite difference methods, including the recent Runge-
Kutta-Legendre scheme of Meyer [154], and compare their convergence in the context of
barrier options.
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8.2. COLLOCATED VOLATILITY MODEL WITH A HESTON DRIVER

PROCESS
As in [194], we consider a dynamic model where an asset S follows

S(t ) = g (t , X (t )) , (8.1a)

dX (t ) = (r (t )−q(t ))X (t )d t +
√

V (t )X (t )dWX (t ) , (8.1b)

dV (t ) = κ (θ−V (t ))+σ
√

V (t )dWV (t ) , (8.1c)

with WX and WV being two Brownian motions with correlation ρ, r, q the instanta-
neous growth and dividend rates, and g (t , x) a collocation function. Furthermore, we
will choose X (0) = S(0), so that X and S work on the same scale. According to Equations
(8.1b) and (8.1c), the driver process X follows the Heston stochastic volatility model [91].
We thus name this model the Heston-CLV model. The collocation function g is typically
a polynomial or a spline, which will be calibrated to the market using the stochastic col-
location technique, as described in Section 8.3.

The underlying idea is not entirely new. Jäckel [108] and Brockhaus [30] derive the
functional g from the risk-neutral density, without specifying a way to imply this risk-
neutral density, and use a single factor arithmetic Wiener process with time-dependent
volatility as the driver. This is often referred to as the Markov functional model, initially
derived for interest rate models [98] and extended to equity models in [66]. Note that the
equity Markov functional model uses the equity as the numeraire, so it is not strictly the
same. In contrast, in the CLV model, the functional is directly calibrated to the market
via the stochastic collocation technique. This allows the use of a more complex driver
process, thus enabling a more refined forward smile representation. While we consider
a Heston process as the driver, the technique presented here may also be applied to other
processes with a known characteristic function, such as a Schöbel-Zhu process [178], a
stochastic volatility process with jumps [20], or a double Heston process [36].

The flexibility of the Heston-CLV model is evocative of the stochastic local volatility
models [3, 175], where a local volatility function is added to a specific stochastic volatil-
ity model. Local stochastic volatility models involve the solution of a two-dimensional
Fokker-Planck partial differential equation along with a standard Monte-Carlo simula-
tion or, alternatively, the use of the particle Monte-Carlo method [80] to price and hedge
exotic financial derivative contracts. We will see that the Heston-CLV model is simpler to
simulate.

The Heston-CLV backward partial differential equation (PDE) results from a direct
application of the multi-dimensional Feynman-Kac theorem:

∂u

∂t
= v x2

2

∂2u

∂x2 +ρσxv
∂2u

∂x∂v
+ σ2v

2

∂2u

∂v2 + (r −q)x
∂u

∂x
+κ(θ− v)

∂u

∂v
− r u , (8.2)

for 0 ≤ t ≤ T , x > 0, v > 0.
For a European option with payoff h(S) at maturity T on s = g (T − t , x), the initial

condition is

u(x, v,0) = h
(
g (T, x)

)
. (8.3)
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In particular, h(s) = max(s −K ,0) for a call option and h(s) = max(K − s,0) for a put op-
tion of strike K . The only difference with the Heston PDE lies in the transformed initial
condition.

The PDE approach is really interesting to price exotic options, with some path-dependency,
such as barrier options, or American options. In the next section, we will present a much
more efficient way to price vanilla European options under the Heston-CLV model.

8.3. CALIBRATION TO MARKET VANILLA OPTIONS
The problem of calibrating the Heston stochastic volatility model to market option prices
has been studied in depth [10, 130]. Here, we wish to calibrate the Heston-CLV model
(more specifically, its collocation function g ) to market option prices, for a given set of
Heston parameters κ,θ,ρ,ν,V (0).

In a preliminary step, we calibrate the stochastic collocation functions gl to the ter-
minal risk-neutral distribution at each market option maturity Tl for l = 1, ..., M . We
then interpolate linearly in time the gi to form the Heston-CLV collocation function g .
For t > 0, let l be the index such that Tl ≤ t < Tl+1,

g (t , x) = Tl+1 − t

Tl+1 −Tl
gl (x)+ t −Tl

Tl+1 −Tl
gl+1(x) . (8.4)

For t0 = 0, we let g0(x) = S(0).
In the next sections, we detail the calibration towards options of a single maturity

t = Tl .

8.3.1. VANILLA OPTION PRICE BY STOCHASTIC COLLOCATION TOWARDS THE

HESTON DISTRIBUTION

Let φY ,ΦY be the market implied probability and cumulative probability density func-
tions, φX ,ΦX be the probability and cumulative probability density functions for the
Heston model, and let us recall the main pricing formula (Equation 5.1) for a vanilla call
option of strike price K and maturity Tl , where the function x → Φ−1

Y (1−ΦX (x)) is ap-
proximated by the collocation function gl ,

Vcall(K ) ≈
∫ ∞

0
|gl (x)−K |+φX (x)d x

=
∫ ∞

xK

(gl (x)−K )φX (x)d x , (8.5)

with

xK = g−1
l (K ) .

The integral in Equation (8.5) is not always well-defined if gl is a polynomial of degree
equal or higher than two. Indeed, the (lognormal) Heston model suffers from moment
explosions. The moment E [X (t )m] for m ≥ 1 may become infinite after some finite time.
According to Friz and Ressel [67], a sufficient condition for the explosion is D2(−i m) < 0,
where D is defined in Equation (8.75) from Appendix 8.A. In terms of the Heston param-
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eters, a necessary and sufficient condition is [8]:

ρ ≤−
√

m −1

m
+ κ

σm
. (8.6)

When m = 1, the condition reduces to ρ < κ
σ . In practice, when the Heston model is

calibrated to market options, this will always be verified. When m becomes larger, for
example m = 5 for a quintic polynomial, the condition becomes quite restrictive and the
valid space of parameters may not lead to a good fit of the market option prices anymore.

A possible fix is to extrapolate the polynomial gl linearly after a cut-off strike, for
example, beyond the last market option strike price. In some practical cases, however, a
high degree (typically m ≥ 9) is required to fit the market option prices reasonably well
(see Section 8.3.2). Instead, we prefer to consider a monotonic quadratic spline with
linear extrapolation for gl . A spline allows to represent more complex shapes. This is
particularly relevant in the CLV model, where the collocation variable X is distributed
according to a calibrated Heston model.

EFFICIENT PRICING WITH AN ADAPTIVE FILON/FLINN QUADRATURE

In the following, we denote by F (0, t ) the forward price of the asset S to maturity t defined
by F (0, t ) = EQ[S(t )|S(0)]. For a given maturity, we consider a quadratic spline as the col-
location function. In order to compute the price of a put option, we will use the Fourier
transform of the following quadratic payoff restricted to the interval [K j ,K ], where K j

corresponds to a spline knot and K may be arbitrary for now:

w j (K ,S) =
[

a j +b j (S −K j )+ c j

(
S2 −K 2

j

)]
1K j ≤S<K . (8.7)

The corresponding Fourier transform is

ŵ j (K , z) =
∫ lnK

lnK j

e izx
(
a j +b j (ex −K j )+ c j

(
e2x −K 2

j

))
d x

= ã j

K iz −K iz
j

iz
+ b̃ j

K iz+1 −K iz+1
j

iz +1
+ c j

K iz+2 −K i z+2
j

iz +2
, (8.8)

with z being a complex-valued number and ã j = a j −b j K j + c j K 2
j , b̃ j = b j −2c j K j .

Let ψX denote the Heston characteristic function (see Appendix 8.A). The undis-
counted price W j (K ) of the derivative paying w j (K ,S) at maturity is then given by in-
tegrating over a specific contour [139],

W j (K ) =− 1

2π

∫ izi+∞

izi−∞
e−iz lnF (0,Tl )ψX (−z)ŵ j (K , z)d z
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We then apply Equation (8.8), with x j = ln
K j

F (0,Tl ) and k = ln K
F (0,Tl ) . This leads to

W j (K ) = 1

2π

∫ izi+∞

izi−∞
ψX (−z)e ix j z

[
ã j

iz
+ b̃ j

iz +1
K j +

c j

iz +2
K 2

j

]
d z

− 1

2π

∫ izi+∞

izi−∞
ψX (−z)e i kz

[
ã j

iz
+ b̃ j

iz +1
K + c j

iz +2
K 2

]
d z

= ã j
[
M0(x j )−M0(k)

]+ b̃ j
[
M1(x j )K j −M1(k)K

]+ c j

[
M2(x j )K 2

j −M2(k)K 2
]

,

(8.9)

with

Ms (x) = 1

2π

∫ izi+∞

izi−∞
ψX (−z)

iz + s
e ixz . (8.10)

We will use the contour zi = 1
2 . We will ignore the residue Rs as the residues of the inte-

grals Ms (x j ) and Ms (k) cancel out, and obtain

Ms (x) = Rs (x)+ M̃s (x) , (8.11)

with

M̃s (x) = 1

2π
p

ex

∫ ∞

−∞
e ixu ψX

(−u − i
2

)
s − 1

2 + iu
du

= 1

π
p

ex

∫ ∞

0
ℜ

{
e−ixu ψX

(
u − i

2

)
s − 1

2 − iu

}
du

= 1

π
p

ex

∫ ∞

0
ℜ

{
ψX

(
u − i

2

)
s − 1

2 − iu

}
cos(xu)+ℑ

{
ψX

(
u − i

2

)
s − 1

2 − iu

}
sin(xu)du . (8.12)

The integrals in Ms (x) may be computed with the adaptive Filon (or Flinn) quadrature of
Chapter 7. In practice, the underlying adaptive Simpson (respectively adaptive quintic
Hermite) quadrature, which defines the Filon integration nodes, may only be applied to

the integrand of M0, that is, to the real and imaginary parts of the function
ψX

(
u− i

2

)
− 1

2 −iu
. As

the variations of M1 and M2 are similar, the integration nodes obtained via the integrand
of M0 are good enough to be reused for M1 and M2. For any x, the Heston characteris-
tic function will be evaluated only at those fixed nodes, independently of x. The value
of Ms (x) is then a simple sum over those nodes and its computational cost is directly
proportional to the number of quadrature nodes and to the cost of evaluating the cosine
and sine functions.

Let us now consider the quadratic spline payoff with linear extrapolation defined by

w(K ,S) = |K − gl (S)|+ , (8.13)

with

gl (S) =


∑n

j=1 w j (K j+1,S) for K1 < S < Kn+1 ,

b0(S −K1)+K1 for S ≤ K1 ,

bn+1(S −Kn+1)+Kn+1 for Kn+1 ≤ S .

(8.14)
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For K < K1, only the left extrapolation plays a role in the price Vput(K ) of the financial
derivative paying w(K ,S) at maturity. Vput(K ) corresponds to the price of a vanilla put
option of maturity Tl in the Heston-CLV model when a quadratic spline is used as collo-
cation function. Using the same contour zi = 1

2 as in Equations (8.9), (8.12), we have

Vput(K ) = (K −K1(1−b0))+ (K −K1(1−b0))M̃0(k)−b0K M̃1(k) , for K < K1 (8.15)

The first term corresponds to the residue at z = 0. For K1 ≤ K , let jK be the index such
that K jK ≤ K < K jK +1. According to Equation (8.9), we have

Vput(K ) = (K −K1(1−b0))+ (K −K1(1−b0))M̃0(x1)−b0K1M̃1(x1)

+
jK −1∑
j=1

(K − ã j )

[
M̃0(x j+1)−

jK −1∑
j=1

M̃0(x j )

]

−
jK −1∑
j=1

b̃ j
[
M̃1(x j+1)K j+1 − M̃1(x j )K j

]+ c j

[
M̃2(x j+1)K 2

j+1 − M̃2(x j )K 2
j

]
+ (K − ã jK )

[
M̃0(k)− M̃0(x jK )

]− b̃ jK

[
M̃1(k)K − M̃1(x jK )K jK

]− c jK

[
M̃2(k)K 2 − M̃2(x jK )K 2

jK

]
.

(8.16)

If K > Kn+1, we let jK = n+1 and use the convention ãn+1 = Kn+1(1−bn+1), b̃n+1 = bn+1,
c̃n+1 = 0.

The values of the s-th moment Ms (x j ) for j = 1, ...,n +1, and s ∈ {0,1,2} can be pre-
computed for a given set of spline knots (K j ) j=1,...,n+1 and a given set of Heston param-
eters. And then, for any spline coefficients (a j ,b j ,c j ) j=1,...,n+1 and any given strike K ,
only M0(k), M1(k), M2(k) need to be computed. Furthermore, with the adaptive Filon
quadrature of Chapter 7, the computational cost for Ms (k) corresponds to the cost of
evaluating d times the cosine and sine functions and d multiplications, where d is the
number of quadrature nodes.

The first moment1 of the market implied distribution V1 will also be useful in the
calibration, in order to preserve its value exactly. By definition,

V1(t ) = EQ[S(t )]

=
∫ ∞

0
g (t , x)φX (x)d x . (8.17)

Following the same approach as with the put option price Vput(K ) in Equation (8.16) , we
obtain

V1 = K1(1−b0)+K1(1−b0)M̃0(x1)+b0K1M̃1(x1)

+
n∑

j=1
ã j

[
M̃0(x j+1)− M̃0(x j )

]+ b̃ j
[
M̃1(x j+1)K j+1 − M̃1(x j )K j

]+ c j

[
M̃2(x j+1)K 2

j+1 − M̃2(x j )K 2
j

]
+bn+1F (0, t )−Kn+1(1−bn+1)M̃0(xn+1)−bn+1Kn+1M̃1(xn+1) (8.18)

1Not to be confused with the Heston moment M1.
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The term bn+1F (0, t ) stems from the residue at z = i in the integral of the right extrapo-
lation.

The call price may be obtained by the put-call parity relation Vcall(K ) −Vput(K ) =
V1(t )−K . When the first moment is preserved, we have V1(t ) = F (0, t ).

We have thus obtained an efficient pricing formula for European options under the
Heston-CLV model with a quadratic B-spline collocation function. This will allow a quick
calibration of the B-spline coefficients towards vanilla market option prices.

A CONTROL VARIATE FOR THE PRICE

In order to further improve the efficiency, we add a Black-Scholes control variate in a
similar fashion as is proposed by Andersen and Piterbarg [10] for a vanilla option. In the
Black-Scholes model, the asset forward F (t ,Tl ) follows dF =σB F dW (t ) and the normal-
ized Black-Scholes characteristic function with volatility σB reads

ψB (z) = e−
1
2σ

2
B Tl (z2+iz) , (8.19)

where Tl is the time to maturity.
In the Black-Scholes model, the values of M0(x), M1(x), M2(x) are directly linked to

the moments of a lognormal distribution and can thus be obtained in closed-form. We
have

M B
0 (x) =−Φ

−x − σ2
B Tl

2√
σ2

B Tl

 , (8.20)

M B
1 (x) = e−xΦ

 x − σ2
B Tl

2√
σ2

B Tl

 , (8.21)

M B
2 (x) = e−2x+σ2

B TΦ

 x − 3σ2
B Tl

2√
σ2

B Tl

 . (8.22)

where Φ is the cumulative normal distribution function.
The control variate approach consists in using, in Equation (8.12), ψX = ψH −ψB

instead of ψX = ψH , where ψH represents the normalized Heston characteristic func-
tion. At the same time, we adjust the values of M0(x), M1(x), M2(x) by adding respec-
tively M B

0 (x), M B
1 (x), M B

2 (x), in order to cancel out the contribution of the Black-Scholes
model. We use the initial variance of the Heston model as Black-Scholes volatility: σB =p

V0. Other choices, described in [115], are possible, but we did not notice any significant
improvement with those in practice.

TRUNCATION RANGE

In Equation (8.12), the range of integration in infinite. We follow chapter 7 to define
the truncation of the interval of integration such that the adaptive Filon quadrature (or
another quadrature) can be applied. In our case, the payoff is slightly different. If we
want to define a relative error tolerance in terms of the option price, we only need an
error bound for the moments M̄s for s = 0,1,2, according to Equation (8.16).
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The asymptotic behavior of the Heston characteristic function at ∞ reads [117]

lim
u→+∞

1

u
ln

(
ψ

(
u − i

2

)
−ψB

(
u − i

2

))
=−(C∞+ iD∞) , (8.23)

with

C∞ = V0 +κθT

σ

√
1−ρ2 , D∞ = V0 +κθT

σ
ρ. (8.24)

For umax sufficiently large, we thus have∣∣∣∣∣
∫ ∞

umax

ψ
(
u − i

2 )
)

s − 1
2 − iu

du

∣∣∣∣∣≤
∫ ∞

umax

∣∣∣∣e−C∞u

u

∣∣∣∣du .

We integrate by parts to obtain∫ ∞

umax

∣∣∣∣e−C∞u

u

∣∣∣∣du = e−C∞umax

C∞umax
−

∫ ∞

umax

e−C∞u

C∞u2 du

≤ e−C∞umax

C∞umax

We thus may bound the relative error in price by ε by truncation at umax such that

e−C∞umax

C∞umax
= ε (8.25)

The equation may be solved numerically using Newton’s method or any other univariate
root solver. The truncation may however become invalid for short expiries (T < 0.1) as,
then, umaxT 6À 1. A Taylor expansion around T = 0 gives the Black-Scholes like charac-
teristic function:

ln(ψ(u)) =−1

2
V0T (u2 + iu)+O (T 2).

An approximation for short expiries is ûmax that solves:

Φ

(
−1

2
V0T ûmax

)
= 1

2
V0T εûmax . (8.26)

We found that a good practical rule for the full range of expiries is just to use max(umax, ûmax).

8.3.2. CALIBRATION OF THE TERMINAL COLLOCATION FUNCTION
For a given maturity, in Chapter 5, we describe a method to calibrate a quadratic spline
to market options in the case where the stochastic collocation is towards a Gaussian
distribution. In particular, the method relies on a B-spline formulation to ensure that
the optimal collocation spline is monotonic and preserves the first moment exactly.

The optimal collocation spline is chosen so as to minimize the weighted least squares
error in market prices EV or equivalently in market volatilities Eσ. Let us detail the two
error measures. The volatility error measure reads
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Eσ =
√∑m

i=0µ
2
i (σ(ξ,Ki )−σi )2√∑m

i=0µ
2
i

, (8.27)

where σ(ξ,Ki ) is the Black-Scholes implied volatility2 obtained from the specific model
considered, with parameters ξ. For each i , σi is the market implied volatility and µi is
the weight associated to the implied volatility σi . In our numerical examples, we will
choose µi = 1. In practice, it is typically set as the inverse of the bid-ask spread.

The price error measure reads

EV =
√∑m

i=0ω
2
i (Vcall(ξ,Ki )− ci )2√∑m

i=0ω
2
i

, (8.28)

where Vcall(ξ,Ki ) is the model option price and ci is the market option price at strike
Ki . In the case of the stochastic collocation, ξ corresponds to the coefficients of the
collocating B-spline. We can find a weight ωi that makes the solution similar to the one
under the measure Eσ by matching the gradients of each problem.

The calibration of the terminal collocation function gl to a set of market options of
maturity Tl is almost the same when the collocation is towards a Heston distribution as
when it is towards a Gaussian distribution, with the two following differences:

• the model option price is given in the Heston case by the application of the adap-
tive Filon quadrature (Equation 8.16).

• the preservation of the first moment is given by Equation (8.18) in the Heston case.
In both cases, the spline coefficients will be shifted in parallel so that the first mo-
ment relation holds exactly.

In particular, we consider a quadratic B-spline representation, that is, B-splines of
order k = 3. The B-spline representation of gl on N +1+k knots reads [43]

gl (x) =
N∑

i=0
αi Bi ,3(x) . (8.29)

We use the nearly optimal B-spline knots τi+3 = xi+1+xi+2
2 for i = 0, ..., N −3 according to

[43, p. 193] with the boundary knots τ0 = τ1 = τ2 = x0 and τN+1 = τN+2 = τN+3 = xN ,
where (xi )i=0,...,N are the collocation points corresponding to the market option strikes.
This choice of knots ensures that gl is in the class C 1 on [x0, xN ]. The (xi )i=0,...,N may
correspond to a subset of the market option strikes we will calibrate against. The B-
spline representation can be easily converted to a more classical piecewise polynomial
representation as explained in [134], so that we can use Equation (8.16) to price a put
option under the Heston-CLV model.

2Fast and robust algorithms to obtain the implied volatility from an option price are given in [110, 140]. When
no implied volatility corresponds to the model option price, which may happen because of numerical error,
we just fix the implied volatility to zero.
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Because the derivative of the equivalent piecewise polynomial representation is lin-
ear between two distinct knots, gl will be monotonically increasing on an interval [τi−1,τi ]
if and only if the derivative at the endpoints is positive. And thus, gl will be monotoni-
cally increasing on the interval [x0, xN ] if and only if αi −αi−1 > 0 for i = 1, ..., N in Equa-
tion (8.29).

In order to ensure the monotonicity in a Levenberg-Marquardt optimizer, which we
use to minimize the error measure EV or Eσ, we rely on the following mapping:

zi =αı −αi−1 , for i > 0.

We enforce zi ≥ 0 as box constraints in the least-squares minimization. Box constraints
may be added in a relatively straightforward manner to any Levenberg-Marquardt algo-
rithm, such as the one of Klare and Miller [120], by means of the projection technique
described in [118]. We do not optimize z0 but choose z0 = 0 and then correct its value
through the first moment preservation relation.

The same kind of initial guess, based on a rough estimate of the market survival den-
sity for the maturity Tl , may be used as in Chapter 6. It is however much simpler to
use the identity function as initial guess. This corresponds to starting from the standard
Heston model and worked well on our examples.

In Figure 8.3.1a, we calibrated the Heston model to options on the Tesla stock (ticker
TSLA) of maturities 1, 7 and 19 months as of June 18, 2018. This results in the Hes-
ton parameters V0 = 0.23, κ = 0.16, θ = 3.82, σ = 3.26, ρ = −0.43. We then calibrated
the Heston-CLV model using firstly a quintic polynomial, and secondly a B-spline com-
posed of 15 knots. We did not attempt to preserve the forward price when calibrating the
Heston-CLV with a quintic polynomial collocation, as the second moment of the Heston
model already explodes for maturities T > 0.623 with the stated parameters. The first
moment preservation has very little impact on the quality of fit towards vanilla options.
For the shortest maturity, when compared to the standard Heston model, the quintic
polynomial collocation improves the fit in the wings. But it fails to improve around the
money (that is for option strikes near 1.0). In general, in the Heston-CLV model, a quin-
tic polynomial is not flexible enough to capture the projection of the implied cumulative
density towards the Heston variable. A higher polynomial degree would be better, but
even with a ninth degree polynomial, the error in implied volatilities would still be no-
ticeable at-the-money. The B-spline collocation has no such issue, and its corresponding
fit in terms of the implied volatilities is very good.

In Figure 8.3.1b, we cap σ and θ during the Heston calibration, in order to avoid a
fifth moment explosion. This results in the parameters V0 = 0.34, κ = 0.50, θ = 0.45,
σ = 0.90, ρ = −0.84 and the corresponding fit of the Heston model in terms of implied
volatility is poor. Here, the Heston-CLV with quintic polynomial collocation allows to fit
the market implied volatilities well however.

Let us take a look at the plots of the collocation function in both cases, in order to
understand better why the quintic polynomial fits well in one case but not in the other.
In Figures 8.3.2a and 8.3.2b, we plot the estimate of the collocation variable x for each
market strike y based on a discrete estimate of the market implied cumulative density
(see Chapter 6) along with the collocation function, which is here the quintic polynomial
mapping x to y , for the two sets of Heston parameters.
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(a) Well calibrated Heston model, but with exploding
second moment.
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(b) Heston model with finite fifth moment.

Figure 8.3.1: Black-Scholes volatility implied by the Heston model, and the Heston-CLV model for the options
of maturity 1 month, calibrated to TSLA options of maturities 1, 7 and 19 months as of June 18, 2018. The

strike indicated is relative towards the forward price.
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(a) Well calibrated Heston model, but with exploding
second moment.
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(b) Heston model with finite fifth moment.

Figure 8.3.2: Collocation function for TSLA options of maturity 1 month based on two different sets of Heston
parameters.

In the case where the Heston model is well-calibrated to the market (and the second
moment explodes), a polynomial has difficulties to capture the oscillating smaller-order
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corrections around the Heston model.

8.3.3. ABSORPTION IN THE CLV MODEL
With the collocation method, there is no guarantee, a priori, that gl (x) > 0,∀x > 0. If
there exists some x > 0 such that gl (x) ≤ 0, we will not theoretically be able to compute
the present value of any payoff depending on the performance, the simplest one being

VPerformance(Tl ,T ) = EQ
[

S(T )

S(Tl )
|S(0)

]
, (8.30)

where T > Tl > 0. Indeed, the above expectation is only well-defined if S(Tl ) is guar-
anteed to be strictly positive or strictly negative. In practice, it may not always be an
issue. For example if the probability of hitting a negative value is extremely small, we
may simply truncate g to xε where g (t , xε) = ε for a small ε> 0. We define

ḡ (t , x) =
{
ε for x < xε ,

g (t , x) for x ≥ xε ,
(8.31)

as proposed in [79] and use ḡ instead of g in the collocation.
With the collocation function g , if the probability of S(Tl ) being negative is not neg-

ligible, the simple fix above will not work well anymore. For many paths, we may end up
with S(Tl ) = ε, but S(T ) À ε. In theory, if, on the same path, the stock has been absorbed
at Tl , it should also be absorbed at T > Tl . This is not necessarily the case in the CLV
model as both Tl and T are simulated from a terminal distribution. We give an example,
based on the market data for TSLA options in Table 8.4.1.

Inspired by the handling of absorption in the Bachelier (or normal) model described
in Appendix 8.B, where the reflection method [113, p. 220] is used in order to obtain a
solution in closed-form, we consider the probability density on [ε,∞) defined by

φ̄Y (y) =φY (y)−φY (2ε− y) . (8.32)

The probability of absorption is given by

Pa = 1−
∫ ∞

ε
φY (y)−φY (2ε− y)d y = 2ΦY (ε) . (8.33)

This leads to the put option price

Vput(K ) = (K −ε)Pa +
∫ +∞

ε
|K − y |+φY (y)d y −

∫ +∞

ε
|K − y |+φY (2ε− y)d y

= 2(K −ε)ΦY (ε)+
∫ K

ε
(K − y)φY (y)d y −

∫ 2ε−K

ε
(2ε−K − y)φY (y)d y

=
∫ K

0
(K − y)φY (y)d y −

∫ 2ε−K

0
(2ε−K − y)φY (y)d y

≈
∫ xK

0
(K − gl (x))φX (x)d x −

∫ x2ε−K

0
(2ε−K − gl (x))φX (x)d x , (8.34)
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where x2ε−K = |g−1
l (2ε−K )|+. Similarly, the call option price reads

Vcall(K ) =
∫ +∞

ε
|y −K |+φY (y)d y −

∫ +∞

ε
|y −K |+φY (2ε− y)d y

=
∫ ∞

K
(K − y)φY (y)d y −

∫ 2ε−K

−∞
(2ε− y −K )φY (y)d y

≈
∫ ∞

xK

(gl (x)−K )φX (x)d x −
∫ x2ε−K

0
(2ε− gl (x)−K )φX (x)d x , (8.35)

and the same put-call parity relation still holds: Vcall(K )−Vput(K ) = V1 −K where V1 is
defined in Equation (8.18).

8.4. MONTE-CARLO SIMULATION OF THE HESTON-CLV MODEL
The Monte-Carlo simulation of the Heston-CLV model is straightforward: we use a good
discretization scheme for the Heston model in order to discretize the X process, which
is a standard Heston process; then we obtain the value of S on each path by applying
directly the collocation function to each path of X (Equation 8.1a). Unlike the case of
the stochastic local volatility model, there is no need to use very small time steps. The
discretization error is entirely due to the Heston process discretization.

8.4.1. A SECOND-ORDER DISCRETIZATION SCHEME
The quadratic exponential (QE) scheme of Andersen and Piterbarg [6] is widely used to
discretize the Heston process. Its convergence properties are however not known. In-
stead, we will present a scheme derived from the DVSS2 scheme of Lenkšas and Macke-
vičius [135], which has a proven second-order convergence, and stays computationally
efficient. The algorithm we propose consists in the following steps:

1. Apply the first deterministic split step:

ż = Z (t )− 1

4
θ∆t + 1

2κ

(
1−e−κ

∆t
2

)
(θ−V (t )) , (8.36)

v̇ =V (t )e−κ
∆t
2 +θ

(
1−e−κ

∆t
2

)
(8.37)

where Z (t ) = ln X (t )− ∫ t
0 (r (τ)− q(τ))dτ, Z (0) = ln X (0) and V (t = 0) = V0. The

values ż and v̇ correspond to the deterministic part of respectively the log-asset Z
and variance V at t + ∆t

2 .

2. Normalize the stochastic step

z̄ = żσ− v̇ρ

σ2
√

1−ρ2
, (8.38)

v̄ = v̇

σ2 . (8.39)

3. Draw two uniform random floating point numbers U1,U2 in the interval (0,1).
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4. Generate the normally distributed variable ξ = Φ−1(U1), where Φ−1 is the inverse
cumulative normal distribution, which can be efficiently computed by the algo-
rithm of Wichura [196].

5. Generate a random variable V̂ taking the values v1, v2, v0 with probabilities p1, p2

and p0 = 1−p1 −p2:

V̂ =


v1 if U2 < p1 ,

v2 if U2 > 1−p2 ,

v0 otherwise .

6. Calculate the random variable

Ẑ = z̄ +ξ
√

1

2
(v̄ + V̂ )∆t . (8.40)

7. Denormalize the stochastic variables

Z̃ =σ
(√

1−ρ2 Ẑ +ρV̂

)
, (8.41)

Ṽ =σ2V̂ . (8.42)

8. Finally, apply the second split step:

Z (t +∆t ) = Z̃ − 1

4
θ∆t + 1

2κ

(
1−e−κ

∆t
2

)
(θ− Ṽ ) , (8.43)

V (t +∆t ) = Ṽ e−κ
∆t
2 +θ

(
1−e−κ

∆t
2

)
. (8.44)

The probabilities p1, p2 and values v1, v2, v0 are defined as follows:

• if v̄ ≥ 2∆t ,

v1 = v̄ + s −d

2
, v2 = v̄ + s +d

2
, v0 = v̄ ,

p1 = 2v̄∆t

d(d − s)
, p2 = 2v̄∆t

d(d + s)
,

with s = 3∆t
2 and d 2 = 21

4 (∆t )2 +12v̄∆t .

• if 0 < v̄ < 2∆t ,

v1 = s −d

2
, v2 = s +d

2
, v0 = 0,

p1 = v̄
2v̄ +2∆t − s −d

d(d − s)
, p2 = v̄

2v̄ +2∆t − s +d

d(d + s)
,

with s = 4v̄2+9v̄∆t+3(∆t )2

2v̄+∆t and d 2 =∆t 16v̄3+33v̄2∆t+18v̄(∆t )2+3(∆t )3

(2v̄+∆t )2 .
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Our algorithm differs from the original DVSS2 scheme only in step 4. Lenkšas and
Mackevičius [135] use for ξ a discrete random variable which matches the first five mo-
ments of the normal distribution, for reasons of computational efficiency (and because
it is enough to prove the second-order convergence), while we use a standard floating
point normally distributed random variable. Thus the second-order convergence is still
valid in our scheme. From now on, we will refer to our scheme as DVSS2X. Let us clarify
why we have made this change.

One assumption for the second-order convergence with a discrete random variable
matching the first five moments of the normal distribution is that the integrand f is
smooth. Denis Talay presupposes that f and its derivatives up to order 6 are continuous
in [187]. Unfortunately, in finance, it is quite common to have discontinuities. A typical
example is the digital option which pays 1 if the asset price at maturity is larger than a
given strike price. This digital feature is often present in exotic derivatives.

A good illustration of this effect is to take a vol-of-vol parameter σ small, so that the
Heston model resembles the Black-Scholes model. In Figure 8.4.1a, we pick θ = v0 =
0.09,σ = 0.01,ρ = 0,κ = 1 and price a digital call option of 3 months maturity. Even
though the time step size ∆t = 1

32 is relatively small (8 intermediate time steps in our
digital option example), the error due to the discrete sampling is large, and we clearly
see discrete steps in the staircase like price, which will be detrimental to compute the
greeks ∆ or Γ. Note that when the vol-of-vol parameter is taken to the usual levels for
equities, DVSS2 behaves well, and this effect is not visible in digital options.
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(a) Heston, low vol-of-vol parameter, ∆t = 1
32 .
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(b) Black, ∆t = 0.01. "Five" stands for the discrete
variable matching 5 moments, "AS241" for the

continuous inverse cumulative distribution, "-BB"
for Brownian Bridge path construction.

Figure 8.4.1: Monte-Carlo price of a digital call option under the Heston and Black-Scholes models with or
without discrete random variable. Each simulation runs on 107 paths.

Another side-effect of discrete sampling is that the Brownian-bridge technique is not
applicable. Indeed, in the Brownian-bridge path construction, the last point of the path,
corresponding to the maturity date, is sampled first, and the other path points inside
are then computed from the first and last points in a recursive manner. But any non-
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path dependent option, such as a digital option, depends only on the value of the path
at maturity, that is, on this last point. As the latter point follows a discrete distribution,
the price of the digital option is a staircase function with only a few steps (at most 4 with
DVSS2 choice for ξ). This is quite far from the theoretical digital option price, which
corresponds to the cumulative distribution function (see Figure 8.4.1b).

In contrast, for the incremental path construction, each point is computed from the
previous point. The last point will thus include the variation of all points in the path,
which will be very close to normal, even with a discrete distribution per point.

Our proposed change solves the two issues raised above. Furthermore, we also no-
ticed that the continuous sampling in DVSS2X improved the accuracy of the prices of
forward start options.

DVSS2X CONVERGENCE EXAMPLE

In order to assess the convergence of the DVSS2X scheme for the Heston-CLV model, we
first calibrate the model to the Eurostoxx 50 index (ticker SX5E) options of as of Febru-
ary 26, 2016. The Heston parameters are V0 = 0.133, κ = 0.350, θ = 0.321, σ = 1.388,
ρ =−0.630. We then run a Monte-Carlo simulation for vanilla call options with forward
moneyness K

F (0,t ) 1.0 and 1.4, and a put option with forward moneyness 0.7, of matu-

rity t = 0.5, and using 216 paths. The reference price is obtained by the adaptive Filon
method. The large number of paths guarantees that the Monte-Carlo sampling error is
small enough (respectively 15 ·10−6, 3 ·10−6 and 8 ·10−6), so that we can deduce the con-
vergence order by estimating the slope of the log-log plot of the error against the time
step size (Figure 8.4.2a). The overall order of convergence of the DVSS2X scheme, over
the three options is 2.12.

In Figure 8.4.2b, we perform the same experiment with the quadratic exponential
(QE) scheme of Andersen and Piterbarg [6], widely used in the financial industry. This
scheme has however no proven convergence order. Here, we obtain an overall conver-
gence order over the three options of 1.55.

The DVSS2X scheme exhibits not only a higher order of convergence, our implemen-
tation is also around 25% faster than the QE scheme for a given time step size. We
wrote both schemes in the Google Go language, making sure to cache any data con-
stant across paths, and used otherwise the same methods to generate random numbers
(MELG19937-64 from [90]) and to sample from a normal distribution [196].

ABSORPTION IN THE MONTE-CARLO METHOD

The reflection method described in Section 8.3.3 may also be applied in the Monte-Carlo
simulation. Let X1, ..., Xm be a path of the Heston driver process X defined by Equation
(8.1b), corresponding to the dates t1, ..., tm . When we compute the path of the asset S
from X , we record the reflections:

• If g (ti , Xi ) ≥ ε, we let Si = g (ti , Xi ) and Pi = 1.

• Else, we let Si = g (ti , Xi )−2ε and Pi =−1.

We take the reflections into account when the payoff is evaluated on each path. Let
CF

(
ti , (S j ) j=1,...,i

)
be the cash flow at time ti . The corresponding undiscounted value

for the path considered is set to
(∏i

j=1 P j

)
CF

(
ti , (S j ) j=1,...,i )

)
.
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(a) DVSS2X scheme.
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(b) QE scheme.

Figure 8.4.2: Error in the price obtained by the Monte-Carlo simulation of out-the-money vanilla options with
forward moneyness 0.7,1.0,1.4 and maturity 6 months as a function of the time step size. The Heston-CLV

model is calibrated to SX5E options of as of February 26, 2016.

In Table 8.4.1, we calibrate the Heston-CLV model to TSLA options as of June 18,
2018, and price the performance payoff (Equation 8.30) with the Monte-Carlo method
described in Section 8.4 between the maturities January 18th, 2019 and January 17th,
2020. In this example, we remove any interest rate effect by considering only the artifi-
cial case where r = q = 0. While the absorption does not play a role for the price of an
at-the-money option in this example, the error in the performance contract price is at
least one order of magnitude lower with the reflection method. Truncation also leads
to a larger standard error in the Monte-Carlo simulation, because the number of paths
where S(t1) = ε and S(t2) À ε is not negligible, where t1, t2 correspond respectively to
the maturities January 18th, 2019 and January 17th, 2020. This example also seems to
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indicate that the martingale property holds3 with the reflection method. We will analyze
this in more detail in Section 8.4.2.

Table 8.4.1: Price of an at-the-money call option and a future performance contract obtained by a
Monte-Carlo simulation using 1 million paths and 32 time steps per year, where the Heston-CLV model is

calibrated to TSLA options as of June 18, 2018. The forward prices are normalized so that the theoretical price
of the future performance contract is 1. The Heston parameters are V0 = 0.23, κ= 0.163, θ = 3.82, σ= 3.26,

ρ =−0.43.

Method Price Error Standard Error

At-the-money call option

No absorption 0.243491 -0.000709 0.000548
Absorption at ε= 1% by truncation 0.243492 -0.000709 0.000549
Absorption at ε= 1% by reflection 0.243491 -0.000709 0.000548

Contract on future performance

No absorption 1.041000 0.041000 0.011730
Absorption at ε= 0.1% by truncation 1.058137 0.058137 0.005290
Absorption at ε= 0.1% reflection 1.004069 0.004069 0.002532
Absorption at ε= 1% by truncation 1.021739 0.021739 0.001337
Absorption at ε= 1% reflection 1.000288 0.000288 0.001053

8.4.2. THE MARTINGALE PROPERTY IN PRACTICE
A known deficiency of Markov functional models is that they do not respect the martin-
gale property [30, 108]. The Heston-CLV model is similar to a Markov functional model:
the collocation function only captures the terminal distribution at each maturity date
and is then applied at different dates independently, without taking into account any
joint distribution between the dates. Yet, the driver is a calibrated Heston model, whose
joint distribution is close to the market distribution. We may thus expect the colloca-
tion function to provide a second-order correction and the martingale property to be
reasonably well preserved.

The martingale property can be measured by pricing a contract on the future perfor-
mance. Under deterministic interest rates and in the absence of arbitrage, the following
identity must hold:

EQ

[
S(t j )

S(ti )
|S(0)

]
= F (0, t j )

F (0, ti )
, for 0 ≤ ti < t j , (8.45)

where F denotes here the forward price of the asset S at time t = 0 so that F (0, ti ) =
EQ [S(ti )].

When ti = 0, the identity holds exactly, since the first moment is preserved exactly
during the calibration of the collocation function g . When ti > 0, the identity almost

3This is with the default κ where the performance price with the shortest maturity is around 0.998. If we
adjust the κ so that the martingale property is slightly better across the three maturities considered, the same
conclusion would remain: the performance price is biased with truncation. Absorption does not play a role
in the shortest maturity.
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holds in the case of the market data for TSLA options as of June 18th, 2018. The maxi-
mum numerical error in the price of the future performance contract between the differ-
ent maturities is of around 0.3%. While this particular example is challenging because of
the absorption implied by the market option prices, it only consists of three option ma-
turities and is thus not representative of market data that the financial industry typically
uses to price exotic derivatives.

In Table 8.4.2, we measure the undiscounted future performance for all the pairs
of distinct maturities, where the Heston-CLV model is calibrated to SX5E options as of
February 26, 2016. It consists of 14 option maturities from two weeks to five years, a
standard range for this equity index. On this data, we do not observe any significant im-
plied probability of absorption. The Heston-CLV model fits the market very well (Figure
8.4.3b), and we observe a similar drift of up to 0.3%, when we choose a mean reversion
parameter κ, which minimizes the overall drift. Interestingly, this κ is very close to the
unconstrained calibrated Heston κ (0.350 vs 0.386). With the latter, the drift increases
to up to 0.5%, which is still much milder than the drift of around 5% from the typical
Markov functional model [30].

In the Monte-Carlo simulation, the 95% interval of confidence corresponds to three
times the standard error. For one million paths, it is ±0.3%, comparable to the measured
drift.
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(a) Heston model.
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(b) Heston-CLV model.

Figure 8.4.3: Black-Scholes volatility implied by the Heston model, and the Heston-CLV model calibrated to
SX5E options of as of February 26, 2016. The forward moneyness is defined as K

F (0,ti ) for the expiry ti .

8.5. THE HESTON-CLV PARTIAL DIFFERENTIAL EQUATION
For vanilla European options, the Fourier-based approach is very efficient. It becomes
interesting to numerically solve the PDE (8.2) in order to price exotic options, with some
path-dependency, such as barrier options. In practice, the PDE approach may be used
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Table 8.4.2: Error in the price of a future contract on performance, expressed in %, for each pair of distinct
maturities, obtained by a Monte-Carlo simulation using 1 million paths and 32 time steps per year, when the
Heston-CLV model is calibrated to SX5E options as of February 26, 2016. The Monte-Carlo standard error is

less than 0.09% and the Heston parameters are V0 = 0.133, κ= 0.350, θ = 0.321, σ= 1.388, ρ =−0.630.

Maturity 0.04 0.08 0.16 0.25 0.33 0.41 0.50 0.75 1.00 1.50 2.00 3.00 4.00

0.08 -0.02
0.16 -0.01 0.01
0.25 -0.02 -0.01 0.02
0.33 -0.06 -0.05 -0.02 0.02
0.41 -0.06 -0.02 -0.03 0.04 0.01
0.50 -0.05 -0.06 -0.02 0.06 0.06 0.09
0.75 -0.02 -0.05 -0.06 -0.02 -0.00 0.03 -0.03
1.00 -0.13 -0.10 -0.12 -0.06 -0.09 -0.04 -0.10 -0.00
1.50 -0.08 -0.10 -0.14 -0.14 -0.18 -0.16 -0.22 -0.21 -0.28
2.00 -0.05 -0.20 -0.03 -0.12 -0.08 -0.09 -0.20 -0.22 -0.31 -0.14
3.00 0.01 -0.02 0.03 0.07 0.03 0.04 -0.01 -0.04 -0.20 -0.06 0.16
4.00 0.01 -0.04 0.10 0.14 0.12 0.14 0.06 0.04 -0.13 -0.10 0.11 -0.30
5.01 0.04 0.13 0.09 0.10 0.16 0.13 0.07 0.10 -0.06 0.00 0.05 -0.11 0.31

to include market prices of barrier options in the calibration of the CLV model.
Let us consider, for illustration purposes, the specific case of a down-and-out put

option. The buyer of a down-and-out put barrier option of strike price K will receive
max(K −S,0) at maturity T , if the asset S stays above a fixed barrier level b, at all times
t ≤ T .

In terms of the Heston driver variable X , the barrier is not constant, but follows the
curve x(t ,b) defined by

g (t , x(t ,b)) = b ,

where g is the collocation function. The problem of discretizing efficiently an implicitly
defined, time-varying barrier, while keeping a second-order convergence, is not easily
solved.
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X

Figure 8.5.1: Barrier profile x(t ,b) with b=0.9 and the collocation function defined in Table 8.5.1.

In contrast, if we solve a PDE in the variable S, the barrier corresponds exactly to a
Dirichlet boundary, which actually simplifies the problem, compared to a regular Eu-
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ropean option without barrier. The PDE coefficients become however time-dependent.
The price of a derivative contract u on (s, v) is given by

∂u

∂t
+ ġ

∂u

∂s
= v x2

2
g ′ ∂
∂s

(
g ′ ∂u

∂s

)
+ρσxv g ′ ∂2u

∂s∂v
+ σ2v

2

∂2u

∂v2

+ (r −q)xg ′ ∂u

∂s
+κ(θ− v)

∂u

∂v
− r u , (8.46)

with

g ′(t , s) = ∂g

∂x
(t , x(t , s)) ,

ġ (t , s) = ∂g

∂t
(t , x(t , s)) ,

and initial condition
u(s, v,0) = h (s) . (8.47)

The Heston model is recovered with g (t , s) = s, ġ = 0, g ′(t , s) = 1.

8.5.1. BOUNDARY CONDITIONS
The PDE will be solved on a truncated domain [smin, smax]×[vmin, vmax]. We will typically
truncate the s domain to four standard deviations. A simple approximation is given by

smin = 0, smax = K e+4
p
θT .

where K is the option strike price. For the v domain, let Φχ(y,dχ,λχ) be the cumulative
distribution for the non-central chi-square distribution with dχ degrees of freedom and
non-centrality parameter λχ. The distribution of the variance process V (T ) conditional
on V (0) is known [6, 39], and thus we may choose

vmin = 0, vmax =Φ−1
χ (1−εv ,dχ, v0nχ)

e−κT

nχ
,

with dχ = 4κθ
σ2 , nχ = 4κ e−κT

σ2(1−e−κT ) , and εv = 10−4.

At s = smin and s = smax the Dirichlet boundary conditions for a vanilla option corre-
spond to the discounted intrinsic value

u(s, v, t ) = e−r (T−t )h
(
se(r−q)(T−t )) , (8.48)

for v ∈ [vmin, vmax] and s ∈ {smin, smax}. In particular, we will have u(smin, v, t ) = 0 for a
call option in practice.

At v = vmax, we follow [10, p. 385-386] and let the price to be linear in the variance
dimension:

∂2u

∂v2 (x, v, t ) = ∂2u

∂x∂v
(x, v, t ) = 0, (8.49)

for s ∈ (smin, smax). A priori, it is not guaranteed that Equation (8.49) is a sufficiently ac-
curate approximation at the lower boundary vmin. When vmin = 0, the exact boundary
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condition at v = vmin = 0 corresponds to the PDE obtained by setting v = 0 and is prefer-
able in practice. With the choice vmin = 0, the two conditions are equivalent.

An alternative to the Dirichlet boundary conditions is to consider that the value is
linear along s, which leads to

∂2u

∂s2 (s, v, t ) = ∂u

∂v
(s, v, t ) = 0, (8.50)

for v ∈ [vmin, vmax] and s ∈ {smin, smax}.
The Dirichlet boundaries are convenient for theoretical stability analysis, while the

linear boundaries are often more accurate in practice.
In a knock-out barrier option, the option becomes worthless as soon as the under-

lying price is above (up-and-out) or below (down-and-out) a given barrier level b. For a
down-and-out option, we set smin = b and use a Dirichet boundary u(b, v, t ) = 0.

8.5.2. PDE TRANSFORMATIONS
In the case of the PDE (8.2) in the variable x, a change of variable y = ln x simplifies
the PDE as it removes the dependence of its coefficients on x. As evidenced in [188, p.
158-159], in the case of the Black-Scholes PDE (corresponding to setting σ = κ = 0), the
difference between the largest and the smallest eigenvalue of the discretization matrix
is much smaller with the logarithmic transformation. As a consequence, if we are using
an explicit scheme, we will be able to use a larger time-step for a given spatial discretiza-
tion. If we are using an implicit scheme such as Crank-Nicolson, the oscillations will be
reduced with the transformation, and the accuracy may improve. However, the logarith-
mic transformation will also distort significantly the option payoff, which may result in a
significant loss of accuracy as many more points are effectively used in the grid near the
lower boundary, instead of where it matters physically (typically around the option strike
price). Instead of applying directly such a transformation, we therefore follow [188] and
express the variable s as a function of a new variable η, so that η can be discretized uni-
formly in its interval. We wish to concentrate points where the payoff is not smooth, that
is s = K for a vanilla or a barrier option. Regarding the variable v , we are interested in the
value of the option price u at v = V0. It makes thus sense to concentrate points around
V0 by expressing v in terms of a new coordinate ξ. This leads to

∂u

∂t
+ ġ

J S

∂u

∂η
= v(ξ)x2

2

g ′

J S

∂

∂η

(
g ′

J S

∂u

∂η

)
+ρσx

v(ξ)g ′

JV J S

∂2u

∂η∂ξ
+ σ2v(ξ)

2JV

∂

∂ξ

(
1

JV

∂u

∂ξ

)
+ (r −q)x

g ′

J S

∂u

∂η
+ κ(θ− v(ξ))

JV

∂u

∂ξ
− r u , (8.51)

where

J S (η) = ∂s

∂η
(η) , JV (ξ) = ∂v

∂ξ
(ξ) (8.52)

are the respective Jacobians of each transformation. The linear boundary condition in s
(Equation 8.50) translates to

∂

∂η

(
1

J S (η)

∂u

∂η

)
= 0 = ∂u

∂ξ
,
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for v(ξ) ∈ [vmin, vmax] and s(η) ∈ {smin, smax}. Furthermore, when g is a quadratic spline

with linear extrapolation, we have ∂2g
∂x2 (t , x(t , s)) = 0, assuming that the extrapolation

starts at some s < smin as well as at some smax < s.

We will use the hyperbolic sine function as smooth transformation that concentrates
points [188]

S(η) = K +λS sinh((c2 − c1)η+ c1) , (8.53)

J S (η) =λS (c2 − c1)cosh((c2 − c1)η+ c1) , (8.54)

with c1 = sinh−1
(

Smin−K
λS

)
, c2 = sinh−1

(
Smax−K
λS

)
. In our numerical examples, we will choose

λS = K
4 , with η uniform in [0,1] (see Figure 8.5.2). The transformation of the variable v

reads

v(ξ) =V0 +λv sinh((c̃2 − c̃1)ξ+ c̃1) , (8.55)

JV (ξ) =λv (c̃2 − c̃1)cosh((c̃2 − c̃1)ξ+ c1) , (8.56)

with c̃1 = sinh−1
(

vmin−V0
λv

)
, c̃2 = sinh−1

(
vmax−V0

λv

)
. For a uniform ξ ∈ [0,1], a large scal-

ing parameter λv will lead to a uniform V ∈ [vmin, vmax] whereas V will be highly non-
uniform for small values of λv . A good choice for the scaling parameter is λv = 2V0.

uniform

exp

sinh

0 1 2 3 4 5

s

Figure 8.5.2: Discretization of the variable s with different transformations, as implied by the Heston
parameters V0 = 0.133, κ= 0.350, θ = 0.321, σ= 1.388, ρ =−0.630 and T = 0.49863, for M = 20, K = 1.

8.5.3. FINITE DIFFERENCE DISCRETIZATION OF ORDER-2 IN SPACE

Let us define a uniform grid in the coordinates η,ξ of Equation (8.51), for j = 1, ...,L, for
i = 1, ...M ,

ξ j = ( j −1)∆ξ , ∆ξ= 1

L−1
, (8.57)

ηi = (i −1)∆η , ∆η= 1

M −1
. (8.58)

There is no need to consider the case of a non-uniform grid since the coordinate trans-
formations s(η) and v(ξ) already give us the flexibility we need in the grid geometry.
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For j = 1, ...,L and i = 1, ...M , let

xi (t ) = x(t , s(ηi )) , v j = v(ξ j ) ,

J S
i = J S (ηi ) , JV

j = JV (ξ j ) ,

g ′
i (t ) = g ′(t , xi (t )) , ġi (t ) = ġ (t , xi (t )) ,

ui , j (t ) = u(s(ηi ), v(ξ j ), t ) .

On this grid, we define the discrete operator Li , j =L
η

i , j +L
ξ
i , j +L

η,ξ
i , j +L r

i , j , where

L
η

i , j (t ,u) =
βS

i , j v j x2
i

2∆η

g ′
i

J S
i

g ′
i+ 1

2

ui+1, j −ui , j

J S
i+ 1

2

∆η
− g ′

i− 1
2

ui , j −ui−1, j

J S
i− 1

2

∆η


+

(
r −q

)
xi g ′

i − ġi

J S
i

ui+1, j −ui−1, j

2∆η
, (8.59)

L
η,ξ
i , j (t ,u) = ρσxi v j g ′

i

J S
i JV

j

ui+1, j+1 −ui−1, j+1 −ui+1, j−1 +ui−1, j−1

4∆η∆ξ
, (8.60)

L
ξ
i , j (t ,u) =

βV
j σ

2v j

2JV
j ∆ξ

ui , j+1 −ui , j

JV
j+ 1

2

∆ξ
− ui , j −ui , j−1

JV
j− 1

2

∆ξ

+ κ(θ− v j )

JV
j

ui , j+1 −ui , j−1

2∆ξ
, (8.61)

L r
i , j (t ,u) =−r ui , j , (8.62)

for i = 2, ..., M −1 and j = 2, ...,L−1, with

J S
i± 1

2
= J S

(
ηi ± 1

2
∆η

)
, JV

j± 1
2
= JV

(
ξ j ± 1

2
∆ξ

)
andβS

i , j =βV
j = 1. It corresponds to a second-order central discretization in the variables

η,ξ of the right-hand side of PDE (8.51).
The Peclet number corresponding to each dimension is

P S
i , j = 2∆η

J S
i

g ′
i v j xi

(
r −q − ġi

xi

)
, PV

j = 2∆ξ
κ(θ− v j )JV

j

σ2v j
. (8.63)

The Peclet conditions P S
i , j < 2 and PV

j < 2 do not necessary hold with typical values for

the Heston parameters. This happens when v j is very small, which is generally the case
for the first few indices j . When the Peclet condition does not hold, the stability of the
finite difference scheme is not guaranteed anymore: the solution may explode. In order
to ensure that the Peclet conditions hold, we will use the exponential fitting technique
[5, 102] when P S

i , j ≥ 2 as well as when PV
j ≥ 2. It consists in using the coefficients

βS
i , j =

P S
i , j

2tanh

(
P S

i , j

2

) , βV
j =

PV
j

2tanh

(
PV

j

2

) , (8.64)
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instead of βS
i , j =βV

j = 1.

The linear boundary conditions are discretized with order-1 forward and backward
differences as

L
η

i ,1(t ,u) =
βS

i ,1v1x2
i

2∆η

g ′
i

J S
i

g ′
i+ 1

2

ui+1,1 −ui ,1

J S
i+ 1

2

∆η
− g ′

i− 1
2

ui ,1 −ui−1,1

J S
i− 1

2

∆η


+

(
r −q

)
xi g ′

i − ġi

J S
i

ui+1,1 −ui−1,1

2∆η
,

L
η,ξ
i ,1 (t ,u) = 0, L r

i ,1(t ,u) =−r ui ,1 , L
ξ
i ,1(t ,u) = κ(θ− v1)

JV
1+ 1

2

ui ,2 −ui ,1

∆ξ
,

L
η

i ,L(t ,u) =
βS

i ,L vL x2
i

2∆η

g ′
i

J S
i

g ′
i+ 1

2

ui+1,L −ui ,L

J S
i+ 1

2

∆η
− g ′

i− 1
2

ui ,L −ui−1,L

J S
i− 1

2

∆η


+

(
r −q

)
xi g ′

i − ġi

J S
i

ui+1,L −ui−1,L

2∆η
,

L
η,ξ
i ,L (t ,u) = 0, L r

i ,L(t ,u) =−r ui ,L , L
ξ
i ,L(t ,u) = κ(θ− vL)

JV
L− 1

2

ui ,L −ui ,L−1

∆ξ
,

for i = 2, ..., M −1, and

L
η

1, j (t ,u) =
(
r −q

)
x1g ′

1 − ġ1

J S
1+ 1

2

u2, j −u1, j

∆η
,

L
η,ξ
1, j (t ,u) =L

ξ
1, j (t ,u) = 0, L r

1, j (t ,u) =−r u1, j ,

L
η

M ,1 =
(
r −q

)
x1g ′

M − ġM

J S
M− 1

2

uM , j −uM−1, j

∆η
,

L
η,ξ
M , j (t ,u) =L

ξ
M , j (t ,u) = 0, L r

M , j (t ,u) =−r uM , j ,

for j = 1, ...,L.
In the case of a Dirichlet boundary in the variable s, for example in the context of

barrier options, we have Li , j = 0 for j = 1, ...,L and i = 1 or i = L for respectively the
lower and upper boundaries.

8.5.4. FINITE DIFFERENCE SCHEMES
We will now analyze a number of discretization schemes on their stability and accuracy
properties.

LAWSON-SWAYNE SCHEME

The Lawson-Swayne scheme is an L-stable, and second-order in time finite difference
scheme [125]. The L-stability property is particularly interesting since it guarantees that
rapid transients in the solution will be damped in a single time step [138]. In contrast,
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the Crank-Nicolson scheme is only A-stable, and requires smoothing steps around dis-
continuities [73], in order to avoid spurious oscillations, which may degrade the overall
convergence.

The Lawson-Swayne scheme applied to the Heston-CLV PDE (8.46) in the variable s
then reads

ui , j (tk+γ)−ui , j (tk ) = γ∆tkLi , j
(
tk+γ,u(s, v, tk+γ)

)
, (8.65a)

ui , j (tk+2γ)−ui , j (tk+γ) = γ∆tkLi , j
(
tk+2γ,u(s, v, tk+2γ)

)
, (8.65b)

ui , j (tk+1) = (
p

2+1)ui , j (tk+2γ)−p
2ui , j (tk+γ) , (8.65c)

for i = 1, ...,L, j = 1, ..., M and k = 0, ..., N − 1, with γ = 1−
p

2
2 , ∆tk = tk+1 − tk . In our

numerical examples, we use a constant time step∆tk = T
N where T is the option maturity.

For each point of the grid with indices (i , j ), Li , j u defines 9 corresponding coeffi-
cients for the indices (i +1, j +1), (i +1, j ), (i , j +1), (i , j ), (i −1, j ), (i , j −1), (i −1, j −1),
(i +1, j −1), (i −1, j +1), for i = 2, ..., M −1 and j = 2, ..., M −1. Let A be the matrix of size
(LM ,LM) with elements verifying

Li , j (t ,u) =
M∑

r=1

L∑
s=1

Ai+ j M ,r+sM ur,s , (8.66)

for i = 1, ...,L, j = 1, ..., M . The elements A j+i M ,s+r M correspond to the nine points stencil
at (i , j ). Let B = I −γ∆t A. Each step of the Lawson-Swayne scheme consists in solving B
twice. In the case of the pure Heston model, the matrix B is constant across time and may
thus be factorized in an initialization step. Furthermore, B is sparse and contains at most
9 non zero entry per row and per column (Figure 8.5.3). A numerical implementation will
thus benefit from a fast direct sparse LU solver, such as UMFPACK [42] or SuperLU [141].
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Figure 8.5.3: Structure of the sparse matrix A, with L = 6, M = 12. Each dot corresponds to a non-zero element.

Unfortunately, in the CLV model, B is time-dependent and thus needs to be decom-
posed at each stage for every time step. This increases significantly the computational



8

170 8. NUMERICAL TECHNIQUES FOR THE HESTON COLLOCATING VOLATILITY MODEL

cost. The use of an iterative solver such as the successive over-relaxation method (SOR)
or the biconjugate gradient stabilized method (BICGSTAB) is then recommended.

AN ALTERNATING DIRECTION EXPLICIT (ADE) DISCRETIZATION

Leung and Osher [136] propose to split the matrix A into strictly lower diagonal AL ,
strictly upper diagonal AU and diagonal AD and solve[

I −∆t

(
1

2
AD + AL

)]
u0 =

[
I +∆t

(
1

2
AD + AU

)]
u(tk ) , (8.67a)[

I −∆t

(
1

2
AD + AU

)]
u1 =

[
I +∆t

(
1

2
AD + AL

)]
u(tk ) , (8.67b)

u(tk+1) = u1 +u0

2
, (8.67c)

where um
i , j = um(s(ηi ), v(ξ j ), tk ) represents the option price at an intermediate stage m.

The matrix A is time-dependent. In order to keep the second-order accuracy, we evalu-
ate it at the mid-point t = tk+tk+1

2 .
In the ADE scheme, each stage is independent and consists then in the solution of

one sparse triangular system, which requires only 5LM multiplications in the case of the
Heston CLV PDE discretization. The performance is the main appeal of this method.
The first stage evaluates the system in a left-down towards right-up manner, while the
second stage evaluates the system in the opposite direction, hence the name alternating
direction explicit. Duffy [53, 54] applied ADE schemes to price options in the one-factor
Black-Scholes model.

The stability of the scheme is guaranteed only if the matrix A is symmetric negative
definite, which is not the case for our discretization of the Heston-CLV PDE. In fact, we
find that such a scheme may explode when the time step ∆t is too large compared to
the number of steps in the dimension of the asset price S (in our numerical example, for
N ≤ 128 with M = 1024 and L = 128).

EXPLICIT RUNGE-KUTTA-LEGENDRE DISCRETIZATION

Applied to the Heston-CLV PDE, the explicit Euler method is very simple to implement. It
does not require to solve any linear system. Furthermore, with a sparse system (the ma-
trix A described by Equation (8.66)), the matrix-vector multiplications involved are fast
(9LM multiplications for the matrix A). The explicit Euler method is however only first-
order in time. This can easily be remedied by the use of a predictor-corrector scheme, or
of the second-order explicit Runge-Kutta scheme (RK2). The bigger issue is the limita-
tion on the time step size imposed by the stability condition. The latter implies that time
step size ∆t follows a square relationship with the asset and variance step sizes ∆S and
∆V . For practical grid geometries, more than 10000 time steps may be required for the
explicit scheme to be stable.

Super time stepping methods, typically based on the boundedness of Chebyshev
polynomial, allow to circumvent the time step size limitation for parabolic (mildly stiff)
problems. OŚullivan [164] applied the super time stepping of Alexiades [4] to the pric-
ing of American options in the Black-Scholes model, using a Richardson extrapolation
to attain second-order accuracy. In’t Hout and Foulon [103] applied the second-order
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Runge-Kutta-Chebyshev solver of Sommeijer [182] to compute the price of European
and barrier options under the Heston model. Here, we consider a more recent develop-
ment with increased stability properties due to Meyer [154], where a Legendre polyno-
mial defines the recursion of the super time stepping method. Their approach does not
require to define and guess an extra damping parameter and is directly second-order.
The Runge-Kutta-Legendre scheme of order-2 (RKL2), with γ stages, reads

u0
i , j = ui , j (tk ) , (8.68a)

u1
i , j =+µ̃1∆tkLi , j

(
tk ,u0) , (8.68b)

um
i , j =µmum−1

i , j +νmum−2
i , j + (1−µm −νm)u0

+ µ̃m∆tkLi , j
(
t m−1

k ,um−1)+ γ̃m∆tkLi , j
(
tk ,u0) , for 2 ≤ m ≤ s , (8.68c)

ui , j (tk+1) = uγ

i , j , (8.68d)

with the parameters

µm = 2m −1

m

bm

bm−1
, νm =−m −1

m

bm

bm−2
,

µ̃m =µm w1 , γ̃m =−(1−bm−1)µ̃m ,

bm = m2 +m −2

2m(m +1)
, t m

k = tk +
m2 +m −2

γ2 +γ−2
∆tk ,

for 2 ≤ m ≤ γ and b0 = b1 = b2 = 1
3 , w1 = 4

γ2+γ−2
, µ̃1 = b1w1 and t 1

k = tk + µ̃1∆tk .

The γ stages are explicit. The scheme is stable as long as

∆tk ≤ ∆texplicit
4

(
γ2 +γ−2

)
(8.69)

where ∆texplicit is the maximum time step size allowed by the explicit Euler method. A
simple, conservative, upper bound for the explicit time step size is 1

max |Ai ,i | , where the

matrix A is defined in equation (8.66), and we assumed its diagonal to be dominant.
Equation (8.69) gives us a method to automatically determine the minimum number
of stages γ for a given time step size ∆tk . In particular, we notice that this number of
stages γ is proportional to the inverse square root of∆texplicit, and thus, the RKL2 scheme
should be more efficient than the classic explicit Euler scheme. In our numerical exam-
ples, we will take the first odd integer larger than, or equal to, the minimum number of
stages allowed.

The construction of the sparse matrix at different steps is the most time-consuming
part of the overall algorithm as it is time-dependent. If we implement the Equations
(8.68b)-(8.68d) in straightforward fashion, the matrix A needs to be computed at each
intermediate stage. A simple optimization is to use the matrix at the mid-point tk+tk+1

2
for all stages. The method will still be of second-order. In our implementation, this op-
timization increased the performance by a factor three and did not impact the accuracy
of the method.
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ALTERNATING DIRECTION IMPLICIT DISCRETIZATIONS

A different approach to speed up the solution of multi-dimensional PDEs consists in
splitting the systems across each dimension of the problem. Let us explore a few alterna-
tive direction implicit (ADI) schemes that are second-order in time. The first ADI scheme
[168] does not consider any mixed-derivative terms in the PDE. In order to achieve second-
order accuracy in time, with mixed-derivatives terms, Craig and Sneyd [40] derive an
iterative scheme. In’t Hout and Welfert [105] propose an extension of the Craig-Sneyd
scheme, with one additional correction stage, so that the second-order convergence
stays valid for any choice of the internal parameter θ. Hundsdorfer and Verwer [94, 195]
describe a different second-order discretization scheme with free parameter θ. In’t Hout
and Foulon [103] have however observed it to have a slightly inferior convergence when
applied to the Heston PDE. We have noticed the same on the Heston-CLV PDE. Fur-
thermore, we noticed a worse damping than with the modified Craig-Sneyd scheme, us-

ing the recommended parameters for each scheme, respectively θ = 1
2 +

p
3

6 and θ = 1
3 .

As the two schemes have essentially the same computational cost, we will not consider
the Hundsdorfer-Verwer scheme further. Instead, we will consider the more recent two-
steps BDF2-type scheme called SC2B, which belongs to the class of stabilizing correction
multistep methods developed by [95].

Modified Craig-Sneyd. Applied to PDE (8.46), we obtain

u0
i , j −ui , j (tk ) =∆tkLi , j

(
tk ,u(s(η), v(ξ), tk )

)
, (8.70a)

u1
i , j −u0

i , j = θ∆tk

[
L

η

i , j

(
tk+1,u1)−L

η

i , j (tk ,u(s, v, tk ))
]

, (8.70b)

u2
i , j −u1

i , j = θ∆tk

[
L

ξ
i , j

(
tk+1,u2)−L

ξ
i , j (tk ,u(s, v, tk ))

]
, (8.70c)

u3
i , j −u0

i , j = θ∆tk

[
L

η,ξ
i , j

(
tk+1,u2)−L

η,ξ
i , j (tk ,u(s, v, tk ))

]
, (8.70d)

u4
i , j −u3

i , j =
(

1

2
−θ

)
∆tk

[
Li , j

(
tk+1,u2)−Li , j (tk ,u(s, v, tk ))

]
, (8.70e)

u5
i , j −u4

i , j = θ∆tk

[
L

η

i , j

(
tk+1,u5)−L

η

i , j (tk ,u(s, v, tk ))
]

, (8.70f)

ui , j (tk+1)−u5
i , j = θ∆tk

[
L

ξ
i , j (tk+1,u(s, v, tk+1))−L

ξ
i , j (tk ,u(s, v, tk ))

]
, (8.70g)

where um
i , j = um(s(ηi ), v(ξ j ), tk ) represents the option price at an intermediate stage m.

The first, fourth and fifth stages are explicit. The four other stages involve the solution
of two tridiagonal matrices, one for each dimension. The first three stages correspond
to the Douglas-Rachford scheme. The last four stages are effectively corrector stages on
the Douglas-Rachford scheme. The standard Craig-Sneyd scheme corresponds to the
specific choice θ = 1

2 , which makes the fifth stage vanish. Compared to the standard
Craig-Sneyd scheme, the additional stage of the modified scheme (Equation 8.70e) is
explicit, and thus does not increase significantly the overall computational effort.

According to [104], the scheme is stable for θ ≥ max
(

1
4 , |ρ|+1

6

)
. In our numerical ex-

periments, will make the choice θ = 1
3 so that stability is guaranteed for any choice of the

correlation ρ.
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The scheme may also be written with the operators L η and L ξ reversed. The choice
does not really impact the accuracy in practice. With linear boundary conditions, fin-
ishing with L η may be more appropriate, since the operator L ξ does not capture the
linear boundary in S.

Stabilizing correction multistep methods SC2A and SC2B. Applied to PDE (8.46), we
obtain

u0
i , j −a0ui , j (tk )−a1ui , j (tk−1) =

1∑
m=0

∆tk−m b̂mL
η,ξ
i , j

(
tk−m ,u(s(η), v(ξ), tk−m)

)
+

1∑
m=0

∆tk−m b̆m

[
L

η

i , j +L
ξ
i , j

](
tk−m ,u(s(η), v(ξ), tk−m)

)
,

(8.71a)

u1
i , j −u0

i , j = θ∆tk

[
L

η

i , j

(
tk+1,u1)−L

η

i , j (tk ,u(s, v, tk ))
]

, (8.71b)

ui , j (tk+1)−u1
i , j = θ∆tk

[
L

ξ
i , j (tk+1,u(s, v, tk+1))−L

ξ
i , j (tk ,u(s, v, tk ))

]
,

(8.71c)

with coefficients (a0, a1) = ( 4
3 ,− 1

3

)
, (b̂0, b̂1) = ( 4

3 ,− 2
3

)
and (b̆0, b̆1) = ( 4

3 −θ,− 2
3 +θ

)
. As

recommended in [95], we choose the parameter θ = 2
3 , which constitutes a reasonable

compromise between stability properties and error constants. This set of coefficients
defines the BDF2 type scheme SC2B. The first stage is explicit, and involves u at the times
tk and tk−1. The two other stages are implicit and correspond to the two implicit stages
of the Douglas-Rachford scheme, with a specific choice of θ.

The two-steps Adams-type scheme SC2A corresponds to (a0, a1) = (1,0), (b̂0, b̂1) =( 3
2 ,− 1

2

)
and (b̆0, b̆1) = ( 3

2 −θ,− 1
2 +θ

)
, with θ = 3

4 .
In order to start the multistep method, we use the Douglas-Rachford scheme for the

first time step, with θ = 1. Although the latter scheme is only first-order in time, we
found it to lead to more accurate results than the Craig-Sneyd or modified Craig-Sneyd
schemes applied to the first time step only.

DAMPING AND SMOOTHING.
It is well-known that the Crank-Nicolson scheme leads to spurious oscillations in the
solution in the presence of non-smooth initial conditions [73]. Most financial derivative
contracts define non-smooth initial conditions. A remedy consists in replacing, at each
time of non-smooth condition, the first time step by two half-steps of the implicit Euler
scheme, as first proposed by Rannacher [173]. If, in the Craig-Sneyd scheme, we consider

the case L
ξ
i , j = L

η,ξ
i , j = 0, we obtain the Crank-Nicolson scheme. We may thus expect

the Craig-Sneyd scheme to suffer from the same oscillation deficiencies as the Crank-
Nicolson scheme.

The damping procedure described above requires to solve twice a large sparse ma-
trix. While this may be an acceptable trade-off, a less computationally intensive ap-
proach is to split the Euler scheme across dimensions. Haentjens and In’t Hout [81]



8

174 8. NUMERICAL TECHNIQUES FOR THE HESTON COLLOCATING VOLATILITY MODEL

suggest to use the Douglas-Rachford ADI scheme (Equations 8.70a, 8.70b, 8.70c) with pa-
rameter θ = 1. As a note of caution, the latter scheme does not always have strong damp-
ing properties, as evidenced on a system of two advection-reaction equations in [97,
p. 378]. On the Heston-CLV PDE, we observed significant damping with the Douglas-
Rachford ADI scheme, albeit slightly smaller than with the implicit Euler scheme.

In order to illustrate the importance of smoothing, we consider the Heston-CLV model,
calibrated to SX5E options as of February 26, 2016, as described in Section (8.4.1). The
corresponding Heston parameters are V0 = 0.133, κ = 0.350, θ = 0.321, σ = 1.388, ρ =
−0.630.

We then compute the gamma in the PDE coordinate s for a vanilla put option of

maturity T = 0.5, that is ∂2u
∂s2 , at the nodes of the finite difference grid, for v =V0. In order

to show clearly the oscillations that may appear in the gamma, we use a large number
of steps M = 2048 for the asset dimension η, L = 32 steps for the variance dimension
ξ, along with a relatively small number of time steps N = 16. The observations would
not change with a higher L. Figure 8.5.4 shows large oscillations in the gamma, when
the Craig-Sneyd scheme is used. Two half-steps of the implicit Euler scheme are enough
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Figure 8.5.4: Gamma from various finite difference schemes. CS stand for the Craig-Sneyd scheme, MCS for
the modified Craig-Sneyd scheme, SC2B for the stabilizing correction multistep method of BDF2-type, LS for

the Lawson-Swayne scheme.

to completely remove the oscillations. If, instead of the implicit Euler scheme, we use
the Douglas-Rachford scheme with θ = 1, a small oscillation remains around s = 1. The
modified Craig-Sneyd scheme results in no visible oscillation at all. Oscillations appear
if we reduce the number of time steps, in our case with N = 8. With the Lawson-Swayne
scheme, even with N = 8, oscillations are barely visible due to its L-stability property.
Regarding the two-step methods, the SC2A scheme leads to a tiny oscillation around
S = 1 with N = 16, which disappears for N ≥ 20. The SC2B scheme has stronger damping
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properties, and no oscillations were visible for N = 8.

We noticed that it was key to split first in the variance dimension v (or ξ) and then
in the asset dimension s (or η). If we do the opposite, not only is the gamma inaccurate
very close to the lower boundary smin, but some oscillations are still present in the Craig-
Sneyd scheme solution, even after applying the damping steps.

In Figure 8.5.5 we plot the gamma obtained by the explicit schemes. The ADE scheme
explodes for N ≤ 256, and we thus used a much larger number of time steps than with the
other schemes to look for oscillations. Oscillations are visible for N = 512 and disappear
for N ≥ 1024. The gamma still has a large error for N = 1024, as its peak is noticeably
higher. The gamma obtained by the RKL2 scheme exhibits oscillations for N = 16, which
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Figure 8.5.5: Gamma from the ADE and RKL2 explicit finite difference schemes. For the ADE scheme the
number of time steps is N = 1024 (solid line), and N = 512 (dashed line). For the RKL2 scheme, N = 64 (solid

line) and N = 16 (dashed line).

disappear for N = 64. The corresponding number of stages is respectively γ= 1113 and
γ = 557. These oscillations are likely related to eigenvalues with a large real part, which
push the scheme towards its instability region. Indeed, we noticed that the scheme may
diverge for an option with barrier B = 0.9 and M = 4096 steps in the asset dimension, that
is, a very high density of points. The stability region becomes narrower as the number of
stages increases.

The issue is more pronounced in the Heston-CLV model than in the pure Heston
model. In the Heston model, the RKL2 scheme stayed stable with Heston parameters
κ = 3,θ = 0.12,σ = 0.04,ρ = 0.6,r = 0.01, q = 0.04,T = 1, which corresponds to case 2 of
[103]. In the latter paper, the authors observe that the Runge-Kutta-Chebyshev scheme
diverges for large time step sizes because of the high advection resulting from those pa-
rameters. We however don’t have a clear4 explanation as to why the RKL2 scheme ap-
pears more stable.

An additional technique to improve the accuracy of the result is to smooth out the
initial condition. A common practice [73, 188] is to use the average value of the initial

4It is found in [154, Figure 11], that the region of stability of the RKL2 scheme is wider along the imaginary axis
than the region of the Runge-Kutta-Chebyshev scheme with a damping factor ε = 2

13 . Foulon and In’t Hout
however uses a much larger ε = 10 to increase the width of the region of stability because of the relatively
high advection present in the Heston PDE. The number of internal stages will increase in accordance with the
increased damping factor. With such a large parameter, the region of stability was similar with both schemes.
The geometry of the region of stability thus does not offer a conclusive explanation.
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condition h at the node of index i closest to the strike level (location of the discontinuity):

h̄(si ) = 2

si+1 − si−1

∫ si +si+1
2

si−1+si
2

h(s)d s , si ≤ K < si+1 , (8.72)

h̄ is then the effective initial condition of the finite difference method.
Kreiss et al. [121] propose a more general smoothing, that guarantees the preserva-

tion of second-order accuracy in the general case of parabolic equations. On our prob-
lem, the Kreiss smoothing reads

h̄(si ) = 1

si+1 − si

∫ si+1

si

(
1+ s − si

si+1 − si

)
h(s)d s

+ 1

si − si−1

∫ si

si−1

(
1− si − s

si − si−1

)
h(s)d s , (8.73)

for i verifying si−1 ≤ K < si+1. For a call or a put option of strike K , two points are
smoothed.

8.5.5. DELTA HEDGING AND THE PDE DELTA

In the previous section, we plotted the gamma ∂2u
∂s2 (s) directly obtained from the finite

difference grid points. While it is useful to show evidence of oscillations due to a finite
difference scheme, it should not be used for trading purposes. Indeed, the raw delta
(or gamma) at si , is computed from the price at the points (si−1, si , si+1), but the first
moment (or equivalently the forward price) is only preserved at si .

The issue is obvious in Figure 8.5.6a, where we plot the raw delta of a short forward
contract. We would expect the delta to be -1. Instead, it oscillates between -0.2 and -0.9
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(a) Short forward contract.
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(b) Vanilla put option.

Figure 8.5.6: Raw delta and adjusted delta in the Heston-CLV model.

(the end points correspond to the slope of the collocation function g at the boundaries).
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In reality, the collocation function g needs to be adjusted for each spot price si consid-
ered in the plot, so that the first moment is preserved, for each point. In Figures 8.5.6a
and 8.5.6b, we recompute the first B-spline coefficient α0, which is equivalent to a par-
allel translation of the collocation function (see Section 8.3.2), and we solve the resulting
PDE using the modified Craig-Sneyd scheme with Euler damping steps, for each point of
the plot. Another approach would be to fully recalibrate the function against each mar-
ket option quote, taking the Black-Scholes volatility of each option constant, in a similar
fashion as practitioners do for the local volatility model.

With the proposed adjustment, the delta of a short forward contract becomes -1, by
construction, and the delta of a vanilla put option moves monotonically from -1 to 0, as
would be expected.

8.5.6. NUMERICAL EXAMPLES

In order to measure the error due to the discretization in time for each finite difference
scheme, we compute the error in the price obtained with various numbers of time steps
towards a reference price obtained with a second-order Runge-Kutta scheme with 40000
time steps, using M = L = 128 steps for the discretization in s and v . As the asset and
variance dimensions are kept constant, we measure here only the error related to the
discretization in time.

We apply two half-steps of implicit Euler for the Craig-Sneyd and modified Craig-
Sneyd schemes. Without those, the convergence of the initial steps is erratic because of
spurious oscillations introduced by the discontinuity in the terminal condition deriva-
tives.

In the figures and tables, we will use the abbreviations ADE for Alternating direc-
tion explicit, CS for Craig-Sneyd, MCS for modified Craig-Sneyd, LS for Lawson-Swayne,
RKL2 for Runge-Kutta-Legendre of order-2, SC2B for stabilizing correction multistep
method of BDF2-type.

In Figure 8.5.7, we plot the error in the price of a barrier option of level 0.9 and 6-
months maturity, for each finite difference scheme against the number of time steps,
when the Heston-CLV model is calibrated to SX5E options of as of February 26, 2016. At
maturity, the collocation function g is the quadratic spline whose coefficients are de-
tailed in Table 8.5.1, with a linear extrapolation of left slope sL = 0.83293 and right slope
sR = 0.26688. Before maturity, g is the linear interpolation of the identity function and
the quadratic spline at maturity. On this data, the maximum diagonal element of the
operator matrix A (defined by Equation 8.66) is around 74019. This means that the ex-
plicit Euler finite difference scheme will be stable theoretically for N ≥ 36908 to price
options of maturity T = 0.49863 years. Second-order convergence corresponds to a lin-
ear regression slope of -2 on the log-log plot of the temporal error against the number of
time steps. On this example, the modified Craig-Sneyd and SC2B schemes have a slightly
lower order of convergence of around 1.5. The other schemes are close to second-order,
except for RKL2 which is above second-order here. Although the ADE scheme exhibits a
second-order convergence, the absolute error in the price of the barrier option is higher
by a factor of thousand than with the other schemes, for a given number of time steps.
Consequently, we will not consider the ADE scheme further.

In Figure 8.5.8, we plot the measured order of convergence for a range of barrier lev-
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Table 8.5.1: Coefficients of the quadratic spline for the collocation function
g (x) = gi (x) = ai +bi (x −xi )+ ci (x −xi )2 +di (x −xi )3 for x ∈ [xi , xi+1] at maturity T = 0.49863, rounded to
the fifth decimal for the Heston parameters κ= 0.35, θ = 0.321, σ= 1.388, ρ =−0.63 and an initial variance

v0 = 0.133.

x j a j b j c j

0.51712 0.62668 0.83293 -0.38181
0.88945 0.88387 0.54862 3.20097
0.97218 0.95117 1.07831 0.83772
1.01355 0.99722 1.14762 0.31401
1.05492 1.04523 1.17360 -0.31901
1.09629 1.09324 1.14721 -1.38348
1.17903 1.17868 0.91827 -1.96822
1.34451 1.27674 N/A N/A

els. The order of the RKL2 scheme is consistently above 2.0. The order of the modified
Craig-Sneyd scheme is the lowest: 1.6 on average (Table 8.5.2). The order of the other
schemes is very close to 2.0.

Table 8.5.2: Order of temporal convergence for vanilla and barrier options. For barrier options, we compute
the mean of the measured log-log regression slope, for a range of barrier levels between 0.5 and 0.9.

Scheme Vanilla Barrier (mean)

CS 1.9 1.9
MCS 2.0 1.6
LS 2.0 2.0
RKL2 2.1 2.2
SC2B 2.0 1.8

In terms of computational time, the Craig-Sneyd and modified Craig-Sneyd schemes
are very similar, and are five times faster than the Lawson-Swayne scheme (Table 8.5.3),
where we used a BICGSTAB solver with incomplete-LU preconditioning for the Lawson-
Swayne scheme, and a specialized tridiagonal solver for the ADI schemes. The SC2B
scheme is twice as fast as the Craig-Sneyd scheme, for a four times larger error. For a
given accuracy, the two schemes perform thus similarly. The timing stems from a Julia
language implementation, running Julia 1.1 on an AMD Ryzen 1700 CPU.

The performance of a scheme is strongly dependent on the grid geometry. The choice
M = L = 128 is relatively favorable to the RKL2 scheme. If, on the contrary, we use a very
fine grid in the asset dimension, for example M = 1024, the stability condition of RKL2
scheme implies the use of many more stages, especially when the number of time steps
N is relatively small. Even if the RKL2 scheme would still be an order of magnitude faster
than a second-order explicit scheme, it would be less competitive against ADI schemes.
Similarly, a higher concentration of points (through a smaller λS in Equation (8.53)) re-
quires more stages in the RKL2 scheme, as the maximum eigenvalue is then larger. Note
that by choosing λS = K

4 , the points are highly concentrated, and thus our example is not
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Figure 8.5.7: Convergence of the barrier option price with a barrier level at 0.9, for different finite difference
discretization schemes applied to the Heston CLV PDE when the Heston-CLV model is calibrated to SX5E

options of as of February 26, 2016.

so favorable to the RKL2 scheme after all. On the other side, when many time steps are
used, then the RKL2 scheme becomes even more efficient since less stages are required.

In Table 8.5.4, we rank the finite difference methods according to a few criteria:

• stability: will the scheme diverge in some cases? Does it damp discontinuities
well?

• accuracy: how is the accuracy for a moderate number of time steps?

• performance: how slow is it to compute on a standard grid? on a more concen-
trated grid?

• ease of implementation: how difficult is it to code? ADI schemes are more involved
than direct schemes. Two-steps schemes usually require an additional restart pro-
cedure after each discontinuity in time, for example, in the case of daily or weekly
monitored barrier options.

Overall, we find that the modified Craig-Sneyd scheme strikes a good balance be-
tween stability, good damping properties, accuracy and computational cost. The SC2B
scheme is also attractive, but, it requires a restart procedure at each payoff discontinu-
ity in time. In a similar fashion, the Craig-Sneyd scheme will also require new damping
steps at each payoff discontinuity. In terms of ease of implementation, the RKL2 scheme
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Figure 8.5.8: Measured order of convergence for different barrier levels, with different finite difference
discretization schemes applied to the Heston CLV PDE when the Heston-CLV model is calibrated to SX5E

options of as of February 26, 2016.

Table 8.5.3: Root mean square error in the price of a barrier option, along with the computational time, using
a fixed grid size L = 128, M = 128 and different number of time steps, for a barrier B = 0.8. The reference is the

price obtained by the second-order Runge-Kutta scheme using N = 40000, which takes 41s.

Scheme 64 time steps 256 time steps
Error Time (s) Error Time (s)

LS 3.2 ·10−7 2.42 2.0 ·10−8 8.60
CS with damping 8.7 ·10−7 0.45 5.7 ·10−8 1.41
MCS 8.9 ·10−7 0.30 1.1 ·10−7 1.22
MCS with damping 1.3 ·10−6 0.45 1.2 ·10−7 1.43
RKL2 2.0 ·10−6 0.25 1.1 ·10−7 0.56
SC2B 3.9 ·10−6 0.17 4.3 ·10−7 0.69
ADE 1.5 ·10−3 0.55 1.3 ·10−4 2.17

Table 8.5.4: Adequacy of each finite difference scheme, when applied to the Heston-CLV PDE.

Scheme Stability Accuracy Performance Ease-of-implementation

CS with damping ++ + + - -
LS ++ ++ - - ++
MCS + + ++ -
RKL2 - + + ++
SC2B ++ + ++ - -
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is particularly attractive. It may easily be applied to higher-order space discretizations
while preserving a very good performance, since it is fully explicit.

8.6. CONCLUSION
In this chapter, we have focused on different important aspects of the so-called Heston-
CLV model. We have presented a fast and flexible calibration of the Heston-CLV model,
through a specific B-spline parameterization, and a custom adaptive Filon quadrature.
A minor modification of the DVSS2 scheme of Lenkšas and Mackevičius [135] allows the
pricing of exotic options under Monte-Carlo with proven second-order convergence. We
noticed that the non-martingality, inherent to the class of Markov functional models, is
very mild when the model is calibrated to market vanilla option prices. The drift is much
smaller than with one-dimensional Markov functional models.

Finally, we derived the PDE followed by the price of financial derivatives under the
Heston-CLV model, in terms of the asset price and variance variables. In those coordi-
nates, barrier options (and other path-dependent options) may be priced by alternating
direction implicit methods (ADI), while preserving their order of convergence.

If we consider only stability and ease-of-implementation, the Lawson-Swayne scheme
is particularly relevant, because of its L-stability. But this is at the cost of performance.
If we add performance as an important criterion, the modified Craig-Sneyd ADI scheme
becomes the most relevant scheme for the Heston-CLV PDE. Multisteps ADI schemes
have the advantage of possessing stronger damping properties, but a restart procedure
is necessary as soon as there is a discontinuity in time in the financial derivative payoff.
If there are many discontinuities, such as in the case of a daily monitored barrier option,
the restart procedure may affect the overall order of convergence of the scheme. We leave
for further research the investigation of which restart procedure is the most appropriate.

The second-order Runge-Kutta-Legendre explicit scheme is an interesting simpler
alternative that performs well, sometimes better than ADI methods, depending on the
finite difference grid geometry. Furthermore, being explicit, higher-order space dis-
cretizations may easily be handled. In contrast, ADI methods will require a more com-
plex, slower, sparse matrix solver. In cases where advection is particularly large, the
Runge-Kutta-Legendre scheme may diverge as its stability region is bounded on the
imaginary axis.

While we studied the Heston-CLV model in particular, our analysis of the Monte-
Carlo schemes and the finite difference schemes is also relevant to stochastic local volatil-
ity models, which also involve a two-factor SDE (respectively a PDE) with time and asset
dependent coefficients. In the context of a stochastic-local volatility model, the Dupire
local volatility corresponding to a term-structure of collocation functions with an appro-
priate interpolation in time can be computed exactly, without any numerical discretiza-
tion error, as shown in Appendix 8.C.



APPENDIX

8.A. THE HESTON CHARACTERISTIC FUNCTION
In order to avoid complex discontinuities, we rely on Gatheral’s formulation for the nor-
malized Heston characteristic function [144]:

ψ(z) = e
v0
σ2

1−e−D(z)T
1−Ge−D(z)T (κ−iρσz−D(z))+ κθ

σ2

(
(κ−iρσz−D(z))T−2ln( 1−Ge−D(z)T

1−G(z) )
)

(8.74)

with

D(z) =
√

(κ− iρσz)2 + (z2 + iz)σ2 , (8.75)

G(z) = κ− iρσz −D(z)

κ− iρσz +D(z)
. (8.76)

The standard characteristic function is E[e iz ln(F (T,T ))] = e iz ln(F (0,T ))ψ(z).

8.B. BACHELIER MODEL WITH ABSORPTION
In the classical Bachelier (or normal) model, the asset F (t ,T ) follows the stochastic dif-
ferential equation

dF (t ) =σdW (t ) (8.77)

where W is a Brownian motion and the initial value is F (0,T ) = f . The asset has a non-
zero probability of being negative. In many applications, it is important that the as-
set stays above a threshold. For example, stocks must be positive, or interest rates are
bounded below by a negative rate. The non-negativity becomes particularly important
when the asset is to be used as a numeraire.

In the Bachelier model with absorption, once the asset reaches the threshold level L,
it sticks there. This model has been previously explored in [107], but many of the equa-
tions in his paper contains errors. Absorption is relatively common in many stochastic
models, such as the constant elasticity of variance (CEV) with an exponent β ∈ (

0, 1
2

)
,

or the related SABR model [84]. The evolution of the asset may also be modelized as a
partial differential equation (PDE). The probability density p follows the Fokker-Planck
PDE:

∂p

∂t
(F, t ) = 1

2
σ2 ∂

2p

∂F 2 (F, t ) , (8.78)

with initial condition p(F,0) = δ(F − f ), for F > L and boundary p(L, t ) = 0.
We use the method of reflection to solve this equation [113, p. 220]: we continue

p(S) to the real line and define p̄ the solution of Equation (8.78) on the real line with
initial condition p̄(F,0) = δ(F − f )−δ(F + f −2L). p̄ satisfies the initial condition p̄(F,0) =
δ(F − f ), for F > L. It also satisfies p̄(L, t ) = 0 since p̄(2L−F )+ p̄(F ) is a bounded solution
of Equation (8.78) with initial value 0 and hence stays at 0 for all t by the uniqueness
theorem.

182



8.C. LOCAL VOLATILITY FOR A TERM-STRUCTURE OF COLLOCATED SMILES

8

183

By linearity, the solution is

p(F, t ) =φ
(

F − f

σ
p

t

)
−φ

(
F + f −2L

σ
p

t

)
, (8.79)

where φ is the normal probability density function, φ(x) = 1p
2π

e−
1
2 x2

.

The conservation of the probability over [L,+∞) means that the probability of ab-
sorption Pa at F = L is:

Pa(t ) = 1−
∫ ∞

L
φ

(
F − f

σ
p

t

)
−φ

(
F + f −2L

σ
p

t

)
dF

= 1−
[

1−Φ
(

L− f

σ
p

t

)
−1+Φ

(
f −L

σ
p

t

)]
= 2Φ

(
L− f

σ
p

t

)
. (8.80)

Undiscounted vanilla option prices can then be computed through the Breeden-
Litzenberger formula [28] for K > L,

Vcall(K ,T ) =
∫ ∞

K
(F −K )p(T,F )dF , (8.81)

Vput(K ,T ) = (K −L)Pa(T )+
∫ K

L
(K −F )p(T,F )dF . (8.82)

We obtain

Vcall(K ,T ) =σ
p

Tφ

(
f −K

σ
p

T

)
+ ( f −K )Φ

(
f −K

σ
p

T

)
−σ

p
Tφ

(
2L− f −K

σ
p

T

)
− (2L− f −K )Φ

(
2L− f −K

σ
p

T

)
, (8.83)

and

Vput(K ,T ) =σ
p

Tφ

(
K − f

σ
p

T

)
+ (K − f )Φ

(
K − f

σ
p

T

)
−σ

p
Tφ

(
K + f −2L

σ
p

T

)
− (2L− f −K )Φ

(
2L− f −K

σ
p

T

)
. (8.84)

In particular, the undiscounted prices obey the standard put-call parity relationship
Vcall −Vput = F −K and the martingale property is preserved in this model.

8.C. LOCAL VOLATILITY FOR A TERM-STRUCTURE OF COLLO-
CATED SMILES

The discrete version of the calendar spread no-arbitrage condition reads [71]

Vcall (K2,T2)

K2
≥ Vcall (K1,T1)

K1
, (8.85)
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for T2 ≥ T1, where Vcall is the undiscounted call option price and the strikes K2,K1 are
chosen so that the forward moneyness is constant:

K1

F (0,T1)
= K2

F (0,T2)
.

The relation can be derived from Jensen inequality in the absence of cash dividends (pro-
portional dividends or a continuous dividends yield are acceptable), knowing that the
process S(t )

F (0,t ) is a martingale. This discrete arbitrage-free inequality can be used to de-
fine a continuous arbitrage-free interpolation in time assuming that the inequality holds
at two expiries t1 and t2. For example, we can define the prices at time t1 < t < t2 by

Vcall (K , t ) = t − t1

t2 − t1

F (0, t )

F (0, t2)
Vcall

(
K F (0, t2)

F (0, t )
, t2

)
+ t2 − t

t2 − t1

F (0, t )

F (0, t1)
Vcall

(
K F (0, t1)

F (0, t )
, t1

)
.

(8.86)

Dupire [55] expresses the local volatility σL as

σ2
L(K ,T ) = 2

∂V 0
call
∂T

K 2 ∂
2V 0

call
∂K 2

, (8.87)

where V 0
call(K ,T ) is the undiscounted call option price on a fixed forward F (0,T ). With

the collocation method, the Dupire local volatility has a closed form expression with the
above interpolation of Call prices in time.

∂V 0
call
∂T

(K , t ) = K

t2 − t1

(
Vcall(K2, t2)

K2
− Vcall(K1, t1)

K1

)
(8.88)

for K
F (0,t ) = K1

F (0,T1) = K2
F (0,T2) .

∂2V 0
call

∂K 2 (K , t ) = t − t1

t2 − t1

K2

K

∂2Vcall
∂K 2 (K2, t2)+ t2 − t

t2 − t1

K1

K

∂2Vcall
∂K 2 (K1, t1) . (8.89)

When the call option prices are determined by the collocation method with a func-
tion gl for the maturity Tl , we have

∂Vcall
∂K

(Ki ) =−Φ(−cKi ) ,
∂2Vcall
∂K 2 (Ki ) = φ(cKi )

gi
′(cKi )

, (8.90)

with cKi = gi
−1 (Ki ). For t1 < t < t2, the Dupire equation becomes

σL(K , t ) = 2K 2
Vcall(K2,t2)

K2
− Vcall(K1,t1)

K1

(t − t1)K2
φ(cK2 )

g2
′(cK2 ) + (t2 − t )K1

φ(cK1 )
g1

′(cK1 )

. (8.91)

In particular, there will be no numerical discretization error when computing Dupire
local volatility σL .



9
CONCLUSIONS AND OUTLOOK

9.1. CONCLUSIONS
In this thesis, we solved one-dimensional and two-dimensional, linear and non-linear
PDEs arising in finance with stable and efficient finite difference methods. We also pro-
posed a new Fourier method to price European options under stochastic volatility mod-
els possessing a known characteristic function, and a variation of a second-order Monte-
Carlo method to price exotic options under the Heston stochastic volatility model and
its associated models, such as the Heston collocated volatility model and the Heston
stochastic local volatility model.

In Chapter 2, we have shown how the TR-BDF2 scheme can be applied, firstly to the
non-linear PDE corresponding to the pricing of American options under the (extended)
Black-Scholes model, and secondly to the HJB PDE arising from the uncertain volatil-
ity model. The scheme does not suffer from the Crank-Nicolson oscillations problem,
particularly visible in the option greeks. It is more resilient to the grid geometry and
to the underlying PDE in general. A common fix for the Crank-Nicolson scheme is the
Rannacher smoothing steps. The latter allow to damp the oscillations significantly for
European options, but not always for American options.

Chapter 3 develops an analysis for the positivity of a finite difference scheme on the
simple problem of a diffusion equation with constant volatility and a Dirac delta initial
condition. Our analysis is similar to a von Neumann stability analysis. We are however
not interested in the amplification factor relating the L2-norm of the solution at subse-
quent time steps, but we focus on the discrete probability density values at the Dirac
location, and whether they stay positive, or whether they oscillate. It is found that the
BDF2, Lawson-Morris and BDF1 Richardson extrapolation schemes preserve the posi-
tivity of the density at the spike at every time step, for any time step size. The Lawson-
Swayne and TR-BDF2 schemes preserve the positivity from the second time step on-
wards, for any time step size. Finally, the Rannacher smoothing also preserves positivity
with an initialization of two half time steps of BDF1, but requires four half time steps of
BDF1 to overcome the oscillations at the spike. This is particularly relevant in Chapter 4,
where we apply a variety of finite difference schemes to the arbitrage-free SABR PDE for
the marginal probability density. We find that it is possible to accurately compute option
prices under the arbitrage-free SABR model with very few time steps, even for long matu-
rities. The Rannacher smoothing steps are a particularly simple way to improve accuracy
significantly of the Crank-Nicolson scheme on this problem. However, as the number of
time steps decreases, the lower convergence of the Euler smoothing steps becomes more
apparent. The simpler BDF2 scheme is more efficient on this problem. Other less known

185
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schemes such as TR-BDF2 or Lawson-Swayne further increase the efficiency. Thus, with
a careful choice of finite difference scheme, the arbitrage-free PDE of Hagan et al. [84]
is particularly competitive to the one-step finite difference approach of Andreasen and
Huge [13].

In Chapters 5 and 6, we apply the stochastic collocation technique directly to market
options quotes in order to produce a smooth and accurate interpolation and extrapola-
tion of the option prices, even on challenging equity or equity index option examples.
Specific parameterizations, which ensure the monotonicity of the collocation polyno-
mial or the collocation B-spline, as well as the conservation of the zero-th and first mo-
ments of the risk-neutral distribution transparently during the optimization, guarantee
the absence of arbitrage. This results in closed-form formula for CMS convexity adjust-
ments, which can thus be efficiently calibrated jointly with interest rate swaptions. Simi-
larly, an exponential B-spline representation results in a simple analytical expression for
the price of a variance swap. Furthermore, the latter price being a linear combination of
the B-spline parameters, the market prices of variance swaps may be integrated in the
calibration of the B-spline at a minimal additional computational cost in order to ob-
tain a better representation of the wings (or tails) of the implied volatility, to which the
variance swap is particularly sensitive. We have also presented a simple non-parametric
technique to de-arbitrage a set of option prices, which may be used independently of the
B-spline collocation method.

Chapter 7 describes a new adaptive Filon quadrature to price options under the He-
ston model. It has better performance than popular alternatives and is particularly in-
teresting in the context of model calibration where many options of different strike but
same maturity are priced. Being adaptive, it does not suffer from having to choose a non-
obvious parameter value, typically the number of points of non-adaptive quadratures, or
the truncation level for the Cos method.

In chapter 8, we apply the B-spline collocation technique of chapter 6 along with the
adaptive Filon quadrature of chapter 7 to calibrate the Heston collocated local volatility
model of Grzelak [77] to market option prices. We propose a modification of the DVSS2
scheme of Lenkšas and Mackevičius [135] in order to more accurately price forward
starting options, and put in evidence the second-order convergence of the scheme, when
applied to the Heston-CLV model. Finally, we apply several finite difference schemes to
the corresponding Heston-CLV PDE, with a focus on pricing barrier options. If we con-
sider only stability and ease-of-implementation, the Lawson-Swayne scheme is found to
be particularly relevant, because of its L-stability. But this is at the cost of performance.
If we add performance as a criterion, the modified Craig-Sneyd ADI scheme becomes
the most relevant scheme for the Heston-CLV PDE. Multi-step ADI schemes have the
advantage of possessing stronger damping properties, but a restart procedure is neces-
sary as soon as there is a discontinuity in time in the financial derivative payoff. If there
are many discontinuities, such as in the case of a daily monitored barrier option, the
restart procedure may affect the overall order of convergence of the scheme. The second-
order Runge-Kutta-Legendre explicit scheme is an interesting simpler alternative that
performs well, sometimes better than ADI methods, depending on the finite difference
grid geometry. Furthermore, being explicit, higher-order space discretizations may eas-
ily be handled. In contrast, ADI methods will require a more complex, slower, sparse
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matrix solver. In cases where advection is particularly large, the Runge-Kutta-Legendre
scheme may diverge as its stability region is bounded on the imaginary axis.

Regarding the Heston-CLV model, we notice that the price of a contract on a future
performance is reasonably in line with the theoretical price, despite the lack of martin-
gality of the model, when the Heston driver process is calibrated to the market vanilla
options. We put in evidence that the delta and gamma greeks should however not be
computed directly from the finite difference grid. While we propose a fix to obtain mean-
ingful greeks, this makes the interpretation of the solution of the Heston-CLV PDE for
a given exotic option not so obvious. Furthermore, we find that the numerical tech-
niques are not necessarily much simpler than those of the more standard stochastic lo-
cal volatility models: there is the problem of absorption to eventually deal with in the
Monte-Carlo simulation as well as in the B-spline calibration and the PDE is of similar
complexity. In fact, while we studied the Heston-CLV model in particular, our analysis of
the Monte-Carlo schemes and the finite difference schemes is relevant to stochastic local
volatility models, which also involve a two-factor SDE (respectively a two-dimensional
PDE) with time- and asset-dependent coefficients. In the context of a stochastic-local
volatility model, the stochastic collocation technique may still be used to capture the
terminal distribution at each market option maturity in an arbitrage-free manner, as we
show that the Dupire local volatility corresponding to a term-structure of collocation
functions with an appropriate interpolation in time can be computed exactly, without
any numerical discretization error.

9.2. OUTLOOK
Our analysis of the TR-BDF2 scheme in the context of American option pricing may be
enhanced with a proof of an L2-error estimate for the one-dimensional diffusion with an
obstacle term, in a similar fashion as Bokanowski and Debrabant [26] do for the BDF2
scheme.

Our analysis of the positivity of a finite difference scheme on the simple problem of a
diffusion with constant volatility and Dirac initial condition may be generalized to cover
all points of the finite difference grid, and not only the line corresponding to the Dirac
location. Appendices 3.A and 3.B may serve as a starting point.

In [60], Filipovic et al. study the application of polynomial processes for energy
prices. The collocated volatility model with a polynomial collocation function is similar
to the application of a polynomial map onto the driver process. It would be interesting
to formalize the link between polynomial processes and the collocated volatility model,
as it may offer new applications for the collocated volatility model and new insights into
polynomial processes.

Finally, the application of multi-step ADI methods of Hundsdorfer and In’t Hout [95]
for the pricing of general exotic derivatives, which may have discontinuities in time,
would benefit from an investigation of which restart procedure is the most appropriate
to keep the second-order convergence in practice.
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