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Abstract

Wind energy is a rapidly growing renewable energy source and a dominant driver in the energy transition.

Reducing costs associated with wind energy increases its competitiveness and enables wider adoption

of this renewable energy source. Notably, for onshore wind farms, operation and maintenance (O&M)

accounts for approximately 25% of the lifetime costs, while for offshore farms, this number reaches up to

35%. This emphasizes the need for a condition-based maintenance (CBM) strategy in order to reduce

O&M costs. To implement CBM, it is necessary to conduct fault detection and degradation trend monitoring.

Fault detection enables the identification of malfunctioning components in advance, while monitoring the

degradation trend allows panning the maintenance of the component.

The main bearing is a critical wind turbine drivetrain component, and its failure can cause the turbine

shutdown and expensive repair. As the main bearing degrades, its temperature increases, indicating

health deterioration of the component. Various methods proposed in the literature employ physics-based

normal behavior models (NBMs) using Standard Supervisory Control And Data Acquisition (SCADA) data

as input to energy conservation-based equations to model the main bearing temperature. These methods

analyze the difference between the measured and the modeled temperature, referred to as residual. These

residuals are used as health indicators (HIs) for assessing the condition of the component.

Physics-based NBMs utilizing SCADA data have been successfully used for fault detection of the

main bearing. However, the application of these methods for degradation trend monitoring have not yet

received attention. The primary reason for the premature failure of wind turbine components is attributed

to the variability of the wind conditions. However, current NBM methods are based solely on the mean

value records and do not consider the variations within the 10-minute time frame. Furthermore, seasonal

fluctuations in operating conditions can adversely affect the obtained degradation trend.

The main objective of this thesis is to improve physics-based NBM employing SCADA data to monitor

the degradation trend of the main bearing. The proposed approach uses a physics-based NBM available

in the literature as the baseline. It aims to increase the monotonicity and reduce the dispersion of the

developed HI to enable accurate degradation trend monitoring. To achieve this objective, the proposed

method takes into account seasonal variations and variability of operating conditions within the 10-minute

SCADA time frame when modeling the main bearing temperature. To mitigate the impact of seasonal

changes on the HI, the proposed method develops multiple physics-based NBMs corresponding to monthly

time windows. To take into account the variability of the operating conditions, the main bearing temperature

is modeled by performing a Monte Carlo simulation using the SCADA data mean and standard deviation

values. In this case, the HI is defined by the data density within a threshold region. Two case studies are

conducted to demonstrate the advantages of the proposed method compared to the baseline approach.

The results show that with the proposed approach, the seasonality effects are reduced by more than 50%,

as measured through cross-correlation metric with the ambient temperature, the HI monotonicity increases

by 260% as measured by the Mann-Kendall τ monotonicity metric, and the dispersion reduces by 30% and

35%, as evaluated by the Mean Square Error and a noise metric obtained using the Complete Ensemble

Empirical Mode Decomposition with Adaptive Noise approach.
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1
Introduction

1.1. Wind energy
Wind energy is a rapidly growing and increasingly important renewable energy source. Nations worldwide

are making significant investments in wind energy, substantially increasing installed capacity over the last

decade. The global installed capacity for wind power reached 906 GW in 2022, as shown in Figure 1.1,

with the highest newly installed capacities in China and the United States, as illustrated in Figure 1.2 [2, 3].

Figure 1.1: Global cumulative wind power installed capacity [4]

Figure 1.2: Installed wind energy

capacity, 2022 [3]

The levelized cost of energy (LCOE) is a metric used to assess the competitiveness of different energy

sources. Figure 1.3 shows the global weighted average LCOE for onshore and offshore wind between

2010 and 2022. According to the Renewable Energy Agency report [2], the global weighted average LCOE

of onshore wind dropped by 69%, decreasing from USD 0.107/kWh to USD 0.033/kWh. In the same

period, for offshore wind farms, it declined from USD 0.197/kWh to USD 0.075/kWh. Learning through

employment has been identified as the main factor behind this 50% cost reduction [5].

A positive trend in wind energy cost enables its broader adoption [6]. However, the fraction of global

electricity produced by wind energy must drastically increase to reduce the consequences of climate

change. According to the International Energy Agency (IEA), an ambitious target of 3100GW of installed

wind capacity should be reached to achieve the Net Zero scenario by 2030 [7]. This means that in the

next eight years, the installed wind capacity needs to increase 3.4 times. Therefore, to reach the expected

targets, further reduction of wind energy’s LCOE is essential [8].

1
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Figure 1.3: Global weighted average LCOE for onshore and offshore wind, adopted from [2]

1.2. Cost of wind energy
When considering wind power as a renewable energy source, understanding its cost is crucial. Wind

energy costs include the upfront capital costs such as constructing and installing wind turbines, the ongoing

operations and maintenance (O&M), and decommissioning costs [9, 10]. O&M activities, in particular,

are a significant cost factor in wind farm projects [6]. Notably, for onshore wind farms, O&M accounts for

approximately 25% of the lifetime costs, while for offshore farms, this number reaches up to 35% [11].

O&M costs include labor costs, material costs, transportation costs, fixed costs, and potential revenue

losses [12].

O&M costs for wind turbines can vary depending on various factors, such as the size and type of

wind turbine, the location, the operating conditions, and the maintenance strategy used. Implementing an

effective maintenance strategy can help minimize expenses related to unplanned downtime and repairs

while extending the turbine’s lifespan [13]. Consequently, this cost reduction contributes to lowering the

LCOE of wind energy.

1.3. Maintenance
The three common maintenance strategies are corrective, preventive, and condition-based maintenance

[14]. Corrective maintenance, also known as reactive maintenance, is performed after the system’s useful

life is exhausted. This method may lead to prolonged downtime for wind turbines before they can resume

operation, as repairs are undertaken only in response to a fault. Moreover, as no health assessment of

the wind turbine is performed, incipient faults may lead to failure of the wind turbine. Considering these

factors, corrective maintenance proves to be an unfavorable strategy for wind turbine applications.

Schedule-based preventive maintenance, also known as planned maintenance, involves setting periodic

intervals for maintenance to prevent failures regardless of the system’s health state [15]. Maintenance

intervals are typically determined based on historical field data. A well-known example of preventive

maintenance is engine oil replacement, where oil is changed based on the distance driven by the vehicle.

However, given the scale of wind turbine components, the difficulty of determining service intervals, and the

remote locations of wind farms, this maintenance strategy proves unsuitable for wind turbine applications

[16].

Condition-based maintenance (CBM) is a strategy that only repairs or replaces damaged parts, reducing

the overall wind turbine maintenance costs [17]. Unlike traditional corrective or scheduled maintenance

approaches, CBM is based on the actual condition of the equipment. Various sensors located throughout

the wind turbine are monitored to assess the condition of the wind turbine components. For wind turbine

applications, the CBM strategy is deemed the most appropriate for enhancing availability and reducing

operation and maintenance costs [18, 16, 13].

Figure 1.4 shows how the cost of the operating, maintenance, and total of these three strategies
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varies with the number of failures[15]. Maintenance costs represent expenses to prevent failures, while

operating costs denote expenditures associated with repairing failures. Figure 1.4 shows that the corrective

maintenance strategy leads to the highest operating cost due to failure repair being the main expense. On

the other hand, the preventive maintenance approach minimizes operating costs, yet it typically entails the

highest maintenance costs. The CBM strategy achieves an optimum between maintenance and operating

costs.

Figure 1.4: The schematic diagram for operating, maintenance, and total costs [15]

1.4. Condition monitoring
To effectively perform CBM, continuous condition monitoring of wind turbine components is essential.

Condition monitoring can be divided into two main steps: fault detection and diagnosis and lifetime

prognosis [17]. Fault detection involves monitoring the state of a component to detect any indications of

faults or potential issues, while diagnosis identifies the nature of the fault and the precise location. Early

fault detection prevents wind turbine component failures, thus minimizing operational downtime. Lifetime

prognosis predicts the system’s remaining useful life (RUL), which is the time period between the current

time and the end of the useful life of the asset [19]. The lifetime prognosis step enables maintenance

planning, reducing logistics and spare parts provision costs.

1.4.1. Data used for condition monitoring
Condition monitoring methods can be grouped into methods using signals from condition monitoring

systems (CMS) or a standard supervisory control and data acquisition (SCADA) system. CMS allows

monitoring of various signals such as vibration, strain, torque, temperature, oil debris quality, and acoustic

emission. The typical sampling rate for CMS is 20kHz, enabling the effective capture of high-frequency

dynamics [20]. One of the main applications of CMS-based condition monitoring methods is analyzing

vibrations of the rotating components such as bearings [21]. Methods employ various spectral analysis

techniques, such as the Fourier transform, to monitor vibrations of the component in the time and frequency

domain. While CMS systems were purpose-built for condition monitoring, they come with drawbacks, such

as high costs and the need for extensive resources and expertise to perform analysis [22].

On the other hand, wind turbines are also equipped with a SCADA system. This system is primarily

used for performance monitoring of the wind turbine. SCADA signals can be grouped into environmental

conditions, electrical, control, and temperature properties. The specific measurements available from

a SCADA system vary depending on the supplier. An example of the typical SCADA signals is shown

in Table 1.1. SCADA system typically samples data at a rate of 1 Hz, averages signal within 10-minute

intervals, and records mean, minimum, maximum, and standard deviation (STD), effectively reducing the

amount of transmitted data [17]. However, the limited measurements and low sampling frequency constrain
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the fault diagnosis capabilities of SCADA-based condition monitoring methods [22] (Table 1.1). Despite

these limitations, many studies focus on utilizing SCADA data for condition monitoring of the different

wind turbine components due to its cost-effectiveness and high reliability [23]. Moreover, SCADA-based

condition monitoring methods can be widely implemented due to the widespread adoption of performance

monitoring systems. Given the factors mentioned above, this thesis focuses on the condition monitoring

methods employing SCADA data.

Table 1.1: Typical SCADA Signals for Wind Turbines, adapted from [17]

Environmental Conditions Electrical Properties Control Properties

Ambient temperature Active power output Pitch angles of each blade

Wind direction Reactive power Yaw angle

Wind speed Power factor Rotor speed (low-speed shaft)

Generator currents Generator speed (high-speed

shaft)

Generator voltages Control set points/values

Transmission-line frequency Status messages/warnings and

operational status code

Number of starts and stops

Temperature Properties

Nacelle temperature High voltage transformer temper-

atures

Gearbox bearing temperatures

Hub temperature Inverter temperatures Gearbox oil temperature

Generator stator temperatures Top (turbine) controller tempera-

ture

Hydraulic oil temperature

Generator bearing temperatures Hub (pitch) controller tempera-

ture

Converter cooling water temper-

ature

Generator slip ring temperature Converter controller temperature Converter choke coil tempera-

ture

Main shaft bearing temperature Grid busbar temperature

1.4.2. Fault detection and diagnosis
Fault detection methods using SCADA data can be divided into three main groups: trending, clustering,

and normal behavior modeling (NBM). Trending methods are among the earliest methods developed for

wind turbine fault detection. These methods involve the health assessment of turbines through the analysis

of a monitored turbine’s performance, either by comparing it to the mean performance of other turbines

within the wind farm or by monitoring changes in the turbine’s performance over time [24, 25, 26]. Trending

methods are simple to implement and do not require faulty operation data [17]. However, a key limitation

of these methods is their high case-specificity, requiring manual interpretation of results [27].

Researchers have then adopted clustering algorithms to label normal and faulty operations. Clustering

algorithms are methods for dividing a set of observations into groups, called clusters so that members of

the same group are more alike than members of different groups [28]. The primary drawback of clustering

methods is the need for extensive historical fault data for effective training. Furthermore, according to Tautz

et al. [27], clustering methods do not offer a notable advantage over trending methods, as interpreting

clustering results remains challenging.

NBM methods model the fault-free operation behavior of a system that is expected under the observed

operating and environmental conditions. The difference between the model output and measured value,

referred to as residual, is analyzed for fault detection [29]. The underlying detection principle relies on

deteriorating component health, causing the model relationship to change, thus causing a change in

residuals [30]. An extensive amount of data that captures the full range of healthy operations is required to

build a representative NBM. Moreover, a robust threshold selection method is essential to perform fault
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detection. The main advantage of the NBM methods is that historical failure data and knowledge of the

failure type are not necessary for constructing these models [17].

Wind turbine SCADA-based NBM condition monitoring methods mainly focus on data-driven techniques

like machine learning and deep learning to build healthy state models and have been widely studied

for condition monitoring. Such techniques enable modeling non-linear dynamics and capture complex

relationships in the data [31]. However, data-driven NBM methods rely on the black-box nature of AI

algorithms, making interpreting results challenging [27]. On the other hand, physics-based NBM methods

describe the relationship between the input and output model parameters using equations based on the

physics of the component, such as its energy balance. Physics-based NBM offers high interpretability

and a deeper understanding of the system’s behavior [30, 32, 33]. Unlike data-driven NBM methods,

physics-based methods have not been studied extensively. Given the above-mentioned factors, this thesis

focuses on the physics-based NBM methods.

1.4.3. Lifetime prognosis
Lifetime prognosis methods can be broadly categorized into two main types: physics-based and data-driven

methods [22]. Physics-based methods rely on equations and data to quantitatively describe the growth

of the trend of a particular failure mode. These methods are capable of providing highly accurate results

and are easy to interpret. However, the complexity of a system and the diversity and uncertainty of its

operating conditions make building physical models capturing the degradation difficult [34]. On the other

hand, data-driven methods use information from condition monitoring to predict degradation behavior.

Data-driven lifetime prognosis methods are widely utilized, as they do not require a deep understanding of

the failure type [35].

One of the approaches for performing lifetime prognosis is to introduce health indicators (HIs) to

describe the degradation trends [36, 37]. The value of the HI reflects the health condition of a specific

system, which is affected by degradation, failures, or operating conditions. After identifying the degradation

trend of a component, various methods can be applied to the HI to obtain the RUL [38, 17, 22]. It is

essential for the monitored HI to accurately capture the health deterioration of the component. Monitored

HI is expected to be monotonic due to the irreversible nature of the degradation process [39]. Additionally,

dispersion and seasonal fluctuations of the HI can reduce its accuracy in representing the degradation

trend of the component, consequently reducing the reliability of RUL predictions [40, 1].

1.5. Main bearing
A wind turbine can experience a wide range of faults and failures throughout its lifetime. The severity of

different faults and failures in wind turbines is shown in Figure 1.5. Less severe faults, such as sensor

faults, are not detrimental to wind turbines. However, they can lead to failures in other subsystems, such

as control, and affect the turbine’s ability to produce power. In contrast, the most severe faults can cause

a complete shutdown of the turbine. Figure 1.5 lists the failure of the main shaft bearing among the most

severe.

The main shaft bearing, also known as the main bearing, is an essential component that connects

the rotor to the drivetrain and transfers torque further down to the generator. It is a large and complex

component subjected to significant loads and stresses [41]. Failure of the main bearing causes a turbine

shutdown and requires an expensive repair campaign.
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Figure 1.5: Major faults and component failures in wind turbines, adopted from [17]

Figure 1.6 shows the frequency and cost of replacing different wind turbine bearings. Even though the

main bearing does not fail very often, its failure is among the most expensive to repair [42]. Replacement

of a failed main bearing requires the disassembly of the whole nacelle [43]. Moreover, a special vessel for

transporting and lifting is required for offshore wind turbine repair. According to Dalgic et al. [12], the cost of

lifting operations using a vessel accounts for more than 50% of the total O&M costs. Furthermore, although

the main bearing has been identified as one of the most crucial challenges in wind turbine reliability, this

component has not received as much attention as other drivetrain components [44]. For these reasons,

this thesis focuses on the wind turbine main bearing.

Figure 1.6: Replacement cost of critical wind turbine bearings [42]

1.6. Research motivation
The wind turbine main bearing is one of the major drivetrain components. The high cost of repairing the

wind turbine main bearing underscores the importance of minimizing O&M expenses associated with this

component [44]. Moreover, in comparison to other drivetrain components, the wind turbine main bearing

has received relatively less attention.

Varying loads and different drivetrain issues lead to premature wear of the main bearing. Progressive

wear, in turn, leads to an increase in the main bearing temperature [43]. Various condition monitoring

methods analyze the temperature changes of the main bearing. Employing an effective condition monitoring

method allows the detection of potential failure and planning of maintenance, thus reducing O&M costs.

Physics-based NBM has been successfully employed for fault detection of the main bearing [32, 30].

However, the application of these methods for degradation trend monitoring has not received attention,

and this is the objective of this thesis, which can be formulated as follows.
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Research Objective

Develop a physics-based NBM employing SCADA data for monitoring the degradation trend of the

wind turbine main bearing.

The proposed approach builds on the physics-based NBM available in the literature [32] to extend its

application for degradation trend monitoring. It aims to increase the monotonicity and reduce the dispersion

of the developed HI using physics-based NBM. To achieve these aims, the proposed method considers the

variability of wind field characteristics and takes into account seasonal variations in operating conditions.

The variability of wind field characteristics causes significant changes in the loads experienced by the wind

turbine components. This has a significant effect on the long-term health of the component. However,

current approaches do not consider varying wind field characteristics in their NBM of the main bearing

temperature. Additionally, seasonal fluctuations present in the residuals have been noted as one of the

limitations of the available method [32].

The thesis sub-questions are defined as follows.

1. How can physics-based NBM be used for the degradation trend monitoring of the wind turbine main

bearing?

2. How can the current physics-based NBM’s limitations be effectively overcome when using SCADA

data?

3. What metrics should be utilized to evaluate the effectiveness of the proposed method?

4. How can seasonal variations be taken into account when developing a physics-based NBM for the

degradation trend monitoring of the wind turbine main bearing? And what are the benefits?

5. How can variability of wind field characteristics be taken into account when developing physics-based

NBM for the degradation trend monitoring of the wind turbine main bearing? And what are the

benefits?

The rest of the report is structured as follows. Chapter 2 provides a literature review and addresses the

gap that this thesis aims to fill in. Chapter 3 presents the theoretical background, where terms and metrics

related to this thesis project are introduced. Chapter 4 presents a detailed description of the methodology

proposed in this thesis. Chapter 5 describes the performed case studies and presents the results. Chapter

6 concludes this research and discusses future work.



2
Literature review

This chapter provides an overview of the literature explored in this thesis. Section 2.1 focuses on the

wind turbine main bearing and presents its most common failure modes. Section 2.2 discusses SCADA-

based condition monitoring methods of the component. Section 2.3 delves into NBMs used for condition

monitoring of the main bearing and presents data-driven (Section 2.3.1) and physics-based (Section 2.3.2)

methods. Section 2.4 highlights the gap that this thesis aims to fill in.

2.1. Main bearing as a component
The primary purpose of the main bearing is to support the rotor while effectively handling non-torque loads

and preventing the transmission of loads further down the drivetrain [44]. Depending on the configuration,

this function can be performed independently or in collaboration with the gearbox and mounts. The

selection of a specific type and configuration for wind turbine main bearings depends on various factors,

including drivetrain type, expected loading conditions, and economic considerations.

Figure 2.1 illustrates the most common configuration for geared drivetrain wind turbines, referred to as

the ’three-point mount’, while Figure 2.2 shows a single-main bearing configuration for direct-drive wind

turbines [45]. Irrespective of the configuration type, the main bearing consists of four elements: an inner

race, an outer race, rolling elements, and a cage around rolling elements, as shown in Figure 2.3.

Figure 2.1: Geared drive train wind turbine main

bearing (MB) configuration [44] Figure 2.2: Direct drive train wind turbine MB

configuration [44]

The main bearing directly interacts with the rotor and the other rotating components located further

down the drivetrain. Incident loads are transmitted from the wind turbine rotor to the hub and then passed

through the cantilevered low-speed shaft to the main bearing. Various studies investigate the effects of

loads on this drivetrain component [46, 45, 47, 41]. Guo et al. [45] use an analytic model to describe the

loads experienced by the main bearing and to study its axial displacement. Cardoun et al. [48] focus on

the effects of loads experienced by the main bearing due to constant yaw misalignment. Notably, Hart et

al. [49] perform a study focusing on the effect of wind field characteristics on the wind turbine main bearing

8
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Figure 2.3: Spherical roller bearing [1]

loading. They emphasize the importance of considering this variability during the design phase. The study

analyzes loads experienced by the main bearing using the DNV-GL BLADED multi-body simulation tool

and considers different wind speed and turbulence intensity (TI) conditions as well as different power law

shear exponents. TI represents the intensity of wind velocity fluctuation, while the wind shear exponent is

a parameter that represents a change in the vertical wind profile shape. Notably, the stronger TI leads

to higher loads experienced by the main bearing. This study demonstrates high variability in the main

bearing loads due to variations in wind field characteristics. Additionally, the authors point out the potential

of considering wind field variability to enable more reliable maintenance approaches.

While wind turbine main bearings are designed to operate over a 20-years, the rate of failures can

be as high as 30%, with some bearings failing in less than six years of operation. Misalignments and

high axial-to-radial load ratios experienced by the main bearing during operation contribute to wear

mechanisms, ultimately leading to damage and failure [50, 49]. The most prominent types of damage and

wear mechanisms experienced by the main bearings are [44]:

• Classical fatigue happens due to the dynamic contact conditions from machine operation generating

stress fields and plastic deformation in the contacting materials. Over time, these conditions can

lead to fatigue cracks or inclusions within the material structure. When these cracks intersect, pits

are created, releasing abrasive particles into the bearing environment. Once this process is initiated,

it can self-propagate through the surface, roughening and reducing the contact areas.

• Micro-pitting occurs when the lubricant film thickness in a specific area is inadequate due to excessive

loading or operating conditions that deviate from the design parameters. In such cases, the lubrication

is not sufficient to fully separate the contacting surfaces of the roller and the race. Consequently,

interactions occur between their rough surfaces, leading to the formation of surface asperities.

• Spalling is a type of damage that occurs when material peels or flakes away from the surface of

a bearing. It is commonly triggered by various forms of damage or stress, including misalignment,

excessive loading, localized stresses from surface dents, or hard particles in the lubricant. Additionally,

micro-pitting can serve as a precursor to spalling on the affected surface.

• Smearing is a type of wear that occurs when two surfaces slide against each other, causing material

from one surface to transfer onto the other. This commonly occurs in rolling element bearings when

there are rapid changes in roller rotational speeds, such as when a roller accelerates as it enters an

operating region with higher loads.

• Abrasive wear is a type of damage caused by the intrusion of hard particles into the bearing contacts,

resulting in physical damage such as indentations left by rolling particles or surface scratches caused

by sliding particles.

• Fretting corrosion is characterized by the development of pits, grooves, and corrosion products in

the surrounding areas. The main bearing experiences low-amplitude structural vibration, leading to

fretting. Fretting corrosion can be caused by various factors, including moisture content, acid rain,

corrosive gases, and lubricant acidification.
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2.2. Main bearing condition monitoring
Numerous studies explore the condition monitoring of the wind turbine main bearing to increase the lifespan

and reduce its O&M costs. SCADA-based condition monitoring methods focus mainly on temperature

analysis, where abnormal temperature increase indicates the degradation of the main bearing. Various

methods using SCADA data for main bearing condition monitoring have been proposed in the literature.

Astolfi et al. [25] investigate the trending of temperatures for various components against rated power

across different time scales. The application of this method to the main bearing temperature is proven

effective in detecting failure that leads to low-speed shaft replacement. The main bearing temperature

of the malfunctioning turbine displays a significant increase two weeks prior to the warning generated

by the SCADA system, in contrast to the temperatures in other main bearings within the same wind

farm. Wilkinson et al. [30] are also able to detect the main bearing damage, comparing the temperature

normalized to the wind farm average. However, the authors ultimately dismiss the trending method, citing

its low accuracy and reliability.

While various methods have been explored for SCADA-based condition monitoring of wind turbine main

bearings, the literature predominantly focuses on NBM approaches. Figure 2.4 provides an overview of the

common NBM condition monitoring method. The SCADA data set is divided into historical data for training

and real-time data for condition monitoring. First, the preprocessing step is applied to historical data. Next,

various techniques, such as regression, machine learning, or deep learning, are employed to obtain the

NBM of the component [31]. From a design perspective, the NBM can be established using either the Full

Signal Reconstruction (FSRC) concept, which utilizes signals other than the target parameter to predict the

target, or AutoRegressive with eXogenous (ARX) input modeling, which incorporates past values of the

target as well [29]. Once the NBM model is established, it is deployed to predict expected normal behavior

using real-time data (test data). It is important to note that the same preprocessing steps applied to the

historical set are also applied to real-time data. Finally, the difference between predicted and observed

behavior, referred to as residuals or prediction errors, is analyzed.

Figure 2.4: Schematic overview of NBM condition monitoring framework using SCADA data, adopted

from [51]

The scope of NBM condition monitoring methods can be fault detection and lifetime prognosis. Fault

detection involves setting thresholds and performing fault detection when the thresholds are passed.

Various frameworks are available in the literature to perform fault detection. They differ based on the

type of smoothing used, threshold selection, and the number of instance thresholds passed to perform

detection. Exponentially Weighted Moving Average (EWMA) control chart is one of the most common

frameworks used for fault detection [32, 52, 29]. It can be divided into two steps: selecting the smoothing

factor for residuals and establishing a threshold. Thresholds and smoothing factors are chosen to reduce

the number of false alarms while not compromising the sensitivity to detecting actual failures.

Lifetime prognosis using NBMs involves estimating the expected time to NBM residuals reach a given

threshold, which is called the predicted RUL of the component. The lifetime prognosis of wind turbine

components has received less attention than the fault detection in the literature [53]. Upon reviewing the

current state-of-the-art research, it is clear that the primary focus of SCADA-based condition monitoring

methods lies in the estimation of RUL of wind turbine generators [54, 55, 56]. Moreover, NBM approaches

have not been widely used in the context of lifetime prognosis.
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2.3. Wind turbine main bearing condition monitoring using SCADA-

based NBM
SCADA-based NBM approaches can be divided into two categories: data-driven and physics-based

methods. Section 2.3.1 summarises studies that propose data-driven NBM methods, while Section 2.3.2

delves into studies employing physics-based NBM methods for condition monitoring of the main bearing.

2.3.1. Data-driven NBM
Most of the current research on NBMs relies on purely data-driven methods [31, 57], which are capable of

capturing nonlinear relationships among the monitored signals. However, the main disadvantages of these

methods are the high computational cost and the black-box nature of the results. Different approaches

using various data-driven methods are presented in this section.

Butler et al. [58] propose a Bayesian approach to model the temperature of the main bearing. Inputs to

the ARX-type model are:

• Main bearing temperature, at previous timestamp (mean)

• Main shaft rotation speed (mean)

• Hydraulic brake temperature (mean)

• Hydraulic brake pressure (mean)

• Blade pitch position (mean)

This specific set of input parameters is chosen after multiple trials of various combinations of variables.

The main bearing temperature is linearly corrected with ambient temperature to remove the effect of

ambient conditions from the sensor readings. Residuals corresponding to the low-load operation are

selected, and a low-pass filter for smoothing is applied. The main shaft rotational speed between 0.1 and

2 rotations per minute (RPM) is considered a low-load operational range of the wind turbine main bearing.

Residuals corresponding to the low-load operational range are analyzed due to their monotonicity and

consistency. The RUL of the component is obtained using a bearing degradation model from literature,

whose coefficients are obtained using the particle filter approach. The method yields a strong indication of

potential failure with a lead time of 30 days. However, degradation model parameters are fine-tuned based

on historical failure data to perform the RUL prediction. Due to the limitation of having only two turbines

with failures, the paper lacks extensive validation of the approach.

Zhang et al. [59] model the main bearing temperature using an artificial neural network (ANN). Inputs

to the ARX-type model are:

• Main bearing temperature, at previous timestamp (mean)

• Main shaft rotation speed (mean)

• Nacelle temperature (mean)

• Power produced (mean)

The authors select these parameters based on physical relevance and prior research on gearbox bearings.

The model achieves a Root Mean Square Error (RMSE) of 0.2, which is acceptable for fault detection.

Notably, the authors demonstrate that the ANN model for the main bearing, which is trained on SCADA

data from one turbine, can be applied for fault detection in other turbines within the same wind farm. The

method provides fault detection three months before failure.

Herp et al. [60] also use an ANN model to model the temperature of the main bearing. However, the

authors explore the lifetime prognosis aspect of condition monitoring. Inputs to the FSRC-type model are:

• Active power (mean)

• Generator speed (mean)

• Gearbox oil temperature (mean)

• Ambient temperature (mean)

• Nacelle temperature (mean)
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Obtained residuals are sampled on an hourly basis. The authors apply the Bayesian inference, which is a

stochastic approach, to obtain the RUL of the component. The approach predicts the main bearing failure

within a 33-day period.

Wang et al. [61] propose a method that combines clustering and NBM. The method initially applies the

K-Means algorithm to SCADA data, dividing it into two clusters. It is important to note that compared to

other available data-driven NBM approaches, Wang et al. incorporate two models to consider the variable

operating conditions of the wind turbine. Variables are chosen based on correlation coefficients with the

main bearing temperature. The inputs for the first cluster model are:

• Hub temperature (mean)

• Generator front bearing temperature (mean)

• Gearbox rear bearing temperature (mean)

• Nacelle temperature (mean)

• Ambient temperature (mean)

• Gearbox inlet oil temperature (mean)

• Gearbox oil temperature (mean)

• Converter ambient temperature (mean)

• Generator rear bearing temperature (mean)

For the second cluster, two additional inputs of blade motor temperatures are used due to the high

correlation with the main bearing temperature. The Optimized Deep Belief Network (ODBN) is selected to

build the NBM of the main bearing temperature. Additionally, the authors applied the Mahalanobis Distance

as a measure of deviation between modeled and measured values. The proposed method is compared

with the ODBN framework without clustering. Notably, the proposed method does not significantly improve

advanced fault detection. Both frameworks detect failure approximately three and a half days in advance.

Furthermore, including the clustering step in the framework increases its computational intensity. However,

the method does not have false detections, unlike the ODBN framework without clustering.

Tutiven et al. [52] employ a one-class Support Vector Machine (SVM) classifier for fault detection of

the wind turbine main bearing. One-class SVM methods are trained on healthy data to build an NBM.

Subsequently, when monitored data (test data) deviates from the learned healthy state, it is labeled as

faulty. It is important to note that the one-class SVM methods do not require faulty data for training. Inputs

to the FSRC-type model proposed by Tutiven et al. are:

• Main shaft temperature (mean)

• Wind speed (mean)

The authors select the main shaft temperature as it is the variable most closely associated with the

examined failure. Notably, the ambient temperature is subtracted from the main shaft temperature to avoid

seasonality. Wind speed is chosen as a parameter related to the operation state of the wind turbine. For

performing fault detection, outliers given by the SVM classifier are counted weekly, and EWMA smoothing

is applied to a weekly number of faults to reduce the number of false detections. The proposed method

detects the main bearing failure three months in advance. Additionally, the method detects failures in the

wind blades and the gearbox. Blade failure is detected two days before, while gearbox failure is detected a

month prior to the actual failures. The authors attribute the detections of blade and gearbox failures to

their impact on the operation of the analyzed component, consequently leading to abnormal operation of

the main bearing.

Zhang et al. [62] explore deep learning methods to model main bearing temperature. The proposed

method applies a one-dimensional convolution neural network (Conv1D) to fuse information of features of

previous timestamps simultaneously. Conv1d is used to couple the ten previous time-series timestamps

of the input variables to form a new time series of input variables to the temperature model. The Long

Short-Term Memory network (LSTM) is used to build the NBM. Inputs to the model are selected based on

their correlation with the modeled parameter and their relevance to wind turbine operation. Inputs to the

ARX-type model are:

• Main bearing temperature (mean)
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• Generator rotational speed (mean)

• Power produced (active power grid side) (mean)

• Wind speed (mean)

• Ambient temperature (mean)

Zhang et al. apply a moving average window length of 30 samples (5 hours) to reduce the influence of

the accidental factors on the residuals. The proposed method detects abnormal behavior in the bearing

three months before failure. Notably, the study also demonstrates that the proposed prediction model is

more accurate in predicting the main bearing temperature than traditional machine learning methods such

as XGBoost Regression, Random Forest Regression, and LSTM algorithms.

2.3.2. Physics-based NBM
The physics-based NBMs available in the literature use mainly equations based on heat transfer to describe

the relationship between parameters. A physics-based model is usually fitted to historical SCADA data

to obtain its parameters, which are then used in a test set to model the target value. Using SCADA data

for physics NBM allows to overcome the main limitation of pure physics-based models, which require

case-specific knowledge, such as size and material properties, to build the model. Furthermore, the broad

availability of SCADA systems enables the widespread application of physics-based NBM methods.

Wilkinson et al. [30] propose a model relying on the energy balance of the components to obtain

their temperature. The authors develop higher-order polynomial models to obtain various component

temperatures. Model parameters are determined based on healthy state operation. The study showcases

the models’ effectiveness in detecting 24 major component failures, including the main bearing failure. For

the main bearing, the input signals to the FSRC-type model are:

• Main shaft rotational speed (mean)

• Nacelle temperature (mean)

• Power produced (mean)

Wilkinson et al. apply a rolling average window to smooth the obtained residuals. The proposed method

detects failure seven months in advance. However, the authors emphasize the importance of carefully

determining appropriate parameters and thresholds to ensure the method’s reliability and accuracy.

Cambron et al. [32] apply a physics-based model relying on the energy balance of the wind turbine main

bearing. Least squares regression fit is applied to the SCADA data to obtain main bearing temperature

model coefficients. Inputs to the ARX-type model are:

• Main bearing temperature, at previous timestamp (mean)

• Main shaft rotational speed (mean)

• Nacelle temperature (mean)

• Power produced (mean)

The obtained residuals are averaged daily, and the EWMA control chart is applied for fault detection. The

authors conduct two case studies. The proposed method is able to detect the main bearing fault three

and ten weeks before SCADA generates a warning. This approach demonstrates significant potential in

generating warnings for failure detection. The authors also point out clear seasonal variations present in

the residuals, which can potentially lead to false detections.

2.4. Discussion
A lack of research employing NBM approaches for lifetime prognosis becomes apparent when reviewing

the SCADA-based condition monitoring methods proposed in the literature. Moreover, existing studies

that use NBM for the lifetime prognosis of the main bearing adopt purely data-driven modeling methods.

These methods use NBM residuals as a HI to obtain the RUL of the component. To achieve reliable RUL

predictions, the monitored HI should accurately capture the degradation trend of the component.

Physics-based NBM methods offer high interpretability and a deeper understanding of the system’s

behavior, in contrast to the ”black-box” nature of the purely data-driven methods. Moreover, utilizing
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SCADA data to build physics-based NBM does not require specification parameters, making this approach

widely applicable. However, physics-based NBM using SCADA data for the main bearing has not received

as much attention as data-driven approaches [35, 57, 63]. It is essential to highlight that the paper by

Cambron et al. [32] represents the most recent available work on physics-based NBM modeling of the

main bearing. The study points out the seasonal fluctuations present in the residuals as one of the

limitations of the proposed method. Furthermore, available SCADA-based methods do not consider the

variability of wind field characteristics in the NBM of the main bearing temperature. The loads experienced

by this component are significantly impacted by varying operating conditions [44], and this can have a

significant impact on the bearing lifetime. Notably, wind fields with stronger TI contribute to the higher

loads experienced by the main bearing [49]. This thesis proposes an approach that considers seasonal

fluctuations and the variability of wind field characteristics in physics-based NBM employing SCADA data

to build HI for accurate degradation trend monitoring of the wind turbine main bearing.



3
Theoretical Background

This chapter provides the theoretical background for the methods and metrics used in this research. Section

3.1 presents multivariate linear regression as this is applied to obtain the coefficients of the physics-based

NBM proposed in this work. Section 3.2 introduces the Monte Carlo method, which is used to predict the

main bearing temperature. Section 3.3 delves into statistical metrics employed to assess the performance

of the proposed approach.

3.1. Multivariate linear regression
Multivariate linear regression is a statistical method used to analyze the relationship between two or more

independent variables and a dependent variable [64]. The model is expressed as:

yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + εi

= β0 +

k∑
j=1

βjxij + εi i = 1, 2, . . . , n
(3.1)

Where yi is the dependent variable, xi,j are the independent variables, β0 is the intercept, β1, β2, ...βk

are the coefficients that represent the impact of each independent variable on the dependent variable, and

ε is the error term. The least squares method is used to obtain equation coefficients. The least squares
function is shown as:

L =

n∑
i=1

ε2i =

n∑
i=1

yi − β0 −
k∑

j=1

βjxij

2

(3.2)

The least squares function minimizes the sum of the squared errors between estimated and actual

values, L [64]. To estimate independent variable coefficients, L should be minimized with respect to

β0, β1, · · ·βk. Where least square estimates β̂0, β̂1, · · ·β̂k must satisfy

∂L

∂β0

∣∣∣∣
β̂0,β̂1,...,β̂k

= −2

n∑
i=1

yi − β̂0 −
k∑

j=1

β̂jxij

 = 0 (3.3)

and

∂L

∂βj

∣∣∣∣
β̂0,β̂l,...,β̂k

= −2

n∑
i=1

yi − β̂0 −
k∑

j=1

β̂jxij

xij = 0 j = 1, 2, . . . , k (3.4)
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Equation (3.3) is simplified as shown below:

∂L

∂β0

∣∣∣∣
β̂0,β̂1,...,β̂k

= −2

n∑
i=1

yi − β̂0 −
k∑

j=1

β̂jxij

 = 0

n∑
i=1

β̂0 +

k∑
j=1

β̂jxij − yi

 = 0

nβ̂0 +

n∑
i=1

k∑
j=1

β̂jxij −
n∑

i=1

yi = 0

nβ̂0 +

k∑
j=1

(
n∑

i=1

β̂jxij

)
=

n∑
i=1

yi

β̂0 +
1

n

k∑
j=1

(
n∑

i=1

β̂jxij

)
=

1

n

n∑
i=1

yi

β̂0 +
1

n

n∑
i=1

β̂1xi1 +
1

n

n∑
i=1

β̂2xi2 + · · ·+ 1

n

n∑
i=1

β̂kxik =
1

n

n∑
i=1

yi

(3.5)

Equation (3.4) is simplified the same way:

∂L

∂βj

∣∣∣∣
β̂0,β̂l,...,β̂k

= −2

n∑
i=1

yi − β̂0 −
k∑

j=1

β̂jxij

xij = 0 j = 1, 2, . . . , k

n∑
i=1

(β̂0 +

k∑
j=1

β̂jxij − yi)xij = 0

n∑
i=1

xijβ̂0 +

n∑
i=1

xij

k∑
j=1

β̂jxij −
n∑

i=1

xijyi = 0

n∑
i=1

xijβ̂0 +

n∑
i=1

xij

k∑
j=1

β̂jxij =

n∑
i=1

xijyi

β̂0

n∑
i=1

xij +

n∑
i=1

xij

k∑
j=1

β̂jxij =

n∑
i=1

xijyi ⇒

β̂0

n∑
i=1

xi1 + β̂1

n∑
i=1

x2
i1 + β̂2

n∑
i=1

xi1xi2 + · · ·+ β̂k

n∑
i=1

xi1xik =

n∑
i=1

xi1yi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β̂0

n∑
i=1

xik + β̂1

n∑
i=1

xikxi1 + β̂2

n∑
i=1

xikxi2 + · · ·+ β̂k

n∑
i=1

x2
ik =

n∑
i=1

xikyi

(3.6)

The obtained least squares equations are shown in Equation (3.7). Note that the number of equations

and the number of coefficients is the same. A system of linear equations is solved to obtain the least

squares estimators of the regression coefficients,β̂0, β̂1, · · ·β̂k. Once the coefficients are obtained, Equation

(3.1) can be used to model the target variable yi. This thesis utilizes the ”LinearRegression” function from
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the Python ”sklearn.linear_model” library to perform linear regression.

nβ̂0 + β̂1

n∑
i=1

xi1 + β̂2

n∑
i=1

xi2 + · · ·+ β̂k

n∑
i=1

xik =

n∑
i=1

yi

β̂0

n∑
i=1

xi1 + β̂1

n∑
i=1

x2
i1 + β̂2

n∑
i=1

xi1xi2 + · · ·+ β̂k

n∑
i=1

xi1xik =

n∑
i=1

xi1yi

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

β̂0

n∑
i=1

xik + β̂1

n∑
i=1

xikxi1 + β̂2

n∑
i=1

xikxi2 + · · ·+ β̂k

n∑
i=1

x2
ik =

n∑
i=1

xikyi

(3.7)

3.2. Monte Carlo method
The Monte Carlo method is a common name given to methods that find solutions to deterministic problems

by performing stochastic simulations. Unlike conventional forecasting models that rely on known input

values, the Monte Carlo method uses probability distributions of input variables to generate random

samples and perform simulations. This process allows for a comprehensive evaluation of various possible

scenarios, providing valuable insights into the potential outcomes under uncertain conditions.

The principle of the Monte Carlo method relies on the Law of Large Numbers [65]. If X1, X2, . . . Xn are

independent and identically distributed random variables with a common distribution f , and g : E → R,
where g is a function with finite expectation E. The law of large numbers states that as the sample size n
approaches infinity, the mean of g(Xi) converges to the true expected value E(g(X)):

lim
n→∞

1

n

∞∑
i=1

g (Xi) = E(g(X)) (3.8)

Monte Carlo simulations can be used to obtain the probability density function of the variable E(g(X))
by iteratively generating random numbers Xi and calculating the corresponding values of E(g(Xi)). The
Monte Carlo method finds application in sales projections, pricing, etc., enabling the assessment of potential

risks [66, 67]. Although frameworks can differ based on the application case, the typical procedure for

conducting a Monte Carlo simulation can be described as [68]:

1. Construct the Model: Establish the model that describes the system.

2. Select Simulation Variables: Identify the variables within the model that exhibit uncertainty and

choose a suitable probability distribution for variables.

3. Generate Iterative Simulations: Perform iterative simulations by generating random samples.

Typically, a common practice is to conduct 1000 iterations.

4. Aggregate and Analyze Results: Calculate statistical measures such as the mean, standard

deviation, and variance of the simulated results.

3.3. Statistical metrics
This thesis utilizes various metrics to perform a comparative analysis of the HIs and assess the performance

of NBM. Section 3.3.1 introduces the Mann-Kendall monotonicity metric. Section 3.3.2 presents various

error-quantifying metrics used for assessing the performance of the NBM. Section 3.3.3 introduces the

empirical mode decomposition, which can be used to quantify noise in monitored time series.

3.3.1. Mann-Kendall monotonicity test
The Mann-Kendall test, also known as the MK test, is a method used to quantify the monotonicity of the

time series [69]. MK test is a non-parametric method and can be applied to data with various distributions

without relying on the assumption of normality. This thesis utilizes the MK τ metric to quantify monotonicity
in monitored time series. The MK τ metric ranges from -1 to 1, with negative values indicating decreasing

monotonicity and positive values indicating increasing monotonicity, while values close to zero show no
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significant trend in time series [69]. The method applied to calculate the τ metric is shown in Equation
(3.9) [70, 71].

S =

n−1∑
i=1

n∑
j=i+1

sgn(xj − xi) (3.9)

Where the xj are the sequential data of the analyzed time series. A score of +1 is assigned if xi < xj , a

score of -1 is assigned if xi > xj , and a score of 0 is assigned if xi = xj , as shown in Equation (3.10).

sgn(xj − xi) =


1 if θ > 0

0 if θ = 0

−1 if θ < 0

(3.10)

The statistic S is obtained by summing the products of the scores for a data set and linearly related τ .
The value of τ is obtained as τ = S

D , where D is the maximum possible value of S for a given n. When

there are no tied values, D = n(n−1)
2 . The presence of ties decreases D, thereby increasing τ for a given

value of S.

It should be noted that other metrics quantifying the monotonicity of the time series are also available

in literature [39, 72, 73]. Notably, one of the widely used monotonicity metrics is Mo obtained as shown in
Equation (3.11).

Mo =
1

N

N∑
i=1

(
n+
i

ni − 1
− n−

i

ni − 1
), i = 1, · · · , N (3.11)

Where n+
i and n−

i are the number of positive and negative first derivatives of the times series curve, and

ni is the total number of observations. Compared to the MK τ metric, the Mo metric calculates monotonicity
based solely on the difference in values of consecutive points and fails to capture the overall trend in time

series [74]. To address this limitation of the Mo metric, the trendability metric is also used. Trendability

measures the cross-correlation of monitored time series with time and is calculated as [39]:

Trend =
|n (
∑n

i=1 xiti)− (
∑n

i=1 xi) (
∑n

i=1 ti)|√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
√

n
∑n

i=1 t
2
i − (

∑n
i=1 ti)

2
(3.12)

Where xi represents values of time series, and ti represents time. Both Mo and Trend are common

metrics used to evaluate HIs [39, 72, 73, 75, 37]. However, due to the Mo metric limitations in capturing

the overall trend in time series, this thesis utilizes the MK τ metric to perform a comparison of the analyzed

approaches.

3.3.2. Error measurements
To perform condition monitoring, it is essential that NBM accurately captures the healthy operation of the

component. NBM performance metrics aim to quantify the overall difference between predicted and actual

measurements. The higher the difference between predicted and actual measurements, the less accurate

the model is. The common model performance metrics are [76, 77, 62, 61]:

• The Mean Absolute Error (MAE) quantifies the average absolute difference between the predicted

and actual values of the target variable. The formula for calculating MAE is:

MAE =
1

N
∗

N∑
i=1

|ytrue(i)− ypred(i)| (3.13)

Where N is the number of samples in the dataset, ypred is the predicted value of the target variable,
and ytrue is the actual value of the target variable.

• Mean Squared Error (MSE) measures the mean of the squared difference between predicted and

actual value. MSE is sensitive to outliers due to the square term in the error. The formula for

calculating MSE is:

MSE =
1

N
∗

N∑
i=1

(ytrue(i)− ypred(i))
2 (3.14)
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• The Root Mean Squared Error (RMSE) is another statistical measure that evaluates the errors made

by a predictive model [76]. It is computed as the square root of the average of the squared differences

between the predicted and actual values of the target variable. The formula for calculating RMSE is:

RMSE =

√√√√ 1

N
∗

N∑
i=1

(ytrue(i)− ypred(i))2 (3.15)

• R-squared, also called the coefficient of determination, is a statistical metric utilized to assess the

quality of fit of a linear regression model. It quantifies the fraction of the target variable’s variance

that the model’s independent variables can account for [76]. The R-squared values fall between 0

and 1, with higher values signifying a better fit of the model to the data. The formula for calculating

R-squared is:

R2 = 1− SSres

SStot
(3.16)

Where SSres is the sum of the squared differences between the predicted and actual values, and

SStot is the sum of the squared differences between the actual values and the mean of the target

variable.

• Mean Absolute Percentage Error (MAPE) measures deviation in relation to the magnitude of the

actual value. The formula for calculating MAPE is:

MAPE =
1

N
∗

N∑
i=1

|ytrue(i)− ypred(i)|
ytrue(i)

∗ 100% (3.17)

3.3.3. Noise quantification using Empirical Mode Decomposition
Empirical Mode Decomposition (EMD) is a data-driven and unsupervised method used for decomposing

signals [78]. The method is based on the assumption that any non-stationary and non-linear time series

can be broken down into simple intrinsic oscillation modes. The EMD algorithm is designed to analyze

signal oscillations at the localized level and divides the data into distinct, non-overlapping components

based on time scales referred to as Intrinsic Mode Functions (IMFs). IMFs adhere to two fundamental

properties:

• An IMF has just a single extremum between two consecutive zero crossings.

• An IMF has a mean value of zero.

The process of performing EMD entails an iterative decomposition of a provided signal x(t) into its
IMFs, denoted as ci(t), along with a residual component r(t). This decomposition process is achieved
through a procedure known as sifting. EMD algorithm can be described as follows [79, 80, 81].

1. Local maximum values of input signal X(t) are found and connected using cubic spline to obtain

upper envelope reference. The same procedure is repeated for local minimum values, and a lower

envelope is obtained. Figure 3.1 shows the obtained upper and lower envelope.

Figure 3.1: Upper envelope and lower envelope [81]
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2. Average of upper and lower envelopes are calculated to get the mean envelope.

m1 =
X1,1

max(t) +X1,1
min(t)

2
(3.18)

3. The residue component is calculated as the difference between the original signal and the mean

envelope.

h1,1 = X(t)−m1,1 (3.19)

4. The original signal X(t) is replaced with h1,1, and Steps 1-3 are repeated until the standard deviation

from two consecutive sifting is less than the predefined threshold ε. Which is typically set between

0.2 and 0.3.

SD =

T∑
t=0

[∣∣(h1,(k−1)(t)− h1,k(t)
)∣∣2

h2
1,(k−1)(t)

]
< ε (3.20)

Consequently, the first IMF component is decomposed and denoted as:

c1 = h1,k = m1,k − h1,k−1 (3.21)

5. Previous steps are repeated until the final residual has no more oscillations and can not be decom-

posed further. The obtained residual indicates the mean trend of the signal. After applying the EMD,

the input signal is expressed as the summation of a finite number of IMFs (ci) and the residual rn(t),
as shown in Equation (3.22).

X(t) =

n∑
i=1

ci(t) + rn(t) (3.22)

EMD applications

EMD has found its application in various fields [82]. In the context of degradation analysis, EMD is applied

to identify degradation trends in systems, such as lithium-ion batteries [83, 84, 85]. Figure 3.2 shows the

IMFs of Time-Varying Filter-based EMD (TVF-EMD) to analyze the decreasing trend of original capacity in

a lithium-ion battery [83].

Figure 3.2: The decomposed series of original capacity in the battery using TVF-EMD [83]

Within wind turbine condition monitoring frameworks, EMD is applied for the signal processing of

bearing vibrations [21, 86]. Vibration signals are decomposed using EMD, and the Hilbert transform is

applied to each IMF to enable analysis in the frequency domain. Obtained spectrum is used to monitor

characteristic bearing frequencies to identify defects in the component.

Researchers also employ EMD to quantify and filter noise in various signals [87, 88, 86]. Karaganis et

al. [89] apply EMD to decompose the electrocardiogram and calculate the energy density of the obtained

IMFs. An electrocardiogram is a heartbeat time series signal commonly used in healthcare to evaluate

the heart. Based on the energy density value, the authors perform a statistical significance test to identify
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IMFs with high-level noise. Where energy density is calculated as:

En =
1

N

N∑
j=1

[cn(j)]
2

(3.23)

Where cn is the nth IMF of EMD decomposition, and N is the length of the IMF.

CEEMDAN

Researchers have developed different types of EMD methods. In this thesis, Complete Ensemble EMD

with Adaptive Noise (CEEMDAN) is employed specifically for its applications in cases where signals

exhibit seasonal changes [90, 91]. The key difference between CEEMDAN and simple EMD lies in the

incorporation of adaptive white noise. The benefit of CEEMDAN is its ability to address the problem of

noise residue and efficiently diminish the occurrence of low-frequency components characterized by small

amplitudes. Figure 3.3 illustrates the CEEMDAN flowchart. The explanation of the CEEMDAN algorithm is

presented below [90]:

1. White noise ωi(t) is added to the initial signal sequence x(t).

xi(t) = x(t) + ωi(t) (3.24)

The modified signal sequence (xi(t)) is decomposed using EMD to obtain the first IMF.

IMF i
1 = E(xi(t)) (3.25)

2. Step 1 is repeated ”I” times so that the first IMF of CEEMDAN is calculated as:

IMF1(t) =
1

I

I∑
i=1

IMF i
1(t) (3.26)

3. kth residue for k=1, .., K, is calculated as:

rk(t) = rk−1(t)− IMFk(t), r0(t) = x(t) (3.27)

4. White noise is added to the obtained residue:

rik(t) = rk(t) + ωi(t) (3.28)

The modified residue (rik) is decomposed using EMD to obtain IMF i
k.

IMF i
k = E(rik(t)) (3.29)

5. Step 4 is repeated ”I” times so that the (k)th CEEMDAN IMF is defined as:

IMFk(t) =
1

I

I∑
i=1

IMF i
k(t) (3.30)

6. Steps 3, 4, and 5 are repeated until the obtained residue can not be decomposed further.
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Figure 3.3: CEEMDAN flowchart, adopted from [90]



4
Methodology

This chapter describes the methodology proposed in this thesis for developing a physics-based NBM

employing SCADA data to build an HI for accurate monitoring of the degradation trend of wind turbine main

bearings. Section 4.1 describes the reference study that serves as the foundation for the proposed method.

Section 4.2 outlines the improvements to the reference model proposed in this work for enabling more

accurate degradation trend monitoring. Section 4.3 describes how these improvements are implemented

in the proposed method. Section 4.4 presents an overview of the method proposed.

4.1. Baseline reference paper
The study by Cambron et al. [32], presented in Section 2.3.2, is the foundation for the proposed approach.

The authors adopted a model based on the heat balance of the main bearing component, which, assuming

that the main bearing is a closed system, can be described by the following equation [92] :

∆U = Pin − Pout (4.1)

where the difference between mechanical power input (Pin) and power output (Pout) to the main bearing

corresponds to an increase in its internal energy (∆U ). The authors used Equation (4.2) to represent the
change in the main bearing temperature.

Cp
dTbear
dt

' R−1 (Tbear − Tnacelle ) + µω2 + αP (4.2)

Where Tbear is the main bearing temperature [K], Tnacelle is the nacelle temperature [K], ω is the main

shaft rotational speed [rad/s],P is the electric power generated [W ], Cp is the main bearing heat capacity

[Ws/K], R is the system thermal resistance [K/W ], µ is the friction coefficient in main bearing [Ws2/rad2],
α is the coefficient of heating performance [K/W ]. The first term on the right-hand side of Equation (4.2)

refers to the thermal conductivity and represents the heat transfer between the main bearing and the

nacelle. The second term of the equation represents the heat generated by the rotational friction. The last

term takes into account the Joule effect in the generator. The Joule effect is heat created in the generator

due to electric losses of the component. Equation (4.2) can be written in the recursive form and simplified

as:

Cp
∆Tbear
∆t

= R−1(Tbear(t)− Tnacelle(t)) + µω2(t) + αP (t)

Cp
Tbear(t)− Tbear(t− 1)

∆t
= R−1(Tbear(t)− Tnacelle(t)) + µω2(t) + αP (t)

Tbear(t)
Cp

∆t
− Tbear(t− 1)

Cp

∆t
= R−1(Tbear(t)− Tnacelle(t)) + µω2(t) + αP (t)

Tbear(t)
Cp

∆t
−R−1Tbear(t) = Tbear(t− 1)

Cp

∆t
−R−1Tnacelle(t) + µω2(t) + αP (t)

Tbear(t)(
Cp

∆t
−R−1) = Tbear(t− 1)

Cp

∆t
−R−1Tnacelle(t) + µω2(t) + αP (t)

Tbear(t) =
Tbear(t− 1)

Cp

∆t
Cp

∆t −R−1
+

R−1Tnacelle(t)

R−1 − Cp

∆t

+
µω2(t)

Cp

∆t −R−1
+

αP (t)
Cp

∆t −R−1

Tbear (t) = β1Tbear (t− 1) + β2Tnacelle (t) + β3ω
2(t) + β4P (t)

(4.3)
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To model the main bearing temperature, Cambron et al. used Equation (4.4).

T̂bear (t) ≈ β1Tbear (t− 1) + β2Tnacelle (t) + β3ω
2(t) + β4P (t) (4.4)

Where the coefficients β1, β2, β3, β4 are estimated using multivariate linear regression described in Section

3.1 by fitting Equation (4.4) to a 1 year of operational SCADA data. The model is then applied to a test set to

predict the main bearing temperature. The temperature residual (Res(t)) is then defined as the difference
between the recorded SCADA mean temperature (Tmes(t)) and the modeled temperature (T̂bear (t)).

Res(t) = Tmes(t)− T̂bear (t) (4.5)

The obtained residuals are averaged daily, and an EWMA control chart is applied to perform fault

detection in the main bearing. The authors use the calculated temperature residual as a main bearing HI

and consider the increase in the residual above a defined threshold as an indication of failure. Figure 4.1

summarises the methodology applied by [32].

Training set

Set of coefficents 

Modelled Temperature

Residual Calculation  Measured
Temperature

Test set

Detection

Multivariate 
linear regression

Average 
over
day

EWMA
control chart

Figure 4.1: Methodology proposed in the baseline work [32]

4.2. Aims of the proposed approach
The proposed approach uses as a basis the NBM developed by [32] and aims at improving its performance

for the estimation of the main bearing temperature residuals to obtain a more reliable and accurate indicator

of the degradation trend. Lifetime prognosis inherently entails uncertainties as it involves projecting the

progression of damage into the future [38]. Constructing HI that accurately captures the degradation

trend establishes a solid foundation for subsequent RUL predictions [40]. The proposed approach aims

to improve the monotonicity and dispersion of the monitored HI to enable accurate degradation trend

monitoring. To achieve these improvements, the proposed method considers seasonality and variability of

wind field characteristics.
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This section presents the aims of the proposed approach and is structured as follows. Section 4.2.1

highlights the significance of the HI monotonicity, while Section 4.2.2 underscores the importance of the HI

dispersion. To address these challenges, Section 4.2.3 discusses the significance of reducing seasonal

fluctuations in the HI, while Section 4.2.4 points out the importance of considering the variability of wind

field characteristics when applying physics-based NBM.

4.2.1. Monotonicity
The main bearing degradation trend is expected to be monotonic, according to the irreversible nature of

the degradation processes [40]. A primary metric for assessing the performance of different HIs is, in fact,

monotonicity [39, 93, 72]. The monotonic behavior of the HI facilitates forecasting the progression of the

degradation to perform RUL predictions. The proposed approach aims to obtain monotonic HI to enable

accurate degradation trend monitoring. In this study, the MK τ metric, described in Section 3.3.1, is used
to quantify the monotonicity of the analyzed HI.

4.2.2. Dispersion
Dispersion measures the amount of variability exhibited by data [76, 64]. Stochastic processes, sensor

errors, and varying operating conditions introduce fluctuations in HI [94]. Both Figures 4.2 and 4.3 show

monotonic HIs. However, those in Figure 4.3 show higher fluctuations due to dispersion. Fluctuating

and dispersed HIs behavior reduce the accuracy of fitted degradation models, hindering the precise

projection of degradation trends into the future. This, in turn, leads to less accurate RUL predictions [94,

95, 96]. Moreover, dispersion is a particularly relevant issue in the case of temperature-based NBM as

high fluctuations in residuals can lead to false detections [57, 53]. Therefore, the proposed approach aims

to reduce the dispersion of the HI to enable accurate degradation trend monitoring.

Figure 4.2: An example of monotonic HIs [75] Figure 4.3: An example of monotonic and dispersed

HIs [75]

For degradation monitoring, dispersion refers to the extent to which data points deviate from a reference

line. A degradation time series with a monotonic irreversible increasing trend is adopted as a reference

line. A simple linear fit is applied to the monitored HI to obtain the reference degradation line. Deviation

from this fitted reference line is considered as the dispersion of the HI. Figure 4.4 shows an example of a

HI time series and their reference degradation trend, given by the green line. The HI dispersion is given by

the distance between the HI values and the reference degradation line. To quantify the dispersion of HI,

the MSE metric introduced in Section 3.3.2 is used.
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Figure 4.4: Dispersion calculation method with respect to reference degradation line

However, a limitation of this approach is the assumption of the underlying linear trend. Various studies

employ different degradation models, such as double exponential, exponential, and linear models [58, 97,

98, 99]. The choice of an appropriate model capturing the degradation process is essential to evaluate the

dispersion of the HI, which makes this approach case-specific. To address this limitation, an alternative

data-driven dispersion quantification metric based on the measure of the HI noise is proposed in this thesis.

This work adopts CEEMDAN, described in Section 3.3.3.2, to quantify dispersion based on the measure

of the HI noise. The underlying concept is that a HI with a more consistent and less dispersed pattern

is expected to demonstrate a lower level of noise. The adopted method can be described as follows.

CEEMDAN is applied to the monitored HI. Subsequently, the residual trend obtained from CEEMDAN is

used as the reference degradation trend, while all the IMFs are considered noise. To quantify the noise

level in the monitored HI, the signal power of each IMF is calculated using [100, 89]:

PowerIMFl
=

1

N

N−1∑
i=0

|xi|2 (4.6)

where PowerIMFl
represents the power of each IMF signal, IMFl, N is the number of samples in the IMF

signal, and xi denotes the individual samples of the IMF signal. The power values of the IMFs are then

averaged to obtain the overall noise level of HI:

Noise =
1

k

k∑
l=1

PowerIMFl
(4.7)

where k represents the number of IMFs obtained as a result of CEEMDAN decomposition. Figure 4.5

shows an example of the time series decomposed IMFs using CEEMDAN [84]. The figure illustrates the

battery capacity time series during 170 cycles decomposed into five IMFs.

Figure 4.5: CEEMDAN decomposed time series [84]
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According to the proposed approach, the noise of the time series is then obtained by calculating the

average power of the five IMFs:

Noise =
1

k

k∑
l=1

PowerIMFi
=

1

k

k∑
l=1

1

N

N−1∑
i=0

|xi,l|2 =
1

5

5∑
l=1

1

170

169∑
i=0

|xi,l|2 (4.8)

Karaganis et al. [89] use noise quantification in their study, focusing on the heartbeat time series signal

known as an electrocardiogram (Section 3.3.3.1). The authors calculated the power of each of the obtained

IMFs to determine its significance for further analysis. However, as this study focuses on degradation

trend monitoring, all the signals except the residual trend derived from CEEMDAN decomposition are

considered noise.

4.2.3. Seasonality
Seasonal changes in wind turbine operating conditions might lead to corresponding oscillations in the

HI trend. These seasonal HI fluctuations could be wrongly interpreted as degradation trends [1, 32].

Moreover, they increase the dispersion and reduce the monotonicity of the monitored degradation trend,

which can lead to a less accurate lifetime prognosis [40, 94]. Therefore, the proposed method aims to

consider seasonal variations when applying physics-based NBM to enable more accurate degradation

trend monitoring. This thesis quantifies seasonality by calculating the cross-correlation between the HI

and the ambient temperature using the Pearson correlation coefficient:

r =

∑
(xi − x̄) (yi − ȳ)√∑

(xi − x̄)
2∑

(yi − ȳ)
2

(4.9)

where r is the correlation coefficient, xi are the values of the ambient temperature in a sample, x̄ is the

mean of the values of the ambient temperature, yi are the values of the HI in a sample, and ȳ is the mean
of the values of the HI.

When the NBM is adequately built, seasonality should not be evident in the residuals. Ideally, NBM

residuals are expected to consist of noise and trend components. However, the periodic oscillations in

the residuals are an indication of seasonality. This emphasizes the importance of considering seasonal

variations for establishing adequate physics-based NBM.

4.2.4. Variability of wind field characteristics
The primary reason for the premature failure of wind turbine components is attributed to the variability of

the wind conditions [17]. Varying loads experienced by the main bearing significantly impact the lifespan

of the component [56, 43]. The main bearing is located between the rotor and the drivetrain, which makes

it more susceptible to varying loads than components further down the drivetrain [44].

Various model parameters are used in NBM to capture varying operating conditions of the wind turbine

main bearing, as described in Section 2.3. Signals such as wind speed, rotational speed, and power

produced either implicitly or explicitly capture the operation of wind turbine components. However, current

NBM methods are based solely on the mean value of these signals, which do not consider the variations of

operating conditions within the 10-minute averaged time frame commonly applied by the SCADA system.

These variations impact monitored HI. This thesis aims to take into account the variability of operating

conditions within a 10-minute time to reduce the dispersion and increase the monotonicity of the obtained

HI, enabling more accurate degradation trend monitoring.

4.3. Proposed approach
The method proposed in this work builds an HI of the main bearing using its temperature residuals estimated

with a physics-based NBM. The proposed approach builds upon the method introduced in Section 4.1 to

achieve the aims discussed in Section 4.2. This thesis proposes two main steps to achieve these aims.

The first (Step S), described in Section 4.3.1, applies multiple NBMs to mitigate seasonal fluctuations of

the HI. The second (Step M), described in Section 4.3.2, employs the Monte Carlo method to take into

account the variability of operating conditions within 10-minute intervals and introduces data density within
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a threshold region as novel HI for degradation trend monitoring. The proposed method also applies two

further steps, averaging over a selected interval and EWMA smoothing described in Section 4.3.3, to

increase the signal-to-noise ratio and smooth a main bearing HI.

4.3.1. Step S - Seasonality
Various methods are available to mitigate the seasonal effects observed in the residuals. Butler et al. [58]

and Tutiven et al. [52] use relative temperature as input to the NBM models. Encalada et al. [1] emphasize

the importance of providing at least one year of training data to ensure the NBM training set captures

various operating conditions. Zhang et al. [62] use ambient temperature as input to their model to avoid

seasonality effects. Antico et al. [91] use CEEMDAN decomposition to retrieve seasonal trends of the time

series.

Wang et al. [61] apply two models to take into account variable operating conditions of the main bearing

(Section 2.3.1). NBM models are built for two clusters obtained as a result of the K- Means labeling. It

should be noted that wind direction is a partitioning parameter between the two clusters. According to

the authors, partitioning is based on wind direction due to the purely data-driven nature of the K-means

algorithm. To mitigate the impact of seasonal changes on the residuals, this thesis develops separate

physics-based NBMs corresponding to the time period of the year. In the Northern Hemisphere, wind

turbines produce more energy during winter due to the stronger available wind field. The proposed solution

is based on the significant difference between wind turbine operating conditions during winter and summer

months.

The proposed step applies multivariate regression to derive distinct sets of coefficients of Equation

(4.4) corresponding to different time periods of the year instead of one set of coefficients applied for the

entire period, as done in the reference paper [32]. Figure 4.6 shows the procedure adopted for considering

the effects of seasonality.

Divide Training Data
in N groups 

Training Data  group(i)<N

Multivariate linear
regression 

Set of coefficients 

i=i+1

N Sets of coefficients 

Training Data group_i

Seasonality

Training Data

Figure 4.6: Seasonality step (Step S)

Initially, the training data is divided into N distinct groups based on the time of the year. Where the



4.3. Proposed approach 29

number of group divisions is tuned based on the effect of decreasing seasonality on the accuracy of

the obtained model. Various data group divisions can be applied, such as two groups (colder months,

September-February/hotter months, March-August), four groups(Winter/Spring/Summer/Fall seasons),

and 12 groups (each month has a corresponding set of coefficients). Subsequently, multivariate linear

regression is applied to each specific group within the SCADA training data, and this process is repeated

for every group. This yields N sets of coefficients for the reference Equation (4.4).

4.3.2. Step M - Variability of wind field characteristics
To consider variations in wind field characteristics within each 10-minute interval, this thesis uses the STD

records from the SCADA data. Ideally, for each of the signals used in the equation and for each timestamp,

the SCADA data provide the average, min, max, and STD values. The STD is the metric that shows how

the measurements vary within each 10-minute averaged interval. This is directly related to the variable

conditions under which the main bearing operates.

To consider the variability in the main bearing operation within each 10-minute time frame, this thesis

proposes to apply the Monte Carlo method. The proposed method performs an iterative simulation using

random values of the input variables of Equation (4.4) to simulate the distribution of the predicted main

bearing temperatures in a 10-minute time frame. These modeled temperatures simulate the variability of

the actual bearing temperatures within the averaged interval. The schematic in Figure 4.7 illustrates the

procedure proposed for applying the Monte Carlo method.

Divide Test Data
in N groups

Test Data Interval(i)
Set of Coefficients(i)

i<N

z=z+1

1000*Modelled temperatures Test Data
Interval (i)

i=i+1

Upper/Lower Threshold 

Modelled temperature for
interval i 

Monte
Carlo

N Sets of
coefficients 

z<=1000

1000*Test Data Modelled
Temperature 

STD/Mean for each timestamp 

Test Data 

Figure 4.7: Monte Carlo step (Step M)
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First, following the previous seasonality step, N data groups and their respective sets of coefficients are

identified. For each group in the test data, 1000 random values are generated for each signal in Equation

(4.2). The random values are generated based on the mean and STD values obtained from the SCADA

records of the test set. This results in 1000 modeled main bearing temperatures for each timestamp. The

selection of 1000 iterations is based on its common use as a standard number for Monte Carlo simulations

[101]. The process is repeated for every group in the test data, yielding 1000 modeled main bearing

temperatures for each timestamp for the entire data set. The mean, AV G(t), and standard deviation,

STD(t), of these values are then calculated for each timestamp of the test data. Finally, these metrics are
used to calculate the upper,Upthreshold(t), and lower, Lowthreshold(t), thresholds for each timestamp as:

Upthreshold(t) = AV G(t) + k ∗ STD(t) (4.10)

Lowthreshold(t) = AV G(t)− k ∗ STD(t) (4.11)

Where k is a tuning parameter that determines the width of the threshold region. The distance between
Lowthreshold(t) and Upthreshold(t) is referred to as the threshold region and represents the range of possible
main bearing temperatures during each 10-minute time frame. It is recommended to use a failed case

study to tune k to enable the highest monotonicity and lowest dispersion of HI while not compromising fault
detection. Then, the tuned k parameter is applied to another case study to monitor the degradation trend.

In this study, the value k = 1 was chosen to define the range of model results that represent the

healthy operation of the wind turbine main bearing. Figure 4.8 shows the probability density function of a

normal distribution with its mean, µ, and STD, σ. According to the 3σ rule, 68.2% of the data is located

one STD away from µ. In contrast, two and three STD values are used as fault detection thresholds

representing the unhealthy behavior of the component [102]. The defined k=1 corresponding 1 STD

threshold region is chosen to represent a healthy operating region. Thus, when the measured mean

main bearing temperature falls into the modeled threshold region, it is assumed to represent a healthy

operation of the component. Monte Carlo simulation’s generated Lowthreshold(t) and Upthreshold(t) for
each timestamp allows to introduce a new approach for residual calculation, as discussed in the next

section.

Figure 4.8: Probability density function of normal distribution with mean (µ) and STD (σ) [103]

Residual calculation

The Monte Carlo simulation transforms the punctual main bearing temperature values obtained from

Equation (4.4) into a range of possible values for each considered timestamp. The mean main bearing

temperature is then used to calculate the residuals as follows.

1. Residuals associated with measured mean SCADA temperatures falling within the healthy operating

region are assumed equal to 0:

Tmes(t) < Upthreshold(t) & Tmes(t) > Lowthreshold(t) ⇒ Res(t) = 0 (4.12)

2. For measurements falling outside this healthy operating range, the residuals are calculated as the

difference between the measured main bearing mean temperature and the closest threshold. If the
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measured main bearing mean temperature is higher than the Upthrehsold(t), the residual is calculated
as:

Tmes(t) > Upthreshold(t) ⇒ Res(t) = Tmes(t)− Upthreshold(t) (4.13)

3. If the measured main bearing mean temperature is lower than the Lowthrehsold(t), the residual is
calculated as:

Tmes(t) < Lowthreshold(t) ⇒ Res(t) = Tmes(t)− Lowthreshold(t) (4.14)

Figure 4.9 illustrates the proposed residual calculation method. The data points represent measurements,

and the range between the threshold region between Upthrehsold(t) and Lowthrehsold(t) shows the threshold
region. The figure illustrates the residual calculation depending on the value of the measured temperature.

Figure 4.9: Proposed residual calculation method

Density of threshold region

This thesis proposes the construction of a novel HI based on the assumption that the threshold region

represents the healthy-bearing state. As the component approaches a failure, the number of points within

this region is expected to decrease, indicating a deterioration of its health. The density of the threshold

region is proposed as HI to monitor the amount of measurements falling within the threshold region.

Consequently, the density of the threshold region should reach its lowest value just before a failure. The

density of the threshold region is calculated as:

ρthreshold_region(∆t) =
Nthreshol_region(∆t)

Ntotal(∆t)
(4.15)

where for each time frame ∆t, Nthreshol_region is the number of measurements falling within the threshold

region, and Ntotal is the total number of available measurements. To simplify the calculation of the density

of the threshold region, the residuals are classified according to the binary value of an indicator L:

Tmes(t) < Upthreshold(t) & Tmes(t) > Lowthreshold(t) ⇔ Res(t) = 0 ⇒ L(t) = 1

Tmes(t) > Upthreshold(t) || Tmes(t) < Lowthreshold(t) ⇔ Res(t) 6= 0 ⇒ L(t) = 0
(4.16)

For measurements that fall in the threshold region L(t) = 1, while for measurements falling outside the
threshold region L(t) = 0. Then Equation (4.15) for a given time frame t can be written as the mean of the
indicator values:

ρthreshold_region(∆t) =
1

Length(∆t)

Length(∆t)∑
i=0

L(ti) (4.17)

Tautz-Weinert [104] analysed multiple case studies where various NBM techniques were applied to

model the gearbox temperature. Figure 4.10 illustrates identified patterns in the NBM residuals before

failure, where the red line is the moving average of the residuals.Typical identified patterns were:
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1. ’Rise’- Slow increase in the temperature trend. Figure 4.10(a) shows this upward trend in the residuals.

2. ’Spread’- Increase in dispersion of the residuals before failure. In Figure 4.10(b) the region between

the two orange lines demonstrates high fluctuation of the residuals.

3. ’Spike’ - Fast increase in residuals in the scale of hours. In Figure 4.10(c), the arrow indicates a

spike in temperature residuals.

Figure 4.10: Residual patterns associated with the abnormal behavior of a turbine component [53].

According to Murgia et al. [53], if none of the known NBM residual patterns shown in Figure 4.10 are

present in the test set, the validation of the SCADA-based condition monitoring method is not possible.

Compared to conventional NBM residuals, the proposed approach based on the density of the threshold

region is expected to remain consistent across different failures, as the proposed HI does not depend on

the magnitude of the deviation.

It is important to note that this thesis compares the performance of the residuals obtained using the

baseline NBM proposed by Cambron et al. with the proposed novel HI. While the unit of the residual-based

HI is Kelvin (K), the density of the threshold region is adimensional. Thus, normalization is necessary to

enable the comparison of these HIs. This thesis uses ’StandardScaler’ from the Scikit Learn library in

Python, where normalization can be described as:

HI ′(t) =
HI(t)− H̄I

σHI
(4.18)

Where HI ′ is the normalized HI, H̄I is the mean, and σ is the STD of the HI.

The density of the threshold region represents a novel approach to obtaining an HI using NBM, and this

is made possible thanks to the introduction of Step M. The proposed HI takes into account the variability

of the main bearing operating conditions within each 10-minute time frame and aims to enable accurate

monitoring of the degradation trend.

4.3.3. Average over-interval and EWMA steps
The average over-interval step and EWMA step serve two primary purposes: data reduction and smoothing.

This makes the identification of anomalies in the HI easier. The average over-interval step reduces the

number of analyzed data points by calculating their average over a specific time interval. This is a common
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post-processing method applied in condition monitoring. Various averaging windows are implemented in

the literature. Herp et al. [60] analyze hourly resampled residuals obtained from an ANN model, while

Cambron et al.[32] use daily averaged residuals. Enclada et al. [1] define HI as the number of times

temperature residual exceeded the threshold throughout one week. Similar to Encalda et al., Tutiven et

al. [52] use weekly averaged classifications from 1-class SVM as HI. The aim of using averaged HI is to

increase the signal-to-noise ratio and reduce the amount of false detections.

Although the choice of the averaging window can be determined through trial and error, this study

focuses on comparing the proposed method with the baseline method. Therefore, the specific choice of

the averaging interval becomes less critical as long as it remains consistent for both compared methods.

However, it is important to note that the chosen averaging intervals should still be reasonable and ap-

propriate for condition monitoring. The ”resample” function in the Pandas library is used to perform the

averaging over-interval step.

An EWMA is then applied to smooth the obtained HI [52, 32]. This thesis uses EWMA as this was used

in the baseline paper [32]. The ”ewm” function from the Pandas library is employed to perform smoothing

and is described as:

Z(t) = λHI(t) + (1− λ)HI(t− 1) (4.19)

where Z is the smoothed values of the HI and λ is the smoothing factor. Higher λ values mean less

smoothing, while lower λ values mean stronger smoothing. Cambron et al. [32] select the value of λ using

the lookup tables provided in [105]. The choice of λ is based on how early the designed framework is

expected to perform detection. The primary focus of this study is to demonstrate the advantages of the

proposed approach compared to the baseline framework proposed in [32] and described in Figure 4.1. As

in the case of the average over-interval step, the specific choice of the λ becomes less critical as long as it

remains consistent for both the baseline and proposed methods.

4.4. Overview
The proposed method is summarised by the flowchart shown in Figure 4.11. Initially, the method applies

Step S, described in Section 4.3.1, to obtain N sets of coefficients of Equation (4.4). Next, Step M is applied

to estimate the Lower and Upper thresholds for each timestamp of the test set, as described in Section

4.3.2. Residuals are calculated according to what is shown in Figure 4.9. To build the proposed HI, the

residuals are then classified according to Equation (4.16). The average over-interval step of classified

values is calculated to obtain the density of the threshold region, followed by the EWMA smoothing step to

obtain HI for the degradation trend monitoring.
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Figure 4.11: Overview of the proposed approach
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5
Results

This chapter presents the results of two case studies conducted using the approach proposed in Chapter 4.

The first case study refers to a wind farm that did not experience any failure, while the second case refers

to a wind turbine experiencing a failure of the main bearing. This chapter aims to perform a comparison

between the baseline HI described in Cambron et al. [32] and the HI obtained using the methodology

proposed in this thesis.

Each case study is described according to the following structure: first, the dataset is introduced. Next,

a description of how the general methodology proposed in Chapter 4 has been adapted to each case study

is given. Subsequently, dataset prepossessing is shown, and the results are presented and discussed.

5.1. Case Study 1: Vaudeville-le-Haut wind farm
The Vaudeville-le-Haut wind farm is located in France and consists of four REpower MM82 onshore

turbines, each with a rated capacity of 2 MW and a diameter of 82 meters. The available SCADA dataset

covers the period from 2013 to 2018 and includes a range of sensor measurements. The dataset includes

records of the temperature of various components and the nacelle, the ambient temperature; environmental

condition records such as wind speed and wind direction; power production-related records such as power

produced, grid frequency, and generator rotational speed. For each SCADA measurement, the mean,

STD, min, and max values are provided. The SCADA measurements available for the Vaudeville-le-Haut

wind farm are provided in Table A.1 in Appendix A. This SCADA dataset lacks the turbines’ status codes

and maintenance records.

5.1.1. Adapted methodology
Since the Case Study 1 dataset does not include run-into-failure data, the post-processing steps have been

slightly modified compared to what is presented in Chapter 4. A schematic representation of the adopted

baseline approach to obtain HIRes_Baseline is shown in Figure 5.1, while the method proposed to obtain

the density of the threshold region HI referred to HIAlt is illustrated in Figure 5.2. Moreover, Case Study

1 compares the HIs obtained after implementing each step of the proposed approach shown in Figure

5.2 against the HI obtained using the baseline method illustrated in Figure 5.1. Table 5.1 summarises the

nomenclature used to define the HIs. Thus, apart from comparing HIRes_Baseline and HIAlt, this case

study also analyzes the effects of the intermediate steps HIRes_S and HIRes_S_M . Figure 5.3 illustrates

the method utilizing Step S to obtain HIRes_S , while Figure 5.4 shows the approach applying Step S and

Step M to obtain residual-based HI (HIRes_S_M ).

Table 5.1: Case Study 1 - Nomenclature of the HIs is calculated with the baseline approach and after the

implementation of each step of the proposed methodology

Method HI Flowchart

Baseline HIRes_Baseline Figure 5.1

Step S HIRes_S Figure 5.3

Step S and Step M HIRes_S_M Figure 5.4

Step S and Step M density of threshold region HIAlt Figure 5.2

35



5.1. Case Study 1: Vaudeville-le-Haut wind farm 36

Compared to the general method presented in Section 4.4, in this case study, the EWMA smoothing

step is not performed, as shown in Figures 5.1 and 5.2. This adaptation is made because the reference

study uses EWMA as part of the fault detection framework [32]. However, due to the lack of relevant data,

in this case study the aim is only to analyze and compare the performance of the HIs. Consequently, the

final step for compared methods in this case study is averaging the over-interval step. Notably, these

methods use separate turbines as testing and training data sets, which is consistent with the approach

adopted by Cambron et al. [32]. Moreover, the average over one-day period is adopted for consistency

with the daily averaged interval employed by Cambron et al. (Chapter 4.1).
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Figure 5.1: Case Study 1 - Baseline method to calculate HIRes_Baseline
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Figure 5.2: Case Study 1 - Proposed method, implementation of Step S and Step M density of threshold

region to calculate HIAlt
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Figure 5.3: Case Study 1 - Implementation of
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Figure 5.4: Case Study 1 - Implementation of

Step S and Step M to calculate HIRes_S_M

For Case Study 1, the remainder of this Section is structured as follows. Section 5.1.2 presents the

wind turbines chosen for the model training and testing. Section 5.1.3 describes the pre-processing steps

applied to the training and testing datasets. Section 5.1.4 shows HIRes_Baseline obtained using baseline

approach. Section 5.1.5 presentsHIRes_S obtained employing Step S. Section 5.1.6.1 exploresHIRes_S_M

based on the residuals obtained using Step S and Step M. Section 5.1.6.2 outlines HIAlt based on the

density of the threshold region obtained using Step S and Step M.

5.1.2. Wind turbine selection
Status codes and maintenance records usually help to define training and testing sets. When records

indicate maintenance activities on the monitored component, employing the dataset corresponding to

this period for training should be avoided, as for building reliable NBMs, it is crucial to use datasets

representing healthy operation. On the other hand, as this study focuses on degradation trend monitoring,

having status codes and maintenance records would enable an easily defined testing set to perform a

comparative analysis of the HIs. However, status codes and maintenance records from the wind farm

under investigation are not available. To address this limitation, the choice of testing and training turbine is

based on the assumption that a gradual increase in the main bearing temperature indicates the evolution of

the components’ degradation process. Numerous studies correlate a gradual increase in the main bearing

temperature with health deterioration of the component [43, 25, 56, 24, 30].

A rolling average window of one year was applied to the main bearing temperature signals of the four

turbines to determine which main bearings temperature indicates components undergoing a degradation

process. Figures 5.5 and 5.6 show the yearly rolling average of Turbine A and Turbine C during 5 years

of operation. The data from these two turbines have been selected as the testing and training sets,

respectively. A gradual increase from 25.3 C0 to 28.3 C0 of the rolling main bearing temperature can be

observed in Figure 5.5. This can be seen as an indicator of the bearing health deterioration. Thus, Turbine

A is regarded as a reasonable candidate for degradation trend monitoring, and its dataset is selected as the

test set. In contrast, Figure 5.6 shows an almost stable rolling average main bearing temperature of around

27 C0 for Turbine C. Thus, based on the assumption that a stable main bearing temperature over the

analyzed period indicates a healthy component, the turbine C dataset was selected as the training set for

building the NBM. The other two turbines, Turbines B and D, were disregarded due to drastic fluctuations

and unexpected temperature signal behavior, as shown in Appendix A.2.
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Figure 5.5: Case Study 1 - Yearly rolling average of the Turbine A main bearing temperature

Figure 5.6: Case Study 1 - Yearly rolling average of the Turbine C main bearing temperature

5.1.3. Data cleaning
Data cleaning is an essential step in data analysis. Throughout the operation, sensors and the SCADA

system may experience a malfunction, which leads to abnormal recordings and gaps in the records.

Abnormal records in the training set can compromise the construction of a reliable NBM that accurately

captures the healthy behavior of the component. Furthermore, within the test set, these records can reduce

the accuracy of the NBM and can potentially undermine the analysis of the obtained results.

The data cleaning process adopted in this work is outlined in Table 5.2, which shows the number of

samples dropped for both the training and test turbine datasets after each cleaning step. First, duplicate

timestamps were removed to ensure data integrity. Additionally, negative power values were replaced by

zero values, as these values do not have a physical meaning with regard to the main bearing temperature

model (Equation (4.4)). Moreover, a basic filtering process was implemented to remove outliers. Main

bearing temperatures above 70 C0 and below -20 C0 were dropped. These thresholds were determined

empirically by analyzing the mean main bearing temperature SCADA records. Moreover, records containing

”Nan” values were dropped. Notably, after applying the cleaning steps, approximately 95% of the data was

usable for further analysis.
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Table 5.2: Case Study 1 - Data cleaning process

Number of Training Data (Turbine C) Number of Test Data (Turbine A)

Original available data points 264528 264528

Duplicate timestamps dropped 76 77

Outliers dropped 1653 2074

Nan values dropped 7053 5950

Data used 255745 256427

5.1.4. Baseline approach
Following the baseline method presented in Figure 5.1, the coefficients of Equation (4.4) have been

obtained by applying multivariate linear regression to the whole training set. The values of the obtained

coefficients are shown in Table 5.3. Notably, β1 indicates that the main bearing temperature is highly

auto-correlated and is the most significant contributor to the main bearing temperature model.

Table 5.3: Case Study 1 - Main bearing temperature model coefficients of Equation (4.4)

Coefficients Case Study 1

β1 0.984

β2 0.0151

β3(K ∗ s2/rad2) 0.0662

β4(K/kW ) 0.000021

Using coefficients in Table 5.3, the main bearing temperature was modeled for the test dataset (Figure

5.1). Figure 5.7 shows the modeled and measured main bearing temperatures for the test wind turbine.

Additionally, Figure 5.8 presents a zoomed-in section between the 7th and 10th of May 2014, allowing

both measured and modeled temperatures to be shown clearly.

Figure 5.7: Case Study 1, Test set - Modelled and measured main bearing temperature
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Figure 5.8: Case Study 1, Test set - Modelled and measured main bearing temperature, zoom-in view in

the period between May 7 and May 10 of 2014

High seasonal fluctuation in the main bearing temperature can be observed in Figure 5.7, with lows

in the winter and peaks in the summer. Figure 5.9 illustrates the measured main bearing and ambient

temperatures between 2013 and 2018 of the test turbine. Seasonal fluctuations present in the main bearing

temperature could be a consequence of no cooling system present in the nacelle, which leads to a high

correlation between the main bearing temperature and ambient temperature, which has been calculated to

be equal to 0.78. Moreover, it should be added that there were no records of the cooling system in the

SCADA dataset (Appendix A.1).

Figure 5.9: Case Study 1, Test set - Measured main bearing and ambient temperatures

The baseline HIRes_Baseline for the test set for the period 2013-2018 is calculated according to the

approach shown in Figure 5.1 as the daily average of the difference between the modeled and measured

main bearing temperatures shown in Figure 5.7. The obtained HIRes_Baseline for the whole test set is

presented in Figure 5.10.

The gradual increase in HIRes_Baseline observed in Figure 5.10 is attributed to the progressive degra-

dation of the main bearing. The degradation of the component’s health changes the model relationship,

consequently resulting in a deviation from the established NBM. This shift can be observed by a gradual

increase in HI. Seasonal fluctuations in HIRes_Baseline, with positive and negative peaks occurring during

summer and winter, respectively, can be observed in Figure 5.10. They are an indication of the limitations

in describing the main bearing temperature with a single set of coefficients.
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Figure 5.10: Case Study 1, Test set - Baseline approach HI, HIRes_Baseline

5.1.5. Step S
To take into account the seasonality effects, Step S described in Section 4.3.1 has been implemented.

HI (HIRes_S) for the test set is calculated according to the flowchart shown in Figure 5.3. The training

set, which includes data from 5 different years, has been divided into twelve groups, each corresponding

to the data from the same month. Twelve sets of coefficients of Equation (4.4) have been obtained by

applying multivariate linear regression to the monthly grouped training sets. In this way, it is possible to

model independently the behavior of the main bearing temperature in each month of the year.

Different data divisions, such as grouping the data according to two seasons (colder months, September-

February/hotter months, March-August) or quarterly periods (four seasons), have also been explored.

These data divisions are presented and discussed in Appendix A.3. The decision to adopt a twelve-month

division was motivated by the fact that this approach results in the lowest RMSE, calculated for the modeled

main bearing temperature and cross-correlation with ambient temperature when fitting the equation to the

test set. The twelve sets of coefficients are shown in Table A.3.

The monthly coefficients obtained from the approach depicted in Figure 5.3 were used to model the

main bearing temperature in the test set. The same residual calculations and daily averaging steps as

in the case of HIRes_Baseline were applied to calculate HIRes_S . The resulting HIRes_S for the test set is

shown in Figure 5.11.

Figure 5.11: Case Study 1, Test set - Step S HI, HIRes_S

Compared to the HIRes_Baseline shown in Figure 5.10, HIRes_S shows lower seasonal variations. This

reduction is also confirmed by the values of the cross-correlation of those HIs with ambient temperature

presented in Table 5.4.
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Table 5.4: Case Study 1 - Cross-correlation of HIRes_Baseline and HIRes_S with the ambient temperature

Series HIRes_Baseline HIRes_S

Ambient temperature 0.369 0.159

Table 5.5 presents the performance metrics, as discussed in Section 3.3.2, for the baseline model

(ModelBaseline) and the seasonality model (ModelS). There are no noticeable changes in the model

performance metrics, suggesting that the proposed seasonality step successfully mitigates the impact of

seasonality on the monitored HI without compromising the model’s fit to the test data.

Table 5.5: Case Study 1 - Baseline and Seasonality model performance metrics

Metric ModelBaseline ModelS

RMSE (K) 0.1244 0.1237

R2 0.9995 0.9995

MAE (K) 0.0777 0.0772

MAPE (%) 0.32 0.32

5.1.6. Step M
In order to consider the variability of operating conditions within a 10-minute timeframe, Step M, as explained

in Section 4.3.2, is implemented. With the monthly coefficients obtained from Step S, the main bearing

temperature for each timestamp in the test set is modeled using the Monte Carlo method. This yields upper

and lower thresholds for each timestamp as an outcome of Step M. In this section, the residual-based

HI (HIRes_S_M ) is presented. Additionally, the HI based on the density of the threshold region (HIAlt) is

introduced.

Step M, HI based on residual

HI (HIRes_S_M ) has been obtained using the method presented in Figure 5.4. The upper and lower

thresholds obtained for each timestamp are used to calculate the residuals, as described in Section 4.3.2.1.

According to this approach, 35.4% of the measured mean bearing temperature fell within the inner threshold

region where the residuals are assumed to be equal to 0, as described in Equation (4.12). Similarly to

the previous steps, the calculated residuals were averaged daily to obtain HIRes_S_M , which is shown in

Figure 5.12.

Figure 5.12: Case Study 1, Test set - Step S and Step M HI, HIRes_S_M

Similarly to HIRes_Baseline and HIRes_S , HIRes_S_M illustrates an upward trend throughout the 5 years

of operation. Moreover, no significant seasonal fluctuations can be observed, and the cross-correlation of

HIRes_S_M with ambient temperature is 0.137.
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The performance of the three HIs is compared in terms of monotonicity and dispersion in Figures 5.13,

5.14, and 5.15. The monotonicity of the HIs, shown in Figure 5.13, is calculated with the MK τ monotonicity
metric described in Section 3.3.1. Their dispersion is quantified using the MSE and Noise metrics described

in Section 4.2.2 and is shown in Figure 5.14 and Figure 5.15, respectively.

Figure 5.13: Case Study 1 - HIRes_Baseline, HIRes_S and HIRes_S_M monotonicity comparison

using MK τ

Figure 5.13 shows that HIRes_S_M has the highest degree of monotonicity, with a value of MK τ equal
to 0.417, against values of 0.39 and 0.414 for HIRes_Baseline and HIRes_S , respectively. However, this

improvement in monotonicity is only 7% with respect to the baseline approach. This minor improvement

observed for HIRes_S_M may be attributed to the weak upward trend of the main bearing temperature

shown in Figure 5.5 due to no run-into failure data available. In contrast, a run-into-failure test set is

expected to have a more evident upward trend since deviation from the healthy condition is expected to

increase as the component approaches failure.

Figure 5.14: Case Study 1 - HIRes_Baseline,

HIRes_S and HIRes_S_M dispersion comparison

using MSE

Figure 5.15: Case Study 1- HIRes_Baseline,

HIRes_S and HIRes_S_M dispersion comparison

using Noise

Figure 5.14 shows that HIRes_S_M is characterized by the lowest dispersion in terms of MSE (1.7e-

3K2) when compared to that of HIRes_Baseline (4.7e-3K
2) and HIRes_S (4.1e-3K2). Similarly, Figure 5.15

illustrates that HIRes_S_M exhibits the lowest level of Noise (7.3 e-5K2) in comparison to HIRes_Baseline

(1.53e-4K2) and HIRes_S (1.27e-4K2). The CEEMDAN decomposition of the three HIs done to obtain the

Noise values is illustrated in Appendix A.4.1.1.

When comparing two different methods for measuring the HI dispersion, it can be seen that in relative

terms, both theMSE and the Noisemetrics show thatHIRes_Baseline is themost dispersed, whileHIRes_S_M

is the least dispersed. The significant reduction in the dispersion of the HIRes_S_M is directly related to

the method proposed for the calculation of the NBM residuals. As residuals are calculated with respect

to threshold values, the magnitude of the HIRes_S_M is lower compared to HIRes_Baseline and HIRes_S .
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Reducing the magnitude of NBM residuals leads to a reduction in the dispersion of the obtained HI.

Notably, even though HIRes_S_M displays the lowest dispersion and highest monotonicity, to assess the

superiority of the degradation trend monitoring using HIRes_S_M , it is recommended to apply this approach

to alternative case studies with available run-into-failure data.

Step M, HI based on the density of the threshold region

HIAlt is calculated according to the method described in Figure 5.2. Similarly to the case of HIRes_S_M ,

the residuals are calculated with respect to upper and lower thresholds for each timestamp of the test set.

Subsequently, the calculated residuals are classified according to Equation (4.16) and averaged over a

day to obtain the daily density of the threshold region (HIAlt), according to Equation (4.17). Figure 5.16

shows HIAlt for the test dataset.

Figure 5.16: Case Study 1, Test set - Step S and Step M density of threshold region HI, HIAlt

Compared to the HIRes_Baseline, shown in Figure 5.10, no significant upward trend can be observed

in the HIAlt. Moreover, seasonal fluctuations are evident in the HIAlt. Notably, the cross-correlation

between HIAlt and the ambient temperature is 0.298, which is 19% less than the Baseline HI. Moreover,

the reason for this metric to be higher than HIRes_S (0.159) is attributed to the lower trend present in the

HIAlt.

HIRes_Baseline and HIAlt are compared using MK τ , MSE, and Noise metrics as shown in Figures
5.17, 5.18, 5.19, respectively. Since the unit of HIRes_Baseline is Kelvin (K) while HIAlt is adimensional,

they are first normalized using Equation (4.18) to enable their comparison.

Figure 5.17: Case Study 1 - HIRes_Baseline and HIAlt monotonicity comparison using MK τ
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Figure 5.18: Case Study 1 - HIRes_Baseline and

HIAlt dispersion comparison using MSE

Figure 5.19: Case Study 1 - HIRes_Baseline and

HIAlt dispersion comparison using Noise

Figure 5.17 shows that the lower monotonicity of HIAlt compared to HIRes_Baseline, further confirming

what was observed when comparing their behavior over time in Figures 5.16 and 5.10, respectively. The

absence of a significant trend in HIAlt is attributed to the lack of a main bearing failure event in the

analyzed dataset. When looking at the MSE dispersion metric, Figure 5.18 shows the lower value for

HIAlt (0.4) compared to HIRes_Baseline (3.2). On the other hand, the comparison in terms of the Noise

metric in Figure 5.19 shows that HIAlt has a higher value of Noise (0.13) than HIRes_Baseline (0.1). The

CEEMDAN decomposition to obtain the Noise values of the compared HIs is shown in Appendix A.4.1.2.

The MSE metric indicates greater dispersion for HIRes_Baseline, whereas according to the Noise metric,

HIAlt exhibits a higher level of dispersion. The discrepancy in dispersion metrics is attributed to the linear

reference degradation trend assumption made when obtaining MSE, as described in Section 4.2.2. As

HIAlt represents a more linear trend than HIRes_Baseline, MSE shows lower values for HIAlt. Thus, the

dispersion MSE metric is significantly affected by how well the assumed reference degradation trend fits

the data. In the case of the MSE metric, the dispersion of the HI is artificially increased due to linear

assumption. On the other hand, the Noise metric indication of the HIRes_Baseline being less dispersed is

attributed to its higher monotonicity compared to the HIAlt. As HIAlt has a less evident trend according

to MK τ (Figure 5.17), it is more dispersed than HIRes_Baseline, which can also be observed in Figure 5.16

The daily density of the threshold region was proposed as a novel approach for the analysis of the

NBM residuals. However, in this case study, the adoption of this approach does not bring substantial

improvements compared to the baseline case. This lack of improvement can be associated with the

absence of component failure in the dataset over the analyzed period. As mentioned before, the run-into

failure test is anticipated to exhibit a significant trend in HIAlt as the deviation from the healthy state is

expected to increase as the component is closer to the failure date. The analysis of at least one case

study containing run-into failure is essential to demonstrate the advantages of adopting the density of the

threshold region as HI.
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5.2. Case Study 2: Wind turbine with main bearing failure
The second case study analyzes the performance of a 2.3 MW wind turbine using the SCADA data provided

by the University of Strathclyde. The data spans from July 2019 to November 2020 and covers the turbine’s

operation until the occurrence of a failure of the main bearing [106]. Due to the features of this particular

SCADA dataset, a few adjustments were made to the methodology proposed in Chapter 4. This section

first describes the dataset. Next, it discusses the modifications implemented to the proposed methodology.

Finally, the HIs are obtained using the adapted proposed approach and compared with the baseline results,

following a procedure based on sequential steps similar to Case Study 1.

5.2.1. SCADA dataset
The date of the failure is needed to filter the subsequent records, as they are irrelevant to the analysis.

From the previous work using the same dataset [106], it is known that the main bearing failure occurred at

the end of November 2020. However, due to a lack of status codes and maintenance records, the exact

date of the occurrence of the main bearing failure is unknown. Moreover, the dataset does not include the

mean wind speed records, which makes differentiating between wind turbine not producing power due to

lack of available wind speed or due to failure of the component not straightforward. SCADA records of

the main bearing temperature, the produced power, and the rotational speed of the rotor are analyzed

to determine the date of the failure. Figure 5.20 shows them in the period corresponding to the last two

weeks of November 2020.

Rated power production and the high main bearing temperature can be observed on the evening of

the 24th. This is followed by the power production cut and cooling down of the main bearing and drop

in the rotational speed, indicated by the vertical black line. Figure 5.20 shows that the turbine is back in

operation, generating electricity on 30th November (vertical purple line). Based on this analysis, November

24th was selected as the date of the occurrence of the main bearing failure.

Figure 5.20: Case Study 2- Main bearing temperature, power produced, rotational speed of the rotor,

SCADA records between 11th and 30th November

In this case study, the SCADA dataset was split as follows: the first nine months were used for training,

the following three months for validation, and the remaining four months for testing, as shown in Figure 5.21.

In contrast to Case Study 1, Case Study 2 utilizes a separate time period before the failure for validation,

where the performance of the NBM is assessed. The reason for distinguishing the validation and test sets

is run into failure data in Case Study 2. Assessing NBM performance using a test set describes model

performance during unhealthy behavior of the component and can not be used to assess the adequacy of

the established NBM. On the other hand, utilizing a separate validation set allows the accuracy of the build

NBM to be assessed during healthy operation.
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Figure 5.21: Case Study 2 - Data splitting

Monotonicity metric of the degradation trend

The value of the MK τ monotonicity metric changes significantly depending on the period considered for
the analysis. The failed component is expected to exhibit a degradation trend from the beginning of the

unhealthy behavior until failure. Thus, it is essential to analyze the monotonicity of the HIs when anomalous

behavior is observed in the component. However, the dataset does not have status codes or maintenance

warnings, making it difficult to determine when the unhealthy behavior of the main bearing began.

To determine the appropriate period for performing the monotonicity calculation, the main bearing

temperature measurements were analyzed. Figure 5.22 illustrates the probability density function of the

main bearing temperature for each month of the test set. The comparison of these distributions shows a

shift towards higher temperature values from August to September. This shift is taken as an indication

of the start of abnormal behavior. Figure 5.22 shows a gradual increase in the monthly main bearing

temperature from September to November. An increase in the mean value of the main bearing temperature

indicates the progression in the degradation of the component. The month of November is characterized

by a shift of the temperature distribution towards higher values, which is attributed to the incipient failure.

Thus, the MK τ for the compared HIs is calculated for the period between September and November.

Figure 5.22: Case Study 2, Test set - Monthly probability density distributions of the main bearing

temperature

Data cleaning

The steps followed for data cleaning are similar to those described in Case Study 1. Table 5.6 shows the

number of data points in the original dataset and how many are dropped after each step of the cleaning

process. Duplicate timestamps were dropped, and outliers were filtered, as done in Case Study 1. Records

till the failure date (24th November) were selected.
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Table 5.6: Case study 2 - Data cleaning process

Number of data points

Data available 144719

Duplicate timestamps dropped 73568

Outliers dropped 36

Data cleaned 71115

Data till failure 70250

The records that were available after data cleaning were divided into training, validation, and testing,

as illustrated in Figure 5.21. The amount of data available for training, validation, and testing is shown in

Table 5.7. Notably, even though 16158 samples are available in the test set, a significant reduction in the

number of samples can be observed (1866). This reduction is due to the lack of STD values for the input

variables used in the main bearing temperature model (Equation (4.4)), which are essential to perform

Monte Carlo simulation. To ensure a fair comparison of the methods, only 11.4% of the test set is used to

perform the comparison of the HIs.

Table 5.7: Case study 2 - Data splitting

Data till failure 70250

Data used for training 40320

Data used for validation 13772

Data available for testing 16158

Data used for testing due to lack of STD values 1866

To prove the feasibility of only using 11.4% of the testing set, it is essential to show that the selected

samples capture the main bearing temperature behavior. Figure 5.23 shows the daily amount of samples

throughout the test set. The blue line shows the amount of data available each day in the test set, whereas

the red line represents the daily amount of data after the samples lacking STD values were filtered.

Figure 5.23: Case Study 2, Test set - Daily amount of available samples vs filtered samples

The blue graph illustrates around 144 records, with minor fluctuations. The SCADA system’s 10-minute

averaging interval generates six records per hour and a total of 144 data points per day. In contrast, the

amount of records after applying filtering (red line) is significantly lower and fluctuates, averaging around

14 samples per day, which corresponds to about 2 hours of records per day.
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Figure 5.24 illustrates the daily average of the generated power. The blue line represents the average

power obtained, whereas the red line shows the average power calculated using only the data remaining

after filtering.

Figure 5.24: Case Study 2, Test set - Daily average power of available samples vs filtered samples

From Figure 5.24, it is possible to observe that, even though the amount of samples remaining after

filtering is significantly lower, they still capture the behavior of the daily average power produced by the

turbine. Thus, it is concluded that since the filtered samples capture the behavior of the main bearing

power, the assumption that they represent the behavior of the main bearing temperature is valid. Finally,

the filtered data (11.4%) can be used to perform the analysis in this case study.

Additionally, a lower accuracy in the temperature records of the SCADA data for Case Study 2 should

be pointed out when comparing them to Case Study 1. In fact, in Case Study 1, the temperature records

were recorded every 10 minutes. In contrast, in Case Study 2, the actual temperature was recorded in

irregular patterns, and the gaps in records were filled in with the rounded-up number of the last measured

record. This is true only for temperature records. All other measurements, such as power and rotational

speed, have been recorded every 10 minutes, as in Case Study 1.

Nacelle temperature

The nacelle temperature is one of the inputs for modeling the main bearing temperature in Equation (4.4).

However, the dataset used in Case Study 2 does not include these temperature records. Consequently,

an alternative substitution for the nacelle temperature needs to be defined.

The main bearing and ambient temperatures for the entire dataset are shown in Figure 5.25, which

shows a low cross-correlation between the two signals. For instance, the main bearing temperature

cross-correlation with ambient temperature is 0.2 in Case Study 2, while in Case Study 1, the value is

0.78. This low cross-correlation could be a consequence of the cooling system present in the nacelle.

The potential presence of the cooling system in the nacelle does not allow a linear correlation assumption

of the relationship between the nacelle temperature and the ambient temperature. Therefore, Equation

(5.1) with the exponential term was chosen as a substitution for the nacelle temperature in Equation (4.4)

instead of replacing the nacelle temperature by ambient temperature.

T̂nacelle(t) = β2T
β5

ambient (t) + β6 (5.1)

The equation used to model the main bearing temperature for Case Study 2 can be obtained by substituting

Equation (5.1) into Equation (4.4), shown as:

T̂bear (t) ≈ β1Tbear (t− 1) + β2T
β5

ambient (t) + β3ω
2(t) + β4P (t) + β6 (5.2)

Notably, due to the exponential term in the adjusted main bearing temperature model, Case Study 2 utilizes

multivariate regression using non-linear least squares described in Appendix A.5, to obtain coefficients of

Equation (5.2).
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Figure 5.25: Case Study 2 - Measured main bearing and ambient temperatures

5.2.2. Adapted methodology
In this section, the adjustments made in the methodology will be discussed. The adopted baseline approach

is shown in Figure 5.26, and the methodology used to obtain the proposed HI is illustrated in Figure 5.27.

Notably, due to the failure of the main bearing in this case study, the EWMA smoothing step is implemented,

as shown in Section 4.11. Moreover, the proposed method does not include step S due to the shorter

time span of the available data compared to Case Study 1. Table 5.8 presents the nomenclature of the

compared HIs. Similar to Case Study 1, the residual-based HI calculated using Step M is also analyzed in

the results section and obtained according to the flowchart shown in Figure 5.28.

Table 5.8: Case Study 2 - Nomenclature of the HIs calculated with the baseline approach and after the

implementation of each step of the proposed methodology

Method HI Flowchart

Baseline HI ′Res_Baseline Figure (5.26)

Step M HI ′Res_M Figure (5.28)

Step M density of threshold region HI ′Alt Figure (5.27)

Training set

Set of coefficients 

Modelled Temperature

Residual Calculation  Measured
Temperature

Test set

HI'Res_Baseline

Linear
regression

Average 
over
day

Average 
over
day

Multivariate 
regression

EWMA
smoothing

λ=0.2

Figure 5.26: Case Study 2 - Baseline method to calculate HI ′Res_Baseline
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According to the flowchart shown in Figure 5.26, Equation (5.2) is fitted to the training set to obtain

the coefficients of the main bearing temperature model. These coefficients are used to model the main

bearing temperature in the test set, and the residuals are calculated and averaged daily. In contrast to

Case Study 1, the additional step of the EWMA step is applied to smooth the obtained HI, as described in

Section 4.3.3, to obtain HI ′Res_Baseline.

For Case Study 2, EWMA smoothing with a factor λ=0.2 is the final post-processing step to obtain all
the HIs shown in Table 5.8, 5.28). It is important to remember that any λ factor can be chosen as long as it

is the same for the compared HIs. Various smoothing factors λ applied to obtain HIs presented in Table

5.8 are shown in Appendix A.6. In this case study, a strong smoothing coefficient (λ=0.2) was chosen due
to the significant fluctuations observed in the HIs. High fluctuations in HIs are primarily attributed to the

limited amount of data left after the cleaning process.

The method proposed in this work is shown in Figure 5.27. Notably, compared to the methodology

proposed in Case Study 1, it does not include Step S. Case Study 2 dataset covers only 16 months, with

each season represented only once. This limits the possibility of drawing conclusions on the possible

seasonal behavior of the HI. In contrast, in Case Study 1, five years of data for each season were available.

For example, to develop a separate main bearing temperature model for July, the training dataset spanning

from 2013 up to 2018 had 5 months of July available. The amount of data available in Case Study 1 can

be considered sufficient to capture the normal behavior of the main bearing temperature for the specific

month (Chapter 5.1.5).

Training set

 Set of coefficients 

Modelled Up/Low Threshold

Residual Calculation
with respect to

threshold 

Measured
Temperature

Test set

HI'Alt

Step S

Step M

Average 
over
day

Multivariate 
regression

EWMA
smoothing

λ=0.2

Residual
Classification

Figure 5.27: Case Study 2 - Proposed method, implementation of step M density of threshold region to

calculate HI ′Alt

According to the flowchart shown in Figure 5.27, the proposed method implements step M. As in Case

Study 1, the coefficients are used to apply Step M and obtain the upper and lower temperature thresholds

of each timestamp in the test set. Next, the residuals are calculated as described in Section 4.3.2.1 and

classified as shown in Equation (4.16). Subsequently, the average over a day step is applied to obtain the

daily density of the threshold region. Finally, EWMA smoothing with λ=0.2 factor is applied to obtain HI ′Alt.

The results section also analyses the intermediate steps of the proposed method shown in Figure 5.27.

To obtain residual-based HI (HI ′Res_M ) using Step M, the method shown in Figure 5.28 applies the same

steps as in Figure 5.27 except for the residual classification.
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Training set

 Set of coefficients 

Modelled Up/Low Threshold

Residual Calculation
with respect to

threshold 

Measured
Temperature

Test set

HI'Res_M

Step S

Step M

Average 
over
day

Multivariate 
regression

EWMA
smoothing

λ=0.2

Figure 5.28: Case Study 2 - Implementation of Step M to calculate HI ′Res_M

For Case Study 2, the remainder of this Section is structured as follows. Section 5.2.3 focuses on

HI ′Res_Baseline obtained using the adopted baseline approach. Section 5.2.4.1 presentsHI ′Res_M obtained

using Step M. Section 5.2.4.2 explores HI ′Alt based on the density of the threshold region obtained using

Step M.

5.2.3. Baseline approach
This section first presents the main bearing temperature baseline model coefficients for Equation (5.2).

Then, these coefficients are used to assess the performance of the NBM in the validation set. Finally,

HI ′Res_Baseline obtained as shown in Figure 5.26 is presented.

Multivariate regression is applied to the training set to obtain the model coefficients shown in Table

5.9. As in Case Study 1, the coefficient β1 associated with the main bearing temperature at the previous

timestamp is the most significant compared to the other coefficients. In Case Study 2, the coefficient β4,

corresponding to the term associated with the power signal, is negligible (5.584e-37≈0). According to
Cambron et al. [32], this coefficient represents the heating of the main bearing due to the Joule effect of

the generator. The low precision in temperature records can be the reason for the insignificant effect of

the power term on the main bearing temperature for this case study.

Table 5.9: Case Study 2 - Main bearing temperature model coefficients of Equation (5.2)

Coefficients Case Study 2

β1 0.967

β2 0.679

β3(K ∗ s2/rad2) 0.178

β4(K/kW ) 5.584e-37

β5 0.471

β6(K) 0.21

These coefficients are then used to model the main bearing temperature for the validation set. Figure

5.29 shows the modeled and measured main bearing temperature for the validation set. A zoom-in view

between the 5th and 9th of June 2020 is provided in Figure 5.30 to clearly illustrate the two temperatures.

Notably, the time series of the temperature records resemble a step function. This is due to the lower

accuracy of the data recording observed in Case Study 2 compared to Case Study 1, as discussed earlier.
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Figure 5.29: Case Study 2, Validation set - Modelled and measured main bearing temperature

Figure 5.30: Case Study 2, Validation set - Modelled and measured main bearing temperature, zoom-in

view in the period between June 5 and June 9, 2020

Table 5.10 shows the performance metrics of the baseline NBM for the validation set and its comparison

with the previous case study. The baseline model is characterized by significantly lower performance

than in Case Study 1. The lower performance of fit is attributed to the lower precision of the temperature

records shown in Figure 5.30. Although the performance of the baseline NBM is lower than in the previous

case study, according to Zhang et al. [59], the obtained RMSE value of 0.234 is still considered acceptable

for condition monitoring purposes.

Table 5.10: Case Study 2 and Case Study 1 performance metrics of the baseline models

Metric Case Study 2 ModelBaseline Case Study 1 ModelBaseline

RMSE (K) 0.234 0.124

R2 0.997 0.9995

MAE (K) 0.151 0.0777

MAPE (%) 0.44 0.32

Figure 5.31 shows the behavior ofHI ′Res_Baseline for the test set calculated using the approach described

in Figure 5.26. Significant fluctuations of HI ′Res_Baseline can be observed in Figure 5.31. Moreover, from

the 27th of September till the failure date, a significant upward trend is evident, withHI ′Res_Baseline reaching

a value of 0.153K at the 24th of November.
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Figure 5.31: Case Study 2, Test set - Baseline approach HI, HI ′Res_Baseline

5.2.4. Step M
The regression coefficients shown in Table 5.9 are used to apply Step M for the test set and yield upper

and lower thresholds for each timestamp. Residuals are calculated with respect to the thresholds obtained

as described in Section 4.3.2.1. Notably, 32.3% of the measured mean bearing temperature fell within

the upper and lower threshold region where the residuals are assumed to be equal to 0 (Equation (4.12)).

This section first presents the results for the residual-based HI (HI ′Res_M ), and next, it focuses on the HI

based on the density of the threshold region (HI ′Alt).

Step M, HI based on residual

HI ′Res_M has been obtained according to the method shown in Figure 5.28. Figure 5.32 illustratesHI ′Res_M

for the test set. The y-axis shows that the magnitude of HI ′Res_M fluctuations is less than HI ′Res_Baseline.

HI ′Res_M also illustrates a strong upward trend from the 27th of September, with HI reaching a value of

0.088K on the 24th of November. As in Case Study 1, the HIs are compared in terms of monotonicity and

dispersion. Figures 5.33, 5.34, and 5.35 compare HI ′Res_Baseline and HI ′Res_M using MK τ , MSE, and the
Noise metrics, respectively.

Figure 5.32: Case Study 2, Test set - Step M HI, HI ′Res_M
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Figure 5.33: Case Study 2 - HI ′Res_Baseline and HI ′Res_M monotonicity comparison using MK τ

Figure 5.33 shows that with MK τ =0.17 HI ′Res_M is more monotonic than HI ′Res_Baseline with MK τ
=0.15. The improvement in monotonicity is about 13%. The low magnitude of the monotonicity metric

for both HIs is attributed to fluctuations of the HIs and the apparent strong upward trend present in both

HI ′Res_M and HI ′Res_Baseline only after the 27th of September as shown in Figures 5.31 and 5.32.

Figure 5.34: Case Study 2 - HI ′Res_Baseline and

HI ′Res_M dispersion comparison using MSE

Figure 5.35: Case Study 2 - HI ′Res_Baseline and

HI ′Res_M dispersion comparison using Noise

Figure 5.34 shows that HI ′Res_M has a lower MSE (3.43e-3K2) than HI ′Res_Baseline (1.35e-2K
2). A

similar trend is observed when looking at the dispersion of the HIs using the Noise metric. Figure 5.35

illustrates thatHI ′Res_M has a lower value of Noise compared toHI ′Res_Baseline ((1.36e-4K
2 vs. 2.70e-4K2).

The CEEMDAN decomposition to calculate the Noise values of the compared HIs is shown in Appendix

A.4.2.1.

From the comparison of these metrics, it can be concluded that while the introduction of HI ′Res_M

does not provide substantial improvements in monotonicity compared to HI ′Res_Baseline, it contributes

significantly to the reduction in dispersion. Improvements in dispersion metrics were also observed in the

same step when analyzing Case Study 1 in Section 5.1.6.1. Thus, it can be concluded that the residual

calculation with respect to thresholds effectively reduces the dispersion of the HI.

Step M, HI based on the density of the threshold region

Following the method illustrated in Figure 5.27, HI ′Alt based on the density of the threshold region was

calculated for the test set, and it is shown in Figure 5.36. Notably, Figure 5.36 illustrates a clear monotonic

downward trend from the end of August. As the component approaches the failure, the daily density of the

threshold region gradually reduces, indicating the health deterioration of the component. Moreover, HI ′Alt

reached its lowest value of 0.19 on the 22nd of November, just before the occurrence of the failure.
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Figure 5.36: Case Study 2, Test set - Step M density of threshold region HI, HI ′Alt

Similar to the previous section, HI ′Alt and HI ′Res_Baseline are compared using MK τ , MSE, Noise
metrics as shown in Figures 5.37, 5.38, and 5.39, respectively. Since the unit of HI ′Res_Baseline is K and

the density of the threshold region is adimensional, HI ′Res_Baseline and HI ′Alt are first normalized using

Equation (4.18).

Figure 5.37: Case Study 2 - HI ′Res_Baseline and HI ′Alt monotonicity comparison using MK τ

Figure 5.37 shows that with MK τ= 0.55 HI ′Alt is significantly more monotonic than HI ′Res_Baseline with

MK τ=0.15. Figure 5.38 shows that HI ′Alt is less dispersed compared to HI ′Res_Baseline (4.40 vs 6.72).

Similarly, Figure 5.39 illustrates HI ′Alt (0.093) has a lower value of Noise compared to HI ′Res_Baseline

(0.136). The CEEMDAN decomposition to obtain the Noise values of the compared HIs is shown in

Appendix A.4.2.2.
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Figure 5.38: Case Study 2 - HI ′Res_Baseline and

HI ′Alt dispersion comparison using MSE

Figure 5.39: Case Study 2 - HI ′Res_Baseline and

HI ′Alt dispersion comparison using Noise

The results of Case Study 2 show that the HI ′Alt is significantly more monotonic and less dispersed

compared to what is achieved with HI ′Res_Baseline. According to improved monotonicity and dispersion

metrics, HI ′Alt enables more accurate monitoring of the degradation trend compared to HI ′Res_Baseline.

Furthermore, the proposed HI ′Alt exhibits an evident downward trend starting almost 1 month before what

is shown by HI ′Res_Baseline in the baseline approach.



6
Conclusions & Recommendations

This thesis proposed a physics-based NBM using SCADA data to build an HI for wind turbine main bearing

degradation trend monitoring. The proposed approach aimed at increasing the monotonicity and reducing

the dispersion of the developed HI to enable more accurate degradation trend monitoring. To achieve this

aim, seasonal variations and variability of the wind field characteristics were considered in physics-based

NBM of the main bearing temperature (Section 4.3). The results of the proposed approach were compared

against those of a baseline method adopted from Cambron et al. [32]. Two case studies were conducted.

In Case Study 1, the absence of available failure data for the main bearing component was identified as a

limiting factor, resulting in the lack of significant improvements in HI obtained using the proposed approach.

However, the results for Case Study 2, where failure data was available, demonstrated the ability of the

proposed approach to build an HI with higher monotonicity and reduced dispersion in the degradation

trend compared to the baseline approach. This chapter first answers the research questions introduced

in Chapter 1. Next, it outlines recommendations for future work based on the challenges encountered

throughout the analysis.

6.1. Research question discussion

Research question

How can physics-based NBM be used for the degradation trend monitoring of the wind turbine main

bearing?

SCADA-based NBM methods analyze the difference between the modeled and measured main bearing

temperatures to perform fault detection. The underlying detection principle is based on the progressive

health deterioration of the component, causing the field measurements to deviate from the NBM outputs.

Available methods consider the increase in the residuals above a defined threshold as an indication of

failure. This thesis utilizes physics-based NBM residuals to build HI to monitor the health deterioration of

the component. The gradual change in the HI is analyzed to assess the progress of the degradation in the

main bearing component, where the trend in the HI is expected to become more evident as the component

health deteriorates.

Research question

How can the current physics-based NBM’s limitations be effectively overcome when using SCADA

data?

Physics-based NBM methods require case-specific knowledge, such as size and material properties, to

employ equations capturing the healthy behavior of the component. Using SCADA data allows to overcome

these limitations. Historical SCADA data is used to fit a physics-based model and determine its parameters.

These obtained parameters are subsequently applied to the test set to model the main bearing temperature.

Moreover, the widespread adoption of SCADA systems enables the extensive application of physics-based

NBM methods.

58
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Research question

What metrics should be utilized to evaluate the effectiveness of the proposed method?

Monotonicity and dispersion metrics were used to evaluate the effectiveness of the method proposed

to monitor degradation trends. The degradation trend is expected to be monotonic due to the irreversible

nature of the health deterioration process (Section 4.2.1). This thesis applied the MK τ metric to measure
the monotonicity of the HI (Section 3.3.1). Dispersed HI behavior reduces the accuracy of fitted degradation

models, leading to less accurate RUL predictions. The dispersion of the HIs was measured using MSE

and Noise metrics (Section 4.2.2).

Research question

How can seasonal variations be taken into account when developing a physics-based NBM for the

degradation trend monitoring of the wind turbine main bearing? And what are the benefits?

The proposed method introduced step S to consider seasonal variations when applying the physics-

based NBM (Section 4.3.1). Step S is proposed to prevent the misinterpretation of seasonal patterns as

degradation trends, ensuring more accurate degradation trend monitoring (Section 4.2.3). The proposed

step applies multivariate regression to derive distinct sets of coefficients of Equation (4.4) corresponding to

the time periods of the year. In Case Study 1, 12 sets of equation coefficients were used to model indepen-

dently the behavior of the main bearing temperature during each month of the year. The effectiveness of

the proposed step was measured using cross-correlation of the obtained HI with the ambient temperature.

The proposed step effectively reduced seasonality by more than 50% without compromising the model’s fit

to the test data (Section 5.1.5).

Research question

How can variability of wind field characteristics be taken into account when developing physics-

based NBM for the degradation trend monitoring of the wind turbine main bearing? And what are

the benefits?

The primary reason for the premature failure of wind turbine components is attributed to the variability

of the wind conditions. However, current NBM methods are based solely on the mean value records

and do not consider the variations within the 10-minute time frame. The proposed method introduced

step M, which applies the Monte Carlo simulation using SCADA data mean and STD records to consider

variability in the main bearing operation within the 10-minute interval. Step M models the main bearing

temperature during 10 minutes as a range of possible values, introducing upper and lower thresholds

for each modeled timestamp. A defined threshold region is assumed to represent the healthy operating

region during a 10-minute time frame. The proposed approach of calculating residuals with respect to the

obtained threshold values successfully reduces the dispersion of the HI (Sections 5.1.6.1, 5.2.4.1).

The threshold region obtained from the Monte Carlo simulation allows the introduction of the density of

the threshold region as a novel HI to monitor the degradation trend of the component. The density of the

threshold region represents the amount of points in the threshold region during a specified time frame.

Gradual reduction of the density of the threshold region indicates health deterioration of the component. In

Case Study 1, the proposed HI did not improve dispersion and monotonicity metrics due to the fault-free

dataset (Section 5.1.6.2). However, in Case Study 2, containing failure data of the main bearing, the

proposed HI showed significantly higher monotonicity and lower dispersion than the baseline HI (Section

5.2.4.2). Notably, the proposed HI demonstrated an evident degradation trend one month in advance than

the baseline HI. An early indication of health deterioration can be used to trigger the lifetime prognosis of

the main bearing and plan the maintenance of the component.
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6.2. Recommendations
This section outlines recommendations for future research. Firstly, this section discusses the essential

factors required for the implementation of the proposed approach. Subsequently, this section presents

some recommendations for further investigation.

A limitation of the proposed method, when compared to the baseline, is its requirement for twice as

many parameters, as for each parameter of the main bearing temperature model (Equation (4.4)), both

mean and STD values are needed. Consequently, the quality of data becomes even more significant

since step M cannot be executed unless the dataset includes STD values. For instance, in the second

case study, there was a notable reduction in the data available for analysis due to the lack of STD records

(Table 5.7).

Similar to any data analysis method, incorporating more case studies would be advantageous in

demonstrating the benefits of the proposed method. Nonetheless, there are specific aspects that are

recommended for investigation, provided that more than one failure case is available.

• Building upon the findings of this thesis, the next step should involve extending the proposed

methodology to incorporate the lifetime prognosis step. The suggested framework would involve

projecting the obtained degradation trend into the future to estimate the RUL of the component.

• Increasing the number of case studies with failures could help refine model parameters, like season-

ality divisions, k threshold value for the width of the threshold region, averaging over interval value,

and EWMA λ value.

• While this thesis primarily focused on enhancing the quality of the HI for degradation trend monitoring,

the inclusion of additional case studies would facilitate an assessment of the capabilities of the

proposed method to perform fault detection. For instance, implementing a framework where residual-

based HIs are used for fault detection while the density of threshold region is used for subsequent

RUL prediction.

• It also would be interesting to explore binning to consider variable operating conditions when per-

forming the post-processing. The binning of NBM residuals based on rotational speed was explored

in Section A.22.
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A
Appendix

A.1. SCADA data measurements

Absolute_wind_direction_corrected: (°) Gearbox_bearing_1_temperature: (°C) Active_power: (kW)

Absolute_wind_direction: (°) Gearbox_bearing_2_temperature: (°C) Apparent_power: (kVA)

Nacelle_angle_corrected: (°) Gearbox_inlet_temperature: (°C) Converter_torque: (Nm)

Nacelle_angle: (°) Gearbox_oil_sump_temperature: (°C) Generator_converter_speed: (rpm)

Pitch_angle: (°) Generator_bearing_1_temperature: (°C) Generator_speed: (rpm)

Vane_position_1: (°) Generator_bearing_2_temperature: (°C) Grid_frequency: (Hz)

Vane_position_2: (°) Generator_stator_temperature: (°C) Grid_voltage: (V)

Vane_position: (°) Hub_temperature: (°C) Pitch_angle_setpoint: (unitless)

Nacelle_temperature: (°C) Power_factor: (unitless)

Outdoor_temperature: (°C) Reactive_power: (kVAr)

Rotor_bearing_temperature: (°C) Rotor_speed: (rpm)

Torque: (Nm)

Wind_speed: (m/s)

Wind_speed_1: (m/s)

Wind_speed_2: (m/s)

Table A.1: Case study 1 - Sensor measurements available in the SCADA dataset

wtc_YawPos_mean(°) wtc_AmbieTmp_mean(°C) wtc_ActPower_mean(kW)

wtc_YawPos_stddev(°) wtc_AmbieTmp_stddev(°C) wtc_ActPower_stddev(kW)

wtc_PitcPosA_mean(°) wtc_A3RigTmp_mean(°C) wtc_AcWindSp_stddev(m/s)

wtc_PitcPosA_stddev(°) wtc_A3RigTmp_stddev(°C) wtc_AcWindSp_stddev(m/s)

wtc_PitcPosB_mean(°) wtc_MainBTmp_mean(°C) wtc_GenRpm_mean(RPM)

wtc_PitcPosB_stddev(°) wtc_MainBTmp_stddev(°C) wtc_GenRpm_stddev(RPM)

wtc_PitcPosC_mean(°) wtc_MainSRpm_mean(RPM)

wtc_PitcPosC_stddev(°) wtc_MainSRpm_stddev(RPM)

wtc_NacelPos_mean(°) wtc_ScInOper_timeon(s)

wtc_NacelPos_stddev(°)

Table A.2: Case study 2 - Sensor measurements available in the SCADA dataset
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A.2. Case Study 1 wind turbine main bearing temperatures

Figure A.1: Case Study 1 - Yearly rolling average of the Turbine A main bearing temperature

Figure A.2: Case Study 1 - Yearly rolling average of the Turbine B main bearing temperature

Figure A.3: Case Study 1 - Yearly rolling average of the Turbine C main bearing temperature
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Figure A.4: Case Study 1 - Yearly rolling average of the Turbine D main bearing temperature

A.3. Various group divisions

Training set

N sets of coefficients 

Modelled Up/Low Threshold

Residual Calculation   Measured
Temperature

Test set

HIRes_S

Step S

Average 
over
day

Modelled Temperature

Figure A.5: Case Study 1 - implementation of Step S with N groups division to calculate HIRes_S

The seasonality step proposed in Section 4.3.1 proposes to divide the dataset into N groups based on the

time period of the year. Various so that each group has a corresponding set of coefficients. This section

explores different data divisions, such as:

• No division-baseline approach- 1 set of coefficients

• 2 groups -(colder month/ hotter month )- 2 sets of coefficients

• 4 groups -(Winter/Spring/Summer/Fall )- 4 sets of coefficients

• 12 groups- (12 month )- 12 sets of coefficients
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Figure A.5 illustrates a flowchart for obtaining HIRes_S based on N number of group division. First, this

section compares the performance of different data division models based on the RMSE value of the

testing set. Next, this section compares cross correlation between different data divisions HIRes_S and

ambient temperature.

Figure 5.23 shows the RMSE metric of various models on the testing set to compare model performance

for various data divisions. The variability in performance metrics across different group divisions is minimal,

with variations observed only up to the third decimal of RMSE values. The slight improvement, while

statistically insignificant, is attributed to the inclusion of a larger number of models. It’s important to note

that the use of multiple equations primarily aims to reduce the impact of seasonality rather than improving

fit quality.

Figure A.6: Case Study 1 - RMSE of the testing set at various group divisions

Figure A.7 shows the correlation of the various HIRes_S with the ambient temperature for various

group divisions. The figure shows a significantly reduced cross-correlation with ambient temperature when

increasing the number of models. Monthly sets of coefficients, which represent each month having a

separate model, correspond to the lowest cross-correlation with ambient temperature and lowest RMSE.

Moreover, the monthly data division provides the lowest RMSE. Thus, the twelve-month division was

selected, and the monthly sets of coefficients are shown in Table A.3.

Figure A.7: Case Study 1 - Cross-correlation of the HIs with the ambient temperature at various group

divisions

It should be pointed out that this method of choosing data set division is not optimal. It is suggested

that the number of models be tuned based on the failed case study to determine the effect of decreasing

seasonality on the accuracy of the RUL predictions. Select the optimal number of sets of coefficients

needed based on the accuracy of RUL predictions and computational insensitivity of the chosen group

division.
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Month β1 β2 β3(K ∗ s2/rad2) β4(K/kW )

January 0.983 0.01687 0.05487 8.31401e-05

February 0.985 0.01482 0.05687 4.37707e-05

March 0.984 0.01568 0.05857 4.4055e-05

April 0.984 0.01599 0.07446 1.32073e-16

May 0.984 0.01547 0.07661 3.31832e-09

June 0.985 0.01510 0.07060 6.89188e-27

July 0.984 0.01538 0.06981 3.05456e-16

August 0.984 0.01590 0.07373 1.7773e-27

September 0.984 0.01585 0.06818 8.46872e-06

October 0.984 0.01578 0.07389 2.1686e-17

November 0.982 0.01739 0.07538 3.35381e-05

December 0.984 0.01582 0.06725 4.69846e-05

Table A.3: Case Study 1 - Main bearing temperature model monthly sets of coefficients of Equation 4.4

A.4. CEEMDAN decomposition
A.4.1. Case Study 1
Noise comparison

Figure A.8: Case Study 1 - HIRes_Baseline CEEMDAN decomposition
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Figure A.9: Case Study 1 - HIRes_S CEEMDAN decomposition

Figure A.10: Case Study 1 - HIRes_S_M CEEMDAN decomposition
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Noise comparison, density of threshold region

Figure A.11: Case Study 1 - Normalized HIRes_Baseline CEEMDAN decomposition

Figure A.12: Case Study 1 - Normalized HIAlt CEEMDAN decomposition
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Noise comparison, Binned HI

Figure A.13: Case Study 1 - HIRes_S_M_B 13 RPM CEEMDAN decomposition
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A.4.2. Case Study 2
Noise comparison

Figure A.14: Case Study 2 - HI ′Res_Baseline CEEMDAN decomposition
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Figure A.15: Case Study 2 - HI ′Res_M CEEMDAN decomposition
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Noise comparison, density of the threshold region

Figure A.16: Case Study 2 - Normalized HI ′Res_Baseline CEEMDAN decomposition



A.4. CEEMDAN decomposition 78

Figure A.17: Case Study 2 - Normalized HI ′Alt CEEMDAN decomposition
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A.5. Non-linear least squares
In Case Study 2, utilizing the exponential term in the main bearing temperature model requires the

application of non-linear least squares. The non-linear least squares algorithm can be shown as:

L(β) =

N∑
i=1

(yi − ŷi)
2 =

N∑
i=1

(yi − f(xi, β))
2 (A.1)

Where yi is the actual value, ŷi is the estimated value, xi are independent values, and β represent

regression parameters to be estimated [107]. The least squares function from the Python ”scipy.optimize”

library is used to perform regression. The applied function is based on the trust region method algorithm.

Trust region methods approximate function L with simpler function q, which is assumed as a valid

approximation in the neighborhood around β; this neighborhood is referred to as trust region. The introduced
trust-region sub-problem can be shown as follows:

min
s
{q(s) s ∈ N} (A.2)

Where s is referred to as the trial step and calculated by minimizing over N. To obtain approximation q, the
standard trust region method uses the first two terms of the Taylor approximation of Equation A.1 at β.
Where trust region N can be described using a spherical or ellipsoidal shape. To estimate parameters, the

current β then gets updated to β + s when L(β + s) < L(β) or β remains the same, and the trust region of

N is reduced, and the trial step computation is repeated. Trust region algorithm iteratively refines estimated

β until the solution converges.

A.6. Case Study 2 - HIs with different EWMA smoothing factors

Figure A.18: Case study 2 - HI ′Res_Baseline, HI ′Res_M and HI ′Altobtained using EWMA smoothing factor

λ= 0.2
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Figure A.19: Case study 2 - HI ′Res_Baseline, HI ′Res_M and HI ′Altobtained using EWMA smoothing factor

λ= 0.4

Figure A.20: Case study 2 - HI ′Res_Baseline, HI ′Res_M and HI ′Altobtained using EWMA smoothing factor

λ= 0.6
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Figure A.21: Case study 2 - HI ′Res_Baseline, HI ′Res_M and HI ′Altobtained using EWMA smoothing factor

λ= 0.8

A.7. Step B - Binning by the rotational speed
Step B was explored as an additional post-processing step to take variable operating conditions into

account. The idea is that the residuals of a healthy turbine within each bin should have a consistent

behavior, while a gradual change across binned residuals indicates degradation. Binning is performed by

dividing the residuals according to the rotational speed values of the rotor. The reason for grouping the

residuals based on the rotational speed of the rotor is that it is directly linked to the main bearing operation,

unlike power or wind speed. Figure A.22 shows the procedure adopted for applying the binning step.

Residuals

m<number RPM bins

Residuals of
m_RPM_bin 

m=m+1

number RPM_bins *Residuals per RPM  

Yes

Binning

RPM(t)<m_bin_max&
RPM(t)>m_bin_minNo

skip

Figure A.22: Binning step (Step B)

Initially, the rotational speed values of the rotor are divided into bins using the ”groupby” function in

Python. Subsequently, each residual is categorized into its corresponding bin, leading to different sets of

residuals for each bin. It is important to note that the number and range of bins can be tuned based on a

specific case study.
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A.7.1. Case Study 1- Step B
Similar to the HIs obtained in Case Study 1, Figure A.23 illustrates a flowchart to obtain HIRes_S_M_B

where Step B is applied as a subsequent step after residual calculation. According to the method shown in

Figure A.23, coefficients obtained from Step S are used to model the main bearing temperature of the test

set employing Step M. Using the upper and lower thresholds obtained for each timestamp of the test set

from Step M, residuals are calculated as described in Section 4.3.2.1. The residuals obtained are binned

and averaged daily to obtain HIRes_S_M_B. Notably, unlike the previous HIs where a single time series

was obtained, the binning process generates multiple time series.

Training set

12 Sets of coefficients 

Modelled Up/Low Threshold

Residual Calculation
with respect to

threshold 

Measured
Temperature

Test set

HIRes_S_M_B

Step S

Step M

Average 
over
day

Step B

Figure A.23: Case Study 1 - implementation of Step S, Step M, and Step B to calculate HIRes_S_M_B

For the 2MW wind turbine under consideration, the operational range of rotational speeds lies between

11 and 17 rpm. Bins with a length of 1 RPM have been analysed. Consequently, the rotational speed

range has been divided into seven bins, with each bin representing a 1 RPM interval. As an example, the

HIRes_S_M_B at 13 RPM is shown in Figure A.24.

Figure A.24: Case Study 1, Test set - Step S, Step M, and Step B HI at 13 RPM, HIRes_S_M_B

Figure A.24 illustrates an upward trend similar toHIRes_Baseline shown in Figure 5.10. However, gaps in

data and a significant increase in outliers compared to HIRes_Baseline should be noted. Similar to previous

case studies, Figures A.25, A.26, and A.28 compare the HIs in terms of monotonicity and dispersion. The
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horizontal red line represents the baseline HI (HIRes_Baseline) metric, and bars represent HIRes_S_M_B at

different RPM bins.

Figure A.25: Case Study 1 - HIRes_Baseline, HIRes_S_M at different RPMs, monotonicity comparison

using MK τ

Figure A.25 illustrates no significant improvements in themonotonicity. With the exception of the 13 RPM

bin, the values of HIRes_S_M_B for monotonicity are generally lower than the Baseline HI (HIRes_Baseline).

It is important to point out that bins except 11, 12, and 13 RPM bins show similar values. Thus, trends

present across these RPM bins are similar.

Figure A.26: Case Study 1 - HIRes_Baseline, HIRes_S_M at different RPMs, dispersion comparison using

MSE

The lower value of the MSE metric illustrated in Figure A.26 indicates that the binned HIs are less

dispersed than HIRes_Baseline. Notably, the MSE metric of the 17 RPM bin is significantly higher than that

of other bins. The difference in the metrics is attributed to the 17 RPM bin having the lowest amount of data

points compared to other bins (1100 days), which leads to an increased number of outliers (Figure A.27).
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Figure A.27: Case Study 1 - HIRes_Baseline, HIRes_S_M at different RPMs, number of points

Figure A.28: Case Study 1- HIRes_Baseline, HIRes_S_M at different RPMs, dispersion comparison using

Noise metric

In contrast, a comparison of the Noise metric shows that the binned HIs are more dispersed than

HIRes_Baseline, as seen in Figure A.28. Gaps and a reduced amount of samples when considering only

certain RPM throughout five years lead to outliers in obtained binned HIs. These gaps and outliers influence

CEEMDAN decomposition and lead to high noise values for obtained HIs. As an example, HIRes_S_M_B

of 13 RPM bin are shown in Figure A.29 to demonstrate gaps present in the time series when considering

only certain RPM.
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Figure A.29: Case Study 1, Test set - Step S, Step M, and Step B HI zoomed-in view at 13 RPM ,

HIRes_S_M_B

The motivation for including step B is to consider variable operating conditions when analyzing the

degradation trend. This case study demonstrates that binning the data does not significantly impact the

level of monotonicity. Moreover, binning also introduces gaps and outliers in the data due to the reduced

amount of samples considered. Thus, the step B can be described as not beneficial. However, looking at

MK metrics of the operational RPM range, it was observed that trends are similar across certain RPM bins.

Thus, it would be interesting to explore how monitoring a certain range of RPMs is beneficial compared to

monitoring the whole time series.
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