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SUMMARY

Our ability to forecast earthquakes and slow slip events is hampered by limited information on
the current state of stress on faults. Ensemble data assimilation methods permit estimating the
state by combining physics-based models and observations, while considering their uncertain-
ties. We use an ensemble Kalman filter (EnKF) to estimate shear stresses, slip rates and the state
0 acting on a fault point governed by rate-and-state friction embedded in a 1-D elastic medium.
We test the effectiveness of data assimilation by conducting perfect model experiments. We
assimilate noised shear-stress and velocity synthetic values acquired at a small distance to
the fault. The assimilation of uncertain shear stress observations improves in particular the
estimates of shear stress on fault segments hosting slow slip events, while assimilating obser-
vations of velocity improves their slip-rate estimation. Both types of observations help equally
well to better estimate the state 6. For earthquakes, the shear stress observations improve the
estimation of shear stress, slip rates and the state 6, whereas the velocity observations improve
in particular the slip-rate estimation. Data assimilation significantly improves the estimates of
the temporal occurrence of slow slip events and to a large extent also of earthquakes. Rapid and
abrupt changes in velocity and shear stress during earthquakes lead to non-Gaussian priors for
subsequent assimilation steps, which breaks the assumption of Gaussian priors of the EnKF. In
spite of this, the EnKF still provides estimates that are unexpectedly close to the true evolution.
In fact, the forecastability for earthquakes for the same alarm duration is very similar to slow
slip events, having a very low miss rate with an alarm duration of just 10 per cent of the
recurrence interval of the events. These results confirm that data assimilation is a promising
approach for the combination of uncertain physics and indirect, noisy observations for the
forecasting of both slow slip events and earthquakes.

Key words: Seismic cycle; Inverse theory; Numerical modelling; Probabilistic forecasting;
Earthquake interaction, forecasting and prediction; Earthquake dynamics; Data assimilation;
Ensemble Kalman filter.

1 INTRODUCTION

Earthquakes are among the deadliest and most damaging natural dis-
asters. They are particularly hazardous because they occur without
warning. Seismologists have traditionally focused on two families
of methods in an attempt to alert the population. The first family
produces Probabilistic seismic hazard assessments (PSHAs) based
on historical data of past earthquakes, knowledge about the geology
of an area and seismic response models (e.g. Esteva 1967; Cor-
nell 1968; Bommer & Abrahamson 2006; Ordaza & Arroyo 2016).
These methods estimate earthquakes’ return periods from tens up to
tens of thousand of years, but accurately combining very limited, un-
certain information is really challenging and often not as successful

as needed (Geller 2011). The second group of methods consists of
earthquake early warning (EEW) systems, whose success relies on
the large improvements in the seismic sensors’ sensitivity in the last
decades. They detect the less damaging and faster compressional
waves (P waves) to alert the population seconds before the more
destructive shear waves (S waves) and surface waves arrive (Allen &
Kanamori 2003; Allen & Melgar 2019). Unfortunately, no methods
have been proven reliable for the short-term prediction of earth-
quakes (Holliday et al. 2005; Koronovsky et al. 2019). Moreover, in
between these two families there is a gap in forecasting timescales
for earthquakes that goes from minutes to decades. Seismologists
look for narrowing this gap by better understanding earthquake se-
quences, especially earthquake nucleation and earthquake physics
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processes. For example, precursors such as foreshocks and slow
slip events (SSEs) are pursued due to their systematical temporal
and spatial relationship to the subsequent main earthquake. These
precursors are believed to trigger the next earthquake or to con-
tribute to the seismogenesis process which makes their study very
beneficial for a potential short-term earthquake forecast (Segall &
Bradley 2012; Uchida et al. 2016; Socquet et al. 2017; Pritchard
et al. 2020).

Significant advances have been made in recent years in the study
of seismogenesis. Efforts have concentrated on understanding how
fault states control the earthquake nucleation, propagation and arrest
(e.g. Ellsworth & Beroza 1995; Rubin & Ampuero 2005; Wibber-
ley et al. 2008; Faulkner et al. 2010; Galis et al. 2017). This led
to more realistic, physics-based numerical models (Lapusta et al.
2019), which resolve dominant physical processes throughout dif-
ferent phases of the seismic cycle: interseismic, coseismic and post-
seismic phases (Lapusta & Liu 2009; Herrendorfer ef al. 2018; Bar-
bot 2019). Due to the usually simplified modelling assumptions it
remains highly challenging to apply such physics-based models to
improve short- to medium-term seismic hazard assessment, there
are nevertheless progressive efforts to do so (e.g. Barbot et al. 2012;
Dal Zilio et al. 2019). Earthquakes simulators have been developed
in an attempt to model earthquake sequences over complex regional
fault networks for tens of thousands of years by assuming signifi-
cant simplifications in solution procedures and physical processes.
These models are able to (re-)produce statistical observations such
as the Gutenberg—Richter law and the Omori’s law. They also shed
light on the feasibility of combining physical models with proba-
bilistic seismic hazard assessments (Dieterich & Richards-Dinger
2010; Shaw et al. 2018). However, one of the largest difficulties that
remains in modelling upcoming sequences of slip on a fault system
is that its current conditions (i.e. state of stress and strength) are
unknown and cannot be directly measured (Barbot ez al. 2012; van
Dinther et al. 2013, 2019).

Observations of past fault slip and in situ measurements can
be used to constrain physical models. For example, laboratory
experiments in controlled, in sifu conditions allow to constrain a
fault’s strength, that is its frictional parameters. The improvement
in geophysical, geodetic and geological observations and labora-
tory measurements has offered valuable, albeit noisy and indirect
information that may be used to calibrate the stress and velocities
in regional, numerical models. For instance, slow slip events have
an aseismic energy release (up to months and years) that produces
very little surface deformation. This is difficult to record with seis-
mometers and observed only with geodetic measurement systems
(Kanamori & Hauksson 1992; Kawasaki ef al. 1995; Dragert et al.
2001; Ide et al. 2007; Schwartz & Rokosky 2007). In contrast, the
efforts to improve observation of regular earthquakes, which gener-
ate seismic waves due to very high slip rates over a short duration,
have concentrated on developing more sensitive seismic networks
and more complete earthquake catalogues with lower magnitudes
of completion. Nonetheless, the sparsity of measurements in space
and time, their large uncertainties and the large distances between
the observed areas and the modelled ones make the estimation of
the current state of stress of faults highly challenging (van Dinther
et al. 2019; Brodsky et al. 2020).

Data assimilation techniques are methods that combine prior
knowledge from physics-based simulations with observations to
estimate the probability of a state or parameter (Evensen et al.
2022; Evensen 2003; van Leeuwen 2010; Bannister 2017). One
of the advantages of these techniques is that they help to provide
good estimates of variables of interest when having very uncertain

initial conditions or parameters. For example, data assimilation is
widely used for forecasting the weather (e.g. Evensen 1994; Reichle
2008), ocean currents (e.g. Vossepoel & Behringer 2000; Weaver
et al. 2003; van Leeuwen 2003), hydrologic processes (e.g. Liu
et al. 2012), or oil and gas production (e.g. Aanonsen et al. 2009;
Evensen & Eikrem 2018). Data assimilation can also be used for
history-matching of seismic data (e.g. Emerick 2018) or even to
make predictions about the SARS-CoV-2 outbreak (e.g. Evensen
et al. 2021).

In the last decade, different data assimilation approaches that
consider observations of different parts of the earthquake process
have been developed. These approaches can be classified into three
groups: (1) estimation of the seismic wavefield during the coseismic
phase of large earthquakes (Maeda et al. 2015; Oba et al. 2020),
(ii) estimation of the slip, slip rates and frictional parameters dur-
ing the post-seismic phase of an earthquake and during slow slip
events (Kano et al. 2013; Hori et al. 2014; Kano ef al. 2020) and
(iii) the estimation of sequences of fault slip events (van Dinther
et al. 2019; Hirahara & Nishikiori 2019; Banerjee et al. 2022).
Most of these approaches have been assessed using perfect model
experiments.

In this study, we build on the work of the third group focusing
on the use of ensemble-based data assimilation methods to estimate
multiple earthquake cycles (van Dinther et al. 2019; Hirahara &
Nishikiori 2019). The work of van Dinther et al. (2019) demon-
strates with perfect model experiments that even a single point
observation of the shear stress and velocity significantly improves
the estimates of fault stress and slip. However, van Dinther et al.
(2019) mimics a laboratory setup of a slowly accelerating medium,
whose fault is described by a simplified friction formulation. Addi-
tionally, Hirahara & Nishikiori (2019) focuses on simulating slow
slip events instead of earthquakes. Until now the most effective im-
plementation of data assimilation for fast earthquake sequences is
yet to be developed, and is unclear whether it is possible to assim-
ilate real measurements to effectively forecast the nucleation and
occurrence of future earthquakes.

In this paper, we propose a data-assimilation approach to estimate
the occurrence of both slow slip events and earthquake sequences
using a numerical model of earthquake sequences, which is based on
arate-and-state friction formulation and adaptive time stepping. We
focus here on using data assimilation methods as a means to shorten
the time scale of fault slip forecasts. We look for improving our way
of forecasting earthquakes by making the most of both physics-
based models and observations, that is by leveraging recent progress
in earthquake simulations, and benefiting from the abundant data
collected from past seismic events.

The outline of the paper is as follows. In Section 2, we summarize
the workings of the ensemble-based data assimilation method and
we introduce the type of perfect model experiments we perform over
slow slip events and earthquake models. In Section 3, we evaluate
the estimates of the ensemble Kalman filter (EnKF) for both types
of events in two key locations: at the observation location where a
single observation of shear stress and velocity has been taken, and
at the fault location where the shear stress, the slip rate and the state
0 are estimated. We further analyse the evolution of the ensemble
distributions during different phases of the seismic cycle, evaluate
the forecastability potential from the EnKF and assess the influence
of the observations in the estimations of the variables. In Section 4,
we discuss the implications of the non-linearity behaviour of the
rate-and-state friction law in the assimilation process. Finally, in
Section 5 we present our conclusions about the performance of the
filter for the estimation of slow slip and earthquake occurrences.
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2 METHODOLOGY

2.1 Data assimilation

Data assimilation is an approach that helps to better estimate the
evolution of a system by combining knowledge of a dynamic system
with observations thereof. We represent variables (or parameters)
that we want to estimate as a vector that we call the ‘state vector’,

7 = (Z‘//T»ZaT)» (1)
where z is the state vector, z,, represent the ‘states’ of the system and
z,, represent the ‘parameters’ or physical properties of the system.
When applied sequentially, the optimal estimation of the variables is
described as a two-step process. The first step is called the ‘forecast
step’, in which we use our knowledge of the dynamics of the system
to move it forward from a previous time z._; to a future time ¢,
using the following formulation:

z. = Mc:szl (Zcfl) + N (2)

where M..._; represents the forward model operator from time
t._1tot., z._ represents the state vector at time 7. _ | and 5, rep-
resents the model error which includes missing physics or uncer-
tainty involved in the forward modelling (parameter uncertainties,
grid resolution, uncertain initial conditions, etc.).

The second step is the ‘analysis step” which is formulated based
on Bayes’ theorem when data or observations of the system have
been made:
plaid = LA2PD) G)

p(d)

where p(z) represents our prior scientific knowledge of the state
vector and its uncertainties, p(d|z) represents the likelihood of the
observations d, given the prior state vector z, p(d) is referred to
as the evidence and acts as a normalization factor and p(z|d) is
the posterior estimate of the state of the system given the observed
data. We update in this step our knowledge of the system using those
observations.

We represent the observation vector d with:

dc = Hc(zzf) + €., (4)

where d. is the vector containing the observations taken at time 7.,
H,. is the non-linear observation operator and €. are the measure-
ment errors.

One of the benefits of data assimilation is that it helps to estimate
states at a location of interest that is not easily accessible to be
measured directly. These states receive the name of ‘hidden states’.
They are estimated using our physical knowledge of the interaction
and relationship between the non-observable and the observable
locations in the model to transfer the corresponding correction once
we update our knowledge of the observable locations. In our case
we consider the fault generating the earthquakes as a location of
interest whose state variables are hidden states.

2.1.1 The EnKF

For the state estimation in this study, we use a stochastic variant of
the EnKF (e.g. Evensen 2003), an ensemble-based data assimilation
and a Monte Carlo implementation of the least-squares solution of
the Bayesian update problem presented in eq. (3). The EnKF opti-
mally combines the information from the forward numerical model
(prior) and its deviation to the observations (likelihood) to produce
a posterior estimation of the state vector. The prior, likelihood and
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posterior probability density functions (pdfs) are approximated by
an ensemble of different initial conditions, states or parameters of
our model. These distributions are assumed to be Gaussian. The
ensemble representation of our state vector, which can contain the
state and the parameters, is as follows:

z::(zvrl,zg)n, l1<n<N, (5)

where the subscript n refers to a single realization in an ensemble
containing N realizations (with n = 1,..., N). The prior, is defined as

z/ ~ N (Z‘,,f , C/). The superscript f stands for forecast and indicates
the prior information coming from the forward numerical model
which represents our knowledge about the physics of the problem.
The covariance C/. quantifies the relationship between variables
and the uncertainties of the given states. The covariance is defined
as follows:

1 . 7 7
szzzﬁ(z;f—z{) (z}f—znf) . (6)
We utilize the perturbed-observations scheme, which involves
updating each ensemble member with a perturbed observation. It is
assumed that the observational errors follow a Gaussian distribution
represented by €, ~ N(0, Cyy). Additionally, we assume we have

uncorrelated errors in our states. The perturbed observation vector
for each ensemble member is calculated as follows:

d,=d+e,, 1<n<N, (7)

| L
Cdd = ﬁ anfn. (8)

n=1

The EnKF uses the prior distribution zhf , the observation vector d,,
and their covariance matrices for estimating the posterior distribu-
tion z¢ calculated in the analysis step using the following expres-
sion:

7t =1z/ +K[d, - Hz/], l<n<N, ()

where the superscript a stands for analysis, K is the Kalman gain
matrix and H is the linear observation operator matrix. The Kalman
gain is interpreted as the relative weight given to the observations
information and current state estimate and it is given by:

—1
K=C/H" (HCLH" +C,) . (10)

A high Kalman gain places a higher weight on the observations
and makes the analysis follow them more closely. A low Kalman
gain imposes a higher weight on the prediction and an analysis that
follows the prediction more closely. Further details can be found in
Evensen (2003) and Evensen ef al. (2022).

2.2 Forward modelling

We use a numerical model setup inspired by a large-scale biaxial
friction apparatus consisting of two sandstone block specimens in
a direct-shear configuration (Fig. 1, Fukuyama et al. 2014; Spiers
etal 2017). We assume a symmetric setup and model only the lower
half-space. To limit computational resources we discretize a 1-D line
across the block boarded by a single, 0-D fault point, which provides
a reasonable approximation when evaluating temporal estimates
(Li et al. 2022). Discretization on a fully staggered grid is solved
using finite differences by adopting the C++- library for non-linear
coupled problems ‘Garnet’ (Pranger 2020). The numerical method
and conservation and constitutive equations for this 1-D model are
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Figure 1. Schematic representation of the 1-D model used to represent a horizontal straight fault. The shear stress () is estimated in the nodes represented
by circles and the velocity (v,) in the ones represented by squares The fault (blue) corresponds to the uppermost node of the grid and the location where
shear stress, slip rate and state 6 are estimated by the EnKF. Shear-stress and velocity observations (red) at 200 m away from the fault in the surrounding
homogeneous elastic medium are assimilated into a 10-km model. The spacing between nodes is 20 m.

adopted from and described in detail in Li e al. (2022). Below we
summarize the equations relevant for our forward model setup.

2.2.1 Fault model

The fault’s temporal evolution is modelled as an initial value prob-
lem. The slip along the fault is assumed to be governed by a rate-and-
state friction formulation, which was proposed based on laboratory
friction experiments by Dieterich (1978, 1979) and Ruina (1983)
(eq. 11). We use a regularization near zero slip rate according to
Rice (1993) and Ben-Zion & Rice (1997), such that the friction
formulation that defines the relation between shear stress 7 g, and
normal stress o, on the fault is given by

14 b oV
Thault = a(r,,arcsinh{ZVexp|:M0 + - (lnTO) :“ +nV, (1)

0 a a

where Ty 18 the shear stress at the fault, 1 is the reference friction
coefficient at slip rate V), V' is the slip rate, L is the characteristic
slip distance, a is the empirical parameter representing the direct
effect and b is the parameter representing the evolution effect. The
‘state’ O has a unit of time and is a scalar that increases during the
interseismic phase (stick), when the asperities are in contact and
locked in the fault, and decreases during the coseismic phase (slip).
The state 0 is governed by the evolution equation (Ruina 1983)
given by
. Ve
0=1 T (12)
The fault is ‘velocity-weakening’ and potentially frictionally un-
stable when ¢ — b < 0, and ‘velocity-strengthening’ and gener-
ally frictionally stable when a — b > 0. Finally, the parameter n
used in eq. (11) refers to the ‘radiation damping term’ used in the
quasi-dynamic approximation of inertia (Rice 1993), which is used
in earthquake cycle simulations to reduce the computational costs

(Cochard & Madariaga 1994; Ben-Zion & Rice 1995; Liu & Rice
2007; Crupi & Bizzarri 2013). However, this is known to introduce
qualitative and quantitative differences compared to fully dynamic
modelling results (Thomas et al. 2014). The damping viscosity n =
G/(2¢,) is equal to half the shear impedance of the elastic material
surrounding the fault.

2.2.2 Medium model

Following the simplification made in Li et al. (2022), we directly
write out the physical equations in 1-D. In this scenario, all variables
are invariant along dip and strike thus only the shear stress compo-
nent 7, and the velocity component v, need to be solved. The fault
reduces to a 0-D point at x = 0 in a computational domain (x) = [0,
H], where H is the distance from the fault interface until the bottom
of the model. We choose the fault point to be velocity-weakening
to be able to nucleate sequences of earthquakes. The model needs
to satisfy the momentum balance equation and Hooke’s elasticity:

. v,
Txy = a0
ax
oz, (13)
ax

where G is the shear modulus.
We assume boundary conditions corresponding to the values of
the velocity in both extremes of the model
1
v =0)= 2V,

1
v(x=H)= EVZ'

(14)

Our assumption about the symmetry of the setup allows us to con-
sider the velocity in the fault interface as half of the total slip-rate
V, and the one at the bottom of the model as half the loading rate
V.
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The initial conditions are chosen to allow the fault to creep at the
imposed slip velocity V; in a steady state at # = 0, namely

Vie=0="1,
L (15)
0(t=0)= —,
(t=0) 7
V b %
Tru(f = 0) = aoy,arcsinh L exp Ko +-In(22 +nV.
2V, a a V;

(16)

2.3 Perfect model experiments

In the data-assimilation experiments, we use an ensemble of 50
members. Each member is initialized with a different value of ini-
tial shear stress at the fault node following a Gaussian distribution
with a standard deviation of 2.5 MPa. The synthetic true value of
initial shear stress is set in 20 MPa and the mean of the ensemble
has a bias of 3 MPa with respect to that true value (Fig. 2). The
total simulation time is 1500 yr from which we sample observa-
tions at 2.5-yr intervals for slow slip events and at 5-yr intervals
for earthquakes. The workflow is illustrated in Fig. 3. To compare
the results with and without data assimilation, we run the 50 mem-
bers up to 200 yr where the first observations are available. Data
are assimilated then, and subsequently whenever sampled synthetic
observations are available.

In an operational data assimilation application, the observations
that are assimilated are real observations. In our case, we assimilate
synthetic observations, such that we can evaluate how our fault es-
timates compare to the known truth. We also assume our model is
perfect, that is that our parameters shown in Table 1 are correct. The
synthetic observations are samples of the simulated shear stress and
the velocity as if they were measured at a single location at a short
distance away from the fault, with noise added to represent measure-
ment error. The selection of observation error amplitudes was based
on widely accepted instrument sensitivity values (van Dinther et al.
2019) and the maximum observed variations in stress and velocity
during the coseismic phase. For slow slip events, observation er-
ror values were set at 0.25 MPa for shear stress measurements and
0.25 for the logarithm of velocity observations. For earthquakes,
the observation errors were assigned as 0.75 MPa for shear stress
measurements, and 0.75 for the logarithm of velocity observations.

We follow the workflow presented in Fig. 3 for the perfect model
experiments. In our case, the state vector z, includes the shear stress
of'the fault, the shear stress in the medium, the slip rate, the velocity
in the medium and the state 6:

z, = (Traur> 71, I(V), In(vy)", In(6)) l<n<N. (17)

W

After the analysis step the updated shear stress and state 6 are
used to calculate the slip rate V. This is done by using an implicit
solver that finds the corresponding slip rate that satisfies eq. (11).
The velocity values in the medium v, are calculated for the next step
solving the system of eqs (12)—(14), where the estimated posterior
values become part of the velocity history of the model.

3 RESULTS AND ANALYSIS

The results of the EnKF estimation are analysed at the observation
location at 200 m from the fault to analyse how observations affect
the assimilation and at the unknown target location, the fault.

Estimating SSEs and earthquakes with an EnKF 1705

3.1 State estimation in the homogeneous elastic medium

The time evolution of the shear stress with respect to the grid 7,, at
the observation location shows that the estimates of the EnKF (rep-
resented in green) for both the slow slip events and the earthquakes
are in sync with the truth (Figs 4a and b, respectively). The EnKF
analysis resolves well both the interseismic and coseismic phases,
despite the large errors of the observations. For example, we observe
large errors around time 834 yr for the slow slip events and around
time 980 yr for the earthquakes. The EnKF is especially effective for
the slow slip events (Fig. 4a), where the ensemble mean captures the
coseismic phase reasonably well. The shear-stress estimates for the
earthquakes during the coseismic phase are comparatively less pre-
cise (Fig. 4b). The very large and fast stress drop during earthquakes
is inherently difficult for any probabilistic or averaging method to
precisely reconstruct. Nonetheless, the timing of earthquakes is gen-
erally anticipated by a drop in the mean shear stress about 2-3 yr
prior to the earthquake occurrence and an increase in spread of the
ensemble with an approximate standard deviation of 2 MPa.

As depicted in Figs 4(c) and (d), the uncertainty of the time evo-
lution of the velocity at the observation location differs considerably
between slow slip events and earthquakes. For both the slow slip
and the earthquake events, the analysis of the EnKF captures the
true velocity in the interseismic phase very well. In the coseismic
phase it is more difficult to provide an accurate estimate due to fast
changes in velocity. For the slow slip events (Fig. 4c) the EnKF
captures the evolution of the velocity very well and, remarkably, it
even accurately captures the peak velocities in terms of magnitude
and timing. However, for the earthquakes the magnitude of the es-
timated peak velocity still has a large uncertainty (Fig. 4d). This is
a result of averaging over 50 ensemble members, which each only
show 7-9 orders of magnitude higher velocities for seconds. How-
ever, the ensemble mean correctly traces the increases in velocity
up to the loading rate. This is important to realize for estimating the
timing of nucleation, since after the increase in slip rates is iden-
tified, its maximum is capped by the activation of inertia and thus
already known to be in the order of meters per second.

3.2 State estimation at the fault

The EnKF estimates the shear stress and slip velocities relatively ac-
curately at the locations where we have observations (Fig. 4). Nev-
ertheless, good estimates are not guaranteed for locations where
measuring devices do not have easy access, such as the fault
(Fig. 5). This is especially difficult if the state variables experi-
ence rapid changes. Therefore, we evaluate the performance of
the EnKF in the same experiments from Fig. 4 but at the loca-
tion where the estimation is most challenging, that is at the fault.
At the same time, this is the location where correct estimates are
critical and most needed, as movements in the medium respond to
displacements at the fault and the state variables are unobserved
there.

Prior to data assimilation ensemble members are not aligned,
such that their mean can not separate between interseismic and
coseismic phases and almost becomes a constant value (Fig. 5).
After 200 yr there is a significant decrease in the spread of the
ensemble for all hidden states as a result of the assimilation of the
first observations. As shear stress is increased in many ensemble
members, the occurrence of the first slow slip event is synchronized
even after assimilation of a single observation (Fig. 5a). The first
earthquake is preceded by assimilation of a second observation,
which introduces uncertainties in the shear stress estimates, but does
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axis represent the 50 different initial stress values used for the ensemble.
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ial data assimilation. The flowchart describes four steps of the synthetic

experiment. (a) First, in grey the steps for generating the synthetic truth to be estimated. (b) Second, in red the creation of the synthetic observations to be

assimilated. (c) Third, in blue the creation of the ensemble of realisations that form

the prior distribution. (d) Fourth, in green the data assimilation step where a

data-assimilation method (in this case the EnKF) is used to estimate a posterior distribution of the state using the synthetic observations and the prior ensemble
distribution. The last two steps are done sequentially until the last time step K where observations are available. In our case, we assimilate shear stress and slip

velocity observations measured in the medium.

allow the ensemble to accurately predict the timing of the stress drop
(Fig. 5b). Assimilation of a rapid slip rate is also apparent from the
slip rate jump at # =210 yr (Fig. 5d), which is immediately corrected
by the forward model using shear stress to estimate the next slip
rate. Assimilation during the next slip sequences shows that the

estimates of the EnKF are very well synchronized with the truth in
our case of state estimation with known and constant parameters.
Generally, for a large part of the interseismic period, slip rates and
states from all ensemble members show that a slip event is not to
be expected (Figs Sc—f). Interestingly, for some sequences all three
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Table 1. Material and rate-and-state friction parameters for the 1-D model
setup for both slow slip events and earthquakes.

Earthquake
Parameter Symbol  Slow slip events events
Shear modulus G 32 GPa 32 GPa
Density P 2670 kgm ™3 2670 kgm ™3
Initial mean stress oy 40 MPa 40 MPa
Static friction coefficient Lo 0.6 0.6
Reference slip rate 1) 1 ums™! 1 ums™!
Characteristic slip L 0.24 m 0.18 m
distance
RSF direct effect a 0.0060 0.0060
RSF evolution effect b 0.0158 0.0160
Depth model H 10 km 10 km
Loading slip rate Vi 10 nms™~! 10 nms™!
Grid spacing Ax 20 m 20 m

hidden states are tracked with extreme accuracy, for example around
the earthquake at about 230 yr (Figs 5b, d and f).

The peak shear stress have a larger spread in the posterior of
the earthquake model when compared to the slow slip events when
approaching the coseismic phase (Figs 5a and b). The ensemble
spread around the coseismic phase of the earthquakes has a large
spread around the peak slip rate compared to the slow slip events
(Figs 5c and d). The ensemble mean does not reach the peak slip
rates nor the peak shear stresses due to the spread of the ensemble
in the interseismic and coseismic phases which is related to the
short duration of the coseismic phase. However, individual ensemble
members give a good indication of peak slip rates and shear stresses.
The ensemble provides good state 6 estimates, whose timing is
synchronized with the truth after the data assimilation starts for
both fault-slip events (Figs Se and f). The ensemble prior PDF of
the three hidden states show a change in spread around 2-3 yr
before and after the coseismic phase. This distinct increase in the
spread of the ensemble prior to the event may be an indication for
an upcoming earthquake.

3.3 Non-Gaussianity

In the EnKeF, it is assumed that the prior distributions of the state vec-
tor’s components and observation errors are Gaussian distributed.
Additionally, the EnKF produces a low-rank representation of the
prior covariance matrices by using a finite ensemble of members,
which makes the EnKF very sensitive to outliers. This is particularly
true for cases where the ensemble size is small. We verify that the
ensemble size used for our experiments is large enough by doing an
analysis of the eigenvalues of the outer and inner product covariance
matrices of our ensemble. Our analysis indicates that an ensemble
of 30 members would already be enough to resolve the significant
principal components of the covariance matrix, which means that
our current ensemble size of 50 members is adequate. For a more
extended explanation of this verification see Appendix A.

In this section, we evaluate how well preserved the assumption
of Gaussian distributions is in the different phases of the cycle of
slow slip events and earthquakes (Figs 6 and 7). For both types of
events we provide the histograms of the ensembles during the inter-
seismic phase (Figs 6b and 7b) and shortly before the start of the
coseismic phase (Figs 6¢ and 7c¢). For the slow slip events the en-
semble distributions are very close to a Gaussian. The preservation
of the Gaussian assumption allows the EnKF to have estimations
as shown in Fig. 6(a). The range of the differences between the
ensemble mean and the truth corresponds to the expected range of

Estimating SSEs and earthquakes with an EnKF 1707

uncertainty. The maximum errors are around 0.4-0.8 MPa, which
are between 25 per cent of the average stress drop of the slow slip
events. In terms of the uncertainties on the timing of slip occur-
rence, it is about 1 yr, which is 20 per cent of the recurrence interval
of 5 yr of the slow slip events.

In contrast, for earthquake sequences, the Gaussian distribution
in the prior is only well preserved during the interseismic phase
(Figs 7a and b). This is because the members that experience the
sudden large change of shear stress in the coseismic phase deviate
strongly from the ensemble mean (Fig. 7¢). Some of the ensemble
members are finishing the interseismic phase of the previous cycle
and entering the coseismic phase, while others are starting the next
cycle. This results in a skewed distribution of the prior shear stress,
which translates into a bimodal distribution for the prior (Fig. 7c).
This effect is also seen in Fig. 7(d) in the evolution of the absolute
errors and the standard deviation of the ensemble. Similar to the
slow slip events the errors of the filter are in the same range of the
values of the standard deviation of the ensembles and in the range of
expected uncertainties. The maximum errors are around 50 per cent
of the stress drop of 10 MPa. The errors in terms of the earthquake
occurrence are about 5 yr which is 25 per cent of the recurrence
interval of 20 yr of the earthquake sequences. This similarity in
performance suggests that the non-Gaussianity of prior estimates
may not significantly limit the effectiveness of the EnKF in our case
of state estimation with known and constant parameters.

3.4 Sensitivity of analysis to observation type

We observe that the EnKF gives reasonable estimates of the shear
stress, slip rate and state 0 at the fault despite the rapid changes in
the stresses and velocities in the coseismic phase. In this section, we
assess how the estimation of these rapid changes is realized by the
EnKF and what is the influence of the different types of observations
on this. We do this by analysing the elements of the Kalman gain
matrix at every analysis step of the data assimilation. As explained
in Section 2.1, a high Kalman gain places a higher weight on the ob-
servations information when estimating the posterior distribution of
the ensemble. Every element of the matrix maps the ‘innovation’,
that is the difference at the observation location between the ob-
served values and the estimated values from the forward model, to
an update of a variable in the state vector. From this we can assess,
for example, the relative influence of the shear-stress observations
at the fault on the estimated slip rate. Fig. 8 illustrates the Kalman
gain matrix elements from all analysis steps of the slow slip events
and the earthquakes that relate the shear-stress observations and the
velocity observations to the estimates of shear stress, slip rate and
state 6 at the fault. By comparing the time when the observations are
assimilated relative to the slip occurrence, we evaluate how these
Kalman gain elements change after every occurrence of a slow slip
event or earthquake.

In both type of events, the Kalman-gain values that relate the
shear-stress estimates to the shear-stress observations are higher
than those that relate to the velocity observations, suggesting that
the shear-stress estimates are more strongly influenced by the shear-
stress observations than by the velocity observations. This is espe-
cially notable for the earthquakes, where the Kalman gain matrix
elements that relate to the shear-stress observations are between four
and eight times higher than the elements that relate to the velocity
observations. In contrast, the Kalman gain matrix elements of the
slip rate estimates that relate to velocity observations for the slow
slip events are two to four times higher than the elements that relate
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to the shear-stress observations. This suggests that the slip-rate esti-
mates are influenced the most by the velocity observations, and the
shear-stress estimates are influenced the most by the shear-stress
observations.

We observe a difference in the relative influence of the slip-
rate observations on the slip-rate estimates between the slow
slip events and the earthquakes. For slow slip events (Fig. 8c),
the slip-rate estimates are mostly influenced by the veloc-
ity observations, but for earthquakes, both types of observa-
tions appear to have equal influence in the period before the
slip occurrence. However, after the slip occurrence, the ele-
ments that relate the velocity observations to the slip-rate es-
timates are higher than the ones that relate to the shear-stress
observations.

For the state 6 both types of observations seem to influence
equally the estimates for the slow slip events, while for earthquakes,
the Kalman gain elements that relate to the shear-stress observations
are two times higher than the elements that relate to the velocity
observations.

We observe that all Kalman gain-matrix elements for the slow
slip events tend to be higher after the slip occurrence. For the earth-
quakes the higher values occur shortly before and after the event.
The Kalman gain is a function of the observational error and the
prior covariance of the state vector as shown in eq. (10). In our
perfect model experiments shown here, we assume that the uncer-
tainties of the synthetic observations are constant in time. Therefore,
the Kalman gain values, as indicated by the boxes in Fig. 8, become
a function of the ensemble spread. Since the ensemble spread is
high shortly before and after the earthquake occurrence the higher
Kalman gain values will result effectively in a stronger influence of
the observation information on the analysis during these periods.
For the slow slip events a large ensemble spread occurs mainly af-
ter the coseismic phase because of the smoother transition of the
phases. We observe higher Kalman gain values after the seismic
event. Interestingly, the slip rate (blue line) changes more notably
than the other variables before the earthquake event as illustrated
by Figs 8(b) and (d). This suggests that slip rate is more sensitive to
data assimilation before the earthquake event than other variables.
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3.5 Forecastability

We evaluate the forecastability of the EnKF for slow slip events
and earthquakes by comparing time-series of estimated relative fre-
quency of fault-slip occurrence to the synthetic true occurrences
(Fig 9). Relative frequencies indicate the percentage of ensemble
members that estimate an earthquake within five different rolling
window lengths (1, 2, 3, 4 and 5 yr) and a lag of 1 yr. The lag in
this scenario means that we shift our window’s interval each time
by 1 yr. We observe that the relative frequencies of occurrence for
the rolling windows of 1-yr length are typically rather small, that
is smaller than 0.2, although for both fault-slip types exceptions up
to 0.5 exist. However, for longer windows from 2 up to 5 yr it is
possible to reach relative frequencies from 0.75 up to 1.0. Interest-
ingly, particularly for rolling windows of 5 yr, the peak of relative

frequencies in most cases occurs at the same time as the true slip
events, with maximum deviations of less than 1 yr. Moreover, the
maximum relative frequencies are rather comparable for both fault-
slip types, indicating that the forecastability of earthquakes is also
comparable to those of slow slip events.

We also evaluate the forecastability of the data-assimilation
framework by using a Molchan or error diagram to analyse what is
known just prior to the earthquake, instead of forecasting a slip event
once it has happened, that is hind-casting (Fig 10). The diagram is
constructed considering 72 earthquakes and 259 slow slip events in
a time span of 1300 yr. We assume that an alarm is ringed once a
percentage of the ensemble (10, 20 and 30 per cent) has reached its
peak shear stress. We calculate the period between the moment that
the alarm rings and the actual slip occurrence and divide this time
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Figure 6. (a) Shear stress estimation of slow slip events with prior distributions during the (b) interseismic and (c) just prior to the coseismic phase. (d)
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by the recurrence interval of the event to obtain the alarm duration.
We estimate the failure rate as the fraction of events that are not
forecast from the total of events that occurred.

In the Molchan diagram, a forecast located at (0,0) corresponds
to having a zero prediction failure, while ringing the alarm of an
upcoming slip event for a very short period. Theoretically, if we ring
the alarm all the time we will not miss any slip events (i.e. 1,0) and
if we never ring the alarm we will miss all events (0,1). An optimal
forecast would follow a curve that comes as close as possible to the
origin and to both axes. The results show that the forecastability of
the EnKF for both slow slip events and earthquakes is very similar

when ringing an alarm at times when 10 per cent of the ensemble
members have reached their peak stress. Almost 90 per cent of
the slow slip events and earthquakes are forecast when ringing
the alarm just for 10 per cent of the recurrence interval duration.
That means that the slow slip events were forecast as early as half
a year before the slip occurrence and around 2 yr before for the
earthquakes. We also evaluate how the forecastability changes when
considering a different proportion of ensemble members (20 and
30 per cent). We observe that the EnKF shows lower failure rates
for earthquakes for the same alarm duration than for slow slip
events. This may be connected to the larger spread of the ensemble
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Figure 7. Asin Fig. 6 but for earthquakes instead of slow slip events.

experienced when estimating earthquakes that may lead to earlier
alarms when compared to the slow slip events that tend to stick
closer to the truth.

4 DISCUSSION

The results show that the EnKF provides good estimates, and also
the lowest deviations from the truth, during the interseismic phase
of both the slow slip events and the earthquakes. The state estimates
are most uncertain during and around the coseismic phase of the
earthquakes. This is more pronounced for the slip-rate’s and state
variable 0’s estimates, which experience variations of many orders
of magnitude between interseismic and coseismic values. This is not
surprising, as the estimate is constructed by averaging 50 ensemble

members that have largely varying slip rate and state variables (e.g.
Fig. 4). This aspect of the data assimilation may be different when
using a different assimilation method [see, for example, chapter 19
in Evensen et al. (2022)].

4.1 Impact of non-linearity and non-Gaussianity

We imposed a rate-and-state friction formulation (eq. 11) on the
fault to generate earthquake sequences. This dynamical friction
model is non-linear in the sense that small changes in one variable
(e.g. stress) trigger disproportionally large and non-linear changes
in another variable (e.g. slip rate) during the coseismic phase. This
type of non-linearity can be visualized by analysing the hidden
state variables in a phase diagram (Fig. 11), while its impact on
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data assimilation is analysed by visualizing the trajectories of the
ensemble members during the analysis step in both phases of the
seismic cycle (Fig. 12).

The phase diagrams of the slow slip events have a smoother tran-
sition between the interseismic and coseismic phases, presenting
almost no sharp corners in the variables’ relationships (Figs 11a
and c). As shown in Fig. 6 the ensemble distributions are Gaussian,
and in these phase diagrams there is a smaller lag in time between
the truth and the ensemble mean observed by the closeness of the
members to the truth. Besides, the truth is better captured by the
ensemble in this smoother trajectory. In contrast, the earthquakes
phase diagrams reveal very pronounced corners and abrupt transi-
tions, which lead to a split of the ensemble members’ distribution
into two groups, corresponding to time snapshots prior and after
the coseismic phase (Fig. 11d). This bi-modality of the ensemble is
also seen in Fig. 7(c) and although in the interseismic phase the en-
semble members surround the truth they have a more significant lag
in time when compared to the slow slip events since the transitions
are sharper and restrictive. This lag of time can be visualized as the
distance between the members that stay further away for the truth
and that will stay in the interseismic phase of a previous earthquake
once the coseismic phase of the truth has already occurred.

As mentioned before, the movements in the medium are a re-
sponse to the displacements at the fault. This means that sharp
transitions in state variables at the fault should translate into sharp
transitions in the medium. We further analyse these relationships
and effects between variables by making a cross-plot of the es-
timated hidden states and the observed variables during a single
analysis step just prior to a coseismic period (Fig. 12). This shows
how the non-linearities identified in the phase diagrams translate
into a disruption of the estimates of the EnKF (Fig. 12). For the
slow slip events we see that the ensemble members stay close to

each other and the updates from the EnKF are not as large as in the
earthquakes estimates. We also observe a deviation of the ensemble
members from the true cycle of the slow slip events in Figs 11(a)
and (c). This effect can be explained if we consider the 1-D earth-
quake model as a 1-D spring-slider model (e.g. Burridge & Knopoff
1967). If we use this model to simulate slow slip events, the ratio
between the stiffness of the spring and the so-called critical stiff-
ness of the 1-D spring-slider model will determine if the events will
have a decaying, increasing, or no effect in their trajectories. This
ratio is slightly less than 1 for the slow slip events shown in Fig. 11
which will result in cycles which have a slightly growing orbit in
the phase diagram. In the earthquake models, this effect does not
occur because of the added effects of inertia and radiation damping
that force the ensemble members to stay in the same cycle.

The cross-plot from the earthquake models shows that a few
members are already experiencing a higher velocity, because they
are accelerating towards an earthquake. These accelerating mem-
bers behave as outliers in the sense that when corrected, they lie
outside the overall trend observed for slip rates as illustrated by the
prior ensemble members and truth trajectory. Nonetheless, despite
the clear presence of bi-modality in the prior (e.g. Fig. 11d), the
estimated shear stresses at the fault are projected back to end up
close to the true shear stress (black star). Having a good shear-stress
estimate is more important than having a good slip-rate estimate, be-
cause the forward model re-calculates slip rates using the estimated
shear stresses (Section 2.3). This means that the slip-rate estimate
of the data assimilation will be overwritten in the next propagation
time step.

Interestingly, the comparison of the analysis for slow slip events
and earthquakes shows that the update of the ensemble members
in the earthquake experiments bring the ensemble members’ shear
stress and velocity closer to the truth than in the case of the slow
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phase.

slip events. Despite a more angular trajectory of the true shear
stress in the earthquake experiment, the average slope represented
in the Kalman gain (grey lines) suggests an effective update of
the shear stresses at the fault. These findings suggest that the data
assimilation is almost equally effective in estimating the occurrence
of earthquakes as it is in estimating the occurrence of slow slip
events. This interpretation is supported by the evaluation of the fit
of the shear stress evolution of the ensemble members to the truth
(Fig. 4), and by the quantification of the shear stress error (Figs 6
and 7), and forecastability (Fig. 10).

Finally, the above analyses and the relatively minor difference in
performance between slow slip events and earthquakes also suggest
that the non-Gaussianity of the prior and the strong non-linearity of
the forward model do not significantly hamper the effectiveness of
the EnKFE.

4.2 Limitations

A major simplification in this study is that we use a 1-D model
that is inherently periodic as we consider our frictional properties
to be constant in time and there are no spatial heterogeneities. One
of the advantages of working with such a simple setup is that we
can understand the impact of the rate-and-state friction law in a
simple case. Another advantage is that this type of perfect model
experiments with such simplifications also helps to evaluate how
the assumed settings affect the assimilation results. This is very
useful when moving to a more realistic application since it helps
to evaluate the impact of factors such as the amplitudes of the

observation errors, observation intervals, the observed variables,
and measurement location. However, we expect that to fully exploit
the capability of the physics-based model to estimate the shear
stresses at the fault level through data assimilation, we should use
higher dimensional models.

These limitations are tackled by the use of higher dimensional
models in 2-D and 3-D that are already available in Garnet (Li
et al. 2022). The use of 3-D models especially help to evaluate
the benefits of the assimilation of observations in the estimation of
the spatial distribution of the shear stress at the fault. Our future
work is oriented into using ensemble data assimilation methods
for assimilating data observed in a metre-scale biaxial shear stress
experiments (Spiers et al. 2017). These experiments have the ad-
vantage of offering data over a wide range of loading rates in which
in every single step the parameters are relatively constant. This
allows to evaluate the effect of the uncertainty in the frictional pa-
rameters separately from the complexity of the current stress field
experienced by the fault.

The study presented here, is also a first step towards the applica-
tion of data assimilation with real data. The synthetic experiments
presented here, assumed that the shear stress and velocities close to
the fault are directly observed. In reality, one of the likely difficulties
is that we cannot observe the stress and velocity directly in a real
case. This means that we cannot use a linear observation operator.
Including more complex observation operators may introduce an
additional source of non-linearity that complicate the estimation of
earthquake occurrences. An alternative approach to overcome this
difficulty would be to estimate the shear stress and the slip rate along
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the plate interface based on crustal deformation through kinematic
inversion and assimilate this information as a direct observation.
However, it is important to consider that the kinematic inversion
can introduce additional errors which may be hard to trace given
the complexity of the system.

Another important simplification of our state estimation approach
for a real application is that we assume that our parameters are cor-
rect, known and constant. As studied by Banerjee et al. (2022);
Hirahara & Nishikiori (2019) having a bias in models with constant
frictional parameters affects the accuracy of the shear stress and ve-
locity estimates even in the case of seismic events of long duration
such as slow slip events. As we have shown in this study the non-
linearities in seismic events of short duration, such as earthquakes,
already challenges the accuracy of the estimates. Therefore, an ap-
proach with state and parameter estimation or that includes model
error could be an alternative for a real-data application where the re-
currence intervals are more variable and parameters are uncertain.
The estimation of parameters helps the reanalysis of past earth-
quakes and also gives additional degrees of freedoms to the en-
semble of shear stresses, slip rates and state 6 as defined by the
rate-and-state friction law. However, it is important to remark the
inclusion of uncertainties in the parameters may lead to different
nucleation lengths across models and as a consequence lead to dif-
ferent time-step lengths in the model. This would make the data
assimilation more computationally expensive and would reduce the
comparability between members.

Comparisons of the effectiveness of the EnKF for non-periodic
cases have been made by van Dinther ef al. (2019) who bench-
marked the forecastability of event alarms using ensemble data as-
similation of non-periodic events compared to periodic recurrence
models. Their results suggest that data assimilation in models of
earthquakes with slow slip rates outperforms the periodic recur-
rence models especially for moderately large events. Their study
highlighted the advantages of using ensemble data assimilation for
including physics-based information into probabilistic hazard as-
sessment. We further tested the state estimation of a non-periodic
truth using an ensemble of periodic models (Appendix B). For a
non-periodic case, we see that the accuracy of the EnKF estimates
is less than in the state estimation of a periodic truth. The results
suggest that when the earthquake recurrence interval of the truth
is shorter than the earthquake recurrence interval of the prior, the
EnKF gives a relatively accurate estimate of the shear stresses and
velocities.

Finally, other data assimilation methods than the EnKF can be
implemented like the particle filter which has no assumptions of the
Gaussianity of the state variable distributions. The use of the particle
filter or other data assimilation methods for non-linear models can
be explored to have better estimates around the coseismic phase
[see, for example, chapter 19 in Evensen et al. (2022)].

4.3 Implications

There is an increased interest in dynamic source inversion as a way
of combining information from physics-based models and observa-
tions. Multiple advances have been done in kinematic inversion and
dynamic inversion of past earthquakes. However, these techniques
are limited to past earthquakes. Data assimilation has the potential
for combining both sources of information and not only provide
useful reanalysis of past events but also forecast future earthquakes.
The results from this study suggest that ensemble data assimila-
tion effectively estimates both slow slip events and earthquakes. In

particular, the forecastability results show that with a very short
alarm duration many future slow slip events and earthquakes occur-
rences can be estimated with our setup. With this proof of concept
we hope to catch the attention of seismologists for the use of data
assimilation to advance the field of earthquake forecasting.

5 CONCLUSIONS

In this study, an EnKF on a 1-D model representing a 0-D fault point
loaded by a displaced, elastic medium, assimilates synthetic, noisy
and indirect observations of shear stress and velocity. Assuming
that the parameters of our physical model are perfect and using an
ensemble with 50 members we estimate the shear stress, slip rate and
state variable 6 at the fault. We further evaluate the forecastability
of the filter to estimate future occurrences of both slow slip events
and earthquakes. Our results suggest that the EnKF is a useful and
promising method for quantifying the uncertainty of the current
state of stress, slip rates, and strength of faults.

We conclude that the estimates of the EnKF are most accurate
during the interseismic phase of both the slow slip- and earthquake
cycle. As an example, the absolute errors in the shear stress estimates
are around 3—5 per cent of the stress drop during the interseismic
phase while the standard deviation is slightly higher between about
4 and 7 per cent of the stress drop. In contrast, the largest estimation
errors are found during and around the coseismic phase of the
earthquakes where the shear stress errors, for example, can reach
about 2025 per cent of the stress drop shortly before and after the
coseismic phase. The fast changes in the state of stress and velocity
in this phase result in a sudden change in the distributions of the
estimated variables. The distribution of variables becomes broader
and in the case of the earthquakes it becomes bimodal which can
introduce biases in the mean estimates of the variables.

The EnKF effectively estimates the occurrence of earthquakes
that last only seconds, while observations are available over decadal
time scales. An analysis of the influence of the observations during
the analysis step shows that the assimilation of shear stress observa-
tions is very useful for the system to better estimate the shear stress
on the fault for slow slip events and earthquakes. The velocity ob-
servations are most influential on estimates of slip rate for slow slip
events. For earthquakes, both types of observations are relevant for
the estimation of the slip rate. For the estimates of the state 6 both
type of observations are equally important for slow slip events but
for earthquakes the shear stress are the most influential. Finally, a
comparison of the evolution of the influence of the observations
in time indicates that observations taken after the slip occurrence
are specially important for the estimates of the filter. This is more
evident in earthquakes than in slow slip events and shows the im-
portance of the assimilation of observations recorded from previous
earthquakes for better estimating the next ones.

An additional analysis of the forecastability of the EnKF for
slow slip events and earthquakes shows that for both types of events
there is very low forecasting failure rate of about 10 per cent when
ringing very short alarms of just 10 per cent of the recurrence
interval of the events. That means that most slow slip events could
be forecasted half a year before their occurrence and around 2 yr
before the earthquakes with an occurrence interval of approximately
20 yr. Our results suggest that data assimilation has the capacity to
improve estimates of fault-slip occurrence for both slow slip events
and earthquakes, and the potential to eventually advance the field
of earthquake forecasting.
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APPENDIX A: DIMENSIONAL
ANALYSIS TO EVALUATE ENSEMBLE
DEGENERACY

We perform a singular value decomposition (SVD) of the covari-
ance matrix of our ensemble to verify whether the ensemble size
is appropriate to sample and explain the variability of our system.
The covariance matrix is by definition symmetric, positive semi-
definite, Hermitian and all its eigenvalues are non-negative. One of
the properties of square real symmetric matrices with non-negative
eigenvalues is that the eigenvalues and the singular values coin-
cide. In this section, we compare the singular values of the inner
product and the outer product of the ensemble-anomaly matrix of
the state vector z,, to check whether the covariance matrix of z, is
well-sampled. The reasoning behind this test is that eigenvalues of
the matrices resulting from the outer product and the inner product
of a column vector should coincide. If we have enough ensemble
members for constructing the covariance matrix, the difference be-
tween the eigenvalues (and singular values) between both matrices
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should be very small. Moreover, the ensemble size should be larger
than the number of significant components in the decomposition
to assure that our ensemble has enough variability to represent the
numbers of ‘modes’ in our data. First, we demonstrate our statement
that the eigenvalues for the matrices resulting from the outer and
inner products of our state vector should coincide. Let Z be the
ensemble-anomaly matrix of z, given by
1 _

7 = 7/ﬁ(zn _zn)' (Al)
Let C; outer be the outer product matrix of the ensemble-anomaly
matrix, factorized as:

sz,outer = ZZT7 (Az)

where Z7 is the transpose of Z and C.. ouer corresponds to the
covariance matrix estimated by eq. (6). Let C; jnner be the inner
product matrix of the ensemble,

sz,inner = ZTZ = LDLT7 (A3)

where the right hand side is the eigenvalue decomposition of C; inner
(thus, LLT = I, and D is a diagonal matrix).

Second, we build an eigenvalue decomposition for C;; gyter. For
this, we define a matrix Z as a diagonal matrix whose elements are
given by the square root of the inverse of the elements of D,

D' =587 (A4)
, Thus SDST = I. Additionally we prove that,
(ZLS)" (ZLS) =1, (A5)

by multiplying both sides of the eq. (A3) by (LS) and (LS)”. This
results in

(LS)" 2"Z.(LS) = (LS)" LDL” (LS) = SDS” =1, (A6)
Finally, we can rewrite the eigenvalue decomposition of C.. oyer as
sz,outer = (ZLS)D (ZLS)T B (A7)

Fig. Al shows the comparison between the SVD analysis for
four different ensemble sizes, namely: 10, 20, 30 and 50 members.
For the smaller ensemble sizes (10, 20 and 30 members) the scree
plot of the inner product matrix do not reach the plateau of the
outer product indicating that it is not well sampled. For an ensemble
size of 50 members, the two curves overlap around 40 components
where the singular values of both scree plots become very small and
flatten. The ensemble size of 50 members is larger than the crossing
of the two plots which means that this ensemble size resolves well
the variability of the system.

APPENDIX B: ANALYSIS OF
NON-PERIODIC EVENTS

In our perfect model experiments we assumed that the parame-
ters were known and constant. When simulations are adequately
resolved and fault properties are homogeneous, this assumption
produces a fully periodic behaviour of fault slip sequences. In this
appendix, we further study the performance of the EnKF for esti-
mating non-periodic earthquake sequences. Li ef al. (2022) derive
an equation that theoretically predicts the recurrence interval 7' of
an earthquake sequence for 1-D, 2-D and 3-D models. For a 1-D
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model, the equation is as follows:

Aty 0y(b— a)Hln Vayn
ot 26V v
where At gy, is the stress drop, 7, is the stress rate at a fault location,
and the dynamic slip velocity Vgy, is approximated as 1 ms~! for
simplicity. We perturb the loading rate V; through time to generate a
non-periodic truth and keep the other variables in eq. (B1) constant.
We assume a multiplicative noise 8 to follow a Gaussian distribution
B ~ N(1,0.1) and apply it to the loading rate ¥; in the boundary
conditions shown in eq. (14). The new boundary conditions are:

T

(B

1
v(x =0) = 7 v,

1 (B2)
vy(x =H)= ﬂEVI

Fig. B1 shows the variability of the recurrence interval for a syn-
thetic truth from a non-periodic model generated by the perturbation
of the loading rate. The events in the periodic model shown in the
main text have a recurrence interval of 17.8 yr. The non-periodic
events generated using the multiplicative noise on the loading rate
have a mean recurrence interval of about 18 yr with a standard
deviation of approximately 5 yr (Fig. B1). The recurrence interval
thus has a coefficient of variation C, of 0.28, which suggests this
sequence is quasi-periodic (Kuehn ez al. 2008).

We perform perfect model experiments where we assimilate syn-
thetic observations of shear stress and velocities from the non-
periodic model and estimate the shear stress, slip rate and state 6 at
the fault as shown in Fig. B2. The ensemble size is 50. The ensemble
members can only produce periodic sequences with a recurrence in-
terval of 17.8 yr, but each of them has a different initial shear stress
value at the fault at 7 = 0.

The accuracy of the EnKF is lower for the non-periodic events
when compared to the periodic events shown in Fig. 5. We ob-
serve that the EnKF gives relatively accurate estimates of the shear
stresses, velocities and state 6 for earthquakes with a shorter re-
currence interval than 17.8 yr. However, for earthquakes with a
longer recurrence interval than 17.8 yr, there are large errors during
the interseismic phase. For some of the earthquakes with longer
recurrence intervals, the coseismic phase is well captured by the
EnKF estimates when the following earthquake cycle corresponds
to a shorter recurrence interval earthquake. The RMSE for the shear
stress, slip rate and state 6 is larger for the non-periodic case than for
the periodic case, with the difference between the slip-rate RMSE
for these two cases being relatively small compared to the difference
in RMSE of the other two variables (Fig. B3).

Given that each ensemble member in our forward model was
unable to adapt their loading rates and the duration of the recur-
rence interval, we find it encouraging that shorter interseismic or
unexpected coseismic periods can still be estimated regularly. The
consistent early prediction for long intervals (e.g. for 260-380 yr)
also suggests that including a variable assimilation time step should
improve our non-periodic results. Ones we know an earthquake
occurred one should always account for that wealth of new infor-
mation and observations. Furthermore, van Dinther ef al. (2019)’s
results on quasi-periodic sequences for a model with a heteroge-
neous fault zone demonstrated significant out-performance of data
assimilation with respect to periodic conceptual models in terms of
forecastability.
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Figure Al. Scree plot for comparing the singular values and number of significant components for the inner and outer product covariance matrices obtained
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the ensemble-anomaly matrix, and the solid blue line for the inner product.
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