
Loss functions
and
neural networks
Author: J. Kirchner
Supervisor: H.X. Lin

Comparing different loss functions
for NLP neural networks
Source: https://medium.com/analytics-vidhya/gradient-descent-b0dc1af33517

https://medium.com/analytics-vidhya/gradient-descent-b0dc1af33517


ii

Abstract
Neural network is an active research field which involves many different (unsolved) issues, for example,
different types of configuration of the network architectures, training strategies, etc. Amongst these
active issues, the choice of loss (or cost) functions plays an important role in how a neural network
model is to be optimized (trained) and how the model will perform after the training. Given the choice
of measurement criteria, loss functions measure how far an estimated output is from its true value.
And the measurement criteria can change depending on the task in hand and the goal to be met.
The objective of this project is to understand the role of different loss functions and to evaluate the
dependence of the performance on the loss functions using the language prediction problem.
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Introduction
A lot of research has been done on artificial intelligence (AI) in the last twenty to thirty years. To
understand what is happening in this field now, it is first necessary to understand how it was designed.
People wanted to make computers function like we do, therefore the most logical step would be to
try to understand how our brain works. If one knows this, it could theoretically be implemented into
a computer. Now, of course, none have been able to do this yet, however some basic elements are
known. Learning for us takes repetition, by looking at questions, formulating an answer, and then
comparing this answer to the real solution. In essence, this is also what artificial intelligence models
do.

Formulating an answer for a neural network is often visualized like figure 1. Starting with a vector,
in this case four dimensional and represented by the blue circles, linear functions are applied to this
vector. First making it into a six dimensional hidden layer and then this hidden layer is again transformed
into another six dimensional hidden layer by use of a linear function. Finally a last linear function is
applied to arrive at the two dimensional output vector, represented by the green circles. Now one thing
is missing, as a careful reader will have noticed, the network would be linear in this case. To circumvent
this issue, non-linear functions are applied to the vectors. In the classical networks, mostly after each
hidden layer. For a more detailed explanation of training neural networks and making predictions with
them, see chapter 1.

The circles of the hidden layers represent neurons, which are connected by lines, these lines rep-
resent weights that can be altered during training.

Figure 1: Visualization of a neural network.[17]
Blue are the input nodes and green the output.

Specifically, the network in figure 1 is a feed-forward neural network, however the network used
in this report will not be of this kind. Neural networks can have different architectures, so not each
neural network will look like the above figure. For language prediction, often recurrent neural networks
(RNNs) are used, see chapter 2. These networks work better for time series, where new characters or
numbers can depend on those that have already been parsed through the network.

After the forward step, so formulating an answer, it is time to check if the output is any good. To do
this some sort of metric needs to be selected. This metric should convert the output and the target into
a number. Function that do this are called loss functions and multiple of these functions are described
in chapter 3.

Now to train the model, steps are taken to minimize the loss function. For the weights that can
be changed, the gradients are calculated with respect to the loss function, this process is known as
gradient decent, see section 1.2. And the weights are altered by an optimizer, see section 1.3.

With the focus of this report being the loss functions, the derivatives have been analytically calcu-
lated to compare them. This is done in chapter 3. The clearest difference found was the fact that some
loss functions seemed to be more likely to arrive at local minima. Which means that they will likely get
stuck when training for longer amounts of time and not yield low losses.

To train the network a dataset is needed. For this report, a selection of 96 free English books were
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used.1 For more information on this dataset, see section 4.1. In general, because the books are free,
most of them are old. But this does not make them less relevant for this report. A full list of the books
can be seen in appendix B.

Training the network on the entire dataset of 502,708 sentences took a lot of time, therefore some
tests were done on part of this dataset. Nevertheless results were found, see chapter 4, which in some
cases coincided with the hypotheses that arose from the analytical analysis, but in other cases returned
unexpected results. Some of the tested loss functions were not designed for classification problems,
namely the mean squared error and the smooth L1 loss. However these functions did yield interesting
results.

Chapter 1 describes how a neural network is trained, where the focus will be on a feed forward
neural network. It contains the three steps, with small explanations and some other important notes.

Chapter 2 addresses the chosen architecture for this report. Where first the general class of models
is explained. And later on, the intuition behind some of the choices in the equations is discussed.

Chapter 3 contains the analytical analysis of the loss functions including all equations and some
explanation as to why such a function would make sense. Furthermore it contains the analytically
calculated gradients, which are compared with each other. Some hypotheses are made that are nu-
merically tested in the next chapter.

Chapter 4 gives the numerical results of using the different loss functions for different problems.
One of the functions, the smooth L1 loss, see section 3.2.4, needs to be analyzed first. Afterwards the
functions are tested on consistency, the tendency of overfitting and just on the whole dataset.

Chapter 5 contains the conclusion of the numerical and analytical results. With chapter 6 containing
the discussion of these results and some limitations of this report.

1https://www.gutenberg.org/

https://www.gutenberg.org/


1
Training a Neural Network

As can be read in the introduction, a neural network consists of many linear and non-linear functions.
The linear functions are the ones that can be changed to make sure the network preforms as it should.
These functions contain variables, that in the first iteration often are chosen randomly. Therefore at
the start of training, the network will give mostly arbitrary results. The training of a feed-forward neural
network can be divided in to three steps.

• Forward pass

• Backward propagation

• Optimization

1.0.1. Preparing the data
Because the training set is very large, not all data can be used at once, as this would require too much
memory. Therefore a different method needs to be used. The data is divided into mini-batches of a
small number of sentences, in this case 128 sentences per mini-batch. These mini-batches are then
fed into the network, one by one, and after each batch, the loss is calculated together with the gradients,
and a step is taken. This process is called mini-batch gradient descent[15]. This makes it possible that
the training loss does not decrease after a step, as a different part of the data was used to calculate it.
The end of the first so called epoch is when all of the mini-batches have been used. Then the data set
is shuffled and new mini-batches are made. This process can be repeated a lot of times and here two
hyper-parameters become clear, the mini-batch size and the number of epochs.

To use a network, the sentences have to be converted into vectors or matrices. In this case each
character was given a standard basis vector. For example, when considering only the lower-case
characters and a space, the vectors will be 27 dimensional. Now to incorporate whole sentences, the
vectors are put into a matrix. Every sentence can be converted into a 𝑁 × 𝐶 matrix, where 𝑁 is the
number of characters in a sentence and 𝐶 the number of characters. For programming purposes, the
sentences in the same mini-batch can all be put into one 3 dimensional array or matrix, so this will be
a 𝐵 × 𝑁 × 𝐶 array, where 𝐵 is the mini-batch size. But to do this, the vectors need to be of the same
length. Therefore an end of sentence character is needed, in this report ”@” is used for this purpose.
The sentences that are shorter than the longest sentence are filled with this character until they are of
the same length.

For each sentence, there needs to be an input and a desired output. The used network returns for
every character, the next character. This means that the targeted sentence should be the same, but
shifted one character to the left. For example, the sentence ”I want to eat.”, will have ”I want to ea” as
input, and ” want to eat” as target. Note here that spaces are also characters, so whenever a string is
given in this report that starts or ends with a space, the quotation marks will be around that space as
well.

3
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1.1. Forward Pass
In the forward pass the content of the current batch is given to the network. The network then produces
an output vector by using the different types of functions. Note that the first time the network is run, the
output is mainly arbitrary. As an example one can see in equations (1.1) to (1.3) how a simple, 3-layer,
feed-forward network would work with an arbitrary input vector and arbitrary linear functions. Note that
this example can be visualized like figure 1, where 𝑣𝑖𝑛𝑝𝑢𝑡 corresponds with the blue circles, the entries
of the matrices 𝐴1, 𝐴2 and 𝐴3 correspond with the black lines between the layers, 𝑣1 and 𝑣2 are the
hidden layers and therefore the black circles of the figure and 𝑣𝑜𝑢𝑡 is represented by the green circles
at the end of the network.
Layer 1:

𝑣1 = 𝐹1(𝑣𝑖𝑛𝑝𝑢𝑡) = 𝐹1 ((
0
1)) = 𝐴1 ⋅ (

0
1) = (

1 3
2 −1
1 3

) ⋅ (01) = (
3
−1
3
) (1.1)

Layer 2:

𝑣2 = 𝐹2(𝑅𝑒𝐿𝑈(𝑣1)) = 𝐴2 (𝑅𝑒𝐿𝑈((
3
−1
3
))) = (

2 0 0
−1 2 0
0 0 2

) ⋅ (
3
0
3
) = (

6
−3
6
) (1.2)

Layer 3:

𝑣𝑜𝑢𝑡 = 𝐹3(𝑅𝑒𝐿𝑈(𝑣2)) = 𝐴3 (𝑅𝑒𝐿𝑈((
6
−3
6
))) = (

1 0 0
−1 1 0
0 0 1

) ⋅ (
6
0
6
) = (

6
−6
6
) (1.3)

In equation (1.1), the input character is converted into the vector 𝑣𝑖𝑛𝑝𝑢𝑡. This is a standard basis vector
𝑒𝑛, where 𝑛 is the assigned number of the character. In these equations 𝐹1, 𝐹2 and 𝐹3 are different
linear functions with variables that can be changed. By theorems from linear algebra, linear functions
can always be written as some matrix multiplication in some subspace, hence here matrices are used
in the calculations. All values in the matrices will be adjusted as the model trains, but are chosen here
semi randomly. The 𝑅𝑒𝐿𝑈 function[3] is used here as activation function, but any non-linear function
will work. Note here that if such a non-linear function is not used, the neural network would have been
able to be reduced to only one layer, as the matrices can then be multiplied by each other. This would
decrease the number of variables, which would make the network not able to adapt as much. Also the
entire network would now be linear, which heavily limits the performance of a network, as most things
neural networks are used for are non-linear.

As seen from equation (1.3), the output now contains values outside of the interval [0,1]. For a
classification problem, this makes little sense. Therefore often a function is used to project the output
onto this interval and make the output into a probability vector. This can be any function, however to
train the network it is required to be at least once piecewise differentiable, but a lot of the most used
methods require this function to be twice piecewise differentiable. An example is the Softmax function,
see equation (3.1).

1.2. Backward propagation
During backward propagation, the weights are changed to fit the network to the training data. To know
how the weights need to be changed first the output vector needs to be compared to the targeted vector.
For this some sort of error function is needed. In classification problems often Cross Entropy Loss is
used[5]. To alter the network, the gradient with respect to the error, is calculated for all variables in the
linear functions. This method is called gradient descent[13] and is used often in optimization.

Multiple types of gradient descent exist. The most straight forward one is called batch gradient
descent. Here the entire dataset is used and the loss is calculated across this entire dataset, which
is then used for the gradients. The advantage is that this method is guaranteed to converge to the
global minimum for convex error surfaces and to a local minimum for non-convex error surfaces[15].
An error surface is a surface with dimension equal to the amount of parameters, where the error is
present for each combination of parameter values. The problem with this method is that it requires too
much memory when using large datasets.
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Stochastic gradient descent (SGD) fixes this issue. Instead of using the whole dataset at once, it
uses one sentence at a time. This makes the algorithm way faster, however it also causes a heavy
fluctuation in the losses. [15] concludes that this may sometimes improve results as it can jump out of
certain local minima, but it can also sometimes hurt results. Convergence is no longer guaranteed, but
does seem to happen almost always when using the algorithm correctly.

Mini-batch gradient descent uses a combination of the previous two methods. Where here mini-
batches are made containing a certain number of sentences. Each of these batches is fed into the
network and the loss is calculated over a batch. This reduces the variance, while still being quick. It is
the most common algorithm for neural networks and is therefore used in this report as well.

In the example from section 1.1, this means that 𝑣𝑜𝑢𝑡 is compared to a vector which is the desired
output, by using an error function like the mean squared error. Then for all values in the matrices 𝐴1, 𝐴2
and 𝐴3, the gradients are calculated with respect to the error. This error function is often called a loss
function when talking about neural networks.

1.2.1. Cross Entropy Loss
One of the most widely used loss functions for language modelling is the Cross Entropy loss function1.
It is based on the principle that in language some sort of distribution is present, as to what the next
character in a sequence is going to be. This of course can depend on the characters already present
in the string. A perfect model will return the same distribution for each character it has to find. So in
English if the string is ”Th”, the model should return a very high probability for ”e”, however ”a” should
still have a probability greater than zero as the word ”That” can be made.

The loss function is defined as the sum of the Shannon Entropy of the perfect distribution 𝑝 and the
Kullback-Leibler divergence of 𝑝 and the modelled distribution 𝑞, see equation (1.4).

𝐻(𝑝, 𝑞) = 𝐻(𝑝) + 𝐷𝐾𝐿(𝑝||𝑞) = −∑
𝑥∈𝑋

𝑝(𝑥) log 𝑞(𝑥) (1.4)

The problem when using this function for language processing is that the perfect distribution 𝑝 is
not known. Therefore some sort of estimation needs to be used. The Shannon-McMillan-Breiman
theorem[9], is a well-known theorem in information theory that estimates this function, see equation
(1.5)

𝐻(𝑝, 𝑞) ≈ − 1𝑁

𝑁

∑
𝑖=1

log(𝑞(𝑥𝑖)) (1.5)

Here 𝑁 is the amount of characters and should be large enough as it is approximating a limit to
infinity.

Note that this entropy can also be seen as the bits required to store a character; Bits per Character
(BPC). This metric is often used in comparing different language models. However for this to work, the
base of the logarithm should be 2.

1.2.2. Automatic Differentiation
In a normal neural network, which will be larger than just three matrices, it would take too long to calcu-
late each gradient. Because in such a network it is not unlikely that millions of these gradients have to
be calculated. Therefore it is necessary to use an efficient algorithm, which calculates these gradients.
In the numerical mathematics, such an algorithm is used and is called Automatic Differentiation[16].
The promise of this algorithm is that the differentiation should have the same time complexity as the
forward step. There are multiple variants, however for neural network training the Reverse Automatic
Differentiation is the most common[4]. This algorithm works best for problems from ℝ𝑛 → ℝ as the time
complexity is then the same as the forward step.

Intuitively the method works by dividing the derivative in small parts. While the function is calculated
with specific values, the derivative of each operation is also calculated. The best way to see this in
formulas, is by using an example.

𝑧 = 𝑥 ⋅ 𝑦 + 𝑒𝑥+𝑦 (1.6)
1https://leimao.github.io/blog/Entropy-Perplexity/

https://leimao.github.io/blog/Entropy-Perplexity/
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In equation (1.6), the variable 𝑧 depends on 𝑥 and 𝑦. However they are not using basic operations,
therefore the function needs to be split in to more variables.

𝑎 = 𝑥 ⋅ 𝑦
𝑏 = 𝑥 + 𝑦
𝑐 = 𝑒𝑏
𝑧 = 𝑎 + 𝑐

For each of these, the derivatives w.r.t. each part is calculated, so
𝜕𝑎
𝜕𝑥 = 𝑦

𝜕𝑎
𝜕𝑦 = 𝑥

𝜕𝑏
𝜕𝑥 =

𝜕𝑏
𝜕𝑦 = 1

𝜕𝑐
𝜕𝑏 = 𝑒

𝑏

𝜕𝑧
𝜕𝑎 = 1

𝜕𝑧
𝜕𝑐 = 1

Using the chain rule these functions can be rewritten into
𝜕𝑧
𝜕𝑥 =

𝜕𝑧
𝜕𝑎
𝜕𝑎
𝜕𝑥 +

𝜕𝑧
𝜕𝑐
𝜕𝑐
𝜕𝑏
𝜕𝑏
𝜕𝑥 = 𝑦 + 𝑒

𝑏 = 𝑦 + 𝑒𝑥+𝑦

𝜕𝑧
𝜕𝑦 =

𝜕𝑧
𝜕𝑎
𝜕𝑎
𝜕𝑦 +

𝜕𝑧
𝜕𝑐
𝜕𝑐
𝜕𝑏
𝜕𝑏
𝜕𝑦 = 𝑥 + 𝑒

𝑏 = 𝑥 + 𝑒𝑥+𝑦

When keeping track of the operations, this method can also be applied to more complicated prob-
lems. Now most of the time it is not necessary to find the formula for the derivative. Using this method
this is not necessary as the derivatives can be found by plugging x and y in.

1.3. Optimization
With all the gradients calculated, the logical step would be to adjust the variables accordingly. However,
gradient descent may only lead to a local minimum, but this might not be what is wanted. Therefore an
optimization function needs to be used. This function adjusts the steps in a way, often stochastically,
such that local minima are avoided as much as possible.

Another problem is that when large steps are taken, the method might not reach a minimum at all.
The only thing the derivative does, is tell in what direction the slope is, and how steep it is. Therefore
the derivative is multiplied by a parameter called the learning rate. But this is not enough, as the optimal
learning rate might change during training. Optimizers therefore also often change the learning rate.
A widely used optimizer is the Adam[10] optimizer. It is a stochastic optimizer that also changes the
learning rate adaptively when training.

Figure 1.1: Visualization of the effect of different learning rates, when using gradient descent.
The loss function is on the y-axis, with a parameter on the x-axis.

The good learning rate represents a variable learning rate that decreases over time.

The learning rates can be visualized like figure 1.1. Here on the left a small learning rate is used,
and one can note that this approaches a minimum, however it finds a local minimum. Also it takes a
lot of steps to get there.
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On the far right is a high learning rate, which takes large steps. This causes the loss to overshoot
the minimum a lot of times. Also it has a good chance of getting stuck, when it ”bounces” left and right
indefinitely.

The middle figure represents a good variable learning rate. It takes large steps at the start to be
able to skip local minima, but decreases the size of these steps after a while. This causes the model
to not need too many steps and can still converge to a minimum.

These figures are of course a rough sketch of what is really going on in a neural network, and is not
realistic to assume that the optimizer will always find the global minimum. But it is worth keeping into
consideration that the left and right scenario are to be avoided.





2
Recurrent Neural Networks

While feed-forward neural networks work well for certain types of applications, they have limited use
when predicting the next element of a series. These networks only take one input and cannot differen-
tiate between time or order. The feed-forward network only bases its output on what it learned during
training and not what it is told during prediction.

This is where recurrent neural networks (RNN) shine. The main difference between the two types is
that recurrent neural networks have a feedback loop after every process. Therefore it does something
with the output it produces. For example when giving a word, character by character, to such a network,
it can remember the first few characters of the word, even though they have already been passed
through the network.

In general this works by having a so-called hidden state. This hidden state is the output of the
network after each character is passed through. It is therefore a vector with a certain dimension.
This dimension determines how much information can be stored in the vector, which makes for a new
hyperparameter: ”Hidden size”. Note that in most models, this hidden state vector is multiplied with
a weight matrix. Therefore when increasing the hidden size, the number of parameters often also
increases. Sometimes these networks use different layers, meaning that after the hidden state or
output is calculated, this output is again fed into a different recurrent neural network. This can be done
multiple times, creating a new hyperparameter: ”number of layers”.

2.1. Regular RNN
2.1.1. Forward Pass
With this explained we can go into a bit more detail on how the network works. The example from
section 1.1 can be changed a bit to clarify what the RNN does. The main difference being the hidden
component. In order for the network to ”remember” the past characters in a sentence, the characters
are given to the network one at a time. Each character is made into a standard basis vector of ℝ𝐶,
where 𝐶 is the number of different characters. The network itself is often visualized like figure 2.11.
And the calculations are preformed following equations (2.1) to (2.3).[7]

1Source: https://gotensor.com/2019/02/28/recurrent-neural-networks-remembering-whats-important/

9
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Figure 2.1: Visualization of a recurrent neural network.
Blue are the input nodes, yellow the hidden state and grey the output.

For n=1: ℎ1𝑡 = 𝜙(𝑊𝑖ℎ1𝑥𝑡 +𝑊ℎ1ℎ1ℎ1𝑡−1 + 𝑏1ℎ) (2.1)
For n ≥ 2: ℎ𝑛𝑡 = 𝜙(𝑊𝑖ℎ𝑛𝑥𝑡 +𝑊ℎ𝑛−1ℎ𝑛ℎ𝑛−1𝑡 +𝑊ℎ𝑛ℎ𝑛ℎ𝑛𝑡−1 + 𝑏𝑛ℎ ) (2.2)

𝑦 = 𝑓(𝑏𝑦 +
𝑁

∑
𝑛=1

𝑊ℎ𝑦ℎ𝑛𝑇) (2.3)

Here ℎ𝑛𝑡 represents the hidden state of the 𝑛-th layer from the 𝑡-th character in the sequence of 𝑇
characters. 𝜙 is a non-linear activation function like 𝑅𝑒𝐿𝑈. 𝑊𝑥𝑦 are weight matrices from 𝑥 to 𝑦 where
𝑖 is for input, ℎ𝑛 the 𝑛-th hidden layer and 𝑦 the output. 𝑏𝑛ℎ is the bias for the hidden state of the 𝑛-th
layer and 𝑏𝑦 the bias in the output. 𝑓 is a function that can be preformed to get the required output.
This can be linear or non-linear.

For these equations to make sense, the first hidden state ℎ10 needs to be set. This vector is often
initialized as a zero vector. Then this hidden matrix is multiplied by a ”hidden to hidden” matrix 𝑊ℎ1ℎ1 ,
which contains variables that can be changed during training. The input vector of the first character in
this case is multiplied by the ”input to hidden” matrix𝑊𝑖ℎ1 . The resulting two vectors are added together
with a bias, where afterwards a nonlinear activation function is applied. This result is then used in the
next layer as ℎ20, and the process is repeated for each layer. Note that the visualization in figure 2.1 is
only one layer. The final result will be used as the hidden state for the next calculation ℎ11 with the next
character. The process is repeated until all characters of the input sequence have been used and the
final output can then be transformed into the predicted next character using 𝑓.

2.1.2. Limitations
While in this case the RNN will preform better because it can keep some of the information of a new
sequence in storage by using the hidden state. It fails on multiple levels at predictions. This is because
of a few reasons, where the two most important reasons are discussed:

Short Term Memory: With the hidden state the RNN can store some data such that it can be used
later, but as sentences get longer, it is not enough. The method only remembers the last few characters
and can therefore not complete long sentences. The size of the hidden state is not the main problem
however. The hidden state is also not used very well, therefore the method is considered to have short
term memory. It also has no way of filtering the input, this means that combinations of characters like
”he” or ”it” are just as important as some key words in a sentence.
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Vanishing gradients or exploding gradients[14]: To make the predictability of neural networks
better, often larger networks are considered. These networks have more variables and can as such
be adjusted more accurately, in theory. However, when using such networks with gradient descent,
something different happens. Gradients for variables at the beginning of the network will often get very
high or very low. This means that either too small steps are taken or too large steps, which decreases
the networks performance. The phenomenon is called vanishing gradients or exploding gradients and
is a really important problem for training neural networks.

2.2. Long Short-Term Memory
To overcome these problems a new type of network was constructed, The Long Short-Term Memory
(LSTM) network[8]. This network is also a recurrent neural network, and therefore it uses a hidden
state. The only difference being how the hidden state is calculated.[11] This model uses different types
of gates to more clearly process information and divide tasks.

2.2.1. Forward Pass
To explain a step in this network it might be easy to first look at a single cell in figure 2.22 and equations
2.4 to 2.9.

Figure 2.2: Visualization of a single LSTM cell.
Yellow blocks represent that a weight is used first. Red are only using the functions without weights.

𝑓𝑡 = 𝜎(𝑊𝑥𝑓𝑥𝑡 +𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (2.4)
𝑖𝑡 = 𝜎(𝑊𝑥𝑖𝑥𝑡 +𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (2.5)
�̃�𝑡 = tanh(𝑊𝑥𝑐𝑥𝑡 +𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (2.6)
𝐶𝑡 = 𝑓𝑡⊗𝐶𝑡−1 + 𝑖𝑡⊗ �̃�𝑡 (2.7)
𝑜𝑡 = 𝜎(𝑊𝑥𝑜𝑥𝑡 +𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (2.8)
ℎ𝑡 = 𝑜𝑡⊗ tanh(𝐶𝑡) (2.9)

Here 𝑥𝑡 is the 𝑡-th character in the sequence. ℎ𝑡 represents the hidden state for character 𝑡. 𝑊𝑎𝑏 is the
weight matrix for 𝑎 in gate 𝑏 and 𝑏𝑏 is the bias vector for gate 𝑏. 𝜎 is a non-linear activation function,
2Source:
https://abdullahsaka.medium.com/long-short-term-memory-lstm-model-in-stock-prediction-d0e1c93717b3

https://abdullahsaka.medium.com/long-short-term-memory-lstm-model-in-stock-prediction-d0e1c93717b3
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but almost always the logistic sigmoid function. 𝑓, 𝑖 and 𝑜 are respectively the forget, input and output
gates. While �̃�𝑡 is the input modulation gate and 𝐶𝑡 the cell state. ⊗ is the Hadamard product, which
is just the element-wise product.

When trying to understand the model, it is important to remember that each gate fulfills a different
task. In each of these gates the input 𝑥𝑡 is multiplied by some matrix with variables that can be changed
to train the network. The same holds for the previous hidden state ℎ𝑡−1, which holds the ”memory” of
the network. For each gate and formula a small explanation will be given.

Forget gate(𝑓𝑡): After each iteration, so after each character it is necessary to check if something
that is memorized, needs to be forgotten. For example when the network encounters a space, it needs
to predict a character that does not belong to the word is was just finishing.

Input gate(𝑖𝑡): Unlike the name suggest, the input gate is not for the input 𝑥𝑡. Input here is used
as it manages what should be put in the hidden state. The input gate therefore determines which
information should be remembered.

Input modulation gate(�̃�𝑡): For the information that is to be stored, it is not only necessary to
know which should be remembered, but also how much and in what way. So the input modulation gate
calculates for each value in what way it should change.

Cell(𝐶𝑡): This is the information of the cell, which is equal to the previous cell, but forgets everything
that is not necessary and remembers everything that is.

Output gate(𝑜𝑡): From the information that is stored in the cell 𝐶𝑡, some will be used as output of
the cell. This gate determines what information is needed for the output and how much.

2.2.2. Activation functions
As activation functions, it was previously mentioned that the sigmoid function is often used. In figure
2.2, these can be seen as the yellow blocks with a 𝜎 inside. This functions is described by equation
(2.10). One can note that from this definition the range of the function will be (0, 1).

𝜎(𝑥) = 1
1 + 𝑒−𝑥 (2.10)

However this is not the only activiation function used in the LSTM architecture. In equations (2.6)
and (2.9), the tanh(𝑥) function is used. This is a common function in mathematics and has a range of
(−1, 1). Both of the mentioned functions are defined on ℝ.

The functions are used in different ways in this model. The sigmoid function is used when things
need to be chosen. For example in the forget gate, the model needs to decide what it needs to forget.
If it wants to forget things it can make sure those get low values, which results in the sigmoid returning
a number close to zero. And if not it can return a high number, such that the sigmoid function returns
a number close to one.

The tanh function is used when deciding howmuch and in what way something needs to be changed
or saved. For example in the input gate, the sigmoid function is used to decide what to remember. And
in the input modulation gate it is decided how much of each value should be changed and if it needs to
add or subtract.



3
Loss functions

Having selected a model architecture, it is now time to look at the different loss functions and uncover
their differences. These loss functions can work in different ways, sometimes using all the returned
probabilities, and sometimes using only the targeted one. However when training the model using any
of these function, it quickly became clear that all of them were having trouble with the ”@” symbol at the
ends of sentences. With every sentence having a lot of these characters, a very deep local minima will
be just guessing only this symbol. This of course is not ideal. Therefore each loss function was used on
the characters that were supposed to be an ”@” separate from the other characters. Then the losses
were added together, but the loss with the ”@” symbol was multiplied by 0.1, while the loss of the other
characters was multiplied by 0.9. In the loss functions below, this was not taken into consideration, but
it should not matter that much. The only thing it does is add another case for this character, which has
the exact same derivative, apart from the scalar in front.

3.1. Purpose of loss functions
The loss function or error function determines the direction that the network trains in. Ideally the function
should be minimized for the perfect model. To create such a function, there needs to be some idea of
what a good model should do. In this report, the perfect model will probably never perfectly predict a
sentence. This is also impossible. However it should minimize some error. Now this is not as straight
forward as it may seem. As for classification problems, the worst a model can preform is when it returns
1, where it should return 0, or the other way around. For non-classification problems, this might not be
the case, as those outputs can have an unbounded range. Therefore for classification models certain
loss functions were created to penalize this more. The cross entropy loss and binary cross entropy
loss, see sections 3.2.1 and 3.2.3 respectively, are examples of such functions. They use a logarithm,
which is unbounded on (0,1).

On the other hand, it might still be interesting to see how other functions preform, which were
not designed for classification problems. Therefore the mean squared error and smooth L1 loss, see
sections 3.2.2 and 3.2.4 respectively, were tested here. These functions contain a more intuitive error
term: target output minus output of the model. This error can therefore never exceed 1. In non-
classification problems, squaring the error will often cause high errors to be even higher, whereas here
it mainly does not reduce high errors as much as low errors.

3.2. Interpreting the gradients
When computing the different gradients, it is interesting to see what different loss functions do. Chang-
ing the loss function causes the derivatives to be different. So from the formulas of the derivatives,
advantages and disadvantages, may become clear.

Now to use a model, LSTM is not enough to make it work nicely, as it returns a vector with size
equal to the hidden size 𝐻. Therefore the last layer will be a linear layer, like in a regular feed-forward
network. This causes the output vector to be the size of the number of characters 𝐶, with each element
representing a character. This output vector does not yet contain probabilities, therefore a function
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needs to be applied to transform the output into numbers between 0 and 1. Multiple function can be
used for this, however here the Softmax function was used, see equation (3.1).

𝑆(𝑥𝑖,𝑐) =
exp(𝑥𝑖,𝑐)

∑𝐶̃𝑐=1 exp(𝑥𝑖, ̃𝑐)
(3.1)

This function transforms the output into probabilities, where the probabilities sum to 1.
When calculating the gradients to the matrices from the LSTM layer, only a part of the derivative is

changed when using different loss functions. This can be seen by using the chain rule, see equation
(3.2). This equation is an example for one of the matrices.

𝜕ℒ(𝑞)
𝜕(𝑊𝑥𝑜)𝑎𝑏

=
𝑁

∑
𝑖=1

𝜕ℒ(𝑞)
𝜕(ℎ𝑖)𝑎

𝜕(ℎ𝑖)𝑎
𝜕(𝑜𝑖)𝑎

𝜕(𝑜𝑖)𝑎
𝜕(𝑊𝑥𝑜)𝑎𝑏

(3.2)

Here ℒ is the loss and 𝑞 the returned probability vector. 𝑊𝑥𝑜 is the weight matrix in the output layer,
see equation (2.8).(ℎ𝑖)𝑎 is element 𝑎 of the hidden state for the 𝑖-th character. (𝑜𝑖)𝑎 represents element
𝑎 of the output layer for the 𝑖-th character and 𝑁 is the number of characters in the sentence.

The derivatives to all of the other weight matrices will be of the same form, where 𝜕ℒ(𝑞)
𝜕(ℎ𝑖)𝑎

is present
and the same each time. While it is interesting to see all of these function, this is not the focus of
this report, as it a characteristic of the model architecture and not of the loss function. Therefore only
this one is used and explained, see equation (3.4), for the derivative using Cross Entropy loss and an
explanation.

3.2.1. Cross Entropy Loss
As was discussed before the most common loss function used in neural networks is the Cross Entropy
Loss, see section 1.2.1. With this function and a working neural network, it is interesting to see why
such a function works. To do this the gradients can be calculated, to maybe see something from the
formula.

Before calculating the gradients inside the LSTM part, it might be interesting to first calculate the
gradients of the linear layer. This linear layer is a 𝐶 × 𝐻 matrix with variable entries. Differentiating
equation (1.5) with respect to each of these elements yields equation (3.3).

𝜕𝐻(𝑝, 𝑞)
𝜕𝐴𝑎𝑏

= − 1𝑁

𝑁

∑
𝑖=1
(ℎ𝑖)𝑏 (−𝑆(𝑥𝑖,𝑎)1𝑦𝑖≠𝑎 + (1 − 𝑆(𝑥𝑖,𝑎))1𝑦𝑖=𝑎) (3.3)

Here 𝑁 is the number of characters or words in a sentence, depending if a word based algorithm
was used or a character based. 𝐻(𝑝, 𝑞) is the estimated Shannon Entropy. 𝐴𝑎𝑏 is the entry on row
𝑎 and column 𝑏 of the linear layer. (ℎ𝑖)𝑏 is the 𝑏-th entry in the returned hidden state vector from the
LSTM layer. 𝑥𝑖,𝑐 is the predicted value for the 𝑖-th character being character 𝑐. This value is not a
probability, but 𝑆 is the Softmax function, which makes it a probability. 𝑦𝑖 is the target character for
character 𝑖.

One thing to note is that when using gradient descent, the negative gradient is used to calculate
the step in each of the variables. Therefore we can ignore the minus sign at the beginning of the
equation. Inspecting this function, one can note that the function is divided into two parts. Each of them
is multiplied by (ℎ𝑖)𝑏, which is the result of the LSTM network and makes sure it is scaled correctly. So
when the LSTM network returns something negative, it should increase the matrix entries to get lower
output probabilities, instead of decreasing these entries.

One of the parts is for when the targeted class is not the same as the column in 𝐴, this is the left
part. That part part then becomes −𝑆(𝑥𝑖,𝑎). This is the guessed probability for character 𝑎, which in
this case was not the targeted one. Therefore the more the guess is wrong, the larger this probability
becomes. This can be seen as taking large steps in decreasing the guessed probability if the prediction
of wrong answers is very wrong and taking small steps if the prediction of wrong answers is close to 0.

The right part is used when the column is not the same as the targeted output. Then it does the
same thing, but now inverted. So when the guess is correct and close to one, it does not increase the
gradient much. But when the guess is wrong, the gradient will become larger. Note that this part is
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always positive, and will therefore try to increase the entry in the matrix and the output probability for
this character.

This is done for each character in the sentence and the average error is used as the final gradient.
Which is really simple, when compared to the other loss functions.

Calculating the derivative for the matrix inside the LSTM part, equation (3.2), was used.

𝜕𝐻(𝑝, 𝑞)
𝜕(𝑊𝑥𝑜)𝑎𝑏

= − 1𝑁

𝑁

∑
𝑖=1

∑𝐶𝑐=1(𝐴𝑦𝑖𝑎 − 𝐴𝑐𝑎) exp(𝑥𝑖,𝑐)
∑𝐶𝑐=1 exp(𝑥𝑖,𝑐)

⋅ tanh((𝑐𝑖)𝑎) ⋅
(𝑥𝑖)𝑏

exp(𝛼𝑖,𝑎) + exp(−𝛼𝑖,𝑎) + 2

where: 𝛼𝑖,𝑎 = (𝑊𝑥𝑜)𝑎𝑥𝑖 + (𝑊ℎ𝑜)𝑎ℎ𝑖−1 + (𝑏𝑜)𝑎

(3.4)

Here 𝑁 is the number of characters in the sentence. (⋅)𝑎 denotes the 𝑎-th entry in a vector or the
𝑎-th row in a matrix. 𝑐𝑖 represents the cell state for the 𝑖-th character, calculated using equation (2.7).
𝑦𝑖 is the target character for character 𝑖 in the sentence. 𝑥𝑖 is the input vector at the 𝑖-th character.
𝑊𝑥𝑜 and𝑊ℎ𝑜 are the weight matrices from equation (2.8), which are the variables that can be changed
together with the bias 𝑏𝑜. ℎ𝑖 is the hidden state for the 𝑖-th character. 𝐴𝑐𝑎 represents the entry on row
𝑐 and column 𝑎 of the matrix of the linear layer. 𝑥𝑖,𝑐 is the predicted value for the 𝑖-th character being
character 𝑐.

While this function looks a bit more complicated, it is worth noting that a lot of times the summation
in this function will equal zero. This is because of the (𝑥𝑖)𝑏 term being zero, when the input character
does not equal character 𝑏. Therefore, it again becomes clear that each column in this matrix 𝑊𝑥𝑜
represents a single character.

Furthermore it is good to remember that the point of the output layer, where this matrix appears, is
to remember how much of everything needs to be remembered. The cell-state 𝑐𝑖 contains information
about all values. The output gate decides what information to use for the hidden layer and output. The
tanh((𝑐𝑖)𝑎) part is the information it got from the cell. The

1
𝑁
∑𝐶𝑐=1(𝐴𝑦𝑖𝑎 − 𝐴𝑐𝑎) exp(𝑥𝑖,𝑐)

∑𝐶𝑐=1 exp(𝑥𝑖,𝑐)

part looks a bit like a part of equation (3.3), this is a large value if the guesses that should return low
values, return high values. So when the model is performing like it should, the derivative will be small
as not much needs to change. The (𝐴𝑎𝑦𝑖 − 𝐴𝑎𝑐) part scales it in a way such that it takes steps that
minimize the guesses for the other characters on average.

In the case that (𝑥𝑖)𝑏 = 1, the only part left to analyze will be 1
exp(𝛼𝑖,𝑎)+exp(−𝛼𝑖,𝑎)+2

. Plotting this
function with respect to 𝛼 yields figure 3.1. Here it can be noted that the function returns low values
when 𝛼 is high or low. When 𝛼 is close to zero, the function returns its highest values. Because it
is the case that the input character corresponds with the column of the matrix, something should be
remembered or forgotten. If 𝛼 is close to zero, it will not forget and not remember much. Therefore the
derivative will be high to change this.
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Figure 3.1: Plot of 𝑦 = 1
exp(𝑥)+exp(−𝑥)+2

3.2.2. Mean Squared Error
The most well known error function or loss function is probably the Mean Squared Error (MSE) func-
tion. This function does exactly what is described in the name. It computes average of the squared
differences, see equation (3.5). Note that here are two sums, one for the characters in the sentence
and the other for the guesses of the different characters. This is different from the cross entropy loss,
as that loss function only summed over the characters that should be guessed.

𝑀𝑆𝐸(𝑞) = 1
𝑁

𝑁

∑
𝑖=1

1
𝐶

𝐶

∑
𝑖=1
( exp(𝑥𝑖,𝑐)
∑𝐶̃𝑐=1 exp(𝑥𝑖, ̃𝑐)

− 𝑦𝑖,𝑐)
2

(3.5)

Here 𝑥𝑖,𝑐 represents the output of the model for the 𝑖-th character in the sentence to be character 𝑐.
𝑦𝑖,𝑐 ∈ {0, 1} equals 1 if the 𝑖-th character in the target is character 𝑐 and 0 otherwise.

Again first the gradients of the linear layer are calculated.

𝜕𝑀𝑆𝐸(𝑞)
𝜕𝐴𝑎𝑏

= − 2𝑁

𝑁

∑
𝑖=1
(ℎ𝑖)𝑏𝑆(𝑥𝑖,𝑎)

1
𝐶

𝐶

∑
𝑐=1

𝛽𝑖,𝑐 ⋅ (−𝑆(𝑥𝑖,𝑐)1𝑐≠𝑎 + (1 − 𝑆(𝑥𝑖,𝑐))1𝑐=𝑎)

where 𝛽𝑖,𝑐 = 𝑦𝑖,𝑐 −
exp(𝑥𝑖,𝑐)

∑𝐶̃𝑐=1 exp(𝑥𝑖, ̃𝑐)
= 𝑦𝑖,𝑐 − 𝑆(𝑥𝑖,𝑐) (3.6)

In this equation 𝐴𝑎𝑏 is the 𝑎-th row and column 𝑏 of the linear layer matrix. (ℎ𝑖)𝑏 is entry 𝑏 of the output
or hidden state of the LSTM part for the 𝑖-th character in the sentence. 𝑆 is the Softmax function defined
in equation (3.1).

This equation is similar to the one found using Cross Entropy Loss, see equation (3.3). The main
difference being the second summation. When looking at the part where 𝑐 = 𝑦𝑖, it is almost the same
apart from the added 𝛽𝑖,𝑐, which represents the error made for the correct character. This seems like a
logical inclusion that cannot do much wrong. Also the 𝑆(𝑥𝑖,𝑎) part is added, which causes this derivative
to be small when the guessed value is low. This can cause problems, as if the model is trained a bit,
this causes it to be hard to change further. Which might mean that it gets stuck in a local minimum.

Now the whole summation over 𝑐, can be seen as a weighted average over how bad and how good
guesses are and what needs to change to make it better. If a guess is high, when it should be low, it
can be decreased by increasing the other guesses. This is because the Softmax function causes all
the guesses to sum to 1.

With this derivative analyzed, it is time for the derivative inside the LSTM layer. Again equation (3.2)
is used. This time a big part of the equation is the same, therefore only the new part is written out.
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𝜕𝑀𝑆𝐸(𝑞)
𝜕(𝑊𝑥𝑜)𝑎𝑏

= − 2
𝑁𝐶

𝑁

∑
𝑖=1

𝐶

∑
𝑐=1

𝛽𝑖,𝑐𝑆(𝑥𝑖,𝑐)
∑𝐶̃𝑐=1(𝐴𝑐𝑎 − 𝐴 ̃𝑐𝑎) exp(𝑥𝑖, ̃𝑐)

∑𝐶̃𝑐=1 exp(𝑥𝑖, ̃𝑐)
𝜕(ℎ𝑖)𝑎
𝜕(𝑜𝑖)𝑎

𝜕(𝑜𝑖)𝑎
𝜕(𝑊𝑥𝑜)𝑎𝑏

(3.7)

Here the 𝛽𝑖,𝑐 appears again, which is not that bad. However the 𝑆(𝑥𝑖,𝑐) part is not good in certain
scenarios. This part causes the whole gradient to be small if the predicted value is small. Seeing this
in both of the equations, the hypothesis becomes that using this loss function will probably cause the
model to get stuck in local minima. And it will be hard for the model to get out of these local minima,
as the gradients become smaller. At the start if the probabilities are close to 0.5, the loss will work fine
as the derivatives are not that small. Therefore it might be important to choose the initial values in the
weights well, if possible, when using the mean squared error.

The fact that the second summation is present, might contain advantages. This is good if wrong
guesses are important, because this way the loss increases if other guesses have high probability, not
only if the correct guess has low probability. However this might cause the model to over fit faster.

3.2.3. Binary Cross Entropy Loss
Even though the mean squared error is not really meant for classification problems, it does propose
an interesting question. The second summation, to also sum over the wrong predictions, might have
some useful properties. Therefore the next loss functions, being analyzed is the Binary Cross Entropy
Loss (BCE), see equation (3.8). This loss function very much looks like the regular cross entropy loss,
but with an added summation for the rest of the characters.

𝐵𝐶𝐸(𝑞) = − 1𝑁

𝑁

∑
𝑖=1

1
𝐶

𝐶

∑
𝑐=1

𝑦𝑖,𝑐 log(𝑆(𝑥𝑖,𝑐)) + (1 − 𝑦𝑖,𝑐) log(1 − 𝑆(𝑥𝑖,𝑐))

= − 1𝑁

𝑁

∑
𝑖=1

1
𝐶 log(𝑆(𝑥𝑖,𝑦𝑖)) +

1
𝐶

𝐶

∑
𝑐=1,𝑐≠𝑦𝑖

log(1 − 𝑆(𝑥𝑖,𝑐)) (3.8)

In this equation 𝑆 is the Softmax function, however all functions with a range of (0, 1), the whole of
ℝ as domain and preferably at least twice piecewise differentiable, can be used.

With this function being split into two parts, and one part being the same as equation (1.5), the
derivative is split into two parts with the first part almost the same as equation (3.3).

𝜕𝐵𝐶𝐸(𝑞)
𝜕𝐴𝑎𝑏

= − 1
𝑁𝐶

𝑁

∑
𝑖=1
(ℎ𝑖)𝑏 (−2𝑆(𝑥𝑖,𝑎)1𝑦𝑖≠𝑎 + (1 − 𝑆(𝑥𝑖,𝑎))1𝑦𝑖=𝑎 + 𝑆(𝑥𝑖,𝑎)

𝐶

∑
𝑐=1,𝑐≠𝑦𝑖 ,𝑐≠𝑎

𝑆(𝑥𝑖,𝑐)
1 − 𝑆(𝑥𝑖,𝑐)

)

(3.9)
The obtained equation is a lot nicer than the one from the mean squared error. This equation

contains three parts. To start with it is good to look at the last part, as this part will always be used. It
sums over the characters that were not used for the row in 𝐴 and not the targeted character. So each
of the 𝑆(𝑥𝑖,𝑐) should be a low value. The fraction returns a low value if this is the case, which is good as
nothing needs to change. However if the guess for the character is high, this fraction approaches infinity,
causing the derivative to get larger. This is good as if the probability for other characters increases, the
probability for the wrong character decreases.

Now the other part is almost the same as equation (3.3). Under this equation it is explained why
this is good. The only difference is the 2 in front of the 1𝑦1≠𝑎, this comes from the fact that it is double
counting it. If 𝑦𝑖 ≠ 𝑎, the summation will include 𝑐 = 𝑎, in which case that part can be added. This
also causes the amount of additions taking place, will be equal to C if the 2 is counted as 2 additions.
Which of course is logical as an average over each character is taken.

Differentiating with respect to the hidden layer, yields equation (3.10). Where one can see a com-
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bination of the last two loss functions.

𝜕𝐵𝐶𝐸(𝑞)
𝜕(𝑊𝑥𝑜)𝑎𝑏

= − 1
𝑁𝐶

𝑁

∑
𝑖=1
(
∑𝐶̃𝑐=1(𝐴𝑦𝑖𝑎 − 𝐴 ̃𝑐𝑎) exp(𝑥𝑖, ̃𝑐)

∑𝐶̃𝑐=1 exp(𝑥𝑖, ̃𝑐)
−

𝐶

∑
𝑐=1,𝑐≠𝑦𝑖

𝑆(𝑥𝑖,𝑐)
1 − 𝑆(𝑥𝑖,𝑐)

⋅
∑𝐶̃𝑐=1(𝐴𝑐𝑎 − 𝐴 ̃𝑐𝑎) exp(𝑥𝑖, ̃𝑐)

∑𝐶̃𝑐=1 exp(𝑥𝑖, ̃𝑐)
) 𝜕(ℎ𝑖)𝑎𝜕(𝑜𝑖)𝑎

𝜕(𝑜𝑖)𝑎
𝜕(𝑊𝑥𝑜)𝑎𝑏

(3.10)
To little surprise, this loss function starts the same as the regular cross entropy loss function of

equation (3.4). However the target character is not the only one that is incorporated into the loss. The
second part of this derivative does the other characters. It basically works in the same way, apart from
the added error term, which was also seen in equation (3.9). Like in that equation, here it promises to
do good as the equation seems logical.

Now comparing the CEL and the BCE, it is hard to arrive at a concrete hypothesis. In this report the
functions will be used in a language prediction model. For predicting the next character in a sequence,
it is impossible to predict with a high percentage of certainty, what the next character will be. Exceptions
to this may be inside words. Therefore, it is not weird to assume that multiple characters will have a
somewhat high probability of being next. The BCE model punishes that, which might cause it to arrive
at very similar models after training, when starting with different random weights. However the CEL
model does not care much if another character also has a high probability, which may cause the model
to be more influenced by the starting weights. But this can also make the model reflect reality a bit
more in this case.

3.2.4. Smooth L1 Loss
With the mean squared error using the L2 norm, it is logical to also test the L1 norm. However an
improvement for this function has been suggested[6]. The derivative of the normal L1 loss function is
of course mainly constant w.r.t. (𝑥𝑖−𝑦𝑖). This can cause problems as the function is no longer convex.
Also this function is not differentiable on (𝑥𝑖 − 𝑦𝑖) = 0. Therefore this adjusted L1 loss function was
created. It combines the L1 norm and L2 norm such that it is less sensitive to outliers and can prevent
exploding gradients, see equation (3.11). This loss has a hyperparameter 𝛽, which decides when the
loss should use the L2 norm and when the L1 norm.

𝑆𝐿1(𝑝, 𝑞) = 1
𝑁

𝑁

∑
𝑖=1

1
𝐶

𝐶

∑
𝑐=1

0.5𝛿2𝑖,𝑐
𝛽 1|𝛿𝑖,𝑐|<𝛽 + (|𝛿𝑖,𝑐| − 0.5𝛽)1|𝛿𝑖,𝑐|≥𝛽

where: 𝛿𝑖,𝑐 = 𝑆(𝑥𝑖,𝑐) − 𝑦𝑖,𝑐 (3.11)

One can check that this function is continuous by realizing that the only points that have to be
checked are |𝛿𝑖,𝑐| = |𝑆(𝑥𝑖,𝑐) − 𝑦𝑖,𝑐| = 𝛽. For continuous differentiability, first the derivative needs to
be calculated. Note that in the equations below, only the part after the summations is used, as this is
enough.

lim
|𝛿𝑖,𝑐|↑𝛽

𝑆𝐿1(𝑝, 𝑞) = 0.5𝛽 lim
|𝛿𝑖,𝑐|↓𝛽

𝑆𝐿1(𝑝, 𝑞) = 0.5𝛽

𝜕𝑆𝐿1(𝑝, 𝑞)
𝜕𝛿𝑖,𝑐

= {

𝛿𝑖,𝑐
𝛽 −𝛽 < 𝛿𝑖,𝑐 < 𝛽
1 𝛿𝑖,𝑐 ≥ 𝛽
−1 𝛿𝑖,𝑐 ≤ 𝛽

⟹ {
lim𝛿𝑖,𝑐→𝛽

𝜕𝑆𝐿1(𝑝,𝑞)
𝜕𝛿𝑖,𝑐

= 1
lim𝛿𝑖,𝑐→−𝛽

𝜕𝑆𝐿1(𝑝,𝑞)
𝜕𝛿𝑖,𝑐

= −1

Now this function is not twice continuously differentiable, however the second derivative is piecewise
continuous.

To analyze the effect it has on the derivatives w.r.t. the linear layer matrix. The derivatives are again
calculated.

𝜕𝑆𝐿1(𝑝, 𝑞)
𝜕𝐴𝑎𝑏

= − 1𝑁

𝑁

∑
𝑖=1
(ℎ𝑖)𝑏𝑆(𝑥𝑖,𝑎)

1
𝐶

𝐶

∑
𝑐=1

(𝑦𝑖,𝑐 − 𝑆(𝑥𝑖,𝑐)𝛽 1|𝛿𝑖,𝑐|<𝛽 + (−1)1−𝑦𝑖,𝑐1|𝛿𝑖,𝑐|>𝛽) (−𝑆(𝑥𝑖,𝑐)1𝑐≠𝑎+(1−𝑆(𝑥𝑖,𝑐))1𝑐=𝑎)

(3.12)
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Here it can be seen that if the guess is close to the target, so when |𝛿𝑖,𝑐| < 𝛽, then this derivative
is the same as the one from the mean squared error up to a scalar, see equation (3.6). This makes
sense of course, but now if the guess is not good and differs more than beta from the target, it does
something different. It basically uses the most extreme error in that case, for the first part. This could
make it easier for the loss function to get out of local minima. However the loss is still multiplied by
𝑆(𝑥𝑖,𝑎), which can get really close to zero. In which case the loss will be small, as all parts of the
equation are bounded by 1.

𝜕𝑆𝐿1(𝑝, 𝑞)
𝜕(𝑊𝑥𝑜)𝑎𝑏

= − 1𝑁

𝑁

∑
𝑖=1

1
𝐶

𝐶

∑
𝑐=1

(𝑦𝑖,𝑐 − 𝑆(𝑥𝑖,𝑐)𝛽 1|𝛿𝑖,𝑐|<𝛽 + (−1)1−𝑦𝑖1|𝛿𝑖,𝑐|>𝛽) 𝑆(𝑥𝑖,𝑐)
∑𝐶̃𝑐=1(𝐴𝑐𝑎 − 𝐴 ̃𝑐𝑎) exp(𝑥𝑗, ̃𝑐)

∑𝐶̃𝑐=1 exp(𝑥𝑗, ̃𝑐)
𝜕(ℎ𝑖)𝑎
𝜕(𝑜𝑖)𝑎

𝜕(𝑜𝑖)𝑎
𝜕(𝑊𝑥𝑜)𝑎𝑏

(3.13)
This equation is nothing spectacular, as here the same can be seen. When the error is small enough,

this derivative is equal to the mean squared error, up to an scalar. When it is not, it uses the extreme
case where 𝑦𝑖,𝑐 − 𝑆(𝑥𝑖,𝑐) becomes 1 or -1 depending on if the character is the targeted value.

With the derivatives discussed, the hypothesis is that this function will probably mostly perform like
the mean squared error. It might be a little bit better at avoiding local minima, or climbing out of them,
however it will probably still suffer from this issue.





4
Numerical results

Having analyzed all the loss functions analytically, it is now time to verify and evaluate these results by
comparing them to a numerical analysis. The results will be made with the model described in section
3.2. So first a one layer LSTM network, with a hidden size of 1500, then a feed-forward layer, which
is a matrix of 𝐶 × 1500, where 𝐶 is the number of different characters. The optimizer which is used
is the Adam optimizer[10], with a learning rate of 0.001. All initial weights of the models were drawn
randomly from a uniform distribution 𝑈(− 1

√ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 ,
1

√ℎ𝑖𝑑𝑑𝑒𝑛_𝑠𝑖𝑧𝑒 ). Worth noting is that all analytically
found gradients, were checked numerically, to see if this would yield the same answers. This was the
case for each gradient. Note throughout this chapter that a model of this size is very small compared
to some of the well-known models. Therefore some results could be attributed to this fact instead of
what is stated here. More analysis about this can be found in the discussion.

4.1. Dataset
To discuss the numerical results, first the dataset needs to be discussed. As mentioned before, for the
dataset multiple books were used. These books are available online from Project Gutenberg1. The
selected books are all the top 100 books of July 2022, with the exception of the non English books, for
a total of 94 books. A full list of the books can be found in the appendix, where also all the authors are
mentioned. Because these books are all free to download, most books are old.

To make these books readable for the model, a few adjustments were made. First sentences with
fewer than five words and more than fifty words were not used, to try to avoid outliers. Secondly
all letters were decapitalized. Then, to distinguish between sentences and words, the Python NLTK
library[1] was used. The regular sentencing from this library was used for the sentences. For the words
a selection of characters were used: ”!”, ”,”, ”.”, ”:”, ”?”, ”’”, ”””, ”-” and all the non-capitalized letters, which
with the RegexpTokenizer function were considered part of words. These words were then put into the
sentence again with spaces in between. This is done for each book and all of these sentences are
stored. When all the books are done, the largest sentence is found and every other sentence is filled
with ”@” characters to make each sentence of the same length. This causes the number of characters
𝐶 to be 36.

Not all of the sentences were used for each numerical result, however the sentences were always
split into a training set, a validation set and a test set. Which contain 80%, 10% and 10% of the used
sentences respectively. The whole dataset contains 502,708 sentences. How the data is fed into the
network can be read in section 1.0.1.

The division into the three sets is common everywhere in machine learning. Because for many
applications the model will be applied to scenarios that are not in the dataset, it is important to know
how the model will perform on cases it has not seen before. The training dataset is self-explanatory
and is only used for training the model. Now the validation set, which is important to be completely
different form the training set, is for evaluating the model on data it has not seen before. During training
of models, it is common to first see both the training loss decrease, as well as the validation loss.
1https://www.gutenberg.org
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But after a bit of training, the validation loss will likely start to increase. This is because the model is
overfitting the training set. It will start to learn patterns that only appear in that specific subset of the
dataset. The last set, which is not really used in this report, is the test set. When training a model
all the parameters are optimized, however a lot of models have hyper-parameters, which need to be
set before training. When trying to optimize these hyper-parameters, one often tries to optimize the
validation loss. But when this is done, the evaluation becomes biased like before. Therefore the test
set is there to compare the models without bias and should therefore never be optimized towards.

4.2. Discussing the code
The code used for the numerical analysis can be found in appendix C. Although the functions are
explained there briefly, some parts may deserve a little more attention. The main thing to note here is
that the code was made in a IPython Notebook (.ipynb) file. This works by having different cells that
can be run independently. Every part between ”#%%”, is a separate cell, however if run from top to
bottom, the code should work.

A few libraries were used, some are really common in Python programs, like NumPy, pandas and
matplotlib, others a little less popular. The NLTK library[1], mentioned in the previous section is one of
them. Also the PyTorch2 library is not commonly used. This library contains methods to develop neural
networks and other machine learning models. For this task it is relatively popular. A lot of the equations
of the different loss functions came from the documentation of this library[12]. The library makes it easy
to implement these functions and use them effectively. The last uncommon libarary used, is the tqdm3

library, which just prints progress bars for loops, such that the training time can be measured.
Before training the model, it is useful to have a dataloader such that all the data can be fed into the

network in the right way. With a dataloader the user has more control over what the network receives.
This is needed for training as this data needs to be shuffled randomly before beginning a new epoch.
The class used for this can be found in lines 104 to 141.

After being able to stream the data correctly, the full model class can be created, see lines 158 to
305. Here the PyTorch library is mainly used, and this model therefore is an extension on the already
present module in the library. For calculating the losses, different functions were made inside this class.
The MSE, BCE and SL1 losses work in the same way and require the Softmax function to be explicitly
called beforehand. Therefore one function was used for these three losses, here called BCE, lines 196
to 210. The CEL already has a Softmax function built in, when using this specific library. It therefore
required a separate function.

Like mentioned before, the characters which would need to be an ”@” were first found. The loss is
calculated separately on these characters and multiplied by 0.1, while the loss of the other characters
is multiplied by 0.9, before adding them together. Calculating the gradients is completely done by the
library and requires only one line of code in this program, see line 258. The same holds for taking the
step and adjusting all the weights, which is done in the next line.

A few more functions and cells were used to extract all the results. Lines 308 to 326 contain two
functions that can, when given a sentence, convert that sentence to vectors and then input it into the
model. From the model it can translate the returned vectors to sentences again, by taking the character
with highest probability each time. The other cells are self-explanatory.

4.3. SL1 loss
The SL1 loss described in section 3.2.4 has a hyper-parameter 𝛽, which needs to be analyzed first.
From the analytical results and the reason why this parameter exists, it is known that this determines
when the SL1 loss uses a mean squared error and when a mean absolute error. For this problem, the
returned probabilities are between 0 and 1, therefore if a 𝛽 of 1 is used, this loss just becomes the
mean squared error. Similarly for 𝛽 close to 0, this loss will almost be a regular mean absolute error
loss.

To choose the correct 𝛽, a few are tried, namely: 0.75, 0.5, 0.25, 0.1. With these models the network
is trained on 40,000 randomly selected sentences from the first 50,000 sentences of the dataset. This
is to reduce computing time, also these models were trained with a hidden size of 1000. For each

2https://pytorch.org/
3https://github.com/tqdm/tqdm

https://pytorch.org/
https://github.com/tqdm/tqdm
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𝛽, the model is trained 3 times, randomizing the starting weights each time. And all training was
done for 3 epochs. Note that because the models were only trained 3 times, coincidences may occur.
Nevertheless a clear pattern appears from the results of table 4.1. Note that in the table an interval is
given, which denotes the highest found loss of the three times, and the lowest one.

Loss\𝛽 0.75 0.5 0.25 0.1
CEL [2.13,3.12] [2.19,2.34] [2.44,2.58] [2.72,2.75]

MSE (×10−2) [1.90,2.52] [1.86,2.06] [2.02,2.15] [2.08,2.13]
BCE (×10−2) [8.05,11.32] [8.16,8.74] [8.98,9.46] [9.90,10.01]

Table 4.1: Training losses obtained by training the network described in section 3.2 for 3 epochs, using the SL1 loss function of
section 3.2.4, with a variable beta. All data is from training the network three times, each time randomizing the starting weights.

Highest and lowest loss of these three times were noted as an interval.

Interestingly it seems that when the 𝛽 parameter is decreased, the model is trained more consis-
tently as the lowest and highest loss differ less. However this comes at a price, as the average loss
does seem to increase. Now this is in agreement with what was found analytically. With a high value
for 𝛽, it should behave almost like the mean squared error, where the hypothesis was that it got easily
stuck in a local minimum and therefore strongly dependent on the starting weights. A large spread in
the calculated losses would indicate this.

To now choose a specific 𝛽 is highly dependent on the problem. Knowing something about the
problem, could help with choosing starting weights instead of just randomly choosing them. In that
case high values of 𝛽 can be used. Also if one has a lot of time, the model can be trained with a high
value 𝛽 multiple times and then the lowest loss can be chosen. For this report a value of 0.5 is used,
as the mean squared error is already being used, so with this value, this loss differs still. Furthermore
when using the Softmax function in classification problems, the 0.5 has a special meaning, as when
the targeted value has a probability of 0.5 or higher, it means that it has the highest probability of all
characters. When predicting a sentence, the character with the highest probability will be chosen, it
will therefore always be this character.

4.4. Consistency
Before checking how the networks do after training for a long time, it is maybe interesting to see how
they compare on consistency. By consistency, it is meant to compare how the networks can differ
from different initial weights. In most cases these weights will be chosen randomly at the start. It can
therefore be useful to know if the trained model is very dependent on these weights or not. This is
the same kind of test as done in the previous section. The training set will again be 40,000 sentences
randomly chosen from the first 50,000 sentences of the dataset. Training over this dataset will be done
for three epochs and is done ten times starting with randomized weights each time. After each trained
model, the model is applied to the start of a sentence: ”how much”, to compare the differences in
grammar, spelling and choice of words.

Loss function\Training function CEL BCE MSE SL1
CEL 2.08 (0.104) 2.21 (0.361) 3.27 (0.960) 2.48 (0.658)

BCE (×10−2) 7.99 (0.345) 8.40 (1.22) 11.55 (2.859) 9.05 (2.11)
MSE (×10−2) 2.01 (0.068) 2.08 (0.250) 2.25 (0.245) 1.94 (0.322)
SL1 (×10−2) 1.67 (0.048) 1.72 (0.180) 1.84 (0.176) 1.57 (0.241)

Table 4.2: Sample mean of training losses after training the model described in section 3.2 ten times for 3 epochs, using
different loss functions. In brackets is the sample standard deviation of the respective model.

Comparing the different models by the average result, one can see that the CEL and BCE seem to
be really close in all the tested metrics. This was expected as these methods are meant to be used
in classification problems and are very similar. The MSE and SL1 methods both have a little higher
average, when comparing with the CEL or BCE metrics. However the SL1 method does really well in
the other two metrics on average. The MSE model stands out with the highest sample mean, but this
could be a coincidence. Testing these methods all ten times took about twelve hours, hence there was
not enough time to do more. Values might therefore be a little inaccurate, but they should give some
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sort of indication. An interesting result here is that the SL1 method has the lowest sample mean when
comparing with the MSE and SL1 metric. These metrics use a different way of calculating the losses,
as they do not use logarithms, but instead use a squared or absolute error. This means that the loss
added for a single guess cannot exceed 1, while the loss, when calculated by the logarithm, can get
infinitely high. This means that the obtained probabilities from the model when trained with the SL1
loss or the MSE loss, might be really polarized. Some are probably really high while others really low
as it is not punished as much if a returned probability differs a lot from the targeted one.

Looking at the sample standard deviations, a lot more diversity arises. The CEL and BCE methods
here are definitely a lot more consistent than the other two methods. Interestingly the CEL method
had a lower standard deviation than the BCE method on all tested metrics. This is unexpected, as the
hypothesis was that the BCE method would be a little bit more consistent. Something different can be
noted when comparing the MSE and SL1 methods. The SL1 method seems to have a lower standard
deviation for the CEL and BCE metric, whereas the MSE method has a lower standard deviation when
comparing with the MSE and SL1 metrics. This suggests that the hypothesis about the SL1 loss was
correct. Because the SL1 loss uses a L1 term for guesses that are very wrong, it will try more to not
guess very wrong. The CEL and BCE metric are really sensitive to these very wrong guesses.

Loss function\Training function CEL BCE MSE SL1
CEL [1.92,2.24] [1.64,2.69] [2.08,4.97] [1.94,3.55]

BCE (×10−2) [7.46,8.51] [6.48,10.03] [7.84,16.47] [7.24,12.43]
MSE (×10−2) [1.90,2.11] [1.68,2.42] [1.85,2.55] [1.62,2.48]
SL1 (×10−2) [1.60,1.75] [1.42,1.96] [1.55,2.05] [1.32,1.94]

Table 4.3: Minimum and maximum losses after training the model described in section 3.2 ten times for 3 epochs, using
different loss functions. Visualized in an interval, thus the loss of every trained model was inside this interval.

What is interesting to see from the minimum andmaximum values of the losses, is that the SL1 does
seem to have achieved a really low training loss, which is better on every metric except when comparing
with the CEL and BCE metrics and trained on those respective losses. This would imply that this loss
function can converge really fast, if it is given the right initial weights. The problem when looking at the
minimum, might of course be that it is just a coincidence. Now when looking at the maximum, both the
MSE and SL1 losses have reached a very high maximum, it is therefore not consistent.

The same ten models trained, were also tested on a validation set, see table 4.4. This table contains
the average of the losses of the ten models in all the metrics. Also a figure was made to better of this
data, to maybe better illustrate the tendencies using boxplots. Note that this figure multiplies the BCE
loss with 25, to be able to better compare the results.
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Loss function\Training function CEL BCE MSE SL1
CEL 1.97 (0.090) 2.07 (0.314) 3.29 (1.069) 2.45 (0.699)

BCE (×10−2) 7.61 (0.302) 7.93 (1.071) 11.49 (3.189) 8.91 (2.238)
MSE (×10−2) 1.94 (0.063) 1.99 (0.224) 2.19 (0.269) 1.89 (0.338)
SL1 (×10−2) 1.62 (0.046) 1.65 (0.165) 1.79 (0.195) 1.53 (0.254)

Table 4.4: Sample mean of validation losses after training the model described in section 3.2 ten times for 3 epochs, using
different loss functions. In brackets is the sample standard deviation of the respective model.
Figure contains boxplots of the same data, where the BCE is multiplied by 25 instead of 100.

From this table not much new information can be gathered. It is almost the same as table 4.2. The
same was seen when comparing the minima and maxima. This is probably because the models were
not trained for long enough to see any overfitting, so the validation loss behaved almost the same as
the training loss did.

As mentioned before, after the training of each model, it was applied to the start of a sentence:
”how much ”. Some interesting results were found here. The sentence can of course be completed
in any number of ways, but because the network was not trained for long enough, most of the time it
repeats words. In English the word ”the” is probably one of the most common words. When looking at
the models created using the BCE loss, six out of the ten were repeating this word constantly. These
models were all the ones with a higher than average loss. It seems that this is a local minimum, which
this loss gets stuck in often. The remaining four models were still repeating words, where two were
repeating ”the said”.

When looking at the models created using the CEL function, the minimum loss was also achieved
by repeating ”the said”. Repeating the word ”the” only happened three out of ten times here. However
once it kept repeating ”and”.

Now the by SL1 and MSE trained models were really different. First to go over the MSE model,
twice it did not make words at all and just returned spaces, which looks like a local minimum as well.
The lowest loss here was achieved by making the following sentence:

how much and the manter the was and the sain the preat and the sain the preat

Afterwards it continued to repeat the last five words. Having tested this model only on the mentioned
input, it is not proven that the output changes depending on the input. But with the values of the losses
it returned, it is highly unlikely that it did not change. This is therefore probably the first model that
actually tried to make sentences instead of just repeating the same words.

This was extended further by the models trained using the SL1 loss, where the model with the lowest
loss produced the following output:
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how much say that she was an anster to make at the seath of the stor with an and and the seave of
the stor

After which it repeated the last nine words. While not all words are real English words, it did find
some word combinations that make sense. For example the ”to make” part are two words that are likely
to appear together. ”say that” and ”she was”, are also examples of this.

4.5. Overfitting
In the previous section, the models were trained often, but not trained for a long time. In practice, there
is a good chance that the model will be trained for a long time. If the loss keeps decreasing there is not
really a point to stop training. However when training for long enough, the model should eventually start
overfitting. When this happens, the model will start to learn patterns that only appear in the training
dataset and will therefore hurt the predictability of the model. Overfitting can have multiple causes, with
the main one being, the use of a small dataset. Therefore, in this section, the models were trained for
a long time on a small dataset. This should cause the model to eventually overfit as it has seen the
training data very often and with enough parameters can just guess from this, the best way to model
those specific sentences. When this happens the validation loss should increase as these sentences
were not used for training. It might be interesting to see which models start to overfit sooner. To achieve
this the models were trained on 8000 sentences randomly selected from the first 10000 sentences of
the dataset. The validation set contained another 1000 different sentences from the same subset of
the dataset. This was done for a total of 50 epochs, so each sentence in the training set will have been
passed into the model fifty times. After each epoch the training loss and validation loss were calculated
and stored. Then after the fiftieth epoch, five sentences were given to the network to see what it would
return: ”how ”, ”how much ”, ”how much more ”, ”a”, ”when was the last time that ”.

4.5.1. CEL and BCE
The CEL and BCE loss behaved very similarly, with the other two doing something different. Both
the CEL and BCE loss did not manage to overfit in 50 epochs. This is really interesting, as this many
epochs is not normally used. The validation loss did however almost reach a minimum as the decrease
in loss each epoch is decreasing. Keep here in mind that the BCE loss was not very consistent and with
this being trained only once, it is possible that in some scenarios the training process will be different.

Figure 4.1: Losses from training the network with CEL function for 50 epochs on a dataset of size 8000.
The CEL metric and the SL1 metric are visualized.

Both the validation losses and the training losses were plotted after each epoch.
A learning rate of 0.001 was used and optimizer Adam.
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Figure 4.2: Losses from training the network with BCE loss function for 50 epochs on a dataset of size 8000.
The CEL metric and the SL1 metric are visualized.

Both the validation losses and the training losses were plotted after each epoch.
A learning rate of 0.001 was used and optimizer Adam.

Interestingly from this figure it becomes clear that in the beginning the losses had some trouble,
where the CEL loss seems to fluctuate the most. After around 11 epochs, the training and validation
losses are decreasing each epoch. Precise results of the last epoch can be found in table 4.5.

Looking at the sentences made by the models after the last epoch, it is clear that the BCE is still
stuck in some local minimum. For each of the sentences, it returned a sentence that after a few words
kept repeating ”of the same” or ”of the stairs”. For example, when given ”how ”, the model produced:

how i should not see her hand of the same of the same of the same of the same of the same of the
same of the same

The same can be said about the sentences that the CEL model returned, but here it is a little bit
more reasonable. The sentences continue a bit longer with the non-repeating part. Also the repeating
part is a bit longer, however it does seem quite random. Good examples are the sentences that begin
with ”how ”, where each one looked like this:

how i was a little too man be well, and the world with the countess of the starral some of the countess
of the starral to the children in the countenance of the countess of the starral with the childr

So both of these models seem to reach a certain local minimum, where certain combinations of
characters are learned, but not structures of sentences. Because the loss of the ”@” sign is reduced
to account for only 10% of the total loss, the model will not be punished for letting the sentence go on
forever. One could only look at the part that is not repeated and see a reasonable English sentence.

4.5.2. MSE and SL1
The MSE and SL1 losses behaved very different from the other two losses, but behaved similarly to
each other. They didmanage to overfit very fast and both had a way higher lowest validation loss. When
analyzing the figures and data from these to models, keep in mind that they were really inconsistent.
Therefore it could be that if trained multiple times, the models would be able to achieve lower losses.
Nevertheless it is a good example of overfitting, see figures 4.3 and 4.4. The MSE network starts earlier
after 17 epochs, where it reached its lowest CEL loss over the validation set of 1.599. The for SL1 loss
optimized model obtained this minimum after 24 epochs, where it had a CEL loss of 1.773. The minima
for the SL1 metric were reached after 19 epochs, with a value of 0.01133, and after 25 epochs, with a
value of 0.01136, respectively.
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Figure 4.3: Losses from training the network with MSE loss function for 50 epochs on a dataset of size 8000.
The CEL metric and the SL1 metric are visualized.

Both the validation losses and the training losses were plotted after each epoch.
A learning rate of 0.001 was used and optimizer Adam.

Figure 4.4: Losses from training the network with BCE loss function for 50 epochs on a dataset of size 8000.
The CEL metric and the SL1 metric are visualized.

Both the validation losses and the training losses were plotted after each epoch.
A learning rate of 0.001 was used and optimizer Adam.

When looking at the sentences, that were made when the model was trained for fifty epochs, some
interesting characteristics appear. These models had a considerably lower training loss at this point
when compared with the CEL and BCE models. It now makes sentences that look really close to
English, but do not really have any meaning. Also the sentences end more often with the end of
sentence character. The SL1 model still had some trouble with the words and some words are not
spelled correctly, however this may be due to bad scanning of older books. Because when older books
are scanned often ”e” can become a ”c” as the line in the middle is not always clear. An example is the
following sentence:
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how is it theord and so these at itmass we’s belicves that are to herself, ”i’m but an ingerveve could be
see more than beant....” ”is that i’m about the world you have been done and manting this levi

Note that this sentence ends with half a word, this is because the sentences were only created for
200 characters, the model could continue for longer, maybe forever if not stopped. This is the sentence
which began with ”how ”, which of course is a short start. There are multiple sentences in the dataset
that start like this. Theoretically it could choose one of these sentences and return that. However each
sentence in the training set is weighted evenly and therefore it makes a combination of the sentences
which does not turn out to be English. Interestingly adding one word, making the input: ”how much
”, caused the model to return: ”how much i’m mad and deal, it for?”@”. So this is a sentence that
ends very quickly. Another interesting result is when only ”a” was given as input, this returned the only
correct English sentence: ”and the prince went out of the room..”@”. This sentence appears in one of
the books, but here only the ”and the prince went” part is written.

The MSE model did finish more sentences and made less spelling mistakes. For example the
sentence it made from ”how ” was:

how is it the-reast and benind the heart of her.”@

Which does not make much sense and does contain two words that do not exist in English. It does
start the same as the SL1 model does, which is probably because ”how is it” is the most common
combination starting with ”how ”. Both afterwards continue with ”the”, which does not fit well. Again the
sentence starting with just an ”a” is interesting:

and she drew madeline toward the door. @

This is a correct English sentence, which is an exact copy of one that is present in one of the books. It
is not clear why it chose this one, as it only appears once.

4.5.3. Final results
When looking purely at the results after fifty epochs, table 4.5 can be made. One can note that here
the MSE metric has the lowest training loss by far. Because the model was trained only once, this can
be a coincidence.

Training CEL Validation CEL Training SL1 (×10−2) Validation SL1 (×10−2)
CEL 1.123 1.190 1.065 1.108
BCE 1.349 1.365 1.215 1.224
MSE 0.856 2.130 0.332 1.279
SL1 1.155 2.228 0.463 1.252

Table 4.5: Training and validation losses of all four models after 50 epochs

The validation losses are of course a lot worse for the MSE and SL1 models as they overfitted.
However the minimum CEL losses they achieved were also a lot higher than those of the CEL and
BCE model. Interestingly the MSE model did manage to get a lower SL1 loss than the BCE model.

4.6. Whole dataset
In all previous sections only a part of the dataset was used. To train the model on the entire dataset took
a lot of time, so the results might be comparable to the overfitting section. However the key difference
here is that it trains on many different sentences of course, which causes overfitting to be really difficult.
Like said before the training set contains 502,708 sentences, of which 402,168 were randomly selected
as training set and 50,270 as validation set. The training of the models was done for 3 epochs, which
took around 3 hours per model. Because some models were inconsistent, the same starting weights
were used for each model, which were still taken from a uniform distribution. This still could favor some
models, but will probably take away some variance. Training took long and only noting the training loss
once per epoch, would have been too little data. Therefore the training loss was calculated four times
per epoch. Because the validation set is also large now, the validation loss took a while to compute.
This loss was only calculated twice per epoch.
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(a)CEL (b) BCE

(c)MSE (d) SL1

Figure 4.5: Training and validation losses, calculated with the CEL and SL1 loss metrics. Training was performed with respect
to the loss function below each figure. The whole dataset described in section 4.1 was used for 3 epochs. A learning rate of
0.001 was used with the Adam optimizer. Training losses were plotted four times per epoch and validation losses twice per

epoch.

Training CEL Validation CEL Training SL1 (×10−2) Validation SL1 (×10−2)
CEL 1.135 1.093 1.071 1.040
BCE 1.053 1.030 0.998 0.980
MSE 1.418 1.346 1.102 1.066
SL1 15.51 6.565 1.891 1.598

Table 4.6: Training and validation losses of all four models after 3 epochs

It can be seen, from figures 4.5, that the CEL, BCE and MSE models trained all very similarly. With
the CEL and BCE models, both having a lower loss than the MSE model at every measured moment.
Now the SL1 model did something strange, see figure 4.5d. For some reason the losses started to
increase here after 1.5 epochs. No real reason can be found for this, apart from it probably getting
a few non-representative sentences, where it trained the wrong way. With a dataset of this size, the
probability for this is really low. Therefore another explanation is probably correct. It is worth noting
that when making this report, the loss would sometimes do this seemingly random.

Comparing the BCE and CEL models, it is interesting that here the BCE model actually achieved
lower training and validation losses at all tested moments. None of the models managed to overfit, as
3 epochs not enough time for this to happen, which can be concluded from section 4.5.

After training the model, the same five sentences used in section 4.5, were given to the model to
see what they would return. All of the models had the problem of repeating the same things again.
Starting with the CEL model, the model kept repeating ”of the sea” or ”of the consequences”, for the
first three sentences. Starting with only an ”a”, did make it so that the sentence stopped at some point,
but it still repeated itself a little bit. Starting with ”when was the last time that”, produced the only decent
sentence:

when was the last time that he had seen him and the strength of the constant street which he had seen
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him and the son of a man who had been struck on his hands and she said that he was so far as the s

Which does not make much sense, but it does not really repeat the same words.
For the BCE model, which had the lowest losses, did a little worse if judged by just how it looks like

a normal sentence. For example, when using the same start as before, it produced:

when was the last time that the most interesting state of the power of the power of the sense of the
princess was seen to be able to prove that he had not seen him and the servant of the congregation

Where for all the other starts it just started repeating words after three of four unique ones.
The MSE model repeated for the first four tested sentences ”of the street”, after around four unique

words. The last sentence produced the following:

when was the last time that he was to be so that the countess was the same time that he was to be so
that the countess was to be so that he was to be so that he was to be so that he was to be so that

Now the SL1 model produced random characters for the most part, which was to be expected when
looking at the losses.





5
Conclusion

First of all, comparing the CEL and BCE loss functions. From section 3.2.3 the hypothesis was that
the BCE function would allow less diversity in the returned probabilities as the gradients increase by
a lot for each incorrect guess. For this application, having a character appear in a sentence next to
another character, does not mean that any of the other characters should never appear there as well.
So trying to make every character have probability zero apart from the targeted character, which will
have probability one, is not necessary. However it did cause the model to be able to train very fast
at the start of training, as can be seen from the results that trained for a low number of epochs. But
this caused the model to mainly select the most common words, which did not depend much on the
sentence, as can be seen in section 4.4. The model repeats words in all of the cases. It did reach a
lower loss than the CEL function did in section 4.6, albeit still repeating words. It seems that, when
given the right starting weights, it can converge very fast to a local minimum. Even when trying to overfit
the model by training it for a long time on a smaller dataset, it returned mainly repeating sentences. If
the goal is to make real looking English sentences, this loss function does not seem to work well.

The CEL function was also prone to repeating the same things, as can be seen in chapter 4. How-
ever a little bit less so than the BCE loss. When comparing CEL analytically to the MSE and SL1
losses, it can be seen that because the CEL function uses logarithms, the derivative gets really sim-
ple. It causes some terms to disappear. In this case, this means that if a guess is low for a targeted
character, the gradients will be bigger. Now this causes the same things to happen in the BCE loss,
as making errors is punished hard. Therefore, when looking at the numerical results of section 4.5, the
validation losses reach a lower minimum. On average the model performs better on sentences it has
never seen before. But the training loss is higher, as it has not learned many of the training sentences
word for word, which the other two methods did do. Now depending on the task, this is not a bad thing.
For predicting sentences it has not seen, it definitely performs better, but this is at the cost of having
actual English being produced. Maybe when trained longer, on a model with more parameters, it can
learn better.

Now comparing the two discussed models to the MSE and SL1 models, the main difference analyt-
ically is of course the appearance of the 𝑆(𝑥𝑖,𝑐) or 𝑆(𝑥𝑖,𝑎) part in the derivatives. This part causes the
guesses that are low to have a low impact on the gradient. It therefore matters less if a guess is very
incorrect, as it has a low guessed probability. So the MSE and SL1 models can guess higher, which
makes them less good on average, but they are better at fitting the training set. This can be seen as
they overfit earlier and their training losses were lower.

Because the SL1 loss is the same as the MSE loss if the guess is close to being correct, the method
should analytically behave the same once the model has been trained for some time. Because after
some time of training the model should have learned the basic rules and can reliably guess within 0.5
distance. This was not seen from section 4.5, as here the SL1 method did not reach anything close to
the training loss of the MSE model. Now this experiment was done only once, so it could be that this
is because the initial weights were unfavorable for the SL1 loss. However in section 4.6, the same can
be seen. Here of course the training loss started to increase a lot, which is weird. An explanation could
be that because many of the characters were already being predicted quite well, it started to focus on
those that were not yet. It therefore changed the model a lot into predicting those characters more. This
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is however just speculation and no definitive proof has been found, as to why this happened. During
the making of this report, it did however happen more than once, so that suggests it has something to
do with the loss. From section 4.4, it becomes clear that it is a little bit more consistent when compared
with the MSE model when trained for a short time. This is probably because it can take bigger steps
at the beginning and fix some of the extreme cases more quickly because the gradient will not be
dependent on the difference between the correct value and the guessed value, but be 1 or -1 which is
the maximum difference.

Just an interesting find, which was not meant to be researched here, is that the size of the training
set was less important than the amount of epochs it trained for. The models from section 4.5 took
around an hour to train, whereas the models from section 4.6 took three hours to train. Looking at
the training losses, which admittedly have been calculated with a different training set, they are very
comparable. The BCE loss, did preform better, but this has probably to do with the fact that it converges
fast if trained for a low number of epochs. When looking at the sentences produced by themodels which
were trained for few epochs on a large dataset, one can note that they are worse than the sentences
produced when trained for 50 epochs on a smaller dataset. Now if the whole dataset was used for
50 epochs, the models would probably have been better of course, but if no time is available to do so,
taking a smaller dataset, might be beneficial, as it can be trained for more epochs, in which it converges
faster to reasonable results.



6
Discussion

Having done the calculations on a personal computer, the training times were sometimes quite long.
This meant that some of the calculations were not done completely, or not done at all. Training the
network on the entire dataset for a few more epochs could maybe yield some interesting results and
maybe some different characteristics appear when done so. Also, when comparing the consistency,
the result was that some loss functions were less consistent. To train these models for a long time, will
probably yield different results if done a few times with randomized starting values. In this report only a
part of the dataset was used. Furthermore the figure that was made with the whole dataset was made
only once, which could yield different results if done multiple times.

Another key limitation is the fact that only one dataset was used. While quite large, it contains books
from different time periods, and with very different writing styles. For other problems, a dataset with
more similar inputs, might also give different results. Some loss functions could behave differently in
that case. Mainly the mean squared error and the smooth L1 loss can in that case probably perform
better. Also for other problems, like for other languages, different loss function may preform better,
although this seems unlikely.

One of the main problems with neural networks since the first ones were developed, was that it
is very hard to understand why these models work. With millions or even billions of parameters, it is
almost impossible to describe what each of them does. In this report, an attempt has been made to
understand the gradients of each one. Which in turn, should give some insight in what the parameter
itself does. However analytically it still is a bit of speculation.

Like mentioned before in this report, a little insight into a specific problem can maybe cause some
things to change. For example, the loss functions mentioned are used here in their simplest form.
The only difference being that the loss over the ”@” characters is calculated separately from the other
characters. With knowledge into the problem, loss functions can be altered such that certain conditions
are always met. This would mean that the calculated derivatives in this report are mostly useless. Also
certain conditions can be implemented into the optimizer in a way that it cannot do certain steps if
the condition no longer holds. This could mean that different steps are taken and maybe certain local
minima avoided or that some other local minima are harder to avoid.

One thing that was not tried for this report, is using multiple loss functions. Seeing the MSE and
SL1 losses converge quickly sometimes, but not be able to get out of local minima, would suggest that
they may work as initial loss functions. Then if a local minimum is found, the CEL or BCE losses can
be used to get out of it. Then afterwards maybe the MSE can again be used, and so on. It would be
interesting to see if such a method could work. Also one could formulate a function, which uses multiple
of the tested functions. Either with a coefficient or, like the SL1 loss, with a restriction. The derivatives
would be easy to calculate with the results found in this report.

Comparing the models made in this report to other NLP models, for example the GPT-3[2]. There
are of course a lot of differences. For one the current most used models use an architecture known as
transformers, which works very differently from LSTM. However these do often still end with a linear
layer, so the results of this report can still be applied to those networks. The main differences however
are the size of the network and the size of the training set. This specific network, the GPT-3 model, has
175 billion parameters. While the largest network in this report did not even have 10 million parameters,
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9.2 million to be precise. Of course this means that the network cannot come close to what is achieved
by larger companies. But nevertheless some results can be applied to these larger models as well, as
most of these larger models, like the GPT-3 model, do use the cross entropy loss as well.

Larger models also behave differently when looking at certain scenarios, such as overfitting. A
larger model will of course be able to differentiate between more patterns, which causes the model to
be able to pick up on more nuanced patterns. This can make sure that the final model will have a lower
minimum validation loss, when compared with a smaller model. For this report it means that some of
the repeating behavior can be attributed to this. It is possible that the model is not large enough to
predict better than what it does at this moment. Still, different some loss functions do seem to repeat
more often than others.
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Derivations

A.1. Derivation for equation 3.3

𝐻(𝑝, 𝑞) = − 1𝑁

𝑁

∑
𝑖=1

log(𝑞(𝑥𝑖)) where 𝑞(𝑥𝑖) =
exp(𝑥𝑖,𝑦𝑖)

∑𝐶𝑐=1 exp(𝑥𝑖,𝑐)
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A.2. Derivation for equation 3.4
𝜕(𝑜𝑖)𝑎
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= tanh((𝑐𝑖)𝑎)

𝜕𝐻(𝑝, 𝑞)
𝜕(𝑊𝑥𝑜)𝑎𝑏

=
𝑁

∑
𝑖=1

𝜕𝐻(𝑝, 𝑞)
𝜕(ℎ𝑖)𝑎

𝜕(ℎ𝑖)𝑎
𝜕(𝑜𝑖)𝑎

𝜕(𝑜𝑖)𝑎
𝜕(𝑊𝑥𝑜)𝑎𝑏

= − 1𝑁

𝑁

∑
𝑖=1

∑𝐶𝑐=1(𝐴𝑎𝑦𝑖 − 𝐴𝑎𝑐) exp(𝑥𝑖,𝑐)
∑𝐶𝑐=1 exp(𝑥𝑖,𝑐)

⋅ tanh((𝑐𝑖)𝑎) ⋅
(𝑥𝑖)𝑏

exp(𝛼𝑖,𝑎) + exp(−𝛼𝑖,𝑎) + 2
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Book title Author
Alice’s Adventures in Wonderland Lewis Carroll

A Modest Proposal Jonathan Swift
The Angel and the Demon Timothy Shay Arthur

Anna Karenina Leo Tolstoy
Around the World in Eighty Days Jules Verne

A Study In Scarlet Arthur Conan Doyle
The Awakening and Selected Short Stories Kate Chopin

Autobiography of Benjamin Franklin Benjamin Franklin
Beowulf unknown

Beyond Good and Evil Friedrich Nietzsche
Birds from North Borneo Max C. Thompson
The Souls of Black Folk W. E. B. Du Bois
The Call of the Wild Jack London

Carmilla Joseph Sheridan Le Fanu
A Christmas Carol Charles Dickens
Common Sense Thomas Paine

The Complete Works of William Shakespeare William Shakespeare
Crime and Punishment Fyodor Dostoevsky

David Copperfield Charles Dickens
The American Diary of a Japanese Girl Yone Noguchi

A Doll’s House Henrik Ibsen
The History of Don Quixote Miguel de Cervantes Saavedra
The Picture of Dorian Gray Oscar Wilde

Dracula Bram Stoker
Dubliners James Joyce

The Works of Edgar Allan Poe, Volume 2 Edgar Allan Poe
Emma Jane Austen

Frankenstein Mary Wollstonecraft (Godwin) Shelley
Great Expectations Charles Dickens
The Great Gatsby F. Scott Fitzgerald

Anne of Green Gables Lucy Maud Montgomery
Grimms’ Fairy Tales Jacob Grimm and Wilhelm Grimm
Gulliver’s Travels Jonathan Swift
The Happy Prince Oscar Wilde
Heart of Darkness Joseph Conrad

The Hound of the Baskervilles Arthur Conan Doyle
Adventures of Huckleberry Finn Mark Twain (Samuel Clemens)
The Importance of Being Earnest Oscar Wilde

Jane Eyre Charlotte Brontë
Japanese Girls and Women Alice Mabel Bacon

Life And Letters Of John Gay (1685-1732) Lewis Melville
Josefine Mutzenbacher Felix Salten

The Jungle Book Rudyard Kipling
The Brothers Karamazov Fyodor Dostoyevsky

The King in Yellow Robert W. Chambers
The King James Bible N/A

The Legend of Sleepy Hollow Washington Irving
Leviathan Thomas Hobbes

Little Women Louisa May Alcott
Meditations Marcus Aurelius

Metamorphosis Franz Kafka
The Essays of Montaigne, Complete Michel de Montaigne

Les Misérables Victor Hugo
Moby-Dick; or The Whale Herman Melville
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Book title Author
Moby Language, II Grady Ward

The Count of Monte Cristo Alexandre Dumas, père
The Mysterious Affair at Styles Agatha Christie

Narrative of the Life of Frederick Douglass Frederick Douglass
Notes from the Underground Fyodor Dostoyevsky

The Odyssey Homer
Old Granny Fox Thornton W. Burgess
Oliver Twist Charles Dickens
Persuasion Jane Austen
Peter Pan James M. Barrie

Pride and Prejudice Jane Austen
The Republic Plato

The Romance of Lust A classic Victorian erotic novel Anonymous
The Confessions of Saint Augustine Saint Augustine

Sense and Sensibility Jane Austen
The Adventures of Sherlock Holmes Arthur Conan Doyle

Simple Sabotage Field Manual Office of Strategic Services
The Strange Case Of Dr. Jekyll And Mr. Hyde Robert Louis Stevenson

The Iliad Homer
A Pickle For The Knowing Ones Lord Timothy Dexter
The Philippines A Century Hence Jose Rizal

The Prince Nicolo Machiavelli
The Prophet Kahlil Gibran

The Scarlet Letter Nathaniel Hawthorne
Thus Spake Zarathustra Friedrich Nietzsche

The Time Machine H. G. Wells
Treasure Island Robert Louis Stevenson

Second Treatise of Government John Locke
Twenty Thousand Leagues under the Sea Jules Verne

A Tale of Two Cities Charles Dickens
Ulysses James Joyce

Uncle Tom’s Cabin Harriet Beecher Stowe
The Kama Sutra of Vatsyayana Vatsyayana

Walden Henry David Thoreau
War and Peace Leo Tolstoy

The War of the Worlds H. G. Wells
Winnie-the-Pooh A. A. Milne

The Wonderful Wizard of Oz L. Frank Baum
Wuthering Heights Emily Brontë

The Yellow Wallpaper Charlotte Perkins Gilman
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1 #%%
2

3 import nltk
4 import numpy as np
5 import torch
6 import torch.nn as nn
7 from tqdm import tqdm
8 import random
9 import pandas as pd

10 import os
11

12 #%%
13

14 #Reads the books and separates the sentences, while removing unwanted characters
15 def txt_to_list(path, sentencing = nltk.sent_tokenize, wording = nltk.tokenize.

RegexpTokenizer(r’[A-Za-z_]+’).tokenize, lower = False, split=True, maxlen = 0, minlen=0)
:

16 try:
17 with open(path,”r”, errors=”ignore”) as f:
18 text = f.read()
19 except:
20 print(path)
21 raise UnicodeDecodeError
22 if lower:
23 text = text.lower()
24 if split:
25 sentences = []
26 text = text.split(’\n’)
27 for sent in text:
28 sentences += sentencing(sent)
29 else:
30 sentences = sentencing(text)
31 words = []
32 for sent in sentences:
33 ToAdd = wording(sent)
34 if len(ToAdd) >= minlen and (len(ToAdd) <= maxlen or maxlen == 0):
35 words.append(’ ’.join(ToAdd))
36 return words
37

38 #%%
39

40 #Reading all the books, putting all the sentences into a list and removing any unwanted
characters.

41 ArgBooks = {”lower”: True, ”split”: False, ”minlen”: 5, ”maxlen”: 50, ”wording”: nltk.
tokenize.RegexpTokenizer(r”[A-Za-z!,.:?’\”-]+”).tokenize}

42 books = []
43 for book in tqdm(os.listdir(r’Data/Books_Adjusted’)):
44 text = txt_to_list(r”Data/Books_Adjusted/”+book, **ArgBooks)

43
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45 books += text
46 #---------------------------------------------------------------------
47 #Filling all the sentences with the ”@” character and creating the dictionaries that map each

character to a number
48 maxlen = len(max(books, key=len))
49 minlen = len(min(books, key=len))
50 print(f”maxlen: {maxlen}, minlen: {minlen}”)
51 for i in tqdm(range(len(books))):
52 while len(books[i])<maxlen:
53 books[i] += ’@’
54 chars = set(’’.join(books))
55 int2char = dict(enumerate(chars))
56 char2int = {char: ind for ind, char in int2char.items()}
57 print(f”Number of sentences: {len(books)}”)
58 books = np.array(books)
59

60 #%%
61

62 #Splitting the dataset into a training set, a validation set and a test set
63 #right now it would only use the first 10,000 sentences
64 numbers = np.array(range(len(books)))[:10000]
65 random.Random(123).shuffle(numbers)
66 val_numbers, test_numbers, train_numbers = np.split(numbers, [len(numbers)//10, 2*(len(

numbers)//10)])
67

68 train_input_seq = []
69 train_target_seq = []
70 val_input_seq = []
71 val_target_seq = []
72 test_input_seq = []
73 test_target_seq = []
74

75 for i in tqdm(numbers):
76 inp = [char2int[character] for character in books[i][:-1]]
77 tar = [char2int[character] for character in books[i][1:]]
78 if i in test_numbers:
79 test_input_seq.append(inp)
80 test_target_seq.append(tar)
81 elif i in val_numbers:
82 val_input_seq.append(inp)
83 val_target_seq.append(tar)
84 else:
85 train_input_seq.append(inp)
86 train_target_seq.append(tar)
87

88 dict_size = len(char2int)
89 print(f”number of characters: {dict_size}”)
90 #---------------------------------------------------------
91 #Creating a function that gets as input a sequence of numbers and creates a matrix of

standard basis vectors
92 def one_hot_encode(sequence, dict_size, seq_len, batch_size):
93 features = np.zeros((batch_size, seq_len, dict_size), dtype=np.float32)
94 for i in range(batch_size):
95 for u in range(seq_len):
96 features[i, u, sequence[i][u]] = 1
97 return features
98

99 device = torch.device(”cuda”)
100

101 #%%
102

103 #Data has to be given to the model in batches, also prepares the data such that it is ready
to be used by the model.

104 class Seq_Loader():
105 def __init__(self, input_seq, target_seq, batchsize,
106 seed = None, shuffle = False):
107 self.input = input_seq.copy()
108 for k, seq in enumerate(self.input):
109 seq.append(k)
110 self.shuffle = shuffle
111 self.batchsize = batchsize
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112 self.n = 0
113 self.target = target_seq.copy()
114 self.shuffled = self.input.copy()
115 if seed is not None:
116 self.random = random.Random(seed)
117 else:
118 self.random = random
119

120 def __iter__(self):
121 if len(self.shuffled) == 0:
122 self.shuffled = self.input.copy()
123 return self
124

125 def __next__(self):
126 if len(self.shuffled) == 0:
127 self.shuffled = self.input.copy()
128 raise StopIteration
129 if self.input == self.shuffled and self.shuffle:
130 self.random.shuffle(self.shuffled)
131 outinp = []
132 outtarg = []
133 self.n = 0
134 while len(self.shuffled) > 0 and self.n < self.batchsize:
135 inp = self.shuffled.pop()
136 targ = self.target[inp[-1]]
137 outinp.append(inp[:maxlen-1])
138 outtarg.append(targ[:maxlen-1])
139 self.n += 1
140 outinp = one_hot_encode(outinp,dict_size,maxlen-1,len(outinp))
141 return torch.FloatTensor(outinp), torch.IntTensor(outtarg)
142

143 #-----------------------------------------------------------------------
144 #Creating the individual data loaders, where the training data loader is shuffled each time,

but the others are not.
145 DL_train = Seq_Loader(train_input_seq, train_target_seq, 128, shuffle=True,
146 seed = 123)
147 DL_val = Seq_Loader(val_input_seq, val_target_seq, 64, shuffle=False,
148 seed = 123)
149 DL_test = Seq_Loader(test_input_seq, test_target_seq, 64, shuffle=False,
150 seed = 123)
151 for inp, targ in DL_train:
152 print(f”Input shape: {list(inp.shape)}, target shape: {list(targ.shape)}”)
153 break
154

155 #%%
156

157 #Class of the main LSTM model
158 class Model(nn.Module):
159 def __init__(self, input_size, output_size, hidden_dim, n_layers, model = nn.LSTM,
160 optimizer=torch.optim.Adam, crit=”MSE”, lr=0.01, beta = 0.25):
161 super(Model, self).__init__()
162 self.hidden_dim = hidden_dim
163 self.n_layers = n_layers
164 self.lstm = model(input_size, hidden_dim, n_layers, batch_first=True)
165 self.fc = nn.Linear(hidden_dim, output_size)
166 self.optimizer = optimizer(self.parameters(), lr=lr)
167 self.criterion = crit
168 self.beta = beta
169

170 #Forward pass of the model, first going through the lstm layer and then a linear layer (
fc)

171 def forward(self, x):
172 out, hidden = self.lstm(x)
173 out = self.fc(out.contiguous().view(-1, self.hidden_dim))
174 out = out.to(device)
175 return out,hidden
176

177 #Function that given a dataloader, calculates the total loss across the data in the
loader for all implemented metrics.

178 def validate(self, DL_val, no_at):
179 total_loss_mse = 0
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180 total_loss_cel = 0
181 total_loss_bce = 0
182 total_loss_sl1 = 0
183 n = 0
184 for batch, target in DL_val:
185 input_seq = batch.to(device)
186 target_seq = target.to(device)
187 output, hidden = self(input_seq)
188 total_loss_mse += self.BCE(output, batch, target, target_seq, no_at, lossf=nn.

MSELoss()).item()
189 total_loss_cel += self.CEL(output, batch, target, target_seq, no_at).item()
190 total_loss_bce += self.BCE(output, batch, target, target_seq, no_at,lossf=nn.

BCELoss()).item()
191 total_loss_sl1 += self.BCE(output, batch, target, target_seq, no_at,lossf=nn.

SmoothL1Loss(beta=self.beta)).item()
192 n += 1
193 return [total_loss_cel/n, total_loss_mse/n, total_loss_bce/n, total_loss_sl1/n]
194

195 #Function that calculates the loss for the MSE, BCE and SL1 losses. Where first a Softmax
function is used.

196 def BCE(self,output, batch, target, target_seq, no_at, lossf=nn.BCELoss()):
197 output = nn.Softmax(dim=-1)(output)
198 targ = torch.Tensor(one_hot_encode(target, dict_size,maxlen-1,batch.shape[0])).to(

device)
199 output = output.view(batch.shape[0],batch.shape[1],-1)
200 if no_at:
201 woAt = target_seq != char2int[”@”]
202 if (woAt==True).all():
203 loss = lossf(output[woAt], targ[woAt])
204 else:
205 loss1 = lossf(output[woAt], targ[woAt])
206 loss2 = lossf(output[~woAt], targ[~woAt])
207 loss = 0.9*loss1+0.1*loss2
208 else:
209 loss = lossf(output, targ)
210 return loss
211

212 #Function that calculates the loss for the CEL.
213 def CEL(self,output, batch, target, target_seq, no_at):
214 if no_at:
215 woAt = (target_seq.view(-1).long() != char2int[”@”]).to(’cpu’)
216 woAt = torch.BoolTensor(woAt)
217 lossf = nn.CrossEntropyLoss()
218 if (woAt==True).all():
219 loss = lossf(output[woAt], target_seq.view(-1).long()[woAt])
220 else:
221 loss1 = lossf(output[woAt], target_seq.view(-1).long()[woAt])
222 loss2 = lossf(output[~woAt], target_seq.view(-1).long()[~woAt])
223 loss = 0.9*loss1+0.1*loss2
224 else:
225 loss = nn.CrossEntropyLoss()(output, target_seq.view(-1).long())
226 return loss
227

228 #Function that trains the network, given a training data loader and a validation data
loader.

229 def adapt(self, DL_train, DL_val, n_epochs, no_at = False, inb=True):
230 self.train()
231 n = 0
232 Train_Losses = []
233 Val_losses = []
234 for epoch in (range(1, n_epochs + 1)):
235 pr = 25
236 total_mse_loss, total_cel_loss, total_bce_loss, total_sl1_loss = 0, 0, 0, 0
237 for batch, target in DL_train:
238 input_seq = batch.to(device)
239 target_seq = target.to(device)
240 self.optimizer.zero_grad() #First make sure the gradients are zero such that

they can be cacluted.
241 output, hidden = self(input_seq) #Forward pass, uses the above ”forward”

function.
242 #Calculates the loss depending on the chosen criterion.
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243 if self.criterion == ”MSE”:
244 loss = self.BCE(output, batch,target, target_seq, no_at, lossf=nn.MSELoss

())
245 total_mse_loss += loss.item()
246 elif self.criterion == ”CEL”:
247 loss = self.CEL(output, batch,target, target_seq, no_at)
248 total_cel_loss += loss.item()
249 elif self.criterion == ”BCE”:
250 loss = self.BCE(output, batch,target, target_seq, no_at, lossf=nn.BCELoss

())
251 total_bce_loss += loss.item()
252 elif self.criterion == ”SL1”:
253 loss = self.BCE(output, batch,target, target_seq, no_at, lossf=nn.

SmoothL1Loss(beta=self.beta))
254 total_sl1_loss += loss.item()
255 else:
256 print(self.criterion)
257 raise ValueError(”Criterion not yet implemented.”)
258 loss.backward() #Calculates the gradients.
259 self.optimizer.step() #Does the step according to the optimizer, with the

calculated gradients.
260 self.eval() #Makes sure no more gradients are calculated and no steps are

taken
261 #Calculates the losses using the other metrics
262 if self.criterion != ”MSE”:
263 loss = self.BCE(output, batch,target, target_seq, no_at, lossf=nn.MSELoss

())
264 total_mse_loss += loss.item()
265 if self.criterion != ”CEL”:
266 loss = self.CEL(output, batch,target, target_seq, no_at)
267 total_cel_loss += loss.item()
268 if self.criterion != ”BCE”:
269 loss = self.BCE(output, batch,target, target_seq, no_at, lossf=nn.BCELoss

())
270 total_bce_loss += loss.item()
271 if self.criterion != ”SL1”:
272 loss = self.BCE(output, batch,target, target_seq, no_at, lossf=nn.

SmoothL1Loss(beta=self.beta))
273 total_sl1_loss += loss.item()
274 #Prints and saves the losses every quarter of an epoch if enabled by ”inb”

variable
275 if ((n*DL_train.batchsize*100)//len(train_numbers)>=pr and pr < 100) and inb:
276 print(f”sentence: {n*DL_train.batchsize} of {len(train_numbers)}”)
277 Train_Losses.append([total_cel_loss/n,total_mse_loss/n,total_bce_loss/n,

total_sl1_loss/n])
278 print(f’Epoch: {epoch}/{n_epochs}...’, end=’ ’)
279 print(f”T Loss: (CEL): {round(total_cel_loss/n,4)}...”, end=’ ’)
280 print(f”(MSE): {round(total_mse_loss/n,4)}...”, end=’ ’)
281 print(f”(BCE): {round(total_bce_loss/n,4)}...”, end=’ ’)
282 print(f”(SL1): {round(total_sl1_loss/n,4)}...”)
283 #Only saves and prints validation losses every half of an epoch
284 if pr == 50:
285 val_loss = self.validate(DL_val, no_at)
286 Val_losses.append(val_loss)
287 print(f”Validation Loss: {val_loss}...”)
288 pr += 25
289 self.train()
290 n += 1
291

292 self.eval()
293 #Prints and saves losses at the end of an epoch
294 val_loss = self.validate(DL_val, no_at)
295 Train_Losses.append([total_cel_loss/n,total_mse_loss/n,total_bce_loss/n,

total_sl1_loss/n])
296 Val_losses.append(val_loss)
297 print(f’Epoch: {epoch}/{n_epochs}...’, end=’ ’)
298 print(f”T Loss: (CEL): {round(total_cel_loss/n,4)}...”, end=’ ’)
299 print(f”(MSE): {round(total_mse_loss/n,4)}...”, end=’ ’)
300 print(f”(BCE): {round(total_bce_loss/n,4)}...”, end=’ ’)
301 print(f”(SL1): {round(total_sl1_loss/n,4)}...”)
302 print(f”Validation Loss: {val_loss}...”)
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303 self.train()
304 n=0
305 return Train_Losses, Val_losses
306

307 #Two functions that are needed to read the output of the model and finnish an input sentence.
308 def predict(model, character):
309 character = np.array([[char2int[c] for c in character]])
310 character = one_hot_encode(character, dict_size, character.shape[1], 1)
311 character = torch.from_numpy(character)
312 character = character.to(device)
313 out, hidden = model(character)
314 prob = nn.functional.softmax(out[-1], dim=0).data
315 char_ind = torch.max(prob, dim=0)[1].item()
316 return int2char[char_ind], hidden
317

318 def sample(model, out_len, start=’hey’):
319 model.eval()
320 start = start.lower()
321 chars = [ch for ch in start]
322 size = out_len - len(chars)
323 for i in range(size):
324 char, h = predict(model, chars)
325 chars.append(char)
326 return ’’.join(chars)
327

328 #Creating one instance of the model
329 lstm = Model(input_size=dict_size, output_size=dict_size, model=nn.LSTM,
330 hidden_dim=1500, n_layers=1, lr=0.001, crit=”CEL”, beta=0.5)
331 lstm = lstm.to(device)
332 training_loss = []
333 val_loss = []
334

335 #%%
336

337 #Training the model
338 t, v = lstm.adapt(DL_train, DL_val, 50, no_at=True, inb=False)
339 training_loss += t
340 val_loss += v
341

342 #%%
343

344 #Part that makes and saves the data for multiple runs of the training of the model using the
different loss functions.

345 for method in [”CEL”, ”BCE”, ”MSE”, ”SL1”]:
346 tosave = ””
347 for i in tqdm(range(10)):
348 testm = Model(input_size=dict_size, output_size=dict_size, model=nn.LSTM,
349 hidden_dim=1500, n_layers=1, lr=0.001, crit=method, beta=0.5)
350 testm.to(device)
351 t, v = testm.adapt(DL_train, DL_val, 3, no_at=True, inb=False)
352 tdf = pd.DataFrame(t, index=[”ep_1”,”ep_2”,”ep_3”], columns=[”CEL”,”MSE”,”BCE”,”SL1”

])
353 vdf = pd.DataFrame(v, index=[”ep_1”,”ep_2”,”ep_3”], columns=[”CEL”,”MSE”,”BCE”,”SL1”

])
354 if i==0:
355 traindf = tdf.copy()
356 valdf = vdf.copy()
357 else:
358 traindf = traindf.join(tdf,rsuffix=str(i))
359 valdf = valdf.join(vdf,rsuffix=str(i))
360 tosave += sample(testm, 150, start=’how much ’)+”\n”
361 traindf.to_csv(f”Report/{method}_1500_3epoch_10x_test.csv”, sep=’;’)
362 valdf.to_csv(f”Report/{method}_1500_3epoch_10x_val.csv”, sep=’;’)
363 with open(f”Report/{method}_1500_3epoch_10x.txt”, ”w”) as f:
364 f.write(tosave)
365

366 #%%
367

368 #Part that calculates the losses when comparing the different values of beta for the SL1
function.

369 for beta in [0.75,0.5,0.25,0.1]:
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370 tosave = ””
371 for i in tqdm(range(3)):
372 testm = Model(input_size=dict_size, output_size=dict_size, model=nn.LSTM,
373 hidden_dim=1000, n_layers=1, lr=0.001, crit=”SL1”, beta=beta)
374 testm.to(device)
375 t, v = testm.adapt(DL_train, DL_val, 3, no_at=True)
376 tdf = pd.DataFrame(t, index=[”ep_1”,”ep_2”,”ep_3”], columns=[”CEL”,”MSE”,”BCE”,”SL1”

])
377 vdf = pd.DataFrame(v, index=[”ep_1”,”ep_2”,”ep_3”], columns=[”CEL”,”MSE”,”BCE”,”SL1”

])
378 if i==0:
379 traindf = tdf.copy()
380 valdf = vdf.copy()
381 else:
382 traindf = traindf.join(tdf,rsuffix=str(i))
383 valdf = valdf.join(vdf,rsuffix=str(i))
384 tosave += sample(testm, 150, start=’how much ’)+”\n”
385 traindf.to_csv(f”Report/SL1_{str(beta)[2:]}_3epoch_3x_test.csv”, sep=’;’)
386 valdf.to_csv(f”Report/SL1_{str(beta)[2:]}_3epoch_3x_val.csv”, sep=’;’)
387 with open(f”Report/SL1_{str(beta)[2:]}_3epoch_3x.txt”, ”w”) as f:
388 f.write(tosave)
389

390 #%%
391

392 import matplotlib.pyplot as plt
393 #Creates a figure of the training process
394 def plot_losses(training_loss, val_loss, filename, ppe = 1):
395 nt=len(training_loss)+1
396 nv=len(val_loss)+1
397 fig, ax1 = plt.subplots()
398 ax1.plot(np.array(range(1,nt))/ppe, np.array(training_loss).T[0], ’r’)
399 ax1.plot(np.array(range(1,nv))*(nt-1)/(nv-1)/ppe, np.array(val_loss).T[0], ’y’)
400 plt.ylim(0,max(max(np.array(training_loss).T[0]),max(np.array(val_loss).T[0]),4))
401 plt.xlabel(”Epoch”)
402 plt.ylabel(”Loss (CEL)”)
403 plt.xticks(ticks=np.array(range(1,nt,max(nt//10,1)))/ppe)
404 ax2 = ax1.twinx()
405 ax2.plot(np.array(range(1,nt))/ppe, np.array(training_loss).T[3], ’b’)
406 ax2.plot(np.array(range(1,nv))*(nt-1)/(nv-1)/ppe, np.array(val_loss).T[3], ’g’)
407 plt.ylim(0,max(max(np.array(training_loss).T[3]),max(np.array(val_loss).T[3]),0.05))
408 plt.ylabel(”Loss (SL1)”)
409 ax1.legend([”CEL Loss Training”, ”CEL Loss Validation”], loc=2)
410 ax2.legend([”SL1 Loss Training”, ”SL1 Loss Validation”],loc=1)
411 plt.savefig(f”Report/Figures/{filename}.png”, bbox_inches=’tight’)
412

413 #%%
414

415 for method in tqdm([”CEL”, ”BCE”, ”MSE”, ”SL1”]):
416 testm = Model(input_size=dict_size, output_size=dict_size, model=nn.LSTM,
417 hidden_dim=1500, n_layers=1, lr=0.001, crit=method, beta=0.5)
418 testm.to(device)
419 lstm=torch.load(f”Models/Baseline_3epoch_All.pt”)
420 testm.lstm.weight_ih_l0 = lstm.lstm.weight_ih_l0
421 testm.lstm.weight_hh_l0 = lstm.lstm.weight_hh_l0
422 testm.lstm.bias_hh_l0 = lstm.lstm.bias_hh_l0
423 testm.lstm.bias_ih_l0 = lstm.lstm.bias_ih_l0
424 testm.fc.weight = lstm.fc.weight
425 testm.fc.bias = lstm.fc.bias
426 testm.optimizer = torch.optim.Adam(testm.parameters(), lr=0.001)
427 t, v = testm.adapt(DL_train, DL_val, 50, no_at=True, inb=False)
428 traindf = pd.DataFrame(t, columns=[”CEL”,”MSE”,”BCE”,”SL1”])
429 valdf = pd.DataFrame(v, columns=[”CEL”,”MSE”,”BCE”,”SL1”])
430 tosave = sample(testm, 200, start=’how ’)+”\n”
431 tosave += sample(testm, 200, start=’how much ’)+”\n”
432 tosave += sample(testm, 200, start=’how much more ’)+”\n”
433 tosave += sample(testm, 200, start=’a’)+”\n”
434 tosave += sample(testm, 200, start=’when was the last time that ’)
435 traindf.to_csv(f”Report/{method}_1500_50epoch_1x_test_n.csv”, sep=’;’)
436 valdf.to_csv(f”Report/{method}_1500_50epoch_1x_val_n.csv”, sep=’;’)
437 with open(f”Report/{method}_1500_50epoch_1x_n.txt”, ”w”) as f:
438 f.write(tosave)
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439 filename = f”{method}_50epoch_1500_10000_n”
440 plot_losses(t, v, filename)
441 filepath = f”Models/{filename}”
442 torch.save(testm, filepath+”.pt”)
443 with open(filepath+”_c2i.txt”, ”w”) as f:
444 f.write(str(char2int))
445 print(f”Done: {filepath}”)
446

447 #%%
448

449 lstm = Model(input_size=dict_size, output_size=dict_size, model=nn.LSTM,
450 hidden_dim=1500, n_layers=1, lr=0.001, crit=”BCE”, beta=0.5)
451 lstm.to(device)
452

453 filename = ”Baseline_3epoch_All”
454 #Saves the model such that it can later be used again.
455 filepath = f”Models/{filename}”
456 torch.save(lstm, filepath+”.pt”)
457 with open(filepath+”_c2i.txt”, ”w”) as f:
458 f.write(str(char2int))
459 print(f”Done: {filepath}”)
460

461 #%%
462

463 for method in tqdm([”BCE”, ”SL1”]):
464 testm = Model(input_size=dict_size, output_size=dict_size, model=nn.LSTM,
465 hidden_dim=1500, n_layers=1, lr=0.001, crit=method, beta=0.5)
466 lstm=torch.load(f”Models/Baseline_3epoch_All.pt”)
467 testm.to(device)
468 testm.lstm.weight_ih_l0 = lstm.lstm.weight_ih_l0
469 testm.lstm.weight_hh_l0 = lstm.lstm.weight_hh_l0
470 testm.lstm.bias_hh_l0 = lstm.lstm.bias_hh_l0
471 testm.lstm.bias_ih_l0 = lstm.lstm.bias_ih_l0
472 testm.fc.weight = lstm.fc.weight
473 testm.fc.bias = lstm.fc.bias
474 testm.optimizer = torch.optim.Adam(testm.parameters(), lr=0.001)
475 t, v = testm.adapt(DL_train, DL_val, 3, no_at=True, inb=True)
476 traindf = pd.DataFrame(t, columns=[”CEL”,”MSE”,”BCE”,”SL1”])
477 valdf = pd.DataFrame(v, columns=[”CEL”,”MSE”,”BCE”,”SL1”])
478 tosave = sample(testm, 200, start=’how ’)+”\n”
479 tosave += sample(testm, 200, start=’how much ’)+”\n”
480 tosave += sample(testm, 200, start=’how much more ’)+”\n”
481 tosave += sample(testm, 200, start=’a’)+”\n”
482 tosave += sample(testm, 200, start=’when was the last time that ’)
483 traindf.to_csv(f”Report/{method}_1500_3epoch_All_test.csv”, sep=’;’)
484 valdf.to_csv(f”Report/{method}_1500_3epoch_All_val.csv”, sep=’;’)
485 with open(f”Report/{method}_1500_3epoch_All.txt”, ”w”) as f:
486 f.write(tosave)
487 filename = f”{method}_3epoch_1500_All”
488 plot_losses(t, v, filename, ppe = 4)
489 filepath = f”Models/{filename}”
490 torch.save(testm, filepath+”.pt”)
491 with open(filepath+”_c2i.txt”, ”w”) as f:
492 f.write(str(char2int))
493 print(f”Done: {filepath}”)
494

495 #%%
496

497 #Saves the training loss and test loss if needed
498 filename = ”CEL_books_50epoch_1500_10000”
499 with open(f”Models/{filename}.txt”, ’w’) as f:
500 f.write(str(training_loss) + ”\n”+ str(val_loss))
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