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Some food for thought… 

 

• The General Motors EV1 was the first mass-produced electric car by a major car 

manufacturer since 1961. The EV1 was produced between 1996 and 1999 and made 

available through lease-only contracts to residents of Los Angeles, California, and 

Phoenix and Tucson, Arizona. 

• The EV1 had a 3-phase AC induction electric motor with an output power of 102 kW at 

7000 rpm and a torque of 149 Nm at 0-7000 rpm. 

• The 1
st

 Generation EV1s released in 1996 used acid-lead batteries with a capacity of 16.5 

kWh and provided a range of 96 km/charge. 

• The 2nd Generation EV1s released in 1999 used Panasonic acid-lead batteries with 

capacity of 18.7 kWh and provided a range of 161 km/charge. 

• Soon after, the EV1s were fitted with Ni-MH batteries, with a capacity of 26.4 kWh which 

provided a range of 257 km/charge. 

• The decision to produce the EV1 was taken in order to comply with the Zero Emission 

Vehicle (ZEV) Mandate released in 1990 by the California Air Resources Board (CARB), 

which stated that if car manufacturers wanted to continue selling cars in California, a 

certain percentage of their fleet should be made up by zero emission vehicles: 2% by 

1998, 5% by 2001 and 10% by 2003. 

• The ZEV Mandate was litigated in court by an alliance of the major automakers resulting 

in much more lenient requirements. 

• Shortly after, in 2002, GM withdrew all the EV1 vehicles from the road, without giving 

the possessors of the leases the chance to purchase the cars. With the exception of a few 

EV1s which were deactivated and donated to universities or museums, the rest of the 

EV1 vehicles were completely crushed by GM. 

• The reactions of different parties were very diverse: GM claims very high production 

costs and insufficient demand to continue the production of EV1 vehicles. 

Environmentalist groups accuse GM of self-sabotaging the electric car project in order to 

maintain sales of spare parts, and the oil companies for conspiring to keep the electric 

cars off the road. 

 

Source: http://en.wikipedia.org/wiki/General_Motors_EV1 
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Summary  

 

This research performed technology forecasting (TF) of electric vehicles (EV) using data 

envelopment analysis (DEA) with the purpose to determine to what extent TFDEA can be 

applied to predict the technological progress of electric vehicles. 

This study was commissioned by SKF, who is interested in having a useful forecasting 

tool to analyze EV technological advancements and identify whether one of the existing EV 

configurations has potential to become the dominant design in the future. SKF dedicates a 

major part of its resources to supplying the car industry; therefore changes in the automotive 

industry may impose technological changes on their current development projects and state of 

affairs. New market opportunities or threats brought about by the introduction of electric 

vehicles need to be signaled in due time to be able to adjust corporate and research activities 

to better serve the car industry and maintain a strong market position. 

Electric vehicles are available in several configurations: battery electric (BEVs), hybrid 

electric (HEVs), plug-in hybrid (PHEV), and extended-range electric vehicles (EREV). This 

indicates that electric vehicles represent a heterogeneous class of products with different 

technical and performance specifications. Therefore, two aspects need to be accommodated by 

the forecasting technique used to produce electric vehicle forecasts:  

� EV technology is not homogeneous, therefore the forecasting method should allow for 

the simultaneous analysis of different EV configurations in order to measure and predict 

technological change over the whole class of EV technology. 

� EVs are characterized by several performance attributes which may be differently 

valued by different user categories, therefore the forecasting method should allow for 

multi-criteria evaluation of the technology performance and technological progress. 

This research used TFDEA to forecast the technological progress of electric vehicles. The 

reason is that TFDEA appeared to have significant advantages over conventional trend 

extrapolation methods. Unlike conventional techniques, TFDEA can simultaneously evaluate 

multiple technologies using multiple variables. Furthermore, TFDEA is an extreme point method 

which means that it can calculate the individual performance of an observation instead of 

calculating the average performance over the data set. For this reason TFDEA is able to identify 

the state-of-of the art frontier (i.e. the best performing technologies at a given time). In 

addition, TFDEA can determine rates of technological change without assuming non-correlated 

attributes and can account for dynamic trade-offs between performance parameters. 

The description of TFDEA fits the requirements identified for the forecasting method 

needed for EV technology. Remaining concerns about the usefulness of the method were 

related to the amount of data needed for the model to produce reliable results and the 

inherent assumptions of TFDEA listed below: 

1. Technology performance is a linear function of the technology inputs. 



Technology forecasting of electric vehicles using data envelopment analysis 5 

 

 Engineering and Policy Analysis  

2. The inputs of technology remain constant over time. 

3. The rate of technological change remains constant over time. 

The focus of this study was to identify the impact of these assumptions on the accuracy 

and validity of the EV forecasts. 

A technical system analysis of electric vehicles was performed to provide understanding 

of the basic operation mechanisms of EV systems and of the relations between different EV 

design variables. Such information was necessary in order to properly identify and select those 

design parameters that are responsible for the EV performance and which can pose limitations 

to further technological advancements. For both families of vehicles, the output power of the 

propulsion unit, the charge storage capacity of the battery and the vehicle weight were found 

to be the main determinants for EV performance. In this study, the performance of BEVs was 

expressed in terms of acceleration possibilities and driving range, while for HEVs fuel economy, 

CO2 emissions and acceleration were selected as key performance indicators. 

The technical and performance attributes of EVs were used as inputs and outputs 

respectively in three TFDEA models. Two of the models ware applied on BEVs or HEVs only and 

were used to evaluate the individual technological progress of BEVs and HEVs as homogeneous 

products, while the third model was used to determine the rate of technological change over 

the full class of EVs. Each model was used to produce a forecast for yearly EV performance 

levels until 2020. These forecasts were verified for accuracy against a set of existing products. 

Then, it was analyzed how the data availability and the assumptions of the TFDEA model impact 

the reliability and validity of the forecast. 

The results of the analysis are shown below: 

• For the first 11-12 time periods all vehicles in the data set were ranked as SOA, 

therefore no rate of change could be calculated, which reduced significantly the 

possibility to analyze whether there is a visible pattern of constant progress. This was 

caused by the large number of attributes included in the model, combined with a low 

number of products released over a relatively short time window. 

• TFDEA assumes linear relations between technology inputs and technology 

performance. For electric vehicles, this assumption is realistic to a limited extent. The 

results showed that in the case of battery electric vehicles there seems to be a linear 

relation between battery capacity and electric range. 

• It was shown that TFDEA models consistently underestimated the performance 

parameters subjected to regulation. This indicates that the method is very sensitive to 

exogenous drivers of technological change. The EV case study shows that the approach 

to evaluate the performance of a technology as a linear function of its inputs may be an 

oversimplification. 

• The results of the three models show that the TFDEA cannot anticipate the introduction 

of potentially disruptive technologies, such as the PHV and the EREV. This is due to the 

fact that the forecasts produced with TFDEA indentify what may be feasible in the 
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future based only on what exists today. TFDEA assumes that inputs remain constant 

over time and has no mechanism to identify future re-configurations of inputs which 

could lead to better performance. 

The present study has concluded that TFDEA is not a suitable method for analyzing 

technological progress of electric vehicle technologies. This is due to the high sensitivity to 

exogenous drivers and its limited capability to anticipate the introduction of potentially 

disruptive design configurations. These limitations are mostly a result of the assumptions that 

inputs and the rate of change remain constant over time. 

As a general note on TFDEA, it was observed that TFDEA would not be a useful 

forecasting tool for emerging technologies with significant economic and socio-political 

implications. The model could be used for mature technologies which have shown constant 

progress over time, given that no exogenous forces are expected to influence the technological 

change. Furthermore, TFDEA could be used for forecasting emerging technologies whose 

performance can be expressed with very few attributes (at most three times less than the 

number of products available), and whose performance is not targeted by governmental 

regulation.  

With respect to EV forecasting, this study identified that a simple analysis of 

technological progress is not sufficient to determine the evolution of EV technology. Due to the 

economic, environmental and political consequences, it is expected that the adoption of 

electric vehicles will not depend solely on performance, but also on different technological and 

context factors, such as battery technologies, available infrastructures, standardization 

opportunities, consumer acceptance, national interests and governmental support. To better 

understand the development possibilities of EV technology, this study recommends the use of 

technology forecasting and market shift indicators analysis to identify possible innovations in 

EV-supporting technologies, such as battery charging stations and smart grit technologies. 

Furthermore, combined analysis of consumer research and market structure analysis can help 

identify the market forces expected to affect further advancements of electric vehicles.  In 

addition, monitoring government and industry plans can provide information on potential 

standardization opportunities and strategies meant to accelerate the adoption of BEVs. 
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Glossary  

 

Term Definition 

  

• All-electric range 

(AER) 

Distance traveled in electric mode (engine off) on standard driving 

cycles. [41] 

Unit: kilometers (km). 

 

• Battery capacity The amount of electric charge a battery can store. 

Unit: kilowatt hour [kWh]. 

 

• Combined hybrid 

system 

Incorporates features of both parallel and series hybrid systems. 

[38] 

 

• Data envelopment 

analysis (DEA) 

A mathematical programming model that uses a set of non-

parametric, linear programming techniques to estimate the 

relative efficiency of one decision making unit (DMU) in converting 

inputs to outputs, compared to other similar DMUs, by identifying 

a ‘best practice’ frontier. [Error! Reference source not found.] 

 

• Decision making unit 

(DMU) 

The production elements analyzed in a data envelopment 

analysis.[18] 

 

• Drive train structure Determines how the hybrid vehicle combines the power from on 

board rechargeable energy storage systems and fueled power 

source for vehicle propulsion. [39] 

• Driving range The maximum distance that can be driven in electric mode on a 

single battery charge.   

Unit: kilometer per charge (km/charge). 

 

• Electric operating 

mode 

Propulsion and accessories powered by the electric drive and 

onboard electric energy storage (i.e., engine off). [41] 

 

• Electric vehicle (EV) A battery-powered electric vehicle does not contain an internal 

combustion engine (ICE), a drive train and a fuel tank. Instead, EVs 

use an electric motor for propulsion with batteries for electricity 

storage. The batteries provide the motive and auxiliary power 

onboard the vehicle and can be recharged from the electricity grid 

or through break energy recuperation and also from non-grid 

facilities, such as solar panels at recharging centers. [38] 

• Electricity 

consumption 

Electrical energy consumed in electric or hybrid mode. [41] 

Unit: kilowatt hour per 100 kilometers (kWh/100km). 
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• Fuel economy  Distance traveled per unit of fuel consumed on standard drive 

cycles. [41] 

Unit: kilometers per liter (km/L). 

 

• Hybrid electric 

vehicles (HEV) 

A hybrid electric vehicle (HEV) combines a conventional propulsion 

system with a rechargeable energy storage system (RESS) to 

achieve better fuel economy than a conventional vehicle. [39] 

• Hybrid operating 

mode 

Propulsion and accessories powered by the electric drive and/or 

engine, encompassing all power sharing/blending strategies. [41] 

• Input Any resource used by a unit to produce its output.  [18] 

• Output A measure of how effectively a unit has achieved its goals. [18] 

• Parallel hybrid system A system which has both an internal combustion engine (ICE) and 

an electric motor. The fuel tank supplies gasoline to the engine, 

while a set of batteries supply power to an electric motor. Both the 

electric motor and the gas engine can provide propulsion power. 

[39] 

• Plug-in hybrid electric 

vehicles (PHEV) 

A plug-in hybrid electric vehicle retains the entire internal 

combustion engine system, but adds battery capacity to extend the 

operation of the electric motor. Therefore these vehicles combine 

the efficiency advantages of hybridization with the opportunity to 

travel part-time on electricity provided by the grid, instead of only 

relying on the vehicle’s internal recharging system. [38] 

• Recharge time The total time (in hours) to fully charge the electric battery of a 

vehicle. 

 

• Relative efficiency 

(efficiency score) 

The relative efficiency, denoted by  or , is the efficiency score 

allocated to a unit as a result of the data envelopment analysis. 

 

• Series hybrid system A system where the combustion engine drives an electric generator 

instead of directly driving the wheels. The electric generator 

charges the battery and powers the electric motor which drives the 

vehicle. The gasoline engine never powers the car directly. [39] 

 

• State of the art (SOA) ‘The state of best implemented technology as reflected by physical 

and performance characteristics actually achieved during the time 

period in question’. [27] 

 

  

θ φ
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1. Introduction 

 

A world without transport sounds like a real nightmare to the average person of the twenty-

first century. How would one get to work? How would one visit their friends and parents? 

These are valid questions for the modern individual, and ‘walking’ is not an acceptable answer. 

Developments in the transport sector and the rise of the automobile industry have been 

changing society and spatial demographics for about two centuries, changing the way we live, 

the way we think and the way we do business [1]. And now they are on the verge of changing 

the way we fuel our cars. 

Pressing environmental concerns and increased dependency on oil imports have revived 

interest in developing electric vehicles in the 1960s and 1970s. In 1976, following the oil crisis, 

the US Congress enacted the federal ‘Electric and Hybrid Vehicle Research, Development and 

Demonstration Act of 1976’, which was intended to stimulate research and demonstrate the 

feasibility of commercial electric vehicles. Among the performance criteria specified by this act, 

were a driving range of 50 km for electric vehicles and 200 km for hybrid vehicles, less than 75% 

consumption of non-electric energy and acceleration from 0 to 50 km in less than 15 seconds 

[2]. 

Increased manufacturing possibilities due to technological breakthroughs over the past 

two decades, combined with stringent environmental regulations, such as the ‘Zero Emissions 

Vehicles (ZEV) Act’ released by the California Air Resources Board in 1990, brought electric cars 

back on the market in the mid 1990s [3, 4]. In 2011, the Obama administration proposed to 

double the fuel economy standard by 2025, to a new level of 15.1 km/l. The new standard was 

conceived in order to offer an incentive for car manufactures to continue investments in 

development projects for more economical cars [5]. At present, there are a significant number 

of electric vehicles on the market and this number is expected to increase over the coming 

years. Most of the big car manufacturers will have released over the past 15 years battery 

electric and/ or hybrid electric vehicles which are commercially available under different 

purchasing and leasing conditions. However, the overall percentage of electric vehicles on the 

road is still very small [6] due, mostly, to price related factors, performance and consumers’ 

reluctance to embrace the new technology [1]. The attitudes towards electric vehicles are quite 

diverse. Advocates of this emerging technology emphasize the social benefits resulting from the 

improved environmental performance of electric vehicles, while critics focus on the limited 

performance which causes distrust and nuisance to the vehicle owner. 

The widespread adoption of electric vehicles in the future does not only depend on the 

performance of the vehicles, but also on the dynamics of the market. Like any emerging 

technology, electric vehicles are perceived either as a threat or as a new source of 

opportunities by different players in the car industry arena. The EV1 case was presented in the 

beginning of this report to illustrate the complex context surrounding EV technologies. The 

complexity stems from the conflicting interests of the players. Companies in the business of 

spare parts for conventional cars might be affected by the introduction of a new type of vehicle 
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which may cause the demand for their products to drop. Companies in the oil and gas industry, 

such as Shell and BP, could feel directly threatened by the large scale introduction of new 

vehicles which do not drive on gasoline, but on electricity. 

For governments, the widespread of electric vehicles could be an instrument to 

decrease the dependency on oil imports from OPEC members. In addition, pollution reduction 

is another important driver behind the EV introduction, since transportation is the main source 

of pollution, accounting for one third of all energy usage [7]. Also, a large scale diffusion of 

electric vehicles is likely to bring significant changes to the energy sector, for example, through 

potential impacts on the electricity grid [8] and the imminent introduction of a charging 

infrastructure. Such changes need to be signaled and accommodated in due time in order to 

ensure a proper coordination between different sectors of activity. 

In addition, private investors also have an interest to support the widespread of EV 

technology, since it can bring new business opportunities. For example, the fast-food chain 

McDonalds has installed charging spots for EVs in some of their parking lots as part of their 

corporate social responsibility program [9]. Despite the initial investment for the installation of 

the charging stations and the additional electricity cost incurred, McDonalds sees an 

opportunity for additional profit in this strategy. Quick charging the battery of an electric 

vehicle takes roughly 30 minutes for the battery to be charged 80% and allow for a limited 

driving range. Since EV drivers, waiting for their cars to charge, will likely enter the restaurant 

and purchase the McDonalds products, the company estimates to recover its entire cost within 

two to three years [1]. 

The high level of complexity and uncertainty in determining technology roadmaps and 

planning corporate activities requires reliable tools to anticipate and analyze the consequences 

of future technological developments of electric vehicle technologies on the current state of 

the matter. Technological changes and the consequences of the widespread of electric vehicles 

can be identified using technology forecasting (TF). The generic term “technology forecasting” 

refers to the activity of identifying possible relevant technologies for an organization and covers 

all tools used in this activity [10]. TF is used to provide data about future technological 

developments or to gain insight about potential impacts these developments might have. The 

output of the technology forecasting activity “is a quantified prediction of the timing and of the 

character or degree of change of technical parameters and attributes associated with the 

designs, production, and use of devices, materials, and processes, according to a specified 

system of reasoning” [11, pp. 21]. 

From this point of view, TF can be carried out to identify and evaluate potential business 

opportunities brought about by the introduction of electric vehicles.  For example, technology 

forecasting can be used by companies to evaluate market implications of this emerging 

technology and identify threats for the current status quo. Alternatively, TF may be able to 

point towards the need for developments of complementary products, such as batteries, which 

can help improve the performance of electric vehicles, or could identify a technology design 

that is likely to become the new trend for the auto industry in the future.  Furthermore, TF 

results can also be used as input in governmental assessments of EV technology. Governments 
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are interested in such information because it helps determine necessary programs for 

consumer and environmental protection, as well as identify technologies which might need 

governmental support to develop, or might affect other sectors of activity [11]. 

Now that the need for technology forecasting of electric vehicles is clear, it is important 

to identify a forecasting method which is suitable for this technology. In the present research, 

the purpose of performing EV forecasting is to analyze the technological progress of the EV 

technology over time. Technological progress or technological change can be interpreted as the 

total changes in the attributes of a product (e.g. quality, price, performance) over a given 

period of time [12]. Mishra et al. [13] state that “the quality of forecasts would greatly depend 

on proper selection and application of appropriate techniques” [13, pp. 1]. As will be explained 

below, two readily obvious problems need to be accommodated by the forecasting technique 

used to produce the forecast of electric vehicles: 

� EV technology is not homogeneous, therefore the forecasting method used should allow 

for the simultaneous analysis of different EV configurations in order to measure and 

predict technological change over the whole class of EV technology. 

� EVs are characterized by several performance attributes which may be differently 

valued by different user categories. Therefore the forecasting method should allow for 

multi-criteria evaluation of the technology performance and technological progress. 

One of the main challenges for choosing the appropriate technique and producing 

meaningful forecasts is the inherently heterogeneous nature of many products. The 

heterogeneity stems from the multitude of ways products are being produced and used. This 

indicates that in order to measure and predict technological change for heterogeneous 

products, the method chosen should be able to accommodate the diversity of product 

characteristics [14]. The existence of several EV configurations shows that EVs are not 

homogeneous products. Electric vehicles can be classified as battery electric vehicles (BEVs) and 

hybrid electric vehicles (HEVs). The difference between the two ‘families’ of EVs is given by their 

drivetrain architecture. BEVs use an electric motor (EM) and a battery to propel the vehicle, 

while HEVs use both a conventional internal combustion engine (ICE) together with an EM and 

a battery. HEVs can be further classified as strong and mild hybrids, based on their degree of 

hybridization. The degree of hybridization is given by the extent to which the electric motor is 

used to propel the vehicle. A complete overview of available EV configurations and their 

particularities is provided in Appendix A. 

All products are characterized by performance parameters and technical parameters. 

Performance parameters are those characteristics of the product which provide utility to the 

end user, while technical parameters are the characteristics which enable the product to deliver 

its performance to the user [15].  Not all the performance attributes are shared by the BEV and 

HEV families. For example, one of the main performance parameters for BEVs is the driving 

range. BEVs have a limited driving range due to their reliance on battery to power the EM, 

which is not the case for HEVs. For HEVs, one of the key performance parameters is the CO2 

tailpipe emissions. This parameter is not shared by the BEV family, because BEVs are considered 

to release zero emissions while driving, since they run on electricity – the zero tailpipe 
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emissions, however, exclude the CO2 produced as a result of the electricity generation process. 

This indicates the need to use a method which allows for simultaneous analysis of the different 

EV families, despite their differences in technical and performance parameters, in order to 

determine the technological progress over the full class of EV technology. 

Furthermore, the differences in technical parameters (i.e. differences in the drivetrain 

structure) for each type of EV will lead to different performance parameters. In addition, users 

are also heterogeneous in their preferences for certain performance parameters, which means 

that different product attributes will be valued differently by different users [16]. Some vehicles 

offer better fuel efficiency, which makes them more economical; others offer more horsepower 

at the expense of a higher fuel consumption, which is more appreciated by fast car enthusiasts; 

others offer a silent drive and zero tailpipe emissions, which is important for environmentally-

aware drivers. Each characteristic appeals to certain user categories, making it difficult to focus 

the EV technology forecast on a single parameter. This indicates that the forecasting method 

used should allow for a multi-criteria approach to provide a realistic evaluation of technological 

progress for EV technologies. 

Inman [17] performs an extensive review of available tools for technology forecasting. 

Techniques which rely on historical data to determine past technological patterns and 

anticipate future states of technology, such as trend extrapolation, are recognized to be very 

useful. Yet these methods appear to be too rigid to fit the purpose of the EV forecast for this 

research. 

First of all, such methods address an average of available technologies instead of 

focusing on the best performers. This means that the effect of outliers is averaged out over the 

data set, when it is actually the information about outliers which is most interesting for 

companies [17]. Since most companies aim to develop products which perform better than 

those of competitors, an analysis of average performance may not necessarily give them a 

complete picture of what they are competing against. 

Secondly, extrapolative methods require predetermined weights for technology 

attributes and are too rigid to accommodate dynamic trade-offs between performance 

parameters.[17] As previously discussed, different EV attributes are not rated equally by all 

users, which makes it very hard to accurately assign weights to each attribute. Also, certain 

performance levels may often be too expensive to achieve. Companies will therefore need to 

make trade-offs between different performance parameters or between cost and performance 

in order to address a certain market segment. 

Furthermore, extrapolative methods require that the performance variables used in the 

analysis be non-correlated, which is not always realistic. At the same time, these methods can 

analyze only a single aggregated output variable which limits the possibility to better evaluate 

future technology capabilities [17]. As was discussed earlier, a single-criterion analysis would 

not suffice in the case of electrical vehicles since EV performance cannot be described through 

a single parameter; and even if it could be, focusing on a single parameter would not account 

for the multiple development possibilities which can lead to technological progress. 
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Inman (2004) suggests that data envelopment analysis (DEA) is an alternative method 

which eliminates the described limitations of extrapolating techniques [17]. DEA is a 

mathematical method which allows for the evaluation of different organizations or products in 

terms of how efficient they are in producing a certain level of output by using a particular level 

of input. One specific advantage of the DEA method is that it can perform this evaluation using 

multiple input and output variables, without requiring a predetermined mathematical 

relationship between the variables. The ratio of the total weighed output to the total weighed 

input produces a single measure for productivity, which is called relative efficiency or efficiency 

score. In DEA, the organizations or products under analysis are called “decision making units” 

(DMUs). Each DMU is free to choose any combination of inputs and outputs in order to 

maximize its relative efficiency, which makes DEA capable of embedding dynamic trade-offs in 

its construction. Furthermore, DEA is an extreme point method, which means that it can 

analyze the products individually instead of providing data set averages. This allows for the 

possibility to evaluate the performance of outliers and identify the best performers. The best 

performers delineate the efficiency frontier, which sets the benchmark for the 

underperforming DMUs. The main limitation of DEA for technology forecasting is that it can 

only evaluate products at a given point in time, but it cannot provide information about 

changes in performance over several periods.[17- 20] 

To cope with the limitations of extrapolating techniques and of the classical DEA 

method, scholars from Portland State University [17] developed a new forecasting method: 

technology forecasting using data envelopment analysis (TFDEA). TFDEA builds upon the 

assumption that the performance of a product or device (i.e. the output) is a linear function of 

the performance of its internal components (i.e. input). In this way past data can be used to 

calculate the rate of change which will then be used to forecast new technology frontiers. 

Unlike conventional techniques, TFDEA can simultaneously evaluate multiple technologies using 

multiple variables and identify the state-of-of the art frontier. The state-of-the-art (SOA) 

concept is defined by Dodson [21] as “the highest degree of technical accomplishment that 

could be achieved at a given time” [21, pp. 393]. TFDEA uses the efficiency frontier found with 

DEA to determine the SOA technology frontier, which contains the recognized superior 

technologies at different points in time. Next, the annual rate of change (RoC) in benchmarks is 

determined. The rate of change is then used to forecast future performance trendsetters [22]. 

The weaknesses of the method are the sensitivity to disruptive technologies and its reliance on 

the assumption of a constant rate of technological change (ROC) [10, 17, 22]. 

Using DEA makes TFDEA a more flexible method which can determine rates of 

technological change without assuming non-correlated attributes and static trade-offs. This 

corresponds to the requirements identified for the forecasting method needed for EV 

technology. Due to the advantages of TFDEA over other conventional methods, this research 

will use TFDEA as a method to determine and analyze technological progress of electric vehicles 

based on the past and current characteristics of EV technology. A broad overview of the TFDEA 

method will be provided in section 2.4 of this report. Remaining concerns are related to the 

inherent assumptions of the method of constant ROC and linear relations between inputs and 

outputs of technology. It has to be determined if these assumptions are valid in the case of 
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electric vehicles, or if they can lead to errors in the forecast. These concerns will be addressed 

in this study. 

 

1.1 Problem statement  

 

This project was commissioned by SKF with the request to investigate the predictive capabilities 

of technology forecasting using data envelopment analysis (TFDEA) with respect to electric 

vehicle technologies. The evolution of the EV technologies is of great interest for SKF, since it 

can have a direct impact on the research and development focus of the company, and 

consequently on their sales and budget allocation. 

SKF is a global company operating on five technological platforms: Bearings and units, 

Seals, Mechatronics, Services, and Lubrication Systems. According to SKF’s Annual Report [23] 

for 2011, almost one third (29%) of SKF’s sales in 2011 came from the automobile industry. 

These sales were distributed over customer segments as follows:  

• Cars and light trucks: 12% 

• Vehicle service market: 10% 

• Trucks: 4% 

• Two-wheelers and electric: 3% 

These numbers show that a large proportion of the company sales come from sectors 

concerned with the manufacturing and maintenance of conventional vehicles, and only a very 

small percentage (3%) is generated by the electric vehicle sector. This is mostly due to the 

architecture of electric vehicles. While hybrid electric vehicles maintain most of the 

architecture of a conventional vehicle, battery electric vehicles contain very few moving parts, 

compared to conventional vehicles. Therefore the demand for SKF products may be limited in 

the EV market. 

A very fast growth in the number of electric vehicles on the road and a decrease in the 

number of conventional vehicles could have technological consequences for SKF and similar 

companies which supply the conventional automobile industry. For this reason, it is important 

for the company to anticipate well in advance the technological progress of EV technologies 

and their diffusion on the market in order to develop early strategies that ensure the stability 

and prosperity of the company. Such strategies could, for example, target a change of R&D 

focus and budget allocation from existing projects for the cars and light trucks sector, towards 

applications that could better serve the electric sector, or towards other sectors with a lower 

level of uncertainty with respect to future developments. 

The complex technical, social, economic and political background surrounding EV 

technologies makes it very difficult to anticipate the course the vehicle market will take in the 

future. It would therefore be useful to have a robust and easy to use forecasting tool which 

could help predict reliably technological developments of electric vehicles. 
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Technology forecasting using data envelopment analysis (TFDEA) appears to be a robust 

tool which can be used to measure the rate of technology change over time. Yet there are some 

open questions with respect to how useful the TFDEA method can be in analyzing technological 

progress of EVs. These questions stem mostly from the inherent assumptions of the method, 

such as constant rate of change and linear relations between technology inputs and outputs. 

From the available TFDEA literature and without further analysis of the EV technology system it 

is not clear if these assumptions are realistic in the case of electric vehicles. Additionally, TFDEA 

is a data intensive method, meaning that it requires a large amount of historical data. Therefore 

it has to be identified whether there is sufficient EV data available to produce meaningful EV 

performance forecasts using TFDEA. 

 

1.2 Research gaps  

 

The TFDEA method has been developed as a technology forecasting tool in 2001 by scholars at 

Portland State University in the United States and is claimed to cope with many of the 

shortcomings of popular forecasting tools such as regression analysis.[22] Since it was first 

introduced, there have been a few applications of the TFDEA algorithm with successful results. 

• In 2001, Anderson et al. [24] were able to identify with the use of TFDEA that the open 

source software could potentially act as a disruptive technology for the traditional 

database systems. 

• In 2002, Anderson et al. [25] obtained better forecasts for the introduction of integrated 

circuits with TFDEA than previously obtained with Moore’s Law. 

• In 2006, Inman et al. [22] performed a technology forecast on US jet fighter 

introductions from 1944 to 1982 using TFDEA A similar study had been done by Martino 

[26] in 1993, using regression analysis. The authors’ conclusion was that TFDEA 

produced more accurate results for forecasting new product introductions, compared to 

regression analysis. One reason for that is the fact that TFDEA is built on data 

envelopment analysis (DEA), an econometric technique which does not share the 

problem regression has with multicollinearity. Therefore TFDEA makes it possible to 

analyze simultaneously more input and output variables compared to regression 

analysis [22]. 

• In 2008, Anderson et al. [27] made a step further in their research and used the method 

to successfully forecast the introduction of wireless communication systems. This was 

the first time when the method was used to include not only product innovation, but 

the service innovation perspective as well. 

• In 2010, Lamb et al. [28] used the TFDEA algorithm to forecast introductions of 

commercial airplanes. The authors showed that TFDEA is a robust tool which can help 

overcome difficulties in the R&D decision making process such as external/ competitor 
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technology monitoring; necessary methods to help determine milestones reliably; 

necessary trend analysis/ forecasting. 

Although the TFDEA method has already been applied to a few technologies, the 

literature on the topic is scarce and the application base of the method is rather limited. One 

thing to notice is that so far, the method has been applied on technology cases which had 

reached a certain level of maturity, but there is no indication in the TFDEA literature of whether 

the usefulness of the method and the reliability of the results produced with it depend on the 

maturity stage of the technology under study. 

Furthermore, the available literature gives little indication of requirements for or 

amount of data to be used for the forecasts.  The data used in the studies performed so far was 

gathered over large time windows (a few decades) and the technologies used as case studies, 

except for the wireless technology, were already rather mature at the point of the analysis. 

Therefore it is not clear from the previous research whether the method is suitable only for 

well-defined, conventional technologies, or if it can also be used for new, emerging 

technologies for which only limited data is available. 

Moreover, the forecasts were performed using only technical inputs and outputs 

endogenous to the technology under study and very few validation tests have been performed 

to determine the capabilities of the method to foresee the impact of exogenous drivers, such as 

regulation or unexpected technical developments in sub-component technologies, substitute 

and complementary products, on technological progress. 

 

1.3 Research objective  

 

At present, there are several electric vehicle structures available on the market but it is not 

readily obvious from the existing vehicles or from announced plans of the manufacturers if 

there is a tendency for one of these structures to become dominant. For example, Toyota 

seems to be one of the market leaders who focus on plug-in vehicles mostly. Honda has been 

working on improving the integrated motor assist (IMA) drivetrain structure. Companies such as 

Renault announced intentions to only develop battery electric vehicles. And then there are 

companies such as GM, who have explored and released both hybrid and battery electric 

vehicles. 

This research project aims to investigate whether technology forecasting using data 

envelopment analysis is a suitable method to determine which of the current electric vehicle 

technologies has potential to become dominant in the future. For the method to be suitable in 

this situation, the EV data availability should fulfill the requirements of the TFDEA method. In 

addition, the inherent assumptions of TFDEA should be compatible with the design principles of 

electric vehicle technologies. Since there is no indication in the TFDEA literature whether the 

method is more suitable for particular technologies than for others, the only way to determine 

the applicability of TFDEA in the case of electric vehicle technologies is to apply the method as 

was developed by Inman et al. (2004) and analyze the results. 
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Therefore, technology forecasting using data analysis will be carried out on electric 

vehicles with the scope to analyzed how the EV data availability and the assumptions of the 

TFDEA model impact the results of the EV forecast. In addition, it will be verified, based on the 

results of the forecast, whether the TFDEA assumptions can be held valid in the case of electric 

vehicles. 

 

1.4 Research questions 

 

Following from the research objective, the main question for this research project is: 

Q1. To what extent can the TFDEA method be used to identify a potentially dominant EV design 

in the future? 

Before attempting to answer this question, it has to first be determined whether the 

method is applicable for the EV technology case. Therefore the following question and its sub-

questions need to be answered: 

Q2. Can the method be implemented given the current state of EV technology? 

 

� What are the consequences of data availability for the application of the method? 

 

� Is the DEA assumption that technology outputs are a linear function of technology 

inputs supported by vehicle design theory? 

 

� What are the implications of assuming a constant rate of change on the accuracy 

and validity of the forecasts? 

 

� Can the method anticipate the consequences of external factors such as innovation 

in substitute and subcomponent technologies, or regulation of performance 

parameters, such as fuel economy and CO2 emissions, on the technological change 

of EV technology? 

 

1.5 Contribution of the research  

 

This analysis adds to the limited TFDEA literature by further applying the method to the EV 

technology. The EV case study served to identify further limitations of TFDEA method caused by 

its inherent assumptions and reliance on a large amount of data. 

These limitations are presented below: 
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� TFDEA is very data intensive, which constitutes a problem for emerging 

technologies for which only a few products have been introduced. 

� The number of variables which can be included in the analysis is limited by the 

number of products in the data set, therefore the fewer the products available, 

the fewer the number of variables which can be used. This is a disadvantage for 

complex technologies characterized by many attributes. 

� The DEA model does not require predetermined mathematical relations 

between inputs and outputs or pre-assigned weights for each variable. Yet, the 

quality of the forecast depends mostly on the selection of variables used. This 

means that the forecaster should have sufficient knowledge and understanding 

of the technology under study and its operation mechanisms to be able to select 

the right set of variables. 

� Even in situations when the technology is more mature and sufficient data exists, 

product data confidentiality can impact the quality of the forecast. TFDEA 

requires information on the inputs of a technology, but much of the 

manufacturing related information which could be used to determine 

technological progress, such as manufacturing costs, for example, will not be 

disclosed by companies. Therefore forecasters may find themselves constrained 

to a limited choice of variables for which data can be acquired. This limits the 

possibility to investigate the full range of opportunities for technological 

advancement. 

� TFDEA is very sensitive to exogenous drivers of technological change. The EV 

case study shows that the approach to evaluate the performance of a technology 

as a linear function of its inputs is an oversimplification which cannot be used for 

complex technologies with economic and socio-political implications. 

� Using a constant ROC for forecasting is not realistic, because innovation does not 

occur at a regular pace. Such an assumption can be valid in situations when 

historical data is able to identify that the technological progress remained 

constant over the years and no external forces are expected to cause 

disruptions. If this is not the case, the forecast will be biased by the reference 

data set used to produce it. Using as reference data from a year with a relatively 

low rate of change can lead to underestimations of future performance, as could 

be seen from the results of the HEV model. Alternatively, choosing a reference 

year with a large rate of change, may predict non-sustainable improvements in 

product performance. 

� The model could, provide a simple and easy to use forecasting tool for 

established technologies which have shown constant progress over time, given 

that no exogenous forces are expected to influence the technological change. 
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� TFDEA could be used for forecasting simple technologies whose performance 

can be expressed with very few attributes, and whose performance is not 

targeted by governmental regulation. 

In addition, this research has a practical contribution by analyzing the applicability of 

TFDEA with respect to the SKF interest. The present study has indentified that TFDEA is not a 

suitable method for analyzing technological progress of electric vehicle technologies due to the 

high sensitivity to exogenous drivers and its limited capability to anticipate the introduction of 

potentially disruptive design configurations. It was identified that a simple analysis of 

technological progress based on the current state-of-the-art technology would not be able to 

provide a realistic indication of whether a certain EV configuration could become the dominant 

design in the auto industry. There seems to be a recognized need for introducing electric 

vehicles on a large scale, for reasons of national security, oil resource depletion, air quality 

concerns etc., which means that it can be expected that technological progress of EVs will be 

accelerated by external factors. Therefore additional research on developments and 

innovations in supporting technologies (e.g. battery technology, battery charging stations, 

smart grid technologies), is required in order to get a clearer picture if and when there will be a 

transition towards a certain EV configuration. 

A by-product of this project is an extensive data list of available electric vehicles and 

their technical specifications, which can be used by SKF for internal purposes. 

 

1.6 Structure of the report  

 

Section 2 provides a literature review on technology forecasting and the TFDEA method. This 

section will explain how technology forecasting can improve the management of technology 

and what tools there are available to perform technology forecasting. The limitations of 

conventional forecasting tools are summarized and a detailed description of TFDEA is provided. 

Section 3 will carry out an EV technology system analysis to provide understanding of 

the basic principles of the electric vehicle technology. This is necessary for identifying the main 

EV attributes. This section will use the general concept that technologies are modular 

architectures created from combinations of existing technologies [29], to describe the electric 

vehicle as a modular system and understand its mechanisms. The section will conclude with the 

selection of DEA variables. To avoid confusion, it should be noted that the focus in this section 

is to determine those factors that can influence the technical performance of an electric 

vehicle. Factors determining the successful market penetration, such as consumer preferences 

and policy instruments, will not be addressed here. 

Section 4 describes the data used for this analysis. The two types of EVs are structurally 

different and are characterized by different performance parameters. For these two types of 

products, a data set was collected, containing respectively all the BEVs and HEVs released and 

commercialized on a large scale between 1997 and June 2012. The data set comprises of 106 
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electric vehicles, out of which 64 are HEVs and 42 are BEVs. The information collected for each 

product is described in section 4.1. The complete data set is provided in Appendix C. 

Section 5 describes the steps taken to apply the TFDEA method, as was developed by 

Anderson et al. [24] and summarized in section 2, to the EV case study. Once the inputs and 

outputs for the DEA model were selected and the data collected, the TFDEA method could be 

applied to identify the state-of-the art frontier and evaluate the technological progress of 

electric vehicle technologies. 

Section 6 presents the results and discussion of the TFDEA carried out on EV 

technologies. The results are forecasts of future frontiers produced with the three models 

described in section 5. The forecasts were verified for accuracy against a set of existing 

products. Then, it was analyzed how the data availability and the assumptions of the TFDEA 

model impact the results of the forecast. In addition, it was verified, based on the results of the 

forecast, whether the TFDEA assumptions can be held valid in the case of electric vehicles. The 

discussion of the results and potential threats to validity conclude this section. 

Conclusions and recommendations are presented in section 7. 
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2. Literature review 

 

The high level of complexity and uncertainty in determining technology roadmaps poses 

challenges for managers of technology. Technology forecasting is an activity which can help the 

decision making and planning processes by providing estimates of future performance 

parameters of a technology. Several tools are currently available to perform technology 

forecasting. This section will begin by describing technology forecasting and clarifying its 

purpose. Next, the limitations of conventional forecasting tools are summarized. Then the focus 

will narrow down to introduce TFDEA as a new, superior method for technology forecasting and 

describe its algorithm. 

 

2.1 Technology forecasting for better management of technology 

 

In 1969 Martino [30] was writing for the first issue of the “Technology Forecasting” journal that 

the “advance of technology is outstripping society’s ability to control it” [30, pp.73]. The rapid 

changes in the technology arena have transformed the structure of market competition by 

causing an increase in investment opportunities to occur. Over the past century, technology has 

become one of the main instruments which add value to a business, hence proper management 

and planning is required to create a competitive advantage for companies. Needless to say, 

integrating emerging technologies into existing investment plans is not a trivial task [31]. 

Development teams are responsible for planning activities and milestones for deliveries 

of future products and services. Planning a new high-technology business requires a great deal 

of technical and commercial decisions to be taken prior to the launch of the new product [32]. 

Strategic decisions made by technology managers with respect to new product introductions 

are often hindered or influenced by technical, economic, political and environmental drivers. 

Lane et al. [28] made an inventory of target-setting difficulties for R&D departments based on 

literature review. The following factors were enumerated as main obstacles in the R&D decision 

making process: external/ competitor technology monitoring; necessary methods to help 

determine milestones reliably; necessary trend analysis/ forecasting; vision driven/ need to 

depart from neutrality; difficulties in choosing the pursuit of incremental or breakthrough 

technology development; necessary methods to identify sub-technology components and their 

relationships; alternatives to reduce costly R&D operations. Therefore proper management of 

technology requires understanding of the technology capabilities, as well as of the conditions 

which need to be created to accommodate technological developments [4, 11-15]. 

Technology forecasting (TF) emerged in the 1960’s in an effort to anticipate research 

and development activities important for the U.S. Air Force and has become over the years a 

common practice in trying to anticipate relevant technological breakthroughs, as well as to 

determine the necessary course of action to achieve a particular state of technology within a 

given period of time [11]. TF provides the means to identify characteristics such as needed 

performance and timing of new products which help ensure a competitive position for the firm. 
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Such data helps long-term planning by giving an indication of necessary resources such as 

facilities and human capital. 

TF enables the understanding of different technological contexts, which means that it 

can help anticipate technological changes and their potential consequences. From this point of 

view, TF can be seen as an activity to identify and evaluate potential business opportunities or 

implications of technology for private or public actors.  For example, technology forecasting 

may be able to point towards the need for a scientific breakthrough or could identify a 

technology that is likely to become of great technical importance.  Alternatively, TF can be used 

to evaluate market implications of new products and processes and identify threats for the 

current state of business. TF results can also be used as input in governmental assessments of 

technology. Governments are interested in such information because it helps determine 

necessary programs for consumer and environmental protection, as well as identify 

technologies which might need governmental support to develop [11, 12, 21]. 

 

2.2 Technometrics for technological forecasting 

 

Creating a meaningful forecast requires extensive knowledge of the technology itself, as 

well as a good understanding of the technological innovation process. It is important to 

understand how technologies emerge and develop and more importantly, which are the forces 

that shape this evolution process.  For this reason, it is necessary to have reliable tools to 

measure and monitor technological progress. The recognized need to measure technology and 

its implications [12] led to the emergence of a new discipline, called technometrics. 

Technometrics was initiated in the 1950’s by scholars of the RAND Corporation [12] with 

the purpose to develop a framework to measure technological advantages between different 

nations. Technometrics uses interdisciplinary knowledge from mathematics, economics, 

statistics and engineering to develop quantitative methods for evaluating technological 

characteristics. Some technometric methods use the system approach to represent technology 

[12]. Coccia [12] cites Sahal (1981) to indicate that this is the most suitable approach to analyze 

technology. Evaluating technology as a system provides understanding of the technology “in 

terms of certain measurable, functional characteristics”, [12, pp. 946] and provides the means 

to measure technological change, as opposed, for example, to the neo-classical approach, 

which treats technology as a production function.  

Technology forecasting is one area of application of technometric methods, next to 

operations research or government planning for national research. The object of technometrics 

is to provide mathematical tools to evaluate measures of technological performance such as: 

• Productivity (i.e. maximizing output with minimum resources) [12] 

• Quality (i.e. the utility provided by the essential attributes of a product) [12] 

• Technological change or technological progress (i.e. the change in the quality of 

a product which occurred over a given period of time) [15] 
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• State-of-the-art technology (i.e. the best available technology at a given point in 

time) [21] 

• State-of-the-art surface (i.e. an n-dimensional space containing all the 

combinations of relevant attributes of a product, with the remark that while 

moving along the surface, different design parameters are traded-off for others, 

without decreasing the efficiency level of the product) [21] 

• Technological advancement (i.e. a shift in the SOA surface which indicates that 

at least one attribute of the product has been improved, without decreasing 

any of the others) [12] 

After the functional characteristics of the technology have been identified, most 

technometric models use statistical methods to determine the rate of technological change 

which is the speed with which technological progress occurs. 

 

2.3 Traditional technology forecasting tools  

 

Several technometric techniques have been developed to facilitate the forecasting 

activities. Some of them rely on complex mathematics, others on expert judgment. These 

techniques are built upon one or more of these three assumptions [11]. 

• Technology evolves in an orderly pattern which can be identified through analysis of 

historical data and extrapolated to the future. 

• Technology appears as a response to needs, opportunities and availability of resources, 

therefore technological progress can be anticipated through proper identification of the 

drivers and stoppers of the technology under study. 

• New technologies stem from existing technology therefore technology forecasting can 

be achieved through analysis of technological innovation. 

There is significant debate in the literature over the superiority of one technique over 

another [10]. Each method is more suitable in particular situations, therefore the TF method 

employed should be chosen based on the context of the technology, the stage the technology is 

in and the data availability [11, 13]. Common TF methods can be grouped into three categories:  

• Subjective assessment methods of TF: committees of executive opinion, formal surveys 

and market-based assessments etc. 

• Exploratory methods of TF: Delphi method, scenario analysis, morphological analysis, 

curve fitting and envelopes, game theory, trend extrapolation etc. 

• Normative approaches to TF: relevance trees, system dynamics etc. 

Conventional TF methods are described extensively in the literature and will not be 

repeated here. For a detailed overview, the reader is referred to [11, 13,17, 18]. These methods 
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can provide valuable insight into the evolution of technology trends, however they have 

significant limitations. 

� Qualitative forecasts based on consultation of experts always carry the risk to be 

influenced by the individual bias of the participants. First of all, it is often difficult for the 

study organizer to identify the appropriate experts to consult. In the case of the Delphi 

method, the number of rounds and the quality of experts can affect the accuracy and 

reliability of the results. In addition, the technique is very time consuming and results 

may often be difficult to interpret since they are based on a compilation of expert 

opinions which can sometimes be contradictory.[11, 13] 

� Econometric (parametric) methods tend to focus on the process measures and often 

ignore outcome measures. In addition, they require quantification of output and input 

measures and explicit formulation of input-output relationships. In practice this may not 

always be a suitable approach due to the complexity of input-output relationships which 

cannot easily be translated into mathematical formulas.[18] 

� Regression models are quite robust, but they do not allow for multiple inputs and 

outputs and the analysis is restricted to a single dependent variable. Also, the result of 

regression analysis is an average line across all observations and such methods, based 

on averaging performance over many observations, do not give an indication of the best 

available technology.[17] 

� Trend extrapolation requires appropriate understanding of the forces that have caused 

the past trend. Forces impacting the evolution of technology may change over time; 

therefore the forecaster is expected to have a good grasp of both past and future 

drivers of progress when analyzing the trends. At the same time, it is recognized that 

trend extrapolation loses its validity over time; hence it may not be suitable for long-

term forecasting.[11] 

� Conventional extrapolative methods generally provide one estimate for model success, 

but they do not provide any feedback for improvement. On the other hand, 

econometric approaches offer a better predictor for future performance at the 

collective unit level if the assumed inefficiencies cannot be eliminated.[18] 

� Conventional extrapolative methods fail to account for the possibility of changing 

preferences and dynamic trade-off decisions.  In addition, some of the used 

methodologies require that the technology attributes be independent, which is often 

difficult to achieve in practice due to insufficient understanding of a given 

technology.[17, 33] 

� DEA is a non-parametric method which does not require mathematical specification of 

functional relations between input and output. It has the capability to analyze multiple 

inputs and outputs simultaneously and to produce an efficiency frontier that contains 

the best performers. The main limitation of DEA for technology forecasting is that it can 

only evaluate products at a given point in time, but it cannot provide information about 

changes in performance over several periods.[17- 20] 
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Unlike conventional techniques which make use of regression analysis, TFDEA applies a 

non-parametric method, which means that it does not assume that the data follows a certain 

probability distribution. This leads to one of the main differences [18] compared to 

conventional forecasting tools based on stochastic methods, namely the tolerance to the noise 

in the data set. Stochastic methods are less sensitive to noise generated by measurement 

errors, since they are able to average it over the data set, or filter it out during the data 

interpretation. The non-parametric approach, on the other hand, analyzes performance only 

based on a certain population, and evaluates the individual efficiency of each observation, 

relative to the other observations in the data set. Therefore measurement errors will not be 

accounted for, but they will be evaluated as part of the performance of an observation, making 

TFDEA result more likely to be affected by measurement noise.  

 

2.4 Technology forecasting using data envelopment analysis 

 

In order to cope with the shortcomings of traditional forecasting methods described in the 

previous section, Anderson et al. [24] developed technology forecasting using data 

envelopment analysis (TFDEA) as a new method for technology forecasting. As opposed to 

conventional techniques, TFDEA focuses on the best technology available. TFDEA is able to 

forecast and estimate the availability of future characteristics of a particular technology and can 

simultaneously evaluate multiple technologies. The weakest points of the method are the 

sensitivity to disruptive technologies (i.e. technologies which produce a change in the behavior 

of users, or attain levels of superior performance using innovative techniques [34]) and its 

reliance on the assumption of a constant rate of technological change.[10, 17, 22] 

TFDEA makes use of the data envelopment analysis (DEA) technique, which gives it the 

capability to analyze multiple inputs and outputs simultaneously and produces an efficiency 

frontier that contains the best performers [19]. 

The remaining concerns arise from the sensitivity of the TFDEA method with respect to 

disruptive technologies and the assumption of a constant rate of change obtained from 

historical data. This is not always consistent with the nature of technological change and may 

lead to errors in long-term forecasting.[10, 17,22] 

 

2.4.1 Data envelopment analysis (DEA) 

 

Data envelopment analysis (DEA) is recognized in the literature as a powerful method, more 

suitable for performance measurement activities than traditional, econometric methods such 

as regression analysis and simple ratio analysis.[17- 20, 22, 25, 33] 

Data envelopment analysis (DEA) is a mathematical method using linear programming 

techniques to convert inputs to outputs with the purpose of evaluating the performance of 
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comparable organizations or products [18]. One specific advantage of the DEA method is that it 

can perform this evaluation using multiple input and output variables, without requiring a 

predetermined mathematical relationship between inputs and outputs. In DEA, the 

organizations which are evaluated are called “decision making units” (DMUs).[17- 20] 

Linear programming is a mathematical programming technique which helps create and 

solve optimization problems with linear objective functions and linear constraints.  

“Mathematical programming (MP) is a field of management science that finds the optimal or 

most efficient way of using limited resources to achieve the objectives of an individual or a 

business. For this reason, mathematical programming is often referred to as optimization.”[35, 

pp. 17] 

The goal of the optimization problem is to determine the values of the decision 

variables which maximize or minimize the values of the objective function without violating any 

of the constraints. The objective function identifies a function of the decision variable which 

needs to be either maximized or minimized by the decision maker. The mathematical 

representation of an objective function in an optimization problem is MAX or MIN, based on 

the case. The constraint is a function of the decision variable that must be equal to, greater 

than or less than a specific value.[35] 

 

The ‘relative efficiency’ concept 

 

In DEA, each DMU is free to choose any combination of inputs and outputs in order to maximize 

its relative efficiency. The relative efficiency or the efficiency score is the ratio of the total 

weighed output to the total weighed input.[17- 20] 

DEA uses linear programming to estimate relative efficiency.  The relative efficiency, 

denoted by  or , is the efficiency score allocated to a decision making unit as a result of the 

data envelopment analysis. This relative efficiency is a non-negative value calculated based on 

linear relations between the inputs and outputs of the DMUs under analysis. In order words, it 

determines how efficient a DMU is in producing a certain level of output, based on the amount 

of input it uses, compared to similar DMUs. The main assumption behind the DEA method is 

that if the most efficient DMU produces Y output with X input, the other DMUs are expected to 

produce the same. 

The most efficient DMU will have an efficiency score of 1.0. If a particular DMU uses 

more input to produce the same output, or produces less output with the same input as the 

most efficient DMU then this DMU is considered inefficient and will get an efficiency score 

lower or higher than 1.0, based on the orientation of the DEA model. The efficiency score is not 

an absolute value, but it is calculated relative to the other units included in the analysis, which 

means that the efficiency of a DMU is influenced by the choice of DMUs included in the 

analysis.  [17-19] 

θ φ
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The basic principle of DEA is that the efficiency of a DMU is measured relatively to other 

similar DMUs by identifying ‘a best practice’ frontier with the restriction that all DMUs lie on or 

below the efficiency frontier.[33] 

 

DEA – strengths and weaknesses 

 

DEA is a non-parametric method which does not require mathematical specification of 

functional relations between input and output. It has the capability to analyze multiple inputs 

and outputs simultaneously and to produce an efficiency frontier that contains the best 

performers. This means that DEA measures the performance of a DMU against the performance 

of the most efficient DMU instead of the average performance.  In addition DEA is able to 

provide diagnostic information which is useful in defining measures to correct for the 

underperformance of certain units. This gives the decision makers more flexibility in adjusting 

their strategies to increase the efficiency of certain units.[17- 19, 22, 33] 

There seems to be general agreement in the literature that the DEA method has three 

major weaknesses: the impact of omitting variables, the impact of outliers and the impact of 

missing observations. Donthu et al. (2005) investigated the impact of these three factors on the 

results of DEA. Their main conclusion is that the variable choice plays a major role in the 

analysis, therefore inputs and outputs need to be carefully considered. Furthermore, outliers 

can also introduce large errors in the results. On the other hand, the method is not very 

sensitive to omitted observations.[18, 33] 

 

Applications of DEA 

 

The DEA method can be performed in order to [17, 18]: 

• determine the efficiency frontier and rank efficient and inefficient units based on their 

relative efficiency scores; 

• determine how far from the efficiency frontier the inefficient units are; 

• determine targets for improvement for the inefficient units through virtual production 

of these units onto the efficiency frontier; 

• identify technical and allocative inefficiencies; 

• identify and quantify the sources for inefficiency; 

• evaluate the progress of a DMU over time; 

 

 



30 Literature review 

 

Anca-Alexandra Tudorie  EPA, 2012 

2.4.2 DEA as part of the TFDEA method 

 

Using DEA makes TFDEA a more flexible method which can determine rates of technological 

change without assuming non-correlated attributes and static trade-offs. It has to be pointed 

out that in the context of TFDEA, DEA is not used for its conventional purpose of optimizing 

performance by increasing the output-to input ratio. TFDEA uses the efficiency frontier found 

with the DEA model in combination with the ‘state-of-the-art’ (SOA) technology concept, to 

delineate the technological frontier at a certain point in time.[27] In the context of TFDEA, DEA 

has the sole purpose of ranking products as state-of-the-art when they obtain an efficiency 

score of 1.0, or as non-state-of-the-art, when their efficiency score is different from 1.0. Thus the 

standard DEA vocabulary will be translated into TFDEA vocabulary as follows: 

 

• The decision making units (DMUs) in DEA represent the products in TFDEA. 

• The efficiency score determined by the DEA model becomes the technology index in 

TFDEA and shows the position of a product relative to the SOA frontier.  

• An efficiency score of 1.0 indicates in DEA an efficient DMU, which in TFDEA will be 

referred to as best-performer or SOA product.  

• A score higher than 1.0 for an output-oriented DEA model refers to an inefficient 

DMU, which in TFDEA will refer to an under-performer or non-SOA product. 

 

2.4.3 The TFDEA process step-by-step 

 

This section describes how the TFDEA process, as designed by Anderson [24] and Inman [17]. All 

relevant details which will be used in this report to apply TFDEA on the EV technology are 

summarized in this section. For a complete description of TFDEA, the reader is referred to [17, 

22, 27, 28]. 

The TFDEA algorithm builds upon the DEA algorithm and consists of the sequence of 

steps indicated below [17]: 

1. Determine the scope of the forecast 

2. Define a product 

3. Define SOA characteristics 

4. Determine the DEA model  

a. Orientation 

b. Returns to scale 

5. Collect data 
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6. Analyze technological Progress 

a. Mapping technological progress 

b. Time considerations 

c. Forecasting future technologies 

7. Examine results 

 

TFDEA step 1: Determine the scope of the forecast 

 

The purpose of the technology forecast under discussion is to determine the current state of 

the EV technology and to determine how the EV performance will evolve in the future. When 

applying TFDEA, it is recommended that the scope of the forecast be chosen as broad as 

possible, as to facilitate a better understanding of the technological context of the technology 

under analysis. The advantage of using a DEA-based model is that several attributes can be 

evaluated which means that different market segments can be analyzed at the same time. 

Choosing a broader scope of the forecast (i.e. analyzing multiple market segments), could lead 

to a more meaningful analysis and might offer the possibility to detect potentially disruptive 

technologies.[17] 

 

TFDEA step 2: Define the product 

 

Once the scope of the forecast has been determined, the products to be analyzed have to be 

defined. This products are the decision making units (DMUs) used in the DEA model. These 

DMUs need to be similar in terms of functionality and need to be screened under similar 

market conditions for the comparison to be relevant.[17, 18] 

One additional attribute that has to be available is the release date for each product. 

[17] This is not required to determine the state of the art technology, but it is necessary in the 

later phase of the TFDEA when the technological change has to be calculated. 

. 

TFDEA step 3: Define SOA characteristics 

 

Once the product has been defined, the relevant attributes of the technology have to be 

selected. “An attribute is the qualitative description of a characteristic of the technology or its 

performance.” [11, pp. 72]. In order to identify the important attributes, the structure, 

production and usage of the technology need to be analyzed. 

Inman [17] references Alexander (1973) to classify technology characteristics as either 

functional or structural and to describe technology as ‘the ability of structural characteristics to 
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deliver functional characteristics’ [17 pp. 84-85]. The structural characteristics can be seen as 

the physical structures of the technology, while the functional characteristics can be 

interpreted as the purpose the technology serves. Further, the concept of technological change 

is related with ‘the change in efficiency with which the structural characteristics provide the 

functional characteristics’ [17, pp. 85]. 

To identify the EV technology characteristics a system analysis s is performed in section 

3. In the case of electric vehicles, the structural characteristics are the characteristics of the 

different components of the vehicle drivetrain which work together to help operate the vehicle, 

while the functional characteristic is to provide transportation within the performance 

requirements, as will be explained in section 3. 

The DEA model converts inputs to outputs in order to determine the relative efficiency 

of a particular product. This differentiation between functional and structural characteristics is 

very helpful because it facilitates the selection of input and output variables. The SOA 

characteristics at a certain moment will then be identified by analyzing the DEA efficiency 

scores of the existing products at that particular point in time. 

 

TFDEA step 4: Determine the DEA Model 

 

The choice for a particular model should be driven by the ‘overall objectives of the technologies 

being analyzed’ [17, pp. 85] There are several DEA models to calculate the efficiency scores for 

the DMUs. A comprehensive list of existing DEA models with their equations and constraints 

can be found in [20] and will not be repeated here.  

In order to determine the efficient (i.e. ‘best practice’) frontier using DEA, one can 

choose between DEA input-oriented and output-oriented models, based on the objective of the 

technology under study. An input-oriented model is used when the target for the product 

under analysis is to minimize its input for a given output. An output-oriented model is used 

when the scope is output maximization for a given input. 

For the EV technology and output oriented model will be used. The mathematical 

construction of this model will be summarized in the next section. 

 

DEA output-oriented (OO) model 

 

Very simple models with small numbers of DMUs and input/output variables can be calculated 

by hand. However, for most problems the data set is more complex and requires the use of 

linear programming software. Several DEA software packages are commercially available to 

solve data envelopment analysis problems.  These software packages are built based on the 

algorithm explained below. 
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The efficiency score for the output oriented model is denoted by φ.  is one of 

the n DMUs from the data set. Each DMU has m inputs and s outputs. Parameters  and  

are the i-th input and r-th output of . Variables  are positive scalars, representing the 

weight of  used to set the target for   under evaluation. kDMU   is compared 

against the best possible combination of the other DMUs to determine its efficiency score. 

The objective function of the output-oriented model is to maximize the efficiency score 

by maximizing the output produced while keeping the input at the same level. The mechanism 

to calculate the objective function is presented in equations (1) - (3). 

For DMUk 

kφmax
   (1)

 

 Subject to: 

1. The summation of the weighed combination of inputs of the other DMUs is lower than or 

equal to the level of input used by  kDMU  under evaluation. 
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Where: k is the index of the DMU under analysis, j = 1,…, n; i = 1,…, m; r = 1,…, s  and    0≥jλ  

2. The summation of the weighed combination of outputs of the other DMUs is higher than or 

equal to the level of output produced by  kDMU  under evaluation. 
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Where: k is the index of the DMU under analysis,  j = 1,…, n; i = 1,…, m; r = 1,…, s  and    0≥jλ
,
  

0≥kφ
 

If kθ  equals 1.0, then kDMU  is considered efficient. If it is higher than 1.0, it is implied 

that kDMU  produces too little output for the level of input it uses, compared to the other 

DMUs [17]. The efficiency scores of each DMU are used to determine the empirical best-

practice frontier or the efficiency envelope. The envelope is used to set a benchmark for 

inefficient units or inferior products.[20] The efficiency scores can be used as indicators of the 

SOA technology during a certain period of time. 

 

Returns to scale  

 

The ‘returns to scale’ concept refers to situations when changes in the size of the input and/or 

output determine changes in efficiency. For technologies where returns to scale influence the 

kDMU

ikx rky

kDMU jλ

jDMU kDMU
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state-of-the-art of the technology, the appropriate constraint for the returns to scale model 

variant should be added to the selected DEA model. There are four variants of returns to scale 

[17, 20]: 

• constant returns to scale (CRS) – when the output/input ratio remains constant 

regardless of the size of the input; 

• increasing returns to scale (IRS) – when the output/input ratio increases the larger the 

amount of output and input becomes; 

• decreasing returns to scale (DRS) – when the output/input ratio starts to decrease with 

an increase in “input beyond points of infliction” [17, pp.61]; 

• variable returns to scale (VRS) – in situations when there is both a minimum cost of 

entry and diminishing returns. 

When returns to scale are considered, the suitable constraint from the ones listed in 

Table 1 need to be added to the pre-selected envelope model.  

 

Table 1 Returns to scale: additional constraints [17, pp. 61] 

Returns to Scale Additional constraint 

Constant 0≥λ  

Increasing ∑ ≥ 1λ  

Decreasing ∑ ≤ 1λ  

Variable ∑ = 1λ  

 

DEA Example 

 

In order to illustrate the DEA model, a simple example is provided, using a small sample of the 

electric vehicles data to be investigated further in this report. 

a) Determine the scope of the DEA:  

The analysis is performed to determine the state-of-the-art frontier for battery electric 

vehicles for 4-5 passengers currently available on the market. 

b) Define DMU:  
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For this analysis, a DMU is a 4 or 5 seat electric vehicle which has been and/or still is 

being mass produced. Assume, for the sake of simplicity, that the only attributes of interest for 

evaluating the efficiency of BEVs are the electric range and the battery capacity of each vehicle.  

c) Determine the inputs and outputs of the DEA model: 

The range of an electric vehicle is mainly determined by battery capacity; therefore the 

input will be considered to be the battery capacity and the output will be the electrical range. 

d) Select DEA model: 

 An efficient car should be able to drive the longest range using the least battery capacity. 

For this reason, an output-oriented model will be used. 

e) Collect the data:  

The data to be used in this example was collected from various on-line sources and is 

part of the data set to be used further in the analysis section of this report. 

 

Table 2 DEA example - Electric vehicles data set 

EV OEM Product Release date 

Input Output 

Battery capacity 
[kWh] 

Range  

[km] 

1 Honda EV-Plus Jan-97 26 210 

2 Nissan Leaf Dec-10 24 160 

3 PSA/ Peugeot Peugeot iOn Dec-10 16 160 

4 Mitsubishi I-Miev (M Grade) Jul-11 10.5 120 

5 BMW 

BMW Active E 

Concept (1 Series 

Coupe series) 

Sep-11 32 160 

6 Volvo Cars Electric C30 Oct-11 24 149 

7 Renault Fluence Z.E. Jan-12 22 185 

8 Honda Fit EV Jun-12 20 200 

 

 

 

f) Perform the output-oriented DEA: 
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An output-oriented DEA model will be used to determine the efficient and inefficient 

vehicles. Since this is a very simple exercise with a small number of DMUs, the DEA model was 

performed with a simple Excel Spreadsheet. More complex models with several inputs and 

outputs require designated software. 

First, the output/input ratio will be determined for each product (Table 3): 

 

Table 3 Output/input ratio of the DMUs 

EV Input ( jx ) Output ( jy ) output/input 

1 26 210 8.08 

2 24 160 6.67 

3 16 160 10.00 

4 10.5 120 11.43 

5 32 160 5.00 

6 24 149 6.21 

7 22 185 8.41 

8 20 200 10.00 

 

Since the target is to achieve as much range as possible with as little battery capacity, 

the ‘best performing’ vehicle is the one with the largest output/input ratio, namely EV4, with a 

ratio of 120/10.5. 

For EV1 to be efficient, with a battery capacity of 26 kWh, it should be able to achieve a 

range of: 

14.297
5.10

120
26

'

1 =×=y  [km] 

The next step is to determine the efficiency score of EV1 by applying equation (1): 

41.1
210

14.297

1

'

1

1 ===
y

y
φ  

This means that for EV1 to be considered efficient, it should reach 1.4 times more range 

than it currently does using a 26 kWh battery capacity. 
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The same process is repeated for the rest of the vehicles and the results are recorded in  

Table 4. 

Table 4 DEA example - EVs efficiency scores 

# 
Input 

jx  

Output  

jy  

Output/Input efficiency output  
'

jy  

efficiency score  

jφ  

      

1 26 210 8.08 297.14 1.41 

2 24 160 6.67 274.29 1.71 

3 16 160 10.00 182.86 1.14 

4 10.5 120 11.43 120.00 1.00 

5 32 160 5.00 365.71 2.29 

6 24 149 6.21 251.43 1.69 

7 22 185 8.41 251.43 1.36 

8 20 200 10.00 228.57 1.14 
 

From the efficiency scores it looks like the only efficient EV is EV4, since it is the only one 

which scores 1.0. The SOA frontier will therefore be determined by EV4 and the projections of 

the other EVs onto the efficiency frontier. In other words, the SOA frontier will be a line 

comprising of the output of EV4 and the ‘efficiency outputs’ of the other vehicles, as can be 

seen in Figure 1: 
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Figure 1 Efficiency frontier for EVs 

 

g) Analyze DEA results:  

 

When checking the results and the shape of the frontier it looks like it is possible to increase the 

electrical range and decrease the battery capacity used infinitely. In reality this is not the case 

due to technology limitations. It may not be physically possible to decrease the battery capacity 

below 10.5 kWh (the input of EV4) and still achieve a reasonable electric range. Also it can 

happen that even if the existing technology allows for better output to input ratios, it may 

become too expensive, and hence an unattractive solution, to improve efficiency past the 

performance level of EV4. In order to obtain more realistic results, the variable returns to scale 

constraint should be applied and the analysis performed again. 
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TFDEA Step 5: Data collection 

 

One of the advantages of the TFDEA method is that it can manage multiple input and output 

variables with different units and without placing a requirement on the independence of the 

variables. Still, a few guidelines should be respected for the data collection. The following 

requirements were laid out by Inman [17]: 

• The data set to be used for the analysis consists of all instances of the technology (i.e. all 

products) under study previously released.  

• For each product, all the technology attributes identified at step 3 of the TFDEA 

algorithm have to be available, including the release date of the product.  

• TFDEA data has to be discrete and has to have well defined values.  

• Sufficient “past history” [17, pp. 160] data should be available, meaning that only 

technologies which have existed for several periods should be chosen for the analysis.  

• A sufficiently large data sample has to be available. A rule of thumb for the size of the 

data set is that the total number of observations used in the DEA analysis should be 

around three times larger than the number of input and output variables used. 

• The technology attributes used in the DEA model are shared by all products. 

• The products used in the analysis should fulfill similar functions and be observed under 

similar market conditions. 

 

TFDEA step 6: Technological progress analysis 

 

The DEA model is run iteratively, starting from the first product released, and with each run 

adding a new product in the model, until all the products in the data set have been evaluated. 

This means that the efficiency score of the product introduced the last is calculated relatively to 

all previously introduced products. The earlier products used to determine the relative 

efficiency of the newest product constitute the ‘Reference Set’. The newest product in each 

model run is referred to as DMU (or the product) under analysis.[24] 

Once all products have been evaluated, the SOA surface is mapped to the DEA efficiency 

frontier by turning the efficiency score into a technology index. The technology index indicates 

the position of a product relative to the position of the SOA. The DEA score kt

kφ   becomes the 

technological index for the position of product k relative to the SOA surface at kt , the release 

date of the product.[17] 

 

Mapping technological progress 
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To determine the technological change, the following equations are used, where   

represents the technological change of product k with respect to the SOA frontier at time . 

   (4) 

 

� If  > 1.0, it means that technological progress occurred (i.e. more output was 

produced with the same level of input). 

� If  < 1.0, it means that there was technological regress. 

 

To allow for a continuous interval, (4) is expanded to an exponential form: 

 

    or     (5) 

 

Where: kttt −=∆  and t represents time. 

 

The technological change is calculated for each product in the data set to determine its 

progress or regress compared to the state-of-the-art at a particular point in time. In order to 

shift the SOA frontier (i.e. forecast new technologies), only the products considered SOA at the 

time of release will be used, meaning that at  their kt

kφ  was 1.0.  

 

The overall rate of change (ROC) is the mean of the technological change indices of the 

products considered efficient at the date of release. The ROC is calculated with equation (6): 

  

      (6) 

 

Where:  is the total number of SOA (efficient) products, and l is the subset of SOA 

products . 

 

 

Time considerations 

 

When the SOA frontier contains only products from the same time period, time is considered to 

be the same for all products currently on the frontier and the time interval between the current 

SOA and the time of release will simply be the difference between ‘time now’ and time of 

release. In situations when the SOA surface is defined by products from different time periods, 

the effective time interval can be calculated with the formula: 
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   (7) 

   

This represents the effective time interval between release dates tj and tk of SOA 

product j and of now non-SOA product k. Variable  represents the weight of the reference 

observation j on the efficiency score of product k. If the model uses variable returns to scale 

(RTS), the denominator in equation (7) becomes 1. 

 

Forecasting future technologies  

 

Once the technological progress has been calculated, future SOA frontiers can be determined 

with equation (8). To achieve this, SOA outputs will be multiplied by the corresponding 

technological progress raised at a power equal to the number of past time periods. This means 

that the method assumes a constant rate of change over time. 

 

  (8) 

The constant rate of change assumption is recognized by the TFDEA literature to be one 

of the weaknesses of the TFDEA method.[17, 22, 25] Literature on technology forecasting and 

technology innovation indicates that technological performance grows in an exponential 

pattern, but the exponent depends on the phase of technology. For this reason, technological 

progress in the early phase of the innovation may appear as a straight line, but will grow 

exponentially as the innovation matures. [11, 29] Therefore, calculating the rate of change with 

TFDEA at an early phase of technology and assuming it will remain constant may lead to flawed 

predictions, because the model might anticipate a much slower progress than what is possible 

in reality. 
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3. System analysis: EV technology 

 

The purpose of applying TFDEA on the EV technology case is to analyze the technological 

progress of electric vehicles to determine whether a certain EV configuration has potential to 

become dominant in the future. The products used in this analysis are passenger hybrid and 

battery electric vehicles mass-produced and commercialized between 1997 and June 2012. 

Now that the products have been defined, the TFDEA method requires that the technology 

attributes are identified in order to select the input and output variables to be used in the DEA 

model. For a meaningful forecast of EV performance, the selected variables need to be 

representative of the factors which can pose barriers to technological progress. 

Arthur [29] argues that technologies are modular architectures created from 

combinations of existing technologies. He claims that technologies evolve through 

combinations of existing technologies, causing new technologies to appear. He describes 

technology in general as “an arrangement of building blocks” [29, pp. 21] - assemblies and 

subassemblies which are themselves technologies - organized around a central concept which 

allows it to work and supply a functionality. Technology consists of a main assembly – the 

backbone of the device, which is supported by other assemblies which ensure its operation. In 

order to understand a technology one has to understand its principle and how this principle 

translates into a working architecture.[29] 

Following the train of thought set forward by Coccia [12] and Arthur [29], the electric 

vehicle will be introduced in this section as a modular system and its mechanisms will be 

described. This section will try to provide an understanding of the basic principles of the electric 

vehicle technology, which is necessary for identifying the main EV attributes. The section will 

conclude with the selection of DEA variables. 

To avoid confusion, it should be noted that the focus in this section is to determine 

those factors that can influence the technical performance of an electric vehicle. Factors 

determining the successful market penetration, such as consumer preferences and policy 

instruments, will not be addressed here. 

 

3.1 Electric vehicles as modular systems 

 

The general purpose of a vehicle is to provide on-road passenger transportation. The general 

vehicle design fundamentals are rooted in classical mechanics and rely on relations between 

force and acceleration. Newton’s second law of motion states that the acceleration of a body is 

parallel and directly proportional to the net force exerted on it, and inversely proportional to its 

mass, where the ‘net force’ is the resultant of the forces applied to the object. In the case of a 

vehicle, the driving force is delivered by the propulsion unit (i.e. engine, motor or both), while 

gravity, air and tire friction act as resisting forces. A non-zero resultant of these forces will put 

the vehicle in motion, as dictated by Newton’s second law. The total mass of the vehicle is the 
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sum of the masses of all of its mechanical and electrical subcomponents. In addition, the speed 

and acceleration of the vehicle depend on the power and torque delivered by the motor, on the 

vehicle’s aerodynamics and on the road conditions.  

Electric vehicles are complex technical systems consisting of thousands of components. 

A description of individual car components would not be relevant for the discussion at hand. 

Such detailed descriptions are widely available in the literature and will not be repeated here. 

The reader is referred to any textbook on car architecture and design for further information. 

What is relevant though for this analysis is how these components interact with each other and 

how they determine the operation and performance of a vehicle.    

In order to tackle the complexity of the interactions between different components the 

vehicle will be treated as a modular system. The vehicle as a modular system consists of several 

independent modules (or sub-systems), each of them being entirely responsible for a particular 

functionality of the vehicle. For example, the motor, together with auxiliary components 

constitute the propulsion module which provides traction force to propel the vehicle; the 

battery provides power for the vehicle to operate; the electronic control units (ECUs) ensure 

the control and coordination between different modules such that the vehicle responds 

instantaneously to the driver’s needs; the chassis provides the mechanical support for the rest 

of the modules to be mounted on, where the motor, the battery, the ECUs, the chassis are all 

independent modules.  

The fact that modules are ‘independent’ implies that they do not determine each 

other’s performance. In other words, given a vehicle which contains a particular motor and a 

battery, if the battery module is removed from the vehicle and replaced with another battery 

module with the same physical characteristics and performance specifications, the 

performance of the motor, or any other module will not change, and consequently, the overall 

system performance of the vehicle will stay the same. It has to be stressed out that while the 

modules do not impact the performance of one another in a particular combination, they do 

pose constraints on the alternative technologies that can be used, as will be explained shortly. 

Viewing vehicles as modular systems follows Arthur’s [29] approach to technology and is 

a choice made in this report in order to facilitate the understanding of the vehicle operation 

and to be able to provide an aggregated analysis of the technology system without omitting 

important characteristics of the technology. Also, this approach is in line with the vehicle design 

process.  

 

3.2 EV design process 

 

The vehicle design process is a top down approach [2], meaning that performance 

requirements of the modules stem from a set of general performance specifications defined on 

the system level. In this manner, the desired vehicle performance characteristics (e.g. top 

speed, acceleration etc.) will determine the energy and power requirements of the motor or 
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engine; the desired driving range for the vehicle will determine the required battery or fuel tank 

capacity; the desired fuel efficiency of the vehicle will determine the required drivetrain 

architecture and so on, such that the integrated system (i.e. the vehicle) will deliver the 

expected performance. 

Once the module requirements have been defined, an investigation is made to 

determine the suitability of different alternative technologies which can be used to build the 

vehicle. Since not everything that has been designed on paper can be built in practice, several 

trade-offs will occur to balance cost and quality of the chosen technologies, and consequently, 

the desired vehicle performance parameters will have to be revised and often readjusted, to 

match the manufacturing possibilities. 

 

Figure 2 BEV System 

Figure 2 and Figure 3 summarize the factors impacting the performance of a BEV and of 

an HEV respectively, as well as the iterative nature of the vehicle design process. The middle 

square contains the performance parameters specific to each EV family; these parameters 

provide value to the user of the vehicle. The main difference between a BEV and an HEV is the 

absence of the ICE, making the fuel consumption and the tailpipe emissions parameter 

irrelevant for the performance of the BEV. Performance parameters will be further discussed in 

section 3.2.1. 

The left-hand rectangles in Figure 2 and Figure 3 summarize the internal factors or 

technical parameters of each family of EV systems; these are attributes of the internal 

components of the EV system which are responsible for delivering the system’s performance. 

The internal factors represent variables under the control of the designer. The arrows between 

performance parameters and internal factors indicate that during the vehicle design process 

the desired vehicle performance will drive the requirements for the internal components, but, 

at the same time, the availability and/or cost of component technologies may lead to 
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compromises on performance (i.e. lowering the desired performance target due to cost and 

time considerations). A clear and simple example here would be the choice of battery. Consider 

that one of the desired performance parameters for the vehicle under design is to be able to 

drive 300 km in electric mode only. Based on this requirement, the designer will evaluate the 

existing battery technologies and choose the best alternative. If there is no battery technology 

available that can fulfill the requirements, there are two options: to design a new battery or to 

compromise on vehicle performance. Designing new technologies is often costly and requires a 

long time, posing the risk that the vehicle would not be available on the market at the intended 

date. Thus the next best option is to compromise on performance and choose an available 

battery that could, for instance, only provide 200 km of electric range. 

However, the internal components are not solely responsible for how a car performs; 

external factors also play a role. The right-hand rectangle summarizes the external factors of 

the technology which are universal for all vehicle types. External factors often have to do with 

road conditions, weather, traffic conditions, and the driver’s personal style; therefore they are 

variables out of the control of the designer. The arrows in Figure 2 and Figure 3 indicate that 

external factors can have an influence both on the performance of the vehicle, as well as on the 

choice of internal components. Some of these factors could lead to better or lower 

performance of the vehicle. For instance, it is more demanding for a vehicle to drive on a road 

full of holes and cracks than on a smooth highway; also, during traffic jams an HEV will often be 

driven by the electric motor, therefore offering a lower fuel consumption and lower emissions 

levels than if the car were operated under normal traffic conditions over the same distance. 

External factors cannot easily be quantified and cannot be accurately predicted; however, the 

arrow between external and internal factors indicates that these external variables are 

estimated to some extent and accounted for in the definition of the module requirements.  This 

is generally done through simulations of different driving conditions and scenario analysis.[2] 

For example, winter tires are designed such that they allow the vehicle to drive over roads 

covered in ice or snow. Or, the BEV batteries need to have sufficient capacity to support the use 

of air conditioning for different periods of time, while still allowing for a reasonable driving 

range. 
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Figure 3 HEV system 

 

3.2.1 Performance parameters 

 

Over the past two decades, electric vehicles have been re-introduced as a way to cope with the 

shortcomings of the internal combustion vehicles (ICVs). The disadvantages of conventional 

vehicles are their high fuel consumption coupled with high levels of emissions, high 

maintenance costs and noise pollution. During driving, electric vehicles are very quiet and offer 

a much better fuel economy. With respect to emissions, they are more environmentally friendly 

releasing tailpipe emissions from zero (BEVs) up to 40% less than equivalent ICVs.[1, 2, 38]  

While battery electric vehicles would represent the ideal solution to eliminate emissions 

and oil dependency, the main drawbacks of these vehicles are the high initial costs and short 

driving ranges due to battery limitations. In addition, the battery pack is large and heavy, 

increasing the total weight of the vehicle and taking away from the space which would 

otherwise be available to the passengers. Moreover, recharging the battery takes much longer 

than refilling the tank with gasoline, causing extra discomfort to the owner of the EV.[2, 36, 37, 

39]  

Hybrid electric vehicles were introduced as a solution to overcome the range limitations 

of battery electric vehicles and the high fuel consumption and greenhouse gas emissions of 

conventional vehicles. But just like BEVs, HEVs have a higher initial cost than an equivalent ICV. 
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In addition, the increased complexity of the drivetrain increases the number of components, 

leading to a higher risk of operational failures.[37, 38, 40] 

The successful driving performance of a vehicle in general is mostly defined by the 

acceleration and speed possibilities it can offer. The additional performance indicators specific 

to the EV technology as emphasized in the literature [1, 2, 7, 36- 40] are summarized below:  

• improved efficiency of the electric motor (EM) compared to the internal combustion 

engine (ICE); 

• increased net weight of the vehicle due to either battery weight, in the case of BEVs, or 

the combined propulsion system, in the case of HEVs compared to ICE vehicles 

• increased fuel economy for HEVs compared to ICE vehicles;  

• reduced CO2 emissions for HEVs compared to equivalent ICE vehicles, and zero 

emissions for BEVs; 

• reduced driving range due to limited battery energy storage capacity. 

 

Acceleration rate 

 

The acceleration rate value shows the vehicle’s ability to accelerate at the driver’s impulses. 

This parameter is indicated with the ‘0-100km/h in x seconds’ notation. The faster the car can 

get from 0 to 100 km/h, the better the car performance because it shows a high reaction speed 

of the car to the driver’s needs. This is not important only for the fast drivers, but it is a 

desirable feature in situations when an accident has to be avoided or when high speeds have to 

be achieved over very short driving distances. 

 

Driving range 

 

To distinguish between the driving ranges of BEVs and HEVs, the ‘electric range’ and the ‘hybrid 

range’ are used for the two types of vehicles respectively.  

For BEVs, the electric range is the total distance that can be driven on a full battery 

charge. The range is almost exclusively a function of battery storage capacity.[1, 37] Although 

BEVs can provide up to three times the engine and drivetrain efficiency of an ICE vehicle [1, 38], 

they are reliant on the technical characteristics of the available battery technology, which pose 

significant limitations on the driving range performance. According to the International Energy 

Agency [38], in the United States, about 60% of the vehicles are driven less than 50 km daily, 

and about 85% of the vehicles less than 100 km daily. In Europe 85% of the daily trips are below 

25 km. Yet, one of the biggest concerns for the electric car buyers is that the car will not be able 

to provide sufficient range for their driving needs.  
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This does not apply to HEVs. HEVs use much smaller batteries, but perform most of the 

driving on fuel, which allows them to reach ranges similar to ICV. For HEVs, the hybrid range is 

the total distance driven on a full tank combined with a full battery. The combination between 

the two power sources allows for a much longer driving range, compared to a BEV.[41] 

 

Fuel economy 

 

Fuel economy is measured in km/L and represents the ratio between the distance traveled (km) 

and the corresponding fuel consumption (L). This performance indicator is applicable for HEVs, 

which provide increased fuel economy compared to an equivalent ICE vehicle. The fuel 

economy of the vehicle is determined by the vehicle architecture, as well as by traffic 

conditions and the individual driving habits of the driver. The lower fuel consumption can be 

explained by the presence of the electric motor in the drivetrain. A more powerful engine will 

consume more fuel, but the HEV gets part of its necessary power from an electric motor, which 

runs on battery. Additionally, based on their drivetrain architecture, some HEVs can drive in full 

electric mode under certain speeds, which decreases the amount of fuel used.[36- 38] 

 

CO2 emissions 

 

The gCO2/km has been introduced over the past years as a regulated emission factor. The CO2 

emissions, as well as other toxic gases such as unburned hydrocarbons or nitrogen oxides, occur 

due to incomplete combustion of the fuel. This is caused on the one hand by impurities in the 

fuel, and on the other hand by the inefficiencies of the combustion system. The automotive 

industry has already reached a very advanced level of combustion efficiency by using catalytic 

converters. However, it is considered that the CO2 emissions level can only be decreased 

further by decreasing the weight of the vehicle, or using reduced power engines. [1, 36] 

The tailpipe CO2 is an important performance parameter for HEVs. HEVs are claimed to 

achieve much lower emission rates compared to equivalent ICE vehicles because they get 

additional power from an electric motor, and hence consume less fuel.  In contrast, BEVs are 

considered zero-emissions vehicles, but this concept only refers to the fact the BEVs do now 

release any greenhouse gases while driving.  

When looking at the whole value chain, coal-burning plants emit more CO2 during the 

energy production compared to the upstream oil extraction. However, the electric motor is 

three times more efficient in energy consumption [1] compared to a regular internal 

combustion engine. Worst case scenario analysis show that even if a very large fleet of BEVs 

would be powered with electricity produced in coal-burning-plants only, the amount of CO2 

produced would still be below the amount produced by fuel-burning cars [1, 2]. 
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Consumer preferences 

 

Other than the aforementioned technical and environmental performance parameters, there 

are several other characteristics important to the buyer of an EV: functional characteristics (the 

number of passengers the vehicle can carry, cargo space etc.); aesthetic characteristics (chassis 

style, color, inside tapestry etc.); the availability of charging stations, and of course, the total 

cost of vehicle ownership (i.e. initial vehicle cost, fuel cost, repair costs etc.).  

Estimating the cost of ownership for electric vehicles is not a trivial task since there are 

many uncertainties to be taken into account. Cost estimates provided in the literature differ to 

some extent, mostly due to the assumptions made and the cost components included in the 

analysis in each study. Delucchi and Lipman [42] identify as the main lifetime cost components 

for electric vehicles the initial costs, fuel costs, maintenance and repair costs and insurance 

costs. Based on an extensive review of previous studies, their conclusion is that electric vehicles 

generally have higher initial costs and possibly insurance costs, but lower external and 

maintenance costs than conventional vehicles. However, whether the overall cost of electric 

vehicles is higher or lower compared to a conventional vehicle is not clear and depends, among 

others, on factors such as costs for raw materials (e.g. as lithium for batteries), fuel costs, the 

cost of energy, which in turn depends on its production costs, as well as on charging time, since 

energy is priced differently during day time and night time. 

Another feature which plays a role in the purchasing decision is the availability of 

recharging infrastructures [1, 2, 38]. If for HEVs the requirement on infrastructure is less 

stringent, for BEVs it could play a major role in the purchasing decision, and consequently for 

the adoption of battery electric vehicles. All electric vehicles can be charged over night from 

regular power outlets, but it takes between 6 to 10 hours to fully charge an empty BEV battery. 

On-road fast charging stations would ease that concern, however, such infrastructure is not yet 

available, making the fuel tank seem to be a more reliable energy source. 

These features are associated with consumer preferences and are generally applicable 

for any type of vehicle. Not only are these features very difficult to quantify, but they are also 

not considered to be deterministic for the technical performance of the EV technology in 

particular. For this reason they will not be included further in the analysis. 

 

 

3.3 Deterministic relations between internal factors and the system’s technical 

performance 

 

In section 3.2 it was discussed that the vehicle performance requirements will drive the choice 

for components and in turn, the chosen components will impact the actual performance of the 

vehicle. After describing the general characteristics of BEVs and HEVs, this section will try to 

identify the main mechanisms responsible for the operation and performance of EVs. Without 



50 System analysis: EV technology 

 

Anca-Alexandra Tudorie  EPA, 2012 

digging too deep into the technical details of vehicle mechanics a few equations have to be 

introduced where necessary, in order to justify the causal relations between the module 

characteristics and the vehicle performance parameters. For further explanations on the 

mechanics of electric vehicles, other than the ones provided in the following paragraphs, the 

reader is referred to Husain [2]. 

 

Constraints on output power requirements 

 

The propulsion module contains the electric motor (for BEVs) or the electric motor/internal 

combustion engine (for HEVs) and auxiliary units needed to set the vehicle in motion. 

Newton’s second law of motion is given by the formula: 

∑ =
i

i amF

   (9)

 

where ∑F is the resultant of all forces applied on the object, m is the mass of the object and  a  

is the acceleration of the object.  The acceleration is the first derivative of velocity ( dtdva /= ) 

where velocity is the first derivative of position ( stdsv /= ). 

The traction force ( TRF  ) is the force to be supplied by the propulsion unit (either EM or 

ICE/EM combination) in order to overcome the road load and allow the vehicle to move. This 

traction force can be represented with equation (10): 
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where  RLF  is the resistance posed by the road, m is the mass of the vehicle, dtd xT /ν  is the 

acceleration of the vehicle in the direction of movement ( Tx ), and “ mk  is the rotational inertia 

coefficient to compensate for apparent increases in mass due to the onboard rotating mass” [2, 

pp.25]. 

The power required from the electric motor or from the EM/ICE combination can then 

be determined using the traction force from the propulsion unit and the maximum velocity of 

the vehicle: 

xTTRFPower ν⋅=
   (11)

 

Equations (10) and (11) show the interdependence between mass, acceleration and 

power of the EM or ICE/EM combination. Therefore, the higher the mass of the vehicle and the 

faster it has to accelerate, the higher the traction power will need to be. This means that based 

on the desired acceleration rate and top speed specifications, the electric vehicle will have to 

be provided with a propulsion unit (EM or EM/ICE combination) capable to provide the 
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necessary output power to achieve those specifications. In addition, the weight of the vehicle 

will add another constraint on the required power output of the propulsion unit. This is 

summarized in Figure 4. The yellow squares indicate the performance parameters (i.e. the 

parameters which create value to the user) of the EV, while the blue squares are EV technical 

parameters (i.e. the EV attributes responsible to deliver the EV system performance). The gray 

squares indicate attributes of the lower level technologies which deliver the individual module 

performance. The arrows in the figure identify the dependencies and interdependencies 

between the different design variables. 

 

 

Figure 4 Output power constraints 

 

Limitations on range: battery storage capacity vs. output power  

 

Based on the literature overview it can be claimed that the battery is one of the major 

determinants of the BEV performance. The battery is responsible for providing power to 

operate the vehicle.  

The driving range was defined as the maximum distance driven on a full vehicle charge. 

Different electric vehicle architectures impose different requirements on the battery 

performance. For example, batteries for BEVs require much higher energy storage capacity 

compared to HEVs in order to allow for an acceptable driving range. On the other hand, PHEVs 

require higher power densities.[37] 
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  The electric range of a BEV is almost entirely determined by the stored energy capacity 

of the battery. The theoretical stored energy capacity of the battery TE  is given by the product 

between the nominal no-load terminal voltage BatV  and the theoretical capacity (Q): 

TBatT QVE = [Wh]  (12) 

Figure 5 shows schematically the connection between the EV battery pack and the 

propulsion unit. 

 

Figure 5 EV battery with load 

 

In order to operate, the propulsion unit will deplete the battery at a particular rate, 

indicated by i(t). Therefore, in this figure, i(t)=dq/dt represents the discharge current and Vt is 

the battery terminal voltage.  The battery terminal voltage is the voltage available at the 

terminals of the battery when a load, in this case the propulsion unit, is connected to it. The 

terminal voltage will vary based on the charge level of the battery, from a full-charge value 

(when the battery is fully charged) to a cut-off value (when the battery is completely 

discharged).[2] 

The practical stored energy available for the vehicle operation will be lower than the 

theoretical value due to practical inefficiencies of the battery and of the conversion processes. 

The practical capacity will thus be given by: 

∫=
cutofft

t
P dttiQ

0

)(  

  causing the practical energy storage capacity to become: 

∫=
cutofft

t
P dttitvE

0

)()(  

where i(t) is the discharge rate, v is the terminal voltage, 0t is the moment when the battery is 

fully charged, cutofft  is the moment when the discharging has to stop (i.e. the terminal voltage 

reaches the cut-off value).[2] 

This shows that the battery storage capacity is influenced by the discharge patterns 

imposed by the propulsion unit. Knowing that P=UI (i.e. power is the product between voltage 
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and current), it can be inferred that a more powerful propulsion unit will deplete the battery 

faster than a weaker one. A faster depletion time means that a shorter range can be driven on a 

full battery charge. Therefore in order to meet the range requirement, the vehicle will either 

have to be provided with a lower power propulsion unit to decrease the depletion time of the 

battery, or it has to have a larger battery capacity to meet the needs of a powerful propulsion 

unit. These relationships are summarized in Figure 6: 

 

Maximum driving 

range

Discharge rate of 

battery

Available charge 

capacity

Battery storage 

capacity

Output power of the 

propulsion unit

Battery depletion 

time

 

Figure 6 Relations between range, power and battery capacity. The yellow squares indicate the EV 

system performance parameters; the blue squares indicate the EV system’s technical parameters; the 

gray squares indicate sub-module attributes which influence the EV module performance. 

 

Although the desirable solution in this situation would be to increase the battery 

storage capacity, there are several limitations of the battery technology to be taken into 

account. The storage capacity of a battery is closely related to the energy density (Wh/kg). This 

parameter is material-specific, therefore batteries manufactured from different materials 

(Lithium-ion, Lithium-polymers, acid-lead, Nickel metal hydride etc.) will exhibit different 

performances. This means that based on the material used, a higher storage capacity for the 

battery requires to either use a reactive material with a better energy density or to use a higher 

mass of reactive material. Increasing the mass of the battery will lead to an overall increase in 

the weight of the vehicle. Consequently, a higher weight will require a more powerful 

propulsion unit in order to meet the desired acceleration and speed requirements. 

Figure 7 summarizes the most important relations between the characteristics of a 

BEV’s components and its performance parameters. 
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Figure 7 Causal relations for a BEV system. The yellow squares indicate the EV system performance 

parameters; the blue squares indicate the EV system’s technical parameters; the gray squares indicate 

sub-module attributes which influence the EV module performance. 

 

Emissions and fuel economy of HEVs 

 

The HEV technology is not as dependent on the battery technology. HEVs run on fuel and 

achieve hybrid ranges (i.e. the combined range in electric and hybrid mode) comparable with 

ICE vehicles therefore the range does not necessarily constitute a limiting factor. Instead, two 

other performance parameters are important for HEVs, namely the CO2 emissions level and the 

fuel economy. Both of these parameters are indicators of the efficiency of the drivetrain of the 

HEV. 

The level of emissions will be proportional to the amount of fuel the HEV uses. It was 

discussed that based on their drivetrain architecture, HEVs are able to drive in electric only 

modes below particular speeds. In addition, the fact that they are provided with regenerative 

breaking systems reduces the requirement on having a large battery to achieve sufficient 

electric ranges. This helps decrease their fuel consumption especially in urban areas where the 

speed limit is low, and consequently decreases the level of emissions. 
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The fuel consumption is determined on the one hand by the output power 

requirements and the efficiency of the ICE, on the other hand by the driving style of the driver. 

The more powerful the ICE, the more fuel it will consume. HEVs have the advantage of using 

electric motors which can complement the power provided by the ICE in order to achieve the 

total output power for the vehicle. This allows for the use of weaker ICEs and helps further 

reduce the fuel consumption. 

However, it was discussed that a higher weight drives the need for more traction power 

from the propulsion unit. HEVs are heavier than ICE cars because they carry a more complex 

drive train, which includes the electric motor and battery in addition to the conventional 

internal combustion system. This implies that the weight of the vehicle will increase the fuel 

consumption based on the extent to which the ICE contributes to the overall output power 

required from the propulsion unit. 

Figure 8 provides an overview of the causal relations between the characteristics of HEV 

components and the performance parameters of an HEV. 
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Figure 8 Causal relations for an HEV system. The yellow squares indicate the EV system performance 

parameters; the blue squares indicate the EV system’s technical parameters; the gray squares indicate 

sub-module attributes which influence the EV module performance. 

 

Summary 

 

This section presented a system analysis in order to describe how different vehicle components 

interact with one another and how they impact the overall performance of the vehicle. Based 

on this analysis, the following conclusions can be drawn: 

1. The performance of an electric vehicle is determined by the performance of the 

components chosen for its drivetrain. Therefore it can be claimed that the efficiency of an 

electric vehicle depends strictly on the efficiency of the drivetrain, or, differently phrased, 
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on the way the drivetrain is able to make use of the individual inputs provided by each of its 

components. 

 

Based on the interactions between different parts of the electric vehicle drivetrain and 

the impact these have on the vehicle performance, the main characteristics of the electric 

vehicle technology can be deduced. 

• In the case of BEVs, the main performance indicators are the electric range, the 

acceleration rate and the top speed, while the major limitations to performance 

can be caused by the: battery storage capacity, output power of the electric 

motor and vehicle weight. 

• The performance of HEVs is indicated by the acceleration rate and top speed, as 

well as by the fuel economy and CO2 emissions. The main performance 

limitations are caused by the output power of the propulsion unit, the weight of 

the vehicle, and, to a lesser extent than BEVs, battery capacity. 

Based on this system analysis, the input and output variables for the DEA model can be 

selected. It is important that the variables reflect possible limitations to technological progress 

of EVs. For this reason, the following attributes were chosen: 

� Outputs: acceleration rate, electric range (BEVs only). CO2 emissions (HEVs only), fuel 

economy (HEVs only). 

� Inputs: vehicle weight, output power of the propulsion unit, battery capacity. 

 

DEA outputs 

 

� The acceleration rate is representative for design difficulty. As was discussed, the weight 

of the vehicle and the output power of the EM/ICE have a strong impact on the 

acceleration possibilities.  

� The electric range reflects the dependency on sub-component technologies such as 

batteries 

� Fuel economy and the CO2 emissions are regulation driven parameters, therefore they 

are assumed to reflect the impact of regulation on performance developments of EVs. 

Although the top speed was identified as a main performance indicator in the system 

analysis, it will not be part of the DEA model because some electric vehicles, especially BEVs, 

have a programmed top speed much lower than the actual speed that can be achieved by the 

vehicle. This is done as a means to save on battery power and extend the range of the vehicle.  

Since the actual top speed is not known, using the value indicated by the auto makers would 

not be relevant for the performance of electric cars. 
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Another variable which might be able to provide valuable information about the 

manufacturing and scale possibilities for electric vehicles would be production cost. However, 

production costs for each vehicle would be hard to obtain, therefore it will not be used. 

 

DEA Inputs 

 

� The weight of the vehicle is the first input for the DEA model. As was discussed in the 

system analysis, the weight of the vehicle has a direct impact on all performance 

characteristics used as outputs and constitutes one of the physical limitations to further 

developments of the technology. 

� The second input variable is the output power of the propulsion unit. The system 

analysis showed that the choice of the propulsion unit has to take into account all the 

physical properties of the vehicle, as well as the desired vehicle performance. Therefore 

this variable is used as an input which reflects limitations due to the interdependency 

between different car subcomponents.  For BEVs, this is the output power of the electric 

motor. In the case of HEVs, this power output is the combined power provided by the 

ICE and EM in order to propel the vehicle. Both the EM and ICE have individual power 

specifications, however, different HEV architectures use the EM and the ICE for different 

purposes. In some cases, both the EM and the ICE are used to drive the vehicle. In other 

cases, the EM is only used to assist the ICE, meaning that the EM for a power assist car 

simply does not need to be as powerful as the EM of a parallel hybrid SUV. Including 

individual EM and ICE power values in the model would not be relevant. What is 

relevant for the performance of an HEV is how the EM and the ICE work together to 

deliver traction power to the vehicle, not the individual capabilities of the two 

components. As was discussed in the system analysis, the propulsion unit is directly 

responsible for the fuel consumption and consequently for the CO2 emissions of the 

vehicle. Therefore this parameter is used in the model to give an indication of how 

electric vehicles are able to meet restrictions imposed by regulations. 

� The battery capacity was identified to be responsible especially for the limited 

performance of BEVs. Therefore the battery capacity will be used as an input variable 

which reflect the limitations posed by the availability and performance of supporting 

technologies.  
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4. Data  

 

As previously discussed, electric vehicles can be either fully electric (BEVs) or hybrid electric 

(HEVs). The two types of EVs are structurally different and are characterized by different 

performance parameters. For these two families of products, a data set was collected, 

containing respectively all the BEVs and HEVs released and commercialized on a large scale 

between 1997 and June 2012. The data set comprises of 106 electric vehicles, out of which 64 

are HEVs and 32 are BEVs. The information collected for each product is described in section 

4.1. The complete data set is provided in Appendix C. 

Several electric vehicles, either BEVs or HEVs, have been introduced on a small scale as 

public transport vehicles (buses, taxis). Although these vehicles have the same characteristics as 

commercial cars, they are generally designed and introduced on the road as part of 

governmental projects to alleviate the pollution in urban areas. Since these vehicles are not 

intended to be mass-produced and sold to regular consumers, they are excluded from the 

analysis. Additionally, those electric vehicles built as concept models or prototypes without any 

mass-production plans are not included either. 

 

4.1 Data collection 

In the light of the analysis in section 3, for each electric vehicle released between 1997 and May 

2012, the parameters listed in Table 5 were collected. The data was collected from online 

sources and multiple references were compared in order to ensure the accuracy of the data.  

 

Table 5 Data collected for BEVs and HEVs 

BEVs HEVs 

Release date 

Acceleration rate 

Electric range 

Battery storage capacity 

Power output of the electric motor 

Vehicle weight 

Release date 

Acceleration rate 

Fuel economy 

CO2 emissions 

Power output of the propulsion unit 

Vehicle weight 

Battery storage capacity 
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Release date 

The release date is the month and the year when sales started for each vehicle, as announced 

by the manufacturer. 

 

Acceleration rate 

For both BEVs and HEVs, the acceleration rate shows the time (in seconds) it takes for a vehicle 

to go from 0 to 100 km per hour. Not all vehicles are provided with a “0-100 km/h” range, some 

vehicles have lower speed range indications (e.g. 0-80 km/h in 8 seconds). In all cases, to 

determine the acceleration rate, the following calculation was made: 

acceleration rate (km/hour per second) = speed range (km/h)/time (second) 

 

Electric range (km) 

This is the theoretical value provided by the manufacturer as the maximum distance which can 

be driven on a full charge of a battery. The actual driving range will be influenced by driving 

habits and road conditions; however, such a value would be very difficult to estimate with 

accuracy. Therefore the theoretical electric driving range will be used in the analysis. A longer 

driving range is a required feature for BEVs in order to capture the interest of consumers. 

 

Battery storage capacity 

The value collected for battery storage capacity, both for HEVs and BEVs, is the nominal energy 

storage capacity of the electric battery, measured in kWh. In the case of vehicles where this 

value was not specified, the nominal voltage (V) and the theoretical charge capacity (Ah) values 

were collected and the battery storage capacity was then calculated with: 

Storage capacity (kWh) = Current (Ah) x Voltage (V)/1000 

The “/1000” is added in the formula to convert the units to kWh from the standard unit of Wh. 

 

Power output of the electric motor (kW) 

This value was collected only for battery electric vehicles and represents the maximum power 

the electric motor can deliver, as provided in the vehicle specification sheet. 

 

Power output of the propulsion unit (kW) 

This parameter applies only to hybrid electric vehicles and represents the combined output 

power delivered by the electric motor and combustion engine together. It was discussed that 



Technology forecasting of electric vehicles using data envelopment analysis 61 

 

 Engineering and Policy Analysis  

HEVs use both an electric motor (EM) and an internal combustion engine (ICE) to provide 

traction force to move the vehicle. Both the EM and the ICE will have individual output power 

specifications. However, the combined output power will not be the nominal sum of the two 

power values. Depending on the architecture of the car, the EM and ICE will contribute a 

particular amount to the overall system power. Since the individual contribution of the EM and 

ICE are difficult to determine, the system output power value was used as indicated by the 

manufacturers. 

 

Fuel economy (km/L) 

For HEVs, fuel economy represents the number of kilometers that can be driven on one liter of 

fuel and is measured in km/L. The fuel economy is specified with three values, one value each 

for city drive cycles, highway drive cycles and combined cycles. For as many products as 

possible, the EPA combined cycle specification was collected. For some products, the EPA value 

was not available. In those cases, the available estimation for the combined fuel consumption 

was recorded. When a combined value was not specified, the average of the city and highway 

fuel economy values was taken. An HEV will be considered more efficient the more kilometers 

it is able to drive on a liter of fuel. 

 

CO2 emissions (g/km) 

This value is applicable only for HEVs and represents the average amount of CO2 released per 

kilometer driven. The BEVs are considered to release zero emissions. 

 

Weight (kg) 

The weight in kilograms of each vehicle was recorded as specified by the manufacturer. 
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5. Methodology – Applying the TFDEA 

 

Once the inputs and outputs for the DEA model were selected and the data collected, the 

TFDEA method could be applied to identify the technological progress of electric vehicle 

technologies. This section describes the steps taken to apply the TFDEA method.  

 

Three TFDEA models 

 

Three different forecasts were analyzed separately: 

1. TFDEA of hybrid electric vehicles only 

2. TFDEA of battery Electric vehicles only 

3. TFDEA of electric vehicles combined (HEVs and BEVs) 

While the two homogeneous models aimed to calculate the individual rate of change for 

HEVs and BEVs, the combined model was an attempt to determine whether it is possible to 

analyze the two technologies in parallel and calculate the overall rate of change over the whole 

EV class, by combining the HEVs and BEVs in the same model. In this situation, HEVs were 

assigned a 0.0 value for the electric range, while BEVs were assigned 0.0 values for fuel 

economy and CO2 emissions. It could be argued whether this approach is completely correct or 

sufficiently representative of the real world context. Some HEVs are able to drive in electric 

mode for limited distances at very low speeds, while others are only able to drive on gasoline, 

depending on each vehicle’s architecture. On the other hand, BEVs are considered to have a 

zero emissions level only while driving, yet, this is not the case if emissions generated during 

the electricity generation process are taken into account. At the same time, for many of the 

vehicles included in the analysis these details are not readily available and they would have to 

be estimated in order to comply with the data requirement of the DEA that the all attributes for 

all products should be present. Including these details in the model would probably turn the 

model into a better picture of reality but it would also increase the complexity of the model. 

DEA is an extreme point method which is very sensitive to noise which means that a large 

number of inaccurately estimated values could introduce disturbances in the results.  For this 

reason, the simplistic approach was pursued. 

 

DEA model implementation 

 

For each case, an output-oriented DEA model with variable returns to scale was created. The 

assumption that a vehicle is more efficient when it can achieve better performance than other 

vehicles with similar architectures indicates that an output-oriented DEA model should be used. 
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At the same time, there is a minimum cost to entry and diminishing returns for a decrease in 

input. This means that past a particular level it might be too expensive to improve the 

performance of the vehicle. For example, in order to achieve 500 km of electric range the cost 

of the battery would become too high for the vehicle to remain competitive in the market. Thus 

the variable returns to scale constraint had to be included in the output-oriented model.    

The structure of each model is summarized in Table 6, Table 7 and Table 8 respectively. 

Several DEA software packages are commercially available as indicated in [17]. For this report, 

the output-oriented DEA model with the additional constraint for returns to scale (Figure 9) was 

implemented using Excel Solver, following the mathematical constructions described in section 

2.4.1 and guidelines presented in [20]. In addition, an Excel Macro was written in order to 

automate the DEA model runs and record the lambdas for each vehicle. This Macro is shown in 

Appendix B. 

 

 

Figure 9 DEA constraints in Excel Solver 

 

 

Table 6 HEV model data 

Number of 

HEVs 
Period Technology attributes 

64 
1997-June 

2012 

Inputs Outputs 

Weight 

Combined 

output 

power 

Battery 

capacity 

Acceleration 

rate 

CO2 

emissions 

Fuel 

economy 
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Table 7 BEV model data 

Number of BEVs Period Technology attributes 

42 
1997-June 

2012 

Inputs Outputs 

Weight 

EM 

output 

power 

Battery 

capacity 

Acceleration 

rate 
Range 

 

Table 8 Combined model data 

Total number 

HEVs & BEVs 
Period Technology attributes 

106 
1997-June 

2012 

Inputs Outputs 

Weight 
Output 

power 

Battery 

capacity 

Acceleration 

rate 

CO2 

emissions 

Fuel 

economy 
Range 

 

Mathematical conversions 

 

The constraints of the output-oriented DEA model indicate that a product is more efficient 

when it uses less input to produce a better performance. Due to the predetermined structure 

of the output oriented model, some mathematical transformations have to be made in order to 

respect the logic of reason. 

The vehicle weight is an input parameter therefore the standard DEA model will assume 

that a vehicle will be more efficient when it uses less weight. In reality, a vehicle performs 

better when it manages to achieve a better performance despite carrying the same or more 

weight compared to its peers. This was represented this in the DEA model by using the 

“1/weight” transformation. 

Similarly, an HEV is more efficient when it produces less CO2 compared to its peers. To 

comply with the output-oriented DEA model, the “1/CO2 emissions” transformation was used. 

 

Calculating the ROC  

 

Using the VRS output-oriented model, the efficiency scores were calculated for each time 

period for all vehicles released between 1997 and June 2012. This was done iteratively, staring 

with the vehicles introduced in 1997, and with each new model run, the vehicles introduced in 
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the next time period were added in the DEA model. As mentioned in section 2.4.2, these 

efficiency scores were only used as a technology index [17] to rank the vehicles as SOA or non-

SOA. 

Once the technology index was calculated, the annual rate of change (ROC) for the 

technological frontier was determined. This analysis assumed time intervals of one year. The 

products ranked as SOA at time t constitute the technological frontier at time t. At time t+1, 

new products released on the market in the (t, t+1) interval will lead to a new technological 

frontier. The two frontiers can thus be used to calculate the rate of change, which shows the 

technological progress which occurred between time t and t+1 and indicates the amount by 

which the technological frontier shifts from one year to the next. 

For example, in order to calculate the 2009 ROC value for HEVs, the hybrid vehicles 

released up to 2008 were used. Since the rate of change would be used to determine future 

technological frontiers, only the products considered SOA in 2008 were included in the ROC 

calculation, as shown in Table 9 . Therefore, from the products available in 2008, only those 

with an efficiency score of 1.0 were chosen. 

 

Table 9 HEVs on the 2008 technological frontier 

# Product Year Weight 

System 

power 

output  

Battery 

capacity 

Acceleration 

rate CO2 

Fuel 

efficiency Φ_’08 

1 Prius 1st gen. 1997 1240 50 1.7 7.46 135 17.54 1 

2 Tino  2000 1500 83 0.6 8.20 182 23 1 

3 Prius 2nd gen. 2000 1640 57 1.7 7.97 120 19.23 1 

4 Civic  1st gen. 2001 1290 69 0.85 7.04 137 20 1 

5 Alphard  2003 2100 96 4.4 8.33 173 17.2 1 

8 Civic 2nd gen. 2005 1260 82 0.86 7.63 129 17 1 

9 Highlander  2005 2160 200 1.3 12.76 165 12.5 1 

10 
Mercury 

Mariner  
2006 1664 115 1.8 8.98 110 14 1 

12 Lexus GS450h  2006 1890 253 1.5 18.65 186 14.2 1 

13 Estima  2006 2020 140 1.59 9.26 127 20 1 

14 Altima  2006 1573 147 30 13.29 160 14 1 

15 
Chevrolet 

Tahoe  
2007 3220 247 1.8 10.91 366 9.5 1 

17 Lexus LS600h 2007 2340 327 1.3 17.54 219 12.2 1 

18 Tribute  2007 1668 115 8.5 11.28 173 13.5 1 

19 GMC Yukon  2007 2388 247 1.8 12.28 108 9.26 1 
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Next, the effective time interval between the vehicle release and 2009 was calculated, 

as well as the 2009 efficiency scores for each vehicle as shown in Table 10. 

 

Table 10 Calculating the 2009 ROC 

# Product Year Φ_2008 Δt' Φ_2009 
γk_2009 = 

(φ_2009)^(1/Δt' ) 

1 Prius 1st gen. 1997 1 12 1 1 

2 Tino  2000 1 9 1 1 

3 Prius 2nd gen. 2000 1 9 1 1 

4 Civic Hybrid 1st gen. 2001 1 8 1 1 

5 Alphard  2003 1 6 1 1 

8 Civic Hybrid 2nd gen. 2005 1 0.87 1.12 1.12 

9 Highlander  2005 1 4 1 1 

10 Mercury Mariner 2006 1 3 1 1 

12 Lexus GS450h  2006 1 3 1 1 

13 Estima  2006 1 3 1 1.00 

14 Altima  2006 1 0.94 1.11 1.11 

15 Chevrolet Tahoe 2007 1 2 1 1 

17 Lexus LS600h 2007 1 2 1 1 

18 Tribute  2007 1 -1.20 1.08 1.08 

19 GMC Yukon  2007 1 2 1 1 

 

Since the technological frontier contains vehicles released in different time periods, for 

the vehicles which used to be SOA in 2008 but are no longer SOA in 2009, the effective time 

interval was calculated with the formula:  

∑ −=∆
n

j

jkkjk ttt ,)(' λ  

In this equation, tj and tk are the dates of release of 2009-SOA vehicle j and previously 

SOA, but in 2009 no longer a SOA vehicle k. Variable λk,j represents the weight of product j on 

the efficiency score of vehicle k and was generated by the DEA model used to calculate the 

efficiency scores. It can be seen in Table 10 that Civic 2
nd

 generation, Altima and Tribute are no 

longer SOA in 2009. Their Δt’ intervals were calculated using the values shown below (Table 11). 

Table 11 Calculation for the effective time interval when the SOA frontier 

  Civic Hybrid 2nd gen tk tj Δt' 

λ_2 0.24 2005 2000 0.87 

λ_4 0.13 

 

2001 

 λ_26 0.01 

 

2009 

 λ_31 0.62 

 

2009 
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  Altima Hybrid tk tj Δt' 

λ_5 0.16 2006 2003 0.94 

λ_12 0.36 

 

2006 

 λ_31 0.48 

 

2009 

 

       Tribute Hybrid tk tj Δt' 

λ_5 0.46 2007 2003 -1.20 

λ_12 0.15 

 

2006 

 λ_31 0.39 

 

2009 

 
 

The overall ROC for 2009 is then calculated as the average of the individual changes 

recorded by the 15 vehicles on the SOA frontier of 2008. The ROC for 2009 is thus 1.013, with a 

±0.02 confidence interval. 

 

Table 12 2009 ROC for HEVs 

ROC_2009 std 95% confidence interval 

1.013 0.05 0.098 1.037 

 

The values in Table 12 indicate that at a given vehicle weight, output power of the 

propulsion system and battery capacity, the three performance indicators (acceleration rate, 

fuel economy and CO2 emissions) are expected to increase at a rate of 1.3% each year. The 95% 

confidence interval on the mean is ±2.4%. The lower bound of the confidence interval will thus 

be 1.3-2.4 = -1.1% and will be called the conservative frontier. The negative value suggests 

technological regress cause by the introduction of several inferior products. The upper bound 

will be 1.3+2.4 = 3.7% and will be called the aggressive frontier.  

The sequence of steps to calculate the rate of change is summarized in the flowchart 

below: 
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Figure 10 Flow of an output-oriented TFDEA algorithm [27] 

 

Forecasting future frontiers 

 

In order to forecast future frontiers the data was divided between the reference set (i.e. the 

earlier released vehicles used as historical data to determine the rate of change) and the 

verification set (the later released vehicles whose performance is verified against the 

predictions in order to determine the accuracy of the forecasts). This choice is not random, but 

it is based on the limitations of DEA to identify SOA and non-SOA products in a data set 
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containing a number of products three times smaller than the number of inputs and outputs in 

the model. For this reason, EVs released up to 2008 are the reference set for the HEV and 

combined model. For the BEV model, year 2009 is taken as reference. Vehicles released 

between 2010 and June 2012 are used to verify the forecasts. 

Once the rate of change is known, the 95% confidence interval values are used to 

forecast future technology frontiers for the specified performance parameters. The 

conservative and aggressive frontiers are determined by the lower and upper bound of the 95% 

confidence interval. The future frontiers are calculated by multiplying each performance 

parameter on the current frontier by the rate of change value raised at an exponent equal to 

the number of time intervals passed. This is expressed mathematically with the formulas in 

Table 13. 

 

Table 13 Formulas to calculate future frontiers 

Conservative frontier Aggressive frontier 

20082008 −×= t

veconservatik

t

k onaccelerationaccelerati γ  
20082008 −×= t

aggressivek

t

k onaccelerationaccelerati γ  

20082008
22

−×= t

veconservatik

t

k COCO γ  
20082008

22
−×= t

aggressivek

t

k COCO γ  

20082008 −×= t

veconservatik

t

k yFuelEconomyFuelEconom γ  
20082008 −×= t

aggressivek

t

k yFuelEconomyFuelEconom γ  

20082008 −×= t

veconservatik

t

k RangeRange γ
 

20082008 −×= t

aggressivek

t

k RangeRange γ
 

 

Applying these formulas to each of the 2008 SOA products, generates a set of future 

vehicle performance parameters which are expected to determine the SOA frontier at a future 

time. 

The multidimensional nature of the HEV technology frontier makes it difficult to 

represent it graphically in a manner that is easy to visualize. Since the predicted values concern 

the future and some level of uncertainty should be taken into account, it is not interesting to 

look at forecast absolute values. Instead, the ranges predicted to be feasible for each 

parameter at a particular time in the future are considered. The range for each parameter is 

thus delimited by the minimum value on the conservative frontier and the maximum value on 

the aggressive frontier for each performance parameter. 

 

 

Using the forecasts 
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These predicted frontiers can be used in two ways.  

� One way is to determine how feasible the expected release date of a vehicle really is.  If 

the desired performance lies above the expected aggressive frontier, the release date 

might be too ambitious for what is considered to be feasible technology at the desired 

time of release. Alternatively, if a product with superior performance is confirmed to be 

released at the announced date, it is likely that it can become the new state of the art 

and change the shape of the technological frontier. 

� Alternatively, these frontiers can be used to determine whether an announced product 

has potential to be competitive at the intended date of release.  If the announced 

performance of a product under development lies below the expected conservative 

frontier at the time of release chances are that the product will be inferior with respect 

to the SOA at that time, and may therefore not be competitive compared to other 

vehicles present on the market at the release time.  

 

Forecast  verification 

 

In order to verify the forecasts, it was investigated whether the models were able to predict the 

remaining vehicles introduced from 2010 (2011 for the BEV model) until June 2012. It was 

considered that a vehicle was predicted if all of its performance specifications fall on or below 

the aggressive frontier. If at least one of its parameters falls above the aggressive frontier, the 

vehicle is considered to not have been predicted and is labeled as superior. Additionally, if all of 

the performance parameters of a vehicle fall between the conservative and the aggressive 

frontier, then the vehicle is considered to be predicted as SOA. If at least one of the parameters 

of a vehicle falls below the conservative frontier, then the vehicle is considered to be predicted 

as inferior. These conditions are summarized below: 
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Figure 11 Flowchart to determine whether a vehicle was predicted by the model 
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6. Results and discussion 

 

TFDEA was applied to the case of electric vehicle technologies as was presented in the previous 

section. The results are forecasts of future frontiers produced with the three models described 

in section 5. The forecasts were verified for accuracy against a set of existing products. Then, it 

was analyzed how the data availability and the assumptions of the TFDEA model impact the 

results of the forecast. In addition, it was verified, based on the results of the forecast, whether 

the TFDEA assumptions can be held valid in the case of electric vehicles.  

 

6.1 Results 

6.1.1 Applying the DEA model to determine the SOA of EV technology 

 

The number of HEVs and BEVs released from 1997 onwards are shown in Figure 12. As 

described in section 5, the three DEA models were used to calculate the efficiency scores for 

each vehicle for each year in the 1997-2012 time window. These scores are provided in 

Appendix D-F for the HEV, BEV and combined models respectively. With these efficiency scores, 

the yearly rate of change was calculated for each model. Afterwards, using the ROC value from 

2009, the new technology frontiers for 2010-2020 were predicted with the HEV and combined 

model. For the BEV model, the ROC value from 2010 was used and future frontiers were 

forecast for 2011-2020. Although the 2010-2012 period already belongs to the past, the 

“predictions” for these years were calculated in order to compare what was envisioned to be 

feasible vehicle performance during these years based on data available in 2009, with the 

actual performance of the vehicles released over this period. This comparison gives an 

indication of the accuracy of the forecasts produced with TFDEA and is therefore used as 

verification step for the TFDEA results. 
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Figure 12 Vehicles released between 1997 and June 2012 

 

6.1.2 Rate of change (ROC) curves 

HEVs ROC 

 

Looking at the ROC curve in Figure 13 and the HEVs released each year (Figure 12), it can be 

noticed that the ROC starts oscillating starting from 2006, which coincides with the moment 

when a larger number of HEVs were introduced on the market. It can be noticed that between 

2012 and 2011 a larger technological change was recorded. 

 

 
Figure 13 Rate of change HEVs 1997-2012 
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BEVs ROC 

 

The BEV ROC curve is shown in Figure 14. With the BEV model, the most significant progress 

was recorded between 2008 and 2009. At this point, the number of BEVs available is large 

enough for the DEA model to be able to determine a rate of change. Up to 2008, there were 

only six BEVs on the market. This number is too small for the DEA model to be able to identify 

the SOA and non-SOA products, therefore the calculated rate of change is 0. This does not 

mean that no progress was recorded in reality, it only means that the model was not able to 

compute it. However, the calculated rate of change for 2009 onwards is still very low, indicating 

very slow technological progress.  

 

 
Figure 14 Rate of change curve for BEVs 

 

Combined EV ROC 

 

The ROC determined with the combined model is shown in Figure 15. This curve shows a much 

larger technological change compared to the homogeneous models. But in this case also, 

progress starts being recorded as of 2009 onwards, when the number of vehicles is sufficiently 

large for the DEA to be able to calculate the efficiency scores. 

0.96

0.98

1

1.02

1.04

1997 1999 2001 2003 2005 2007 2009 2011 2013

R
O

C

Year

Rate of change for BEVs (1997-2012)

ROC ROC 95% confidence interval



Technology forecasting of electric vehicles using data envelopment analysis 75 

 

 Engineering and Policy Analysis  

 

 

Figure 15 Rate of Change curve for EV technology 

 

2012 SOA Frontier 

 

The efficiency scores for the combined model were analyzed to determine the SOA frontier for 

2012. The vehicles situated on the frontier are shown in Table 14. The weights imposed by 

these vehicles on the efficiency scores of the non-SOA vehicles are provided in Appendix H. 

These results help analyze the dominant technologies in 2012, which will be referred to as 

dominant peers. A state-of-the-art vehicle will be considered to be the dominant peer when it 

imposes the largest weight on the efficiency score of a non-SOA vehicle.   Looking at the 

weights calculated with the DEA model, it can be seen that the benchmarks for BEVs in 2012 

are Tango, from Commuter Cars, and Chery QQ3 EV, from Chery. These two BEVs are the 

dominant peers for the rest of the BEVs. For HEVs, the leading technologies seem to be Toyota 

Prius PHV, Opel Ampera and Honda Insight. The introduction of these three vehicles has 

changed significantly the shape of the technological frontier from 2012, imposing a new 

benchmark for HEV and PHV technologies. 
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Table 14 SOA frontier in 2012 

# Product year type 
Acceleration 

rate 
CO2 

Fuel 

economy 

Electric 

range 
Φ_’12 

2 Prius 1gen 1997 HEV 7.46 135 17.54 
 

1 

4 Prius 2 gen 2000 HEV 7.97 120 19.23 
 

1 

8 Tango 2005 EV 24.15 
  

241 1 

16 Lexus GS450h 2006 HEV 18.65 186 14.2 
 

1 

20 Chevrolet Tahoe 2007 HEV 10.91 366 9.5 
 

1 

22 Lexus LS600h/hL 2007 HEV 17.54 219 12.2 
 

1 

41 Forte LPI 2009 HEV 14.06 99 17.2 
 

1 

42 ActiveHybrid X6 2009 HEV 17.96 231 8 
 

1 

47 Zotye 5008 EV 2010 EV 7.14 
  

200 1 

61 
ActiveHybrid 7 

Series 
2010 Mild-HEV 20.41 219 9.4 

 
1 

66 Fuga Hybrid 2010 HEV 18.65 162 14.3 
 

1 

68 Chery QQ3 EV 2011 EV 15.38 
  

80 1 

69 Twizy Z.E. 2011 EV 9.66 
  

100 1 

72 Inizio RTX 2011 EV 28.41 
  

321 1 

83 Aqua 2011 HEV 9.35 111 35.4 
 

1 

89 Karma S 2011 PHEV 16.67 83 22.1 
 

1 

90 Buick Regal  2011 Mild-HEV 12.05 129 11.05 
 

1 

101 Prius PHV 2012 PHEV 8.82 41 61 
 

1 

102 Ampera 2012 EREV 11.11 40 83 
 

1 

106 Insight 2012 HEV 9.42 96 27.2 
 

1 

 

6.1.3 Forecasting future frontiers 

Future HEV technology frontiers 

 

One of the data requirements for the DEA model is that the number of DMUs in the model as at 

least three times larger than the number of inputs and outputs combined.  

Looking at the data sets, for the HEV model, there are 64 HEVs in total, introduced over 

a time window of 15 years and there are six technology attributes – three inputs and three 

outputs – in the model. During this time window, there are three periods (1998, 1999 and 

2002) when no new vehicles were introduced. At the same time, 40 out of the 64 vehicles were 

released in the 2009-2012 period. 

This means that only the DEA results from 2008 onwards could be considered reliable. 

For this reason, the 2009 ROC is used to determine the future technological frontiers for 2010 

until 2020.  

When analyzing the data in Table 9, it can be noticed that Chevrolet Tahoe has a much 

higher CO2 emissions level (366 g/km) compared to the rest of the vehicles.  



Technology forecasting of electric vehicles using data envelopment analysis 77 

 

 Engineering and Policy Analysis  

 

Table 15 Chevrolet Tahoe removed from the reference data set 

# Product Type Year 

Acceleration 

rate  CO2 

Fuel 

efficiency  Φ_2008 

15 Chevrolet Tahoe  HEV 2007 10.91 366 9.5 1 

 

This data point is an obvious outlier and leads to strange predictions. Leaving this 

vehicle in the reference set leads to expected CO2 emissions levels of above 400 g/km by 2020. 

Although this is mathematically correct given the computation method, and could even be 

feasible based on a very inefficient physical structure of the vehicle, it is not a realistic 

prediction. The CO2 emission levels are expected to decrease as a result of technological 

progress. The Tahoe was therefore removed. This did not have an impact on the ROC value for 

2009 as can be seen in Table 16. 

 

Table 16 2009 ROC after removing the Tahoe 

ROC_2009 std 95% confidence interval 

1.013 0.05 0.098 1.039 

 

Using the formulas in Table 13 for HEVs, the conservative technological frontier in a 

particular year will be determined by the minimum values for acceleration rate, CO2 level and 

fuel economy, and the aggressive technological frontier will be determined by the maximum 

values predicted for the three parameters 

In this manner, the future technological frontiers have been calculated for 2010 until 

2020. The results are shown in Figure 16. 

It has to be noted that the conservative frontier for the CO2 level contains the maximum 

values, while the upper bound holds the minimum values. This is due to the fact that a better 

vehicle performance is determined by a lower level of CO2 emissions. 

To illustrate how the predictions can be used, the Toyota Prius v is taken as an example. 

Prius v was announced for release in 2011, with acceleration rate of 9.5 km/h/s, CO2 emission 

level of 132 g/km and fuel economy of 14 km/l. The predicted technology frontier for 2011 was 

expected to contain vehicles with acceleration rates between 6.87 and 20.19 km/h/s, fuel 

economies between 9.03 and 24.9 km/l and CO2 emissions between 237 and 105.31 g/km. The 

Prius v thus falls within the predicted conservative and aggressive frontiers of 2011 which 

means that the release date was realistic and the vehicle had potential to be SOA.  
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Future BEV technology frontiers  

 

The BEV introductions have been even less regular than the HEVs. The BEV model uses a data 

set of 42 BEVs released between 1997 and 2012 and five technical attributes – three inputs and 

two outputs. During this time window, no new products were released between 1998 and 

2005. Out of the 42 existing BEVs, 32 of them were released in the 2010-2012 period. Year 2011 

saw 15 new BEVs, being the period with the most numerous releases.  

For the BEV model, the 2009 data was used to calculate the 2010 ROC because only in 

2009 were there sufficient vehicles released to be able to ensure the reliability of the DEA 

results. The ROC was then used to predict the technology frontiers from 2011 to 2020.  

Table 17 shows the BEV data used for the 2010 ROC calculation. The EVs in the table are 

the vehicles which were SOA in 2009. Looking at the acceleration rate column, it can be seen 

that Happy Messenger EV is an outlier. Keeping this vehicle in the data set will predict feasible 

acceleration rates of 3.39 km/h/s by 2020. This means that a BEV which accelerates from 0-100 

km/h in 29.44 seconds could be state of the art by 2020. This acceleration rate is already much 

lower than all EVs available on the market today and it is expected that future vehicles will have 

an even higher acceleration rate than the present ones. For this reason, Happy Messenger is 

removed from the data set, which does not change the value of the ROC.  

 

Table 17 2009 BEV data used to determine future frontiers 

# Product year type 
Acceleration 

rate 

Electric 

range 
φ_2009 Δt' φ_2010 

γ_2010 = 

(φ_2010)^(1/Δt' ) 

1 EV-Plus 1997 EV 9.80 190 1 13 1 1 

2 Happy Messenger EV 2005 EV 3.60 100 1 5 1 1 

3 Tango 2005 EV 24.15 241 1 5 1 1 

4 Venturi Fetish 2006 EV 22.47 350 1 4 1 1 

5 
Smart fortwo electric 

drive  1st gen. 
2007 EV 9.23 110 1 2.34 1.12 1.05 

6 Tesla Roadster 2008 EV 26.11 394 1 2 1 1 

7 Subaru Plug-in Stella 2009 EV 7.73 80 1 1 1 1 

8 
Smart fortwo electric 

drive 2nd gen. 
2009 EV 14.64 135 1 1 1 1 

 

The 2010 ROC value was calculated to be 0.69% with a 95% interval of ± 1.35% (Table 

18). This value was used to forecast the technology frontiers shown in Figure 17. 
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Table 18 2010 ROC for BEVs after removing Happy Messenger EV from the data set 

ROC_2010 std 95% confidence interval 

1.0069 0.018 0.99 1.02 
 

 

 

Figure 17 BEVs technology frontiers 2011-2020 
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Future EV frontiers 

 

The combined model used a set of 106 vehicles and seven attributes – three inputs and four 

outputs. From the total number of vehicles, 63 were released in the 2010-2012 period, while in 

1998, 1999 and 2002 no new vehicles were introduced. Year 2010 is the period with the most 

numerous releases, namely 24 new electric vehicles (HEVs and BEVs) launched. 

In this situation, the 2008 data was used to calculate the ROC value for 2009 and 

forecast the technology frontiers between 2010 and 2020 for all four performance parameters: 

acceleration rate, CO2 emissions, fuel economy and driving range. The rate of change 

calculated for 2009 is 5.7% with a 95% confidence interval of ±10% as shown in Table 19. The 

rate of changed determined with this model is significantly higher than the rates of change 

calculated with the HEV and BEV models. 

 

Table 19 2009 ROC for the combined data set 

ROC_2009 std 95% confidence interval 

1.057 0.22 0.95 1.166 

Using this ROC, the frontiers shown in Figure 18 were predicted. 
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Figure 18 Predicted EV technology frontiers 2010-2020 
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6.1.4 EV forecasts verification 

6.1.4.1 HEV forecast verification 

 

Based on the 2008 data, it was verified if the HEVs released in 2010, 2011 and 2012 were 

correctly predicted. The individual results are shown in Appendix G, Table 33, Table 34, Table 

35. 

 

Verification of HEV model predictions for 2010 based on 2009 data  

 

This model managed to predict 7 out of the 14 vehicles (50%) released in 2010, and all seven 

were predicted as SOA in 2010. Out of these 7 vehicles, two were correctly predicted to be SOA 

in 2010 - the Active and Fuga hybrids. The other five have measured efficiency scores larger 

than 1.0, therefore they should have been predicted below the conservative frontier by the 

model. 

The remaining 7 HEVs released in 2010 were not predicted by the model. Five of the 

seven perform better than the predicted aggressive frontier in terms of CO2 emissions. CR-Z is 

the only vehicle with a superior fuel economy, while Auris HSD performs better both in terms of 

CO2 emissions and fuel economy.  

 

Table 20 Verification of HEV model predictions for 2010 –model statistics 

Vehicles Qty. % 

Released in 2010 14 100% 

Predicted below the aggressive frontier 7 50% 

Predicted between the aggressive and conservative 

frontier 7 50% 

Predicted below the conservative frontier 0 0 

Not predicted 7 50% 

 

Verification of HEV model predictions for 2011 based on 2009 data 

 

The HEV model managed to predict 5 out of the 11 vehicles (45.45%) released in 2011. Out of 

these 5 vehicles, only two were correctly predicted to be SOA in 2011 - Fit Shuttle Hybrid and 

Buick Regal. According to the measured 2011 efficiency scores, Optima K5, Prius v, and Civic 3
rd

 

generation lay below the real technology frontier for 2011 when they should have been 

predicted below the conservative frontier by the model. 
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Out of the 11 released vehicles, 6 (54.55%) were not predicted. All of these 6 vehicles 

score better than the predicted aggressive frontier on at least one of the performance 

parameters. The superior performance appears in terms of CO2 emissions level and/or fuel 

economy.  

Table 21 Verification of HEV model predictions for 2011 –model  statistics 

Vehicles Qty. % 

Released in 2011 11 100% 

Predicted below the aggressive frontier 5 45.45% 

Predicted between the aggressive and conservative 

frontier 5 45.45% 

Predicted below the conservative frontier 0 0 

Not predicted 6 54.55% 

 

Verification of HEV model predictions for 2012 based on 2009 data 

 

In 2012, until June there were six HEVs released. Only three (50%) of the six were predicted by 

the HEV model and all three were predicted as SOA. The results are shown in Appendix G, Table 

35 and the model statistics summarized in Table 22. Comparing the predictions with the 

measured efficiency score, only Lexus GS450, with an efficiency score of 1.03 comes very close 

to the real 2012 technology frontier. Prius c and Active Hybrid 5 series have efficiency scores 

higher than 1.0, thus they should have been predicted below the conservative frontier by the 

model.  

The remaining three vehicles - Prius PHV, Ampera and Insight – were not predicted. All 

three HEVs show superior performance in terms of CO2 emissions and fuel economy compared 

to what was considered to be feasible by 2012 based on the forecast from 2009. 

 

Table 22 Verification of HEV model predictions for 2012 – model statistics 

Vehicles Qty. % 

Released in 2012 6 100% 

Predicted below the aggressive frontier 3 50% 

Predicted between the aggressive and conservative 

frontier 3 50% 

Predicted below the conservative frontier 0 0 

Not predicted 3 50% 
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The vehicles which were not predicted by the HEV model with their inputs are shown in 

Table 23. All of these vehicles show superior performance in terms of CO2 emissions and/ or 

fuel economy. Looking at the inputs of these cars, it can be noticed that they have slightly 

different input characteristics compared to the vehicles in the reference set which were used to 

create the forecast. What all these HEVs have in common is a smaller than average ICE and 

system output power, with the exception of Karma S. Karma S is a PHEV which drives in electric 

mode only and uses the ICE to power up a generator to charge the battery. The weaker ICE 

engines and the electric-only drive mode explain how it is possible for these vehicles to achieve 

such low fuel consumption levels and decreased CO2 emissions. 
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Table 23 HEVs not predicted by the HEV model 

Product Type Year Weight 

Output 

power 

EM 

power 

ICE 

power 

Battery 

capacity 

Acceleration 

rate  CO2 

Fuel 

economy 

           HEV set average 

  

1691.08 155.06 69.29 128.52 5.28 11.40 139.41 18.59 

           Auris HSD HEV 2010 1320 98 60 71 1.3 8.85 90 29 

CR-Z HEV 2010 1160 91 15 83 0.85 9.24 117 25.8 

F3DM PHEV Low-carbon Version PHEV 2010 1560 125 50 50 20 9.24 63 12.82 

Jeep Patriot EV PHEV 2010 1410 150 150 122 35 12.05 50 12.5 

Besturn B50 PHEV 2010 1285 76 20 69 18 7.14 70 13.3 

Fit/ Jazz Hybrid HEV 2010 1130 75 10 65 20 8.26 104 22.73 

Chevrolet Volt PHEV 2010 1715 111 75 60 16 10.78 52.5 14.88 

Aqua (the Japanese version of 

Prius c) HEV 2011 1134 73.5 45 54 0.93 9.35 111 35.4 

Lexus CT200h HEV 2011 1420 99 60 73 1.3 9.71 89 26.3 

Prius alpha 

7 seats HEV 2011 1480 100 60 73 1.3 10.00 100 31 

3008 Hybrid4 HEV 2011 1660 121 28 122 1.1 11.36 99 26 

Karma S (drives only in electric 

mode) PHEV 2011 2400 300 300 193.88 20 16.67 83 22.1 

Freed/ Freed Spike Hybrid HEV 2011 1380 73 10 68 0.82 6.29 95 21.6 

Prius PHV PHEV 2012 1490 100 60 73 4.4 8.82 41 61 

Ampera EREV 2012 1715 110 111 0 16 11.11 40 83 

Insight HEV 2012 2747 73 10 65 0.6 9.42 96 27.2 
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6.1.4.2 BEVs forecast verification 

 

Based on the forecast BEV technology frontiers, it was verified if the BEVs released in 2011 and 

2012 were correctly predicted by the model. The individual results are presented in Appendix G 

(Table 36, Table 37) . 

 

Verification of BEV model predictions for 2011 based on 2010 data 

 

Out of the 15 BEVs released in 2011, 14 (93%) were predicted by the BEV model. Three of the 

14 (20%) were predicted as inferior products, below the conservative frontier. Yet only one of 

these three – Ray EV- was correctly predicted as inferior; the other two, BYD e6 and Wave II SE, 

lay on the real SOA frontier in 2011, thus should have been predicted between the conservative 

and aggressive frontiers by the model. From the 11 BEVs predicted to be SOA in 2011, only 

eight are indeed SOA based on their 2011 efficiency score. The other three – Wave II s, Inizio R 

and Electric C30 – lay below the 2011 frontier and therefore should have been predicted as 

inferior products (below the conservative frontier) by the model. 

Only one BEV released in 2011 was not predicted – Inizio RTX. This vehicle shows a 

superior performance in terms of acceleration, higher than the predicted aggressive frontier. 

 

Table 24 Verification of BEV model predictions for 2011 – model statistics 

Vehicles Qty. % 

Released in 2011 15 100% 

Predicted below the aggressive frontier 14 93.33% 

Predicted between the aggressive and conservative 

frontier 11 73.33% 

Predicted below the conservative frontier 3 20% 

Not predicted 1 6.67% 

 

Verification of BEV model predictions for 2012 based on 2010 data 

 

With respect to the vehicles introduced in 2012, the model predicted all the 7 vehicles released 

to be below the aggressive frontier, and 6 of them were forecast as SOA in 2012. From these 6, 

only four of them are indeed SOA. Zoe Z.E. has an efficiency score of 1.06, which places it very 

close to the 2012 SOA frontier, but Coda Sedan has a score of 1.14 and should have been 

predicted below the conservative frontier. The model has wrongly predicted Fluence Z.E. as an 

inferior product, when in reality, this vehicle is SOA.  
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Table 25 Predictions for 2012 using the BEV model 

Vehicles Qty. % 

Released in 2012 7 100% 

Predicted below the aggressive frontier 7 100% 

Predicted between the aggressive and conservative 

frontier 6 85.71% 

Predicted below the conservative frontier 1 14.29% 

Not predicted 0 0 

 

6.1.4.3 EV combined  forecasts verification 

 

Based on the EV technology frontiers forecast, it was verified if the HEVs and BEVs released in 

2010, 2011 and 2012 were correctly predicted by the model. The individual results are provided 

in Appendix G (Table 38, Table 39, Table 40). 

 

Verification of combined model predictions for 2010 based on 2009 data 

 

Using the combined model, 19 (79%) of the 24 HEVs and BEVs released in 2010 were predicted 

below the aggressive frontier. Two of these vehicles – REVAi and C-Zero – were predicted as 

inferior products, but only C-Zero is indeed inferior with an efficiency score of 2.51; REVAi has a 

score of 1.0 and should have been predicted as SOA. From the 19 vehicles predicted as SOA, 

only five have an efficiency score of 1.0, the rest should have been predicted as inferior 

products. 

Five vehicles were not predicted by the model. All these vehicles show superior 

performance in terms of CO2 emissions. Auris HSD performs better than the aggressive frontier 

also in terms of fuel economy. 

Table 26 Predictions for 2010 using the combined model 

Vehicles Qty. % 

Released in 2010 24 100% 

Predicted below the aggressive frontier 19 79.17% 

Predicted between the aggressive and conservative 

frontier 17 70.83% 

Predicted below the conservative frontier 2 8.33% 

Not predicted 5 20.83% 
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Verification of combined model predictions for 2011 based on 2009 data 

 

A total of 84.62% from the HEVs and BEVs released in 2011 were predicted based on the 2008 

data and 15.38% were not predicted. From the 19 vehicles predicted as SOA, 13 are in reality 

inferior products. At the same time, two of the vehicles predicted as inferior – Twizy Z.E. and 

Chery - are in reality SOA. From the vehicles that were not predicted by the model, Lexus 

CT200h and Karma have superior CO2 emissions levels, while Aqua has a better fuel economy. 

Freed appears to be superior from the point of view of CO2 emissions, but inferior from the 

point of view of acceleration.  

 

Table 27 Vehicles predictions for 2011 using the combined model 

Vehicles Qty. % 

Released in 2011 26 100% 

Predicted below the aggressive frontier 22 84.62% 

Predicted between the aggressive and conservative 

frontier 19 73.08% 

Predicted below the conservative frontier 3 11.54% 

Not predicted 4 15.38% 

 

Verification of combined model predictions for 2012 based on 2009 data 

 

From the vehicles introduced in 2012, only two were not predicted – Prius PHV and Ampera. 

Both of them perform better than the forecast CO2 level and fuel economy. The rest of the 

vehicles were forecast as SOA, although in reality only the Insight is indeed SOA in 2012; the 

rest should have been predicted below the conservative frontier.  

 

Table 28 Vehicle predicted for 2012 using the combined model 

Vehicles Qty. % 

Released in 2011 13 100% 

Predicted below the aggressive frontier 11 84.62% 

Predicted between the aggressive and conservative 

frontier 11 84.62% 

Predicted below the conservative frontier 0 0 

Not predicted 2 15.38% 

 



Technology forecasting of electric vehicles using data envelopment analysis 90 

 

Anca-Alexandra Tudorie  EPA, 2012 

6.2 Discussion 

DEA results 

 

Looking at the efficiency scores calculated by all three models, it can be noticed that until 2008 

all vehicles are ranked as state-of-the-art. This is a result of the computation mechanisms of the 

DEA model. The large number of attributes allows for a relatively large number of efficient 

vehicles, which increases the percentage of vehicles ranked as SOA. What happens is that, given 

a certain DMU, the model looks in the reference set for other DMUs with equal or higher 

output-to-input ratios. When there are very few DMUs in the data set, chances are that there 

are no comparable DMUs in the reference set, and consequently the DMU under analysis will 

automatically get an efficiency score of 1.0 and will be considered SOA, although this may not 

necessarily be the case. Therefore there are two problems which occur due to the limited 

number of products and a large number of model variables.  

� Inferior (i.e. inefficient) products are not properly identified because there are no similar 

peers in the data set to prove their relative inefficiency.  

� Superior (i.e. super efficient) products are not properly evaluated, because the best 

score a product can get is 1.0, and in order to identify a superior product, the model 

should be able to generate a positive score below 1.0.  

As a consequence, there are less representative SOA frontiers to be analyzed. Therefore 

a large number of attributes included in the model, combined with a low number of products 

released over a relatively short time window will decrease the reliability of the forecasts. 

 

Past and present SOA frontiers 

 

Analyzing the vehicles on the past and present technology frontiers determined with the 

combined model, it can be noticed that the frontiers are mostly dominated by HEVs and PHVs. 

Only very few BEVs are present on the frontiers. This could indicate that hybrid vehicles tend to 

have a better performance on average compared to BEVs and are the dominating technology 

for the time being. This conclusion is in line with other analysis of EV technologies which claim 

that HEVs and PHVs might be the preferred technology until further improvements in the 

battery technology [37, 41] and is also shown by the fact that the number of HEVs on the 

market is double the number of BEVs. Still, this does not provide a strong enough argument to 

claim that the situation will remain the same in the future. Additional information on how 

different external forces, could accelerate the technological change in BEVs in order to 

determine whether the HEV can be expected to remain the dominant design for a long time. 
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ROC 

 

The rates of change calculated with the three models are quite different (Figure 19). This is to 

be expected, since the rate of change is determined based on the efficiency scores, which are in 

turn dependent on the data in the model. The fact that for the first 11-12 time periods all 

vehicles were ranked as SOA by the DEA model, no technological progress can be calculated. 

This reduces significantly the possibility to identify if there is a visible historical pattern of 

progress. The variation of the ROC curves seems to be indeed very small, however, it is difficult 

to say if the assumption of a constant rate of change is valid under the conditions that for at 

least 11 out of the 15 time periods evaluated there is no information with respect to changes in 

technological progress.  

The ROC curve for the HEV model shows a large increase in technological progress, 

almost 25% higher in 2012 compared to previous years. The year 2012 has seen the 

introduction of Opel Ampera, Toyota Prius PHV and Honda Insight. These vehicles show 

superior performance compared to any previously introduced HEVs or PHVs, becoming the 

leading benchmarks for HEV technology. The introduction of these superior vehicles changes 

the shape of the 2011 SOA frontier and leads to the highest level of technological change 

recorded by HEVs so far. 

The inevitable question is whether from this point onwards the HEV technology should 

be expected to continue on this steep progress slope or if the rate of change will decrease 

again. Unfortunately, this cannot be deduced from the current analysis. The data available is 

not able to produce a historical pattern on which such a thesis could be built. What can be said 

though, is that given the large difference between the 2009 ROC and the 2012 ROC, it is 

expected that a forecast produced with the same model, but based on 2013 data will lead to a 

different estimation of future performance. Year 2013 is indicated and not 2012, because the 

vehicles have to be present in the model for at least one period of time, in order to determine 

whether they maintained their SOA position, or if their performance has been surpassed by 

newer releases. 
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Figure 19 Comparison between the 3 ROC curves 

 

Future frontiers 

 

One thing to notice when looking at the predicted frontiers is that the range for each parameter 

grows ever wider the further it goes into the future. This is typical of forecasting based on 

extrapolating techniques and makes sense because the forecaster should be looking at ranges 

of possibilities, not at nominal predictions. Nominal predictions would be likely to fail because 

they would leave no room for future uncertainties. 

For all three models, the lower bound of the 95% confidence interval of the ROC records 

technological regress. This is caused by the fact that many electric vehicles were released with 

inferior performance compared to older vehicles. This can be seen by looking at the efficiency 

scores of all three models. Cars such as EV plus, Tino and Prius 1
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 and 2
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 generation, which 

were released before 2001 remained SOA until at least 2011, while many cars released in 2010-

2011 were not SOA at their time of release. This causes the TFDEA conservative frontier to 

predict a trend of technological regress, indicated by the downward shift, while the aggressive 

frontier keeps shifting upwards, recording technological progress. 

The predicted ranges for each performance parameter (i.e. the interval between the 

minimum value on the conservative frontier and the maximum value on the aggressive frontier) 

grow ever wider the further they go into the future, up to the point when the conservative 

frontier reaches 0 and the aggressive frontier indicates unrealistic levels of performance. 

Forecasts produced with extrapolating techniques are notorious for becoming invalid 

[11] the further they extend into the future. TFDEA seems to make no exception to the rule. It 
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parameters within reasonable bounds. Of course, certain values could be manually removed 

0.85

0.95

1.05

1.15

1.25

1.35

1995 2000 2005 2010 2015

R
O

C

year

Rate of change curves for the three 

models

BEV ROC Combined ROC HEV ROC



Technology forecasting of electric vehicles using data envelopment analysis 93 

 

 Engineering and Policy Analysis  

from the frontiers based on the judgment of the forecaster, but this would, to some extent 

defeat the purpose of using an automated long-term forecasting tool which can generate 

future frontiers based on the existing state of the art.  

Implementing a useful automated mechanism to restrict the variables from exceeding 

realistic values is very difficult to achieve. TFDEA allows for the simultaneous analysis of 

multiple variables of different natures and with different measurement units. As much as this 

is a valuable strength of TFDEA, it also means that not all variables can be restricted in the 

same way, therefore the mechanism should be customized per type of variable. In theory this 

could be done by thinking upfront of all possible types of variables users of TFDEA could 

introduce in their analysis and provide suitable constraints for each type. In practice however, 

this would be very labor-intensive and may not add value to the method. Imposing certain 

constraints on future performance may keep the variables within limits acceptable to the 

forecaster, but it could also prevent the forecaster to identify potential breakthroughs, which, 

by default, will have unusual characteristics.   

 

HEV model forecasts 

 

Concerning the frontiers predicted with the HEV model the following remarks can be made: 

� One striking thing is the CO2 evolution. The model predicts for 2020 feasible emissions 

levels between 93.02 g/km (aggressive frontier) and 349.91 g/km (conservative 

frontier). The aggressive value is credible, although several vehicles available in 2012 

already reach lower emissions levels. The conservative value on the other hand is 

significantly higher than most vehicles considered inferior in 2012. The expectations are 

that CO2 emissions decrease, therefore it is unlikely that products considered SOA in 

2020 will be producing such quantities of CO2.  

� The fuel economy values seem realistic; however, the forecast values for 2020 have 

already been exceeded in 2012.  

� The forecast acceleration values also seem realistic and probable. The aggressive value 

for acceleration indicates that it will be feasible for an HEV to accelerate from 0 to 100 

km/h in 3.36 seconds. The fastest HEV released to date is ActiveHybrid 7 series (2010) 

with a 0-100 acceleration time of 4.9 seconds, while the average 0-100 time of the 

vehicles released until June 2012 is 8.76 seconds. Therefore it sounds probable that with 

innovative techniques to decrease the weight of the car, or to use a stronger EM in the 

drivetrain over the coming years, future HEVs would be able to achieve this level of 

performance. 

 

 

 



Technology forecasting of electric vehicles using data envelopment analysis 94 

 

Anca-Alexandra Tudorie  EPA, 2012 

BEV model forecasts 

 

The frontiers forecast until 2020 with the BEV model do not raise particular question marks 

since the values seem realistic. The aggressive frontier indicates feasible ranges of 480 km. This 

may seem rather high, considering the discussions focused on the current state of battery 

technology and the limitations it imposes on BEV performance. Yet, Inizio RT is able to drive 402 

km on a battery charge since 2011. Taking this fact into account and considering the fast-speed 

battery developments for laptops, such a long driving range could be achieved within the 

coming years. 

 

Combined model forecasts 

 

Looking at the technology frontier for 2020 determined with the combined model a few things 

can be noticed. 

� The conservative frontier indicates feasible CO2 emission levels of 1197 g/km. This value 

is completely unrealistic, given on the one hand, that the tendency is to decrease the 

CO2 level, and on the other hand, that the HEV with the highest CO2 level of emissions 

currently available is the Chevrolet Tahoe, emitting 366g/km; all the other HEVs perform 

much better than that .  

� The aggressive CO2 frontier gives a rather reasonable prediction for the CO2 

performance, however, in 2012, there are already vehicles capable of reaching values 

lower than this. Toyota’s Prius PHV and Opel Ampera have been released on the market 

in the first half of 2012 and reach CO2 levels of 41 and 40 g/km respectively. It has to be 

noted though that Prius is a plug-in hybrid and Ampera is an extended range electric 

vehicle. The forecasts were made based on 2009 data, and at that point no EREV had 

been introduced yet, while the first PHV was released in 2008.  This means that with the 

level of technology in 2009 such advanced performances could not be anticipated. 

� The acceleration and range values predicted for 2020 are also rather extreme. The 

aggressive forecast indicates that by that time it will be feasible to accelerate from 0-

100 km/h in less than a second. The fastest car in the world at the moment, Bugatti 

Veyron Super Sport, can reach 0-96.6 km/h in 2.4 seconds [43], yielding an acceleration 

rate of 40.25 km/h/s. It is hard to believe that this could be achieved within the coming 

eight years for a passenger vehicle without completely revolutionizing the way vehicles 

are built. Also, such a level of performance would not even be necessary for a regular 

car. In addition, these results suggest that it might be possible to drive about 2000 

kilometers on a battery charge. This value is too high to be realistic. For such ranges to 

really be feasible, significant advancements in the battery technology would be 

required, as well as ingenious ways of improving the efficiency of a vehicle’s drivetrain. 
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� As for the conservative frontier, the predicted acceleration (3.95 km/h/s) and range 

(61.63 km) values are lower than for most vehicles already available. On the other hand, 

these values could be an indication of the potential spread of a different type of EVs - 

small city battery vehicles, such as REVAi (Figure 20), which could offer performances 

comparable to electric scooters for example. Such vehicles would be used only for city 

drives and would not need to drive at high speeds or over long ranges. 

� The aggressive frontier indicates a fuel efficiency of almost 126 km/l. This value could 

seem rather high, but then again, Opel Ampera can already reach 83 km/l in 2012, 

followed by Prius PHV with 61 km/l, after the best fuel economy in 2011 was achieved 

by Toyota Aqua, with 35.4 km/l. At present, most hybrid vehicles are able to drive in 

electric mode only up to a speed of 30-40 km/h. Looking at these three examples of 

vehicles, it could be possible to achieve fuel economies in the order of 100 km/l by 2020 

focusing the designing efforts on cars capable to drive in electric mode over the whole 

speed range, and perhaps only use fuel to charge the battery while driving. Such a 

configuration is already implemented by Opel in their Ampera EREV. The 2012 SOA 

frontier and calculated efficiency scores show that Ampera is the new benchmark for 

the performance of other PHEVs and HEVs.  Due to its superior performance compared 

to older HEV configurations, the EREV configuration used by Opel Ampera has potential 

to become a disruptive technology. 

 

Figure 20 REVAi by Mahindra Revai Electric Vehicle 

 

Using a constant ROC to forecast new technology frontiers implies that all the 

performance parameters are expected to grow or decrease at the same rate, since all 

parameter values are multiplied by the same quantity (i.e. the ROC raised at an exponent equal 

to the difference between the time of the forecast and the moment of the release). Two issues 

are noticed concerning this mechanism: 

� First of all, this may not be the case in reality, especially since sometimes trade-

offs between performance parameters need to be made. For example, in order 
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to increase the acceleration rate, a more powerful engine may be required. A 

powerful engine consumes more fuel, therefore, based on the design priorities, 

the vehicle might be designed to achieve better fuel economy at the expense of 

acceleration. 

� Secondly, when comparing the forecasts produced with the individual models 

and the combined model, it can be noticed that some of the forecast 

performance parameters achieve unrealistic values much faster with the latter. 

This happens especially with parameters that have large nominal values, such as 

range and CO2 emissions. The ROC value used to determine future frontiers with 

the combined model is much higher than the ROC used in either the HEV or the 

BEV model. This suggests that assuming as constant a large rate of change may 

invalidate the forecast faster than when the ROC is smaller, because it may 

calculate a rate of technological growth which cannot be sustained in reality. For 

this reason it is important to have sufficient historical evidence that the ROC 

does have the tendency to remain constant over time. 

The constant rate of change is identified by the TFDEA literature as a weakness of the 

method which could lead to errors in long term forecasts. Based on the results presented in 

section it could be concluded that when the calculated rate of change is large, this assumption 

can also lead to errors in the medium-to-short-term forecasts.  

 

Accuracy of predictions 

 

The percentage of HEVs which were not predicted is higher than the percentage of BEVs. 

Especially the PHVs and the EREVs were never predicted by the models. All of the vehicles 

which were not foreseen by the model show a much better performance in terms of fuel 

economy and CO2 emissions. This indicates that in the case of HEVs technological change 

occurs even faster than predicted with the ROC calculated by the model. To an extent this 

makes sense, because while BEVs depend almost entirely on the battery limitations, the HEVs 

have more input variables which can be tuned in order to achieve the desired performance. 

Compared to BEVs, hybrid vehicles have a more complex architecture which allows for more 

design flexibility and possibilities for trade-offs. This gives more opportunities to improve the 

vehicle performance by modifying different parts of the drivetrain structure. 

It was shown that all the vehicles that achieve a better performance than forecast 

manage to do that by using a different input configuration compared to the vehicles included in 

reference set of the forecast. This means that what appeared to be a relatively homogeneous 

HEV technology in 2009, at the time the forecast was created, has diversified into different 

configurations which can achieve higher levels of performance. When creating a forecast, the 

model assumes the proliferation of a certain input combination. Since none of these new 

structures were present in the reference set, they could not be anticipated. 
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One thing that is not taken into account in the reference set of the HEV model is the 

possibility to make more use of the advantages of driving in electric mode. Most of the HEVs in 

the reference set are strong hybrids with very small batteries and small electric motors, which 

allow the HEV to drive in electric mode only at very low speeds and accelerations. Therefore the 

reference set does not reflect the relevance of battery technology for the developments of 

HEVs because small batteries are sufficient for regular strong hybrids. The battery technology 

only becomes important for newer HEV configurations, such as PHVs and EREVs, which make 

more use of the electric drive mode. 

By comparison, the combined model yields more accurate predictions than the HEV 

model. By including all electric vehicles in the model, the reference set is able to reflect the 

possibility to utilize larger batteries and to develop mechanisms which allow hybrid vehicles to 

drive in electric mode. But even in this case, most of the vehicles which were not predicted 

generally perform better from the point of view of CO2 emissions, and in some cases, fuel 

economy. 

What might seem to be an odd coincidence is the fact that the performance parameters 

which tend to advance more abruptly than predicted by the model are exactly the ones which 

are the target of governmental regulation, namely fuel economy and CO2 emissions. This may 

not be accidental though. Although HEVs perform really well and manage to meet the imposed 

fuel economy and CO2 level on their own, the regulation targets the whole or at least a certain 

percentage of the total car fleet. This means that there is a strong incentive for the auto makers 

to improve the performance of the HEVs in order to drive down the average fuel economy and 

CO2 emissions of their fleet. This suggests that significant efforts should be expected from car 

manufacturers to improve these performance parameters in the future. 

It should be taken into account that no matter how efficient HEVs will become, as long 

as they use fuel for any operation purpose, the fuel consumption and CO2 emissions will never 

disappear, therefore the only alternative in this respect is the BEV. In addition, the combined 

drivetrain carries additional weight when one of the main strategies for improving the 

environmental performance of HEVs is to decrease the weight. Therefore it is expected that 

eventually the combined drivetrain will become an obsolete configuration. Verbong and Geels 

[44] claim that the transition towards a niche technology can be achieved only when regulation 

and consumer behavior are ready to accept and accommodate the new technology. For electric 

vehicles this would mean that the BEVs would become the norm only when a beneficial 

regulatory framework would be in place and consumers would be willing to change their driving 

behavior from relying on fuel to relying on the car battery when driving. 

Overall, the BEV model predictions seem to be quite accurate. The BEV model also 

calculates a much slower rate of change compared to the other two models. This is most likely 

due to the fact that the BEV technology is homogeneous compared to HEV technology. The 

battery capacity has the largest impact on the performance of a BEV. In terms of performance, 

no other limitations exist for BEVs except for the limited range caused by limited battery 

performance. 
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Figure 21 BEV driving range vs. battery capacity 

 

Figure 21 shows that there is a linear relation between driving range and battery 

capacity which implies that technological progress in BEV technology will occur as a response to 

advancements in battery technology. This means that as long as ‘better’ batteries do not exist, 

or exist but are too expensive to achieve the desired performance at a reasonable cost, there 

are limited possibilities to improve the performance of BEVs. Therefore it could be assumed 

that BEV performance will only advance as fast as battery developments. This also means that 

an investigation of the technological progress of batteries may provide valuable information 

about what can be expected from BEVs in the future. 

 

6.3 Threats to validity 

 

The assumption of a constant rate of change had already been recognized by previous TFDEA 

research as a limitation which can lead to errors for long term forecasting. Yet the results of the 

HEV TFDEA model show that this can also be an issue for the short-to-medium term by causing 

the performance parameters to exceed reasonable bounds due to computational mechanisms. 

In addition, the assumption of a constant rate of change cannot be supported by the existing 

data, and therefore cannot be validated. Although very little variation can be seen in the annual 

ROCs recorded between 2008 and 2012 for the three models, the TFDEA algorithm is not able 

to generate sufficient information about the past to be able to evaluate technological progress 

from the first introductions of electric vehicles, thus there is insufficient proof to assume that 

the ROC will remain constant over time. 

Parallel developments and regulations can also pose a challenge to the validity of the 

forecasts produced using TFDEA. Assuming a constant rate of change could be justified when 

the technology has reached a rather stable phase, when the design and manufacturing 
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processes have been standardized. The mere existence of several electrical vehicle 

architectures (strong hybrid, plug-in hybrid, extended range hybrid, battery electric) shows that 

this is not yet the case. It was shown that superior performance was achieved through 

exploration of novel driving concepts and resulted in a further diversification of the drivetrain 

structure.  The design process seems to be evolving, leading to innovative solutions to improve 

the performance. At the same time, significant research is being conducted in order to improve 

the current state of battery technologies, which is considered to have a major impact on the 

course of EV developments. 

TFDEA assumes linear relations between technology inputs and technology 

performance. For electric vehicles, this may be an oversimplification of the relations between 

inputs and outputs, but the system analysis conducted in section 3 and literature on technology 

innovation and technology forecasting offers arguments that this could be a reasonable claim. 

What is not realistic for EVs is the assumption of constant inputs. The TFDEA method produces 

forecasts assuming that not much is changing in the input configuration, yet this is obviously 

not true for electric vehicles. The performance of a vehicle is delivered by the components of 

the drivetrain, therefore improving the performance requires different design choices for the 

component parts. In addition, some of the performance parameters of electric vehicles are 

influenced by regulation, causing a second order effect on the input configuration. 
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7. Conclusions & recommendations 

 

Developments of EV technologies are likely to have significant social and economic implications 

for different public and private actors. EV technology forecasting is therefore needed to identify 

these impacts and signal necessary adjustments in corporate strategies and public policy. This 

report presented an investigation on whether it is possible to apply technology forecasting 

using data analysis (TFDEA) in order to determine which of the current electric vehicle 

technologies has potential to become the dominant design in the future. 

The main concerns regarding the use of TFDEA in the beginning of this study were 

related to the model assumption of linear relations between inputs and outputs of technology 

and of constant rates of change, but also to uncertainties on whether the existing EV data 

would be sufficient to produce meaningful results. To identify if the method can be used to 

create reliable forecasts of the EV technological progress, a technical system analysis was 

performed first in order to determine the main technical attributes of EV technologies; then the 

TFDEA algorithm was applied. 

The system analysis helped provide understanding of the basic operation mechanisms of 

EV systems and of the relations between different EV design variables. Such information was 

necessary in order to properly identify and select those design parameters that are responsible 

for the EV performance and which can impose limitations to further technological 

advancements. For both families of vehicles, the output power of the propulsion unit, the 

charge storage capacity of the battery and the vehicle weight were found to be the main 

determinants for EV performance. In this study, the performance of BEVs was expressed in 

terms of acceleration possibilities and driving range, while for HEVs fuel economy, CO2 

emissions and acceleration were selected as key performance indicators. 

The technical and performance attributes of EVs were used as inputs and outputs 

respectively in three TFDEA models. Two of the models were used to evaluate the individual 

technological progress of BEVs and HEVs as homogeneous products, while the third model was 

used to determine the rate of technological change over the full class of EVs. Each model was 

used to produce a forecast for yearly EV performance levels until 2020. These forecasts were 

verified for accuracy against a set of existing products. Then, it was analyzed how the data 

availability and the assumptions of the TFDEA model impact the reliability and validity of the 

forecast. The main conclusions of the investigation are shown in this section. 

 

� Is the DEA assumption that technology outputs are a linear function of technology 

inputs supported by vehicle design theory? 

TFDEA assumes linear relations between technology inputs and technology performance. For 

electric vehicles, this assumption is realistic to a limited extent. This is especially visible in the 

case of battery electric vehicles. As shown in Figure 21, there is a linear relation between 

battery capacity and electric range. 
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� What are the consequences of data availability for the application of the method? 

 

It was noticed that a large number of attributes included in the model, combined with a low 

number of products released over a relatively short time window might decrease the reliability 

of the forecasts. This is caused by the computational mechanisms of the DEA model. The large 

number of attributes allows for a relatively large number of efficient vehicles, which increases 

the percentage of vehicles ranked as SOA. On the one hand, this causes inferior products to be 

ranked as ‘best performers’ because there are no similar peers in the data set to prove their 

relative inefficiency. On the other hand, superior (i.e. super efficient) products are not properly 

evaluated, because the best score a product can get is 1.0, and in order to identify a superior 

product, the model should be able to generate a positive score below 1.0. As a consequence, 

there are less representative SOA frontiers to be analyzed. Furthermore, for the first 11-12 time 

periods all vehicles in the data set were ranked as SOA, therefore no rate of change could be 

calculated. This reduces significantly the possibility to analyze whether there is a visible pattern 

of constant progress. 

 

� What are the implications of assuming a constant rate of change on the accuracy 

and validity of the EV forecasts? 

 

The assumption of a constant rate of change can lead to errors both in long term and short 

term forecasting. First of all, the assumption of a constant rate of change cannot be supported 

by the existing EV data, and therefore cannot be validated. Although very little variation can be 

seen in the annual ROCs recorded between 2008-2012 for the three models, the DEA algorithm 

is not able to generate sufficient information about the past in order to be able to evaluate 

technological progress from the first introductions of electric vehicles, thus there is insufficient 

proof to assume that technological progress will remain constant over time. 

Secondly, using a constant ROC to forecast new technology frontiers implies that all 

performance parameters are expected to grow or decrease at the same rate, since all 

parameter values are multiplied by the same quantity (i.e. the calculated ROC raised at an 

exponent equal to the difference between the time of the forecast and the moment of the 

release). In reality, this is not always the case, because design trade-offs need to be made 

between different performance parameters. 

With respect to accuracy, the BEV and combined models were more accurate in 

predictions than the HEV model. The percentage of HEVs which were not predicted is higher 

than the percentage of non-predicted BEVs. Configurations such as PHVs and EREVs were never 

anticipated. However, the inaccuracy of the HEV model is not caused by the constant ROC 

assumption, but by the assumption that technology inputs remain constant over time. This 

inherent assumption of the output-oriented DEA model is not realistic for the case of electric 

vehicles. As was shown in section 3, bottlenecks in improving the vehicle performance can 
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often only be overcome by changing the internal configuration of the vehicle, in other words, 

by changing the technology inputs. All the vehicles that achieve a better performance than 

forecast use a different input configuration compared to the vehicles included in the reference 

set of the forecast. Thus, assuming constant inputs conflicts with vehicle design principles and 

vehicle manufacturing possibilities. 

 

� Can the method anticipate the consequences of external factors such as innovation 

in substitute and sub-component technologies, or regulation of performance 

parameters, such as fuel economy and CO2 emissions, on the technological change 

of EV technology? 

 

Based on the results analysis, it can be concluded that TFDEA is not capable of anticipating 

neither regulation influences, nor the impact of parallel breakthroughs on technological 

progress. 

Different EV configurations can be considered substitute technologies – they all provide 

the same functionality (transportation), but one configuration could be preferred over another 

based on the EV attributes (e.g. limited range versus zero tailpipe emissions) that provide the 

most utility for the user. In order to determine if a certain EV design has potential to dominate 

the industry, it is important to be able to anticipate the emergence of possible disruptive 

substitutes and how these would affect the development of existing technologies. The results 

of the three models show that the TFDEA does not offer the possibility to foresee the 

introduction of potentially disruptive technologies, such as the PHV and the EREV. This is due to 

the fact that the forecasts produced with TFDEA identify what may be feasible in the future 

based only on what exists today. TFDEA assumes that inputs remain constant over time and has 

no mechanism to identify future re-configurations of inputs which could lead to better 

performance. With respect to developments in sub-component technologies, such as batteries, 

the previous argument still holds. Assuming constant inputs prevents the model from 

anticipating any sudden change which was not accounted for in the reference data set.  

As could be seen from the results of the HEV model, TFDEA is not capable to anticipate 

the impact of regulation on vehicle performance. According to Bright [11], regulation of 

performance parameters might have as an effect the slow-down or the speed-up of the 

innovation process. It was observed that the TFDEA models consistently predicted lower CO2 

emission and fuel economy levels than was achieved in reality. TFDEA assumes a constant rate 

of change, therefore, it is not able to foresee any disturbance in the progress of innovation 

caused by a force from outside of the technology system. 

 

Q.2 Can the method be implemented given the current state of EV technology? 
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The relatively large number of variables used in the models limited the possibility to 

analyze technological change for the period 1997-2009. However, at the moment, there is 

sufficient data which meets the requirements of TFDEA, as well as arguments to consider that 

EV performance is a function of the vehicle sub-components, therefore the method can be 

implemented. The DEA technique offers the possibility to analyze multiple attributes for 

multiple EV technologies simultaneously which constitutes an advantage. The DEA model can 

also be used on its own for benchmarking purposes, to identify the state-of-the-art frontier for 

electric vehicles. Perhaps using fewer variables could have yielded better mathematical results, 

but it was decided that none of the selected variables could be removed, since that would 

limited the possibility to analyze the impact of certain factors on technological progress.  

 

Q1. To what extent can the TFDEA method be used to identify a potentially dominant EV design 

in the future? 

 

Before providing an answer to the main research question, some general observations 

concerning the TFDEA method, which resulted from the EV case study, are presented below: 

� TFDEA provides a simple and easy to use tool for measuring technological 

progress, but it is very data intensive, which constitutes a problem for emerging 

technologies for which only a few products have been introduced.  

� The method allows for multi-criteria analysis which is a definite advantage. The 

downside is that the number of variables which can be included in the analysis is 

limited by the number of products in the data set, therefore the fewer the 

products available, the fewer the number of variables which can be used. This is 

a disadvantage for complex technologies characterized by many attributes. 

� The DEA model does not require predetermined mathematical relations 

between inputs and outputs or pre-assigned weights for each variable. Yet, the 

quality of the forecast depends mostly on the selection of variables used. This 

means that the forecaster should have sufficient knowledge and understanding 

of the technology under study and its operation mechanisms to be able to select 

the right set of variables. Therefore, in situations when the forecaster is not 

familiar with the technology under analysis, performing TFDEA could be either 

labor-intensive, if the forecaster would perform the system analysis on their 

own, or expensive, when experts are required to identify the input and output 

variables for the DEA model.  

� Even in situations when the technology is more mature and sufficient data exists, 

as well as understanding of the technology, product data confidentiality can be a 

problem for TFDEA. TFDEA requires information on the inputs of a technology, 

but much of the manufacturing related information which could be used to 

determine technological progress, such as manufacturing costs, for example, will 

not be disclosed by companies. Therefore forecasters may find themselves 
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constrained to a limited choice of variables for which data can be acquired, 

which limits the possibility to investigate the full range of opportunities for 

technological advancement. 

� It was shown that TFDEA is not able to anticipate the influence of regulation on 

performance parameters. This indicates that the method is very sensitive to 

exogenous drivers of technological change. The EV case study shows that the 

approach to evaluate the performance of a technology as a linear function of its 

inputs is an oversimplification which cannot be used for complex technologies 

with economic and socio-political implications.  

� Using a constant ROC for forecasting is not realistic, because innovation does not 

occur at a regular pace. Such an assumption can be valid in situations when 

historical data is able to identify that the technological progress remained 

constant over the years and no external forces are expected to cause 

disruptions. If this is not the case, the forecast will be biased by the reference set 

used to produce it. Using as reference a year when a relatively low rate of 

change was recorded can lead to underestimations of future performance, as 

could be seen from the results of the HEV model. Alternatively, choosing a 

reference year with a large rate of change, may predict non-sustainable 

improvements in product performance.  

 

The TFDEA method was applied in this study to obtain information on future technological 

progress and performance of the EV technology. The analysis conducted in this reports leads to 

the conclusion that the TFDEA model would not yield reliable long-term forecasts for the 

evolution of EV performance. Although the TFDEA results seem to be accurate enough for short 

term forecasting, the assumptions of the method decrease the reliability of the results.  

In addition, estimating technological progress from the current state of technology is 

not sufficient to give an indication of which EV configuration will become dominant in the 

future. Due to the wide implications for different sectors of activity, the adoption of electric 

vehicles is expected to not depend completely on technical performance, but also on the 

availability of supporting technologies and reduced cost opportunities for consumers. 

 

Recommendations 

 

At the moment, HEVs offer superior performance compared to both BEVs and ICVs and are 

expected to remain a preferred technology in the near future. Especially the EREV and PHV 

configurations seem to have potential to act as disruptive technologies, especially for the 

standard hybrid configurations. Their main disadvantage is the extra weight imposed by the 

combined drivetrain, which will eventually pose limitations to further developments. However, 

despite the apparently inferior performance of BEVs compared to HEVs and the acute 
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dependency on battery charging facilities, the need for introducing BEVs on a larger scale seems 

to be recognized due to different reasons of national security and environmental concerns. 

Therefore it can be expected that external forces will try to accelerate EV technological 

progress. In addition, it would be naïve to deny the importance of innovative business models 

and parallel technological innovations which are emerging in order to ensure a competitive 

market position for battery electric vehicles. 

Porter et al. [45] indicate that technological changes in one technology will drive 

changes in other technologies. Given the current EV state of the art frontier, which is 

dominated mostly by hybrid vehicles of different configurations, it might be more meaningful 

to identify the conditions which can lean the scale towards hybrid or battery electric designs in 

the future. One way to do this is to perform an analysis of the impacts [45] of BEV technology. 

First of all, long-lasting batteries available at reasonable cost are required to eliminate 

the range limitations of BEVs. Technology forecasting of battery technology advancements can 

offer an indication of when major improvements could be expected in the performance level of 

BEV. If battery advancements are slow, it is expected that the availability of a charging 

infrastructure will ease the requirements on the battery storage capacity decrease the 

consumers’ concerns related to the limited range provided by the battery. At present there are 

two major trends for implementing such an infrastructure: fast plug-in charging stations and 

battery switch stations.  

Fast charging stations use the same plug-in mechanism as regular power outlets, but 

supply a higher voltage, which means that they allow a larger volume of power to flow into the 

battery in a certain amount of time. This reduces the charging time from several hours (when a 

regular power outlet is used) to below one hour. This implementation of a fast-charging 

network is recommended by the Electrification Coalition [46] as part of a U.S nation-wide 

strategy to merge the power and the transportation sector. The alternative is a network of 

battery switch stations [47], where the driver can have the empty battery changed for a new 

one. This follows a marketing strategy to commercialize the battery as a separate service not as 

an integral part of the vehicle [1]. The Israeli company, the Better Place [48] has started 

deployment of pilot battery switch stations in several countries, such as Denmark, Israel and 

the Netherlands.  

Regardless of the technical and economic advantages and disadvantages of the two 

alternatives, they both require standardized interfaces between the BEV and the charging 

station, as well as electricity grid capacity to accommodate a large number of BEVs on the road. 

To identify when charging infrastructures will be available for BEVs, an investigation of 

standardization tendencies for the BEVs is required. Such an investigation can be done through 

literature review of standardization possibilities and targets for the auto industry. 

With respect to the grid capacity implications, the widespread adoption of BEVs is 

expected to be facilitated by the widespread of green power plants and the implementation of 

smart grids. The introduction of BEVs is seen as a favorable factor [46] which can improve the 

efficiency of intermittent green energy sources, such as wind and solar energy. The BEV 

batteries are seen as a potential storage alternative for the excess energy generated by wind 
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and solar plants. One major concern with respect to the impact of a large number of vehicles 

plugged in to the grid at the same time is load variation [1]. However, Serra [1] and the 

Electrification Coalition [46] see this as an opportunity to accelerate smart electrical grid 

development and adoption. Smart grids rely on information and communication systems, such 

as smart meters, which provide real-time communication of the consumer behavior in order to 

improve the efficiency of the system. Deployment of BEVs on a large scale is believed to open 

new market opportunities for smart grid innovations. Martino [49] claims that technology 

indicators for market shift, such as patents or scientific publications, can give an up to three 

year notice before a certain technology becomes available.  To identify when the necessary grid 

supporting technologies will be in place, a review of market shift indicators of a transition 

towards the smart grid could be performed.    

Furthermore, experience shows that it is not always the best performing technology 

which becomes the market leader. Governmental support for a certain technology could be, in 

some cases, the showstopper for another [11, 29]. An investigation of different governmental 

plans and intentions is necessary to reveal market opportunities and national preferences for 

different EV configurations. Such plans and intentions could refer, for example, to charging 

infrastructure projects or announced imports of electric vehicles. It is expected that different 

countries will show different positions towards EV technologies, based on the national 

economic characteristics. Given that the transport sector is one of the largest oil consumers 

[50], countries which rely on oil exports will likely show resistance towards the proliferation of 

EVs. On the other hand, countries with large amounts of renewable energy and no proper 

storage possibilities, such as Sweden and Denmark [44], may encourage the adoption of EVs.  

Another important disadvantage of BEVs is their high initial cost imposed by the cost of 

the battery. Innovative contracting and leasing schemes are developed to eliminate this 

obstacle. Among the strategies adopted, one notable approach is to transform the battery in a 

separate service [1] instead of treating it as a part of the vehicle. The buyer purchases the 

vehicle only, while the battery remains under the ownership of the manufacturer or the battery 

supplier. The battery is contracted for a monthly cost together with maintenance and support 

services. This strategy is meant to decreases the initial cost of the vehicle and could accelerate 

the penetration of EVs on the market. In order to determine how fast the widespread adoption 

of BEVs could take place, an analysis combining consumer research and market structure 

research [6] could be performed. The consumer research can be done through surveys to 

gather information on the expectations of different groups of users. Market structure research 

could be done using tools such as Porter’s market forces model to identify when the necessary 

conditions (price, quality, charging infrastructure, etc.) to fulfill the consumers’ expectation 

would be in place. 

Moreover, it should be analyzed how the current dynamics of the car industry can 

impact the EV technological progress. One thing that was noticed during the data collection 

process is that many of the electric vehicles in the data set have been the result of collaboration 

between different car manufacturers. At the same time, several joint ventures between 

different auto makers have taken place over the past years.  Joint forces between large auto 

makers will likely lead to knowledge spill-overs, which are recognized by economics of 
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innovation theory to be an important driver of technological change [51, 52]. Therefore, these 

alliances may accelerate the course of technological progress. The potential impact of 

knowledge diffusion due to strategic partnerships on EV technological advancements may be 

very difficult to measure, but it could perhaps be evaluated based on lessons learnt from similar 

situations either from the car industry, or from other industries. 

,  

Bottom line 

 

The present study has identified that TFDEA is not a suitable method for analyzing technological 

progress of electric vehicle technologies. This is due to the high sensitivity to exogenous drivers 

and its limited capability to anticipate the introduction of potentially disruptive design 

configurations. These limitations are mostly a result of the assumptions that inputs and the rate 

of change remain constant over time. 

In order to obtain an overview of development possibilities for different EV 

configurations a simple analysis of technological progress in not sufficient. It was pointed out 

that technological performance may not be the only factor responsible for a product’s success. 

Due to the economic, environmental and political consequences, technological progress of 

electric vehicles is expected to be accelerated or slowed-down by different technological and 

context factors, such as battery technologies, available infrastructures, standardization 

opportunities, consumer acceptance, national interests and governmental support. Additional 

information on these factors is required to identify the necessary conditions, and when it is 

expected that the conditions are met, to be able to anticipate a potential transition towards a 

certain EV design. Such information can be produced through different techniques. This section 

indicated the use of technology forecasting and market shift indicators analysis to identify 

possible innovations in EV supporting technologies. Furthermore, combined analysis of 

consumer research and market structure analysis can help identify the market forces expected 

to affect further advancements of electric vehicles.  In addition, monitoring government and 

industry plans can provide information on potential standardization opportunities and 

strategies meant to accelerate the adoption of BEVs. 

In the light of the analysis, it is concluded that TFDEA would not be a useful forecasting 

tool for emerging technologies with significant economic and socio-political implications. The 

model could, however, provide a simple and easy to use forecasting tool for established 

technologies which have shown constant progress over time, given that no exogenous forces 

are expected to influence the technological change. Furthermore, TFDEA could be used for 

forecasting simple technologies whose performance can be expressed with very few attributes, 

and whose performance is not targeted by governmental regulation.  
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Appendix A: Classification of electric vehicles 

 

Several notations are available in the literature for the classification of electric vehicles. 

This is only evidence that the technology is still fairly new and a standardized nomenclature has 

not yet been introduced. Throughout this report, the following terminology and classification 

will be used. 

 

Electric vehicles (EVs) 

Electric vehicles are vehicles driven by an electric motor. This term is used without 

discrimination between pure-electric and hybrid electric vehicles. Electric vehicles can classified 

based on their propulsion system (drivetrain) architecture into battery electric vehicles (BEVs) 

and hybrid electric vehicles (HEVs). 

 

Figure 22 Electric vehicles - classification 

Battery electric vehicles (BEVs) 

Battery electric vehicles are fully electric vehicles, powered only by an electrochemical 

battery. The vehicle propulsion (VP) system of a BEV is composed of an electric motor, 

electronic control units (ECUs) and a simpler transmission system compared to an internal 

combustion vehicle (ICV). The power source in BEVs is an electrochemical battery which 

supplies energy for the operation of the vehicle. The electric motor delivers the traction force 

required to move the vehicle. The propulsion system contains the electric motor and all the 

auxiliary devices required to convert the electrochemical energy provided by the battery into 

kinetic energy at the wheels.[1, 2] 
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Hybrid electric vehicles (HEVs) 

A hybrid electric vehicle is a vehicle which combines an electric power and a combustion 

power source. This category of vehicles excludes electric vehicles powered by fuel

ultracapacitors. Based on the structure of the drive train, HEVs can be categorized into parallel, 

series and combined hybrid systems. 

The drive train structure determines the level of hybridization of an HEV. Based on the 

level hybridization, HEVs can further classified as full (or strong) hybrids, power

micro hybrid, mild hybrid, plug-in hybrids.

 

Parallel HEVs 

The parallel HEV has both an intern

The fuel tank supplies gasoline to the engine, while a set of batteries supply power to an 

electric motor. Both the electric motor and the gas engine can provide propulsion power.

Figure 

 

Series HEVs 

A series HEV is driven by an electric motor. The ICE never powers the car directly, but 

drives an electric generator which charges the battery and powers the electric motor.

Figure 
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is a vehicle which combines an electric power and a combustion 

power source. This category of vehicles excludes electric vehicles powered by fuel

ultracapacitors. Based on the structure of the drive train, HEVs can be categorized into parallel, 

eries and combined hybrid systems.  

The drive train structure determines the level of hybridization of an HEV. Based on the 

level hybridization, HEVs can further classified as full (or strong) hybrids, power

n hybrids. [1, 2, 38, 39] 

The parallel HEV has both an internal combustion engine (ICE) and an electric motor. 

The fuel tank supplies gasoline to the engine, while a set of batteries supply power to an 

electric motor. Both the electric motor and the gas engine can provide propulsion power.

 

 

Figure 23 Parallel HEV drivetrain structure [39] 

A series HEV is driven by an electric motor. The ICE never powers the car directly, but 

electric generator which charges the battery and powers the electric motor.

 

 

Figure 24 Series HEV drivetrain structure [39] 
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is a vehicle which combines an electric power and a combustion 

power source. This category of vehicles excludes electric vehicles powered by fuel-cells and 

ultracapacitors. Based on the structure of the drive train, HEVs can be categorized into parallel, 

The drive train structure determines the level of hybridization of an HEV. Based on the 

level hybridization, HEVs can further classified as full (or strong) hybrids, power-assist hybrid, 

al combustion engine (ICE) and an electric motor. 

The fuel tank supplies gasoline to the engine, while a set of batteries supply power to an 

electric motor. Both the electric motor and the gas engine can provide propulsion power.[39] 

A series HEV is driven by an electric motor. The ICE never powers the car directly, but 

electric generator which charges the battery and powers the electric motor.[38] 
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Combined HEVs 

The combined HEV Incorporates features of both parallel and series hybrid systems. 

Combined HEVs maintain the parallel structure, with the difference that the ICE is also used to 

charge up the battery during idle periods of the vehicle. This helps inc

efficiency of the vehicle and diminishes the role of the regenerative breaking system.

Figure 25

 

Full (or strong) HEVs 

A full (or strong) HEV is an HEV which can drive on electr

low-speed and low-acceleration, but cannot be recharged from the grid. The

gasoline engine as the primary source of power.

 

Power-assist HEV 

Power-assist HEVs on electric power alone. Power

motors and batteries because the role of these components is reduced to providing torque 

boosts in order to assist the internal combustion engine (ICE) during heavy acceleration. These 

vehicles cannot drive in electric mode

 

Micro HEV 

Micro HEVs are internal combustion vehicles (ICVs) with very small electric motors and 

batteries. The motor and battery are never used for the propulsion of the vehicle, they a

integrated into the vehicle for energy conservation through ICE shutdown during idle times and 

regenerative breaking. This configuration helps improve the energy efficiency of the vehicle, 

yet, micro HEVs are contested by many experts, including th

Engineers, because they do not fit the definition of a hybrid vehicle, which combines electric 

and combustion power for propulsion.

 

 

Mild HEV 
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The combined HEV Incorporates features of both parallel and series hybrid systems. 

Combined HEVs maintain the parallel structure, with the difference that the ICE is also used to 

charge up the battery during idle periods of the vehicle. This helps increase the overall 

efficiency of the vehicle and diminishes the role of the regenerative breaking system.

 

25 Combined HEV drivetrain structure [39] 

A full (or strong) HEV is an HEV which can drive on electricity only for short distances 

acceleration, but cannot be recharged from the grid. The

gasoline engine as the primary source of power.[1, 39] 

assist HEVs on electric power alone. Power-assist HEVs use smaller electr

motors and batteries because the role of these components is reduced to providing torque 

boosts in order to assist the internal combustion engine (ICE) during heavy acceleration. These 

in electric mode.[1, 39] 

Micro HEVs are internal combustion vehicles (ICVs) with very small electric motors and 

batteries. The motor and battery are never used for the propulsion of the vehicle, they a

integrated into the vehicle for energy conservation through ICE shutdown during idle times and 

regenerative breaking. This configuration helps improve the energy efficiency of the vehicle, 

yet, micro HEVs are contested by many experts, including the ones at the Society of Automotive 

Engineers, because they do not fit the definition of a hybrid vehicle, which combines electric 

ombustion power for propulsion.[1] 
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Engineers, because they do not fit the definition of a hybrid vehicle, which combines electric 



Technology forecasting of electric vehicles using data envelopment analysis 114 

 

Anca-Alexandra Tudorie  EPA, 2012 

The mild HEV is an ambiguous term used often in advertising campaigns to define an 

HEV ‘below’ a full hybrid. The ambiguity is used with the intention to increase the credentials of 

the power-assist technology by associating it with the Micro HEV technology. Due to its 

controversy, this “mild HEV” concept will not be used as a classification criterion in the data 

analysis of this report.[1] 

 

Plug-in hybrid electric vehicles (PHEV) 

A plug-in hybrid electric vehicle retains the entire internal combustion engine system, 

but adds battery capacity to extend the operation of the electric motor. The PHEV can be driven 

either by an electric motor (EM) or by the internal combustion engine ICE. Also, the PHEV can 

recharge its battery directly from the grid in order to allow for longer driving ranges. Therefore 

these vehicles combine the efficiency advantages of hybridization with the opportunity to travel 

part-time on electricity provided by the grid, instead of only relying on the vehicle’s internal 

recharging system.[38] 

 

Extended range electric vehicle (EREV) 

This term is used to define a sub-category of PHEVs. Unlike plug-in hybrid vehicles, 

which can be driven either by the EM or ICE, the EREV can be driven only by their electric 

motor. These vehicles are provided with a small ICE connected to a generator which recharges 

the battery. This structure makes it possible to use a smaller battery for a much longer range. 

However, since they have a fuel powered generator, these vehicles cannot be considered to be 

emission-free.[39] 
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Appendix B: DEA Macro 

Sub DEA() 

‘this Macro is meant to automate the DEA model runs such that all efficiency scores are calculated and 

the lambdas are recorded. 

'declare dmu as integer 

Dim dmu As Integer 

‘NumberOfDMUs is the number of vehicles in one run 

For dmu = 1 To NumberOfDMUs 

'set the value of cell E2 equal to dmu 

Range("E2") = dmu 

'run the Solver model. the user finish is set to true so that the dialogue box does not appear 

SolverSolve UserFinish:=True 

'place the efficiency in column T, starting with row 2 

Range("T" & dmu + 1) = Range("F3") 

'select the cells containing the optimal lambdas (S2 onwards) 

Range("lambdas").Select 

'copy the selected lambdas and paste them to row dmu+1 starting with row V 

Selection.Copy 

Range("V" & dmu + 1).Select 

Selection.PasteSpecial Paste:=xlPasteValues, Transpose:=True 

Next dmu 

 

End Sub 
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Appendix C: EVs and HEVs specifications 

Table 29 EV specifications 

# Product year type Weight 

Output 

power 

Battery 

capacity 

Acceleration 

rate CO2 

Fuel 

economy 

Electric 

range 

1 EV-Plus 1997 EV 1620 49 26 9.80 190 

2 Prius (1st gen.) 1997 HEV 1240 50 1.7 7.46 135 17.54 

3 Tino Hybrid 2000 HEV 1500 83 0.6 8.20 182 23 

4 Prius (2nd gen.) 2000 HEV 1640 57 1.7 7.97 120 19.23 

5 Civic Hybrid 1st gen. 2001 HEV 1290 69 0.85 7.04 137 20 

6 Alphard Hybrid  2003 HEV 2100 96 4.4 8.33 173 17.2 

7 Escape Hybrid 2004 HEV 1656 116 1.8 10.32 174 13.6 

8 Tango 2005 EV 1300 42 34 24.15 241 

9 Happy Messenger EV 2005 EV 1050 20 13 3.60 100 

10 Lexus RX400h 2005 HEV 1960 200 1.8 12.76 192 12 

11 Civic Hybrid 2nd gen 2005 HEV 1260 82 0.86 7.63 129 17 

12 Highlander Hybrid 2005 HEV 2160 200 1.3 12.76 165 12.5 

13 Venturi Fetish 2006 EV 1225 180 28 22.47 350 

14 Mercury Mariner Hybrid 2006 HEV 1664 115 1.8 8.98 110 14 

15 Camry Hybrid 2006 HEV 1550 140 1.59 11.28 180 14.3 

16 Lexus GS450h  2006 HEV 1890 253 1.5 18.65 186 14.2 

17 Estima Hybrid 2006 HEV 2020 140 1.59 9.26 127 20 

18 Altima Hybrid 2006 HEV 1573 147 30 13.29 160 14 

19 Smart fortwo el. drive  1st gen 2007 EV 730 30 13.2 9.23 110 

20 Chevrolet Tahoe Hybrid 2007 HEV 3220 247 1.8 10.91 366 9.5 

21 Kluger Hybrid  2007 HEV 1890 200 1.3 12.76 173.5 11 

22 Lexus LS600h/hL 2007 HEV 2340 327 1.3 17.54 219 12.2 

23 Tribute Hybrid 2007 HEV 1668 115 8.5 11.28 173 13.5 

24 GMC Yukon Hybrid 2007 HEV 2388 247 1.8 12.28 108 9.26 
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# Product year type Weight 

Output 

power 

Battery 

capacity 

Acceleration 

rate CO2 

Fuel 

economy 

Electric 

range 

25 Tesla Roadster 2008 EV 1235.1 215 56 26.11 394 

26 Crown Hybrid 2008 HEV 1840 220 1.3 8.70 173 15.8 

27 Cadillac Escalade Hybrid 2008 HEV 2527 275 1.8 9.09 256 9.5 

28 F3DM 2008 PHEV 1540 125 20 9.52 130 12.8 

29 Subaru Plug-in Stella 2009 EV 1010 47 9 7.73 80 

30 Venturi Fetish 2009 EV 1125 180 45 22.47 290 

31 Smart fortwo el. drive 2nd gen 2009 EV 730 20 16.5 14.64 135 

32 Think city 2009 EV 1038 34 23 7.69 160 

33 A5 BSG 2009 HEV 1290 95 5.2 7.87 158 15 

34 Lexus RX450h 2009 HEV 2130 220 2.4 13.47 148 18.8 

35 ML450 Blue HV 2009 HEV 2150 250 2.4 12.60 185 10.2 

36 Prius (3rd gen.) 2009 HEV 1350 100 1.3 9.60 111 20.4 

37 S400 Hybrid/ Hybrid Long 2009 HEV 1980 220 0.9 13.89 190 11.2 

38 Mercury Milan Hybrid 2009 HEV 1691 142 1.4 11.55 108 17.3 

39 Lexus HS250h 2009 HEV 1640 187 1.98 11.55 163 23 

40 Avante/ Elantra LPI 2009 HEV 1297 99 1.4 10.21 99 17.8 

41 Forte LPI 2009 HEV 1297 83.85 0.95 14.06 99 17.2 

42 ActiveHybrid X6 2009 HEV 2580 357 2.4 17.96 231 8 

43 SAI 2009 HEV 1590 140 4.4 11.55 105 23 

44 i-Miev (G Grade) 2010 EV 1100 25 16 10.00 180 

45 Benni Mini EV 2010 EV 950 20 19.2 8.20 105 

46 Zotye 2008 EV 2010 EV 1200 27 25 8.05 200 

47 Zotye 5008 EV 2010 EV 1200 11 32 7.14 200 

48 Mercedes-Benz A-class E-Cell 2010 EV 1325 70 36 10.91 200 

49 Riich M1 EV 2010 EV 1050 30 20.16 7.14 160 

50 REVAi 2010 EV 665 13 9.6 5.71 80 

51 Leaf 2010 EV 1520 80 24 8.40 160 

52 Peugeot iOn  2010 EV 1080 47 16 10.00 160 
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# Product year type Weight 

Output 

power 

Battery 

capacity 

Acceleration 

rate CO2 

Fuel 

economy 

Electric 

range 

53 C-Zero 2010 EV 1110 50 16 6.67 150 

54 Auris HSD 2010 HEV 1320 98 1.3 8.85 90 29 

55 CR-Z 2010 HEV 1160 91 0.85 9.24 117 25.8 

56 F3DM PHEV 2010 PHEV 1560 125 20 9.24 63 12.82 

57 Touareg HV 2010 HEV 2240 279 1.7 15.38 193 12.2 

58 Audi Q5 2010 HEV 1730 176 1.3 14.08 159 14.3 

59 Jeep Patriot EV 2010 PHEV 1410 150 35 12.05 50 12.5 

60 Besturn B50 2010 PHEV 1285 76 18 7.14 70 13.3 

61 ActiveHybrid 7 Series 2010 Mild-HEV 1720 342 0.4 20.41 219 9.4 

62 Lincoln MKZ Hybrid 2010 HEV 1632 142 1.5 11.15 109 16 

63 Fit/ Jazz Hybrid 2010 HEV 1130 75 20 8.26 104 22.73 

64 Sonata HV 2010 HEV 1568 155 1.4 14.70 170 15.73 

65 Cayenne S HV 2010 HEV 2240 275 16 14.71 193 11.1 

66 Fuga Hybrid/ Infiniti M35h 2010 HEV 2135 268 1.4 18.65 162 14.3 

67 Chevrolet Volt 2010 PHEV 1715 111 16 10.78 52.5 14.88 

68 Chery QQ3 EV 2011 EV 1050 12 10.8 15.38 80 

69 Twizy Z.E. 2011 EV 450 15 7 9.66 100 

70 Inizio R 2011 EV 1406 175 40.32 16.37 241 

71 Inizio RT 2011 EV 1633 175 96.78 13.61 402 

72 Inizio RTX 2011 EV 1769 290 80.64 28.41 321 

73 I-Miev (M Grade) 2011 EV 1070 25 10.5 8.12 120 

74 Like G-grade 2011 EV 1130 25 16 8.12 180 

75 Like M-grade 2011 EV 1090 25 10.5 8.12 120 

76 BMW Active E  2011 EV 1800 125 32 10.73 160 

77 BYD e6 2011 EV 2295 75 48 6.90 300 

78 Electric C30 2011 EV 1347 82 24 8.78 144 

79 Wave II, S model 2011 EV 1020 47 33.6 8.05 241 

80 Wave II, SE model 2011 EV 1065 47 40.3 7.61 321 
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# Product year type Weight 

Output 

power 

Battery 

capacity 

Acceleration 

rate CO2 

Fuel 

economy 

Electric 

range 

81 Beijing C30DB 2011 EV 1540 47 20.2 7.81 150 

82 Ray ev 2011 EV 1185 50 16.4 6.29 138 

83 Aqua  2011 HEV 1134 73.5 0.93 9.35 111 35.4 

84 Lexus CT200h 2011 HEV 1420 99 1.3 9.71 89 26.3 

85 Civic Hybrid 3rd gen 2011 HEV 1302 82 0.94 9.60 109 18.86 

86 Prius alpha 2011 HEV 1480 100 1.3 10.00 100 31 

87 3008 Hybrid4 2011 HEV 1660 200 1.1 11.36 99 26 

88 Fit Shuttle Hybrid 2011 HEV 1190 76 0.6 7.52 120 25 

89 Karma S 2011 PHEV 2400 194 20 16.67 83 22.1 

90 Buick Regal eAssist  2011 Mild-HEV 1641 153 0.5 12.05 129 11.05 

91 Prius v  2011 HEV 1485 100 1.3 9.51 132 14 

92 Freed/ Freed Spike Hybrid 2011 HEV 1380 73 0.82 6.29 95 21.6 

93 Optima K5 HV 2011 HEV 1583 153 30 10.54 158 15.3 

94 Fluence Z.E. 2012 EV 1543 70 22 7.30 185 

95 Coda Sedan 2012 EV 1670 100 31 11.36 144 

96 Focus Electric 2012 EV 1644 107 23 10.73 120 

97 RAV4 EV 2012 EV 1829 80 41.8 13.80 160 

98 Fit EV 2012 EV 1475 123 20 10.62 200 

99 e6 Premier 2012 EV 2020 75 48 12.08 300 

100 Zoe Z.E. 2012 EV 1400 70 22 12.35 160 

101 Prius PHV 2012 PHEV 1490 100 4.4 8.82 41 61 

102 Ampera 2012 EREV 1715 110 16 11.11 40 83 

103 ActiveHybrid 5 Series 2012 HEV 1980 250 6.75 16.67 155 13.6 

104 Prius c 2012 HEV 1134 73.5 0.93 9.35 111 17.85 

105 Lexus GS450h (2013 MY) 2012 HEV 1865 253 1.8 16.95 137 12.3 

106 Insight 2012 HEV 2747 73 0.6 9.42 96 27.2 
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Appendix D: Efficiency scores HEVs 

Table 30 Efficiency scores HEVs 

# Product Year Φ_'97 Φ_'00 Φ_'01 Φ_'03 Φ_'04 Φ_'05 Φ_'06 Φ_'07 Φ_'08 Φ_'09 Φ_'10 Φ_'11 Φ_'12 

1 Prius 1st gen 1997 1 1 1 1 1 1 1 1 1 1 1 1 1 

2 Tino Hybrid 2000 1 1 1 1 1 1 1 1 1 1 1 1.17 

3 Prius 2nd gen 2000 1 1 1 1 1 1 1 1 1 1 1 1 

4 Civic Hybrid 1st gen 2001 1 1 1 1 1 1 1 1 1 1 1.30 

5 Alphard Hybrid  2003 1 1 1 1 1 1 1 1 1 1.41 

6 Escape Hybrid 2004 1 1 1.08 1.08 1.08 1.15 1.15 1.15 1.33 

7 Lexus RX400h 2005 1 1.14 1.14 1.14 1.15 1.15 1.15 1.28 

8 Civic Hybrid 2nd gen 2005 1 1.00 1.00 1.00 1.12 1.12 1.28 1.41 

9 Highlander Hybrid 2005 1 1 1 1 1 1 1 1.20 

10 Mercury Mariner Hybrid 2006 1 1 1 1 1.04 1.07 1.39 

11 Camry Hybrid 2006 1.11 1.11 1.11 1.23 1.23 1.26 1.34 

12 Lexus GS450h  2006 1 1 1 1 1 1 1 

13 Estima Hybrid 2006 1 1 1 1 1 1 1.38 

14 Altima Hybrid 2006 1 1 1 1.11 1.11 1.18 1.18 

15 Chevrolet Tahoe Hybrid 2007 1 1 1 1 1 1 

16 Kluger Hybrid  2007 1.08 1.08 1.15 1.15 1.15 1.27 

17 Lexus LS600h/hL 2007 1 1 1 1 1 1 

18 Tribute Hybrid 2007 1 1 1.08 1.08 1.17 1.25 

19 GMC Yukon Hybrid 2007 1 1 1 1 1 1.05 

20 Crown Hybrid 2008 1.21 1.22 1.25 1.41 1.65 

21 Cadillac Escalade Hybrid 2008 1.34 1.36 1.36 1.37 1.68 

22 F3DM 2008 1.08 1.25 1.38 1.52 1.55 

23 A5 BSG 2009 1.37 1.50 1.61 1.76 

24 Lexus RX450h 2009 1 1 1 1.16 

25 ML450 Blue HV 2009 1.22 1.23 1.24 1.31 

26 Prius 3rd gen 2009 1 1.16 1.18 1.29 

27 S400 Hybrid/ Hybrid Long 2009 1 1 1 1.17 

28 Mercury Milan Hybrid 2009 1 1 1.00 1.18 

29 Lexus HS250h 2009 1 1.01 1.10 1.26 

30 Avante/ Elantra LPI 2009 1 1.07 1.09 1.22 

31 Forte LPI 2009 1 1 1 1 

32 ActiveHybrid X6 2009 1 1 1 1 
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# Product Year Φ_'97 Φ_'00 Φ_'01 Φ_'03 Φ_'04 Φ_'05 Φ_'06 Φ_'07 Φ_'08 Φ_'09 Φ_'10 Φ_'11 Φ_'12 

33 SAI 2009 1 1 1.08 1.25 

34 Auris HSD 2010 1 1 1.13 

35 CR-Z 2010 1 1.07 1.14 

36 F3DM PHEV  2010 1.18 1.19 1.35 

37 Touareg HV 2010 1.05 1.05 1.11 

38 Audi Q5 2010 1.04 1.04 1.13 

39 Jeep Patriot EV 2010 1 1 1.06 

40 Besturn B50 2010 1 1 1.14 

41 ActiveHybrid 7 Series 2010 1 1 1 

42 Lincoln MKZ Hybrid 2010 1.05 1.07 1.23 

43 Fit/ Jazz Hybrid 2010 1.01 1.12 1.28 

44 Sonata HV 2010 1.03 1.03 1.07 

45 Cayenne S HV 2010 1.10 1.22 1.22 

46 Fuga Hybrid/ Infiniti M35h 2010 1 1 1.00 

47 Chevrolet Volt 2010 1 1 1.10 

48 Aqua  2011 1 1 

49 Lexus CT200h 2011 1 1.11 

50 Civic Hybrid 3rd gen 2011 1.12 1.19 

51 Prius alpha 2011 1 1.06 

52 3008 Hybrid4 2011 1 1.07 

53 Fit Shuttle Hybrid 2011 1 1.09 

54 Karma S 2011 1 1 

55 Buick Regal eAssist  2011 1 1 

56 Prius v (USA) 2011 1.26 1.41 

57 Freed/ Freed Spike Hybrid 2011 1 1.03 

58 Optima K5 HV 2011 1.45 1.48 

59 Prius PHV 2012 1 

60 Ampera 2012 1 

61 ActiveHybrid 5 Series 2012 1.10 

62 Prius c 2012 1.13 

63 Lexus GS450h (2013 MY) 2012 1.03 

64 Insight 2012 1 
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Appendix E:  Efficiency scores BEVs 

Table 31 Efficiency scores BEVs 

# Product year type Φ_'97 Φ_'05 Φ_'06 Φ_'07 Φ_'08 Φ_'09 Φ_'10 Φ_'11 Φ_'12 

1 EV-Plus 1997 EV 1 1 1 1 1 1 1 1 1 

2 Happy Messenger EV 2005 EV 
 

1 1 1 1 1 1 1.32 1.32 

3 Tango 2005 EV 
 

1 1 1 1 1 1 1 1 

4 Venturi Fetish 2006 EV 
  

1 1 1 1 1 1 1 

5 
Smart fortwo electric drive  

1st gen 
2007 EV 

   
1 1 1 1.12 1.32 1.32 

6 Tesla Roadster 2008 EV 
    

1 1 1 1 1 

7 Subaru Plug-in Stella 2009 EV 
     

1 1 1 1 

8 Smart fortwo e- drive 2g 2009 EV 
     

1 1 1.01 1.01 

9 Think city 2009 EV 
     

1.09 1.29 1.37 1.37 

10 Venturi Fetish 2009 EV 
     

1.12 1.12 1.12 1.12 

11 REVAi 2010 EV 
      

1 1.09 1.09 

12 Benni Mini EV 2010 EV 
      

1.28 1.52 1.52 

13 C-Zero 2010 EV 
      

1.16 1.24 1.24 

14 Riich M1 EV 2010 EV 
      

1.22 1.28 1.28 

15 Leaf 2010 EV 
      

1 1.23 1.28 

16 Peugeot iOn 2010 EV 
      

1.11 1.15 1.15 

17 i-Miev (G Grade) 2010 EV 
      

1 1 1 

18 Zotye 2008 EV 2010 EV 
      

1 1.03 1.03 

19 Zotye 5008 EV 2010 EV 
      

1 1 1 

20 Mercedes-Benz A-class  2010 EV 
      

1.29 1.42 1.42 

21 Chery QQ3 EV 2011 EV 
       

1 1 

22 Twizy Z.E. 2011 EV 
       

1 1 

23 I-Miev (M Grade) 2011 EV 
       

1.00 1.00 

24 Like M-grade 2011 EV 
       

1 1 

25 Ray ev 2011 EV 
       

1.27 1.31 

26 Electric C30 2011 EV 
       

1.59 1.59 

27 Beijing C30DB 2011 EV 
       

1 1 

28 BMW Active  2011 EV 
       

1 1 
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# Product year type Φ_'97 Φ_'05 Φ_'06 Φ_'07 Φ_'08 Φ_'09 Φ_'10 Φ_'11 Φ_'12 

29 Like G-grade 2011 EV 
       

1 1 

30 Inizio R 2011 EV 
       

1.31 1.32 

31 Wave II, S model 2011 EV 
       

1.18 1.18 

32 BYD e6 2011 EV 
       

1 1 

33 Inizio RTX 2011 EV 
       

1 1 

34 Wave II, SE model 2011 EV 
       

1 1 

35 Inizio RT 2011 EV 
       

1 1 

36 Focus Electric 2012 EV 
        

1 

37 Coda Sedan 2012 EV 
        

1.14 

38 RAV4 EV 2012 EV 
        

1 

39 Zoe Z.E. 2012 EV 
        

1.06 

40 Fluence Z.E. 2012 EV 
        

1 

41 Fit EV 2012 EV 
        

1 

42 e6 Premier 2012 EV 
        

1 
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Apendix F:  Efficiency scores HEVs and BEVs combined 

Table 32Efficiency scores EVs & BEVs 

# Product year type φ_'97 φ_'00 φ_'01 φ_'03 φ_'04 φ_'05 φ_'06 φ_'07 φ_'08 φ_'09 φ_'10 φ_'11 φ_'12 

1 EV-Plus 1997 EV 1 1 1 1 1 1 1 1 1 1 1 1 1.55 

2 Prius 1st gen 1997 HEV 1 1 1 1 1 1 1 1 1 1 1 1 1 

3 Tino Hybrid 2000 HEV 
 

1 1 1 1 1 1 1 1 1 1 1 1.17 

4 Prius 2nd gen 2000 HEV 
 

1 1 1 1 1 1 1 1 1 1 1 1 

5 Civic Hybrid 1st gen 2001 HEV 
  

1 1 1 1 1 1 1 1 1 1 1.3 

6 Alphard Hybrid 2003 HEV 
   

1 1 1 1 1 1 1 1 1 1.49 

7 Escape Hybrid 2004 HEV 
    

1 1 1.09 1.09 1.09 1.15 1.16 1.16 1.36 

8 Tango 2005 EV 
     

1 1 1 1 1 1 1 1 

9 Happy Messenger EV 2005 EV 
     

1 1 1 1 1 1 4.54 4.54 

10 Lexus RX400h 2005 HEV 
     

1.01 1.14 1.14 1.14 1.15 1.2 1.2 1.29 

11 Civic Hybrid 2nd gen 2005 HEV 
     

1 1 1 1 1.12 1.12 1.28 1.41 

12 Highlander Hybrid 2005 HEV 
     

1 1 1 1 1 1 1 1.24 

13 Venturi Fetish 2006 EV 
      

1.03 1.03 1.03 1.03 1.05 1.05 1.05 

14 Mercury Mariner 2006 HEV 
      

1 1 1 1 1.04 1.07 1.4 

15 Camry Hybrid 2006 HEV 
      

1.11 1.11 1.11 1.23 1.24 1.27 1.34 

16 Lexus GS450h 2006 HEV 
      

1 1 1 1 1 1 1 

17 Estima Hybrid 2006 HEV 
      

1 1 1 1 1 1 1.38 

18 Altima Hybrid 2006 HEV 
      

1.05 1.05 1.05 1.16 1.18 1.33 1.48 

19 Smart fortwo 1
st

 gen 2007 EV 
       

1 1 1.49 1.49 1.81 1.81 

20 Chevrolet Tahoe 2007 HEV 
       

1 1 1 1 1 1 

21 Kluger Hybrid 2007 HEV 
       

1.08 1.08 1.15 1.19 1.19 1.29 

22 Lexus LS600h/hL 2007 HEV 
       

1 1 1 1 1 1 

23 Tribute Hybrid 2007 HEV 
       

1.14 1.14 1.17 1.18 1.24 1.41 

24 GMC Yukon Hybrid 2007 HEV 
       

1 1 1 1 1 1.06 

25 Tesla Roadster 2008 EV 
        

1 1 1 1 1 

26 Crown Hybrid 2008 HEV 
        

1.21 1.22 1.25 1.41 1.65 

27 Cadillac Escalade  2008 HEV 
        

1.34 1.36 1.36 1.37 1.68 

28 F3DM 2008 PHEV 
        

1.09 1.25 1.4 1.53 1.77 

29 Subaru Plug-in Stella 2009 EV 
         

1.67 1.67 2.04 2.04 

30 Venturi Fetish 2009 EV 
         

1.12 1.12 1.12 1.12 



Technology forecasting of electric vehicles using data envelopment analysis 125 

 

 125

# Product year type φ_'97 φ_'00 φ_'01 φ_'03 φ_'04 φ_'05 φ_'06 φ_'07 φ_'08 φ_'09 φ_'10 φ_'11 φ_'12 

31 Smart fortwo 2g 2009 EV 
         

1 1 1.2 1.2 

32 Think city 2009 EV 
         

2.24 2.3 2.62 2.62 

33 A5 BSG 2009 HEV 
         

1.37 1.52 1.61 1.82 

34 Lexus RX450h 2009 HEV 
         

1 1 1 1.21 

35 ML450 Blue HV 2009 HEV 
         

1.22 1.34 1.34 1.4 

36 Prius 3
rd

  gen 2009 HEV 
         

1 1.16 1.18 1.29 

37 S400 Hybrid 2009 HEV 
         

1 1 1 1.18 

38 Mercury Milan  2009 HEV 
         

1 1 1 1.19 

39 Lexus HS250h 2009 HEV 
         

1 1.01 1.12 1.26 

40 Avante/ Elantra LPI 2009 HEV 
         

1 1.07 1.09 1.22 

41 Forte LPI 2009 HEV 
         

1 1 1 1 

42 ActiveHybrid X6 2009 HEV 
         

1 1 1 1 

43 SAI 2009 HEV 
         

1 1 1.08 1.26 

44 i-Miev (G Grade) 2010 EV 
          

1 1.75 1.75 

45 Benni Mini EV 2010 EV 
          

1.28 2.16 2.16 

46 Zotye 2008 EV 2010 EV 
          

1.6 2.16 2.21 

47 Zotye 5008 EV 2010 EV 
          

1 1 1 

48 Mercedes-Benz A 2010 EV 
          

2.2 2.23 2.23 

49 Riich M1 EV 2010 EV 
          

2.04 2.67 2.67 

50 REVAi 2010 EV 
          

1 2.38 2.38 

51 Leaf 2010 EV 
          

2.33 2.34 2.49 

52 Peugeot iOn 2010 EV 
          

1.63 1.81 1.81 

53 C-Zero 2010 EV 
          

2.51 2.74 2.74 

54 Auris HSD 2010 HEV 
          

1 1 1.13 

55 CR-Z 2010 HEV 
          

1 1.07 1.14 

56 F3DM PHEV  2010 PHEV 
          

1.18 1.19 1.39 

57 Touareg HV 2010 HEV 
          

1.12 1.13 1.17 

58 Audi Q5 2010 HEV 
          

1.08 1.08 1.14 

59 Jeep Patriot EV 2010 PHEV 
          

1 1 1.1 

60 Besturn B50 2010 PHEV 
          

1 1 1.25 

61 ActiveHybrid 7 Series 2010 
Mild-

HEV           
1 1 1 

62 Lincoln MKZ Hybrid 2010 HEV 
          

1.05 1.07 1.24 

63 Fit/ Jazz Hybrid 2010 HEV 
          

1.01 1.13 1.62 

64 Sonata HV 2010 HEV 
          

1.04 1.05 1.07 
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# Product year type φ_'97 φ_'00 φ_'01 φ_'03 φ_'04 φ_'05 φ_'06 φ_'07 φ_'08 φ_'09 φ_'10 φ_'11 φ_'12 

65 Cayenne S HV 2010 HEV 
          

1.18 1.28 1.29 

66 Fuga Hybrid 2010 HEV 
          

1 1 1 

67 Chevrolet Volt 2010 PHEV 
          

1 1 1.14 

68 Chery QQ3 EV 2011 EV 
           

1 1 

69 Twizy Z.E. 2011 EV 
           

1 1 

70 Inizio R 2011 EV 
           

1.51 1.51 

71 Inizio RT 2011 EV 
           

1.79 1.8 

72 Inizio RTX 2011 EV 
           

1 1 

73 I-Miev (M Grade) 2011 EV 
           

1.93 1.93 

74 Like G-grade 2011 EV 
           

2.14 2.15 

75 Like M-grade 2011 EV 
           

1.93 1.93 

76 BMW Active E  2011 EV 
           

1.75 1.83 

77 BYD e6 2011 EV 
           

1 1.8 

78 Electric C30 2011 EV 
           

2.48 2.48 

79 Wave II, S model 2011 EV 
           

2.99 2.99 

80 Wave II, SE model 2011 EV 
           

3.19 3.19 

81 Beijing C30DB 2011 EV 
           

1.31 2.1 

82 Ray ev 2011 EV 
           

2.92 2.92 

83 Aqua 2011 HEV 
           

1 1 

84 Lexus CT200h 2011 HEV 
           

1 1.11 

85 Civic Hybrid 3rd gen 2011 HEV 
           

1.12 1.19 

86 Prius alpha 2011 HEV            1 1.06 

87 3008 Hybrid4 2011 HEV            1 1.07 

88 Fit Shuttle Hybrid 2011 HEV            1 1.09 

89 Karma S 2011 PHEV            1 1 

90 Buick Regal eAssist 2011 Mild-

HEV 

           1 1 

91 Prius v (USA) 2011 HEV            1.26 1.41 

92 Freed/ Freed Spike 2011 HEV            1 1.03 

93 Optima K5 HV 2011 HEV            1.5 1.78 

94 Fluence Z.E. 2012 EV             2.71 

95 Coda Sedan 2012 EV             1.77 

96 Focus Electric 2012 EV             1.88 
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# Product year type φ_'97 φ_'00 φ_'01 φ_'03 φ_'04 φ_'05 φ_'06 φ_'07 φ_'08 φ_'09 φ_'10 φ_'11 φ_'12 

97 RAV4 EV 2012 EV             1.24 

98 Fit EV 2012 EV             2.03 

99 e6 Premier 2012 EV 
            

1.22 

100 Zoe Z.E. 2012 EV 
            

1.66 

101 Prius PHV 2012 PHEV 
            

1 

102 Ampera 2012 EREV 
            

1 

103 ActiveHybrid 5 Series 2012 HEV 
            

1.12 

104 Prius c 2012 HEV 
            

1.13 

105 Lexus GS450h 2012 HEV 
            

1.05 

106 Insight 2012 HEV 
            

1 
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Appendix G: Results 

 

HEV forecast verification 

 

Table 33 Verification of HEV model predictions for 2010 based on 2009 data 

# Product Type Year φ_2010 

Acceleration 

rate  CO2 

Fuel 

economy 

34 Auris HSD HEV 2010 1 8.85 90 29 

35 CR-Z HEV 2010 1 9.24 117 25.8 

36 F3DM PHEV  PHEV 2010 1.18 9.24 63 12.82 

37 Touareg HV HEV 2010 1.05 15.38 193 12.2 

38 Audi Q5 HEV 2010 1.04 14.08 159 14.3 

39 Jeep Patriot EV PHEV 2010 1 12.05 50 12.5 

40 Besturn B50 PHEV 2010 1 7.14 70 13.3 

41 ActiveHybrid 7 Series Mild-HEV 2010 1 20.41 219 9.4 

42 Lincoln MKZ Hybrid HEV 2010 1.05 11.15 109 16 

43 Fit/ Jazz Hybrid HEV 2010 1.01 8.26 104 22.73 

44 Sonata HV HEV 2010 1.03 14.70 170 15.73 

45 Cayenne S HV HEV 2010 1.10 14.71 193 11.1 

46 
Fuga Hybrid/ Infiniti 

M35h 
HEV 2010 1 18.65 162 14.3 

47 Chevrolet Volt PHEV 2010 1 10.78 52.5 14.88 

        
  

Conservative frontier 2010 7.36 222.53 9.14 

  
Aggressive frontier 2010 21.19 106.54 24.00 
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Table 34 Verification of HEV model predictions for 2011 based on 2009 data 

# Product Type Year φ_2011 
Acceleration 

rate 
CO2 

Fuel 

economy 

48 Aqua HEV 2011 1 9.35 111 35.4 

49 Lexus CT200h HEV 2011 1 9.71 89 26.3 

50 Civic Hybrid 3rd gen HEV 2011 1.12 9.60 109 18.86 

51 Prius alpha (7) HEV 2011 1 10.00 100 31 

52 3008 Hybrid4 HEV 2011 1 11.36 99 26 

53 Fit Shuttle Hybrid HEV 2011 1 7.52 120 25 

54 Karma S PHEV 2011 1 16.67 83 22.1 

55 Buick Regal eAssist Mild-HEV 2011 1 12.05 129 11.05 

56 Prius v HEV 2011 1.26 9.51 132 14 

57 
Freed/ Freed Spike 

Hybrid 
HEV 2011 1 6.29 95 21.6 

58 Optima K5 HV HEV 2011 1.45 10.54 158 15.3 

        

  
Conservative frontier 2011 7.26 238.48 9.01 

  
Aggressive frontier 2011 20.31 105.11 25.05 

 

 

Table 35 Verification of HEV model predictions for 2012 based on 2009 data 

# Product Type Year φ_2012 
Acceleration 

rate 
CO2 

Fuel 

economy 

59 Prius PHV PHEV 2012 1 8.82 41 61 

60 Ampera EREV 2012 1 11.11 40 83 

61 ActiveHybrid 5 Series HEV 2012 1.10 16.67 155 13.6 

62 Prius c HEV 2012 1.13 9.35 111 17.85 

63 
Lexus GS450h (2013 

MY) 
HEV 2012 1.03 16.95 137 12.3 

64 Insight HEV 2012 1 9.42 96 27.2 

        

  

Conservative frontier 2012 7.16 248.86 8.89 

  

Aggressive frontier 2012 21.20 103.69 26.14 
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Verification of BEV model predictions 

Table 36 Verification of BEV model predictions for 2011 based on 2010 data 

# Product Type Year φ_2011 Acceleration rate  Range 

21 Chery QQ3 EV 2011 EV 1 15.38 80 

22 Twizy Z.E. 2011 EV 1 9.66 100 

23 I-Miev (M Grade) 2011 EV 1 8.12 120 

24 Like M-grade 2011 EV 1 8.12 120 

25 Ray EV 2011 EV 1.27 6.29 138 

26 Electric C30 2011 EV 1.59 8.78 144 

27 Beijing C30DB 2011 EV 1 7.81 150 

28 BMW Active E  2011 EV 1 10.73 160 

29 Like G-grade 2011 EV 1 8.12 180 

30 Inizio R 2011 EV 1.31 16.37 241 

31 Wave II, S model 2011 EV 1.18 8.05 241 

32 BYD e6 2011 EV 1 6.90 300 

33 Inizio RTX 2011 EV 1 28.41 321 

34 Wave II, SE model 2011 EV 1 7.61 321 

35 Inizio RT 2011 EV 1 13.61 402 

       

  

Conservative frontier 2012 7.68 79.47 

  

Aggressive frontier 2012 26.64 402.07 

 

Table 37 Verification of BEV model predictions for 2012 based on 2010 data 

# Product Type Year φ_2012 Acceleration rate  Range 

36 Focus Electric 2012 EV 1 10.73 120 

37 Coda Sedan 2012 EV 1.14 11.36 144 

38 RAV4 EV 2012 EV 1 13.80 160 

39 Zoe Z.E. 2012 EV 1.06 12.35 160 

40 Fluence Z.E. 2012 EV 1 7.30 185 

41 Fit EV 2012 EV 1 10.62 200 

42 e6 Premier 2012 EV 1 12.08 300 

       

  

Conservative frontier 2012 7.63 78.94 

  

Aggressive frontier 2012 27.19 410.30 
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EV combined forecasts verification 

 

Table 38Verification of combined model predictions for 2010 based on 2009 data 

# Product Type Year φ_2010 
acceleration 

rate 
CO2 

Fuel 

economy 
Range 

44 i-Miev (G Grade) 2010 EV 1.00 10.00 0 0 180 

45 Benni Mini EV 2010 EV 1.28 8.20 0 0 105 

46 Zotye 2008 EV 2010 EV 1.60 8.05 0 0 200 

47 Zotye 5008 EV 2010 EV 1.00 7.14 0 0 200 

48 
Mercedes-Benz A-

class E-Cell 
2010 EV 2.20 10.91 0 0 200 

49 Riich M1 EV 2010 EV 2.04 7.14 0 0 160 

50 REVAi 2010 EV 1.00 5.71 0 0 80 

51 Leaf 2010 EV 2.33 8.40 0 0 160 

52 Peugeot iOn 2010 EV 1.63 10.00 0 0 160 

53 C-Zero 2010 EV 2.51 6.67 0 0 150 

54 Auris HSD 2010 HEV 1.00 8.85 90 29 0 

55 CR-Z 2010 HEV 1.00 9.24 117 25.8 0 

56 
F3DM PHEV Low-

carbon Version 
2010 PHEV 1.18 9.24 63 12.82 0 

57 Touareg HV 2010 HEV 1.12 15.38 193 12.2 0 

58 Audi Q5 2010 HEV 1.08 14.08 159 14.3 0 

59 Jeep Patriot EV 2010 PHEV 1.00 12.05 50 12.5 0 

60 Besturn B50 2010 PHEV 1.00 7.14 70 13.3 0 

61 
ActiveHybrid 7 

Series 
2010 Mild-HEV 1.00 20.41 219 9.4 0 

62 Lincoln MKZ Hybrid 2010 HEV 1.05 11.15 109 16 0 

63 Fit/ Jazz Hybrid 2010 HEV 1.01 8.26 104 22.73 0 

64 Sonata HV 2010 HEV 1.04 14.70 170 15.73 0 

65 Cayenne S HV 2010 HEV 1.18 14.71 193 11.1 0 

66 
Fuga Hybrid/ Infiniti 

M35h 
2010 HEV 1.00 18.65 162 14.3 0 

67 Chevrolet Volt 2010 PHEV 1.00 10.78 52.5 14.88 0 

         

  
Conservative frontier 2010 6.72 257.75 8.83 104.90 

  
Aggressive frontier 2010 30.73 102.99 27.07 463.71 
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Table 39 Verification of combined model predictions for 2011 based on 2009 data 

# Product Year Type φ_2010 
acceleration 

rate 
CO2 

Fuel 

economy 
Range 

68 Chery QQ3 EV 2011 EV 1.00 15.38 0 0 80 

69 Twizy Z.E. 2011 EV 1.00 9.66 0 0 100 

70 Inizio R 2011 EV 1.51 16.37 0 0 241 

71 Inizio RT 2011 EV 1.79 13.61 0 0 402 

72 Inizio RTX 2011 EV 1.00 28.41 0 0 321 

73 I-Miev (M Grade) 2011 EV 1.93 8.12 0 0 120 

74 Like G-grade 2011 EV 2.14 8.12 0 0 180 

75 Like M-grade 2011 EV 1.93 8.12 0 0 120 

76 BMW Active E  2011 EV 1.75 10.73 0 0 160 

77 BYD e6 2011 EV 1.00 6.90 0 0 300 

78 Electric C30 2011 EV 2.48 8.78 0 0 144 

79 Wave II, S model 2011 EV 2.99 8.05 0 0 241 

80 Wave II, SE model 2011 EV 3.19 7.61 0 0 321 

81 Beijing C30DB 2011 EV 1.31 7.81 0 0 150 

82 Ray EV 2011 EV 2.92 6.29 0 0 138 

83 Aqua  2011 HEV 1.00 9.35 111 35.4 0 

84 Lexus CT200h 2011 HEV 1.00 9.71 89 26.3 0 

85 
Civic Hybrid 3rd 

gen 
2011 HEV 1.12 9.60 109 18.86 0 

86 
Prius alpha 

7 seats 
2011 HEV 1.00 10.00 100 31 0 

87 3008 Hybrid4 2011 HEV 1.00 11.36 99 26 0 

88 Fit Shuttle Hybrid 2011 HEV 1.00 7.52 120 25 0 

89 Karma S 2011 PHEV 1.00 16.67 83 22.1 0 

90 
Buick Regal 

eAssist 
2011 Mild-HEV 1.00 12.05 129 11.05 0 

91 Prius v (USA) 2011 HEV 1.26 9.51 132 14 0 

92 
Freed/ Freed 

Spike Hybrid 
2011 HEV 1.00 6.29 95 21.6 0 

93 Optima K5 HV 2011 HEV 1.50 10.54 158 15.3 0 

         

  
Conservative frontier 2011 6.40 303.35 8.42 100.03 

  
Aggressive frontier 2011 36.16 98.21 31.86 545.75 
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Table 40 Verification of combined model predictions for 2012 based on 2009 data 

# Product Type Year φ 
acceleration 

rate  
CO2 

Fuel 

economy 
Range 

94 Fluence Z.E. 2012 EV 2.71 7.30 0 0 185 

95 Coda Sedan 2012 EV 1.77 11.36 0 0 144 

96 Focus Electric 2012 EV 1.88 10.73 0 0 120 

97 RAV4 EV 2012 EV 1.24 13.80 0 0 160 

98 Fit EV 2012 EV 2.03 10.62 0 0 200 

99 e6 Premier 2012 EV 1.22 12.08 0 0 300 

100 Zoe Z.E. 2012 EV 1.66 12.35 0 0 160 

101 Prius PHV 2012 PHEV 1.00 8.82 41 61 0 

102 Ampera 2012 EREV 1.00 11.11 40 83 0 

103 
ActiveHybrid 5 

Series 
2012 HEV 1.12 16.67 155 13.6 0 

104 Prius c 2012 HEV 1.13 9.35 111 17.85 0 

105 Lexus GS450h  2012 HEV 1.05 16.95 137 12.3 0 

106 Insight 2012 HEV 1.00 9.42 96 27.2 0 

         

  

Conservative frontier 

2012 6.11 357.01 8.03 95.39 

  

Aggressive frontier 2012 42.56 93.66 37.49 642.30 
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Appendix H: Dominant peer technologies 

Table 41 SOA frontier and dominant peers in 2012 

# Product Year Type Φ_’12 Φ_’11 Peer 1 Peer 2  Peer 3  Peer 4  Peer 5  

1 EV-Plus 1997 EV 1.55 1 
Tango 

0.42 

Insight 

0.40 

Zotye 

500 

0.18 
 

  

2 Prius 1 gen 1997 HEV 1 1 1.00 
   

  

3 Tino Hybrid 2000 HEV 1.17 1 
Insight 

0.97 

Active 

0.02 

Aqua 

0.01  
  

4 Prius 2gen 2000 HEV 1 1 
    

  

5 
Civic Hybrid 

1st gen 
2001 HEV 1.30 1 

Insight 

0.68 

Prius 

2st G 

0.19 

Aqua 

0.11 

Forte 

LPI 

0.02 

  

6 Alphard Hybrid  2003 HEV 1.49 1 
Insight 

0.62 

Lexus 

GS450h 

0.12 

Forte 

LPI 

0.11 

Tango 

0.08 

Ampera 

0.06 

7 Escape Hybrid 2004 HEV 1.36 1.16 
Forte LPI 

0.51 

Insight 

0.26 

Fuga 

0.2 

Tango 

0.03 
  

8 Tango 2005 EV 1 1 
    

  

9 
Happy 

Messenger EV 
2005 EV 4.54 4.54 

Chery 

0.82 

Tango 

0.12 

Forte 

LPI 

0.06 
 

  

10 Lexus RX400h 2005 HEV 1.29 1.20 
Fuga 

0.64 

Forte 

LPI 

0.18 

Insight 

0.16 

Tango 

0.02 
  

11 
Civic Hybrid 

2nd gen 
2005 HEV 1.41 1.28 

Insight 

0.67 

Forte 

LPI 

0.29 

Prius 

PHV 

0.04 
 

  

12 
Highlander 

Hybrid 
2005 HEV 1.24 1 

 

Fuga 

0.65 

Insight 

0.28 

Forte 

LPI 

0.07 

  

13 Venturi Fetish 2006 EV 1.05 1.05 
Tango 

0.82 

Active 

0.18   
  

14 

Mercury 

Mariner 

Hybrid 

2006 HEV 1.40 1.07 
Forte LPI 

0.37 

Insight 

0.24 

Prius 

PHV 

0.21 

Fuga 

0.16 

Ampera 

0.01 

15 Camry Hybrid 2006 HEV 1.34 1.27 
Forte LPI 

0.54 

Lexus 

GS450h 

0.33 

Insight 

0.10 

Ampera 

0.03 
  

16 Lexus GS450h  2006 HEV 1 1 
    

  

17 Estima Hybrid 2006 HEV 1.38 1 
Insight 

0.43 

Lexus 

GS450h 

0.34 

Prius 

PHV 

0.16 

Forte 

LPI 

0.06 

  

18 Altima Hybrid 2006 HEV 1.48 1.33 
Ampera 

0.36 

Tango 

0.34 

Inizio 

RTX 

0.16 

Active 

0.09 

Fuga 

0.07 

19 
Smart fortwo e 

1st gen 
2007 EV 1.81 1.81 

Chery 

0.65 

Tango 

0.18 

Forte  

0.17  
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# Product Year Type Φ_’12 Φ_’11 Peer 1 Peer 2  Peer 3  Peer 4  Peer 5  

20 
Chevrolet 

Tahoe Hybrid 
2007 HEV 1 1 

    
  

21 Kluger Hybrid  2007 HEV 1.29 1.19 
Fuga 

0.64 

Forte 

LPI 

0.24 

Insight 

0.12  
  

22 
Lexus 

LS600h/hL 
2007 HEV 1 1 

    
  

23 Tribute Hybrid 2007 HEV 1.41 1.24 
Forte LPI 

0.29 

Insight 

0.23 

Fuga 

0.22 

Tango 

0.20 

Ampera 

0.06 

24 
GMC Yukon 

Hybrid 
2007 HEV 1.06 1 

Insight 

0.45 

Activ 

0.36 

Prius 

PHV 

0.13 

Fuga 

0.06 
  

25 Tesla Roadster 2008 EV 1.00 1.00 
Tango 

0.53 

Inizio 

RTX 

0.47 
  

  

26 Crown Hybrid 2008 HEV 1.65 1.41 
Active 

0.46 

Insight 

0.30 

Prius 

PHV 

0.21 

Aqua 

0.03 
  

27 

Cadillac 

Escalade 

Hybrid 

2008 HEV 1.68 1.37 
Active 

0.43 

Insight 

0.29 

LexusLS

600h 

0.21 

Fuga 

0.04 

Ampera 

0.02 

28 F3DM 2008 PHEV 1.77 1.53 
Ampera 

0.52 

Tango 

0.32 

Active 

0.15 

Inizio 

RTX 

0.01 

  

29 
Subaru Plug-in 

Stella 
2009 EV 2.04 2.04 

Chery 

0.45 

Forte 

LPI 

0.44 

Tango 

0.11  
  

30 Venturi Fetish 2009 EV 1.12 1.12 
Tango 

0.76 

Inizio 

RTX 

0.24 
  

  

31 

Smart fortwo 

electric 2nd 

gen 

2009 EV 1.20 1.20 
Chery 

0.74 

Tango 

0.25 

Forte 

LPI 

0.01 
 

  

32 Think city 2009 EV 2.62 2.62 
Tango 

0.56 

Chery 

0.37 

Forte 

LPI 

0.07 
 

  

33 A5 BSG 2009 HEV 1.82 1.61 
Forte LPI 

0.73 

Ampera 

0.17 

Lexus 

GS450h 

0.05 

Tango 

0.05 
  

34 Lexus RX450h 2009 HEV 1.21 1 
Fuga 

0.71 

Insight 

0.16 

Ampera 

0.07 

Prius 

PHV 

0.04 

Lexus 

GS450h 

0.03 

35 
ML450 Blue 

HV 
2009 HEV 1.40 1.34 

Fuga 

0.83 

Ampera 

0.06 

Insight 

0.06 

Karma S 

0.01 
  

36 Prius 3rd gen 2009 HEV 1.29 1.18 
Forte LPI 

0.5 

Insight 

0.21 

Prius 

PHV 

0.13 

Aqua 

0.09 

Active 

0.07 

37 S400 Hybrid 2009 HEV 1.18 1 
Fuga 

0.39 

Active 

0.26 

Insight 

0.24 

Forte 

0.11 
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# Product Year Type Φ_’12 Φ_’11 Peer 1 Peer 2  Peer 3  Peer 4  Peer 5  

38 
Mercury Milan 

Hybrid 
2009 HEV 1.19 1.00 

Forte LPI 

0.35 

Insight 

0.26 

Fuga 

0.18 

Prius 

PHV 

0.14 

Active 

0.09 

39 Lexus HS250h 2009 HEV 1.26 1.12 
Prius PHV 

0.31 

Active 

0.23 

Fuga 

0.21 

Forte 

LPI 

0.19 

Insight 

0.05 

40 
Avante/ 

Elantra LPI 
2009 HEV 1.22 1.09 

Forte LPI 

0.67 

Insight 

0.18 

Prius 

PHV 

0.15 
 

  

41 Forte LPI 2009 HEV 1 1 
    

  

42 
ActiveHybrid 

X6 
2009 HEV 1 1 

    
  

43 SAI 2009 HEV 1.26 1.08 
Forte LPI 

0.46 

Fuga 

0.28 

Ampera 

0.21 

Insight 

0.04 

Tango 

0.01 

44 
i-Miev (G 

Grade) 
2010 EV 1.75 1.75 

Chery 

0.67 

Tango 

0.25 

Forte 

LPI 

0.07 
 

  

45 Benni Mini EV 2010 EV 2.16 2.16 
Chery 

0.73 

Tango 

0.27   
  

46 Zotye 2008 EV 2010 EV 2.21 2.16 
Tango 

0.46 

Chery 

0.34 

Zotye 

500 

0.18 

Insight 

0.02 
  

47 Zotye 5008 EV 2010 EV 1 1 
    

  

48 

Mercedes-

Benz A-class E-

Cell 

2010 EV 2.23 2.23 
Tango 

0.93 

Inizio 

RTX 

0.06 

Active 

0.02  
  

49 Riich M1 EV 2010 EV 2.67 2.67 
Chery 

0.5 

Tango 

0.43 

Forte 

LPI 

0.07 
 

  

50 REVAi 2010 EV 2.38 2.38 
Chery 

0.69 

Twizy 

ZE 

0.31 
  

  

51 Leaf 2010 EV 2.49 2.34 
Tango 

0.69 

Insight 

0.16 

Fuga 

0.14 

Karma S 

0.02 
  

52 Peugeot iOn  2010 EV 1.81 1.81 
Tango 

0.37 

Forte 

LPI 

0.33 

Chery 

0.3  
  

53 C-Zero 2010 EV 2.74 2.74 
Tango 

0.38 

Forte 

LPI 

0.37 

Chery 

0.25  
  

54 Auris HSD 2010 HEV 1.13 1 
Insight 

0.70 

Prius 

PHV 

0.18 

Active 

0.06 

Aqua 

0.05 
  

55 CR-Z 2010 HEV 1.14 1.07 
Aqua 

0.43 

Insight 

0.38 

Active 

0.06 

Prius 

PHV 

0.02 

Forte 

LPI 

0.1 

56 F3DM PHEV  2010 PHEV 1.39 1.19 
Ampera 

0.88 

Inizio 

RTX 

0.06 

Active 

0.03 

Tango 

0.03 
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# Product Year Type Φ_’12 Φ_’11 Peer 1 Peer 2  Peer 3  Peer 4  Peer 5  

57 Touareg HV 2010 HEV 1.17 1.13 
Fuga 

0.68 

Lexus 

LS600h 

0.07 

Insight 

0.04 

Ampera 

0.01 
  

58 Audi Q5 2010 HEV 1.14 1.08 
Fuga 

0.51 

Forte 

LPI 

0.39 

Insight 

0.1  
  

59 Jeep Patriot EV 2010 PHEV 1.10 1 
Ampera 

0.87 

Inizio 

RTX 

0.13 
  

  

60 Besturn B50 2010 PHEV 1.25 1 
Prius PHV 

0.73 

Zotye 

500 

0.2 

Chery 

0.06  
  

61 
ActiveHybrid 7 

Series 
2010 

Mild-

HEV 
1 1 

    
  

62 
Lincoln MKZ 

Hybrid 
2010 HEV 1.24 1.07 

Forte LPI 

0.39 

Fuga 

0.18 

Prius 

PHV 

0.17 

Insight 

0.17 

Active 

0.1 

63 Fit/ Jazz Hybrid 2010 HEV 1.62 1.13 
Ampera 

0.62 

Chery 

0.31 

Tango 

0.07  
  

64 Sonata HV 2010 HEV 1.07 1.05 
Forte LPI 

0.49 

Lexus 

GS450h 

0.43 

Insight 

0.07 

Tango 

0.01 
  

65 Cayenne S HV 2010 HEV 1.29 1.28 
Fuga 

0.32 

Active 

0.29 

Karma S 

0.24 

Inizio 

RTX 

0.12 

Ampera 

0.02 

66 
Fuga Hybrid/ 

Infiniti M35h 
2010 HEV 1 1 

    
  

67 Chevrolet Volt 2010 PHEV 1.14 1 
Ampera 

0.84 

Tango 

0.07 

Fuga 

0.05 

Insight 

0.04 
  

68 Chery QQ3 EV 2011 EV 1 1 
    

  

69 Twizy Z.E. 2011 EV 1 1 
    

  

70 Inizio R 2011 EV 1.51 1.51 
Tango 

0.71 

Inizio 

RTX 

0.20 

Active 

0.09  
  

71 Inizio RT 2011 EV 1.80 1.79 
Inizio RTX 

0.52 

Tango 

0.35 

Insight 

0.16  
  

72 Inizio RTX 2011 EV 1 1 
    

  

73 
I-Miev (M 

Grade) 
2011 EV 1.93 1.93 

Chery 

0.79 

Forte 

LPI 

0.16 

Tango 

0.05  
  

74 Like G-grade 2011 EV 2.15 2.14 
Chery 

0.67 

Tango 

0.26 

Forte 

LPI 

0.06 

Insight 

0.02 
  

75 Like M-grade 2011 EV 1.93 1.93 
Chery 

0.79 

Forte 

LPI 

0.16 

Tango 

0.05  
  

76 
BMW Active E 

1 Series  
2011 EV 1.83 1.75 

Tango 

0.35 

Insight 

0.30 

Inizio 

RTX 

0.21 

Karma S 

0.14 
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# Product Year Type Φ_’12 Φ_’11 Peer 1 Peer 2  Peer 3  Peer 4  Peer 5  

77 BYD e6 2011 EV 1.80 1 
Insight 

0.81 

Tango 

0.16 

Inizio 

RTX 

0.03 
 

  

78 Electric C30 2011 EV 2.48 2.48 
Tango 

0.69 

Lexus 

GS450h 

0.16 

Forte 

LPI 

0.14 
 

  

79 
Wave II, S 

model 
2011 EV 2.99 2.99 

Tango 

0.99 

Active 

0.01   
  

80 
Wave II, SE 

model 
2011 EV 3.19 3.19 

Tango 

0.98 

Inizio 

RTX 

0.02 
  

  

81 Beijing C30DB 2011 EV 2.10 1.31 
Tango 

0.46 

Insight 

0.35 

Zotye 

500 

0.11 

Chery 

0.08 
  

82 Ray ev 2011 EV 2.92 2.92 
Tango 

0.4 

Forte 

LPI 

0.36 

Chery 

0.24  
  

83 Aqua  2011 HEV 1 1 
    

  

84 Lexus CT200h 2011 HEV 1.11 1 
Insight 

0.53 

Forte 

LPI 

0.31 

Prius 

PHV 

0.16 
 

  

85 
Civic Hybrid 

3rd gen 
2011 HEV 1.19 1.12 

Insight 

0.50 

Forte 

LPI 

0.45 

Prius 

PHV 

0.05 
 

  

86 Prius alpha 2011 HEV 1.06 1 
Aqua 

0.41 

Insight 

0.27 

Prius 

PHV 

0.14 

Active 

0.08 

Forte 

LPI 

0.1 

87 3008 Hybrid4 2011 HEV 1.07 1 
Insight 

0.55 

Active 

0.26 

Prius 

PHV 

0.14 

Aqua 

0.05 
  

88 Fit Shuttle 2011 HEV 1.09 1 
    

  

89 Karma S 2011 PHEV 1 1 
    

  

90 
Buick Regal 

eAssist  
2011 

Mild-

HEV 
1 1 

    
  

91 Prius v  2011 HEV 1.41 1.26 
Forte LPI 

0.69 

Insight 

0.15 

Fuga 

0.09 

Prius 

PHV 

0.05 

Ampera 

0.01 

92 
Freed/ Freed 

Spike Hybrid 
2011 HEV 1.03 1 

Insight 

0.91 

Prius 1 

0.05 

Prius 

PHV 

0.04 
 

  

93 Optima K5 HV 2011 HEV 1.78 1.50 
Ampera 

0.43 

Tango 

0.27 

Inizio 

RTX 

0.17 

Active 

0.13 
  

94 Fluence Z.E. 2012 EV 2.71 
 

Tango 

0.64 

Insight 

0.24 

Fuga 

0.08 

Forte 

LPI 

0.04 

  

95 Coda Sedan 2012 EV 1.77 
 

Tango 

0.49 

Insight 

0.28 

Inizio 

RTX 

0.16 

Karma S 

0.06 
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# Product Year Type Φ_’12 Φ_’11 Peer 1 Peer 2  Peer 3  Peer 4  Peer 5  

96 Focus Electric 2012 EV 1.88 
 

Tango 

0.54 

Karma S 

0.22 

Insight 

0.16 

Fuga 

0.13 
  

97 RAV4 EV 2012 EV 1.24 
 

Insight 

0.50 

Tango 

0.41 

Inizio 

RTX 

0.09 
 

  

98 Fit EV 2012 EV 2.03 
 

Tango 

0.57 

Lexus 

GS450h 

0.32 

Forte 

LPI 

0.06 

Fuga 

0.05 
  

99 e6 Premier 2012 EV 1.22 
 

Insight 

0.65 

Tango 

0.30 

Inizio 

RTX 

0.05 
 

  

100 Zoe Z.E. 2012 EV 1.66 
 

Tango 

0.64 

Forte 

LPI 

0.21 

Insight 

0.08 

Fuga 

0.07 
  

101 Prius PHV 2012 PHEV 1 
     

  

102 Ampera 2012 EREV 1 
     

  

103 
ActiveHybrid 5 

Series 
2012 HEV 1.12 

 

Fuga 

0.75 

Ampera 

0.09 

Active 

0.08 

Tango 

0.05 

Inizio 

RTX 

0.03 

104 Prius c 2012 HEV 1.13 
 

Insight 

0.54 

Forte 

LPI 

0.30 

 

Prius 

1st G 

0.14 

Prius 

PHV 

0.02 

  

105 Lexus GS450h  2012 HEV 1.05 
 

Fuga 

0.60 

Active 

0.22 

Forte 

LPI 

0.09 

Prius 

PHV 

0.04 

Ampera 

0.04 

106 Insight 2012 HEV 1             

 


