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Introduction 1
In the last couple of decades continuous scaling of the transistor resulted in an perfor-
mance increase of the microprocessor. This trend of scaling from one generation to the
next generation in CMOS technology increases the transistor count per unit area. In
1965, Gorden Moore, co-founder of Intel, predicted that the number of transistors in an
integrated circuit doubles approximately every two years. This trend is today commonly
known as Moore’s law [7]. The trend has the benefit, among others, of smaller power
consumption and fast switching. On the other hand, it also leads to increasing device vul-
nerability to external disturbances such as radiation, internal problems such as crosstalk
and other reliability problems [8]. More importantly, scaling accelerates ageing induced
failures of CMOS devices. The reliability bathtub curve shown in Figure 1.1 elaborates
the shrinking of the useful life time of CMOS devices from generation to generation.
Every new generation has a shorter lifetime compared to the older technology.

Figure 1.1: Reliability failure shift

These issues of ageing induced failures, radiation, and crosstalk contribute to the
increase of soft errors, which are also called transient faults or single-event upset (SEU)s.
These errors in processor execution are due to electrical noise or external radiation rather
than design or manufacturing defects [9].
The satellite Rosetta with the Philae lander is a perfect example to illustrate these issues.
The Rosetta is powered with an CPU from 1980. [10] Philae is powered with a 16-bit
stack processors, again a design dating back to the 1980s. Why was this old technology
chosen? For the simple reason that it was radiation hardened and would last long enough

1



2 CHAPTER 1. INTRODUCTION

to operate in 2014 when the landing on Comet 67P was executed. As shown in Figure
1.1, NASA had to make sure the equipment would last for at least the ten years it took
to get there. The lander also includes an Analog Devices ADSP-21020 and a pair of
80C3x micro controllers as well as multiple Field-Programmable Gate Arrays (FPGAs)
on board[11]. During the time of the launch more modern equipment was available.
Why is this this ”old” equipment from 1980 used in satellites launched in 2004? Is there

Figure 1.2: Artist Render of the Philae lander (from [1]).

no better solution than this? Can we use modern techniques to counter and protect the
equipment from the effects of radiation and accelerated aging?

1.1 Problem Statement and Thesis Goals

The problem statement and thesis goals are meant to be implemented on the ρ-VEX
processor Very Long Instruction Word (VLIW) platform. This platform is explained
in Chapter 2. The design is build in hardware using VHSIC Hardware Description
Language (VHDL). The problem statements is:

How can the ρ-VEX processor be used to enable hardware redundancy against
single-event upsets (SEUs) in a fast and efficient way for critical parts that is essential
for running a program?



1.2. METHODOLOGY 3

The main goals of this thesis are:

• To find a dynamic method to execute a function in a fault tolerant way.

• To implement a low-cost, modular, and easy to use method in a working and
running environment.

• To test the proposed solution and prove its correctness.

1.2 Methodology

In order to achieve these goals a research methodology is defined. This methodology
represent the steps how to achieve the mentioned goals of the thesis. An abstract repre-
sentation of the way to achieve these goals are listed as follows:

• Explore the ρ-VEX processor to comprehend the possibilities its capabilities of this
special characterized platform.

• Define and research the problem, in this case the SEUs, to choose the best possible
solution.

• Explore existing solutions in order to enhance or adapt these techniques to be used
in this thesis.

• Invent custom solutions to fit our needs and implement this redundancy technique.

• Test the implemented solution and benchmark this solutions to prove correctness
and measure performance.

• Analyze the added hardware, compare the results with the added functionality and
determine if this was worth it.

1.3 Thesis Outline

The remainder of this thesis is organized as follows:
Chapter 2 starts with an introduction to the ρ-VEX processor platform and a brief
history of the development. It continues with a classification into different categories
of all the known errors and its cause, with an emphasis on the SEUs. Then, a basic
explanation of the known fault tolerant techniques is presented. Finally, the chapter
ends with a overview of how to inject faults in the system to test it’s correctness.

Chapter 3 uses the knowledge of the SEUs and combines the characteristics of
these errors to the vulnerable structures of the ρ-VEX processor. Together with known
techniques and the capabilities of the ρ-VEX processor a solution is motivated for the ρ-
VEX processor. A list of required functionalities with the required control mechanisms
is filled.

Chapter 4 describes in detail every component that is added tot the design and
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the functionality in the whole system. Also the control mechanism is implemented in a
Hierarchical Finite State Machine (HFSM) and is explained in detail.

Chapter 5 gives an overview how all components are tested. After this individual
test, the complete design is put to the test and compared with the original design.
Finally, the system is injected with faults to measure how the system responds to errors
during execution.

Chapter 6 summarizes the whole thesis and mentions the main contribution to-
gether with the future work.



Background 2
This chapter gives the relevant knowledge to understand the thesis. It starts with de-
scribing the platform on which the fault tolerance is implemented, the ρ-VEX processor.
Then a classification of the known errors in electronic design are listed. Most categories
are only briefly mentioned, but the most interesting errors, the single-event upsets (SEUs)
are more elaborate discussed. The second last section discusses the state of the art in
fault tolerant design. It is impossible to summarize of all the techniques so only a few
are mentioned. Finally methods to inject faults in electronic designs are described.

2.1 The ρ-VEX processor platform

This section is a summary from [12] [4] and [13] to get a basic concept of the operation
and architecture of the ρ-VEX processorand its special capabilities.

2.1.1 Very Long Instruction Word (VLIW)

The platform used this thesis is called the ρ-VEX processor. The ρ-VEX processor is a
special configuration of a VLIW. A traditional processor has advanced logic to exploit
the Instruction Level Parallelism (ILP). ILP is the amount of instructions that can be
executed in parallel. A VLIW leaves all the dependencies to be analyzed by the compiler
and has no complicated logic to exploit this during run-time. The processor has an
issue-width that determines the amount of instructions that are executed in one cycle.
The compiler is responsible for determining the dependencies between these instructions.
This saves a lot of complicated logic in the core itself. In code that has low dependencies
a lot of instructions can be executed in parallel, but if there are a lot of dependencies the
majority of the issues are doing nothing[13] or executing a NO Operation (NOP). The
lack of the logic to determine the dependencies saves much power and, therefore, makes
the VLIW an interesting candidate for embedded applications[14].

2.1.2 VEX and VLIW

The compiler for a VLIW processor is very complex and requires significant efforts and
time to develop from scratch. Fortunately, for the VEX ISA, a toolchain is freely avail-
able from HP. VEX stands for VLIW Example. The VEX toolchain includes three
components[12][4]:

• The VEX Instruction Set Architecture (ISA)

• A parametrized C compiler

5



6 CHAPTER 2. BACKGROUND

• A simulator which can be used for design space exploration and code generation
for different implementations of the VEX processor.

This architecture was designed for academic and research purposes. The Computer Engi-
neering group of Delft University of Technology has implemented this VEX architecture
using reconfigurable hardware which will be discussed in the next subsection.

2.1.3 Reconfigurable Computing

Convectional computing is performed using two methods. The first,the most commonly
known, uses an Application Specific Integrated Circuit (ASIC). ASICs are designed
specifically to perform a given operation, therefore they are very fast and efficient when
executing this exact operation for which they were designed. After fabrication the design
can no longer be altered. When a change is desired, the complete fabrication process
must be re-initiated.
The second method is the software programmed microprocessor. Better known as the
general-purpose processor which can be found in almost every desktop computer. How-
ever, the downside of this flexibility is that the performance of specific application is not
as fast as an ASIC.
Reconfigurable Computing fills this gap between the ASIC and the general purpose pro-

Figure 2.1: Fulling the gap between a GP processor and ASIC (from [2])
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Figure 2.2: A generic island-style FPGA routing architecture (from [3])

cessor as is visualised in Figure 2.1. It has higher performance than software, and a higher
level of flexibility than hardware. Reconfigurable devices, such as Field-Programmable
Gate Arrays (FPGAs), exist mainly out of arrays of computational elements. These
elements, or logic blocks, are connected through separate routing hardware that are also
programmable. This way, custom digital circuits can be mapped to form the necessary
circuit[3]. A visualisation of these arrays are shown in 2.3. FPGAs are often used for
prototyping hardware design using VHSIC Hardware Description Language (VHDL).
Another application for FPGAs is accelerating specific applications and algorithms by
exploiting specific parallelism. Some High Performance computer incorporate FPGAs
like the IBM POWER8 [15] to make use of this capability to run parts of a program on the
general purpose processor and parts on the Field-Programmable Gate Array (FPGA).

2.1.4 Reconfigurable Softcores

One of the first mentioned reconfigurable VLIW softcore is the Spyder [16]. There
are other well known softcores as the MicroBlaze from Xilinx [17] or the NIOS from
Altera[18]. These are better known, but are not reconfigurable. Other examples of
reconfigurable softcores are [19] or [20]. These implementations lack the extensibility
like like adjusting the issue-width and changing the number of functional units, or the
absence of a good software toolchain[21].

2.1.5 ρ-VEX processor: The Delft reconfigurable VLIW softcore pro-
cessor

The main purpose for a reconfigurable architecture has been touched upon in the previous
sections. When a program has high ILP more instruction can be performed in parallel.
When this is not the case and a specific program has lot dependencies, the larger part
of the processor is not executing instructions. This idling of the processor is of course a
waste of power and space which could be put to better use. This is were the reconfigurable
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Figure 2.3: The 2-4-8-issue ρ-VEX processor (from [4])

part becomes interesting. If a program has a high ILP, the VLIW is left untouched, but
when the ILP is low the idle part of the processor could be used to executed another
program.
The ρ-VEX processor can reconfigure during run-time in any desired configuration from
the biggest version as an 8-issue width to the smallest version as an 2- issue width as is
mentioned in [4] and [13]. During an operation the core can reconfigure from an 8-way
to an 2 times 4-way to continue the program which has lower ILP and start running a
program in the other 4-way that is available. The two times 4-way has an higher ILP
than the first program in an 8-way configuration. This is all possible due to the use of
generic binaries[22].
The ρ-VEX processor has currently been rewritten in order to get a more homogeneous

style of coding. This has become the starting point for this thesis. Furthermore, progress
is being made in the development of an Memory Management Unit (MMU) to sustain
an newer version of Linux than the current version of 2.0.

2.2 Target fault

To choose the best technique for our fault tolerant application a deeper understanding of
the faults is deemed necessary. In order to achieve this a classification and identification
is important in finding and solving the root cause of the faults. Figure 2.4 shows there
are three main classifications for fault errors[23][24][25].

1. Design and Manufacturing failures. These are faults in the design and man-
ufacturing period.
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Faults

Design/Manufacturing Degradation ExternalInfluences

Figure 2.4: Fault classification

2. Degradation faults. These are fault due to the aging of the transistors.

3. Environmental influences. These are the faults we are interested in. These are
cause by the radiations and operating environment of a device.

2.2.1 Design or Manufacturing Faults

Design and Manufacturing faults are faults generated by men in the design of the device,
or are caused by the machines that are used in the process of making dies[26]. The most
common are:

• Crosstalk
The increase in transistors due to Moore’s Law[7] result in the increase of noise
from coupling capacitance between the interconnect wires know as crosstalk[27].

• Process Variations
During the process of lithography the width, length, or thickness of some layers
can vary. As a cause, the voltage and current can show some variations.

2.2.2 Degradation

Degradation are faults that find the transistor. Degradation of the transistor will grad-
ually decrease the performance of device till the moment it will eventually fail when the
intended lifetime is reached. The most common are:

• Bias Temperature Instability (BTI)
BTI is the event where the threshold voltage gradually increases over a very long
period of time. This will cause the current to decrease

• Time Dependent Dielectric Breakdown (TDDB)
TDDB is also known as gate oxide breakdown. This phenomenon occurs more with
the technology scaling. Together with the saturating trend this can cause gaps and
lead to gate leakage.

• Hot Carrier Injection (HCI)
HCI is the event where energetic electrons, or holes at the drain end of the channel,
overcome the potential barrier at the silicon-oxide interface and inject into the gate
oxide. This causes threshold voltage increment, trans-conductance degradation,
saturation current decreasing and leakage current increasing.
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• Random Telegraph Noise (RTN)
RTN is the noise generated from changing resistance during switching actions.

• Electro-migration
Electro-migration is the noise generated by the large migration of electrons in
the interconnect materials. This causes a momentum and an electric field. This
results interconnect resistivity change, and interconnect failure such as short and
open faults may occur.

2.2.3 External Influences

The most interesting fault of these three are the external influences. These are the faults
that are targeted in the fault tolerant mode on the ρ-VEX processor. The cause of these
faults are, as the name suggest, found in the environment in which the device operates.
Temperature, supply voltage and cosmic rays are the main factors that contribute to the
faults in these devices. In the next sections will discussed the how the environmental
influences contribute to the failure of these devices.

• Temperature
CMOS devices increasingly dissipate power under the ongoing technology
scaling[28]. Extreme heat contributes to the degradation of the device were as
temporal and spatial heat variations can affect voltage threshold of transistors
which can lead to delays.

• Voltage
The device may suffer from a bad power supply with voltage variations. Voltage
variation leads to uneven power dissipation which can result to the formation of
temperature hot spot and temperature variation.

• Latch Up
Latch up is a sequence of events occurring very quickly leading up to the SCR state
change. Understanding this sequence in detail provides insight which can be used
to prevent latch up. For an overvoltage bigger, the worst case would be while the
inverter is in the ”1” state[29].

• Soft Errors
Soft errors are the errors we are looking for. In the early 80s, IBM conducted
a series of experiments to measure the particle flux from cosmic rays[30]. These
errors occur from energetic particles such as alpha particles, cosmic ray and ther-
mal neurons. Transistors may accumulate these charges and when a significant
amount of charge is collected the state of a logic device is inverted. With this
inversion it introduces a logical fault in the circuit’s operation. Because, it is not
a permanent fault it is called a soft- or transient error[9].

One aspect of the measurements conducted by IBM is that particles of lower
energy occur far more frequently than particles of higher energy. With the
current technology scaling[7] less energy from the particles is needed to invert the
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transistor. Leading to much higher soft errors.

Two sources are identified as the source of the cosmic rays: First, the flood of
low-energy particles from our sun called the solar wind. The solar wind disappears
during the period of the quiet sun, and then builds into a torrential storm of
particles during an active sun period. This period varies from 9 to 12 years and
at it’s peak is the main contributor to the rays. Second, is a flux of very energetic
particles from far distant sources in the galaxy. The earth is protected against the
raw radiation by the magnetic field which deflects these particles, but some may
slip through into the atmosphere.

Soft Errors in Memory Circuits
High-energy particles that strike a sensitive region in a semiconductor device de-
posit a dense track of electron-hole pairs as they pass through a p-n junction. Some
of the deposited charge will recombine to form a very short duration pulse of cur-
rent at the internal circuit node that was struck by the particle. When a particle
strikes a sensitive region of an Static Random-Access Memory (SRAM) cell, the
charge that accumulates could exceed the minimum charge that is needed to flip
the value stored in the cell, resulting in a soft error.

Soft Errors in Combinatorial Logic
If a particle strikes a p-n junction in a part of combinatorial logic it can change
the value. However, this will not always affect the result unless it is captured in a
memory component. A soft error can cause no effect if it is masked by one of the
following three types of masking[9]:

1. Logical masking means when a particle strikes a part of the logic that is not
responsible for the output.

2. Electrical masking happens when the charge is absorbed by other logic so that
the value is not inverted.

3. Latching-window masking happens when the wrong value is propagated to a
memory element, but this is not at the clock transition

The Failure In Time (FIT)/bit of a cell typically ranges between 0.001 - 0.010[31].
This means once every 100-1000 times a bit upset and wrongly represented. In the
current technology this has no harm, because this will be restored in the flip-flips
after a while. But in an aircraft flying at 10 km height the amount of radiation is 100
times higher. This will affect not only the static logic, but also the combinatorial
logic.

Soft Errors on high altitude
Cosmic ray particles that penetrate the atmosphere collide with the atoms and
disperse their energy. As we come closer to the earth surface the chance of particles
colliding increases because the air become ”thicker”. When we fly away from the
earth surface with an airplane the air becomes thinner. During 1988 and 1989,
IBM conducted a series of tests on three different aircrafts in which single-event
upset (SEU) in a large array of 64-k SRAM’s were measured[32]. These tests
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Figure 2.5: The sun’s solar flare and the earths magnetic field (from NASA).

demonstrated that SEUs in avionics are real, that the higher a plain flies the higher
the amount of particles is. Soft Error Rate (SER) for CMOS devices operated at
2.5 V increased by about a factor of 2 as the altitude was increased from 9 km to
20. This continues until the amount stabilizes.

Soft Errors in Space
Cosmic Ray in space is comparable with the effects on high altitude from the earth
surface, but in space there is no protective magnetic field. The main sources of
energetic particles that are of concern to spacecraft designers are[33]:

1. protons and electrons trapped in the Van Allen belts,

2. heavy ions trapped in the Earths magnetosphere,

3. cosmic ray protons and heavy ions of multiple elements, and

4. protons and heavy ions from solar flares.

To protect against this radiation external shielding is applied, but the downside
of this protection it will add to the weight and volume of the satellite which are
limited. In space extra packaging of the chips is added as a shield, but most protec-
tion is coming from Error Correction Code (ECC) and other radiation hardening
mechanisms. The methods and techniques are discussed in Section 2.3.
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2.3 Fault Tolerant Techniques

As discussed in Section 2.2, there are many ways how a device can produce one or more
errors. To take in account all these type of errors and especially SEUs in this section,
a selection is made to describe the most common known fault tolerant techniques. The
section is divided, with first the software based techniques, followed by the hardware
techniques.

2.3.1 Software Fault Tolerance Techniques

While reliable systems typically employ hardware techniques to address soft-errors, soft-
ware techniques can provide a lower-cost and more flexible alternative. Software tech-
niques generally use the functionality to execute the same instruction multiple times and
compare the results. This can be done in parallel or sequential. As an example we look
at Error Detection by Duplicated Instructions (EDDI) demonstrated in [34], but the
basic technique is also used in Software Implemented Fault Tolerance (SWIFT) in [35].
This software based fault tolerant technique uses the compiler to implement the method
to execute the same instruction twice. In a VLIW this can be executed in parallel, but
the check whether the outcome is the same is always sequential. When examining [36]
a predecessor of EDDI the same principle is introduced not by use of the compiler, but
by the programmer. Another type of software fault tolerance is called Error Detection
and Correction (EDAC)[37]. This software implementation of the error control coding
calculates a control word from the in- or output data. A codeword contains extra check
bits that are used for error detection and correction. After reading data from external
memory, the data is checked for possible errors and corrected. The decoded data is
then ready to be used. This is generally implemented in hardware as shown in the next
section, but a software implementation is also possible.

2.3.2 Fault Tolerant Techniques in Hardware

Hardware techniques to enable fault tolerance often include adding extra hardware and
execute double or triple times. The most common fault tolerance techniques are:

1. ECC
ECC is a method, by adding some extra bits to a signal which are used to de-
tect is the original signal has changed. The simplest example is the parity bit
calculation[38]. This is commonly used in memories, but can be implemented in
all sorts of signals like the register or floating point units [39].

2. Duplication
Duplication is a method similar to the software implementation, only in this case
the instruction is not executed twice, but executed once in a unit that is duplicated.
This does not require the compiler to adjust the program, but the hardware takes
care of this. The hardware can also check if the outcome is the same, or this can
be done in software
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3. Triple Modular Redundancy (TMR)
TMR is applied in many air-, spacecrafts and satellites. The technique dates back
tot the 60s[40][41]. The technique is comparable to duplication, but now executed
thrice. This has the benefit that with a binary outcome there is always majority
in the outcome.

The automotive industry uses an other approach. It uses hardware from an older
generation. This is similar as the use of an 1980s Central Processing Unit (CPU) in
the Philae lander mentioned in Chapter 1. Older hardware has bigger transistors and
bigger interconnect signal wires, because at that moment the technique to create smaller
parts was not invented yet. The bigger electrical circuits have a longer lifespan which
is needed in cars. The technology has proven to withstand the wear and tare during
that lifetime. The downside of this method is that it lacks the speed of the current
technology, but for the automotive industry this is not a bottleneck.

Fault Tolerance techniques boils down to two methods. We either execute the
operation multiple times and compare the outcome, or we strengthen the current
operation by shielding, with ECC or with older robuster technology. In software the
copied operation is often displaced in time while in hardware this operation can be done
in parallel.

2.4 Fault Injection

Fault injection is a method to validate Fault Tolerant Systems (FTSs) by injecting them
artificially with wrong data. This can be done manually of automated or with automatic
tools[42]. Fault injection is defined as follows:
Fault injection is the validation technique of the Dependability of FTSs which consists
in the accomplishment of controlled experiments where the observation of the system’s
behavior in presence of faults is induced explicitly by the written introduction (injection)
of faults in the system.
The techniques can be divided in three main categories:

• Hardware Implemented Fault Injection (HWIFI) This method is a physical disturb-
ing. The hardware is put in an environment were there is heavy ion radiation for
example (or electromagnetic interference, etc.) Or incorrect values are connected
to the circuit pins[42][43].

• Software Implemented Fault Injection (SWIFI) This method is completely done in
software as the name imposes. In software the errors are recreated that can occur
in the hardware. For example the modification of memory data[43].

• Simulated fault injection: In this technique, the system under test is simulated
in another computer system. Faults are induced altering the logical values of the
model elements during the simulation.

HWIFI and SWIFI are not suitable because of the lack of the equipment or software
tools. For this thesis the simulated fault injection techniques are further investigated.
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Figure 2.6: VHDL-based fault injection techniques (from [5])

The ρ-VEX processor is a VHDL based core and this technique is most suitable for the
ρ-VEX processor.
Figure 2.6 gives a classification of different techniques that can be used to inject faults
in a VHDL model. Simulator commands technique is based on the use of the simula-
tor commands to modify the value of the model signals and variables without altering
the VHDL code, for example in ModelSim you can force a signal from 0 to 1 in a sim-
ulation. VHDL code modification techniques change the model, adding saboteurs or
using mutants of the model components. Other techniques include extending the VHDL
language[44], but these are out of scope. Each method will be discussed briefly.

2.4.1 Simulator Commands

This fault injection technique is based on using the simulator to force the signals to
another state. Moreover, as VHDL generic constants are managed as special variables,
it is possible to inject some non-usual fault models, such as delay faults[45]. Using
simulator commands it is possible to inject transient, permanent, and intermittent faults.
Though, there exists one restriction: due to the special nature of variables in VHDL,
it is not possible to inject permanent faults in variables. This technique is the easiest
one to implement and its temporal cost (to perform the simulation) is by far the lowest.
However, the number of fault models that can be injected is smaller than with the other
techniques.

2.4.2 Saboteurs

A saboteur is a VHDL component that changes the value or timing characteristics of one
or more signals when activated. It is usually inactive during normal system operation and
activated only to inject a fault. A ”serial saboteur” breaks up the signal path between
a driver (output) and its corresponding receiver (input). A parallel saboteur is simply
added as an extra driver to a signal[46]. According to [5] this distinction in saboteurs is
expanded in eight different saboteurs.

2.4.3 Mutants

A mutant is a component which replaces another component. In [47] and [48] some
examples of this technique is discussed. It works like the original component, but when
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Figure 2.7: Adjustment op bit-stream to create an open (from [6]).

made active it generates faulty output. The mutation can be made in three ways:

• by adding saboteurs to structural model descriptions;

• by modifying structural descriptions replacing sub-components (i.e., a NAND gate
can be replaced by a NOR gate)

• by automatically mutating statements in behavioral component descriptions, e.g.,
by generating wrong operators or exchanging variable identifiers; this is similar to
the mutation techniques used by the software testing community.

• by manually mutating behavioral component descriptions to achieve complex and
detailed fault models.

There can exist lots of possible mutations in a VHDL model, so representative subsets
of faults at logical and RT levels must be considered.

These different types of fault injection can be automated with some tools like Multi-
level Error/Fault Injection Simulation TOol (MEFISTO)[46] or VHDL-based Fault In-
jection Tool (VFIT) but these are all closed source and difficult to compare.

2.5 New Fault Injection

Because all of the tools to inject faults in the designs are closed source a manual adjust-
ment of the VHDL looks promising, but still is a lot of manual labor. Therefore, a new
state-of-the-art method is introduced: VERI-place[6][49]. The VERI-Place tool is able
to perform the analysis and the placement of circuits on modern SRAM-based FPGAs.
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Figure 2.8: Adjustment op bitstream to create a short and other effects (from [6]).

The VERI-Place tool consists of an algorithm which loads the circuit description imple-
mented on the SRAM-based FPGAs and performs the topological analysis. It parses the
original bitstream file and generates a set of bitstream coordinates that correspond to
the identification of the FPGA configuration memory cells possibly affected by SEUs.

Although this is a permanent fault and not a transient fault, after generating a lot
of tests with different affected bit-streams this could generate an statistic sound image
of the effects of SEUs. Compared to an automated tool with fault injection this method
needs approximately 100 times more test to achieve viable results. The upside from this
method is that it is suitable for use and not closed source.

2.6 Conclusions

This chapter presents the ρ-VEX platform as a version of a VLIW processor. The ρ-VEX
processor is the only run-time reconfigurable VLIW softcore with a complete toolchain.
It makes use of the benefits of reconfigurable computing and fills the gap between the
general purpose core and the ASIC. With the use of FPGAs the softcore can dynamic
change the issue-width if the running program and execute an other program on the free
issues.
Subsequently, a classification is made from all the causes of fault in electronic equip-
ment. This can be summarized in three main groups: Design- and manufacturing faults
which are caused during the design an manufacturing period and before the real use.
The second group are faults from degradations that is caused by the wear and tear of
the transistors. Finally, the most important group is the faults caused by environmental
issues. The most important is the error caused by charged particles or called the soft
error.
Theses faults and errors are countered with fault tolerant techniques in software and in
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hardware. This results in two most common approaches. Either, we execute the oper-
ation multiple times and compare the outcome, or we strengthen the current operation
by shielding, use ECC or with older robuster technology.
Finally this chapter presents methods of how to inject faults in a design to verify if
the system operates as intended. The most interesting method is VHDL-based fault
injection, because this is best applicable in VHDL-based softcore. Also a new state-of-
the-art method of testing by modifying the bit-stream in order to simulate SEUs called
VERI-Place is discussed.
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The hardware platform used for this project is built around the reconfigurable ρ-VEX
processor as discussed in the previous chapter. In this chapter, we use the knowledge
acquired about the ρ-VEX processor, the error and the existing fault tolerance methods
to find a custom method tailor-made for the platform. First, we will start with the
vulnerable structures were the probability of the error to appear is the highest. After
we acquired the location, possible methods to prevent the errors are considered and
the best-suited option for the ρ-VEX processor is chosen to implement. The chosen
implementation is then further investigated and a list of needed structures is put together
with the required data. Finally, a list of control mechanisms is composed to integrate the
design in the existing system so it can be called and used from the existing infrastructure.

3.1 Vulnerable Structures

Theory says memory structures are most vulnerable to be hit by a particle that causes
a single-event upset (SEU), therefore we need to protect these structures [50][51][9].
In the ρ-VEX processor, the memory structures are located in the General Purpose
Register (GPREG), the Instruction Memory (IMEM), the Data Memory (DMEM)and
the normal registers in, for example the pipeline stages. All these memory structures
are threatened by this event. This does not mean that it cannot occur in combinatorial
logic as is stated in [9].

3.1.1 GPREG

The GPREG is a memory structure which can be hit with a charged particle. This
charged particle can invert a bit, but it will also store this incorrect value and use this
in future calculations. Multiple methods are to protect the memory against this event
as discussed in Section 2.2. The ρ-VEX processor has a reconfigurable general purpose
register and implements this in block Random Access Memory (RAM)s. This register is
accessible for all pipelines when operation in the 8-issue width mode. When operating in
a 4 times 2-issue width with each pair has their own context. The general purpose register
is separated and only accessible by their context. Because of this reconfiguration option
a lot of logic is needed. One method to protect this again single-event upsets (SEUs) is to
implement this three times and use a majority voter[52]. This is not an option, because
the amount of space needed for the logic of accessing GPREG is already a substantially
part of the whole core and it will explode the amount of space needed or this.
A viable solution would be Error Correction Code (ECC) which has already been used
in designs [39] and is also commercial available. Therefore we assume the GPREG as
save and not subjected to SEUs.

19
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Figure 3.1: A simple representation of the pipeline

3.1.2 IMEM

The IMEM is also a memory structure that is vulnerable to SEUs. As the previous
subsection suggests a triplication is an option at the cost of a lot of space. The ρ-
VEX processor implements this in available block RAMs. Again this type of memory
can be easily protected against these errors with existing technology like ECC or Error
Detection and Correction (EDAC). This is already available, thus we assume that the
information from the IMEM is correct.

3.1.3 DMEM

The DMEM is implemented on the ρ-VEX processor in block RAMs like the two memories
described above. For the same reason as above we assume this information is correct,
because implementing a method to protect this against SEUs is trivial.

3.1.4 Pipeline

The pipeline as shown in Figure 3.1 has memory structures between the stages imple-
mented in registers. There are eight pipelines in the ρ-VEX processor implemented. In
this situation the proposed method as suggested in [52] already proposes a triple reg-
ister implementation with a voter. This could be a viable option. The option to use
techniques like ECC or EDAC are not possible to implement in these registers.

3.1.5 Combinatorial logic

Although the main place for a SEU to occur is a memory element, combinatorial logic is
also subject to SEUs. This means that an error can occur in the functional units. This
small error will have a big impact, because it is used very often. Protecting against these
errors is harder and more difficult. Techniques like ECC or EDAC are not applicable,
thus this leaves only multiple execution as a viable option.
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3.2 Implemented Protection

As is concluded in the above section the IMEM, DMEM and GPREG are implemented
in block RAMs and a protection against SEUs is considered trivial, because multiple
options already exists. Thus, we will consider these elements as protected. This leaves
the registers in the pipeline and the functional units unprotected.

To implement protections in the ρ-VEX processor we want to make use of the special
characteristics and implement a purely hardware-based fault tolerant execution. This
will imply that the core becomes bigger, because we will add structures. We need to
take in consideration to keep this as small as possible. Extra area means extra use of
power and we want to prevent this as much as possible.

Area
The basic principle in fault tolerance can be applied here. Make units and signals
more robust, by adding ECC for example, or do the operation multiple times and
compare the result. Making the units more robust has a disadvantage making great
and structural adjustments to the existing core. As mentioned in Section 1.1 this
does not meet the requirement to keep it modular.

Multiple execution
Executing operations multiple times is very good possible because the ρ-VEX pro-
cessor can operate in a 4 times 2-width issue. It already has the redundant units
available in the other pipeline pairs. And it is possible to reconfigure during op-
eration. So the basic principle of executing multiple times and compare the result
can be applied.

Compare
The protection of the functional units already suggests multiple execution. This
can be double execution with a compare of the results, but a better option
would be Triple Modular Redundancy (TMR) with a majority voter, because this
eliminates the compare step. A majority voter selects from three binary inputs
the majority as outcome. The advantage of operating in TMR mode is that if
there is an SEU that is captured in a unit the operation will continue, without
needing too rollback and execute again.

With the above argumentation in mind the option to operate in a 3 times 2-issue
width configuration of the ρ-VEX processoris selected as best solution. With this
configuration the TMR principle can be applied. This leaves one 2-issue width core
available. The remaining core can be used as a spare pipeline. When one pipeline
receives more errors than expected from SEU something more than soft errors is causing
the errors. This could be one of the other causes of errors mentioned in Section 2.2.



22 CHAPTER 3. DESIGN CONSIDERATIONS

3.2.1 Voting in the Pipeline

When operating in TMR there comes a point when the three signals need to be voted
with the majority voter. When applying this to the pipeline more information about the
pipeline is needed:

Stages
A simple representation of the pipeline is shown in Figure 3.1. It has 5 stages
(Fetch, Decode, Execute, Memory, Write-back). The first option that comes to
mind is to implement a voter after every stage in this pipeline. This is a viable
option, but this means adding a lot of logic. Also, the pipeline operations are not so
separable as the theory suggests. The Arithmetic Logic Unit (ALU) and multiplier
are so interconnected that adding a voter in between is impossible without changing
the structure radically. The other option is to vote everything that comes in the
pipeline and that leaves the pipeline. This will have the same effect as the other
option, but is smaller and more modular, because it will leave the pipeline as it is.

Incoming Data
Incoming data to the pipeline can be found in Figure3.1 and in Table 3.1. These
are the instructions from the instruction memory, the data read from the registers
and the read data from the memory.

Outgoing Data
Outgoing data from the pipeline are the write to the register and the write to the
memory

This means a voter for the instructions, memory, and the registers. Three units, com-
pared to four in the previous proposal, and the latter leaves the pipeline intact. In Table
3.1 ”Required Structure” is added this gives more information about the functionality.
Read in the same data from the IMEM, DMEM or GPREG is extra work. A simple
copy to the other lanes will suffice.

Table 3.1: Overview of in- and outgoing data from the pipeline with required structure

Type Required Structure

Incoming data IMEM Copy
Incoming and outgoing DMEM Copy and Voter
Incoming and outgoing GPREG Voter

3.3 Control Structures

Only adding some voter or copy structures will not be sufficient. Some control structures
need to be implemented. First the TMR of fault tolerance mode needs to be enabled
from the code. Second, some information is required about the error in the active lanes.
Finally, actions need to be taken with that information.
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3.3.1 Protected Sections

The fault tolerance mode needs to protect important sections in the code. The code
needs to tell the control system when to enable the fault tolerant mode and when the
section is ended. For this purpose a pragma1 when to start the TMR en when to disable
the TMR is needed. When enabling the TMR the core needs to reconfigure from the
current configuration to the configuration to a 4 time 2-issue width. This reconfiguration
pragma already exist, so extending this reconfiguration with an TMR is needed to call,
and end this from the code. This requirement is added to the list of functionalities in
Table 3.2.

3.3.2 Detecting Errors

Operation in TMR leaves one 2-issue width pipeline available. This remaining pipeline
can be used as a spare pipeline. When one pipeline receives more errors than we would
expect from SEU something more than soft errors or SEUs is causing the errors. This
could be one of the other causes of errors mentioned in Section 2.2.
Thus, we need to measure the amount of errors. When using a voter structure as
mentioned in [52] the outcome gives a majority result but gives no information about
the different input signals. To overcome this, the output signal needs to be compared
with the input signal. To see if the input signal was different or the same. If this was not
the case the input signal was faulty. This is added to Table 3.2 with required structures.

3.3.3 Counting Errors

When for example the ρ-VEX processor is exposed to a testing environment en bom-
barded with charged particles, the SEUs generate a lot of errors. These will be evenly
spread among the other lanes. The other case is that due to some process variations
the transistors in the first lane pair has some degradation issues. In the latter case the
amount of errors in the core is not evenly spread, but concentrates in one location, or
lane. With these two simple cases in mind the mechanism for counting errors is not
a simple counter and see when a certain limit if errors is reached. If we use a simple
counter the second example will give the right information and the first lane pair reaches
the count limit first. This gives the indication that the lane is broken. But, when ap-
plying the same technique for the first example the information we get with a limit is
meaningless. The amount of errors is evenly spread and it depends on coincidence which
pair reaches the limit first. But this gives the indication that the lane pair is broken
which is not true.
For this reason we do not use the absolute value of the fault, but we incorporate an other
counter that will decrease the amount of fault from all the lanes. This way we keep a
relative value of all the error and not an absolute value. Also, this will prevent that the
counter should be capable of storing an infinite number when large programs are run.
This functionality is added to Table 3.2.

1A pragma is for compiler directives that are machine-specific or operating-system-specific, i.e. it tells
the compiler to do something, set some option, take some action, override some default, etc. that may
or may not apply to all machines and operating systems.
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Table 3.2: Overview of required structure

Function Required Structure

Start and Stop TMR Extend reconfiguration option
Detect Errors Extend voter structure

Decide to switch lane Fault count mechanism
Implement lane switch Finite State Machine (FSM)

3.3.4 Switching Lanes

When established that a lane is broken a switch is initiated to the lane that is in spare
at that moment. This needs to be done with care. Current operation in the pipeline
need to be finished and adding extra delay is not desired. One stage at a time in the
pipeline needs to be switched to the spare lane. The voter structures in stage 4 and 5
need to be signalled that a switch is to be executed. This timing sensitive switching
needs to be handled with a FSM. FSMs can become very large and complex. To enable
easy modifications in the future and avoid the complexity a choice is made to use a
Hierarchical Finite State Machine (HFSM). This will keep the top-level simple and the
second level of states, can be easily managed and extended if needed. This functionality
is added to Table 3.2.

3.4 Conclusions

This chapter focuses in the vulnerable structures that are most likely to be hit by a
SEU. These are often memory elements. Known countermeasures are found in similar
designs which implement ECC or EDAC in the memory elements, therefore, we assume
the IMEM, DMEM and the GPREG correct, because with a trivial existing solution
these memory elements can be protected. The emphasis is on triplicating the pipeline
and enable TMR. This method requires an element to copy the instruction three times
and a majority voter on all the incoming and outgoing data from and to the DMEM and
GPREG. Finally, the mechanism to count the errors is discussed to decide if the spare
lane is used and a lane switch is initiated. These operations require a dedicated control
mechanism to detect the errors and a FSM to handle the lane switch.



Implementation 4
This chapter describes the implementation of the different structures and functionalities
determined in Chapter 3. The order in which the implementation is presented follows
the chronological way the data flows. It begins with how the sections are marked as
protected in the program and how the fault tolerance is turned on and off. Then, the
system is explained in how the instructions flow through the three pipelines which form
the Triple Modular Redundancy (TMR). At every stage were a majority voting is needed
these are explained. An overview of the implemented system is shown in Figure 4.1. The
different colors represents the different sections

4.1 Configuration Control

In Section 3.3 was argued that the fault tolerance need to protect sections of code by using
a pragma. The pragma we use is an extension of the existing reconfiguration control. This
is activated by writing to a register. The register is called the reconfiguration register,
named after the function that it can reconfigure the core. Each active context can
request a reconfiguration. The request is read by the decoder. This decoder interprets
this register and translates this to a new configuration. The decoder needs to be extended
in order to get the correct setup of the core. The desired configuration is a four times
2-issue width were all the cores want to read the same context and in the end configure

Figure 4.1: General overview of the implemented system
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Figure 4.2: Instructions from the IMEM tot the pipeline

back to a normal configuration. After writing to the register in the code the core will
wait five cycles to execute the last instructions and reconfigure to a four times 2-issue.

4.2 Instruction Multiplexer

In Section 3.2 the data that was coming from the Instruction Memory (IMEM) to the
pipeline was declared save end needs to be copied to the other lanes. The function is
schematically represented in Figure 4.2 and the position in the whole system is the blue
square in Figure 4.1. First, this unit filters the four incoming fetch signal in to one
fetch command from the core to the instruction memory. This signal is a signal from
the pipeline to fetch the new instruction. Second function is dividing these instructions
meant for only one lane over all active lanes in the core and feed the inactive lane NO
Operations (NOPs). This could be incorporated with a voter, but there is no sense in
this. All instructions come from the same place. There are no operations between the
IMEM and the pipelines. When adding a voter we add extra logic which increases the
chance of an error. Also we introduced a new configuration in Section 4.1 with 4 lanes
who want to read the same data. These 4 read actions are now reduced to one single
read request. This method can me compared to a read request to the data memory. In
Section 4.5 this situation is solved in the same manner.

4.3 Voter Structure

In Section 3.3 detecting the error was needed for deciding if a lane switch was initiated.
To enable this the design of a majority voter needs to be extended. Triplication of the
execution will generate three signals. From these three signals a finite signal must be
generated. As is already mentioned in Chapter 2, a previous version of the ρ-VEX pro-
cessor incorporated TMR with a majority voter in the registers [52] [4]. This design
compared every bit from the three signals and passed the most voted signal. This would
be a zero or a one. This technique can be used to protect the complete pipeline and
accommodate triple operation.
A small adaption to the structure is implemented as shown in Figure 4.3. The output
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Figure 4.3: Voter structure

signal is compared with the three different input signals with an XOR-port. When there
is a difference between the input and the output this will generate a ’1’ in the condi-
tions. With this small adjustment the voter structure not only implements the standard
majority voter, but generates information about the incoming signals. These incoming
signals can be used to make assumptions about the state of the pipeline.
Figure 4.3 is implemented on bit-level, when zooming out and view this from a higher
level to Figure 4.4 a complete voter mechanism is shown. We assume four incoming
signals where three contain signals from the active lanes. The first case is when the fault
tolerant mode is disabled. Then we connect the incoming ports to a signal and connect
the signal to the outgoing ports. This way the signal only travels through the entity
without modification.
The other case is when fault tolerant mode is enabled. The incoming signals are con-
nected to the voter and only the three active signals are considered. The result of the
voting is then used in the output of the entity. Depending on the function this result is
copied back to the active lanes or not. The signals in Figure 4.4 marked as c0, c1 and
c2, represent the signal condition0, condition1 and condition2 in Figure 4.3, but then
for the whole signal and not the single bit. In figure 4.1 the structures are shown as a
trapezium.
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Figure 4.4: Voter mechanism

4.4 Program Counter Voter

In Section 3.2, a decision was made to only use all the in coming an outgoing signals of the
pipeline. There is one exception being made to this. The branch unit is responsible for
determining the next Program Counter (PC). This is based on the current PC. Every
Branch unit determines the next PC on it’s own and send the result to the ConteXt
PipeLine InterFace (CXPLIF) as shown in Figure 4.5. In this unit the instructions are
requested or fetched from the IMEM. This next PC is broad-casted to the context
registers. The signal is fed through a voter, so all the next PCs are the same. This
part is important because when for some reason the branch unit of a lane determines
the wrong PC this has great consequences for the execution of the code. One lane can
jump to a complete different part in the code that is executed. As a result the lane
will execute the wrong instructions and produce the wrong outgoing data to the register
and to the memory. This will never happen of course because the previous mentioned
unit makes sure all the instructions to the pipelines are the same. The PC however is
determined inside the pipeline. If a wrong branch is taken, the PC will stay wrong until
a new branch occur and the lane will jump to the right place. To prevent this, an extra
voter structure is implemented to check all the PC that are written from the branch
units to the other lanes. This way if a branch unit takes the wrong branch the PC is
restored to the correct value and not at the next point in the code where it needs to
branch. The conditions from the two voters are connected to the other voter. Only one
signal is used in the Finite State Machine (FSM).
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Figure 4.5: The two voters for the program counters

4.5 Memory Voter

In Table 3.1 we noticed that the data from and to the data memory needs two operations.
A copy and a majority voting operation. The memory voter consists of two parts. First
part is reading of memory and the second part is writing to memory. The writing part
is voted and the reading operation is copied.

4.5.1 Memory Reading

Memory reading during fault tolerant mode is done with three lanes at the same time.
If this read action was untouched all lanes want to read the same address at the same
time. The memory will schedule this and serve the different lanes one at a time and stall
the waiting lanes. This is unwanted because this will disrupt the lock-step state all lanes
are in. Therefore, a memory read action is implemented with multiple voter structures
as shown in 4.3. All four signals are voted to one signal to the Data Memory (DMEM).
A read action is performed in two cycles. These two cycles are visualized in Figure 4.6.
The action is initiated by the lane with enabling the Read Enable signal together with
an address of the data that needs to be read. This Read Enable signal together with
the address is ”voted” and reduced to one read request to the memory from the first
pipeline. This request is returned with the required data. As the request is made only
from one lane, this needs to be distributed amongst the other lanes. No voter is needed,
just a simple copy action amongst the active lanes.
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Figure 4.6: Memory read operation in two cycles

4.5.2 Memory Writing

Memory writing during fault tolerant mode is also done with three lanes. This looks the
same as the read action. All three lanes want to write the same data to the same address
at the same time. If this is left untouched the DMEM will stall the other cores and will
write the data one per cycle. The solution in this case looks the same as the writing
solution and is visualized in Figure 4.7. Four voter structures are used to check if the
three lanes want to write the same Write Enable, Address, Write data, and Write Mask.
These voter structures are implemented with multiple voter structures as shown in Figure
4.3. After voting the data is written only by the first lane with the correct data to the
memory.

4.6 Register Voter

The register of the ρ-VEX processor, as presented in Section 2.1, is special in the case
that it is reconfigurable to a way it can be shared or not depending on the configuration.
In this case we use the possibility that it can be shared. All lanes can read a value
and all lanes can write a value to the registers if they are set to the same context. For
reading from the register no special adaptations are needed. All lanes can read because
of the special construction, so no stalls occur or other disruption operations that can
trigger the lanes to be forced out of the lock-step.
For writing the same technique with a voter structure as shown in 4.3 is used. This
element is shown in the red color in Figure 4.1 as part of the whole system. Three lanes
try to write a value. All lanes raise their write enable signal and present the data end
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Figure 4.7: Memory write operation in two cycles

the address in which register the data needs to be placed. All signals are vote and in the
end only one lane will have the writeEnable raised as is shown in Figure 4.8. This data
is distributed in the General Purpose Register (GPREG) so others can read the value.

Forwarding Structure
When comparing this tot the Memory Write actions as shown in 4.7, the signals are
still copied to the other lanes and not only one, except for the writeEnable. This is
done because, the forward mechanism must not be disturbed, or we will loose significant
performance. For this reason we will write the back the correct value in the pipeline to

Figure 4.8: Register write operation
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the active lanes, but the write enable is only kept in one lane. With this modification we
ensure that all lanes keep their forward logic and ensure the correct value is distributed
among the lanes.

This is critical for the algorithm where we detect errors. For example, if a lane
wants to write the wrong value to the register, this is corrected in the voter. When
this is not corrected in the specific lane, the forward logic may propagate this incorrect
value to other stages and cause more errors. In this situation one error may produce
one or more recognized errors. To compensate for this the correct value is written to all
the lanes. In this situation one error will only be recognized as one error.

4.6.1 Fault-Count Mechanism

In Section 3.3 we argued to implement a smart mechanism to count the errors during use.
To implement this we create a buffer or a counter. One error does not cause a failure due
to the TMR structure. In other words, the system can accept an error without further
actions. Of course, if the number of errors gets to much we must assume something is
wrong and the lane must be marked as broken.
The algorithm is straight forward. The active lanes are monitored and the amount of
instructions is monitored with a simple counter. If the amount of errors within a certain
amount of instructions is to high a signal is generated to the FSM to mark it as broken.
For example, if more than 3 errors are detected within 3000 instructions a signal is
generated. But if it is less than those 3 the buffer will decrease after 3000 instructions
with one. After a good amount of instructions without errors the buffer will remain
empty. The reason for using a decrease mechanism is to make no difference between
long programs ans short programs. If looking at an absolute value, longer programs
run longer and will endure more single-event upsets (SEUs). With this mechanism this
effect is gone. As an addition to this the four counters are routed through to the control
register so this can be easily read from software.

4.7 Hierarchical Finite State Machine

In Section 3.3 the control of the TMR and the lane switching was entrusted in a FSM.
During implementation a better solution presented itself in using a Hierarchical Finite
State Machine (HFSM). The reason for choosing an HFSM is that is relatively simpler
to expand and adapt[53]. The top level is kept very simple in only four basic states:

1. State Idle
This state is active after a reset, when the fault tolerant mode is not active and
normal operation is enabled. All units are set on pass-through. This pass-through
is one of the experiments to ensure the added functionality has no influence on the
existing functionality.

2. State TMR
This state is designed for the fault tolerance mode in TMR mode. This has mul-
tiple sub-states to enable the switch to the spare pipeline that is not used during
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Figure 4.9: State diagram of the top-level FSM.

operation. The functionality of the state is further explained in the paragraphs
below.

3. State Duplicate
This state is designed as a last resort when it is clear that 2 lane pairs are broken
and only two can be trusted. During this state TMR still continues to function,
but in the signal from the voter only the two active signals are used. When this
comparison also fails a trap can be triggered to stop the core, but this last part is
not yet implemented.

4. State Rollback
This state is designed as an expansion unit. When State TMR and State Duplicate
have passed this is the only option left. When there is an error in the comparison
of the two remaining lanes there is no majority in voting. A rollback is needed to
execute this again an compare the results for a second time. This rollback has much
implications and is implemented as Future Work to enhance the current work.

Sub-state TMR
The sub-state TMR handles delicate part in this FSM is to enable dynamic control over
the spare lane and the broken lane. It is easy to make an FSM and create all the cases,
but that would mean that the amount of states will explode. When using dynamic
saving of the spare lanes, the active lanes and the broken states this can become smaller
in code and in logic.
To achieve this a simple basic exclusive or and some and operations are executed on
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Figure 4.10: State diagram of the substates in TMR state

Figure 4.11: Organization of the statusvector

some arrays and this is stored to determine the next state. The input of this FSM
depends of course if fault tolerance is enabled or not. Furthermore, the next state
depends on the current using lanes, the spare lanes and the amount of errors that are
measured. Based on these values is decided if the current configuration is maintained or
a switch is needed to use the spare lane, or if only two lanes are used.

Control Signals
When the core is implemented on a Field-Programmable Gate Array (FPGA) it is
impossible to track the signals inside. For this purpose some signals are lead to the
outside so they can be read from the software. The fault that are registered in the
faultcounter are wired to control registers in the core. Another signal is created to show
the status of the fault tolerance control mechanism. This vector is shown in Figure 4.11.

1. The first four bits are reserved for the fault tolerance enable signal. This is current
only one bit, but there is room reserved for more options.

2. The config-signal which represents the lanes that are active.

3. The broken-signal represents the lanes that generate to much faults and are marked
as broken

4. The spare signal represents the lane that is in spare when no lane switch has been
performed.
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5. The using signal is the signal that is currently being used.

This signal can be read form the software and is used to see the status of the system.
At the moment only 20 of the available 32 bits are used. The remainder can be used in
future work.

4.8 Saboteur

To perform a decent test of the system a manual adaptation of the code is made. To
simulate a single-event upset (SEU) a saboteur is created as mentioned in Subsection
2.4.2. The setup is kept as simple as possible and is visualized in Figure 4.12. The
complete VHDL-code is shown in Appendix A. The unit need a clock-signal and a reset
to enable the counter inside the unit. In the program code a register can be set as limit.
When the counter reaches this limit the saboteur will sent a signal. This signal can be
used to invert some bits for example. When executing the code with different limits set,
it is easy to adjust the amount of errors injected in the design.

Figure 4.12: Schematic structure of saboteur

4.9 Challenges

During the implementation some challenges appeared which are hard to categorize but
are worth mentioning. These seemingly small issues are hard to find but are essential
for a proper function of the whole system.

• Configuration Control.
To avoid generating all the logic needed to determine all the decoded signals com-
binatorially, this unit contains a state machine to do it in multiple cycles. The
challenge is to write this down in a structure that generates less logic and is fast.

• PC Distribution.
The PC determination is a delicate thing in this process. Because the branch
units act on the same context, they all read from the same register. The register
that is read is determined by the lane that is the active one and not by the ones
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that are added as fault tolerant. In the example we use CR CRR = 0x9990; the
active lane is indicated by the zero. The remainder is added for extra execution.
If this lane is deactivated for some reason, like the amount of faults is to high.
The branch registers become also inactive. This will cause the branch units not
to function properly anymore. To circumvent this the lane is kept active, but is
only performing NOPs. This could be done nicer, but a complete redesign of the
branch unit was needed. This is against the principle to keep the fault tolerant
layer as modular as possible.

• Timing The memvoter and regvoter require delicate delay in timing. The simple
solution to make a chain of registers was eventually the best solution, but if the
timing is one off, this might introduce extra faults

4.10 Conclusion

This chapter describes how the elements are implemented in the design. First, a global
overview is created and then the complete mechanism is chronological explained. Firstly,
the configuration control enables the ρ-VEX processor to change in an other setup, then
the instructions are triplicated to three planes. The PC voter is responsible that the
correct PC is broad-casted to the other pipelines. The memory voter and register voter
make sure the write and read to the DMEM and GPREG is voted and copied. The
HFSM is explained and the custom made saboteur is introduced. Finally. the chapter
is concluded with some challenges during implantation.
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This chapter is where the implemented design as decided in Chapter 3 and implemented
in Chapter 4 is tested and verified. To verify and prove that the system we produced
does what it is supposed to do, the following actions are taken. First, we verify that
every component individually works as expected. Each component will be put to the test
and the outcome is discussed. After this individual test the whole system will be tested.
This means that it should execute the programs correctly. Then the system is injected
with faulty data and measured how the system handles these faults. Finally, an analysis
is made about the added hardware and what influence the added hardware implies. All
tests are performed on the Vertex 6 ML605 Evaluation Kit with the standalone core
without cache memory and without stop-bit implementation.

5.1 Testing the Components

The testing follows the structure of Chapter 4. The order in which the components are
implemented is used as order in which the components are tested. As reference Figure
5.1 is re-added. Testing of the components is done using a custom made control register.
It is just a simple 32 bit long vector, but if we lead it to the different entities, we can use
it to manually enable these entities. The different tests are organized by first mentioning
the name of the component, then a theoretical way to test is proposed. The actual test
is presented and the outcome is shown. An overview of the tests is shown in Table 5.1.

5.1.1 Configuration Control

The configuration control is the first unit to test. To test this properly all units are
disabled and the fault tolerance pragma is written to the reconfiguration register. Then
the core should reconfigure and execute the program four times.
Test
The test is executed by stating this in the c-code with the command CR CRR = 0x9990;.
Because all other units are disabled the core will no longer function in lock-step. The
result from test is that the uart1 produces 4 times success as output. This test is done
in simulation as well as implemented on an Field-Programmable Gate Array (FPGA).
Due to the behavior of the uart the word success can be mixed with the other word, but
a simple count of all the letters gives us each letter 4 times.
Outcome: Successful

1A UART (Universal Asynchronous Receiver/Transmitter) is the microchip with programming that
controls a computer’s interface to its attached serial devices. Specifically, it provides the computer with
the RS-232C Data Terminal Equipment (DTE) interface so that it can ”talk” to and exchange data with
modems and other serial devices[54].

37
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Figure 5.1: General overview of the implemented system

5.1.2 Instruction Multiplexer

The entity to get the instructions from the Instruction Memory (IMEM) can be tested
with a short piece of assembly code. We will write the one set of instructions and see if
the instructions are copied to the other lanes.
Test
The multiplexer is enabled with a control signal that is added specific for these tests.
When it is enabled we only write instructions to the first set off lane. Part of this
assembler code is shown in Listing 5.1.

Listing 5.1: Part of the assembler for testing the instruction multiplexer

# a f t e r the s t a r t enable the i n s t r u c t i o n mu l t ip l exe r manually
c0 mov $r0 . 2 = 0xF
; ;
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 2
; ;

# wait some c y c l e s to f o r the vo t e r s are a c t u a l l y on
. . . . .

# s t a r t with f i l l i n g some numbers in the r e g i s t e r
c0 mov $r0 . 2 = 1
c0 mov $r0 . 3 = 2
; ;
c0 mov $r0 . 4 = 3
c0 mov $r0 . 5 = 4
; ;
c0 mov $r0 . 6 = 5
c0 mov $r0 . 7 = 6
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; ;
# perform some ope ra t i on s
c0 stw −4 [ $r0 . 1 ] = $r0 . 2
; ;

# d i s a b l e the p l exe r manually
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 0
; ;

The test showed the exact same instruction in the other lanes.
Outcome: Successful

5.1.3 Program Counter Voter

To get the correct Program Counter (PC) to all the pairs we use a voter structure to
distribute the PC. An observation is made of the counter when all lanes operate in
lock-step. We test this unit in normal operation and see if the unit corrects the PC.
Test
Again some assembler code as shown in Listing 5.2 is used. All units are disabled and
only the PC voter is enabled. We write only instructions to the first pair. The PC should
be overwritten to zero, because the majority of the counters is zero.

Listing 5.2: Part of the assembler for testing the program counter voter

# a f t e r the s t a r t enable the i n s t r u c t i o n mu l t ip l exe r manually
c0 mov $r0 . 2 = 0xF0000
; ;
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 2
; ;

# wait one c y c l e s to f o r the vo t e r s are
. . . . .

# s t a r t with f i l l i n g some numbers in the r e g i s t e r
c0 mov $r0 . 2 = 1
c0 mov $r0 . 3 = 2
; ;
c0 mov $r0 . 4 = 3
c0 mov $r0 . 5 = 4
; ;
c0 mov $r0 . 6 = 5
c0 mov $r0 . 7 = 6
; ;
; ;

# d i s a b l e the mu l t ip l exe r manually
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 0
; ;

After the execution we see the voter overwrite the PC to the majority of inputs.
Outcome: Successful
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5.1.4 Memory Voter

The functionality of this component has two parts as explained in Section 4.5. This
means the test is also divided in these two parts. First, we start with a memory write,
followed with the memory read operation.

Memory Write
We test the functionality by enabling the voter and see if three the same write operations
are merged in one write operation. We also test the voter by adding one fault value.
Test
To test the Memory Voter in writing a small piece of assembly is written to test only
this part of the core. A part is shown in Listing 5.3. The assembly first write to a
control register. This control register is fed to the entity to manually configure the
entity. Then two times three inputs are generated.

Listing 5.3: Part of the assembler for testing the memory write function

# a f t e r the s t a r t enable the memvoter manually
c0 mov $r0 . 2 = 0xF000000
; ;
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 2
; ;
. . . .
; ;

# perform some ope ra t i on s
c0 stw −4 [ $r0 . 1 ] = $r0 . 2
c0 nop
c0 stw −4 [ $r0 . 1 ] = $r0 . 3
c0 nop
c0 stw −4 [ $r0 . 1 ] = $r0 . 2 # t h i s i s wrong
; ;

# perform some s t o r e ope ra t i on s to the memory
c0 stw −8 [ $r0 . 1 ] = $r0 . 3
c0 nop
c0 stw −8 [ $r0 . 1 ] = $r0 . 3
c0 nop
c0 stw −8 [ $r0 . 1 ] = $r0 . 2 # t h i s i s wrong
; ;

# d i s a b l e the vo t e r s manually three t imes
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 0
c0 nop
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 0
c0 nop
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 0
c0 nop
; ;
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The resulting write signal to the Data Memory (DMEM) was correct and only one single
write. Next to this result the voter registered the wrong inputs in the faultcounter.
Outcome: Successful

Memory Read
The purpose of this test is to see if three memory read requests are merged in only
one request. Furthermore, we want to see if the read data is copied from the lane that
executed the merged read to the other lanes.
Test
As expected this part is done in almost the same way. Again we use some simple
assembly code to enable only the memory voter. Some values are then written to the
memory and after enabling the fault tolerant mode this is read from the memory. Part
of this code is shown in Listing 5.4.

Listing 5.4: Part of the assembler for testing the memory read function

# s t a r t with f i l l i n g some numbers in the r e g i s t e r
c0 mov $r0 . 2 = 1
c0 mov $r0 . 3 = 2
; ;

# perform some ope ra t i on s
c0 stw −4 [ $r0 . 1 ] = $r0 . 2
; ;
c0 stw −8 [ $r0 . 1 ] = $r0 . 3
; ;

# enable the memvoter manually
c0 mov $r0 . 2 = 0xF000000
; ;
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 2
; ;

# wait some c y c l e s to f o r the vo t e r s are a c t u a l l y on
. . . .

# read from the memory in f a u l t t o l e r a n t mode
c0 ldw $r0 .12 = −4[ $r0 . 1 ]
c0 nop
c0 ldw $r0 .12 = −4[ $r0 . 1 ]
c0 nop
c0 ldw $r0 .12 = −4[ $r0 . 1 ]
; ;

# read from the memory in f a u l t t o l e r a n t mode
c0 ldw $r0 .13 = −8[ $r0 . 1 ]
c0 nop
c0 ldw $r0 .13 = −4[ $r0 . 1 ] # wrong
c0 nop
c0 ldw $r0 .13 = −8[ $r0 . 1 ]
; ;
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As is shown in the code first, we write some value to the register. We need to verify
that the values are correct and comparing only zero’s is impractical. For this test the
general purpose binary functions is disabled using the DYNAMIC = false argument.
An observation was made that the correct data was read by all lanes and the induced
error was filtered and stored in the faultcounter.
Outcome: Successful

5.1.5 Register Voter

In accordance with the Memory Voter Write we can test the register in the same way. we
want to see if the write is voted and copied to the next stage for the forward structure.
Test
A different assembler code is created to test the voter. Part of the code is shown in
Listing 5.5. As before, the assembly first write to a control register. This control register
is fed to the entity to manually configure the entity. This means enable only the register
voter and the faultcounter.

Listing 5.5: Part of the assembler for testing the register voter

# wr i t e the value in the r e g i s t e r
c0 mov $r0 . 2 = 0xF0000
; ;

# s t o r e the value to the c o n t r o l r e g i s t e r
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 2
; ;
. . . . .
; ;

# perform some ope ra t i on s to the r e g i s t e r
c0 add $r0 . 8 = $r0 . 2 , $r0 . 3 # =3
c0 add $r0 . 9 = $r0 . 2 , $r0 . 4 # =4
c0 add $r0 . 8 = $r0 . 2 , $r0 . 3 # =3
c0 add $r0 . 9 = $r0 . 3 , $r0 . 4 # =5 t h i s i s wrong
c0 add $r0 . 8 = $r0 . 3 , $r0 . 3 # =4 t h i s i s wrong
c0 add $r0 . 9 = $r0 . 2 , $r0 . 4 # =4
; ;

# d i s a b l e the vo t e r s manually three t imes
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 0
c0 nop
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 0
c0 nop
c0 stw CR FTT ADDR[ $r0 . 0 ] = $r0 . 0
c0 nop
; ;

As is listed in Listing 5.5 after the value is written to the control register some values
are written to the same general purpose register. This is of course only possible when
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the voter is active. In the fault counter a fault is shown and the wrong error is corrected
by the voter. This value is forwarded in the pipeline.
Outcome: Successful

5.1.6 Fault-Counter

Testing the faultcounter is mainly covered in the previous section. When manually
feeding the faults to the Memory Voter and to the Register Voter the counter registers
the right amount of errors on the correct lane pairs.
Outcome: Successful

5.1.7 Lane switching

The lane switching is triggered by the fault counter. If a certain level is reached the
faultcounter will signal the Finite State Machine (FSM) that the lane is wrong. The
FSM handles the switch to the next lane. To test this we need to enable one of the
voters and feed them with wrong information.
Test
The same code used in Listing 5.5 and 5.3 is used. We induce errors and the FSM is
observed using the statusvector mentioned in Section 4.7.
Outcome: Successful

Table 5.1: Overview of executed tests

Test Outcome Remarks

Configuration control Successful
Multiplexer Successful With faultcounter
Pcvoter Successful With faultcounter
Memory write Successful With faultcounter
Memory read Successful Disable generic binary

With faultcounter
Regvoter Successful With faultcounter
Lane Switch Successful

5.2 Testing the whole system

After the individual components are tested and verified, the system is put to the test in
normal operation environment. The whole system is compared with the original core as
reference.
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Figure 5.2: Benchmark of original ρ-VEX processor.

5.2.1 Original Core

The original core has been rewritten at the end of 2014. This is the starting-point of
the thesis. Small adjustment are made in 2015 and the latest version is taken for the
final testing. For the benchmarking the stand-alone version without cache is tested. The
reason for taking this version is that all the changes have no effect on the cache or other
components. And synthesizing this version takes less time. The Powerstone benchmark
suite [55] is used to test the core. The results are shown in Figure 5.2 and show the score
in a bar graph with each test executed in the three possible issue-widths, namely the
8-issue width, the 4-issue width and the 2 issue-width. The complete results are shown in
Appendix B. As the image shows, programs with high Instruction Level Parallelism (ILP)
benefits from an 8-issue width with a roughly four times speedup compared to a 2-issue
width. For example jpeg, v42, engine. On the other hand some tests hardly benefit
from the higher issue-width and do not improve at all. For example matrix or dft. This
is expected behavior according to Section 2.1.

5.2.2 Compare FT with original core

We compare the fault tolerance core with the original core in two setups. First, a test
with the fault tolerant mode off to fulfill one of the goals mentioned in Chapter 1.
”To implement a low-cost, modular, and easy to use method in a working and running
environment”. When the fault tolerance is not used or disabled this should not influence
the operation of the existing core.
The second setup is to compare the execution with an 2-issue width. The reason for
choosing the 2-issue width is simple. This architecture tells us the most about the
performance. When we use an 8-issue with and we enable fault tolerance we essentially
reconfigure back to an 2-issue width. An increase in the amount of active cycles is
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Table 5.2: Active cycles from benchmarks as shown in Figure 5.2

Benchmark adpcm bcnt blit compress crc des dft

2-issue 26510 3863 13656 116865 15670 39256 101158
4-issue 50410 6610 25706 212925 29504 76854 101181
8-issue 98210 12104 49806 405084 57172 152050 101197

Benchmark engine fir g3fax itver2 jpeg matrix pocsag

2-issue 670090 455080 630548 97699 1504057 97697 18693
4-issue 1303860 858227 1165061 97722 2807143 97720 34886
8-issue 2571400 1664521 2234087 100351 5413315 97772 67292

Benchmark qurt ucbqsort ucbqsort v42 x264
-fast

2-issue 27051 158925 45609 1975738 84675
4-issue 51005 285999 45634 3625023 84701
8-issue 98913 540147 45691 6923593 84757

expected. The only difference in performance we see is the bss clearing2 before the
execution of main() that is performed before reconfiguration when comparing 8-issue of
2-issue width in fault tolerance. But when we compare to an 2-issue width the amount
of cycles should be comparable.
After verification that the individual components operate as expected the FT-version is
compared with the original core. The test consists of two parts:

1. Compare the core with fault tolerance disabled.

2. Compare the core with fault tolerance enabled in 2-issue width.

Fault Tolerance Disabled
The result of the tests are positive. The benchmarks show no difference in the amount of
active cycles when we use a fault tolerant capable core with no fault tolerance enabled.
Fault Tolerance enabled in 2-issue width compared to a 2-issue with
As shown in Table 5.3 the amount of active cycles is comparable with the amount of
cycles from the original core.

The difference we would expect is exactly 5 cycles that is needed for the reconfigura-
tion to enable the fault tolerance. As is shown in Table 5.3 this is not perfectly true. The
amount is sometimes 4 and sometimes 6. This difference is due to uart communication.
The lower baud rate can cause a small misalignment which causes the one cycle offset.

5.3 Fault Injection

To test if the core operates as expected we use the method described in Section 2.4.2.
This method is a known way to test VHDL softcore implementations. We use the
implemented saboteur discussed in Section 4.8. The signal inverting by the saboteur

2bss is used by many compilers and linkers for a part of the data segment containing statically-
allocated variables represented solely by zero-valued bits initially [56]
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Table 5.3: Amount of active cycles from a 2-issue width ρ-VEX processor with and
without FT enabled

adpcm bcnt blit compress crc des

2-issue 98210 12104 49806 405084 57172 152050
2-issue tmr 98214 12109 49811 405136 57177 152056

dft engine fir g3fax itver2 jpeg

2-issue 101197 2571400 1664521 2234087 100351 5413315
2-issue tmr 101198 2571405 1664527 2234092 100331 5413321

matrix pocsag qurt ucbqsort v42 x264

2-issue 97772 67292 98614 540147 6923593 84757
2-issue tmr 97777 67296 98920 540152 6923598 84762

must be done sensible. Changing the value read in the register proves nothing, because
the system assumes this is correct and it will not be detected. The other side is when
one of the three signals that is written to the register is changed. This will again show no
interesting information because the design is based on this and all the error are detected.
We want to test the weaknesses of the system.
In Figure 5.4 a test is performed that the data read section in the pipeline is changed.
This should cause a read of wrong data if a read action took place at that moment. For
this test the benchmark program v42 is used, because this is the longest one and the
ρ-VEX processor is put in 2-issue width. All the tests were preformed correct and the
errors are read from the counters in the custom designed registers. For this purpose the
lane switch was disabled.

As is shown the detected errors show a straight line, but only a part of the errors are
detected. This is only five percent of the injected faults which are shown in the green
line. This is what we expect because not every inversions by the saboteur coincide with
a data read action. Further investigation shows that the amount of detected errors in
accordance with what we see in Figure 5.3. The amount is data read actions is very
low in the benchmarks. This is a good representation of the reality when a single-event
upset (SEU) is not coincide with an active signal in the core.

In Figure 5.4 another inject is performed in the decode of the instruction. The amount
of detected errors is much higher than in the previous example. The reason some errors
are not detected can be found in the decode. This is found when further inspecting the
injection in ModelSim. When for example a NO Operation (NOP) is decoded not all
the values of the instruction are inspected. Only a few are necessary to decide if it is a
NOP and the inverted bit is not inspected in the decode.

5.3.1 Statistic Analysis using VERI-Place

This experiment is postponed, because the program to test the system has not arrived
in time.
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Figure 5.3: Memory vs register operations in Powerstone for ρ-VEX processor

Figure 5.4: Inserting errors in the read data in the pipeline.

5.4 Added Hardware

After verifying that the hardware operates an analysis of the added hardware is made.
We start with the clock speed and continue with the added hardware per unit.
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Clock Speed
After synthesizing the design with an extended synthesis report we can conclude that
the design does not interfere with the longest path. This means the clock speed can
remain the same.

Resources Added
After generating an extended synthesis report the mapping of the different components
is analysed from the FPGA the result is shown in Table 5.4. This is generated from
the FPGA implementation of the standalone core without cache, without stop-bit
implementation. Thus this is the smallest possible ρ-VEX processor with eight issues.
All the other implementations are bigger with more peripherals. As Table 5.4 shows the
added hardware is roughly 6%. This means that with the addition of 6%, in the worst
case, a complete new functionality is added to the design which can be extended with
little effort or new hardware. Therefore, it is safe to conclude that this added feature is
worth the resources.

Table 5.4: Added hardware per component

Module Slices Slice Reg Lut Lutram bram/fifo dsp48E1 bufg

Total ML605 20419 15168 51849 1163 347 16 2
FSM 281 11 634 0 0 0 0
plex 62 0 195 0 0 0 0

pcvtr 243 2 450 0 0 0 0
memvtr 218 11 634 0 0 0 0

regvtr 498 16 977 0 0 0 0
Total FT 1302 40 3090 0 0 0 0

Percentage 6,38 0,26 5,96 0 0 0 0

5.5 Discussion

When evaluating the core we see that even with an extreme amount of errors the core
still functions properly. One could argue that when injecting more than 100.000 errors
per second in the core the problem lies not in the fault tolerant mechanism anymore.
But outside the core. With this implementation at the cost of little added hardware a
complete new functionality is added. With this functionality the reconfigurability of the
ρ-VEX processor is extended to add new functionality with existing hardware. With the
new mechanism of counting the errors one could even say it can not even prevent against
single-event upsets (SEUs), but it might be an idea to use it against aging problems.
The core uses the first lane always and it might be possible that this will suffer from
aging problem sooner than other lanes. With the introduction of this capability one
could counter this and use other lanes.



5.6. CONCLUSIONS 49

5.6 Conclusions

This chapter verifies step by step if the design works as intended. First, each component
is tested while operating in the ρ-VEX processor when all other components of the fault-
tolerant design, when possible, are disabled. All components are individually tested using
custom made assembler code. With extra control mechanisms, individual units can be
enabled through the software. Furthermore, extra status can be read in the software to
ensure the correct outcome. When all individual components work as intended the whole
system is tested and compared with the original core without fault tolerant capabilities.
This was validated on the FPGA and gave a five cycle increase compared to a 2-issue
width execution. These five are exactly the five extra cycles for reconfiguring. The
third step is testing how the system performs when faults are injected. This showed
that injection of errors are not always detected. This depends on the program and if
the saboteur hits an active or used signal. Finally, the added hardware is compared to
the existing hardware and concluded that the added hardware is small compared to the
added functionality.
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Conclusion 6
6.1 Summary

Chapter 2 presents the ρ-VEX platform as a version of a Very Long Instruction
Word (VLIW) processor. The ρ-VEX processor is the only run-time reconfigurable
VLIW softcore with a complete toolchain. It makes use of the benefits of reconfigurable
computing and fills the gap between the general purpose core and the Application
Specific Integrated Circuit (ASIC). With the use of Field-Programmable Gate Ar-
rays (FPGAs) the softcore can dynamic change the issue-width if the running program
and execute an other program on the free issues. Subsequently, a classification is made
from all the causes of fault in electronic equipment. This can be summarized in three
main groups: Design- and manufacturing faults which are caused during the design
an manufacturing period and before the real use. The second group are faults from
degradations that is caused by the wear and tear of the transistors. Finally, the most
important group is the faults caused by environmental issues. The most important is
the error caused by charged particles or called the soft error. Theses faults and errors
are countered with fault tolerant techniques in software and in hardware. This results
in two most common approaches. Either, we execute the operation multiple times
and compare the outcome, or we strengthen the current operation by shielding, use
Error Correction Code (ECC) or with older robuster technology. Finally, Chapter 2
presents methods of how to inject faults in a design to verify if the system operates as
intended. The most interesting method is VHDL-based fault injection, because this is
best applicable in VHDL-based softcore. Also a new state-of-the-art method of testing
by modifying the bit-stream in order to simulate single-event upsets (SEUs) called
VERI-Place is discussed.

Chapter 3 focuses in the vulnerable structures that are most likely to be hit by
a single-event upset (SEU). These are often memory elements. Known countermea-
sures are found in similar designs which implement ECC or Error Detection and
Correction (EDAC) in the memory elements, therefore, we assume the Instruction
Memory (IMEM), Data Memory (DMEM) and the General Purpose Register (GPREG)
correct, because with a trivial existing solution these memory elements can be
protected. The emphasis is on triplicating the pipeline and enable Triple Modular
Redundancy (TMR). This method requires an element to copy the instruction three
times and a majority voter on all the incoming and outgoing data from and to the
DMEM and GPREG. Finally, the mechanism to count the errors is discussed to decide
if the spare lane is used and a lane switch is initiated. These operations require a
dedicated control mechanism to detect the errors and a Finite State Machine (FSM) to
handle the lane switch.
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Chapter 4 describes how the elements are implemented in the design. First, a
global overview is created and then the complete mechanism is chronological explained.
Firstly, the configuration control enables the ρ-VEX processor to change in an other
setup, then the instructions are triplicated to three planes. The PC voter is responsible
that the correct Program Counter (PC) is broad-casted to the other pipelines. The
memory voter and register voter make sure the write and read to the DMEM and
GPREG is voted and copied. The Hierarchical Finite State Machine (HFSM) is ex-
plained and the custom made saboteur is introduced. Finally. the chapter is concluded
with some challenges during implantation.

Chapter 5 verifies step by step if the design works as intended. First, each
component is tested while operating in the ρ-VEX processor when all other components
of the fault-tolerant design, when possible, are disabled. All components are individually
tested using custom made assembler code. With extra control mechanisms, individual
units can be enabled through the software. Furthermore, extra status can be read
in the software to ensure the correct outcome. When all individual components
work as intended the whole system is tested and compared with the original core
without fault tolerant capabilities. This was validated on the Field-Programmable Gate
Array (FPGA) and gave a five cycle increase compared to a 2-issue width execution.
These five are exactly the five extra cycles for reconfiguring. The third step is testing
how the system performs when faults are injected. This showed that injection of errors
are not always detected. This depends on the program and if the saboteur hits an active
or used signal. Finally, the added hardware is compared to the existing hardware and
concluded that the added hardware is small compared to the added functionality.

6.2 Main contributions

In this thesis we present the implementation of a dynamic implementation of a fault
tolerant execution of a critical section on the ρ-VEX processor. This section presents the
main contributions of this project. The ρ-VEX processor will be tested in space in the
near future. This fault tolerant execution will contribute heavily to the success of that
test. In Figure 5.1 the overview of the added hardware in the core is shown. All the
goals defined in Section 1.1 were achieved in the following ways;

1. The dynamic execution is achieved by using a special reconfiguration in run-time.
Writing to the reconfiguration register triggers a special TMR execution of the
code section.

2. The system has no major changes to the core and adds no extra cycles when
inactive. During experiments no added cycles were measured when not enabling
the fault tolerant method.

3. All operations are executed correct in fault tolerant mode. During experiments all
operations execute correct from every possible configuration

The main contributions of this thesis are:
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1. Created a Configuration in the ρ-VEX processor that executes the same program
in lock-step mode.

2. Created a small bit-wise voter that signals which incoming signal was wrong

3. Created a HFSM that is prepared for expansion with other fault tolerant modes.

4. Created a dynamic method to create a section that can be executed in TMR during
run-time.

5. Created a connection to the control registers to control the system from the soft-
ware.

6.3 Future Work

The ρ-VEX processor is a project built by students and can always be improved. There
is still a lot of work to be done to enable a full fault tolerant core. This thesis only takes
care of a small part. This section will list a number of these tasks related to the complete
en fully functional fault tolerant core

1. Implement ECC in the IMEM, DMEM and GPREG.
As discussed in Section 3.1, the protection of the memory structures could be
implemented relative simple. But to make a complete fault tolerant system this
must be executed.

2. Implement Duplicate execution in a two time 4-issue width setup.
The TMR setup losses quite some performance, but can continue operation when
errors are detected. With a two times 4-issue width setup, the operation needs
to roll back in case of errors, but it has bigger performance. At the cost of fault
tolerance more speed is gained.

3. Integrate the control logic more in the design.
The integration with the control registers can be improved. The registers should
be writable from the debug bus so more tests and setups can be integrated in the
whole system

4. Adaptation of Branch unit to enable better voting.
During integration the branch unit prove to be a bit of a problem. With some
modifications to the architecture a better setup could be created. At this point all
lanes need to be active. Th best solution would be deactivating the spare lane.

5. Use spare lane for other context
At this moment the fourth lane is used as spare and executes NO Operations
(NOPs). This resource could be used to executed an extra program.

6. Integrate the system with an interrupt to ensure correct operation of
OS calls.
When operation in a real system an option could be to integrate interrupts from the
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operation system. These interrupts should very important that a correct execution
is needed and fault tolerance is activated. Other operations could be executed
normal mode.
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List of definitions

ILP Instruction level parallelism refers to the existence of independent operations in
a program which can be executed together in a single clock cycle. Finding some
independent operations in a program or a stream of operations is the job of a
compiler in case of a VLIW processor or run-time control hardware in case of a
superscalar processor. Instruction Level Parallelism (ILP) can be combined with
any other type of parallelism to further enhance the performance.

Fault Injection Fault injection is the validation technique of the Dependability of Fault
Tolerant Systems (FTSs) which consists in the accomplishment of controlled ex-
periments where the observation of the systems behavior in presence of faults is
induced explicitly by the written introduction (injection) of faults in the system
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Saboteur A
Listing A.1: Part of the assembler for testing the register voter

−− Creation o f a s a b o t e u r

l ibrary IEEE ;
use IEEE . s t d l o g i c 1 1 6 4 . a l l ;
use IEEE . numer ic std . a l l ;
use i e e e . s t d l o g i c u n s i g n e d . a l l ;
use rvex . common pkg . a l l ;

entity f t s a b o t e u r i s
port (

c l k : in s t d l o g i c ;
c l k e n a b l e : in s t d l o g i c ;
r e s e t : in s t d l o g i c ;
s t a r t : in s t d l o g i c ;
s c r p 4 l i m i t : in rv ex addre s s type ;
saboteur : out s t d l o g i c

) ;
end f t s a b o t e u r ;

architecture s t r u c t u r a l of f t s a b o t e u r i s
−−s i g n a l s f o r the s a b o t e u r
signal count : unsigned (31 downto 0) :=( others => ’0 ’);
signal new count : unsigned (31 downto 0) :=( others => ’0 ’);
signal cntEn : s t d l o g i c := ’0 ’ ;
signal saboteur : s t d l o g i c := ’0 ’ ;
signal c l k r e s e t : s t d l o g i c := ’0 ’ ;
signal l i m i t : i n t e g e r :=0;
signal s e t l i m i t : i n t e g e r :=0;

−− Simple counter
c o u n t e r r e g i s t e r : process ( c lk , r e s e t , c l k r e s e t )

begin
i f ( r i s i n g e d g e ( c l k ) ) then

i f ( r e s e t = ’1 ’ or c l k r e s e t = ’1 ’ ) then
count <= ( others => ’ 0 ’ ) ; −−r e s e t to zero

63



64 APPENDIX A. SABOTEUR

else
count <= new count ;

end i f ;
end i f ;

end process ;

−− Simple counter
process ( count , cntEn )

begin
i f ( cntEn = ’1 ’ ) then

new count <= count + 1 ;
else

new count <= count ;
end i f ;
end process ;

l i m i t <= t o i n t e g e r ( count ) ;
s e t l i m i t <= t o i n t e g e r ( unsigned ( s c r p 4 l i m i t ) ) ;

process ( s t a r t , l im i t , s e t l i m i t )
begin

i f ( s t a r t = ’1 ’ and l i m i t = s e t l i m i t ) then
cntEn <= ’ 1 ’ ;
saboteur <= ’ 1 ’ ;
c l k r e s e t <= ’ 1 ’ ;

e l s i f ( s t a r t = ’1 ’ ) then
saboteur <= ’ 0 ’ ;
cntEn <= ’ 1 ’ ;
c l k r e s e t <= ’ 0 ’ ;

else
saboteur <= ’ 0 ’ ;
cntEn <= ’ 0 ’ ;
c l k r e s e t <= ’ 0 ’ ;

end i f ;
end process ;

end s t r u c t u r a l ;
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Reflection C
When starting this thesis the current design of the ρ-VEX processor was still a work in
progress. This was a good thing, because it gave me time to have a good thought about
how to solve the question.
I started with a basic design based on the old version of the ρ-VEX processor. During
my development I spotted a special trend in the amount of hardware I added. I started
of small with some simple functionality which gradually grew bigger and bigger. To
elaborate I started to triplicate the instructions and continued to implement the voters
in the register writes and the memory writes. After that I connected it to a basic FSM
which grew to a fully functional FSM. I saw a trend here that with increasing time the
amount of code of hardware increased exponentially.
Just before the summer holiday I was at a standstill. I used the original 2-issue width
setup and secretly enabled the other cores to execute the instruction two times more.
This created a loop of endless patching and ugly fives. After a tip from a fellow student
I implemented the ”Configuration Control”. From this moment on I was a the peak of
the amount of code and hardware. From that moment on I could clean the code and
make it smaller and nicer.
Eventually I could reduce the complete setup to a lean and small addition. When
looking back it seams so little for such a long period, but I guess the path getting there
is part of the work that can’t be captured on a piece of paper.

Klaas
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