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Abstract

Identifying protein complexes in static protein-protein interaction (PPI) networks is essential for understanding

the underlying mechanism of biological processes. Proteins in a complex are co-localized at the same place

and co-expressed at the same time. We propose a novel method to identify protein complexes with the features

of joint co-localization and joint co-expression in static PPI networks. To achieve this goal, we define a joint

localization vector to construct a joint co-localization criterion of a protein group, and define a joint gene

expression to construct a joint co-expression criterion of a gene group. Moreover, the functional similarity of

proteins in a complex is an important characteristic. Thus, we use the CC-based, MF-based, and BP-based

protein similarities to devise functional similarity criterion to determine whether a protein is functionally

similar to a protein cluster. Based on the core-attachment structure and following to seed expanding strategy,

we use four types of biological data including PPI data with reliability score, protein localization data, gene

expression data, and gene ontology annotations, to identify protein complexes. The experimental results on

yeast data show that comparing with existing methods our proposed method can efficiently and exactly

identify more protein complexes, especially more protein complexes of sizes from 2 to 6. Furthermore, the

enrichment analysis demonstrates that the protein complexes identified by our method have significant

biological meaning.

Keywords: protein complexes; static PPI networks; joint co-localization; joint co-expression; core-attachment

structure; seed expanding strategy.

1. Introduction

Protein complexes are fundamental functional units in biological processes. A protein complex is a group

of proteins that form a single macromolecular entity in performing a biological function. For instance, the

RNA polymerase II complex, containing 12 proteins, is responsible for unwinding the DNA double helix,
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polymerizing RNA, and proofreading the nascent transcript [1]. The translation initiation complex, composed

of IF1, IF2, IF3, S30, and initiator tRNA, is in charge of starting the process of mRNA translation [2]. The

anaphase-promoting complex containing 15 proteins is a large E3 ubiquitin ligase which controls the cell cycle

process [3]. Therefore, identifying protein complexes is essential for understanding the mechanism of specific

biological process in cell. Tandem Affinity Purification with Mass Spectrometry (TAP-MS) [4] is a widely

used method for identifying protein complexes in wet lab. Some drawbacks remain in this experimental

method. For instance, transient low affinity complexes are prone to be removed during TAP, and the

protein-tag may influence protein function in the experiment [5]. Moreover, TAP-MS can only identify a

limited number of known yeast complex subunits [6]. Hence, developing alternative methods to identify

protein complexes remains an important issue. High-throughput experiments, such as yeast-two-hybrid (Y2H)

[7, 8], protein-fragment complementation assays (PCA) [9], and TAP-MS, have produced a large number of

protein-protein interaction (PPI) data from various model organisms. These PPI data can be modeled as static

PPI networks whose nodes and edges represent proteins and interactions respectively. As the PPI data increase,

it becomes a computational challenge to identify protein complexes in the large-scale static PPI networks.

Over the past decade, a number of research groups have studied various computational methods to

identify protein complexes in static PPI networks. These computational methods identifying protein complexes

can be mainly classified into two categories. The first one is solely based on the topology of static PPI

networks. The topology-based methods mine highly dense sub-graphs in static PPI networks to identify

complexes. In [10-12], the concept of clique is used to detect complexes in PPI networks. Instead of

enumerating clique in the dense PPI networks, the complexes are identified by searching local cliques in

[13-14]. Some clustering methods, such as APCluster [15] and MCL [16], are applied to find complexes in PPI

networks. The seed expanding based strategy is also employed to predict complexes in PPI networks in
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MCODE [17], DPCLus [18], ClusterONE [19], SPICi [20], and NEOComplex [21]. The above-mentioned

methods detect dense sub-graphs to identify protein complexes by using only topology of static PPI networks.

To further improve detection accuracy, based on the integration of the topology of static PPI networks and

biological information, another type of computational method for identifying protein complexes has emerged.

In this type of method, biological findings, such as core-attachment structure and available data including

protein Gene Ontology term annotations and gene expression data, have been integrated into computational

identification of protein complexes in static PPI networks.

The study in [6] reports that the yeast complexes exhibit core-attachment structure. The protein core is the

key functional unit of a protein complex. The protein attachment assists the protein core to implement the

specific function. Hasin et al. [22] pointed out that a protein complex typically has two regions, viz., core and

periphery. The core part is a highly dense central region where proteins are strongly connected with each other,

and periphery region is a part of the complex where proteins are weakly connected with the core [22]. In fact,

the concept of the core/periphery structure is originated from the core-attachment structure. In this paper, the

core/periphery structure is synonymous with the core-attachment structure [22]. In [23-27], the idea of the

core-attachment structure is exploited to detect protein complexes. However, these methods [23-27], which

identify protein complexes by mining protein core and adding protein attachment, are still based on the

topology of PPI networks.

Gene ontology (GO) project aims at standardizing the annotation of genes across species and databases by

an expert-curated mechanism [28]. The GO project is divided into three ontologies: biological process (BP),

molecular function (MF), and cellular component (CC). BP is referred to as a biological objective to which the

gene or gene product contributes. MF is defined as the biochemical activity of a gene product. And CC is

referred to as the place in the cell where a gene product is active [28]. Some protein complex identification
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methods using GO annotations have been developed. In RNSC [29], the GO-based functional homogeneity,

cluster size, and density are used to filter out the partitioned sub-networks to predict complexes. Price et al. [30]

weighted the PPI networks with the GO-based protein similarity, and compared six existing complex

prediction algorithms. To identify complexes effectively, Yang et al. [31] also used the GO-based protein

similarity to weight PPI networks. Based on the organism-specific GO Slims and the GO term semantics, the

similarity between two proteins are calculated to rank and predict PPI pairs [32]. Subsequently, the PPI

network is reconstructed for identifying protein complexes. In PCE-FR [33], the PPI network is weighted with

the GO-based protein similarity, and the pseudo-cliques are greedily extended to identify the overlapping

protein complexes rapidly and effectively. The aforementioned methods [30,31,33] measure the functional

similarity between two proteins by the GO-based protein similarity, but do not measure the functional

homogeneity among all proteins in a complex.

Gene expression data are also widely used to analyze PPI pairs [32,34-36]. The method in [32] calculates

Pearson correlation coefficient between two proteins to verify true PPI pairs through a machine learning

approach using microarray gene expression data series. Feng et al. [34] weighted appropriately each node with

microarray gene expression data in PPI networks, and utilized the density information to identify complexes

from PPI networks. Tang et al. [35] used the gene expression data to calculate Pearson correlation coefficient

between two proteins to predict complexes. WEC [36] identifies protein complexes based on the weight

defined by the edge clustering coefficient and the gene expression correlation between the interacting proteins.

These methods [34-36] measure the co-expression between two proteins, but do not evaluate the group

co-expression among proteins in a protein complex.

Recently, some researchers used network embedding method [37] to extract the topological features of

proteins in PPI network and learn protein feature vector representation. PC-SENE [38] combines node
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embedding similarity with seed-extension method to detect protein complexes. In PC-SENE, the node

embedding vectors generated by Node2Vec [39], are used to represent features of protein nodes in PPI network,

and the node embedding similarity between interacting proteins is calculated by the generated node embedding

vectors. GLONE [40] uses a global network embedding method to learn protein vector representation to

preserve both high-order structure proximity and biological attribute proximity. Furthermore, based on the

calculation of the cosine similarity of the protein vector representation, GLONE applies a seed-extension

clustering method to detect the overlapping protein complexes. CPredictor 5.0 [41] also uses the network

embedding method Node2Vec to learn node feature vector representation, and further calculates and combines

the vector-based topological similarity and the GO-based functional similarity to weight PPI networks. These

methods [38,40,41] employ the network embedding method to boost the performance of complexes

identification.

A protein complex consists of proteins that interact with each other at the same time and place [10]. In

other words, the proteins in a protein complex are jointly co-localized, jointly co-expressed, and functionally

similar in biology, and they are densely connected in static PPI networks. In this paper, we propose a joint

co-localization criterion, a joint co-expression criterion, and a functional similarity criterion, and design a

novel method to identify protein complexes from static PPI networks. In addition, we use the yeast data sets

including PPI data with reliability score, protein localization data, gene expression data, and gene ontology

annotations to compute the statistical matching based metrics, and analyze the BP-based significant enrichment

to evaluate our proposed method and ten other competing methods.

The main contributions of this paper are as follows. We define the localization vector and propose the

joint co-localization criterion to judge whether the members of a protein group are jointly co-localized. We

further define the joint gene expression and present the joint co-expression criterion to determine whether the



7

members of a gene group are jointly co-expressed. We calculate the CC-based, MF-based, and BP-based

protein similarities and present the functional similarity criterion to ensure that the identified complexes are of

functional homogeneity. Based on the three above-mentioned criteria, we design a novel method to identify

protein complexes with the features of joint co-localization and joint co-expression.

The rest of this paper is organized as follows. Section 2 describes our proposed identifying method in

detail. Section 3 evaluates experimental results. Section 4 discusses the characteristics of our proposed method.

Section 5 concludes this paper and discusses the potential improvement for the future work.

2. Methods

In this section, we introduce three criteria and describe our proposed method in detail.

2.1. Joint co-localization criterion

A protein performs specific function in certain subcellular localization. The subcellular localization

category can be classified into 22 categories listed in Table 1 [42]. Based on the subcellular localization

categories and protein localization data, we now introduce the joint localization vector to depict the

co-localization of a protein group.

Table 1

Subcellular localization category

No.
subcellular localization

category
No.

subcellular localization

category
No.

subcellular localization

category
No.

subcellular localization

category

1 mitochondrion 7 ER 13 late Golgi 19 early Golgi

2 vacuole 8 nuclear periphery 14 peroxisome 20 lipid particle

3 spindle pole 9 endosome 15 actin 21 nucleus

4 cell periphery 10 bud neck 16 nucleolus 22 bud

5 punctate composite 11 microtubule 17 cytoplasm

6 vacuolar membrane 12 Golgi 18 ER to Golgi

NOTE: No. is the subcellular localization category number.

Definition 1. Localization Vector (LV). Given a protein P, LV(P) is defined as the localization vector of P.
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LV(P) is a 22-dimension 0-1 vector. Let LVi(P) denote the i-th element of LV(P). If protein P is localized at the

i-th subcellular localization category during a cell cycle, LVi(P)=1; otherwise, LVi(P)=0, i=1,…, 22.

Definition 2. Joint Localization Vector (JLV). Given a set of k proteins PS={P1, P2,…, Pk} and LV(Pj) is

the localization vector of Pj, j=1,…, k, JLV(PS) is defined as the joint localization vector of PS, and

JLVi(PS)=
k

j 1
 LVi(Pj), i=1,…, 22, where ″∧″ is the logical AND operation of the corresponding elements

among localization vectors of proteins in PS.

If all proteins in PS perform a specific function in the i-th subcellular localization category, then

JLVi(PS)=1; otherwise JLVi(PS)=0, i=1,…, 22. Obviously, JLV(PS) is also a 22-dimension 0-1 vector.

Definition 3. Joint co-localization Count (JC). Given a set of proteins PS and its JLV(PS), JC(PS)

=
22

1

i
JLVi(PS) is defined as the joint co-localization count of PS.

If JC(PS)>0, we will call that all proteins in PS are jointly co-localized. If JC(PS)=0, we will call that all

proteins in PS are not jointly co-localized. When PS={P}, JC(PS)=JC({P}) measures the localization count of

protein P. The conditional expression “JC(PS)>0” is used to denote the joint co-localization criterion.

Given a joint co-localization protein set PL, there is JC(PL)>0. For any protein PPL, if JC(PL∪{P})>0,

the protein P is jointly co-localized with PL; if JC(PL∪{P})=0, the protein P is not jointly co-localized with

PL.

Given a complex C and a protein group S, the complex C is gamma-tubulin complex comprised of

YHR172W, YLR212C, and YNL126W [43], and the protein group S is composed of YBL021C, YPL246C,

and YPL242C. Table 2 shows the LV, JLV, and JC for C and S.

Table 2

LV, JLV, and JC for the complex C and the protein group S

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 JC
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LVi(YHR172W) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

LVi(YLR212C) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

LVi(YNL126W) 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2

JLVi(C) 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

LVi(YBL021C) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 2

LVi(YPL246C) 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 2

LVi(YPL242C) 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1

JLVi(S) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

NOTE: All nonzero values in LV(·) and JLV(·) are marked in boxed presentation. All JC(·)s are also marked in boxed

presentation.

As can be seen in Table 2, the joint co-localization count of the complex C is 1, i.e. JC(C)=1. It means

that proteins YHR172W, YLR212C, and YNL126W in the complex C are jointly co-localized. In addition, the

joint co-localization count of the protein group S is 0, i.e. JC(S)=0. This indicates that proteins YBL021C,

YPL246C, and YPL242C in the protein group S are not jointly co-localized.

2.2. Joint co-expression criterion

The subunits in a permanent complex are co-expressed [44]. It means that the protein co-expression is a

prerequisite for forming a permanent complex. Because there is relation between gene expression level and

protein activity [45], there must exist co-expression between genes whose products are assembled to form a

permanent complex. To reveal the potential co-complex of interacting proteins, we need to deeply analyze

gene co-expression. Hence, we introduce a joint co-expression criterion to judge whether a gene group is of

co-expression in the following.

Under a certain condition, the gene expression profile depicts the varying pattern of RNA abundance over

time. During the observed period, the gene expression value of gene g at time t is represented by gevg(t),

t=1,…, T, where T is the number of time point.

Definition 4. gene expression pattern (gep). Given a gene g and its expression profile gevg={gevg(t) |

t=1,…,T}, gepg={gepg(t) | t=1,…,T} is defined as the gene expression pattern of gene g, where gepg(t)=
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minmax

ming
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gevtgev
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T
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gevg(t). In fact, gepg is the normalized

gevg and consists of T temporal real values in [0, 1].

Pearson correlation coefficient can be used to measure the similarity between two gene expression

patterns [46]. Given two gene expression patterns x={x(t) | t=1,…,T} and y={y(t) | t=1,…,T}, the expression

pattern similarity between x and y, pcc(x,y), can be calculated by formula (1).
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Hence, for any two genes gi and gj, as well as their expression patterns gepi={gepi(t) | t=1,…,T} and gepj=

{gepj(t) | t=1,…,T}, pcc(gepi, gepj) can be calculated by formula (1). The higher the value of pcc(gepi, gepj),

the more similar the gene expression patterns of gi and gj are. If pcc(gepi, gepj)≥δ, we call that the gene

expression patterns of gi and gj are similar and co-expressed, where δ is a given similarity threshold of gene

expression pattern.

(a) non-collective but pairwise co-expression (b) collective co-expression

Fig. 1. Two cases that all three expression patterns in a group of hypothetical normalized expression patterns are pairwise

co-expressed. (a) All pairs of the patterns f1(t), f2(t), and f3(t) are co-expressed, but f1(t), f2(t), and f3(t) are not co-expressed
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together, because f1(t) f2(t) f3(t)=0. (b) All pairs of the patterns f4(t), f5(t), and f6(t) are co-expressed, and f4(t), f5(t), and f6(t) are

also co-expressed together, since f4(t) f5(t) f6(t)>0 for 11<t<17.

Even when every pair of genes in a gene group are co-expressed, all genes in a gene group are not

necessary co-expressed all together. Fig.1 shows two cases that all three expression patterns in a group of

hypothetical normalized expression patterns are pairwise co-expressed.

To measure the joint co-expression of a gene group, we next introduce the notions of joint gene

expression and joint gene expression pattern.

Definition 5. Joint Gene Expression (JGE). Given a set of k genes GS={g1, g2,..., gk} and gepj(t),

t=1,…,T is the gene expression pattern of gene gj, j=1,…,k, let JGEGS={JGEGS(t) | t=1,…,T} denote the joint

gene expression of GS, where JGEGS(t)=
k

j 1
 gepj(t), t=1,..., T, “Π” is the multiplication operation of the

expression pattern values among genes in GS. In fact, JGEGS(t) is generated by calculating the product of those

normalized expression values of k genes at time t, t=1,..., T.

Definition 6. Joint co-expression Quantity (JQ). Let JQ(GS)=
T

tT 1

1

 JGEGS(t) denote the joint

co-expression quantity of GS. If JQ(GS)≥γ, all genes in GS are considered to be jointly co-expressed, γ is the

given threshold of the joint co-expression quantity. The conditional expression “JQ(GS)≥γ” is used to denote

the joint co-expression criterion.

Definition 7. Joint Gene Expression Pattern (JGEP). Given a set of genes GS and its JGEGS(t), t=1,...,T,

JGEPGS={JGEPGS(t)|t=1,...,T} is defined as the joint gene expression pattern of GS, where JGEPGS(t)=

minmax

minGS

JGEJGE
JGEtJGE


)(

, t=1,...,T, and JGEmin=
T

t 1
min

JGEGS(t) and JGEmax=

T

t 1
max


JGEGS(t).

In fact, JGEPGS is the normalized joint gene expression of GS. Similar to gep, JGEPGS is also composed

of T temporal real values in [0,1].
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Given a joint co-expression gene set GS, there is JQ(GS)≥γ. For gene g  GS, let JGEGS∪{g}(t)=

JGEPGS(t)×gepg(t). We have JQ(GS∪{g})=
T

tT 1

1

 JGEGS∪{g}(t). If JQ(GS∪{g})≥γ, we call that the gene g is

jointly co-expressed with GS.

Given a gene set GS and gene g, together with their JGEPGS and gepg, pcc(JGEPGS, gepg) can also be

computed by formula (1). If pcc(JGEPGS, gepg)≥δ, we call that gene g is similar to GS on expression pattern

and jointly co-expressed with GS.

2.3. GO-based protein similarity

To express quantitatively the relationship between GO terms, term semantic similarity (SS) measures

have been widely studied in the past decade. In [47], SS measures are grouped according to the following

characteristics: (i) Term Information Content, (ii) Term Depth, (iii) based on a common ancestor, (iv) based on

all common ancestors, (v) Path Length and (vi) Vector Space Models (VSM). Being one of the most popular SS

measures, Resnik’s measure [48] is based on the Maximum Informative Common Ancestor (MICA). Based on

MICA, Zhang et al. [49] redefined three concepts used in [50]: the path length (l) between two terms, the depth

(h) of a term, and local semantic density (d), to calculate SS measure between terms t1 andt2 by formula

(2)[49].

dcdc

dcdc

hchc

hchc
lc

ee
ee

ee
eeettsim

33

33

22

22
1),( 21 















 (2)

where c1≥0, c2>0, c3>0. In our study, formula (2) is used to compute GO term SS measure, where c1=0.2,

c2=0.3, c3=30 [49].

In biological field, term similarity measures have been extended to objects (such as gene products and

proteins) that are annotated with terms belonging to the ontology, allowing to draw a conclusion on the

relationship of two proteins relying on the similarity of GO terms [47]. To accurately measure the functional

similarity between two proteins, we must consider the contributions from the semantically similar terms that
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annotate the two proteins respectively [51]. Thus we define the semantic similarity between a GO term and a

set of GO terms. Given GO term go and GO term set ST={t1, t2, ..., tk}, let Sim(go, ST) denote the maximum

semantic similarity between term go and any of the terms in set ST. So Sim(go, ST) can be represented by

formula (3) [51].

),(max),(
1 j

k

j
tgosimSTgoSim


 (3)

Furthermore, given two proteins P1 and P2 annotated with two GO term sets ST1={t11, t12, ..., t1m} and

ST2={t21, t22, ..., t2n} respectively, we can define the GO-based similarity between proteins P1 and P2 as

simgo(P1, P2) represented by formula (4) [51].

nm

STtSimSTtSim
PPsim

n

j
j

m

i
i

go 





 1

12
1

21

21

),(),(
),( (4)

Taking molecule function, cellular component, and biological process into consideration, we use formulas

(2), (3), and (4) to calculate the MF-based protein similarity simmf(P1, P2), the CC-based protein similarity

simcc(P1,P2), and the BP-based protein similarity simbp(P1, P2) between proteins P1 and P2 respectively. The

value of simmf(P1, P2) is in [0, 1], and so are the values of simcc(P1, P2) and simbp(P1, P2). The larger these

values are, the more similar proteins P1 and P2. If simmf(P1, P2)≥ω, proteins P1 and P2 are similar to each other

based on MF terms, where ω is a given threshold for the MF-based protein similarity. Similarly, if simcc(P1,

P2)≥σ, proteins P1 and P2 are similar to each other based on CC terms, and if simbp(P1, P2)>θ, proteins P1 and

P2 are similar to each other based on BP terms, where σ and θ are given thresholds for the CC-based protein

similarity and the BP-based protein similarity.

2.4. Other used terminologies
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A PPI set with reliability score can be represented by a 2-tuple(I, s), where I is a set of protein-protein

interactions with reliability scores s. For an interaction (u, v)∈I, s(u, v) denotes the reliability score of the

interaction (u, v), where u and v denote two interacting proteins respectively, and s(u, v)∈[1, 2,…, 999] [52].

A PPI network can be represented by an undirected and weighted graph GW=(V, E, W), where V is a set

of nodes (proteins), E is a set of edges (protein-protein interactions). For nodes u, v∈V, W(u, v) denotes the

weight of the edge(u, v) between nodes u and v. Given a PPI set (I, s) with reliability scores, W(u, v) is

computed by formula (5).















IEvuvus
IEvu

Evu
vuW

),(),(
),(1
),(0

),(
，

，

，
(5)

If W(u, v)≥r, we will call that there is a r-reliable link between nodes u and v, and the edge (u, v) is

referred as a r-reliable edge, where r is a given reliability threshold and r∈[1, 2,...,999] [52].

Let Nr(v)={u|W(u,v)≥r,u∈V} denote the r-reliable neighborhood of node v, and degr(v)=|Nr(v)| denote the

r-reliable degree of node v.

Given a PPI sub-network SN=(V’, E’, W’), let RE={(u, v) |W’(u, v)≥r, (u, v)∈E’, and u, v∈V’} be a set

of r-reliable edges. We define the r-reliable density of SN, dr(SN), as follows:

)1|'(||'|
||2)(





VV
RESNd r (6)

If dr(SN)≥ρ, SN is called a densely and r-reliably linked sub-network, where ρ is a given threshold of

r-reliable density.

2.5. Finding protein cores

According to core-attachment structure, our method first finds protein cores. To find a protein core, our

method initializes a protein core by seeding a protein. To add the jointly co-localized, jointly co-expressed,

densely and r-reliably linked proteins into a protein core, our method dynamically constructs the jointly

co-localized, jointly co-expressed, and densely r-reliable neighborhood of a protein core.



15

For a protein core PC, let Nr(PC)=(
PCv
 Nr(v))-PC denote the r-reliable neighborhood of PC. Thus, the

jointly co-localized, jointly co-expressed, and densely r-reliable neighborhood of PC, Nled(PC), is defined by

formula (7).

Nled(PC)={u | JC(PC∪{u})>0, pcc(JGEPPC, gepu)≥δ, dr(PC∪{u})≥ρ,and u∈Nr(PC)} (7)

For the added node u, let T1(PC)={w | w∈V-(PC∪Nled(PC)), W(w,u)≥r, JC(PC∪{w})>0, pcc(JGEPPC,

gepw)≥δ, and dr(PC∪{w})≥ρ}, and T2(PC)={w | w∈Nled(PC),(W(w,u)<r or JC(PC∪{w})=0 or pcc(JGEPPC,

gepw)<δ or dr(PC∪{w})<ρ)}. After node u is added to PC, the proteins in T1(PC) are first added to Nled(PC),

and the proteins in T2(PC) are then removed from Nled(PC). As a result, Nled(PC) is updated by formula (8).

Nled(PC)←(Nled(PC)∪T1(PC))-T2(PC) (8)

Our method expands a protein core PC by adding nodes in Nled(PC) till Nled(PC) becomes empty.

Each protein core is initialized by seeding a protein which does not belong to any found protein cores, and

is expanded by adding proteins in Nled(PC). Also, the added proteins do not belong to any found protein cores.

Following this way of finding protein cores, any two protein cores are not allowed to be overlapped with each

other.

2.6. Functional similarity criterion

To add the proteins with similar function to a protein core, now we discuss how to judge whether a

protein is functionally similar to the protein core.

Given a protein core PC and node u∈Nled(PC), the CC-based minimal similarity CC(PC,u), the

MF-based minimal similarity MF(PC,u), and the BP-based minimal similarity BP(PC,u) between PC and u are

defined by formulas (9), (10), and (11) respectively.

CC(PC,u)=min{simcc(u,v) | W(u,v)≥r,v∈PC} (9)

MF(PC,u)=min{simmf(u,v) | W(u,v)≥r,v∈PC} (10)
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BP(PC,u)=min{simbp(u,v) | W(u,v)≥r,v∈PC} (11)

The boolean variables bcc, bmf, and bbp in formulas (12), (13), and (14) determine whether CC(PC,u),

MF(PC,u), and BP(PC,u) have reached their specified thresholds σ, ω, and θ respectively.



 


otherwisefalse

uPCCCtrue
bcc

,
),(, 

(12)



 


otherwisefalse

uPCMFtrue
bmf

,
),(,  (13)



 


otherwisefalse

uPCBPtrue
bbp

,
),(,  (14)

If at least 2 out of 3 boolean variables bcc, bmf, and bbp are “true” at the same time, the value of B(PC,u)

in formula (15) will become “true”. It means that the protein node u is sufficiently similar to the protein core

PC when at least 2 out of 3 boolean variables bcc, bmf, and bbp are “true” at the same time. The conditional

expression “B(PC,u)=true” is used to denote functional similarity criterion.

B(PC,u)=(bcc∧bmf∨bcc∧bbp∨bmf∧bbp) (15)

2.7. Adding attachment proteins

After finding all protein cores in static PPI networks, our method adds the attachment proteins around

each protein core PC in the way similar to finding protein core to generate candidate protein complexes CPC.

Given a protein core PC and a protein node u∈Nr(PC), RC(PC, u)=
 

PC
PCvrvuWv  ,),(| is defined as

the r-reliable connectivity between PC and u. If RC(PC, u)≥η, we will term that there is a adequately r-reliable

connectivity between PC and u,where η is a given threshold of r-reliable connectivity. Thus, we define

N(PC)={u | JC(PC∪{u})>0, JQ(PC∪{u})≥γ, RC(PC, u)≥η, and u∈Nr(PC)} as the jointly co-localized,

jointly co-expressed, and adequately r-reliable neighborhood of PC.
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For a protein core PC, the corresponding N(PC) is first constructed. Subsequently, according to the

aforementioned functional similarity criterion, attachment proteins in the N(PC) are added to the PC till N(PC)

becomes empty. Finally, the PC with the added attachment proteins becomes a CPC. For all protein cores, this

procedure is repeated to produce all candidate protein complexes. Regardless of whether the added attachment

proteins belong to any produced candidate protein complexes, the identified candidate protein complexes are

allowed to overlap with each other.

2.8. Algorithm

In this subsection, we describe in detail our method ICJointLE (Identifying protein Complexes with the

features of Joint co-Localization and joint co-Expression). Fig.2 shows the flow-chart ofICJointLE.

Fig.2. Flow-chart of ICJointLE.

Algorithm 1 is the pseudo-code of our method ICJointLE.

Algorithm 1: ICJointLE
Input: Three GO-based protein similarity matrices SMcc,

SMmf, and SMbp; reliability-marked PPI data set
GW, protein localization matrix Mlocus, gene
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expression data matrix Mge.
Output: Complexes set CPCs.
Begin
1. Create priority queue L in non-descending order of degr(v)

for each v∈V;
2. PC← Φ; Nled(PC) ← Φ; PCs← Φ;
3. while (L is not empty) do
4. seed←the first node of L;
5. PC←PC∪{seed};
6. Create priority queue Nled(PC) in non-ascending order

of pcc(JGEPPC,gepu), u∈Nled(PC);
7. while (Nled(PC) is not empty) do
8. v←the first node of Nled(PC);
9. if (B(PC, v) is true) then
10. PC← PC∪{v};
11. Update Nled(PC) ;
12. end if
13. end while
14. PCs←PCs∪{PC};
15. PC←Φ;
16. end while
17. CPCs←Φ;
18. for each PC∈PCs do
19. Create priority queue N(PC) in non-ascending order

of JQ(PC∪{u}), u∈N(PC);
20. while (N(PC) is not empty) do
21. v←the first node of N(PC);
22. if (B(PC, v) is true) then
23. PC← PC∪{v};
24. Update N (PC);
25. end if
26. end while
27. CPC←PC;
28. CPCs←CPCs∪{CPC};
29. end for
30. Remove all CPCs of size 1 from CPCs;
31. Rearrange CPCs in non-ascending order of

dr(CPC) , CPC∈CPCs;
32. Remove the one with lower r-reliable density in two

highly overlapping CPCs.

End.
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Algorithm ICJointLE includes three main stages: finding protein cores, adding attachment proteins, and

filtering candidate protein complexes. After creating seed priority queue (line 1), ICJointLE enters the first

stage(lines 2-16). In first stage, ICJointLE finds all protein cores with the characteristics of joint

co-localization, joint co-expression, densely r-reliable link, and biologically functional homogeneity. Firstly,

ICJointLE selects a seed to initialize a protein core PC (lines 4-5). Secondly, ICJointLE extracts the proteins

from Nled(PC) and adds the proteins, which satisfy the functional similarity criterion, into PC until Nled(PC)

becomes empty (lines 7-13). This extracting-adding procedure is repeated until all protein cores are found. In

this procedure, any two PCs found by ICJointLE are not allowed to overlap with each other.

In the second stage, ICJointLE adds attachment proteins to each PC. First, ICJointLE selects a PC and

creates the corresponding neighborhood N(PC) (line 19). Then ICJointLE extracts the proteins from N(PC)

and adds the proteins satisfying the functional similarity criterion to the PC by the expanding strategy (lines

20-26). This extracting-expanding procedure is repeated until N(PC) becomes empty. In the second stage, the

added attachment proteins may be or not be the proteins belonging to other CPCs. It indicates that any two

CPCs can overlap with each other.

In the final stage, ICJointLE filters CPCs. First, ICJointLE eliminates the CPCs containing only one

protein (line 30), and sorts the remainder CPCs in non-ascending order of r-reliable density (line 31). Then

ICJointLE removes the one with lower r-reliable density in any two CPCs whose overlapping score is not less

than α (line 32), where α=0.8 [19]. Finally, ICJointLE outputs the final remaining CPCs as the resulting

protein complexes.

3. Results

3.1. Evaluation metrics
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There are two kinds of evaluation metrics to assess the quality of identified complexes. One is the

statistical matching based metrics. The other is the biological relevance based metrics.

Here some notations are introduced to represent the statistical matching based metrics. Symbol ic denotes

an identified complex, Vic is the set of proteins in ic, kc denotes a known complex, Vkc represents the set of

proteins in kc, IC is a set of identified complexes and m=|IC|, and KC is a set of known complexes and n=|KC|.

3.1.1. Statistical matching based metrics

The overlapping score between identified complex ic and known complex kc, OS(ic, kc), is computed by

the following formula:

||||
||

),(
2

kcic

kcic

VV
VVkcicOS



 (16)

If OS(ic, kc)≥λ, ic and kc are matched with each other, where λ usually is set to 0.2 [17,22].

Let Nci denote the number of identified complexes which match with at least one known complex in KC,

and Nck denote the number of known complexes which match with at least one identified complex in IC. That

is,

Nci=|{ic | ic∈IC, kc∈KC, OS(ic, kc)≥λ}| (17)

Nck=|{kc | kc∈KC, ic∈IC, OS(ic, kc)≥λ}| (18)

Precision (prec), Recall (rec), and F-measure (fm) are used to evaluate the quality of the identified

complexes and are defined as follows [12].

prec=
m
N

IC
N cici 

||
(19)

rec=
n
N

KC
N ckck 

||
(20)

fm=
recprec
recprec


2 (21)

FRAC is the fraction of matched complexes, which calculates the percentage of known complexes that are

matched with identified complexes [19]. In fact, FRAC is equal to rec.
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The maximum matching ratio (MMR) [19] is based on a maximal one-to-one mapping between identified

complex and known complex. And MMR is calculated by formula (22).

MMR=
n

mjickcOS
n

i
ji
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
1

},...,1|),(max{
(22)

Where kci is the i-th known complex, and icj is the j-th identified complex.

Let ni denote the number of proteins in the i-th known complex, tij denote the number of common proteins

between the i-th known complex and the j-th identified complex, i =1,2,…,n and j=1,2,…,m. Sensitivity (Sn),

positive predictive value (PPV), and the geometric mean of Sn and PPV (Acc) which measures the accuracy of

identification method, are computed by formulas (23-25) respectively [53].
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PPVSnAcc 
(25)

To take FRAC, Acc, and MMR into consideration at the same time, we used the comprehensive score FAM

by formula (26) to measure the performance of various methods [19].

FAM=FRAC+Acc+MMR (26)

3.1.2. Biological relevance based metrics

The statistical matching based metrics depends on the known complexes. But the known complexes are

generally incomplete [54]. Although an identified complex does not match with any known complexes, it may

be an uncharacterized but valid complex. A complex tends to be responsible for a specific biological function

or molecular process[55]. Hence, it is necessary to perform over-expression score based biological relevance

evaluation.
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The GO-based over-expression analysis on biological process and molecular function can be used to

reveal functional homogeneity of proteins in a complex to some extent [19]. Let Ns be the total number of

proteins and K be the total number of the proteins annotated by term X in PPI network. For a given complex

containing ns proteins, if there are ks term X-annotated proteins in this complex, the p-value of this complex is

computed as follows [56]:
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If p<ψ, we call that the term X-annotated proteins enrich the complex at ψ-level, where ψ is a given

threshold. If the term X-annotated proteins enrich a complex at the level of ψ=0.01, this complex will have

significantly biological function and be called significant complex [19]. The over-expression score of a set of

complexes is generally the proportion of the significant complexes enriching the proteins annotated at least one

functional term[19]. We used the software GO::TermFinder [57] to calculate the p-value of an identified

complex.

3.2. Experiment materials

S. cerevisiae as a model organism has been well studied. A great number of biological data on S.

cerevisiae have been produced. Hence we used the S. cerevisiae data sets including protein localization data

and gene expression data to conduct the experiments. We selected six yeast PPI data sets to conduct the

comparison experiment. The first yeast PPI data set is downloaded from the STRING database V10 version

[52]. This yeast PPI data set consists of 6418 proteins and 939998 interactions with reliability score, and it is

also used as the scoring data set. The second yeast PPI data set, which consists of 5811 proteins and 256516

interactions, is downloaded from the BioGrid database 3.4.128 version [58]. The third yeast PPI data set,

which contains 5022 proteins and 22381 interactions, is downloaded from the DIP database with the release
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date 2015/07/01[59]. The other three PPI data sets Uetz [7], Ito [8], and Yu [60] are the yeast binary

interactome derived by Y2H. Uetz data set contains 910 proteins and 823 interactions. Ito data set is composed

of 765 proteins and 733 interactions. Yu data set is comprised of 1203 proteins and 1610 interactions. Three

data sets Uetz, Ito, and Yu can be extracted in file interaction_data.tab downloaded from https://downloads.

yeastgenome.org/curation/literature/ respectively. Apparently, the first three PPI data sets correspond to dense

PPI networks while the corresponding PPI networks of the three other PPI data sets are sparse.

The known complex set CYC2008 is obtained from http://wodaklab.org/cyc2008/[43], which comprises

408 manually curated heterometric protein complexes.The gene expression data [61] are obtained from http://

www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2267. We extracted the gene expression data from the file

GDS2267_full.soft.GSE3431is downloaded from ftp://ftp.ncb.nlm.nih.gov/geo/series/GSE3nnn/GSE3431/soft/,

which contains not only yeast affymetrix gene expression data over three successive metabolic cycles but also

three kinds of GO term annotations of expressed genes. The yeast’s protein localization data [42] are obtained

from http://yeastgfp.yeastgenome.org. We noted that a few proteins in CYC2008 and a PPI data set have no

protein localization data available. In order to accurately identify as many protein complexes in CYC2008 as

possible, for proteins without localization data, we set their localization vectors to all “1” to calculate the joint

co-localization count of the protein group containing these proteins. By doing so, our method ICJointLE is

able to identify the protein complexes containing proteins without localization data in CYC2008.

3.3. Results

Firstly, we conducted experiments to test the effect of threshold r and the co-localization constraint on the

quality of complexes identified by ICJointLE. Secondly, we presented two examples to illustrate the procedure

of identifying complexes using ICJointLE. Finally, we compared the performance of ICJointLE and the

existing methods.

http://yeastgfp.yeastgenome.org


24

By analyzing the experimental results, we found that the r-reliable density of a protein core declines with

the increasing number of proteins in a protein core. Thus, the threshold of r-reliable density ρ is calculated by

e-μc, namely ρ=e-μc, where c is the number of proteins in a protein core and the decaying coefficient μ controls

the declining rate of ρ with the increase of c.

3.3.1. The effect of threshold r and co-localization constraint

In order to evaluate the number of precisely identified complexes, we used #PM to denote the number of

identified complexes that are matched exactly with known complexes in CYC2008. Furthermore we adopted

the product #PM×FAM to comprehensively estimate the quality of identified complexes.

For the setting of μ=0, δ=0, σ=0, ω=0, θ=0, γ=0, and η=1, we conducted experiments to investigate the

influence of threshold r and the co-localization constraint on the value of #PM×FAM produced by ICJointLE

on the three data sets STRING, BioGrid, and DIP respectively. The experimental results are shown in Fig.3.

(a) (b)

Fig.3. The values of #PM×FAM for different value of r and different setting of co_localization variable. (a) The variation

curves between #PM×FAM and r. (b) Comparison of #PM×FAM between co_localization=off and co_localization=on.

From Fig.3(a), we can see that, for the setting of μ=0, δ=0, σ=0, ω=0, θ=0, γ=0, η=1, and co_localization

=off, the value of #PM×FAM increases gradually as threshold r increases. In order to get a non-zero value of

#PM×FAM, we made threshold r larger than or equal to 500, 900, and 990 for three data sets DIP, BioGrid, and

STRING respectively. When the threshold r is set to 990 or larger, the value of #PM×FAM is always larger

than zero for all three data sets.
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co_localization is an on-off variable. In ICJointLE, If the joint co-localization criterion functions,

co_localization=on; otherwise co_localization=off. As can be seen in Fig.3 (b), for the setting of r=990, μ=0,

δ=0, σ=0, ω=0, θ=0, γ=0, and η=1, the protein complexes identified by ICJointLE have higher quality under

co_localization=on than under co_localization=off. For the DIP data set, if co_localization=off, the value of

#PM×FAM is less than 30; otherwise, exceeds 70. For the BioGrid data set, if co_localization=off, the value of

#PM×FAM is less than 10; otherwise, exceeds 30. And for the STRING data set, if co_localization=off, the

value of #PM×FAM is less than 5; otherwise, exceeds 20. Hence, co_localization is set to “on”.

3.3.2. Identification results

We determined the value of threshold r by the experiment in the previous subsection. For three given Y2H

PPI data sets, due to their sparse interactions, we set threshold r=1. Meanwhile, we experimentally determined

the values of other seven thresholds μ, δ, σ, ω, θ, γ, and η. The setting of eight thresholds for six data sets are

shown in Table 3.

Table 3

The setting of eight thresholds for ICJointLE on the six data sets

data sets r δ μ σ ω θ γ η

STRING 999 0.3 0.08 0.7 0.75 0.3 0.01 0.9

BioGrid 999 0.3 0.1 0.7 0.75 0.3 0.01 0.7

DIP 990 0.3 0.4 0.6 0.8 0.1 0.01 0.7

Uetz 1 0.3 0.4 0.8 0.3 0.2 0.01 0.6

Ito 1 0.3 0.4 0.7 0.3 0.2 0.01 0.6

Yu 1 0.3 0.4 0.7 0.4 0.3 0.01 0.6

In the following, we give two examples to demonstrate how ICJointLE identifies complexes on the DIP

data set. The first example shown in Fig.4 is to illustrate how to identify the tRNA-intron endonuclease

complex by ICJointLE.

As illustrated in Fig.4 (b), ICJointLE uses YAR008W to initialize protein core (PC), and Nled(PC)=

{YPL083C,YLR105C}. Let u denote YMR059W and v denote YBL051C, because pcc(JGEPPC, gepu)<δ and
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pcc(JGEPPC,gepv)<δ, YMR059W and YBL051C are not added to Nled(PC). Fig.4 (c) shows that YPL083C and

YLR105C are successively added to PC. Since pcc(JGEPPC, gepu)<δ,YMR059W is not added to Nled(PC)

during identifying protein core. In Fig.4 (d), because JC(PC∪{YBL051C})=0, YBL051C is not inserted into

N(PC). From Fig.4 (e) we can see that after YMR059C is added to PC, N(PC) becomes empty. Hence, the PC,

namely tRNA-intron endonuclease complex, is the complex identified by ICJointLE.

Fig.4. The process of identifying the tRNA-intron endonuclease complex in ICJointLE. (a) A sub-graph including the

tRNA-intron endonuclease complex and its neighborhood in DIP network, where the tRNA-intron endonuclease complex is

comprised of four yellow-colored proteins. Dash line denotes the edge with score<r, and solid line denotes the edge with score≥r.

(b) After YAR008W is seeded into PC. Then PC={YAR008W}. Thus Nled(PC) is composed of YPL083C and YLR105C. Let u

denote YMR059W and v denote YBL051C, because pcc(JGEPPC,gepu)<δ and pcc(JGEPPC,gepv)<δ, YMR059W and YBL051C

are not contained in Nled(PC). (c) YPL083C and YLR105C are successively added to PC. Because pcc(JGEPPC,gepu)<δ,

YMR059W is still not inserted into Nled(PC) during the process of identifying protein core. (d) Because JC(PC∪{YBL051C})=0,
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YBL051C is not inserted into N(PC). (e) After YMR059C is added into PC, N(PC) becomes empty. Thus PC is a complex

identified by ICJointLE.

The second example is shown in Fig.5 to demonstrate how ICJointLE identifies a candidate protein

complex containing only one protein. From Fig.5 (b) we can see that by seeding YOR281C, ICJointLE adds

YOR281C into PC. Let w denote YJL152W, because pcc(JGEPPC, gepw)<η, Nled(PC) is empty. Fig.5 (c) shows

that YJL152W is contained in N(PC). We know that YJL152W is not sufficiently similar to PC in function, i.e.

B(PC, w)=false. So, YJL152W is not added to PC, and N(PC) becomes empty. At this time, the PC, containing

only YOR281C, is the complex identified by ICJointLE. Since the size of this PC is 1, this PC is discarded in

the final stage.

(a) (b) (c)

Fig.5. The process of identifying a complex containing only one protein by seed YOR281C in ICJointLE. (a) The sub-graph

including YOR281C and its neighborhood in DIP network. The dash line denotes the edge with score<r, and solid line denotes

the edge with score≥r. (b) After YOR281C is seeded into PC. PC={YOR281C}. Let w denote YJL152W, because pcc(JGEPPC,

gepw)<δ, YJL152W is not contained in Nled(PC). Nled(PC) is empty. (c) In adding attachment stage, YJL152W appears in N(PC)

once. Because it is not sufficiently similar to PC, i.e. B(PC,w)=false, YJL152W is not added to PC. Thus N(PC) becomes empty.

So PC, only containing YOR281C, becomes the identified complex of size 1, and it will be discarded.

In order to evaluate the effectiveness of ICJointLE, we compared ICJointLE with ten other existing

methods PCP*, MCL [16], WPNCA [27], APcluster [15], SPICi [20], ClusterONE [19], WEC [36], RNSC [29],

CORE [22], and MCODE [17]. PCP* is the extension of PCP [12], where the threshold FS is added to filter
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out the interactions with reliability score lower than FS. In APcluster method, parameter preference is set to the

value of node index. No parameters need to be set in both SPICi and CORE methods. Table 4 lists the

parameter setting of seven other existing methods PCP*, WPNCA, ClusterONE, WEC, RNSC, MCL, and

MCODE on the six data sets.

Table 4

The setting of parameters for seven methods on the six data sets

Methods Parameters STRING BioGrid DIP Uetz Ito Yu

PCP*
ICD threshold 0.6 0.6 0.6 0.6 0.6 0.6
Minclique size 2 2 2 2 2 2
FS 0.999 0.999 0.99 0 0 0

WPNCA
λ 0.6 0.7 0.8 0.4 0.4 0.5
min size 2 2 2 2 2 2

ClusterONE
d 0.8 0.9 0.6 0.6 0.6 0.6
min size 2 2 2 2 2 2

WEC

Balance Factor 0.8 0.9 0.9 0.8 0.8 0.8
Edge weight 0.7 0.5 0.2 0.4 0.5 0.5
Enrich 0.8 0.9 0.9 0.8 0.8 0.8
Filter 0.8 0.9 0.9 0.9 0.9 0.9

RNSC
size 2 2 2 2 2 2
density 0.2 0.2 0.2 0.2 0.2 0.2
p-value 0.01 0.01 0.01 0.01 0.01 0.01

MCL inflation 3 3 2.5 2.5 2.5 2.5

MCODE

Include Loops false false false false false false
Degree cutoff 2 2 2 2 2 2
Node Score 0.1 0.1 0.1 0.2 0.2 0.2
Haircut true true true true true true
Fluff false false false false false false
K-Core 2 2 2 2 2 2
Max. Depth 100 100 100 100 100 100

By analyzing the known complexes in CYC2008, we found that the number of the complexes of sizes

from 2 to 6 exceeds 84% of the total in CYC2008. Therefore,it is necessary to identify complexes of small size

indeed. For the six PPI data sets, Tables 5 and 6 list the distribution of the size of the complexes identified

exactly by eleven methods respectively.

Table 5

Distribution of the size of the exactly identified complexes on three PPI data sets STRING, BioGrid, and DIP
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Data sets Methods Number of the exactly identified complexes of different size Total
size 2 3 4 5 6 7 8 9 10 12 14

STRING

ICJointLE 92 34 10 5 3 0 2 1 0 1 1 149
PCP* 52 11 1 5 6 1 3 0 0 1 1 81
WPNCA 0 0 0 1 0 0 0 0 0 0 0 1
APcluster 0 0 0 0 0 0 0 0 0 0 0 0
SPICi 1 1 0 0 0 0 0 0 0 0 0 2
ClusterONE 0 0 0 0 0 0 0 0 0 0 0 0
WEC 0 0 0 0 0 0 0 0 0 0 0 0
RNSC 0 0 0 0 0 0 0 0 0 0 0 0
CORE 0 0 0 0 0 0 0 0 0 0 0 0
MCL 0 0 0 0 0 0 0 0 0 0 0 0
MCODE 0 0 0 0 0 0 0 0 0 0 0 0

BioGrid

ICJointLE 94 34 8 4 3 0 0 1 0 1 0 145
PCP* 54 12 1 6 6 1 3 0 1 1 0 85
WPNCA 13 3 3 1 5 0 0 0 0 0 0 25
APcluster 1 0 1 1 1 0 0 0 0 0 0 4
SPICi 18 3 6 2 4 0 0 0 0 0 0 33
ClusterONE 5 1 0 0 1 0 0 0 0 0 0 7
WEC 0 0 0 0 0 0 0 0 0 0 0 0
RNSC 2 1 0 0 0 0 0 0 0 0 0 3
CORE 0 0 0 0 0 0 0 0 0 0 0 0
MCL 1 0 0 0 0 0 0 0 0 0 0 1
MCODE 0 0 0 0 0 0 0 0 0 0 0 0

DIP

ICJointLE 97 22 8 1 0 1 1 1 0 1 0 132
PCP* 62 9 7 1 2 1 1 0 0 0 0 83
WPNCA 8 3 6 2 1 0 1 1 1 0 0 23
APcluster 20 3 2 2 0 0 0 0 0 0 0 27
SPICi 14 8 4 1 0 1 0 0 1 0 0 29
ClusterONE 4 3 1 1 0 0 0 0 1 0 0 10
WEC 0 14 11 5 0 0 8 0 7 0 0 45
RNSC 14 8 4 2 0 1 1 1 0 0 0 31
CORE 16 6 4 2 1 0 1 1 0 0 0 31
MCL 11 3 1 1 1 0 1 0 0 0 0 18
MCODE 0 1 2 0 0 0 0 0 0 0 0 3

Note: The number of complexes of sizes from 2 to 6 and the total number of the complexes identified exactly by ICJointLE are

marked in boxed presentation.

Table 6

Distribution of the size of the exactly identified complexes on three PPI data sets Uetz, Ito, and Yu

Data sets Methods Number of the exactly identified complexes of different size Total
size 2 3 4 5 6 7 8 9 10 12 14

Uetz

ICJointLE 18 1 0 0 0 0 0 0 0 0 0 19
PCP* 17 0 0 0 0 0 0 0 0 0 0 17
WPNCA 5 1 0 0 0 0 0 0 0 0 0 6
APcluster 11 0 0 0 0 0 0 0 0 0 0 11
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SPICi 5 0 0 0 0 0 0 0 0 0 0 5
ClusterONE 5 1 0 0 0 0 0 0 0 0 0 6
WEC 0 2 0 0 0 0 0 0 0 0 0 5
RNSC 7 2 0 0 0 0 0 0 0 0 0 9
CORE 8 2 0 0 0 0 0 0 0 0 0 10
MCL 8 1 0 0 0 0 0 0 0 0 0 9
MCODE 0 0 0 0 0 0 0 0 0 0 0 0

Ito

ICJointLE 14 2 0 0 0 0 0 0 0 0 0 16
PCP* 12 1 0 0 0 0 0 0 0 0 0 13
WPNCA 5 4 1 1 0 0 0 0 0 0 0 11
APcluster 6 3 0 0 0 0 0 0 0 0 0 9
SPICi 3 1 0 0 0 0 0 0 0 0 0 4
ClusterONE 5 4 0 0 0 0 0 0 0 0 0 9
WEC 0 5 0 0 0 0 0 0 0 0 0 5
RNSC 7 5 0 0 0 0 0 0 0 0 0 12
CORE 7 5 1 0 0 0 0 0 0 0 0 13
MCL 6 5 1 0 0 0 0 0 0 0 0 12
MCODE 1 0 0 0 0 0 0 0 0 0 0 1

Yu

ICJointLE 30 2 0 0 0 0 0 0 0 0 0 32
PCP* 28 2 0 0 0 0 0 0 0 0 0 30
WPNCA 14 3 0 0 0 0 0 0 0 0 0 17
APcluster 20 3 0 0 0 0 0 0 0 0 0 23
SPICi 7 2 0 0 0 0 0 0 0 0 0 9
ClusterONE 16 3 0 0 0 0 0 0 0 0 0 19
WEC 0 5 0 0 0 0 0 0 0 0 0 5
RNSC 19 4 0 0 0 0 0 0 0 0 0 23
CORE 20 3 0 0 0 0 0 0 0 0 0 23
MCL 19 3 0 0 0 0 0 0 0 0 0 22
MCODE 0 0 0 0 0 0 0 0 0 0 0 0

Note: The number of complexes of sizes from 2 to 6 and the total number of the complexes identified exactly by ICJointLE are

marked in boxed presentation.

We can see from Tables 5 and 6 that ICJointLE can exactly identify 149, 145, 132, 19, 16, and 32

complexes on six data sets STRING, BioGrid, DIP, Uetz, Ito, and Yu respectively. PCP* can exactly identify

81, 85,83, 17, 13, and 30 complexes on data sets STRING, BioGrid, DIP, Uetz, Ito, and Yu respectively by

filtering out interactions with low reliability. It indicates that scoring PPI data with reliability and filtering out

interactions with low reliability are helpful for exactly identifying more complexes. We can also find that

APcluster, ClusterONE,WEC, RNSC, CORE, MCL and MCODE are unable to exactly identify any complexes

on data set STRING. Furthermore, WEC, CORE, and MCODE fail to exactly identify any complexes on data
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set BioGrid, and MCODE does not exactly identify any complexes on data sets Uetz and Yu.In summary, our

method ICJointLE can exactly identify more complexes than ten other existing methods. Furthermore, the

results in Tables 5 and 6 show that our method ICJointLE is capable of exactly identifying complexes with

small size.

Tables 7 and 8 show the values of #PM, prec, rec, fm, Sn, PPV, Acc, MMR, and FAM of the identified

complexes on the six data sets for eleven methods respectively.

Table 7

Comparison of identified results for eleven methods on three PPI data sets STRING, BioGrid, and DIP.

Data sets Methods #PM prec rec fm Sn PPV Acc MMR FAM

STRING

ICJointLE 149 0.47 0.91 0.62 0.72 0.93 0.82 0.67 2.40
PCP* 81 0.36 0.84 0.50 0.70 0.86 0.77 0.53 2.14
WPNCA 1 0.19 0.23 0.21 0.77 0.49 0.61 0.14 0.98
APcluster 0 0.17 0.20 0.18 0.73 0.52 0.61 0.13 0.94
SPICi 2 0.12 0.19 0.15 0.79 0.45 0.59 0.13 0.91
ClusterONE 0 0.08 0.14 0.10 0.86 0.36 0.55 0.10 0.79
WEC 0 0.02 0.02 0.02 0.96 0.11 0.32 0.03 0.37
RNSC 0 0.08 0.03 0.04 0.78 0.25 0.44 0.03 0.50
CORE 0 0.02 0.04 0.02 0.80 0.19 0.39 0.06 0.49
MCL 0 0.02 0.01 0.01 0.96 0.07 0.26 0.01 0.28
MCODE 0 0 0 N/A 0.40 0.14 0.24 0.01 0.25

BioGrid

ICJointLE 145 0.46 0.89 0.61 0.67 0.92 0.78 0.66 2.33
PCP* 85 0.37 0.83 0.52 0.63 0.92 0.76 0.53 2.12
WPNCA 25 0.36 0.61 0.45 0.89 0.53 0.68 0.36 1.65
APcluster 4 0.17 0.39 0.24 0.62 0.68 0.65 0.22 1.26
SPICi 33 0.22 0.48 0.30 0.73 0.64 0.68 0.31 1.47
ClusterONE 7 0.29 0.48 0.36 0.72 0.61 0.66 0.25 1.39
WEC 0 0.15 0.17 0.16 0.92 0.13 0.34 0.12 0.63
RNSC 3 0.23 0.26 0.24 0.68 0.54 0.61 0.16 1.03
CORE 0 0.03 0.16 0.06 0.71 0.25 0.43 0.13 0.72
MCL 1 0.12 0.12 0.12 0.43 0.31 0.36 0.07 0.55
MCODE 0 0.08 0.02 0.03 0.31 0.17 0.23 0.02 0.27

DIP

ICJointLE 132 0.57 0.83 0.67 0.54 0.94 0.72 0.59 2.14
PCP* 83 0.47 0.78 0.59 0.47 0.95 0.67 0.48 1.93
WPNCA 23 0.66 0.45 0.53 0.56 0.75 0.65 0.27 1.37
APcluster 27 0.22 0.59 0.32 0.48 0.77 0.60 0.32 1.52
SPICi 29 0.43 0.60 0.5 0.54 0.86 0.68 0.36 1.64
ClusterONE 10 0.27 0.39 0.32 0.40 0.83 0.56 0.23 1.19
WEC 45 0.53 0.54 0.53 0.65 0.57 0.61 0.32 1.47
RNSC 31 0.45 0.58 0.50 0.47 0.88 0.64 0.34 1.56
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CORE 31 0.16 0.64 0.25 0.60 0.68 0.64 0.37 1.65
MCL 18 0.16 0.53 0.25 0.48 0.85 0.64 0.29 1.46
MCODE 3 0.42 0.08 0.13 0.23 0.49 0.33 0.07 0.48

Note: The best performers for the relative item are marked in boxed presentation.

Table 8

Comparison of identified results for eleven methods on three PPI data sets Uetz, Ito, and Yu.

Data sets Methods #PM prec rec fm Sn PPV Acc MMR FAM

Uetz

ICJointLE 19 0.41 0.22 0.29 0.12 0.97 0.34 0.13 0.69
PCP* 17 0.26 0.24 0.25 0.14 0.95 0.36 0.14 0.74
WPNCA 6 0.28 0.16 0.20 0.17 0.69 0.34 0.10 0.60
APcluster 11 0.24 0.20 0.22 0.15 0.79 0.35 0.12 0.67
SPICi 5 0.36 0.13 0.19 0.09 0.95 0.29 0.07 0.49
ClusterONE 6 0.24 0.12 0.16 0.10 0.87 0.29 0.08 0.49
WEC 2 0.29 0.005 0.01 0.01 0.79 0.11 0.006 0.12
RNSC 9 0.46 0.16 0.24 0.10 0.93 0.30 0.09 0.55
CORE 10 0.21 0.18 0.19 0.16 0.86 0.36 0.12 0.67
MCL 9 0.21 0.17 0.19 0.17 0.82 0.37 0.12 0.66
MCODE 0 0.13 0.005 0.01 0.01 0.86 0.09 0.004 0.10

Ito

ICJointLE 16 0.34 0.20 0.25 0.11 0.96 0.33 0.12 0.65
PCP* 13 0.28 0.22 0.24 0.12 0.96 0.34 0.12 0.67
WPNCA 11 0.38 0.16 0.23 0.15 0.81 0.34 0.10 0.61
APcluster 9 0.28 0.18 0.22 0.14 0.78 0.33 0.11 0.62
SPICi 4 0.43 0.12 0.19 0.08 0.93 0.26 0.07 0.45
ClusterONE 9 0.26 0.12 0.16 0.09 0.90 0.28 0.07 0.47
WEC 5 0.65 0.02 0.03 0.01 0.97 0.11 0.01 0.14
RNSC 12 0.42 0.16 0.24 0.11 0.92 0.32 0.10 0.58
CORE 13 0.26 0.19 0.22 0.14 0.87 0.35 0.12 0.66
MCL 12 0.26 0.18 0.21 0.15 0.81 0.35 0.11 0.64
MCODE 1 0.47 0.02 0.03 0.01 0.93 0.11 0.01 0.14

Yu

ICJointLE 32 0.41 0.28 0.33 0.15 0.97 0.38 0.18 0.84
PCP* 30 0.29 0.30 0.30 0.17 0.96 0.40 0.18 0.88
WPNCA 17 0.29 0.25 0.27 0.20 0.72 0.38 0.14 0.78
APcluster 23 0.27 0.26 0.27 0.20 0.78 0.39 0.17 0.82
SPICi 9 0.32 0.17 0.22 0.11 0.93 0.32 0.09 0.58
ClusterONE 19 0.30 0.18 0.22 0.12 0.92 0.34 0.12 0.63
WEC 5 0.47 0.03 0.06 0.03 0.86 0.15 0.02 0.20
RNSC 23 0.44 0.24 0.31 0.14 0.95 0.36 0.15 0.75
CORE 23 0.25 0.26 0.25 0.18 0.87 0.40 0.17 0.83
MCL 22 0.29 0.26 0.28 0.21 0.80 0.41 0.17 0.84
MCODE 0 0.27 0.007 0.01 0.02 0.70 0.11 0.006 0.12

Note: The best performers for the relative item are marked in boxed presentation.
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From Tables 7 and 8, we noticed that WEC obtains high value of prec and but low value of rec on data

sets Uetz, Ito, and Yu. The reason is that many complexes identified by WEC match with one known complex.

That is, there exists many-to-one matching between the identified complexes and known complexes. In

addition, PCP* gets the highest value of rec on data sets Uetz, Ito, and Yu due to filtering out the interactions

with lower reliability score. We can also see from Tables 7 and 8 that with regard to prec, ICJointLE is inferior

to RNSC on Uetz, Ito, and Yu, ICJointLE is inferior to SPICi on Ito, and ICJointLE is inferior to WPNCA on

DIP, but ICJointLE performs better than other competing methods on STRING and BioGrid. Meanwhile,

ICJointLE gains the highest value of rec on data sets STRING, BioGrid, and DIP. Furthermore, ICJointLE

obtains the highest value of fm on all six data sets among eleven methods. It indicates that in overall,

ICJointLE can accurately identify complexes in static PPI networks.

We also noticed that for the known complexes in CYC2008, the denominator item of the formula (23) is a

definite value. Hence the value of Sn depends on the numerator item of the formula (23). The greater the

numerator item of the formula (23) is, the greater the value of Sn. It means that the greater the number of

common proteins between the identified complex and known complex is, the higher the value of Sn. From

Tables 7 and 8, we can see that, with regard to Sn, WEC performs well on STRING, BioGrid, and DIP.

Considering both max size and average size in Table 7, we found that WEC might identify a number of

complexes of large size and achieves the highest value of Sn among eleven competing methods in dense PPI

networks STRING, BioGrid, and DIP. Because these identified complexes of large size share many common

proteins with known complexes, WEC obtains higher value of Sn than our method ICJointLE. Conversely,

ICJointLE gets lower value of Sn because ICJointLE identifies complexes which share relatively few common

proteins with known complexes. In terms of #PM, rec (Frac), Acc, MMR, and FAM (Frac+Acc+MMR), WEC

performs poorly on STRING, BioGrid, and DIP. This implies that for STRING, BioGrid, and DIP, a lot of
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complexes of large size identified by WEC share many common proteins with known complexes, but do not

accurately match with known complexes.

We can see from Tables 7 and 8 that because of identifying more complexes of small size, ICJointLE

obtains larger value of PPV than ten other existing methods. With respect to Acc, ICJointLE performs well on

data sets STRING, BioGrid, and DIP, but ICJointLE performs poorly on data sets Uetz, Ito, and Yu. In addition,

because ICJointLE can exactly match the most known complexes with identified complexes, it achieves higher

value of MMR than ten other existing methods on STRING, BioGrid, and DIP.

The obtained superb performance for rec, Acc, and MMR in ICJointLE leads to the highest corresponding

comprehensive score FAM on data sets STRING, BioGrid, and DIP. However, for the sparse PPI sets Ito, Uetz,

and Yu, PCP* performs better than ICJointLE in terms of rec, Sn, Acc, MMR, and FAM, and MCL gains the

highest value of Acc because it obtains the highest value of Sn and the relatively stable value of PPV. In

addition, CORE is slightly superior to ICJointLE on data set Ito in terms of FAM. In summary, ICJointLE

performs better than ten other existing methods on the dense PPI networks, and in most cases ICJointLE

performs well but is inferior to PCP* on three sparse PPI networks.

To compare the biological significance of identified complexes, we listed the proportion of identified

complexes that significantly enrich the BP term-annotated proteins on six data sets STRING, BioGrid, DIP,

Uetz, Ito, and Yu respectively in Tables 9 and 10, where #IC is the total number of identified complexes, #SC

is the number of identified complexes with significant biological function, % of significant denotes the

percentage of identified complexes with significant biological function, Max size represents the maximal size

of identified complexes, and Average size is the mean of the sizes of identified complexes. The BP-based

enrichment analysis and the statistic result of significant complexes identified by ICJointLE are available in

Additional file 1.
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Table 9

Proportion of the complexes that significantly enrich the BP term-annotated proteins on three PPI data sets STRING, BioGrid,

and DIP.

Data sets Methods #IC #SC
% of

significant
Max size

Average

size

% of

significant

(size≤6)

% of

significant

(6<size<20)

% of

significant

(size≥20)

STRING

ICJointLE 1118 1040 93.02% 68 3.37 92.51% 100.00% 100.00%

PCP* 857 699 81.56% 116 3.11 80.27% 100.00% 100.00%

WPNCA 1235 895 72.47% 85 17.86 34.62% 74.46% 96.28%

APcluster 401 326 81.30% 554 16.01 48.28% 87.77% 97.65%

SPICi 585 338 57.78% 355 9.46 42.23% 84.72% 96.36%

ClusterONE 269 187 69.52% 402 17.87 21.43% 74.26% 89.29%

WEC 1484 1457 98.18% 1864 270.4 73.23% 89.54% 100.00%

RNSC 130 130 100.00% 607 38.96 14.38% 60.81% 83.67%

CORE 845 549 64.97% 384 40.14 10.56% 63.83% 85.95%

MCL 161 34 21.12% 5373 37.77 13.70% 90.91% 100.00%

MCODE 80 45 56.25% 267 59.83 35.48% 44.44% 75.00%

BioGrid

ICJointLE 1101 987 89.65% 67 3.26 88.67% 100.00% 100.00%

PCP* 856 690 80.61% 23 2.88 79.25% 100.00% 100.00%

WPNCA 2278 2086 91.57% 78 14.92 77.95% 99.13% 99.69%

APcluster 756 532 70.37% 709 7.63 56.25% 92.34% 96.77%

SPICi 760 540 71.05% 123 5.00 66.00% 100.00% 100.00%

ClusterONE 1057 725 68.59% 94 8.48 51.67% 88.68% 100.00%

WEC 1534 1514 98.70% 1986 250.7 74.19% 90.91% 100.00%

RNSC 377 377 100.00% 260 9.08 26.77% 95.92% 100.00%

CORE 2098 1204 57.39% 180 18.24 19.44% 54.99% 81.10%

MCL 322 132 40.99% 1568 10.65 35.74% 87.50% 100.00%

MCODE 60 42 70% 141 32.88 71.43% 70.00% 68.97%

DIP

ICJointLE 917 796 86.80% 78 2.92 86.04% 100.00% 100.00%

PCP* 662 541 81.72% 12 2.49 81.18% 100.00% 0.00%

WPNCA 301 277 92.03% 47 8.71 84.00% 100.00% 100.00%

APcluster 1071 513 47.90% 739 4.62 43.28% 80.65% 77.78%

SPICi 491 359 73.12% 24 3.82 69.37% 100.00% 100.00%

ClusterONE 1036 452 43.63% 19 3.75 32.85% 87.30% 100.00%

WEC 1654 1547 93.53% 126 16.8 83.40% 96.72% 98.95%

RNSC 453 453 100.00% 40 3.69 27.86% 100.00% 100.00%

CORE 1632 424 25.98% 79 3.46 21.69% 94.37% 92.31%

MCL 1240 395 31.85% 59 3.63 29.10% 63.74% 46.67%

MCODE 66 59 89.39% 70 9.17 89.58% 90.00% 87.50%

Note: For the relative item, the performers better than ICJointLE are marked in boxed presentation.



36

Table 10

Proportion of the complexes that significantly enrich the BP term-annotated proteins on three PPI data sets Uetz, Ito, and Yu.

Data sets Methods #IC #SC
% of

significant
Max size

Average

size

% of

significant

(size≤6)

% of

significant

(6<size<20)

% of

significant

(size≥20)

Uetz

ICJointLE 251 145 57.77% 5 2.04 57.77% 0.00% 0.00%

PCP* 261 142 54.41% 4 2.01 54.41% 0.00% 0.00%

WPNCA 274 146 53.28% 18 4.39 48.68% 76.09% 0.00%

APcluster 306 116 37.91% 141 2.85 38.00% 40.00% 0.00%

SPICi 122 70 57.38% 8 2.27 57.02% 100.00% 0.00%

ClusterONE 178 71 39.89% 8 2.52 39.20% 100.00% 0.00%

WEC 21 14 66.67% 9 4 61.11% 100.00% 0.00%

RNSC 211 211 100.00% 6 2.43 100.00% 0.00% 0.00%

CORE 324 117 36.11% 10 2.63 35.85% 50.00% 0.00%

MCL 301 116 38.54% 15 3.01 37.59% 63.64% 0.00%

MCODE 8 5 62.50% 4 3.25 62.50% 0.00% 0.00%

Ito

ICJointLE 255 152 59.61% 4 2.03 59.61% 0.00% 0.00%

PCP* 317 135 42.59% 3 2.03 42.59% 0.00% 0.00%

WPNCA 201 152 75.62% 15 3.92 74.01% 87.50% 0.00%

APcluster 247 140 56.68% 111 3.01 57.08% 40.00% 50.00%

SPICi 83 57 68.67% 5 2.37 68.67% 0.00% 0.00%

ClusterONE 159 95 59.75% 5 2.43 59.75% 0.00% 0.00%

WEC 34 31 91.18% 5 3.3 91.18% 0.00% 0.00%

RNSC 141 141 100.00% 5 2.44 100.00% 0.00% 0.00%

CORE 270 137 50.74% 10 2.58 51.70% 0.00% 0.00%

MCL 254 140 55.12% 45 3.02 55.51% 37.50% 100.00%

MCODE 15 13 86.67% 4 3.33 86.67% 0.00% 0.00%

Yu

ICJointLE 346 220 63.58% 5 2.05 63.58% 0.00% 0.00%

PCP* 383 201 52.48% 6 2.05 52.48% 0.00% 0.00%

WPNCA 358 244 68.16% 22 4.69 67.14% 71.43% 100.00%

APcluster 369 200 54.20% 169 3.16 54.24% 57.14% 0.00%

SPICi 177 111 62.71% 6 2.36 62.71% 0.00% 0.00%

ClusterONE 214 136 63.55% 7 2.54 63.38% 100.00% 0.00%

WEC 60 52 86.67% 11 3.8 86.21% 100.00% 0.00%

RNSC 194 194 100.00% 6 2.43 100.00% 0.00% 0.00%

CORE 405 198 48.89% 22 2.61 49.75% 0.00% 0.00%

MCL 344 194 56.40% 47 3.48 56.04% 56.25% 80.00%

MCODE 11 10 90.91% 27 7.27 100.00% 50.00% 100.00%

Note: For the relative item, the performers better than ICJointLE are marked in boxed presentation.
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As can be seen in Tables 9 and 10, with regard to the proportion of significant complexes, ICJointLE is

inferior to RNSC. This is because the post-processing stage in RNSC filters out the partitioned clusters with

p-value≥0.01, the proportion of significant complexes identified by RNSC reaches 100%. For the sparse PPI

data sets Uetz, Ito, and Yu, both of WEC and MCODE identify fewer complexes respectively. So it is relatively

easy for WEC and MCODE to obtain a high proportion of significant identified complexes. For the dense PPI

data sets STRING, BioGrid, and DIP, WEC identifies a lot of significant complexes of large size. A lot of

significant complexes of large size and a few complexes of small or middle size contribute to a high proportion

of significant complexes. From Tables 9 and 10 we can see that WPNCA obtains higher proportion of

significant identified complexes than ICJointLE on data sets BioGrid, DIP, Ito, and Yu respectively. In addition,

SPICi attains higher proportion of significant identified complexes than ICJointLE on data set Ito. For the

other cases, ICJointLE performs better than other competing methods in terms of the proportion of significant

identified complexes.

The p-value of an identified complex has close association with the size of the identified complex [22]. In

order to further compare the proportion of the identified significant complexes of different size, we partitioned

the identified complexes into three groups. The size of identified complexes in the first group is less than or

equal to 6, the size of identified complexes in the second group is greater than 6 and less than 20, and the size

of identified complexes in the last group is greater than or equal to 20. The proportion of the significant

complexes of these three groups is shown respectively in Tables 9 and 10. We can see from Tables 9 and 10

that ICJointLE performs poorly on the three data sets Uetz, Ito, and Yu. In particular, for all three groups of

different size, ICJointLE is inferior to WEC, RNSC, and MCODE on data sets Uetz and Yu, ICJointLE

performs more poorly than WPNCA on data set Yu, and ICJointLE performs worse than WPNCA, SPICi,

ClusterONE, WEC, RNSC, and MCODE on data set Ito. However, for the three other data sets STRING,
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BioGrid, and DIP, regarding the proportion of significant complexes of the first group of size≤6, ICJointLE

outperforms ten other existing methods except for the case of MCODE on DIP, and concerning the proportion

of significant complexes of two other groups of size>6, ICJointLE outperforms or performs equally as ten

other competing methods.

In order to further demonstrate the effectiveness of ICJointLE, we showed six examples of the complexes

identified by ICJointLE and their CC-based enrichment analysis on data sets STRING, BioGrid and DIP

respectively in Tables 11-13. The CC-based enrichment analysis of six examples of complexes identified by

ICJointLE is available in Additional file 2. In Tables 11-13, the first column shows the name of the known

complex matched with an identified complex, the second column is the number (#kc) of proteins in the

matched known complex, the third column displays the proteins of the identified complex, the fourth column

is the overlapping score (OS) between the identified complex and the known complex, the fifth column shows

the CC term which annotates the proteins belonging to the identified complex, and the sixth column is the

p-value of the identified complex enriching the proteins annotated with the CC term.

Table 11

Six complexes identified by ICJointLE on STRING and their CC term enrichment analyses

Matched known

complex name
#kc Proteins of the identified complex OS

CC annotation

term p-value

anaphase-promoting

complex
15

YBL084C, YDR118W, YDR260C, YFR036W,

YGL240W, YIR025W, YKL022C, YLR102C,

YLR127C, YNL172W, YOR249C

0.73
anaphase-promoting

complex
6.26e-30

20S proteasome 14

YBL041W, YER012W, YER094C, YFR050C,

YGL011C, YGR135W, YGR253C,YHL030W,

YJL001W, YML092C, YMR314W, YOL038W,

YOR157C, YOR362C, YPR103W

0.93
proteasome core

complex
7.94e-40

DASH complex 10
YDR016C, YDR201W, YGL061C, YKL052C,

YKR037C,YKR083C
0.60 DASH complex 1.09e-16

SWI/SNF complex 12

YBR289W, YDR073W, YFL049W, YHL025W,

YJL176C, YNR023W, YOR290C, YPL016W,

YPR034W

0.75 SWI/SNF complex 1.31e-24
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SAGA complex 20

YBR081C,YBR198C,YDR145W,YDR167W,YDR392

W,YDR448W,YGL066W,YGL112C,YHR099W,YLR05

5C,YMR223W,YMR236W,YOL148C,YPL047W,YPL2

54W

0.75 SAGA complex 8.18e-40

U1 snRNP complex 17

YBR119W, YDR240C, YER029C, YGR013W,

YGR074W, YIL061C, YKL012W, YLR147C,

YLR298C

0.53 U1 snRNP 2.04e-22

NOTE: Systematic names in boldrepresent those proteins in the complex identified by ICJointLE, but do not appear in the

matched known complex in the first column.

Table 12

Six complexes identified by ICJointLE on BioGrid and their CC term enrichment analyses

Matched known

complex name
#kc Proteins of the identified complex OS

CC annotation

term p-value

anaphase-promoting

complex
15

YBL084C, YDR118W, YDR260C, YFR036W,

YGL240W, YIR025W, YKL022C, YLR102C,

YLR127C, YNL172W, YOR249C

0.73
anaphase-promoting

complex
1.86e-29

20S proteasome 14

YBL041W, YER012W, YER094C, YFR050C,

YGL011C, YGR135W, YGR253C, YJL001W,

YML092C, YMR314W, YOL038W, YOR157C,

YOR362C,YPR103W,YHL030W

0.93
proteasome core

complex
1.11e-37

DASH complex 10
YDR016C, YDR201W, YGL061C, YGR113W,

YKL052C, YKR037C, YKR083C
0.70 DASH complex 1.38e-19

SWI/SNF complex 12

YBR289W, YDR073W, YFL049W, YHL025W,

YJL176C, YMR033W, YNR023W, YOR290C,

YPL016W,YPL129W,YPR034W

0.92 SWI/SNF complex 1.90e-30

SAGA complex 20

YBR081C, YBR198C, YCL010C, YDR145W,

YDR176W, YDR392W, YDR448W, YGL066W,

YGL112C, YGR252W, YLR055C, YMR223W,

YMR236W, YOL148C, YPL254W

0.75 SAGA complex 3.41e-39

U1 snRNP complex 17

YBR119W, YDR235W, YDR240C, YER029C,

YGR013W, YGR074W, YIL061C, YKL012W,

YLR147C, YLR275W, YLR298C

0.65 U1 snRNP 1.95e-27

NOTE: Systematic names in bold represent those proteins in the complex identified by ICJointLE, but do not appear in the

matched known complex in the first column.

Table 13

Six complexes identified by ICJointLE on DIP and their CC term enrichment analyses
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Matched known

complex name
#kc Proteins of the identified complex OS

CC annotation

term p-value

anaphase-promoting

complex
15

YBL084C, YDR118W, YFR036W, YGL240W,

YKL022C, YLR127C, YNL172W, YOR249C
0.53

anaphase-promoting

complex
3.50e-20

20S proteasome 14
YER012W, YER094C, YGL011C,

YML092C,YMR314W,YPR103W
0.43

proteasome core

complex
1.23e-14

DASH complex 10
YDR016C, YDR201W, YGR113W, YKR037C,

YKR083C
0.50 DASH complex 3.96e-14

SWI/SNF complex 12
YBR289W, YFL049W, YOR290C, YPL016W,

YPR034W
0.42 SWI/SNF complex 2.49e-12

SAGA complex 20
YBR198C, YCL010C, YDR167W, YDR176W,

YDR448W, YGL112C, YMR236W, YOL148C
0.4 SAGA complex 4.95e-19

U1 snRNP complex 17
YBR119W, YDL087C, YDR235W, YDR240C,

YGR013W, YHR086W, YIL061C, YML046W
0.47 U1 snRNP complex 3.17e-19

From Tables 11-13, we can see that the complexes identified by ICJointLE are matched with the known

complexes well and are enriched the proteins annotated with the corresponding CC term. This indicates that

the complexes identified by ICJointLE have significantly biological meaning.

4. Discussion

Most existing methods for identifying complexes in static PPI networks are based on mining densely

connected regions [10-20] and integrated gene expression data [32-35] and GO functional annotation [29-31].

These methods do not use both of gene expression data and protein localization data to identify complexes. So

there is no guarantee that the complexes identified by these methods are of co-localization and co-expression.

In this paper, we have proposed the method ICJointLE to identify jointly co-localized and jointly co-expressed

protein complexes in static PPI networks.

On one hand, If proteins in the same functional module work together, they should have high chance to

show up at the same physical location [62]. When a protein complex is assembled, its constituent proteins must

be localized at the same subcellular localization category. To depict co-localization among members of a

protein group, we defined the joint localization vector to construct the joint co-localization criterion of a

protein group. Then we can use the joint co-localization criterion to guarantee that proteins in an identified
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protein complex are jointly co-localized. Furthermore, we noticed that even if all proteins in a protein group

are pairwise co-localized, they are not always necessary to be jointly co-localized. It is worthwhile pointing out

that the joint co-localization of a protein group is a group relationship. Evidently, using the combination of

joint co-localization criterion and protein localization data can judge whether the proteins in a protein group

are jointly co-localized at the same subcellular localization category.

On the other hand, the methods [34-36] measure the co-expression between two proteins. However, when

a protein complex is assembled, the genes coding members of a protein complex must be co-expressed at the

same time. To describe co-expression among members of a gene group, we defined the joint gene expression to

construct the joint co-expression criterion of a gene group. Then we can use the joint co-expression criterion to

ensure that the genes coding constituent proteins of an identified protein complex are jointly co-expressed to

some extent. We also found that even if all genes in a gene group are pairwise co-expressed, they are not

always necessary to be jointly co-expressed, namely, they are partially pairwise co-expression. Likewise, it is

worth noting that the joint co-expression of a gene group is also a group relationship. Obviously, using the

integration of joint co-expression criterion and gene expression data can determine whether the genes in gene

group are jointly co-expressed at the same time.

Moreover, members of a protein complex tend to be functionally similar. Inspired by [30,31,33], we

integrated the CC-based, MF-based, and BP-based protein similarities into functional similarity criterion to

identify biologically significant complexes. As found in Tables 9 and 10, the use of functional similarity

criterion can ensure that the majority of identified complexes have significantly biological meaning.

In addition, PPI data produced by high throughput technology usually contain some amount of noises or

spurious interactions. The method in [32] calculates Pearson correlation coefficient between two proteins to

verify true PPI pairs. While ICJointLE uses reliability score to mark PPI data and filtered out PPIs with low
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reliability score. The experimental results have indicated that marking PPI data with reliability score and

filtering out interactions with low reliability are helpful for precisely identifying more protein complexes.

Furthermore, according to core-attachment structure [6, 22-27], ICJointLE finds densely and r-reliably

connected region as protein cores and adds the attachment proteins adequately and r-reliably connected with

protein core to identify protein complexes. To some extent, our method ICJointLE is able to avoid missing

attachment proteins which are not densely but adequately connected to protein core.

Considering complexes of small size (consisting of two or three distinct proteins), Xu et al.[63] found that

there are 156 size-two and 66 size-three complexes in CYC2008. They proposed a method CPredictor 2.0

which achieves better performance of detecting complexes with small size in terms of F-measure. Yong et

al.[64] exploited size-specific supervised weighting (SSS) to weight each edge in PPI network, and predicted

and scored candidate small complexes. We evaluated the distribution of sizes of perfectly matched protein

complexes identified by various methods. The evaluated results confirm that our proposed method ICJointLE

has stronger ability of identifying complexes with small size.

5. Conclusions

In this paper, first, we have introduced the joint co-localization criterion, the joint co-expression criterion,

and functional similarity criterion. Then we proposed a novel method ICJointLE which uses four types of

biological data including PPI data with reliability score, protein localization data, gene expression data, and

gene ontology annotations to identify protein complexes in static PPI networks. The experimental results on

yeast showed that our method can precisely identify more complexes, especially more complexes of sizes from

2 to 6. Besides, the complexes identified by ICJointLE have significantly biological meaning.

Despite of having the advantage in precisely identifying protein complexes of small size, ICJointLE yet

remains failure to precisely identify some protein complexes with small size in CYC2008. Integrating more
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biological information such as PTM-dependent PPIs [65] and domain-domain interactions [66, 67] may be

helpful for identifying more protein complexes exactly. In addition, PPI networks are dynamic in nature [68].

Dynamic PPI networks modeling could reveal the mechanisms of protein complex formation and contribute to

identification of protein complexes. Our future work will focus on modeling dynamic PPI networks and

integrating more biological information to identify more protein complexes in dynamic PPI networks.
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