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:' ; 
Percolation theory studies the stochastics of a network whose nodes 
and/or connections randomly belong to one of two states. It was introduced 
by Broadbent and Hammersley (1957) to model the spread of a gas or fluid 
through a porous medium (the medium consists of a network of channels 
which are randomly passable or blocked). The subject soon appeared to be 
useful in the description of many cooperative phenomena, such as semi-
conduction, reliability of large communication networks and the formation 
of polymers, and xt has many relations with the Ising model of ferromagnets. 

This thesis consists of seven articles and short notes on percolation theory 
and related subjects , preceded by an introduction and a short comment 
on each of the articles. The aim of the introduction is two-fold. In the 
first place, by presenting examples of concrete phenomena, it gives the 
non-specialist and even the non-mathematician an idea of the nature of 
percolation theory. In the second place we sketch the history of percolation 
theory and present rough outlines of the proofs of some of the main results 
in Bernoulli percolation. This gives the interested mathematician an idea 
of the methods used in percolation theory without having to go through all 
the details, and may help in the study of the literature. Mo attention is 
paid to renormalisation methods, although these methods are very interesting, 
since the accent of this work is on rigorous results 

At the end of the introduction we try to indicate what seems to be the 
emphasis of actual research and we give a short introduction to first-passage 
percolation. 

1. Introduction 

1.1. Examples 

Example 1. Reliability of large communication networks. 

Consider a largo telephone network. Suppose that some of the connections 
are broken. If the fraction of broken connections is small, there is a 
reasonable probability, that from a given location communication is still 
possible with locations arbitrarily far away. However, if the fraction is 
above a certain critical value, the network breaks into many "islands", 
on each of which internal communication is still possible, but which are 
isolated from the others. Apparently, by varying the fraction of broken 
connections a so-called percolation transition occurs. The term "percolation" 
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refers to the next example, which was, in fact, the motivation for 
Broadbent and Hammersley to study these phenomena and introduce the 
subject into the mathematical literature. 

Example 2. Absorption of fluid by a porous stone. 

Suppose a large porous stone is surrounded by a fluid (or gas). The 
empty space inside the stone is considered as a collection of relatively 
large holes interconnected by narrow channels. Suppose the fluid can only 
flow through channels of a minimum width. If the fraction of sufficiently 
wide channels is very small, only the part of the stone very close to 
the surface will be wetted, but if it is above a critical value the fluid 

will percolate, i.e. there will be a non-zero overall density of wet 

volume. 

Reports of Schlumberger-Doll show that these kinds of models are actually 
interesting for practical research concerning oil-reservoirs , see, e.g., 
Koplik, Wilkinson and Willemsen (1983). 
Example 3. Critical phenomena in a dilute ferromagnet. 

A dilute ferromagnet may be modelled as follows: a mixture of magnetic 
and non-magnetic atoms is randomly distributed among the nodes of a cubic 
lattice. Let p be the concentration of magnetic atoms. If the temperature 
is very low, neighbouring magnetic atoms will have parallel magnetic 
spins. If we neglect interactions between atoms at larger distance the 
following will happen: for low values of p there will be small clusters 
of magnetic atoms. Inside a cluster the atoms all have the same spin, but 
different clusters may have spins in opposite directions and the overall 
magnetic spin will be zero. However, if the concentrationp increases, the 
above clusters grow and above a certain concentration an infinite cluster 
occurs causing a non-zero overall magnetic spin. 

The relationship between percolation theory and the theory of ferromagnets 
is much more subtle than appears from this example. Kasteleyn and Fortuin 
(1969) have proved exact relations between percolation and the Ising model 
of ferromagnets. 

There are many other phenomena where percolation plays a role, such as 
spread of disease in an orchard, propagation of fire in a forest, the 
formation of polymers, and semi-conduction. There are several publications 
where these and other examples are discussed, e.g. Frisch and Hammersley 
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(1963), de Gennes (1976), Stauffer (1979) and Essam (1980). The last 
also contains many results from simulation, renormalisation group 
techniques and numerical methods. 

1.2. The mathematical model. 

Roughly speaking, percolation theory studies the connectivity properties 
of random networks, i.e. networks from which a certain fraction of the 
connections and/or the nodes is randomly taken away. In particular it is 
interesting to know whether infinite connected subgraphs can occur in the 
remaining network; this phenomenon corresponds with long-range communication 
(example 1 in § 1.1), porosity (example 2), and macroscopic magnetic 
effects (example 3). 

So consider a finite or countably infinite connected graph G, which consists 
of sites (nodes) interconnected by bonds . (In most cases G is a regular 
lattice imbedded in IP-, e.g. the 3-dimensional cubic lattice). According 
to some random mechanism a certain fraction of the sites and/or the bonds 
is open while the others are closed (if only the sites (bonds ) are concerned 
we speak of site ( bond )-percolation; if both are concerned we speak of 
mixed percolaticn). The terms "open" and "closed" refer to example 2 in 
§ 1.1, where the sites are the holes and the bonds are the channels, which, 
if they are too narrow, are closed to the fluid. In the example of the dilute 
ferromagnet the random mechanism concerns the sites (atoms) and "open" 
means magnetic, "closed" non-magnetic. The bonds are abstract connections 
between neighbouring atoms. 

Most results in the literature are concerned with models in which different 
sites (bonds ) behave independently. Moreover we will assume that each bond 
is passable in two directions (although many results have been found for 
so-called oriented percolation, see e.g. Durrett (1984)), and that G is 
locally finite, i.e. that each site has finitely many bonds. (As to long-
range percolation, see, e.g., Grimmett, Keane and Marstrand (1984), and 
Newman (1984)). 

Before we go further we need some definitions: 
A path from site s to site s' is a finite sequence s=s,,b.,S_,b„ ...,b ,s = 

£ 1 1 2 2 n n+1 
where each s. is a site andb is a bond between s. and s. ,. The number n 

i i l l+l 
is the length of the path. 
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A path is self-avoiding (s.a.) if all s! S are different. 

P. path, or more generally a subgraph, is said to be open if all its 
bonds (or, in the case of site-percolation, all its sites) are open. 

An open cluster is a maximal connected open subgraph (so two sites s and 

s' belong to the same open cluster iff there is an open path from s to s'). 

Analogously, a closed path, subgraph and cluster are defined. 

The distance between two sites s and s' is the length of the shortest path 
from s to s'. 

Now let all bon&S (or sites) be indepedently open with probability p and 
closed with probability 1-p. For each site s define: 

= the probability that there exists a site at distance >_ n 

■ of s, which belongs to the same open cluster as s. 

Further, the percolation probability function is defined as: 

(1.2) 6(p,s) = lim P (p,s) 
n-w» 

(clearly, this is the probability that s belongs to an infinite; open 

cluster). 

Finally, define 

(1.3) P = inf{p: e (p,s) > 0} , 

which is called the critical percolation probability. 

Remarks: 

i) As observed by Broadbent and Hammersley (1957), P does not depend 
on s because G is connected. 

ii) The critical probability for bond-percolation is, in general, different 
from that for site-percolation (see Hammersley (1961) and Kesten 
(1982, ch. 10)) . 

1.3. Short history of percolation theory and sketches of proofs of some 
important results. 

As remarked in i 1.1. Broadbent and Hammersley introduced percolation theory 
in 1957 as a model of the spread of a fluid or gas in a random medium, e.g. 
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a porous stone. Their first important observation was that, for many 
graphs, P is non- trivial, i.e. not equal to 0 or 1. Hammersley (1957, 
1959) gave upper and lower bounds for critical probabilities. 

Soon, attention was paid particularly to the regular two-dimensional 
lattices (the square lattice, denoted by S, the triangular lattice T 
and the hexogonal lattice H). A concept which soon appeared to be very 
useful was duality. The dual L of a planar lattice L is obtained by putting 
one site in each face of L and connecting sites which lie in adjacent 
faces (see fig. 1). The bonds of L are then in 1-1 correspondence with 
those of L , and each configuration on L (i.e. specification of open and 
closed bonds) induces a configuration on L^ by calling a bond of L open 
if and only if the corresponding bond of L is open. 

Example of a pair of dual The matching of the square lattice. 
lattices: the triangular ( ) . 
and the hexagonal lattice( ), 

\ / 
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It is easily seen that the triangular and hexagonal lattices are dual 
to each other and that the square lattice is self-dual. 

The following fact, which is intuitively obvious follows from results 
of Whitney (1933). 

(1.4) Lemma. 
Each finite open cluster in L is surrounded by a closed circuit (by this 
we mean a circuit of which all bonds are closed) in L . 
(Of course, the same holds with L and L exchanged.) 

Hainmersley used self-duality of the square lattice S to show, for bond 
percolation on this lattice, 

(1.5) hV S»i'-ï -
where X = limsup vf ,where f is the number of self-avoiding paths of 
length n. (It is easily seen that X is between 2 and 3; although the exact 
value of A is not known the approximate value of X is usually given as 
X ~ 2.6; the accuracy of this approximation is also unknown.) 

Remark to be more precise, self-duality is used to prove the second 
inequality in (1.5); the first holds for any lattice, because,clearly, 
P (p,s) < P (there exists an open self-avoiding path of length n, starting 
in s) ̂  p (the number of s.a. paths of length n starting in s), which 
tends to 0 if p < T-. 

Harris (1960) proved that for bond-percolation on S 

(1.6, VS>>!-

His proof makes extensive use of duality arguments and also concerns a 
correlation inequality which has become one of the basic tools in percolation. 
To state the inequality we need some definitions: An event A is called 
increasing (or positive) if, whenever a configuration belongs to A, each 
configuration which can be obtained from the first by changing one or more 
closed bonds (or, in the case of site percolation, sites) into open bonds 
(sites), also belongs to A. If we exchange, in the above definition, "open" 
and "closed", we.get the definition of a decreasing (or negative) event. It 
is clear that if A is increasing its complement is decreasing and vice versa. 
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Harris' correlation inequality says: 

(1.7) Lemma. 

If A and B are both increasing (or both decreasing) then P(AflE) > P (A) P(E). 

Remarks 

(i) Fortuin, Kasteleyn and Ginibre (1971) have extended this result to 
a class of models (including the Ising-model) where the sites (or bonds) 
do not necessarily behave independently, and therefore (1.7) is usually 
called the FKG-inequality. 

(ii) Van den Berg and Kesten (1984) have obtained an inequality which says 
that the probability that two increasing events occur "disjointly" 
is smaller than the product of the individual probabilities. 

Fisher (1961) applied Harris' method of proving (1.6) to other sufficiently 
regular planar lattices. The idea is that 8 (p,L) > 0 implies, for each site, 
the (a.s.) existence in L of arbitrarily large open circuits surrounding 
that site. But then, by (1.4), there can not be an infinite closed path 
in the dual (for such a path would intersect one of the above circuits which 
is impossible). Hence, noticing that the bonds are closed with probability 
1-p, we may conclude that p > p (L) implies 1-p _f_P„(L ) , which immediately 
yields: 

(1-8) P H(L) + PH<Ld) > 1 , 

of which (1.6) is a special case. 

The above results ((1.4)-(1.6) and (1.8)) are all concerned with bond-percolation 
As to site-percolation, the role of the dual lattice is played by the 
so-called matching lattice, introduced by Sykes and Essam (1964): Consider 
a mosaic (which, roughly speaking, is a planar lattice built up of non-
overlapping polygons which together cover the whole plane;; (so S,T and H 
are examples of mosaics). choose a (possibly empty) subset of polygons and-
draw all diagonals in these polygons. Call the lattice thus obtained L and 
the lattice obtained by drawing all diagonals in the complementary subset 
of polygons L*. L and L* form a so-called matching pair. 
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Remarks: 

(i) If L is the original lattice [which happens by taking the first 
set of polygons empty) then L* is the lattice obtained by drawing 
all diagonals in all polygons. So the matching of the square lattice 
is the lattice in fig. 2 . 

(ii) Triangles have no diagonals, so each triangular lattice is self-matching 

Apparently, L and L* have the same sites, and a configuration on one of 
the lattices induces a configuration on the other. Sykes and Essam showed 
that for site-percolation on a matching pair L, L* the following (again 
intuitively obvious) analog of (1.4) holds. 

(1.9) Each open cluster in L is surrouned by a. closed circuit in L*. 

(And, of course, the same holds with L and L* exchanged). 

Further, for site-percolation the following analog of (1.3) holds: 

(1.10) pH(L) + PH(L*) > 1 . 

In particular, for the triangular lattice T: 

(1.11) pH(T) > ~ . 

Remark 

It can be shown (Fisher (1961)) that each bond-percolation problem on a 
certain graph is equivalent to a site-percolation problem on the so-called 
covering graph, and that the covering graph of a dual pair of planar 
lattices form a matching pair. Given this fact, (1.3) is contained in (1.10). 

Sykes and Essan (1964) made plausible (by analogy with statistical mechanics) 
1 b that in (1.8) and (1.10) equality holds, which yields immediately p = -j for 

bond-percolation on S and site-percolation on T. By using an additional 
relation between bond-percolation on T and on H (so-called star-triangle over 
lapping) they show that for a certain value of p (namely the root of the 
cubic equation l-3p + p = 0) 8{p,T) > 0 is equivalent to 9(l-p,H) > 0. 
But if p (T) + p (H) = 1, this can only happen if p is exactly P„(T). Hence 

H H fl 
p (T) must be the root of the above equation, which appears to be 2 sin {-—> i 
and PR(H) ■= 1 ~'2sin(Y^-). 
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However, their proof of equality in (1.8) and (1.10) was based on 
an assumption (namely that the mean number of clusters per site is, 
as a function of p, always singular at p but nowhere else), which they 
were not able to prove and which is still open (see Grimmett (1981) 
and Kesten (1982, ch. 9)). 

As to the conjectured equality in (1.6), (1.8), (1.10) and (1.11), 
mathematically speaking, not much progress was made between 1964 (the 
year of publication of Sykes' and Essam'swork) and the late seventies. 
Independently, Russo (1978) and Seymour and Welsh (1978) put new life 
into the subject. They considered so-called sponge-crossing probabilities: 
define, for a 2-dimensional lattice of which the sites are in Z , the 
"sponge" T(m,n) as the subgraph of which all sites and bonds are in the 
rectangular region 0 <_ x <_ n, 0 <_ y <̂  m. By a left-right crossing of T(m,n) 
we mean a path inside T{m,n) from its lift to its right edge. 

Define: 

(1-12) P(m,n,p) = P [there exists an open left-right crossing of T(m,n)]. 

In addition to p define two other critical probabilities: 

(1-13) P^ = inf{p: limsup P(n,n,p) > 0} , 

and 

£1.14) P T = inf{p: E(|w|) « »} , 

where E(|w|) is the expected size of the open cluster W 
belonging to a specified site, say 0. It follows immediately 
that p < p 

The Russo-Seymour-Welsh (RSW) theorem states the following relations between 
the three critical probabilities: For site percolation on a matching pair 
of sufficiently "nice" lattices L and L*: 

(1-15) pT(L) = ps(L) , 

PH<L> + PT(L*) = 1, 

and the same with L and L* exchanged. 

The analog for bond-percolation on a sufficiently nice pair of dual 
planar lattices is: 



(1.16) p (TO = P CD 

P H ( D + P T(L ) - 1 < 

and, again, the same with L and L exchanged. 

We shall give a rough outline of Russo's proof of (1.15) with L being 

the square lattice. The more general result can be proved analogously. 

First Russo proves that, if p > P^S) , Urn P(n,n,p) « 1 which, by using 
(1.10), is not very difficult. The most technical part is to show that 
the latter also implies lim P(n,3n,p) = 1- Once we have this result it 
is fairly easy that fSTeach a £ W* {0} the probability of an open 
circuit in the annulus A (3 Da,3 n + 1a) tends to 1 if tt+- (A(k,l) is the part 
of the plane where both coordinates have absolute value between k and 1 ) . 
This is illustrated by figure 3 and the following observations: 

f|9,3. 
n+1 

The annulus A(3 a,3 ' a ) 
containing a circuit 
Which consists of parts 
of: 
a Dath from LU t o RÜ 
it », i y UR , , AR 
, | , , M M , , M 

A I j , UL. 

To have an open circuit in above-mentioned annulus it is sufficient 

to havei inside the annulusJ an open path from LU to RU below the inner 

square, from UR to AR right from the inner square etc. By the FKG-inequality 

(1.7) the probability of this is larger than the product of the individual 

probabilities which is P (2.3 a,6-3 a,pi which tends to 1 if n-*"5 (by the 

previous step in Russo's proof). From this it can be proved that the expected 

size of a closed cluster in S* is finite, as follows: Define 

'■ (a) = sup{P tthore is no open L-circuit in the annulus A(3 a, 3 a'] : n £ II }. 

It is clear, by (1.9), that if an open L-circuit exists in A(3 a,3 a) 

for some i < n, then there cannot be a closed path in L* from 0 = (0,0) to 

any site outside the outer edge of the last annulus, A(3 a,3 a ) . It is 

also clear that the expected number of sites in A (3 a,3 a) which are in 

the closed L*-cluster belonging to 0 is at most P [3 closed L*-path from 0 

to the outer edge of A(3 a,3 a)] multiplied by the number of sites in 

A(3 a,3 ' a ) , which is at most >(a) n . 4 . 9 n a", n >_ 0. So the expected 

size of the closed L*-cluster belonging to 0 is at most: (the number of sites 

in the region |x| < 3a, \y\ < 3a) + 36 a I (9.X(a)) , which holds for 
~ ~ "" n=l^ 1 

each a £ JM^{0}. By taking a such that X(a) < jr (which is possible, because 
X(a) + 0 if a + " ) , the above series converges, so the expected L*-cluster 
belonging to 0 is finite and, consequently, l-p ^ p ( L+). Apparently, 
p > P H(L) implies l-p < p T ( L * ) . Hence p^ (L) + p ^ L * ) > 1. The other part, 
i.e. P H ( L ) + p T<L*) <_ i i s easier. One way is to use a theorem of Hammersley 
(1958) which yields (as remarked in Van den Berg (1981)) that finite expected 
cluster size implies that the P ^ p ) , n £ w (see (1.1)) decrease exponentially 
so that the relevant probabilities can be sufficiently estimated. With a 
small amount of effort the above proofs also yield the result p = p . 

By the RSW theorem ( (1 . 1 5) , (1 . 16)), Sykes' and Essam's conjecture 

(p (L) + P„(L*) = 1 for site percolation, 

percolation) would be true if and only if 

( p
H
( L ) + P.,'1-*1 = 1 f o r s i t e percolation, and p (L) + p (Ld) = 1 for bond 

(1.17) P H - P™ 

That this is indeed the case has been proved by Kesten (1980) for bond 

percolation on the square lattice. In his article Kesten shows that, for 
P < ~2' l i m P(n,n,p) = 0 which yields, by definition of P (and reminding 

?S - P T _̂ p „ ) i by (1.16) and by selfduality of S the desired result 
P H = P T = Pr~ = ~2' H i s P r o o f ^ s roughly as follows. 



Suppose p < —. Then, given the event that there exists an open left-right 
crossing of T(n,n),it is, if n is large, rather likely that there are 
many so-called pivotal bonds. (In this context a bond is called pivotal 
(or critical) i-f there is an open left-aright crossing which contains 
the bond, but no open left-right crossing which does not contain this 
bond). More precisely this means that: 

(1.18) there exists an n > 0 such that for each k the (conditional) 
probability that there are at least k pivotal bonds (with 
respect to the event that there exists an open lef t-right 
crossing of T(n,n)) is larger than a if n is sufficiently large. 

The proof of this is rather technical. 

Further, given the events that there exists an open left-right crossing 
and that there are at least k pivotal bonds, the conditional probability 
that there is still an open left-right crossing if the open bonds 
independently remain open with probability p and are closed with probability 
l-p~ is, clearly, at most p_, So the conditional probability that, after 
the second stage (keeping open bonds open with probability p,) there exists 
an open left-right crossing of T(n,n) given such a crossing exists after 
the first stage (making bonds open with probability p, closed with 
probability l-p)is, for each k, at most 1-p [there are at least k 
pivotal bonds] + P [there are at least k pivotal bonds], p , which, by 
virtue of (1.18), can be put smaller than 1-Ot by taking n sufficiently large 
and fitting k. Summarizing we get (by choosing 6 between 1-a and 1, and 
remarking that first making bonds open with probability p and subsequently 
keeping them open with probability p_, gives, statistically the same 
result as making them open with probability p p„): 

(1.19) : 3 £ < 1 Vp. <_ j yp„ < 1 3 N Vn > N 

p (n,n»plP ) < 0 P (nrn,p^1 . 

Now suppose p < —. Of course, for each m 6 M there exists a p„ < 1 such 
that p < — p . Repeated application of (1.18) then gives thatp (n,n,p) < £ 
for p sufficiently large. This holds for each m, so lim p(n,n,p) = 0. 

Russo (1981) applied Kesten's arguments to prove P„(L) + p (L*) = 1 
(for site percolation) and PgttO + PR(L ) = 1 (for bond percolation) 
more generally. Wierman completed Sykes' and Essam1s "proof" that the 
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critical probabilities for bond percolation on the triangular and hexagonal 
lattices are 2 sin CTJT) and 1-2sin (TTT) respectively. 

Summarizing we have, for site percolation on a matching pair of 
"sufficiently nice" lattices L and L*: 

(1.20) P[](L) + PH(L*> = I» 

and for a daal pair of sufficiently nice planar lattices: 

V 
In particular, for bond percolation on S and site percolation on T 

f 1.22) p = — . - H 2 

Further,for bond percolation on T and H: 

And for all the 

The key in the proof of (1.20) and (1.21) is that it is impossible, except 
for one value of p, that the sequence P(n,n,p), n = 1,2, ...r is bounded 
away from 0 and 1, Russo (1982) discovered a more general phenomenon which 
he called "approximate zero-one lav/" and which gives an alternative proof 
of (1.20) and (1.21). 

Sykes and Essam (1964) also considered some 2- and 3-parameter problems. 
For bond-percolation on Sf with horizontal bonds open with probability p 
and vertical bonds open with probability p 0 they obtained {making the 
same kind of assumption as in the 1-parameter case) that the critical 
region is given by the equation 

and for the 3-parameter bond problem on T; 



(1.26) px ■+ p 2 + p 3 - pj p 2 p 3 = i. 

An exact proof of (1.25) has been given by Kesten (1982). (See also 

Tibi (1984) who gives an alternative proof based on a multi-parameter 

version of Russo's approximate 0-1 law) . Kesten also proved (1.26) under 

the assumption p. = p„. 

1.4. Some of the main prob1ems in actual research 

a) Estimation of critical probabilities of other lattices 

There seems not be to much hope that other interesting critical probabilities 
than those mentioned in § 1.3 can be exactly calculated, and it even appears 
to be difficult to find reasonably sharp rigorous estimates. A problem 
which often occurs in this respect is to show that the critical probability 
of a certain subgraph is strictly larger than that of the total graph. 
For instance, consider site percolation on the square lattice S. By (1.21) 
p (S) + p (S*) a 1. But S is a -subgraph of S* so we would expect p (S) > p (S*) 
and hence PW(S) > —. This special case has been proved by Higuchi (1982) . 
Kesten (19G2, ch. 10) proves a more general result but many cases are still 

. open. As to Higuchi's result, this has recently been improved by Tóth (1984) 
who showed p (S) > 0,502 (by elegant combinatorial arguments), but this is 
still far from the value 0.59 ... expected by numerical extrapolation methods 
and simulation results. For site percolation on the cubic lattice Camnanino 
and Russo (1984) have recently proved p < — . 

b. Smoothness properties and power estimates 

For many functions occuring in 2-dimensional percolation smooth behaviour 
outside p has been proved (see, e.g. Russo (1978), Gritnmett (1981), 
Kesten (1982, ch. 9)). However, for lattices of higher dimension almost 
nothing has been proved rigorously and for 2-dimensional lattices the 
behaviour at and near p is one of the most interesting problems at the 
moment. For many functions, for instance 9(p), it is believed that they 
behave near p as a power of p~p and that the exponents depend on the 
dimension but not on the details of the lattice. Kesten (1981, 1982, ch. 8) 
has shown that several functions are indeed bounded between two powers, 
but in all the cases there is a large difference between the exponent in 
the upper and the. one in the lower bound . Some improvements have been made 
by Aizenman and Newman (1984) and Van den Berg and Kesten (1984). 

c) The number of infinite open clusters 

For many 2-dimensional lattices it was already observed by Harris (1960) 
and Fisher (1961), that above p there exists exactly one infinite infinite 
open cluster. For higher dimensions this is an open problem, though it 

is, e.g. true for bond percolation on Z with p > — (Kesten). Newman and 
Schulman (1981) show for a class of periodic lattices imbedded in Z J 

that, for each p, the number of infinite clusters is, with probability 
one, 0, 1 or =». Van den Berg and Keane (1934) show a relationship between 
the number of infinite clusters and the continuity of the percolation 

probability function. 

d) Percolation in three and higher dimensions 

In fact this has already been mentioned among the problems in (a)-(c), 

but we prefer to mention it separately to accentuate that complete new 

tools are required. Many proofs of 2-dimensional percolation are based on 

the fact that certain paths necessarily intersect, which is no longer the 

case in higher dimensions. Related to this is the concept of duality which 

is not clear in higher dimensions. Aizenman, Chayes, Chayes , Chayes, Fröhlich 

have studied random surfaces which may lead to more insight* 

1.5. First-Dassage percolation 

We will only make a few remarks on first-passage percolation, because only 
one article ±n this thesis is concerned with first-passage percolation 
and only deals with a very special problem which can be explained without 
further knowledge of the subject. 

In example 2 of § 1.1 it is shown that percolation can be used to model 
the spread of a fluid through a porous medium. However, the model describes 
where the fluid can flow but not how much time it takes. In 1965 Hammersley 
and Welsh introduced the following model which does involve time: 

Consider a graph G. To each bond b of G a non-negative random variable e 
(called the time-coordinate of b) is associated which represents the time 
needed for a particle to travel along b from on of its endpoints to the 
other. Generally it is assumed that the e ' s are independent and have the 
same distribution. The travel time of a path is the sum of the time coordinates 
of the individual bonds in the path. For each pair of sites s , s , the 
shortest travel time from s to s , denoted by t (s , s n ) is defined as the 
infinum of the travel times of all paths from s. to s_. Most of the results 
have been stated for the square lattice but also hold for many other 



2-dimensional lattices 

The main result of Hammersley and Welsh (1965) is that, it the time 

coordinates have finite mean, i~^i " -:- y in probability, where 

. - v.\t I 10,0) , In.n)) ] y . inf 

The result (the proof of which uses the observation that the passage time 
processrs subadditive) was strengthened by Kingman (1968) who proved by his 
subadditive ergodic theorem that a. s. convergence and convergence in L, hold, and 
refined by several other people (see e.g. Cox and Durrett (1981) and Smyths 
and Bierman (1978)). As co recent results and main problems see e.g. 
Grimmett and Kesten (1982) and Kesten (1984). 
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'1, olior t ■'■•ornni'-.'ii t o;i '-he ■-jrt i c l o s 

A. Per col-a I. i ''T i theory on pa i rs of matching lattices (1981) 

The intention of "Percolation theory on pairs of matching lattices" (1981) 
was to show that Sykes' and Essam's assumption about the singularity of k 
could be replaced by the assumption that the expected cluster size is finite 
for p < P . This implies the required result without using the matching 
relation (2). However, when I wrote this paper I was not aware of the 
results of Russo, Seymour and Welsh (see pp. 9-11 in this thesis). Because 
of this, and Kesten's result {see pp. 11-12), the paper missed its main 
purpose. Yet, some parts of it are of interest. In the first place it 

clearly shows the strength of Hammersley's (1957) theorem P < F , 
nm n 

which has received less attention in the literature than it deserves. 
Further, the example of a fully triangulated planar graph of which the 
critical probability is 1 , shows the importance of periodicity. 

The estimate P ^ 0.5925 for site percolation on the square lattice 

coincides with most of the approximations which have appeared later in 
the literature. 

B. A note on percolation theory (1982) 

In this article we pose the question whether for each graph G and each 
p 5* P„(G) there exists a subgraph of G of which the critical probability 
equals p . It is shown that this is true if P { there exists exactly 
one infinite open cluster } = 1 . This follows from the observation that 
if there is (a.s) exactly are infinite open cluster, the P of this 
cluster is (a.s. ) equal to P (G)/p. This observation is also used in 
paper D in this thesis, and recently Georgii (1984) used it to describe the 
characteristics of infinite open clusters near the percolation threshold. 

Grimmett (1983 ) gives, for bond percolation on the square lattice, a more 
constructive answer to the question raised above. 

'1.' „ .', '-Q-.;r ••■-.:•■.- r i ~i i; i !_-= X -"- I: o ■_; co:-, je ei: u r e of J . H . Ha:r:nerslT--y a n d P. J . A . W e l s h 
concerning first-passage percolation (1983) 

In one of their introductory articles on first-passage percolation on the 
square lattice Hammersley and Welsh conjectured that the expected cylinder 
time from (o,o) to (n,o) is increasing in n . Our paper shows a 
counterexample. The cylinder condition plays a crucial role in this 
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counterexample and we think the conjecture is true if we drop this condition. 

M, Keanc- and the author have solved several analogous problems for simpler 

graphs (including a problem of Joshi (1978) ). 

D, (With M« Keane) On the continuity of the percolation probability 
function (1984) 

Consider percolation on a graph G and let, for a certain site s , 
9 (p) denote the probability that s belongs to an infinite open cluster. 
It is not difficult to show that always 6 (p ) - 6 (p). An important 

problem is under which conditions also 6(P ) = 9 'P). Our paper makes 
a connection with another problem, namely the problem of how many and 
what kind of infinite open clusters occur. We prove that 8{p) - 6(p ) = 
P { s belongs to an infinite open cluster of which the cri tical probability 

equals 1 } . Further, as observed in article E, if p > P U and 
P { there is exactly one infinite open cluster ) = 1 , then the critical 

probability of this infinite cluster is (a.s) equal to P / which is 
H p 

strictly smaller than 1 , and hence 9(P ) = 9(P). 

indeed a unique infinite open cluster (as has been proved by Kesten), so 
that in these cases S is continuous in the interval [$#l] • (For 2-
dimensional percolation much more is known (see Russo (1978)). An 
interesting problem is whether our result can be extended to multi-parameter 
percolation„ For instance, if a part of the bonds (or sites) is open with 
probability P , and the others are open with probability P , is it always 
true that 8 is continuous at (P ,P ) whenever 6 > 0 in an environment 
of (P ,P ) and P { there is an unique infinite open cluster } = 1 ? 

2 P1, P2 

E. Disproof of the con jectured suhr- ::p-..i .:~r. t ia li by of certain functions in 
percolation theory (1984) 

As observed in article A, Hammersley's result P X F is important 
run n 

because it implies (for a large class of graphs) that if the expected size 
of the open cluster containing a specified site is finite, P is 

n 

exponentially bounded from above. (See also Aizenman and Newman (1983) 

and corollary (3.18) in article P ) , 

Our paper shows a counterexample,, We do not know whether the conjecture is 

true for homogenous percolation models. 
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F. (With H. Kesten) Inequalities with applications to percolation and 
reliability 

An important "notion" of this paper is SNBÜ (Strongly New Better than used). 
In reliability theory this refers mostly to random life lengths. We show 
that it is also interesting to interpret the SMBU property in terms of random 
outputs of certain products. Roughly speaking, consider a certain device 
producing n items, the outputs of which are represented by the random 
variables X,....,X . 

Moreover, each individual in a group of persons has a list of wishes (each 

wish being of the form "I want at least a quantity W of the first item, 
W of the second item,.... W of the n item") and is satisfied if at 

I n 
least one of his wishes is fulfilled. 

Definition (1.1) is equivalent to saying that the probability distribution 
Of the output vector (X ,...,X ) is SMBU if and only if the group as a 
whole is always (i.e. for arbitrary numbers of individuals and for all lists 
of wishes of the form mentioned above) better off (i.e. has a larger proba
bility that each individual can be satisfied) if all individuals receive 
an independent copy of the device of their own but are not allowed to exchange 
items with each other, rather than if there is only one device, the output 
of which is distributed among the individuals in such a way that as many 
as possible are satisfied. 

In these terms problem 1.11 in our paper is equivalent to the following 
question: is the composition of independent SNBU devices again SMBU? 
This problem is, in fact, more general than conjecture 3.9 (which, however, 
is interesting in itself; see paper G ) . Theorem 1.6 (iii) states that 
the answer to this question is affirmative if each of the devices produces 
only one type of item. We also have an (unpublished) proof for the case 
that at most one device produces more types of item. The binary case of 
theorem 1.6 (iii) (i.e. the case that each device produces only one type 
of item and its output is 0 or 1) is treated in section 3 and interesting 
applications to percolation theory are shown. Remark 3.5 (b) shows the 
connection with theorem 1.6 (i) of Campamno and Russo (1984). It appears 
that this theorem has been obtained earlier, see e.g. McDiarmid (1980), 
who speaks of the "clutter theorem", and Hammersley (1961). 



G.(With U. Fiebic) On a combinatorial conjecture concerning disjoint 
occurrence of events 

We would like to make some additional remarks concerning theD-operation 
and conjecture (2.6). 

a) Consider conjecture (2.6).The condition that// is a product measure is 
crucial, i.e., if this condition does not hold, then (2.7) is false(as is 
easy to shew). This is even so if we restrict ourselves in (2.7) to monotone 
events. 

b) The following very simple case shows in several respects hovj mislead] ng 
intuition can be. 
Let 

(1) Q « {0,1} . 

(2) A ■ [0+] u [*0], 

(3) B - [ 0 * ] u [ * 1 ] i 

and 

(4) n ■=,,, x „ 2 , 

where 
," and (i are probability measures on Q . 

i) As remarked by Ahlswede {see p. G19), the probability 
that two given events occur disjointly does not always increase by splitting 
a coordinate (by "increase"we mean"strictly increase or remain unchanged"). 
The easiest counterexample follows from (l)-(4) above, where we have 

(5) A * = [0* *] u [*0 *] , 

(6) *B = [ 0 * * ] u [-¥--¥- l] . 

Note that the cylinders in the r.h.s. of (2),(3),(5) and (6) are exactly 
the maximal cylinders of A,B,A* and ̂ B respectively. Hence (by lemma 3.2.Ü) 

(7) ADB = ( [o*] n [ * i ] ) u ( [ + o ] n [0* j ) = [oi]-u [OG] = [ O * ] . 

(8) A*D*B = ( .[o**] n [* *i ] ) u( [* 0 * ] n [ 0 * * ] )u ( [ * 0 * ] Q [+# 1]) = 

- N i] u [o o *] u l * o i ] . 

which does not contain the element (0,1,0). 

- 2 1 -

Hence, i f fi £0] - 1, " (0) > 0 and p ( 1) > 0, 

t hen 

(9) / ( (AQB) = 1, 

w h i l e 

(10) * ( ; - + D * b ) = ,j ([0 * * 1 \ [0 1 0 I) < 1. 

ii) One may think (because of lemma 3 . 2 , i ) that for all even ts D,E,F 

(11) D D I E G F ) = 1 C n C' fl C " I C,C' and C" are mutually perpendicular 
cylinders of D,E and F respectively! ' 

However, this would imply that the D-operation is associative which is 
not true as we have the following counterexample. 

ïii) Take A,B and Q as in (1) - (3). 
Clearly, 

(12) A O (BDB) = A D [0 l| = 0 , 

while 

(13) (ADB) Q B = [0*]Q ([0 *] u [* l]) * [0 l] . 

Hence the Q -operation is not associative. 

iv)For O = I 0,1I and A, ,B, , ... ,A ,B, increasing subsets of fi 1 ' 1 1 k k 
the following holds(see(3.6) in article F ) : 

(14) it (AjQ Bj u A2D B2 u ... u ^ D B ^ 
${fi x it ) (A x B. u A_ x B-u - ■ • UA x B ) , 

where p is a product probability measure onfl . 

We shall now show that (14) is not true for arbitrary events. 
Consider (1) - (4) . Vie have 

(15) A D D u fl OB = A u B = Q , 

while 

(16) Axfl u 12x B = (flxft) \ [1 1 1 p) , 

Hence, the probability of the l.h.s. of (IS)equals 1 and (if /J and u 
are non-trivial) the probability of the l.h.s. of (16) is strictly small 
than 1 . 
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An important magnitude in percolation theory is the critical probability, which is defined as the 
supremum of those values of the occupation-probability/?, for which only finite clusters occur. In 
1964 Sykes and Essam obtained the relation P["{L ) + P["{L *) = 1, whe re / , and L * are a pair of 
matching lattices and P[.' denotes the critical probability (site-case]. The proof was not complete, 
but based on certain assumptions about the mean number of clusters. Though Sykes and Essam 
suggested that the above relation holds for all mosaics (i.e., multiply-connected planar graphs) and 
decorated mosaics, we have constructed a counterexample. Subsequently, for a more restricted 
class of graphs, an alternative derivation of the Sykes-Essam relation is given, this time based on 
the usual assumption that below the critical probability the mean cluster size is finite. The latter 
assumption is also used to prove for some nontrivial subgraphs of the simple quadratic lattice S, 
that their critical probability is equal to P^[S). Finally, for a certain class oflattices, sequences of 
numbers are constructed, which converge to the critical probability In the case of the site process 
on S, the number with highest index we found, is 0.5925 ± 0.0002, which seems to be a reasonable 
estimate of P<?{S). 

PACS numbers- 05.50. + q, O2.50.Cw 

1. INTRODUCTION 

Percolation problems arise in many branches of science 
and engineering. Concerning physics, the most interesting 
example is the dilute fenomagnet, where the concentration 
of magnetic particles is p and the concentration of nonmag
netic impurites is 1 — p. Below a certain value of p, the so-
called critical concentration Pc, there are only finite clusters 
of magnetic panicles and therefore no spontaneous magne
tism occurs at any temperature. On the othei hand, 'rfp > Pc, 
spontaneous magnetism will occur below a certain 
temperature. 

Generally, percolation can be described mathematical
ly as follows. A graph G consists of abstract points, called 
vertices (or sites or atoms) and connections between some of 
these points, called bonds. These bonds may be oriented, in 
which case they connect in only one direction, or nonorient-
ed. In this paper we only deal with nonoriented graphs, i.e,, 
graphs of which all bonds are nonoriented. 

With the graph G we now relate a so-called random 
coloring as follows: Each vertex of G has, independently of 
all other vertices, a fixed probability p of being colored black, 
and q = 1 — p of being colored white. For such a realization 
of this random coloring we distinguish two section-graphs of 
G, one, called Gb, containing all black, and the other, G„, 
containing all white vertices of G. 

Percolation theory studies the properties of Gb and Gw. 
Especially, in the case that G is infinite, we are interested in 
the critical value Pt ofp, above which infinite black clusters 
appear. 

A related model is that in which the bonds of G, instead 
of the vertices, are randomly colored. This model and the 
model above are known as the bond- and the site-percolation 
process respectively. It appears that the site process is the 
more general one, because the bond process on a graph G is, 
in a certain sense, equivalent with the site process on the 

covering graph Gc of G. Therefore, quite often certain re
sults are proved for the site- and then translated to the bond-
case. 

In 1964 Sykes and Essam' published some interesting 
results for two-dimensional percolation processes. We shall 
use much of their terminology. A more general introduction 
to the subject is to be found in, e.g., Refs. 2 and 3. 

Remark'- In this article we shall only deal with lattices 
which are mosaics or decorated mosaics. 

One of the main results of Sykes and Essam is the 
relation 

where L and L * a r e a pair of matching lattices and/5!.1 ' de
notes the critical probability for the site-percoiation process. 
This relation follows from the fact that the mean number of 
black L clusters per vertex differs from the mean number of 
white L * clusters per vertex by a finite polynomial tf> (p) 
(where/> is, as it will be throughout this article, the probabil
ity of a given vertex being black), in formula: 

k(p-JL) = k{\ -p;L*) + <p(p). (2) 

Now Sykes and Essam derive (1) immediately from (2) 
by the assumption (which has not been proved) that in the 
domain 0</>< 1 the function k is singular at P [s) and nowhere 
else. 

Next they remark that the triangular lattice 7*is self-
matching, which implies, by (1), that: 

Pt:>(T1 = \, (3) 

and that (3) more generally holds for any lattice of which all 
faces are triangular. However, it is easy to construct such a 
lattice for which (3) is not true, as follows. 

Figure 1(a) shows a sequence of triangles AQ,AUA2,—, 
each of which (except A0) has six vertices on its perimeter, 
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F I G . 1(a) Lattice, consisting of a sequence of nested triangles Atl, A „A-.,-. 
(b) The lattice obtained by tnangulation of the lattice in (a) It appears that 
the critical probability (site-case) of this lattice is, in contrast with the 
Sykes-Essam relation, not J but 1. 

one at each corner and one at the center of each of its edges. 
The fully triangulated graph G in Fig. 1(b) is obtained 

by drawing a bond in every non triangular face of Fig. 1(a). 
Considering the site-percolation process on G, we note 

that, if/> < I; f o r e a c h / > 0 the probability of the event thai all 
six vertices of A, are white is g 6 > 0. Further, we observe that 
any pair of the triangles with odd indices Ax,A3,Ait—, has no 
common vertex, hence the number of white vertices on the 
perimeter of one of these triangles is independent of that on 
the others. But then it follows from a well-known law of 
probability theory that there is with probability 1 at least one 
such^,. of which all six vertices are white. It is obvious that 
such a triangle blocks all possible black walks starting in one 
of the corners of A 0. This is the case for every p < 1, so we 
may conclude that for this graph, which obviously is a mosa
ic, P{

c" — 1, so that (3) and therefore (1) does not hold. 

In Sec. 2 relation (1) will be derived for a restricted class 
of lattices in away that is totally different from that ofSykes 
and Essam. The proof is based on the following assumption: 

Assumption I: Ifp <P'C') then the mean number of ver
tices that can be reached from a given vertex via black walks 
(i.e., the mean size of black clusters) is finite. 

Though not proved, this assumption is not unusual. It is 
even the main idea behind the method of estimating the criti
cal probability by means of cluster-size expansion (see 
Domb, Sykes4). 
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It will appear that, besides (1), the assumption has other 
interesting consequences. In Sec. 3, e.g., we shall use it to 
prove for a certain class of subgraphs of the simple quadratic 
lattice S, that their critical probability is the same as for S 
itself. In Sec. 4 assumption 1, combined with a theorem of 
Kammcrsley, leads to another mathematical approach of a 
method to estimate the critical probability for certain lat
tices. This method is rather similar to the renormalization 
group method used by Reynolds et a/.5,6 

2. AN ALTERNATIVE DERIVATION OF: 
P?(L) + Pf(L ■) = 1. 

We shall first discuss some definitions and arguments 
which lead to Lemma 1. Then we are ready to prove (1) for 
certain lattices. 

Let u be a vertex of some graph G. 
N"(v) denotes the set of all vertices of G that can be 

reached from v in n or fewer steps. 
Further we define: 

Bn{v) = N"(u)\Nn- l(y). 

We shall call B "(a) the sphere with center u and radius 
n. Now consider the site-percolation process on G of which 
every vertex is colored black with probability p and white 
with probability 1 —p. Let S(p;v) be the mean number of 
vertices that can be reached from u by black walks, and de
note by S„( p;v) the mean number of such vertices which lie 
in i?"(f), rt = 0,1,2,---. It is clear that 

S(P;V)= £ SJp'o). (4) 

Further let Pn( p\v) be the probability of the event that 
at least one vertex outside N"{v) can be reached from v by a 
black walk. 

Every walk from v to a vertex outside N"(v) obviously 
visits some vertex of B "(v) and the probability that at least 
one vertex of the latter kind can be reached from u by a black 
walk is not larger than S„(p;v), so that 

P„(p;v)<S„(p;v)i (5) 

this, combined with (4) and assumption 1 gives: 
Lemma 1: Up <_P{", then 2-*=0Pn(p;v) < oo. 
For reasons of simplicity we shall first study as an ex

ample the site-process on the simple quadratic lattice S, for 
which with the help of Lemma 1 we shall prove (1). After
wards the results will be generalized. Because for this lattice 
the functions S„, S, and Pn do not depend on u, we shall omit 
this parameter. 

For/? < P [ S \ S ) , it follows, by Lemma 1, that the series 
^■P„(P) converges and so, for some. i i -N and positive real 
number r: 

£ P„(p) = r<l. (6) 

Denote by Wm , W, and C the events that the vertex 
0 = (0,0) belongs to an infinite white S * cluster, that all ver
tices (0,0), (0, —1),.,.,(0, — M) are white, and that the vertex 
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0 is black or surrounded by a black S circuit, respectively. 
From the matching-propcrty (see Appendix 1 of Ref. 1 

for a proof) it follows that either Wv or C occurs. We also 
note the following: If all vertices (0,0), (0, - I ),...,<0, - M) 
arc while, then the event Ccan only occur ifthere is a black S 
walk from a vertex on the Y axis below (0, — M) to a vertex 
on the Kaxis above 0. Further, for each posit ives, all vertices 
on the positive Y axis lie outside N "((0, - /;)). so that the 
probability of the event that at least one of these vertices can 
be reached from (0, — n) by a black walk is smaller than 
P„{p). Therefore, if for events £ , and E2 Prj Ex\Bt\ denotes 
the conditional probability of Eu given E-,, it follows for 
p<Pl?[S): 

P r | C | W | < J Pn(p) = r<l, (7) 

and hence 

Pri H', | > P r j W\ Prj W', \W] 

= / " ! ( l - P r | C j l H ) > , " ~ ' ( l - ' - ) > 0 . (3) 

So we have proved that, forp </) |_! |(5), there is a positive 
probability that a given vertex belongs to an infinite white S * 
cluster. In other words, ifp < P[ï'{S), then 1 -p>P[s\S*). 
This immediately yields, by takingp = P[-l[S) - €, with e 
positive and arbitrarily small: 

/>W(5) + i»iJ ,{5*}<l. (9) 

Fisher,7 generalizing Harris ' method,* proved that for a cer
tain class of lattices, to which S belongs, P[b}(L ) 
+ P[b\L °)>l, where LD is the dual lattice of L a n d i ^ 6 1 

denotes the critical probability for the bond-percolation pro
cess. This result can be extended to the site-case, so that we 
have, for i ' , 

P^[S) + P[:\S")>\, (io) 

which, combined with (9), yields the ' .'anted relation: 

P\;\S) + PI:\S")= 1. (11) 

When we call two vertices u, and i^eq i .valent if, foralln and 
p, S„(p;ol)=Sn(p;u2), then we can g< neralize the above re
sult as follows: 

Theorem 1: Let L be a lattice wh h has only a finite 
number of classes ofequivalent vertici and which possesses 
a pair of orthogonal symmetry-axes. ien 

P?(L) + P?(L*)=L 

The proof of Theorem 1 is simil; o that of the special 
case of the simple quadratic lattice (s ntso Fisher7). 

3. SOME NONTRiVIAL SECTION-G 
CRITICAL PROBABILITY f*?}($). 

In this section it will first be she 
= P'"(5), where S([ir) denotes the t 

tex-set [ (« ,m) |n , /n>0] . Analogously 
quadrant of S* with the same vertex 

From the matching-property (st 
the vertex 0 = (0,0) belongs to an inl 
S '{{TT) if and only if there is no black v 
vertex («,0) to some vertex {Q,m),n,m 

^PHSOFSWITH 

t h a t i ^ c » ) 
jrant of .?with ver-
■ IJT) will denote the 
as S (W). 
■f. 1) it follows that 
white cluster of 
n 5 ([IT) from some 
't is trivial that the 

probability oTthe latter event is smaller than the probability 
of the corresponding event for S, which, in the case that 
p <P[''(S), can be proved (in a similar way as in Sec. 2) to be 
smaller than 1. So we have that, forp <P[!)(S) (which, by 
(11), is equivalent with 1 ~p > P';'(S *), 
1 -p>P':'{S"(\,Tr)). Hence it follows that 

P?(S*(2ir))<P(:XS*). (12) 
On the other hand, becauseS *(\rr) is a subgraph of.S *,it 

is clear that the critical probability of the first cannot be 
smaller than that of the second; hence 

P?{S*(\ir)) = P<;XS*). (13) 

The analog off 13) for 5 is obtained by changing the roles 
of S a n d S *. 

In the same way we can prove the following theorem: 
Theorem 2: Let «be a positive real number and let S' be 

a connected subgraph of S containing the section-graph of S 
with vertex-set 

\(n,m)\0<n;0<m<iun}, 

then 

P?(S') = P?(S)-
Remark: It is noted that similar results hold for many 

other lattices, particularly for the triangular and the honey
comb lattice. 

4. ESTIMATES OF THE CRITICAL PROBABILITY 

In this section for a certain class of lattices we shall 
construct sequences of numbers which converge to the criti
cal probability. As in the last two sections, we shall first take 
as an example the simple quadratic lattice S. 

Let K (n) be the so-called "box" with (n + l ) X ( n + 1) 
vertices (see Fig. 2). 

By the upper, the lower, the left, and the right side of 
K(n) we mean the sets \(0,n),(l,n),...,(n,n)\, 
i(0,0),(l,0),...,(rc,0)i, l(0,0),(0,t) (O./i), and 
) (n,0),(n,!), . . . ,(«,«)], respectively. 

4 C -

F I G . 2. The box A'(4) of the 
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FIG 3. Example of a coloring of the box in Fig. 2. In this example the event 
B. and nol W ; occurs. The numbered vertices mark a black S walk from the 

Lelfl„(W /
n) be the event that there is a black (while) S 

walk, entirely lying in K (n), from the lower to the upper side 
of the box. 

Analogously B *( W *) denotes the event thai there is a 
black (white)£ * walk, entirely lying in K (n), from the left to 
the right side. 

Further we define: 

fn{p) = ^\B,};rn{p) = PT[B:\ (14) 

From this definition and the fact that the probability 
that a vertex is white is 1 — p, it follows that 

Pri ^ „ ! - ƒ . 0 -PÏ, P r | W* | = ƒ * ( ! - p ) . (15) 

Because of the matching-property either Bn or W* 
takes pb.ee (see e.g., Fig. 3). Hence, by (14) and (15): 

/ „ ( P ) = ! - ƒ * ( ! - / > ) - ( lb) 

It will be shown thai, forp < P ['\S), the sequenceƒ„ (p) 
tends to zero. Ajialogously, \ip<P[s>{S*\ then ƒ*(/?) tends 
to zero. For this we shall first state a stronger version of 
Lemma 1. 

Consider the site-percolation process on a graph G. Lei 
ti be a vertex of G. Define the following functions [with B "(w) 
as defined in Sec. 2]: E„(p;v)= the mean number of vertices 
in B "(v) that can be reached from v by at least one black walk 
of which all vertices, e7-cept the last one [which, of course, is 
in B "[v)]t are in N ' ~ '(JJ)- Further, 

In the case that G 'a a so-called medium9 the following 
holds: If, for certain n a n d p , F „ ( p ) =A<1, then, for each 
nonnegative integer m and each vertex v. 

Fm{p-s)<X*m/"K (17) 

where [m//i] denotes the integer part of (m/n) and with 
f*m (P',v) as defined in Sec. 2. This theorem, which is due to 
Hammersley, l 0 was formulated and proved by him for the 

bond-case," but il is easily seen that also the above site-
version holds. 

Now if the medium G contains only a finite number of 
classes of equivalent vertices (equivalent used in the same 
sense as in Sec. 2), then it follows from assumption 1 that in 
the case that p is smaller than the critical probability, for 
each vertex v, ~L'"„ _ aEm{p',u) < » . Hence, [because of the 
finite number of equivalence classes) in that case there will be 
some n such that / \ , (p) < 1. Next, application of Hammers-
ley's theorem leads to the following lemma; 

Lemma 2: Up <P'J\G), then there exists n.i (p) < 1, 
such that for all m and all vertices v. 

Pm{p;v)<Am(p). 
Remark: If, in Ham mei sky 's theorem, [m/n] would be 

replaced by [m/n], then Lemma 2 follows trivially from the 
above reasonings (take A. (p) =A l/"J, with .4 as in Hammers-
ley's theorem). The presence of the ( ]-funciion makes only a 
slight change of the proof necessary. 

We are now ready to prove the statement about the 
limiting behavior of/, (p ) ; From the definition it is clear that 
/ „ ( p ) is smaller than the probability of the event that there is 
a black S walk, not necessarily lying entirely in the box K (n), 
from some vertex (J',0) to some vertex (j,n) (0<i,_/<«). Fur
ther, for each i and j , the vertex (_/',/!) lies outside 
N" " ^ ( / . O ^ s o t h a t . f u r p ^ ^ S ) . i t foHowsf romLemma2 
that 

Ltp)< X p~-x(p;<J>o))<(n + W~\p% 08) 

so t h a t / „ ( p ) — 0 for n—*■<*>. 
Of course the same arguments hold for 5 *, i.e , if 

p < / " c % S * ) then, for n-*a>, 

/ : (P)-O. 
But, from (11), p < P lJ 
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FIG, 4 The functi 

1 _ p > p ^ > ( S ) . Hence.by combining (16), (18), and (19), we 
have the following theorem. 

Theorem 3: Denote by f„{p) the probability of the event 
that there is a b lackS walk, which connects the lower and the 
upper side of the box K (n) and which does not leave this box. 
Then, for n~>eo 

j-Jpj-rOJorpKp^S), 
JAp)-\Jorp>P[%S). 

Of course, by symmetry, an analogous theorem holds 
for S • 

Remark-.The substance of this theorem is already men
tioned in earlier papers, e.g., by Reynolds el a/.5 ' ' (who show 
even more, namely that the '"unstable" fixed points of the 
/"„ 's converge to the critical probability), but our proof is new. 
Their theory is based on scaling-arguments, which are very 
interesting but rather heuristic. On the other hand, our ap
proach does not give insight in the theory of critical expo
nents The interested reader is also referred to work by 
Kirkpatrick IJ 

Though Theorem 3 says nothing about the limiting-
behavior of/, ( p) in the case that p — P[!'(S), we do have the 
following theorem: 

Theorem 4: Let r be any real number in the open interval 
(0,1 I and let gH :[0.1]— [0,1] be the inverse function of/ , , 
then: 

x 
FIG. 5(a) The box A'(2) of I 
lattice in (a). 

if 5. (b) Unit-cell of the 

lim*.««i»«CS). 

This theorem follows from Theorem 3 and the fact that 
every/,, ( p ) is continuous (it is a polynomial) and increasing 
inp, while, for each n , / n ( 0 ) = 0 and ƒ „ ( ! ) = I. 

Every polynomialf„ is computable (because for every n 
there is only a finite number of ways in which the vertices of 
B {n) can be colored black and white); hence Theorem 4 in
deed provides sequences of numbers which converge to the 
critical probability. Unfortunately, even for rather small n, it 
takes very much time to calculate /„. For various values of n 
andp , estimates o f / „ (p ) arc made by Monte Carlo simula
tions (see e.g., Fig. 4). These values lead to estimates oign{r). 
Though every number between 0 and 1 is allowed, we made 
the most natural choice and took r — \. 

Linear interpolation in the intervals [p„ , ,p„ 2 ] , where 
Pr, i t ^ O is the largest (smallest)p in Table 1 such that the 
uncertainty region o f / „ (p ) lies entirely below (above) \ (that 
is :p l l 0 > l = 0 . 5 9 1 , p ] : 0 , = 0 . 5 9 3 ; i I M U - 0 592. 
pltoa = 0 . 5 9 3 ) , yields: 

g80(J) = 0.5922 ±0.0003, 
g1 M( i ) = 0.5922 ± 0.0003, (20) 

gU\) = 0-5925 ± 0 . 0 0 0 2 . 

The results (20) give the impression that the last value, 
0,5925 ± 0.0002, is a reasonable estimate for the critical 
probability. This estimate is within the uncertainty region of 
the less precise result of Sykes e/o/.-,'3 who obtained P[.\S} 
= 0.593 ± 0.002, and a little smaller than the estimate of 

Reynolds el a!.'' who found 0.5935 ±o<xuo-
Finally it should be remarked that analogs of Theorems 

3 and 4 hold for many other lattices, specifically for those 

l\{p) 0 590 0.591 0.594 0.595 

0.009 0.009 

0 433 0.4Ó2 0.495 0.527 0 533 0.5(>7 

0.012 0012 0012 0.012 0.012 0.012 

0 405 0.450 0 477 0.526 0.53T 0.584 

0.012 0,012 0.012 0.012 0 0 1 2 
me diagonal in each face of the simple quadratic lattice, 
:, which is isomorphic with the regular triangular 
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which have a pair oforthogonal symmetry-axes and are reg
ularly built up of rectangular unit-cells (see e.g., Fig. 5). In 
these cases we take for K (n) the box consisting of n Xn unit-
cells 

Remarkable cases are those of the lattice in Fig. 5, 
which is the covering-lattice of the simple quadratic lattice, 
and of the triangular lattice T, which is isomorphic with the 
lattice formed by drawing one diagonal in each face of the 
simple quadratic lattice (see Fig 6), 

From the self-matchingness of these lattices and the 
symmetry of their boxes it follows that in these cases fn{p) 
= f*(p\ which, by (16), yields for all n and/?: 

(21) 
AC/O+AO -P)= ]> 

and henci 

(22) /„(i) = l-
But, for these lattices, J is exactly the value of P^[S ], so 

that ƒ„ (p) is constant at the critical probability. 
From (22) it also follows that, for all n 

gJ\) = PAS). (23) 

So if we take r = [ then, for these lattices, Theorem 4 yields 
an exact result. 

Added in proof. In Sec. 4 a theorem of Hammersley is 
used to prove that, for 
P<P[;\S), lim„._„ [n + l)Pn_ ,(/>;(>) = 0 and hence 
' i t tV .^ fiAp) = 0 [see Lemma 2 and (18)]. It is possible to 
derive this result directly, i.e., without using Hammcrsley's 

theorem, namely as follows: Pn{ p;v) (see definition in Sec. 2) 
is obviously decreasing in n. Further, ifp <P^{S), then, by 
Lemma 1 (Sec. 2), ZPa[p;v)<: oo. Hence, ifp < P';'[S ). then, 
with [>i/2] denoting the integer part ot n/2 

Q<nP„ {p\v) < 2 £ Pm ( p;u)~*0, for // — co. 
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The author î  indebted to F. Zijdcrhand. undergraduate 

student of physics, for programming and operating the com
puter, to Professor J. W. Cohen and Dr. O.J. Boxma for mak
ing valuable comments on the text, and to the referee for 
drawing his attention to literature about renormalization 
group methods in percolation theory. 

'M.F. Sykes and J.W Essam, J. Math. Phys 5,1117(1964] 
'J.W. Essam, Phase Transitions and Critical Phenomena, lot 2, edited by 
C. Domb and MS. Green [Academic, New York, 1974), pp. 197-27!) 
'H.L. Frisch and J.M. Hammersley, J. S I .A M 11, 894(1963|, 
JC Domb and M.F. Sykes, Phys Rev. 122, 77(1961) 
' P J Reynolds, W. Klein and H.E Stanley, J. Phys. C 10, I. 167(1977] 
" P J . Reynolds, H.E-Stanley, and W. Klein, J Phys A 11, L 199|1978|. 
' M . E . Fisher, J. Math. Phys. 2, 620(1961| . 
"T.E Har r i s ,P roc ,Cambr idgePh i los .Soc . 56, '3(1960]. 
''A medium is a gr.-it>!i s:<: i ■.I'yiiii"; ill'.- folliwuir; conditions; li'l The number of 
bonds leading Trom any verten is finite. ]ii) Each finite set of vertices con
tains a verten from which a bond leads to a vertex not in thai sel 

'"J M. Hammersley, Ann. Math. Stat. 28, 790 (1957] 
" i n 1957 Hammersley's study or percolation processes was resc inded to 

the bond-case. 
, : S . Kirkpatnck, I W-Condensed Matter, Les Houches. 1978 lectures, edi'ed 

by Balian et at. 
I JMJF. Sykes, D S. Gaunt , and M Glen, J. Phys. A9 ,97 (1976) . 

. A 157 J. Math. Phys.. Vol. 22. N0..1. January 1981 
A 157 

J. Phys. A: Math. Gen. I S (1982) 605-610 . Printed in Great Britain 

A TOite Q>M peircofla&Lffi filneoiry 

J van den Bergt 
Depar tment of Mathematics, University of Utrecht, The Netherlands 

Received 6 May 3 981 

Abstract. In percolation theory the critical probability PJG] of an infinite connected graph 
C is defined as the supremum of those values of the occupation probability for which only 
finite clusters occur. 

An interesting question is the following: is each number between 0 and 1 the critical 
probability of some graph? It will be shown that the answer is positive. 

A remarkable intermediate result is that for an important class of graphs the following 
holds: for each p >PC(G) there exists a subgraph of G with critical probability equal to p. 

1„ Introduction 

Percolation theory, introduced by Broadbent and Hammersley in 1957, has become a 
fascinating field. It has many applications, especially in physics, where it gives insight in 
cooperative phenomena (e.g. spontaneous magnetism in a dilute ferromagnet) but also 
in biology (epidemics in a large orchard), geology and chemistry. Many such examples 
are described in Frisch and Hammersley (1963) and Shante and Kirkpatrick (1971). 

Let G be an infinite non-oriented connected graph of which each vertex is the 
starting point of only a finite number of bonds. To this graph the following random 
mechanism is attached. Each bond is, independently of all other bonds, undammed 
with a fixed probability p and dammed with probability I- p. The terms dammed and 
undammed have been introduced by Broadbent and Hammersley for reasons of 
clearness (they describe the process as water, which is supplied to a given vertex and 
spreads from there through the undammed bonds). However, we prefer to use the 
terminology of Sykes and Essam (1964), and replace the words undammed and 
dammed by black and white respectively. Consequently, a walk is said to be black 
(white) if all its bonds are black (white). Further, the following definitions are 
important. For each vertex v,Pn{p\ v) denotes the probability that there are at least n 
vertices that can be reached from v via black walks. Obviously, Pn(p; v) is decreasing in 
n and hence the limit limn^«,Pn(p; v) exists. This limit is denoted by Pca{p; v). 

The critical probability is defined as follows: 

Pc(v)~sup{p\PUp;v) = 0}. (1)' 

Broadbent and Hammersley, who dealt with the more general case of partially 
oriented and not necessarily connected graphs, proved that if V\ and v2 are two vertices 
such that there exists a walk from v\ tou2 and also a walk vice versa, then Pc{vi) — Pc(vz). 

t Present address: Physics Laboratory T N O , Room 3506, Oude Waalsdorperweg 63, 2597 AK The Hague, 
The Netherlands. 
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Hence, since we consider only connected graphs, in our cases alt vertices of a graph G 
have the same critical probability, which we denote by P^G). 

In another percolation model not the bonds but the vertices are randomly coloured. 
In this so-called site model we can give analogous definitions as for the bond model. 

In general the critical probability for the bond process is not equal to that of the site 
process. Therefore, to make a distinction, we denote them by Plb]{G) and P'^IG) 
respectively. 

It can be shown (Fisher 1961) that the bond-percolation process on a graph G is 
equivalent with the site process on the so-called covering graph GL of C, i.e. 

P[b)(G) = Pl:)(Gc). (2) 

We now turn to the central question of this paper: is any number p ( O ^ p s l ) the 
critical probability of some graph G? It will be shown that this is indeed the case. From 
(2) it follows that it is sufficient to give a proof for the bond model. This proof is based on 
some well known results concerning the bond-percolation process on the square lattice, 
which we shall discuss in § 2. 

2. The bond percolation process on the square lattice 

The square lattice, denoted by S, consists of vertices {in, m )\n, m e Z), which all have 
one bond with each of their four neighbours. 

The so-called dual lattice Sd of S is constructed as follows (see figure 1). Put one point 
in the centre of each face of S. These points {{n +f, m +\)\n, m e Z) form the vertex set 
of S . As we see, this graph Sd is again a square lattice, so that S and its dual are 
isomorphic. (This is generally not the case, e.g. the dual of the triangular lattice is the 
honeycomb lattice.) Therefore S is said to be self-dual. 

Figure 1. S and its dual Sd. 

Each bond of S crosses exactly one bond of Sd so that the bond set of S is in 1-1 
correspondence with that of Sd. So each colouring of the bonds of S induces a colouring 
of the bonds of Sd. 

The following lemma is intuitively obvious. A proof is to be found in Whitney 
(1933). 

Lemma 1. Each finite black cluster of S is surrounded by a white circuit of S . (This 
remains true after changing the terms black-white and/or the terms S-S .) 
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We shall now pay attention to the value of the critical probability Pc '(S) of S. 
Hammersley (1957), using the self-duality of S, proved that e u ^ P'rb'(S)^l~t~L\ 
where v is the so-called connective constant of 5. The lower bound has been impioved 
by Harris (I960), who showed that P'^(S)^ \. Although for a long time there had been 
many indications that in the last expression even equality holds (see e.g. Sykes and 
Essam, 1964), only recently a correct mathematical proof has been given, namely by 
Keslen (1980). 

So we have 

P[h,(S} = i (3) 

It has been proved by Harris (1960) that, for p > Pc (S), almost surely (AS) there 
exists exactly one infinite black cluster. Hence, by (3) we have 

Lemma 2. If p > 2, then (AS) there is exactly one infinite black cluster in S. 

Because this lemma plays an important role in the rest of the paper we let the proof 
(in a slightly different form) follow here. First note that the set of bonds of S is 
countable, When we denote the colour black by the number 1 and white by 0, then we 
can associate each bond b, with a random variable x„ which has the value 1 with 
probability p and the value 0 with probability 1 - p, and such that {xt\i e N} is a set of 
independent random variables. In these terms the event that there exists at least one 
infinite black cluster in S is a tail event of the sequence (#,), i e N (because, for each n, 
the existence of such a cluster does not depend on the colours of the bonds 
60» bu • • ■» bn). Hence, by Kolmogorov's 0-1 law, the probability of this event is either 
0 or 1. Now for p >\ this probability is, by (3), larger than 0 and therefore equal to 1. 

The fact that, for p > \ (AS) not more than one infinite cluster exists can be seen as 
follows. Let V] and v2 belong to the infinite black clusters Cx and C2 respectively. The 
probability of a bond to be white is 1 — p, which is smaller than 2> so that (AS) all white 
clusters in S are finite. 

But then it can be derived from lemma 1 that (AS) each finite set of vertices of Sd is 
surrounded by a black circuit in S, so (AS) there exists a black circuit in S which has both 
vertices v \ and v2 in its interior. It is obvious that this circuit connects C\ and C2, hence 
these clusters are one and the same. 

3. A proof for the interval [2,1] 

In S 2 it has been stated that, for p larger than I, there exists (AS) exactly one infinite 
black cluster in S. It will appear that (AS) the critical probability P[ ' of this cluster is 
equal to i/p. Then, by varying p in the interval (2, 1], we can, for any value in [5, 1), 
'create' a subgraph of S of which the critical probability is equal to that value. 
Subsequently, by a kind of trick, namely multiplication of the bonds of S, this result can 
be extended to the region (0, 1). Next, only the trivial numbers 0 and 1 rest. As to the 
value 1, the easiest example of a graph with this critical probability is the linear chain 
consisting of vertices Vu v2, t'3, ■ • ■ and one bond between any pair [vn} vn + i). (In fact 
this graph can be considered as the section graph of S with vertex set {U, 0)\x e N}.) 
Finally, the tree-like medium in figure 2 with vertex set {vn,mn > 1, m **n !}, contains, 
for each k, the Bethe lattice of order k, so that its critical probability is, for each k, not 
larger than \/k and hence equal to 0. 
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Figure 2. Example of a graph with critical probability 0. 

We shall now prove the s ta tement at the beginning of this section that , for p>\, the 
critical probability of the infinite black cluster is ( A S ) equal to \j p. 

Let p] be a number in the interval {\, 1] and let {bi\i e N} be the set of bonds of S. T o 
this set corresponds a set X = {x,\t Gf*J} of independent random variables, such that 
P r f o = l } = l - P r { j t , = 0} = p , . 

The value 1 (0) of each r andom variable x; corresponds with the state black (white) 
of its corresponding bond b{. Fur ther , let p2 be any number in [0, 1] and let V'= 
{)'i\i e f ^ jbease t of independent r a n d o m variables such that Pr{y, = 1 ) = 1 - Pr{v, = 0} = 
p2 and X and Y are independent sets of random variables. Finally, define Z = 
{z,\zi = x,y,; i e M). 

The black subgraph corresponding to the x, is called B', and the one corresponding 
to the z, is called B". 

By the results in § 2 the following s ta tements hold. 
(i) Because Pi>i, B' contains (AS) exactly one infinite cluster (see lemma 2), which 

we call C. 
(ii) B" is a subgraph of B' and contains ( A S ) no or exactly one infinite cluster. In the 

last case that cluster is a subgraph of C. 
(iii) If p2< \lpu then, for all i, Pr{z, = 1} = piP2<z and hence (AS) B" consists only 

of finite clusters. 
(iv) On the other hand, \i p2>\lp\, then, for all i, Pr{z, =\}>\ and hence (AS) B" 

contains an infinite cluster, which, as stated in Iii), is a subgraph of C. 
Now from the above it follows by definition that, ( A S ) the critical probabili ty of C is 

indeed equal to ï /p i - Hence the class of those subgraphs of S which have critical 
probability yp\ is not empty. Next, by varying /?] in the interval (k, 1], and noting the 
example of a graph with critical probabili ty 1 at the beginning of this section, we obtain 
the following theorem. 

Theorem 1. Let p be a number in the interval [2l 1], T h e n there exists a connected 
subgraph L of the square lattice with critical probabil i ty P'rb) (Z.) - p. 

Remark. If G is a planar lattice, regularly built up of unit cells and possessing a pair of 
orthogonal symmetry axes, then it can be shown (see Fisher 1961), that Pe (G) + 
Pcbl (Gd) s= 1, where G d denotes the dual lattice of G. F rom this, by using the arguments 
in the proof of lemma 2, it can be proved that the following generalisation of that lemma 
holds: if p > P*b) (G) then there exists exactly one infinite black cluster in G. This, in its 
turn leads to a generalisation of theorem 1. 

A note on percolation theory 

Each p 2= P[ ] {G) is the critical probability of some subgraph of G. 
An interesting quest ion is whether this holds for all lattices. 

4. Extension of the result in $ 3 to the interval [0, 1] 

Let S" be the graph obtained by replacing each bond of S by n parallel bonds , n 5= 1 (see 
figure 3) . Fo r each colouring of the bonds of S" a colouring of the bonds of S can be 
defined as follows: each bond of S is coloured black if at least one of the bonds of the 
corresponding n -tuple in S" is black, otherwise it is coloured white. H e n c e , if p is the 
probabili ty that a bond of S" is coloured black, then the probabil i ty of a bond of S to be 
black is 1— (1— p)n. Fur ther , note that there is an infinite black cluster in S if and only if 
there is one in S". From these reasonings it follows that p^P{* {S") if and only if 
1 - ( 1 -p)n ^ i ? c b > (5 ) , which equals \, so that 

P ? ) ( 5 " ) - l - [ l - P c
a , ) ( 5 ) ] 1 / ' , = l - ( è ) 1 / M . (4) 

Figure 3. The lattices3. 

Now we can apply the ideas of § 3 to $", which leads to the following theorem. 

Theorem 2. 

P ? ) { 5 " ) « - 1 - Ö ) v " . 

Fur ther , if the probabil i ty p that a bond of S" is black, is larger than P™ ($"), then ( A S ) 
there exists exactly one infinite black cluster in S" and the critical probabil i ty of that 
cluster is equal to P[b](Sn)/p. 

Now because limn-.to Pib)(Sn) = 0, the following theorem follows by varying n a n d p 
in theorem 2 (and again noting the example of the graph with critical probabil i ty 1 in 
§3) . 

Theorem 3. For each p in the interval (0, 1] there exists, for a certain n, an infinite 
connected subgraph of S", of which the critical probabili ty (bond case) is equal to p. 

T h e o r e m 3 , together with the example of a graph with critical probabil i ty 0 
(figure 2), completes the work. 

Remark. If we do not want to deal with graphs with multiple bonds , like the S", we can 
handle them as follows. Define (instead of Sn) S"' as the graph obta ined by replacing 
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each bond of S by an n - tup le of series of two bonds (figure 4). It is easily seen that the 
critical probabili ty of 5"* is equal to {P^'iS"))1'2 and a s traightforward repea t of the 
arguments , earlier applied to 5 " , leads to an ana logue of theorem 3. 

F(gus-e4. The lattices3*. 
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Absiraci 

Consider first-passage percolation on the square lattice. Hammers
ley and Welsh, who introduced the subject in 1965, conjectured that 
the expected minimum travel time from (0,0) to (n, 0) along paths 
contained in the cylinder O ^ . v ^ n is always non-decreasing in n. 
However, when the bonds have time-coordinate 1 with probability p 
and 0 with probability 1 —p ( 0 < p < l ) , then, for p sufficiently small, 
we get a counterexample. 

EXPECTED CYLINDER TIMES 

1 . Snïra-iüiuciioi!! 

First-passage percolation was first introduced by Hammersley and Welsh in 1965. For 
more recent literature see e.g. Smythe and Wiennan (1977). 

Consider the square lattice S. To each bond b of S, independent of all other bonds, a 
random non-negative number is assigned, called the time coordinate, which can be 
considered as the time needed to travel along b from one of its endpoints to the other. 
The travel time of a path is defined as the sum of the time coordinates of its bonds. 
Hammersley and Welsh defined the cylinder time t„ as the inlimum of the travel times 
of all cylinder paths from (0, 0) to (n, 0) (i.e., paths which, except for the starting point, 
are contained in the cylinder 0 < j S n ) . They conjectured that the expectation T„ of tn is 
always non-decreasing in n. Before we go further, we slightly modify the definitions by 
replacing the < sign in the above cylinder condition by =£, and we denote the analogs of 
r„ and T„ by t'n and r'n respectively. It is clear that, for each n, rn+i = T J + T„. In the next 
section we give an example where i - J^ r i , SO that T 2 > T 3 , thus showing that the 
conjecture is false. 

2. 'The counterexample 

Consider the case where the time-coordinates are I with probability p and 0 with 
probability 1-p , 0 < p < 1 . 
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Figure 1. The two cut sets of size 3, which Figure 2. Two cm sets of size 3 whicli block 
block the cylinder paths from (0, 0) to (2,0) cylinder paths from (0,0) lo (1,,0). The other 

two are obtained by reflection in the line 

Lemma. For p l 0, 

(2.1) P[(; = l ] = F [ ( ' 1 / 0 ] = 4 p ? + o(p1!. 

(2.2) PU'i^ 1] = P['2 t- 0] - 2p3 + o(p'). 

(2.3) F[(; = 2]=o(p 3 ) . 

Before we prove the lemma, we show its consequences. It is clear that tj is eilh: r 0 or 1 
and that t'2 can only have the values 0, 1 and 2. Hence, by the lemma 

T[ = £[t'l} = P[t\ = \] = 4pi + o(p^), 

and 

and clearly., for p sufficiently small, r[ is larger than Tj, as we stated in the introduction. 
The lemma can be shown as follows. As to (2.2), (̂  f 0 if and only if there is a 

so-called cut set (a set of bonds which blocks al! cylinder paths from (0, 0) to (2, 0)), 
with all bonds having time-coordinate 1. The smallest of these cut sets consist of three 
bonds, and there are exactly two of them (see Figure 3). Il is easily seen that the 
probability that for at least one of them all bonds have time-coord in ate 1, is 2p 3 + o(p3). 
All other cut sets are larger and the probability that for at least one of them all bonds 
have time-coordinate 1 is o(p^). (This follows from the facts that the cut sets correspond 
to certain paths in the dual lattice (sec Whitney (1933)) and the number of paths of 
length n, starting at a given site, is exponentially bounded in n). 

An analogous argument holds with respect to the event [t[ = 1]. Again the smallest 
cut sets have size 3, but now there are four smallest cut sets (see Figure 2) which is 
responsible for the factor 4 in (2.1). 

Finally, (2.3) holds because, clearly, there are three disjoint cylinder paths from (0, 0) 
to (2,0), and the probability that each of them contains at least two bonds with time 
coordinate 1 is the product of the individual probabilities which obviously are o(p). 

0*67 
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ON THE CONTINUITY OF THE PERCOLATION PROBABILITY FUNCTION 

by 
J. van den Berg and H. Keane 

ABSTRACT. Let G be a countably infinite, connected, locally finite 
graph, and let B* be a designated vertex of G. Denote by 9(p) th 
percolation probability function for bond percolation on the pointed 
graph (GtSn) . We show that 

belongs to an infinite p-open 
8(p-l * 6(p) - Pr ] connected component of G, which itself 

has critical probability one. 
As a corollary, we deduce that if p is strictly larger than the 
critical probability for bond percolation on G, and If for p there 
is a unique infinite p-open cluster (e.g. if G is a with nearest 
neighbor bonds) , tihen 9 is continuous at p. 

§1. DEFINITIONS AND NUTATIONS 

Let S be a finite or a countably Infinite set, and let B be a 
collection of cwo-element subsets of S, Thus G = (S,B) Is a (finite or 
infinite) undirected graph. The elements of S are called sites (= vertices) 
of G and those of B bonds (= edges) of G. If the bond b contains the 
sites s and t, then we say that b links s and C (or t eind s) . 

A path IT in G is a (finite or infinite) sequence n * (b ,b ?, . . -) 
of elements of B such that there exists a sequence TT3 = (s ,s,,-.-) of 
elements of S such that for each i * 1. b, links s , , and s.. Clearly, 

i 1-1 I 
n is determined uniquely by if. If a path T T = ( b , ) b , . . . , b ) is finite, 
with n = (s.,s , . . . , s ) , then s. Is called the initial site of n and 
s che terminal site of n . If n is infinite, then s„ is the initial 
site, and It is convenient to call ™ che terminal site (although it is not a 
site). If TT is a path with initial site s and terminal site t, then we 
say that TT joins s with t, and write B " t. 

Let s n £ S. The connected component of G containing s n is the 
subgraph of G whose sites are s n together with all t t S for which there 
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exists a path TT which joins s. and tf and whose bonds are all bonds In B 
which link any of these sites with another of these sites. G is connected if 

for some s n (= for each S Q ) , the connected component of G containing s n 

is G. 

§2. PERCOLATION PROBABILITY AND CRITICAL PROBABILITY. 

In this paragraph, we suppose that G = (S,B) is a given infinite 
connected graph. Let (X, ) c he a collection of independent identically 
distributed random variables indexed by the bends of G, with common 
distribution given by 

r 0 If x < 0 
Pr{Xb 5 x} = | x if 0 < x 5 1 

I 1 if x s l. 

Let 0 £ p £ 1. For a given r e a l i z a t i o n of the process (Xt). , „. we say t ha t 

the bond b € B i s p-open if X, < p , and p-closed If t i p , A path 

n = (b-, >h, , . - .) i s p-open if for each b , in n , b , i s p-open. We denote 

by Gv = (SP ,BP) the (random) subgraph of G given by SP = S and 

Bp - {b f 3 : b i s p-open} . 

Now choose and f ix a s i t e B« € S, so t h a t we a r e dea l ing wich a 

pointed graph G* - (S,B,s ) and random pointed subgraphs ÓP = (S ,B , ? Q ) . 

Let Gp be the (pointed) connected component of G conta in ing B« . We 

c a l l G~ the p-open c l u s t e r (graph) conta in ing B-. 

DEFINITION 

1) The percolation probability function of the pointed graph G = (S,3,sn) 

Is given by 

9(G,p) - 9(p) - Pr{Gp is Infinite} . 

2) The critical probability of the graph G (see remark 4) is given by 

PH(G) = P H - sup (p: 8(p) - 0} = Inf {p: 9(p) > 0} , 

REMARKS 

1. These definitions are due to Broadbent and Kammersley [2] where we have 

modified the notation to suit our purposes. 

2. It Is clear that 8(p) is a non-decreasing function of p. 
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3. It is not hard to deduce that if the graph G is locally finite 
(= each s Ë S Is contained in only a finite number of bonds), then 
G(p) Is continuous from the right (see [7]). 

I*. In general, the percolation probability function depends on the choice of 
s . However (see e.g. [2]j, it Is quickly shown that the critical 
probability p.. is the same for each choice of s n as G is supposed 
connec ted. 

5, Note that if C is locally finite, 

9(p) = Prfthere exists a p-open path Tf with B_ *+ °»} . 

6. Though we restrict to bond percolation on undirected graphs, it is easily 
seen that analogs of the results in section 3 hold for site percolation, 
and for percolation on directed graphs. 

§3. STATEMENT OF THE RESULTS. 

Recently, some interest has been shown in determining the value of p 
([5], [8], (9]) and the behavior of the function 6(p) and related functions 
for a variety of graphs. Except for regular two-dimensional graphs (see [7] 
and [8]) aad examples where percolation is Identical with "infinite life" in 
birth-death processes, it does not seem to be known whether the function 9(p) 
is continuous, although this is expected to be true for a wide class of graphs 
(e.g. Z' with nearest neighbor bonds> d Ï 3)< On the other hand, Harris [4] 
lias shown for 2 that for p above the crl deal probability p ( = —, 
Kesten [5]), the random graph G possesses exactly one infinite connected 
component with probability one, (for a generalization to regular two-dimensional 
graphs see Fisher [31), and Mewman-Schulman ([6]), have investigated the 
possibility of existence of more than one infinite connected component of G 
in a general setting 

We hope that the following result, which links the continuity of 8 
with the number and types of infinite connected components, will help to 
clarify the situation. 

THEOREM. Lel: G - (S.B.s.) be a countably infinite, connected, locally 
finite graph. Then for any 0 S p S 1, 

6(p-) ■ 8(p) - Pr{Cp is infinite and its critical probability is one} . 

COROLLARY. Let G be as in the theorem. Furthermore, suppose that 

p > Pu(G) is such that with probability one, G p contains exactly one infinite 
connec ted component. Then 6(p) is continuous at p. 
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Note tha t regular two-dimensional g raphs ( [3 ] and [4]) s a t i s f y the cond i t i ons of 
the c o r o l l a r y (see a l s o Russo ([7] and [ 8 ] ) , who proves in a d d i t i o n c o n t i n u i t y 
a t p = p.,(G) and d i f f e r e n t i a b i l i t y a t p -f p u ( G ) ) . Kesten ( p r i v a t e 

H 1 3 
communication), has shown tha t for p > r-, 2 with n e a r e s t neighbor bonds 
s a t i s f i e s the cond i t ions of the c o r o l l a r y . 

§4. PROOFS 

To prove the theorem, we must show that 

Let K - ( S , B , S Q ) be a pointed infinite connected subgraph of G (with point 
s n ) , and note that under the condition 6~ = H, the joint (conditional) 
distribution of the process CX.). en' - s i-i-d- with common distribution 
given by 

j' 0 if x < 0 
Pr{Xb < :<|èP - H} . . | if 0 < X < P 

(. 1 if x ï p 

Noting that 

lim 6(p') - Pr 1 3 p' < p with GP infinite} , 
p'fp 
pV P 

and conditioning both sides of (*) by G^ = H, we see that it is sufficient 

to show that 

Pt ( 3 p' < p with G^ infinite | Ĝ ? = H} 

" pr(pH(GP
0) < l|éj - B> 

To if pH(H) - 1 

[j if PHCH) < 1 

Using now the information on the joint distribution of the process (X.) "̂  
under the condition G^ = H, this translates to the requirement chat 

r o if p (H) = i 
Pr{3 p" < 1 with H^ infinite} » J 

Ll if PH(H) < 1 

The case P,,(H) * 1 is obvious, and if PH(H) < 1, then choose p with 
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p„(H) < p < 1. By definition of p (H), for almost every realization the 
random subgraph H of H contains an infinite connected component, since 
this event is a tail event with positive probability. This component may not 
contain sr , but since H is connected, there is a finite path H joining s n 

with an infinite component, and since we may assume with no loss of generality 
that X, < 1 for all b, it follows that Hr is infinite for some p" < 1 b U 
(p" - max (p, max X,)) almost surelv. This finishes the proof of the theorem. 

b t n b 

To prove the corollary, we show that under the given hypotheses, 

Pr{G^ is infinite and PJJCGQ) = 1 } - 0. 

Choose p with PH(G) < P < P- Then for almost every realization, G 
contains an infinite connected component (by the 0-1 law for tail events) 
whj ch is contained in the (unique) infinite connected component of G . Thus, 
choosing H and conditioning on G n = H as in the proof of the theorem, we 
see that 

P H ( G ) 

almost surely (see also [1]), and this (together with remark 3) proves the 
corollary. 
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DïïSPMOOF 0>1F THE CONJECTURE® SUBEOTCf JENIlAEirO" OE 
CERTAIN FUNCTIONS IN PERCOLATION THEORY 

J. VAN DEN BERG,* Delft University of Technology 

Abstract 
Consider bond-percolation on a graph G with sites S(G). We 

disprove the conjecture of Hammersley (1957) that the function 
n ^ -sup , r : S ( 0 1 E [the number of sites 5' at distance n from s which can 
be reached from s by an open path which, except for s', only passes 
through sites at distance smaller than n from s] is always subexponen-
tial. 

1. Introduction 

Percolation theory has been introduced by Broadbent and Hammersley (1957). For a 
recent introduction to the subject see Kesten (1982), Chapter 1. 

Let G be a locally finite graph (i.e. the number of bonds incident to any site is finite) 
and denote the set of sites of G by S(G). Let the bonds of G, independent of each 
other, be open with probability p and closed with probability 1 - p. The length of a path 
is the number of bonds it contains. The distance between two sites is the length of the 
shortest path which connects them. Define, for seS(G): 

N"(s) is the set of sites at distance ^=n from s. 
B"(s) is the set of sites at distance n from s. 
En(s) is the expected number of sites s'eBn(s) for which there exists an open path 
from s to s' which, except for s', only passes through sites in N"~1(s). 
Finally, define F„ - s u p ! e S ( G ) E „ ( s ) . 
Though E„ and Fn also depend on p, we omit this parameter. 

Hammersley (1957) conjectured that F„ + m ^F r ,F m always. In the next section we show 
that there exists a case for which F2>Fl so that the conjecture is false. 

2. Tïhe ccünmteiresajnmpSe 

Consider, for a positive integer r, the graph with i + r+r2 sites denoted by c; $, 
l ^ i ^ r , and su, l = i i , j ^ r ; and with bonds (c, s^), l ë i g r ; (st, Sj), l^i,j^r, i£ ƒ; and 
<Si, Sy), l e i , j = r. This graph can be imagined as a central site c, surrounded by and 
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connected with a complete graph on r sites, each of which having a bond to r other sites 
which have no further connections. 

Now consider bond-percolation on this graph with p the probability of a bond to be 
open. It is clear that, for each site s, E,(s) equals p times the number of bonds incident 
to s and this is maximal if 5 is one of the sf 's, in which case it equals 2rp. So 

(2.1) F, =2rp. 

Further, F2 is at least Ea(c) which, by symmetry, equals the number of sites at distance 
2 from c multiplied by the piobability of the event that at least one of them, say s n , can 
be reached from c by an open path. (By the structure of the graph the condition of 
containing no sites, except s n , outside N1^) is automatically fulfilled.) Note that this 
event occurs if and only if the bond (su s t l) is open (which happens with probability p) 
and there exists, inside the complete graph on the set {c, s,, s2> • • • , sT) an open path 
from c to St- Denote the probability of the latter event by P(p, r). Using independence 
we get 

(2.2) 

Hence, by (2.1) and (2.2) 

(2.3) 

F 2 ê r2pP(p, r) 

F,^P(p, r) 
F? 4p 

It is easily seen that for fixed p 

(2.4) limPfp, r ) = l , 0 < p S l . 

Now fix p between 0 and g. Then, for r sufficiently large, the right-hand side of (2.3) is 
larger than 1, in contradiction to the conjecture. 

Remarks. 
(i) With the help of the finite graphs above it is easy to obtain a counterexample 

concerning an infinite connected graph. For example, connecting the site c with an 
infinite chain does not increase the value F , . 

(ii) One might think that the conjecture is true if, in the definition of E^is), all open 
paths of which all sites are in N"(s) are allowed. However, consider the tree consisting 
of a site c which is connected with six sites s,,s2, ■ ■ ■ , s6, each st in its turn being 
connected with six sites s u , s i2, ■ ■ ■ , si6. Add to this tree, for each / ^ 6 , the bonds 
(sij. S2j), (s3r, s4.j) and (sSj, Stj). For the graph thus obtained it is easily verified that 
F, = 7 p and according to the new definition of F™, F 2 = £2(c) - 36P [there exists an 
open path from c to S] i ]^36(p 2 +p 3 —p s ) which, if rj=\, appears to be larger than 
4 9 p \ 
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I n e q u a l i t i e s w i t h a p p l i c a t i o n s t o p e r c o l a t i o n 

and r e l i a b i l i t y 

J . van den Berg and H. K e s t e n 

A b s t r a c t 

A p r o b a b i l i t y measure u on IRn i s d e f i n e d t o be 

S t r o n g l y Hew B e t t e r t h a n Used (SNBU) i f u (A+B) < u ( A ) u ( B ) 

f o r a l l i n c r e a s i n g s u b s e t s A , B c l R n . For n = 1 t h i s i s 

e q u i v a l e n t t o b e i n g Hew B e t t e r t h a n Used (NBU d i s t r i b u t i o n s 

p l a y an i m p o r t a n t r o l e i n r e l i a b i l i t y t h e o r y ) . We d e r i v e an 

i n e q u a l i t y c o n c e r n i n g p r o d u c t s o f NBU p r o b a b i l i t y m e a s u r e s , 

w h i c h has as a c o n s e q u e n c e t h a t i f p . , M „ , . . . , y a r e NBU 
i 2 n 

p r o b a b i l i t y measures on TR+ , t h e n t h e p r o d u c t - m e a s u r e 

u = u i x vz x . . . x u n on IR^ i s 5NBU. A d i s c r e t e 
a n a l o g ( i . e . , w i t h M i n s t e a d o f IR+ ) a l s o h o l d s . 

A p p l i c a t i o n s a r e g i v e n t o r e l i a b i l i t y and p e r c o l a t i o n . The 

l a t t e r a re based on a new i n e q u a l i t y f o r B e r n o u l l i s e q u e n c e s , g o i n g 

i n t h e o p p o s i t e d i r e c t i o n o f t h e F K G - H a r r i s i n e q u a l i t y . The ma in 
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a p p l i c a t i o n ( 3 . 1 5 ) g i v e s a l o w e r bound f o r t h e t a i l o f t h e 

c l u s t e r s i z e d i s t r i b u t i o n f o r b o n d - p e r c o 1 a t i o n a t t h e c r i t i c a l 

p r o b a b i l i t y . F u r t h e r a p p l i c a t i o n s a re s i m p l i f i e d p r o o f s o f some 

known r e s u l t s i n p e r o c l a t i o n . A more g e n e r a l i n e q u a l i t y ( w h i c h 

c o n t a i n s t h e above as w e l l as t h e F K G - H a r r i s i n e q u a l i t y ) i s 

c o n j e c t u r e d and c o n n e c t i o n s w i t h a r e c e n t i n e q u a l i t y o f 
( + ) 

Campanino and Russo are i n d i c a t e d . 

(+) I t apoears tha t Campanino's and ïïusso's i n e q u a l i t y has been 
used before by Hammersley and McDiarmid. See a l so discussio: 
in Ch. 2 of t h i s t h e s i s . 

- 3 -

1 . D e f i n i t i o n s and main r e s u l t s 

Because o u r ma in t h e o r e m h o l d s f o r IR = [0 ,=° ) as w e l l 

as IN= { 0 , 1 , 2 , . . . } we s h a l l use t h e same symbo l R t o d e n o t e 

e i t h e r one o f t h e s e s e t s . 

I f x = ( x , , . . . , x ) and y = ( y , , . . . , y ) , t h e n x > y means 1 n J w 1 J n — J 

x . ^ y . i 1 = 1 n . A f u n c t i o n f on R i s c a l l e d i n c r e a s i n g 

i f x >_ y i m p l i e s f ( x ) > f ( y ) . A s u b s e t A o f Rn i s 

c a l l e d i n c r e a s i n g i f i t s i n d i c a t o r f u n c t i o n ( d e n o t e d by I . ) i s 

i n c r e a s i n g . I f A and B a r e two s u b s e t s o f R , t h e n 

A + B = {a + b ] a e A, b t B } . I t f o l l o w s f r o m D e l l a c h e r i e 

and Meyer [ 7 ] , Theorem I I I . 1 8 and S e c t . I I I . 33a t h a t A + B i s 

u n i v e r s a l l y m e a s u r a b l e when A, B are B o r e l s e t s o f IR+ . In 

p a r t i c u l a r A + B b e l o n g s t o t h e c o m p l e t i o n o f t h e B o r e l a - f i e l d 

o f IR w i t h r e s p e c t t o each p r o b a b i l i t y m e a s u r e . 

A p r o b a b i l i t y measure u on R i s S t r o n g l y New B e t t e r 

t h a n Used (SflBU) i f 

( 1 . 1 ) u (A + B) < u ( A ) u ( B ) , . 

for all increasing Borel sets A, B c Rn. 

For n = 1 and R = K this is equivalent to the usual + 
definition of a New Better than Used (NBU) distribution. There

fore, in the one-dimensional case, we will say NBU instead 

of SNBU (see also section 2) . 

Let n ^ 2. For an increasing set A c: R and i,j < n, 

i f j, we define the image of A under (i,j)-identjfication a s 

the set of all x c R for which there exists an a z A such 
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that x. j> a. + a. and k t 1 >j 

This definition is illustrated by the following 
example: Suppose someone receives a certain amount n of 
apples, n of pears and n of citrons. He is satisfied 
if, for a certain increasing set A c: IN , (n ,n ,n ) e A. How
ever, if he changes his mind, and wants each pear to be replaced 
by an apple, then he is satisfied if ( na'%' nc' e A* w n e r e 

A* is the above defined image of A under (1,2)-identification. 
The above definition has the following natural extension. 

Let A be an increasing subset of R and let 3 be a 
partition of the set tl,2,...,n}. Choose for each class F e 5 
a representative i F e F. Now the image of A under identification 
according to the pair (3, {ip:Fc3}) is defined as the set 
of all x E Rn for which there exists an a e A such that for 
each class F: I 

JcF 
Again Theorem III.18 and 

Sect. III.33a of Oellacherie and Meyer [7] show that for a 
Borel set A of m" its image under identification belongs 
to the completion of the Borel sets with respect to any 
probability measure. 

(1.3) Lemma. Let u-, , ■ ■ ■ ,u be NBU probability measures 1 n 
on R and let i , j <_ n > 1 t j be such that u. = u.. 
for all increasing Borel sets A c; R 

Then 

(1.4) v(A) > u(A*), 

where A* denotes the image of A under (i ,.j) -i den t i f i ca t i on , 
and y is the product-measure p. * u, *...« u on R . 

Proof j Without loss of generality we may assume i = 1, j = 2 . 
In terms of random variables (1.4) is equivalent to saying that 
if x-| ■ '^2'---'^n

 a r e independent random variables whose 
distribution on R is NBU, and X. and X are identically 
distributed, then 

(1.5) P [ ( X r X 2 , . . . , X n ) e A] > P[(X 1,X 3,X 4,...,X n) E A ' ] , 

where A' = {(x, + x_ , X, ,x. ,. 
I 2 3 4 

,xJ :(x. ,x, £ A} c R" 
inequality can now be proved as follows: Given X = x , 
X4 = x 4 - - - - > x

n
 = x

n . tf,e conditional probability of the event 
in the left hand side of (1.5) is, for each x ,x. with 

,x n) c A, larger than or equal to P[X, > x,, X„ (x.,x, ,,,. '1 '1 x 2 ] . 
Since X, and X? are i.i.d. this probability equals 
P[X1 ^ X, ] P[X1 j> X j ] . Hence the above mentioned conditional 
probability is at least 

;up (PCX, > x , ] P[X1 > x 2 ] : ( x 1 , x 2 ' 3 ' " X J E A) 

On the other hand, the conditional probability of the event 
in the right hand side of (1.5) is exactly 

P[X, E (x 1+x 2:(x 1 ,'x2,x3,...,xn) E A}] which, because X is a 
one-dimensional random variable, equals 

sup {P[xi > Xj + x 2]:(x 1,x 2,x 3,...,x ) E A]) and this is , by the 
NBU property, at most 

sup fP[X1 > X,] P[X1 > x 2]:( X l,x 2,x 3,.'..,x n) É A ) . □ 

(1.5) Theorem 

t1) kit U-|.U2.....un be NBU probability measures on R a_n_d 
l_e_t 3 be a partition of the index set (1 , . . . , n) , with the 
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p rope rty that u. 's with indices in the same class are 

identical ■ Further, choose for each class F e 3 ^ 

represent at i ve i c F and let, for an increasing Borel set 

A c R , A* denote the image of A under identification 

according to (3, {i :F c 5}). Then: 

(1.7) M(A*) f M(A), 

where u i s t h e p r o d u c t - m e a s u r e u , x v~ x . . . * u on R . 

( 1 1 ) L e t \ ) . ) V « » . . . , v be NBU p r o b a b i l i t y measu reson R. De n o t e 

by v t h e p r o d u c t - m e a s u r e v. x v x . . . x y on R , and 

1e t A , , A , . . . , A . and S. , B „ , . . . , B be i n c r e a s i n g B o r e l s e t s 

Of Rm. ( H e n c e , U ( A . x B. ) i s a s u b s e t o f R2m a_n^ 
1 < i £ k 1 n 

2m, 

Then 

(1.8) 

is a probability measure on R1"'") 

v( U (A +B )) < (v x v)( U (A. x B.)). 
1 < i < k ' 1 1 < i < k n 

(iii) L_e_t M ,u , u be NBU probability measures on R n 

x p the product measure. Then, fo r all 

increasing Borel sets A, B c R". 

(1.9) u(A + B) < u(A) p(B) , 

i.e., u isSNBU. 

Proof. (i) follows by applying lemma 1.3 successively to all 

pairs (i,j) with, forsome class F c 3, i = i' and j c F , j f i. 

( i i ) I f we t ake , i n ( i ) , n = ,2m , 

u , = u , . u_ = v , , . . . , u = v , v ,1 = v , iV , , = v ) , . . . , u = v ( hence 1 1 2 2 m m m+1 1 m + 2 2 2m m 

u = v x v ) . 5 t h e p a r t i t i o n w i t h c l a s s e s { 1 , m f 1 } , 

{ 2 , m + 2 } , . . . , Cm,2m}, and s e t o f r e p r e s e n t a t i v e s ( 1 , 2 , . . ,m} 

and A = U ( A . x B . ) , t h e n a c c o r d i n g t o ( 1 . 7 ) we g e t 

1 < i < k ] 1 

( v x „ ) ( A * ) < ( v x v ) ( A ) . 

This reduces to (1.8) because, as is easily seen, 
A* = ( U (A. + B.)) >; R m, so that [v x v)(A*) = v( u (A. + B. 

1 _< i < k n 1 1 < i < k 1 1 

(iii) follows immediately from (i i ) by taking k s 1 . ["""] 

(1.10) Remarks . 

(a) Originally we had a different proof, of part (iii) of the 

above theorem only. However, we noticed that the special case 

of (iii) with all u, concentrated on {0,1} can also be derived 

from Theorem 2.1 of Campanino and Russo [6], (which is more general 

than that special case of (iii)). Campanino and Russo's formulation 

led us to the more general result (i) (from which Theorem 2.1 of 

CamDanino and Russo can aqain be retrieved; see also Remark 3.5(b)). 

(b) We have also proved that if u is an SNBU probability 

measure on R and v is an NBU probability measure on R, then 

the product measure u * v on R is SNBU (the proof of this 

involves some more technicalities than that of (iii)). 

However, the following problem, which arises naturally in the 

context of the above results is still unsolved: 
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(1.11) Problem. Let u and be SM.BU .probabi 1 i ty measures on 

R and R respectively. Is the product measure p x y on 

R n + m always SNBU? 

We note that the following variant is not hard to prove. 

Call a measure p on Rn ENBU (extended NBU) if 

(1.12) u( U (A. + B ^ ) ! (u * v) ( U (A. ,)) 

for any family of increasing sets A. and B ■ . It holds in 

general that if y and v are ENBU on R and R , 

respectively, then y x y is EMLSU on R 

One final comment. If there is only one pair A-. » B, in 

(1.12), then (1.12) reduces to (1.1). Thus ENBU is stronger 

than SNBU. On the other hand (1.8) shows that any product of 

one-dimensional NBU measures is actually ENBU.'"h^ 

{+) Just before this thesis was finished, we saw that the 
reverse also holds; each ENBU measure is a product of 
one - dimensional NBU measures, 

- 2 . Applications to reliability. 

In reliability t h e o ry (for a description of the subject 

see e.g., Barlow and Proschan [3]) a non-negative random 

variable T is called NBU if its corresponding probability 

measure on IR is NBU which means that (see section 1 ) , for 

all t, . t 0 _> 0, 

(2.1) P[T > t 

or equivalently, 

(2.2) P[T > t 

t,] f P[T > t , ] , 

t 2] < P[T > t,] P[T > t g] . 

Marshall and Shaked [14] introduced a multi'variate extension 

of (2.2) by defining a random vector T a (T.»...»T ) to be 

Multivariate Hew Better than Used (MNBU) if, for all 

increasing Borel sets A c IR, and all \,p >_ 0, 

(2.3) P[Tt(lt,)J] £ P [ T e X A] P[T c y A ] , 

where A A E {Xa:a e A}. The main result in their paper was 

that if S and T are MNBU and if T and S are 

independent, then (S,T) is also MNBU (compare with problem 

1.11). This yielded the following 

Corollary: If T,-,...,T are indeDendent NBU random i. 1 - n 1 
variables, then 

(i) T = (T,,...,Tn) is MNBU, 

( i i ) g ( T , , . . . , T ) i_s_ NBU , w h e n e v e r g i s a n o n - n e g a t i v e 

m e a s u r a b l e subhomoqencous i n c r e a s i n g f u n c t i o n . 
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ta f u n c t i o n g on IR " i s c a l l e d subhomogeneous i f 

g ( a x ) <_ a g ( x ) f o r a l l x e IR and a l l a >_ 1 ) • T h i s c o r o l l a r y 

i s i m p r o v e d by t h e f o l l o w i n g c o r o l l a r y o f t h e o r e m 1 . 6 ( i i i ) . 

( 2 . 4 ) Co r o l 1 a r y . I f T , , . . . , T a r e i n d e p e n d e n t o n e - d i m e n s i o n a l 

NBU random v a r i a b l e s , t h e n 

( a ) For a l l i n c r e a s i n g B o r e ! s e t s A , B c IR 

P [ ( T r ■ ■ • , T n ) e A+B] < K ( T 1 , . . . , T n ) e A ] P [ ( T ] , . . . , T n ) E B ] 

( b ) g (T - , . . . , T ) i s NBU wheneve r g : IR ■*• IR i s a m e a s u r a b l e 

i n c r e a s i n g f u n c t i o n w i t h t h e p r o p e r t y 

( 2 . 5 ) g ~ l ( a + b , - ) c g " ' ( a , « ) + g ( b , « 0 . Va , b > 0 , 

where g A = t X | g ( X ) e A } , 

P r o o f : ( a ) f o l l o w s i m m e d i a t e l y f r o m t h e o r e m 1 . 6 ( i i i ) . 

( b ) Suppose T - . , . . . , T and g f u l f i l l t h e c o n d i t i o n s . T h e n : 

P [ g ( T r . . . , T n ) 

1 P[ (T , . . 

1 P [ ( T r . 

= P [ g ( T , 

> . ♦ t ] = P [ ( T 1 , . . . > T n ) 

£ g ' ^ s , » ) + g ' ^ t , » ) ] 

'(s + t , - ) ] 

, T n ) E g _ 1 ( s , " ) ] P [ ( T 1 , . . . . T n ) c g " ' ( t , » ) ] 

, , T ) > s ] P [ g ( T , , . . . , T J > t ] . n 
( 2 . 6 ) Remarks . ( a ) i m p l i e s ( i ) because (X + p )A c XA + uA. 

( b ) i m p l i e s ( i i ) because each i n c r e a s i n g n o n - n e g a t i v e subhomogeneous 

f u n c t i o n has t h e p r o p e r t y ( 2 . 5 ) , w h i c h can be seen as f o l l o w s : 

F -11-

L.e t g: IR, ■* IR, be increasing and subhomogeneous and iet, 

for certain a, b > 0, x E g~ (a+b,»), i.e., g(x) > a + b . Then 

g ({a + b) ax) >_ ( a + b ) ' a g ( x) > a and, analogously, 

g((a+b)~ bx) > b. Hence x = (a+b) ax + (a+b)" bx is the 

sum of an element of g (a,™) and an element of g (b,»). 

(b) In studies of NBU random variables these variables usually 

represent life lengths. However, the following interpretation 

of corollary 3.1(a), in which the variable represent amounts of 

certain products, might also be interesting: Suppose two 

people, say A and B, have to share the random output of a 

certain producer. A wants at least an amount a, B at least 

an amount b. If the output has an NBU distribution, then, 

by the definition of NBU, the following statement holds: the 

probability that the output can be shared such that A and B 

are both satisfied is not larger than the product of the 

probability that A would be satisfied if he had the total output 

for himself and the analogous probability for B. Now consider 

the case of n pr-oducers with independent random outputs, each 

having an NBU distribution. If A(B) wants at least an amount 

a,(b,) of the first product, a 0(b^) of the second product etc. then 

by the independence of the variables, it is obvious that the 

probability that A and B are both satisfied is still no larger 

than the product of the probability that A respectively B, are 

satisfied. However, corollary 2.4(a) says that the statement 

still holds in the case that A and B are, within certain limits, 

willing to obtain somewhat less of one product in exchange for some

what more of some of the other products. 
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3. Applications to Bernoulli sequences and percolation, 

Let n ■ {0,l} n. An event in- El is called i ncrea si nq or 

pos i ti ve if its indicator function is an increasing function on 

0 (i.e., increasing in each coordinate separately). An event 

is called decreasi nq or neqati ve if its complement is increasing. 

If A and B are positive events we denote by A o B the 

event that A and B "occur disjointly". More precisely, A o 

is defined as follows: Each io = (to, , ..., m n) e SI is uniquely 

determined by the set K(io) c {1, ..., n) of all indices i for 

which m. = 1. Now ID e A o B if and only if there exists a 

K' i= K(u)) such that ID', determined by K(ID') = K', belongs to A, 

and u", determined by K(iu") = K(<D)\K' belongs to B. 

equal to 1} and B the event {at least k2 of the ID. ' s are 

equal to 1 ) , then A o B is the event {at least k1 + k2 of 

the ID-'S are equal to 1}. (see below for further examples). 

It is clear that A o B is contained in A fl B. Further, 

notice that A o B = B o A and A o (B o C) = (A o B) o C. 

How let P be the probability measure on SI under which 

"1! lo a r e i n d e p e n d e n t and P [ u . = l ] = 1 - P[ io . - 0 ] . 

H a r r i s [ 1 1 ] p r o v e d t h a t 

( 3 . 1 ) P[A (1 B ] > P [ A ] P [ B ] , 

i f A and B a r e b o t h p o s i t i v e e v e n t s , 

o r , e q u i v a l e n t l y , 

(3.2) P[A n B ] < P[A] P[B], 

if A is positive and S is negative 

This inequality, which is one of the basic tools in percolation 

theory, is now usually considered as a special case of the 

FKG inequality first proven in [9]. We now show that the 

inequality (3.1) is reversed if A n B is replaced by A o B. 

This new inequality turns out to be a special case of Theorem 

1.6 (ii i ) . 

(3.3) Theorem. I_f A and B are positive events , then 

(3.4) P[A o B] 5 P [A] P[B]. 

Proof: In order to use Theorem 1.6 (iii) we imbed the state 

space Si in IN n = {0, 1, . . . } " . We still use P to denote 

the image measure under this imbedding. Thus P[lN n\f!] = 0 and 

P[{X}] is unchanged if x e Ü. Further, we replace each 

positive event S c a by the smallest increasing subset A 

of TJJ containing A. Thus A is replaced by 

A = (y e Si" : i x E A such that x 5 y } . 

This operation does not change the probability of A because 

only a set of probability zero is added. One now easily sees 

that A o B differs from A + B by a set of probability 

zero. In fact (z O <= A + can have posi t i ve 

mass.only if each z, equals 0 or 1. Thus, if z = x + y, 



x e A, y e B, then one must actually have x E A, y a E and 

the ones among the coordinates of x and y cannot occur 

at the same place (since x^ = y^ = 1 implies z■ = 2 ) . 

Finally, noting that a probability measure on I! with all 

mass concentrated on {0,1) is always NBU, the theorem, 

follows directly from Theorem 1.6 (i i i ) . 

(3.5) Remarks. 

(a) Analagously, a specia l case of theorem 1.6 ( i i j i s that f o r p o s i t i v e 

(3.6) P[A. 0 B, U ft2 o B, U . . . U Ak o BR] <_ 

£ ( P x P) [A. x B ] U A2 >' B2 U . . . U Ak x B k ] . 

Roughly speaking, t h i s means t h a t the p r o b a b i l i t y t h a t , f o r at l eas t one 

i , A. and B. occur d i s j o i n t l y , i s smal ler than the p r o b a b i l i t y t h a t , f o r 

at l e a s t one i , A. and B. occur on independent copies o f the p r o b a b i l i t y 

space. 

(b) In the same way the f o l l o w i n g r e s u l t of Campanino and Russo [ 6 ] 

can be der ived as a specia l case of theorem 1 . 6 ( i ) : Let 3 be a p a r t i t i o n 

of { 1 , . . . , n) (Campanino and Russo s ta te the r e s u l t a lso for the 

countable case, i . e . , w i t h f: = (0 ,1) ' , but that extension is ra ther 

s t ra igh t fo rward ) and l e t C be a fami l y of subsets o f ( 1 , . . . , n) such 

t ha t f o r each C c C and F e 5 C D F contains at most one element. 

Consider, fo r a given p e [ 0 , 1 ] , two p r o b a b i l i t y measures P and Pp _̂ 

on fi under both of which each ro. is equal to 1 w i th p r o b a b i l i t y 

p and equal to 0 w i t h p r o b a b i l i t y 1-p ( i = l , . . . , n ) . Under P p the 

io, i i=1» . - - , n are independent. Under P , a l l w . ' s w i t h ind ices 

in the came class are equal w i th p r o b a b i l i t y 1 , wh i le the f a m i l i e s 

V^: = {u)j : i c F) , F c . j , are independent. Now l e t A be the event 

t h a t , fo r at l eas t one C e C, u = 1 f o r a l l i e C. Then 

(3 .7) P ..[A] c p [A] . 
P,J — p 

In order to show tha t t h i s f o l l ows from Theorem 1 . 6 ( i ) imbed £] 

again i n 21 , and replace A by A, exac t l y as i n the proof o f Theorem 3.3. 

Denote the image o f P under the imbedding of Ü i n IN by P . 

Choose a represen ta t i ve i . f o r each c lass F t 3 , and form (A ) * from 

A by i d e n t i f i c a t i o n according to (5 , ( ! _ } ) , One can v e r i f y that. 

Pn [(A) ] = Pn [ ( U {x : x . * 1 f o r each i z C i ) * ] 
p p CcC 

= Pn [ U { x : x. 
eC 'F P r , 

fo r each F w i th F f] C i 0 ) ] 

= Pn - [ U { x : X- = 1 f o r each i e C}] = P . [A ] 
' • " CFC ' P ' J 

( In the second e q u a l i t y we use the f a c t t ha t C f l F i s e i t h e r empty or 

cons is ts of a s ing le element o n l y . ) Thus by (1 .7) 

PP,:J [ A ] = y ( A ) + ] - P P [ A ] ° P P [ A ] -

which is j u s t ( 3 . 7 ) . 
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Conversely, i t i s poss ib le to der ive (3 .4) and (3.6) from (3 .7) 

by apply ing (3 .7) i n the space (i w i t h s u i t a b l e choices of 3 and C. 

(c) Ahlswede and Daykin [ 1 ] have presented a ra ther general theory of 

correlat ion i n e q u a l i t i e s i nc lud ing the FKG - i n e q u a l i t y . However, i t 

seems tha t (3 ,4) does not f i t i n t h i s framework and i t might be the 

f i r s t step in a new d i r e c t i o n (see a lso ( d ) ) . 

(d) The operat ion "o" has been def ined f o r p o s i t i v e events on ly . However, 

define for a r b i t r a r y events A and B C O the event A Q B as 

f o l l o w s ; F i r s t , fo r u ■ ( w , , . . . , u ) e Ü and K c { l , . , . , n ) , l e t 

C(K,u) denote the c y i i n e r event (u / : u ' e a and ujl = UJ. f o r a l l i E K 

Let IT denote { 1 , . . . . n } \K . Now def ine 

(3.8) A Q 8 = {to : g !< c {1 , . . . , n) such t ha t 

C(K,UJ) c A and C(PT,QJ) C B) . 

Clear ly A D B ^ A fl B. We have the f o l l ow ing conjecture 

( 3 . 9 ) P [ A D B] < P [ A ] P [ B ] f o r a l l e v e n t s A and B. 

I t i s e a s i l y seen t h a t i f A i s p o s i t i v e and B n e g a t i v e , 

A G B i s e x a c t l y A f l B , and i f A and B a r e b o t h p o s i t i v e 

i t e q u a l s A o B, so t h a t ( 3 . 9 ) i n c l u d e s the F K G - H a r r i s 

i n e q u a l i t y as w e l l as o u r i n e q u a l i t y ( 3 . 9 ) . M o r e o v e r , i f t h e 

answer t o p r o b l e m ( 1 . 1 1 ) i s a f f i r m a t i v e f o r the case t h a t 

U o r v i s a p r o b a b i l i t y measure on IN , c o n c e n t r a t e d on 
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the e l e m e n t s ( 1 , 0 ) and ( 0 , 1 ) , t h e n ( 3 . 9 ) f o l l o w s i n a way 

c o m p a r a b l e w i t h t h e d e r i v a t i o n o f Theorem 3 . 3 f r o m Theorem 

I . 6 ( i i i ) . 

Examples and a p p l i c a t i o n s i n p e r c o l a t i o n t h e o r y . 

L e t Q be a f i n i t e o r c o u n t a b l y i n f i n i t e g r a p h . A p a t h 

f r o m s i t e s t o s i t e s ' i s a f i n i t e sequence o f t he f o r m 

( s , = s , e , , s 0 , en , . . . , s , , s = s ' ) . where each e . i s 1 1 2 2 n - l n l 

an edge c o n n e c t i n g the s i t e s s . and s . , , . The re i s no J "i i + l 

l o s s o f g e n e r a l i t y f o r o u r p u r p o s e s i f we r e s t r i c t o u t s e l v e s 

t o p a t h s wh i ch a r e s e 1 f - a v o i d i n g ( w h i c h means t h a t a l l s ^ ' s i n 

t he above sequence a r e d i f f e r e n t ) . The 1 e n g t h o f a p a t h i s 

t h e number o f edges i t c o n t a i n s . Mow suppose t h a t t h e edge i s 

open ( o r p a s s a b l e ) w i t h p r o b a b i l i t y p and c l o s e d w i t h 

p r o b a b i l i t y 1 - p , and t h a t a l l t h e s e e v e n t s f o r d i f f e r e n t 

edges a re i n d e p e n d e n t . A p a t h o r , more g e n e r a l l y , a s u b g r a p h , 

i s s a i d t o be open i f a l l i t s edges a re o p e n . An open c l u s t e r 

i s a max ima l c o n n e c t e d open s u b g r a p h o f Q. P e r c o l a t i o n 

t h e o r y ( i n t r o d u c e d by B r o a d b e n t and Harnmersley [ 5 ] ) s t u d i e s 

q u e s t i o n s 1 1 k e : wha t i s t h e p r o b a b i l i t y o f t h e e x i s t e n c e o f an open 

p a t h be tween two s p e c i f i e d s i t e s , and ( i n t h e case whe re i, i s 

i n f i n i t e ) do t h e r e e x i s t , w i t h p o s i t i v e p r o b a b i l i t y , i n f i n i t e 

open c l u s t e r s ? The above case i s c a l l e d b o n d - p e r c o l a t i o n . I f , 

i n s t e a d o f t h e e d g e s , t h e s i t e s o f Q a r e r a n d o m l y open o r 

c l o s e d , one speaks o f s i t e - p e r c o l a t i o n . For a r e c e n t i n t r o d u c t i o n 

t o t h e s e p r o b l e m s s e e , e . g . , [ 1 2 ] , Ch . 1 . A l s o mode ls have 

been s t u d i e d i n w h i c h t h e edges a r e o n l y p a s s a b l e i n one d i r e c t i o n 

( see e . g . [ 8 ] ) . 
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The following special case of theorem 3.3 is useful in 

percolation theory (see also (3.12) below). 

(3.10) Co rol 1 ary . Let, for some k >_ 2 , V , V 2 , . . . , V k 

be sets of paths of a graph Q. Assume that all the e_dge_s 

(si tes) of Q are independently open or closed. Call two 

paths disjoint if they have no edge (site) in common. L_e_t 

E • , i a 1 , .. ., k, be the event that at least one of the 

paths in V. is open. Then: 

(3.11) P [There exist pair wise disjoint open paths 

7t1 e V r n 2 c V 2 , . . . . n k e V k ] i F f t , ] P [ E 2 ] . . . P [ E , , ] . 

P r o o f : We may r e s t r i c t o u r s e l v e s t o t he case where Q i s 

f i n i t e (by o b v i o u s l i m i t a r g u m e n t s ) . Now i f wc t a k e ft = { 0 , 1 } , 

where E i s t he s e t o f edges o f Q ( n = ( 0 , 1 ) , where 5 i s 

t he s e t o f s i t e s o f Q) and t a k e UJ = 1 o r 0 (uss = 1 o r 0) 

a c c o r d i n g as t he edge e ( s i t e s) i s open or c l o s e d , t h e n i t 

i s n o t d i f f i c u l t t o see t h a t t he e v e n t i n t he l e f t - h a n d s i d e o f 

( 3 . 1 1 ) c o r r e s p o n d s w i t h E, o E~ o . . . o E, and t h e r e s u l t 

f a l l o w s by r e p e a t e d a p p l i c a t i o n o f t h e o r e m 3 . 3 . 1 I 

( 3 . 1 2 ) Remark . By u s i n g ( 3 . 6 ) o r ( 3 . 7 ) one can a l s o d e r i v e 

a s i m i l a r r e s u l t i n f i r s t - p a s s a g e p e r c o l a t i o n ( see [ 1 3 ] , S e c t . 4 ) 

The f o l l o w i n g r e s u l t i s a s i m p l e p r o o f o f t h e f i r s t " t r e e 

g r a p h b o u n d " o f A izenman and Newman ( [ 2 ] , P r o p . 4 . 1 ) . T h e i r 

bounds f o r h i g h e r c o n n e c t i v i t y f u n c t i o n s can be d e r i v e d i n t h e 

same w a y . L e t t ( v , w ) : P [ v i s c o n n e c t e d t o w by an open 

path ] . 
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( 3 . 1 3 ) C o r o l l a r y . C o n s i d e r b o n d - p e r c o l a t i o n on a g raph Q. 

L e t s , , s 2 and s , b_e s i t e s o f q . Then 

( 3 . 1 4 ) P [ s , , s ? and s- b e l o n g t o the same ooen c l u s t e r ] 

t ( s 1 , s ) t ( s 2 , s ) t ( s 

s a s i t e 

of Q 

Proof. The result follows by using Corollary 3.10 and the 

observation that s,, s ? and S- belong to the same open cluster 

if and only if there exists a site s (which may be equal to 

one of the s i ' s ) such that there are disjoint open paths from 

s-, to s, from s 2 to s and from s ~ to s, respectively. L. 

The nicest application is an improvement of a result for 

critical percolation in two dimensions. As an example we 

consider bond percolation on the square lattice, which is the 

graph with sites {(n,m) j n,m e 72). (It is easy to derive 

analogous results for other two-dimensional lattices). On this 

graph each site (n,m) has exactly four edges incident to it, 

namely those between (n,m) and the sites (n ± 1, m ± 1 ) . 

Suppose all edges are independently open with probability p 

and denote the corresponding probability measure by P . Let 

B n be the event that there exists an open path from the origin 

to some site at distance > n from the origin. (The distance 

from (n,, n , ) to (m,, m ) is defined as |n, - m,| + 

|n? - m , | ) . Clearly P [B ] is decreasing in n. It is known 
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([12], P- 54 and Theorem 5.1) that for p < \ there exists 

a X(P) < 1 such that P p[B n] < X n ( p ) . while for p > % 

1i m P [B ] > 0. When p is equal to the critical probability 

% then P [B ] tends to 0, but not exponentially. Smythe and 

Wierman ([16] p. 61) gave an easy proof of P,[ Bn] t Jn' 

Later Kesten ([12] Theorem 8.2) showed that there exist 

C, Y > 0 such that PjJ B ] > C n ~ +'. However, the value of 

Y which follows from his calculations appears to be very small. 

It is believed that P,[ B ] - Cn" for some C > 0, 0 < & < 1 

(see [17]). Even though we cannot prove such a power law, the 

following result greatly improves the estimates for y 

obtainable from [12]. The proof uses a refinement of Smythe 

and Wierman's idea and Cor. 3.10. 

( 3 . 1 5 ) C o r o l 1 a r y . 

CiVnother proof can be 
based on theCknown)ineaualit 
( 3 .17 ) . ) 

\ ^ >-zn 
P r o o f : C o n s i d e r t h e s u b g r a p h S ( n ) o f S w h i c h c o n s i s t s o f 

the p a r t o f 5 s i t u a t e d i n t h e r e c t a n g l e 0 < x <̂  2 n , 

0 £ y < 2 n - l . I t i s w e l l - k n o w n from, d u a l i t y a r g u m e n t s (see 

[ 1 5 ] , o r [ 1 6 ] , p . 31) t h a t t h e P. - p r o b a b i l i t y t h a t t h e r e 

e x i s t s an open p a t h w h i c h l i e s i n 5 ( n ) and w h i c h c o n n e c t s the 

l e f t - h a n d edge o f S ( n ) w i t h i t s r i g h t - h a n d edge e q u a l s h-

F u r t h e r i t i s c l e a r t h a t such a p a t h passes t h r o u g h a t l e a s t 

one o f t he s i t e s ( n ) * [ 0 , 2 n - 1 ] . Hence a t l e a s t one o f 

t h e 2n s i t e s i n the above s e t has two d i s j o i n t open c o n n e c t i o n s 
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w i t h t h e l e f t - a n d r i g h t - h a n d edge o f S ( n ) , r e s p e c t i v e l y . 

A l s o , the d i s t a n c e be tween a s i t e i n ( n ) - [ 0 , 2 n - l ] and a 

s i t e i n t he l e f t - o r r i g h t edge o f S (n ) i s a l w a y s > n . 

C o n s e q u e n t l y , by C o r . 3 . 1 0 

2 n - l 
h ± \ P> [ ( n , i ) i s c o n n e c t e d by two d i s j o i n t open p a t h s 

i = 0 

t o the l e f t and r i g h t edge o f S ( n ) ] 5 2 n { P , [ B ] } 2 . [ 

L a s t l y we g i v e a new and s i m p l i f i e d p r o o f o f a r e s u l t o f 

Hammers ley [ 1 0 ] . F i r s t c o n s i d e r b o n d - p e r c o l a t i o n on a g r a p h q . 

By t he d i s t a n c e be tween two s i t e s o f Q we mean t h e m i n i m a l 

number' o f edges i n any p a t h w h i c h c o n n e c t s t h e s e s i t e s . For 

any s i t e s o f Q d e f i n e 

N ( s ) = c o l l e c t i o n o f s i t e s a t d i s t a n c e <_ n f r o m s , 

B ( s ) = c o l l e c t i o n o f s i t e s a t d i s t a n c e e x a c t l y n f r om 

P n ^ 5 ' = p [ 3 open p a t h f r o m s t o a s i t e i n B ( s ) ] 

i f n > 1 , and P f s ) = 1 . 

We say t h a t a p a t h b e l o n g s t o N
n U ) i f a l l s i t e s o f t h e p a t h , 

e x c e p t f o r i t s e n d p o i n t , l i e i n N ( s ) , and we d e f i n e , f o r n > 1 

E n ( s ) = e x p e c t e d number o f s i t e s s ' c B ( s ) f o r w h i c h 

t h e r e e x i s t s an open p a t h f r o m s t o s ' 

b e l o n g i n g t o N , ( s ) . 
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We take E (s) = 1. Finally, for n > 0 we set 

(3.16) Pn ■ sup Pn(s) , E n = sup E n(s). 

Hammersley [10] has proved that 

(3.17) M ( E J L n / " J 

Where [n/mj is the integer part of n/m. A direct consequence 
of this result is that if the expected size of the open cluster 
is finite, then the radius of the open cluster has a distribution 
with an exponentially bounded tail (see also [12], Sect. 5.1 and 
[ 2 ] , Sect. 5 for a stronger result). Here we give an easy proof 
of the following inequality which is somewhat stronger than 
(3.17) (since by induction (3.18) will imply P R m 1 ( E j " ) -

(3.18) Corol1ary. 

Proof: If n or m equals zero the result is trivial. Assume 
n,m > 0 and fix s. Suppose there exists an open path from s to 
3 (s). Denote by s' the first site on the path (starting 

from s) which lies in B (s). Then, clearly, there exist 
two disjoint open paths, the first from s to s' and 
belonging to N , ( s ) , and the second from s' to B , (s). m-1 n+m1 ' 
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Furthermore it is clear that B (s) has distance at least 
n from s', so that the second path passes through B ( s 1 ) . 
Thus 

P (s) £ I P [ 2 t w 0 disjoint open paths, one n m sveB (s) 
from s to 
from s' to some site in B (s')] 

and belonging to !l , {s) , and the other 
m-1 

By Cor. 3.10 this expression is at most 

y P [ 4 open path from s to s' which belongs 
s'cB m(s) 

to !!„_,(*)] P„(s') < Em(s) Pn. 

This holds for all s, so that (3.18) follows. □ 
If one considers site percolation then (3.18) remains valid 

(and the proof goes through practically unchanged) provided one 
redefines Pn and E as follows: N ( s ) , B (s) and (3.16) 

n n n * ' ' nv ' l ' 
remain as before, but 

P n(s) = P [ 3 open path from a neighbor of s to a 
site of B (s)] , n > 1 , P n(s) = 1 , 

E ( s ) = expected number of sites s' e B (s) for which 
there exists an open path from a neighbor of s to 
s' and belonging to N _ , ( s ) , n > 1 , E ( s ) = 1. 
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Another a p p l i c a t i o n o f Co r . 3 .10 i s t o be f o u n d i n 

van den Berg [ 4 ] , where i t i s used to p r o v e t h a t f o r o n e - p a r a m e t e r 

b o n d - p e r c o l a t i o n on 77 t he s i t e ( 0 , 0 ) a l w a y s has a t l e a s t as 

h i g h a p r o b a b i l i t y t o be c o n n e c t e d by an open p a t h t o ( 1 , 0 ) 

as t o ( 2 , 0 ) . 
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Recently Van den Berg and Kesten have obtained a correlation-like inequality 
for Bernoulli sequenes. This inequality, which goes in the opposite direction 
of the FKG inequality, states that the probability that two monotone (i.e. 
increasing or decreasing) events "occur dlsjointly" is smaller than the 
product of the individual probabilities. They conjecture that the 
monotonicity condition is immaterial^i.e. that the inequality holds for all 
events. 

In the present paper we try to make clear the intuitive meaning of the 
conjecture and prove some non-trivial special cases, one of which, a pure 
correlation inequality, is an extension of the FKG-Harris inequality. 



1.Introduction■ 
10 K I a conjecture is stated which has the intuitive interpretation 
riven by the following example. 
(1.1) Example, 

Suppose two children make a list of their wishes for Christmas. The first 
child is satisfied if he gets at least one of the combinations in the 
following list: 

1) a green teddy-bear and a blue car. 
2) a red teddy-bear. 
3) a blue car and a blue football. 

The second child has the following list: 
1') a blue teddy-bear and a blue car. 
2') a red teddy-bear . 
3 '' ) a red football ■ 
4') a blue football. 

Now suppose Santa Claus takes two boxes and puts in each of them a teddy-
bear, a football and a car. However, he doesn't consider the colours and 
chooses the toys randomly from large sacks, each sack containing one type of 
toy In several colours. We assume that this happens In such a way that the 
six colours in the two boxes may be considered as Independent random 
variables, and that the contents of the two boxes are stochastically 
Identical (i.e. the colour of the football In the first box has the same 
distribution as that of the football in the second box etc.) 
Consider the following two options: 

a) Santa Claus gives only one box to the two children and they must try to 
share the contents of this box in such a way that both are satisfied, i.e. 
get at least one of the combinations on their respective lists. It Is easy t 
check that this is only possible if the box contains at least one of the 
following compositions of combinations of the first and the second list: 

1 x 3 ' 
1 x 4 ' 
2 x 3 ' 
2 x 4 ' 
3 x 2 ' 

a green teddy-bear, a blue car and a red football. 
a green teddy-bear, a blue car and a blue football. 
a red teddy-bear and a red football. 
a red teddy-bear and a blue football. 
a blue car, a blue football and a red teddy-bear. 

b) This option is as follows: Both children receive a box but they are not 
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allowed to exchange toys. In this case the box given to the first child must 
contain at least one of the combinations 1,2,3, and the box given to the 
second chjId must contain at least one of the combinations LI,2,

f3T,4'. (Note 
that these events are Independent), 

When for each type of toy the probability distribution of Its colours is 
known, one can calculate, for both options, the probability that both 
children are satisfied. The conjecture in [2] is equivalent to saying that 
this probability for the second option is larger than for the first option 
and that this holds for arbitrary numbers of different toys and possible 
colours, for all probability distributions of the colours and for any pair of 
lists of wishes. 

The investigations which led to the conjecture in [2] were motivated by 
the following percolation problem: 

(1.2) Example 

let each bond b of a locally finite graph G, independent of the other bonds 
be open with probability pb a n d closed with probability l-pD- A 

path from s to s' is a sequence sasi »bi ,62»t>2»* • * > ̂ n-1» sn = s ? > where 
3i ,S2« • * i sn a r e sites of G and each bj_ is a bond of G connecting s^ 
and 6j+£, 1 = 1,... ,n-l. An ojjen patji is a path of which all bonds are 
open. Two paths are disjoint if they have no bonds in common. 

Let Vi,V2,Wi and W2 be sets of sites of G. Further, let A be the event 
that there exists an open path from a site of V to a site of V?, and B the 
corresponding event with respect to Wi and W2. It follows from a result of 
Harrls(1960) that A and B are positively correlated, i.e. P(AnB)>P(A)P(B). 
(We come back to Harris' result in section 4-)- Now the problem Is whether, on 
the other hand, the probability that there exist two disjoint open paths of 
which one goes from a site of Vi to a site of V2 and the other from a site of 
Wj to a site of W2, is smaller than P(A)P(B). In [2] it is shown that this is 
indeed the case. However, the following related problem is unsolved: 
Consider again the above graph G. This time the bonds are not randomly open 
or closed, but they have a random direction. More precisely, if b is a bond 
with endpoints s>,s2 then It has, independent of the other bonds, probability 
Pb(sl,s2) to be directed from si to s2 and probability p^(s2,sl)= 
l_PD(si,82) to be directed from S2 to si- A directed path from s to s' 
is a sequence as shown above, with the additional property that each b̂  is 
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directed from si to S j ^ , 1=1,..., n-1. 
The problem, analogous to the one for the open-closed case, is now whether 

the probability that there exist two disjoint directed paths of which one 
goes from a side of V, to a site of V-, and the other from a site of W. to a 
site of W2 -̂s! again, smaller than the product of the individual 
probabilities. 

These two problems (the solved open-closed problem and the unsolved 
random-direction problem) represent special cases of the conjecture. 

In section 2 we give a formal description of the conjecture after 
introducing the necessary definitions and notation. We also present an 
attractive special case which, as shown in section 3, turns out to be 
equivalent to the full conjecture. In section 3 we also show some other 
equivalent forms of the conjecture, try to make clear the relation to cine 
examples in section 1, introduce additional definitions and notation, and 
give some general results concerning the conjecture. 

In section 4 we state our main result, theorem k ■2, which consists of four 
non-trivial, proved, special cases of the conjecture. The first is an 
extension of the special case proved in [2], and also contains Harris' 
Inequality mentioned in example 2. In section 4 we further give some 
corollaries and examples. 

The proofs of the four cases of theorem h.2 are rather long and, except 
for the first two cases whose proofs are related, completely different. 
Therefore they are given in three different sections> section 5,6 and 7. 

2. Formal_9ta_tement of the conjecture. 

Let 8 = Si x S2 x... x Sn with Si,S2, ••= , Sn finite subsets of Trf. 

Realisations (i.e. elements of ") are denoted by w = (̂ i,...., uin). The 
support of an event (a subset of Q) is defined as the set of all indices on 
which it depends. More precisely, If A c SI then 

(2.1) supp(A) := (l|l<i<n>3w,u ,€flVJ» ti u y u j ; "ëA, <WA 1. 

Two e v e n t s A and B a r e s a i d t o be p e r p e n d i c u l a r t o e a c h o t h e r , d e n o t e d 

by AlB, i f s u p p ( A ) n s u p p ( B ) = 0 „ F o r LÜÊU and Kc j l , . . . > r i} we d e f i n e the c y l i n d e r 

( 2 . 2 ) [ u ] K := {tüT |ÜÏ' e£l,w| = (^ for a l l i ? K | . 

( 2 . 3 ) Remarks i ) Though [w]]/ depends on Q we omit; t h i s p a r a m e t e r . 

i i ) N o t e t h a t t h i s n o t a t i o n i s not un ique ; oi may be r ep l aced by each ID' £ fuil^. 

If A.,B c fj we say t h a t m i s a d i s j o i n t r e a l i s a t i o n of A and B i f ID i s an 

element of both A and B but " for d i s j o i n t r e a s o n s " . Formal ly t he s e t A □ B of 

d i s j o i n t r e a l i s a t i o n s of A and B i s de f ined a s : 

(2.A) 

A DP, : - [ia E n | 3K,L C [ l , . . . , n ( K n L - 0 , [ÜJ]K c A and [oi]L = B } . 

(2.5) Remark. Note that we again omit the parameter si. 

Our subject, the conjecture stated in [2] , is the following: 

( 2 . 7 ) tfA.Bcfl u(ADB) « u(A)u(B) . 

The s p e c i a l case t h a t , for each i , S 1 = { o , l } and U i ( 0 ) = « l ( l ) - i g i v e s : 

( 2 . 8 ) Con jec tu re 

l £ n - { 0 , l } n ( n € m \ ( o } ) , then 

( 2 . 9 ) V A,B c B, |ADB | 2n < | A [ | B | _ 

where j.| denotes cardinality. 
It will be shown in section 3 that the above special case is equivalent to 
the full conjecture 2.6. 

We finish this section with the following example: 
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(2.10) Examp_lg_ 

Let ft=J0,ll , A= [((Dj ,a)2»ti)3 ,uj4)eü| at least two wja are equal 
to 0} and B= \ (<JJI, ujp ,103 ,0)1+ )€fl | at least one ÜJJ, equals 0 and at least one 
ü)̂  equals 1} . 
Then ADB= [(U>i »i02»ti>3»ti)ii)€ïï| exactly three of the o.i[s are equal to 0]. 
Further |A| => 11, |B| = H and | ADB | = 4 which, multiplied by 2L' is indeed 
smaller than |A||E|. (This example falls under case b of theorem ^.2.) 
3. General results concerning the -operation-

Several results in this section, especially in the beginning, are almost 
trivial° However, they may help to get familar with the O-operati on and make 
it possible to shorten the proofs of the more interesting results. 

We start by stating some properties of the D-operation leading to 
equivalent definitions of AQB and, subsequently, to equivalents of (2.7). 

Next we show the connection with the examples in section 1. We also prove, 
as announced in section 2, that the special case (2.8) implies the full 
(2.6). We do this with the help of a more general principle which will be 
used throughout in the sections 5-7 and is therefore presented as a separate 
lemma (lemma 3.4). Finally, we prove another useful result (lemma 3.9) and 
introduce some addi tional notation and definitions. It is easily seen that 
the D-operation has the following properties and we oralt the proof: 

(3.1) Lemma 
(i) A D B c A n B , 
(ii) I£_ A1B _then ADB = AnB. 
(ui) AQB = BOA. 
(iv) (A1 u A 2) DB 3 ((AjpB) U (A2OB)). 

Using these properties, several definitions of ADB, equivalent to the one 
in section 2, can be given. First we define the following: A set C is called 
a maximal cylinder of A if: CcA, C Is a cylinder and there is no cylinder 
C'cA with C <=, Ca

 s 

(3.2) Lemma 

( i ) ADB = u{CnC' |c i s a c y l i n d e r of A, C' i s a c y l i n d e r of B and C1C '} . 
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(ii) AD3 = u]CnC'| C is a maximal cylinder of A, 
C' is a maximal cylinder of B, CiC']. 

(iii) ADB - uJA'nB'|A'cA,B'cB and A'lB'}. 

Proof(i) Follows immediately from definition (2.4) and the definition of "1". 
(ii) It is clear that the r.h.s. of (i) does not change if we restrict 

ourselves to maximal cylinders. 
(iii) By (i) it is obvious that the l.h.s of (iii) is contained in the 

r.h.s. We prove the other direction as follows: By lemma 3.1(iii,iv), 
ADB z> u JA'DB' | A'cA.B'cB; which contains, of course, u JA'I-B' |A'C_A,B 'C B,A' 1 E'} 
which, by lemma 3.1(11) is equal to the r.h.s. of 3-2(111). 

Using the above lemma we get several equivalents of conjecture 2.6: 

(3-3) Lemma 

The fo l lowing s t a t e m e n t s ( i , i i , i i i , i v ) a r e e q u i v a l e n t to ( 2 . 7 ) : 

( i ) u[ U (C n C!)) < u( U C ) u( u C ! ) , where 
K i«m 1 K K i K K m 

m<_IN\{0f, C i > C^C Q c y l i n d e r s , CjJLq, 1 = 1 , . . . , m . 

( i v ) u(u{A nB . | i € I , j e i ' , A IB .} ) < Ji( U A. )u ( u B )■ where 
l € I J I€I* 
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Proof (2.7) <==>(!): (2.7.) implies (i) by taking A = u C , 

B = U C! and noting that, by 3.2.(1), the l.h-S. of (i) is 
l<i<m 

contained in ADB. Conversely, (i) implies (2,7) by taking, for (C. , C ' ) 1 ^ < m 

all possible pairs ( C , C ) with C a cylinder of A,C' a cylinder of B and C1C', 

and again using 3.2(i). 

(2.7) <=> ii: As the above proof; this time use 3.2(iii) instead 

of 3.2.(1). 
(2.7) <=> (iii): Analogous to the first case. 
(2-7) <=> (iv) : Analogous to the second case. 

We shall nov; briefly discuss the examples 1.1 and 1.2 in the light of the 

above definitions and results. As to example 1.1, let, if there are n 

different types of toys, Sl tS2,..., S n represent the sets of the possible 

colours, and take " = SixS 2x ...xSn-

The combinations 1,2,3,...,k on the first list and 1',2',3',,,., V on the 
second list correspond with cylinders C-, ,C2,C 3 . . . ,C and C' C',C'..., C' 

respectively. Further, the set of compositions 1",2" , 3" , -.. corresponds 

exactly with {Ctnc^ | l^i<k, l<j<*, C i l c j ^ a n d n o w> noting 

lemma 3.3(iii), it is clear that the example, in its general setting (i.e. 

arbitrary number of different toys etc.) is indeed an interpretation of the 

conjecture. 

As to example 1.2, assume that G is a finite graph, (Otherwise we can use 

obvious limit arguments.) Now let B=*{0,1}' • , where E is the set of 

bonds of G and take, for wfcö, ÜJI = 1 or 0 according as the bond b^ is open 

or closed (or, in the random—direction case, according as the direction of 

o±. Then the events tthere exists an open (directed) path from a site of Vj 

to a site °^ ^ \ and jthere exists an open (directed) path from a site of W. 

to a site of W 2} can be considered as sets A,Bcïï. It is easy to check that 

the event {there exist two disjoint open (directed) paths of which one goes 

from a site of VI to a site of V2 and the other from a site of Wl to a site 
of W 2 | corresponds with ADB, which clarifies the connection with the 
conjecture. 

Lemma >.3 yields rather trivial equivalents of conjecture 2.6. More 
interesting is the equivalence of this conjecture to conjecture (2.8). This 
equivalence will be proved by using the following lemma which is also useful 
in many other applications. 

(3.4)Lemma Let, for U K n , U j < m , S-j and Tj be finite subsets of IN t 

r?-'?2 !!i a_?c'-.J "° ] projjabili t;̂ _ measures _ on S-j_ arid T-: respectively. 

F^th^er^, let U-U1xy2X...X]jn _and> v = u * v K . . . x v ije the respective product 
measures on ^(=SjxS2X. . .xSn) and_ n'(=T 1xT 2x. . .xTn) . Jj^nally^_le'c _A and B 
be subsets of ii, and_ f: fï'+fl a map_with the following properties: (i andfii 
or ii ' ) ) o 
i) |i(öj) - v(f~l(w)) fo£ all ü)6fi. 

*•*'^ ü . ^1 and C 2 are maximal cylinders of A and B resgeetively_and Cj 1 C 2 

thgn f"1 (Cx) i f"1 ( C 2 ) . 
Then {denoting f - 1(A) bŷ  A' and_ f~}(B) by B ' ) : u(AQB) <u(A) y(B) if v(A'nB') 

< y(A')v(B'). 

Remarks^ a) Note that we do not in(li) and (ii') require that f~l(C.) and 

f~l(C2) are cylinders. 

b) Mote that (ii') is weaker than (ii) so that the latter Is 

superfluous, since we require(i) and ( ( Ü ) or (ii')). However we 
also state (ii) because in many cases treated in this article, 
this stronger condition does hold, 

Proof^ By lemma 3.2(11) we have £"1 (ADB) = f~l ( UfC n C I C is a maximal 

cylinder of A, C 2 is a maximal cylinder of B, CilC 2}) which, of course 
=u|f~l(C 1) nf~ 1(C 2)| C, is a maximal cylinder of A, C 2 is a maximal cylinder 
of B, C|iC2j which, by property ii' of f, is contained in 
u{Aj nBj|Ajc A', BjcB', AjlBjJ which, by lemma 3-2 (iii), is equal to A'DB*. 

Hence u(AOB) = v(£~1(ACB)) < u(A'DB') ^ ( A ' ^ t B ' ) « u(A) w(B). 



Lemma 3.5 
The Conjectures 2.6 and_ 2.8 are equivalent. 
Proof We only have to prove that if conjecture 2.8 is true then conjecture 
2.6 is also true, since the other direction is trivi al. So suppose conjecture 
2.8 is true. Let o»S, xS0x...XS with S " Isr, ,s,„,..., s. . , 

" 1 2 n l L il 12 i5k. , i = l,... ,n. 
Further let, for l^i^n, P4 be a probability measure on Si, and M= M[y.p2:": • • • >;Un 
Define pi . = u^Cs^ O = u{ü)i = Sj A* Since we have a 
finite system, it is clear that, for each Acfi, u(A) is a continuous funcni on 
of (p^ J.) Ki«Sn, Kj<ki< Using this and the fact that every 
Pi -j can be approximated to arbitrary precision by numbers of the form 
£.2~MP a,M€IH, it is clearly sufficient to consider the case that 

»j 
^ j 2 * So assume that the P̂  -'s are indeed of this form. 
Now consider, for each i=l,2,... ,n , the set [0,1 F*, and order the 
elements of this set, e.g. lexicographically: (0,0,... ,0), (1,0,...,0), 
(0,1,...,0) (1,1,0,. . . ,0) etc. (He refer to this ordering in section 5). 
Define the map fj.:{0,l}M * S± as follows: The first q l 

elements (with respect to the above ordering) are all mapped to s. , ( the 
n e K t ci,2 elements to SI,2 etc Now apply lemma (3-4) with f! and \i 
as above and ïï' = {0,l}nM (i.e. Ti={o,ll, l<i<nM), W the uniform 
distribution on P.' and f: J2' + Ü as defined by : 

^W1*****(V 'Wl'***"* U2M*" '" ",LÜ(n-l)M+l>" " ' " W 

= Cf^J,... ufc), f^^,..-, u^) ^"(n-Dwl' — ^iM»-

We finish this section with some additional notation and with two lemma 
which are useful in the proofs of the results in section 4. 

(3.6) Notation Let n,m be positive integers. 
Denote, for k^eiN, u^iN^i, 
A1cINkl,(i=l>..,,m): 

1 m 
(3.8) fk , . . . , A ] := A xA x...xA . 

m 1 2 m 

Further, for 3,, ,S effi finite, SI » II S. 
' i-1 * 

Ü n 
£, r*0, 9,+r <n, Ac n S . , Be ][ S : 

i-1 L i=?.+r+l 
?.+r 

(3.9) [A, *r,B] :- [A, n S., B]. 
1 = 4+1 1 

Remarks 
a) Of course, when we use the notation of (3.9) the Si, Z+l <i<f-+r, are 

assumed to be known. 
b) If no confusion is possible we omit the commas in (3-8) and (3.9), and 

the "r" in (3.9). 
c) If an Aj in (3.8) consists of one element (ü, we write "ID" instead of 

■M". 

d) The notation (3.9) can be extended in an obvious way to more "*"'s. 

(3.10) Lemma 
Let,for i=l,...,n, Si be a finite subset of ]N and Pi a probability- measure 

••>n}, B-( f f l l ) € fl, and D c i!: 

ïï(io) = (ü) .,..., üi ,.) and_ n(D) = (ir(u) |ü) 6 Dj. 
n n 

Further, let S' = S , „ and u'=u , ., 1-1,...n, Ü1 = JI S' and p'= n u * . i TT(I) — i ïï(i) i = 1 i i = 1 i 

Then, for all A,B c tl; 

(3.11) M'(n(A)) = u(A), U'(TT(B)) = M(B), u'(ir(A)Dw(B)) = M(ADB). 

Proof The proof is straightforward. 

(3.12) Lemma 
n 

_Let A,B e n S., K c supp(A)\ supp(B), K c supp(B) \ supp(A), K =K u K , 

K= {l , ...,n | \ K . By the preceding lemma we may assume for our purpose that, 

for certain r,s,tsO: K={l,...,r}, K A ={ r + 1 (___ ( r + s + 1} > 

KB = lr+s+1,...,r+s+t = n I, and K^g= lr,...,nI. 



Define, for Ul' 6 II S. , and_ D c S, 
U K A B 

D(iu' ) : = ( « € n S. | (m,a') ( DJ. 
iEK 1 

Let y , be a probability measure on S^ (i=l,2,...,n), 
n 

u = H u. , and u = n u. . 
i=l X i£K 1 

(3.13) Vüi'e II S J M . ' I D B I » ' ) ) < u(A(u')) u(B(m'))> 
" K A B 

then: 
(3.14) u(AOB) < U(A) u(B). 

Proof Define, in addition to the above, for o). e n S. and OL€ n S.: 
— A ieKA * "* i a , 1 

A((fl ) : - { M S tt S | [ Ï u * ] = A] and B(<iO := {w E D S | [ S * ^ ] c 
ItK i«K 

It is easily seen that if u' = (w,,!*)„) e U S . then A(w.) = A(uj'), 
" B *«AB 

BCujg) - B(iu'), and (ADB)(u') - Kl'lDBf.') ■= « « j W K » , ) ' 

Let uA = n M . UB = H U , and „^ = pft x ,y 

i£KA 16KB 
If the condition in (3.13) holds, then: 

u(ADB) = l U([AOB(a>') «']) = 
111' 

= I u u ( u ' ) ï(A(o,')DB(u')) < ïu A B(u') ü(A(w')) u(B(u')) = 

MA U B 

= I M A(» A) Ï(A(»A)) X J B ( W B ) Ï ( B ( M B ) ) = 

- Ï M([A ( M A) „ A . ] ) I M([B(,B) *„ EJ) -
™A 'J,B 

= M(A)u(B), 

where w' is summed over II S . , to, over H S. and UL over D S . ) . 
- K A B 1 A - \ * ^ 

4. Statement of main results 

We state in theorem 4.2 four special cases of conjecture 2»6 sroich are 
proved in the sections 5-7. The theorem is followed by a short discmss-siwn of 
each of the cases. 

(4*1) Remark. We can also prove the special case that the csajtitaal cylimiBeirs 
of A or E are mutually disjoint. The proof is stralghforaardo(Use l e m s a 
3.2. (II) and the fact that each set is the union of its maximal cylinder».]) 
Further, we have a (rather complicated)proof for the case that Q=|0,lj° > 

IJ is the uniform distribution an £2, and A or B has at most 3 raaxlaal 
cylinders. 

For the first case of theorem 4.2 we need two definitions*, 

Let, as usual, SI,... , S n be finite subsets of IN and 
n 

Q = II S, . If oi.O)' e fl then w > w' means (i) > ÜJ!S 1-1,...,II. A set A c Q 
i - i x x i 

is called increasing or positive if <i)'€A whenever ai' €Si, m' > w and OJ€A. 

AnalogouslyjA is decreasing or negative if to'€A whenever to' €P., ÜJ'< ÜI and tô A» 
The events A and B in the open-closed case of 2.1 are examples of increasing 
events. However the corresponding events in the random-direction case can 
be represented neither as increasing nor as decreasing events. 

(4.2) Theorem 

Let_, for K K n , Sj be a finite subset and Pi a probability measure on S^. 

Let * Slx...,xSn, u = M}X. . .x.pn, 
ajid._ AjBcfl. In each of the following cases we have: 
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(4.3) y(AOB) < u(A)u(B). 

(a) There exist increasing D,Fcii and decreasing E,G c fl such that A=DnE and 
B=FnG. 

(b) Q = |0,1jn and A,B are both permutation invariant 
(i.e if the coordinates of an element of A(B) are permuted, the result is 
again an element of A(B). ). 

(c) There are cylinders C-̂ , i€l and C' , i€J such that 

A. ■ u CJ , E = u C.' and for all i€I. i€ï': C.1C'. or C. nC'. = 0. 
1 € I 1' l n , 1 — - t j — 1 j 

(d) There are cylinders C , i€I such that A = u C., C. is a maximal 

cylinder of A, iei, and for all 1 , j€I:C 1 C . _or_ suppCC . ) = supp(C .) . 

Proof: The cases (a) and (b) are proved in section 5, the case (c) in section 
6, and the case (d) in section 7. 

(4 .3) Discussion of Theorem 4.2. 

_£a) Note that this result includes the case that A and B are both 
increasing and the case that Ais increasing and B decreasing. The firs t has 
been proved, for fl={0,l}n by Van den Berg and Kesten (1984), who 
obtained it as a special case of a result concerning so-called NBU measures. 
They had several other (unpublished) more direct proof s. One of these, which 
we call the splitting method, is closely related to the proof of the clutter 
theorem (see[4] and f 6]) and can be refined to prove a and b. 

If A is increasing and B decreasing and Ü={0,l}n then AQB = An]J, and 
we get, by (a),u(AnB) < u(A)u(E). This is equivalent to Harris' inequality. 
In fact Harris' Inequality says that increasing events are positively 
correlated to each other but, since the complement of an increasing event is 
decreasing, this is the same as saying that an increasing and a decreasing 
event are always negatively correlated to each other. See also the discussion 
of (c) which also contains Harris' inequality as a special case. 
(b) In spite of serious attempts we have not been able to prove the 
permutation-invariant case more generally, i.e. for ïï= JO, 1, . . . ,k }n, k̂ >2. 
That result would have the Interesting consequence that the multinomial 
distribution is SNBU (see [2] for a definition of SNBU). 
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(c) Note that, in this case, ADB ■ AnB so that we have a correlation 
Inequality. As a special case we have Q = J0,l}n, A Increasing and B 
decreasing (because the maximal cylinders of an increasing event are always 
of the form [w* Jr. and those of a decreasing event of the form [ÜIÜ jjr 
where w* is the element (1,1 , . . . , 1) and u° the element (0 ,0 , . . . ,0) ) ; this 
reduces again to Harris' inequality which was also obtained as a special case 
of (a)- Harris' inequality has been extended by Fortuin, Kasteleyn and 
Ginibre [3] to a larger class of probability measures on {0,1}n. 
The FKG inequality in turn is contained in a rather general theory developed 
by AhIswede and Daykin [11 - However, apart from some common special cases, 
like Harris' inequality, there does not seem to be a relationship between 
conjecture 2.6 and [l 1* 
Another example of (c) is the following: 

(4.5) Example 

Define, for positive integers 1, m, 

By. m := [(x,y)€IK2 j 0<X<£, CKy<m). 

The boundary of Bj m i s de f ined as 

&(%ltm) '■= i U , y K B £ ) m j x=0 or x-Jfc or y=0 or y=m}, 

and the interior of By. m as 

lnt(Bi>m) !- B£>a \*<B 1 > m). 

The sets By m, 9. ,m, €TN\ [O] , and their images under translations 
ZÜ2 * ZZ2 are called boxes. Now suppose that each site B€2L2 

is, independent of the other sites, black with probability ps and white 
with probability l-pe. A box is called black (white) If its boundary Is 
black and Its interior is white (black). Let V be a finite region in 



ZZ , e, g, for certain positive integer r, 
V = {(x)y)€zZ2 | |x| ,|y|<r}. 
Further let A be the event {there exists a black box in Vj and B the event 
{there exists a white box in v}. It is not difficult to check that this falls 
under case (c) in our theorem, so we get P(A n B) ■', P(A) P(E). Note that 
Harris' inequality cannot be applied here because neither A, nor B, is 
increasing or decreasing. 

(d)_ This case has the following interesting consequence: 
(4.6) Corollary 
Let xi»X2»*••»xn be independent random variables with values in IR 
(or another set, it turns out that the set is immaterial). 
Let for Ki<u, Ai,Bi and_ Ci be subsets of m.. 

Then: 
(4.7) pithere are three different i.i.ksn such that X, €A. , X,€B, and x_ 6C. | 
V / L I I J J T v k J 

< P { 3 i x . e A } P { 3 i x , € B , ] P { 3 i x . ë C . i . L i i J L i i J l I i ' 

ReaiarfcsCi) theresult can be extended to four types of sets or more (i.e. 
A's, B's. C's , D's etc.) We show how (4.7) follows from our theorem: the 

l i i i 

above mentioned extension can be proved by induct ion on the number of 
different types of sets. 
(ii) For the case with two types of sets, and for the case that, for each i, 
the sets with index i are mutually disjoint, there is a more direct proof. 
However, If there are no additional conditions, we don't know a proof of 
(4.7) which is more direct than that of the full theorem 2.1(d) of which it 
is a corollary. 
Proof of the corollary. First we remark that the l.h.s. of (4.7) is 
completely determined by the following probabilities: 
(4.8) Pi(q,r,s) := P{xiPA(q) n B(r) n C(s)l , q,r,se{o,l},l<i<u, where, 
for a set V, V(0) denotes V and V(l) denotes Vc. Therefore it Is 
sufficient to prove the corollary for the case that each xj can only have a 
finite number of values. Hence it is equivalent to the following: 
(4-9) Let, for 1=1.2 n, Si be a finite subset of IN, ^ a 

probability measure on Si and_ h±> B±, C± subsets of Si- Further, 

let =Slx. . -xSn and Vi = ui xp2X. • -xun. 
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Then: 
(4.10) lJ I. ('J)i , . . . ,ain) | there e>:ist different i,j,k such that 
Mj€Al,(flj€Bj and totfC*] < u{ (Wj , . . . , ojn) j 3 1 ^ ^ } x 
x M(V--*n)l 3J WjSBj] u{(u1 «n)| 3ktük€Ck}. 

Proof of (4-9) Define A := ((Wj...,^) | 3i Wi £A± }, and define E and 
C analogously. It Is easy to see that the event of the l.h.s. of (4.10) lea 
subset of AD(BGC), and that A,B and C have the property mentioned in case d of 
theorem 4.6. Now the result follows by applying this theorem twice. 

5. Proof of Theorem 4.2, case a and b. 

In case b we have fi = {0,1}nj a n d for a it ls sufficient, by virtue 
of lemme 3.4 (take f as in the proof of lemma 3.5, noting that f-1(A) is 
increasing (decreasing) if A is increasing (decraslng)) to restrict 
ourselves to the binary case. The proofs are based on the splitting method 
mentioned in section 4, which we shall explain here. First some definitions. 
(Mind the notation 3.6 - 3.9 which will be used frequently). In the following 
we always assume n>l. 

(5.1) Definition 
If Ac{0,l}nt C h e n 

A1 = [«Iwejo.i}11""1, (u,l)€A) 

AÜ = WuclO. l J 0 " 1 , Cu,0)6A}, 

A01 , AonAl „ (« | u 6 {o , l }n- l ( {OJ É] c A } . 

Apparently, for V<={0,l}n-1 
V c A1 <=^> [v l] c A. 
V c A0 <=^ [V 0] c A. 
V c A01 ^> [V *] c A. 

The following observations are frequently used: 



( 5 . 2 ) O b s e r v a t i o n s . 

i ) I f Z e { 0 , l } n _ 1 , A c { 0 , 1 } " , mne { 0 , 1 ) , u - ( 2 , » n ) 

and K c [ l , n - l } , then [u] K = A « • [S ] K = A 0 1 . 

I I ) A n B = (A n B ) 1 , where i deno te s 0 ,1 or 0 1 . 

i l l ) A - [A1 l ] u [A0 0 ] . 

( 5 . 3 ) Lemma For A,B c { 0 , l [ n : 

i) (ADB)1 = ( W ) u ( B W 1 ) -

l i ) (ADB)° - (A°DB0 1) U (B°DA 0 1 ) . 

III) (AGB)01 = ( A W 1 n B°DA01) u ( A V n A°GB01) 

U ( B W 1 nA°DB01) u (B 1DA 0 1 n B°DA01). 
I 

Proof 1) We prove that the l.h.s. is contained in the r.h.s. The reverse can 
be proved analogously. 
u = (wl,...,^_i) fc(ADB)l => („,1) S ADB =» 
3K,L c{l,...,n) KnL ■ 0,[u l ] K c A, [o> 0] L = B. 
For K,L as above, al least one of these sets does not contain n. Suppose 
n i L. We show that this implies u G A^BOl (Analogously (note the 
symmetry) n ( K implies w € B^A 0 ! ) . 
n (< L=^ L c{l,...,n-l{ ■=» (see 5.2(D) =9 
-» [»]L = B01. 
Further, [ i o , l ] K = A =*> [» ] K " = A 1 , where K' = K \ ( I ) . Hence, 

because L n K' = 0, in € A ' D I 0 1 . 

ii) Analogous to (i)(by A-B symmetry or 0-1 symmetry) 
iii)Follows from (i), (ii) and definition 5.1. 

(5.A) Definition. For the pair A,B c{0,l}n W e define the pair 
A*, *B c{0,l}n+l b y ; 

A* = {("l..., ^ + 1 ) € {0,l|n+1 | (m,. ..1(%) f A}. 
*B = K,..., ^n+i) e {0,l}n+1 | (U1>...,l0n_1,(%+1)6B}. 
Further, if f = ̂ lx...xynj where u is a probability measuren on |0,l], then 
is * the probability measure Mix..-xpnxyn on {0,l}n+1-
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Note t h a t A* = [A *] and *B - ïï([B * ] ) (whe re n i s the map which exchanges 

the l a s t two c o o r d i n a t e s of each e l e m e n t of ba 

Also , 
( 5 . 5 ) ( i ) * (A*) = u(A); ( i i ) *(*B) = p(B) . 

Roughly speaking, A* and *B are obtained by "making A and B independent in 
the last coordinate by splitting this coordinate" Analogous operations 
can be defined for the coordinates 1, ■ . . , n-1. Intuitively one would expect 
that, after applying one of these split operations, the probability of ADB 
always increases. This would imply that Conjecture 2.6 is true, because then, 
after successively "splitting" all coordinates l,...,n we would have, 
for the "new" A and B (denoted by A",*B): 
A' 1 *B hence p(AQB) S [i(A*0*B) = \i (A*) u(*B) - u(A)u(B). 

However, R. Ahlswede showed a counterexample and afterwards we have 
observed that it goes wrong very often. It appears that the probability 
of ADB does increase if (ADB)01 = A01DB01, which (as we shall 
show) holds for case a of our theorem. We shall prove that a weaker condition 
is also sufficient, which we use to prove case b of the theorem. 

(5.6) Lemma. Let A,Bc{0,l}n, Then A*D*B = [A°DB0 0 OJ U [A 1!^ 0 1 o] 
u [AOQB1 O l ] U [ V D B 1 l l ] . 

Proof Let r,s e {0,l|; 
We show that for all die |0,1 }n-l ;(M.r s)̂ AftD*B-**- w€ArOBs 

(ü),r,s)€A*Ü^B <==> 3K,Lc(l,. ..n+1) s.t. KnL=0, 
[(us r s)]K c A * ) [ ( U r s) ] L c *B, However, bacause (n+1) £supp(A*) 
and n I supp(*B), the last statement is equivalent to 
BK' C [l, n-l}, L'c {!,..., n-l} s.t. K' n L' = 0, [Ü)]K, c Ar 

and [<JJ]L. c B S <* w f A rDB s. 

(5.7) Lemma Let A,B c {0,l}n. 

(i) If (ATJB)01 = ( A ^ B 0 1 n A°DB01) u ( B ^ A 0 1 n B°DA 0 1), 
then u(A*n *R) > p(ADB). 

(ii) If (ADB)01 = A01DB01 then fifA*D*Bl > U(ADB). 

Proof See lemma 5.3(iii). We only have to prove (i) because (ii) is weaker. 

Suppose the condition in i holds. Let = (ui » • • • »(i)n_i ) be 
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given. We show that the conditional probability of A*D*B is always at 
least the conditional probability of ADB: He have four cases 
(a,b,c,d).First let p = u (w| ü)n=l} 

a) m i ((ADB)1 u (ADB)0). Then the conditional probability of ADB-0. 

b) ÜJ € (ADB)X\ (ALTB)°. Then (tÖfun) e ADB iff ujn=l, which has 
probability p. On the other hand, by lemma 5.3, u 6 A^B 0 1 or 
ui € B^DA01. If ïi f A 1™ 0 1 then it is suf f icient , in order to 
have ((2»(%, Un+i )£A*0*B, that (%"!, which has probability p. 
Analogously, If U € B^A01 it is sufficient that w ^ - 1 , which 
also has probability p. 

c) ïö e (AOB)0 \ (AOB)1. This case is analogous to case b. 

d) « € (AOB)1 n (ADB)0. 

Hence H € (ADS)0). So the conditional probability of ADB equals 1. We 
have to show that a"! so the conditional probability of A*G*B equals 1: By the 
condition in (i), 

; { A ^ B 0 1 n A°GB01 ori € B ^ A 0 1 „ B°D A01 . 
Suppose the first holds {By 0-1 symmetry the reasoning is analogous if the 
latter holds)-

Z € A OB = > (see lemma 5.6) [u 1 *] c A*D*B. 

Z e A°aB01 — > p 0 *] c A*a*B. 

Hence [u * *] c A*D*B, so that, indeed, the conditional probability of A*o *B 

equals 1■ 

(5.8) Proof for theorem 4.2, case a* 

We show that, if n>2 A,B c {0,l}n a n d A j B h a v e t h e properI-y m e n C i 
oned in 

case a, then the condition in lemma 5.7(ii) holds. This is sufficient because 
also A* and *B fall under case a, so we can successively split all 
coordinates. (More formally the proof can be completed by induction on the 
number of "unspllt" coordinates). 

So, let A,B c {0,1}n} A=DnE, B=FnG, where D and F are increasing, 
and E and G decreasing subsets of {0,l}n. it is easily seen that 
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di € ADB if and only if there are mutually disjoint K,K', L,L' c |l,...,n}, 
such that UJEI on KuL and WEO on K' u L' and j_(jj]p- c D, [ujiri c E, 
["Ll C V and ful i c G" S uPP o s e u ^(ATJB)01. We shall show that this 
implies u f A01aB01, so that (ADB)01 c AO1DF01. The reverse inclusion is 
trivial, u t(AOB)01 =?• (uj,0) € ADB and (u,l) 6 ADB. (uj, 0) e ADB 
■=?> 3K,LC |l,...,n-l} s.t. KnL=0, w=l on KuL, and [(oi,0)]K c D, 
[(w»0)]L c F. (OJ,1) 6 ADB «*> 3K',L'<= [l,..,,n-l]s.t. K' n L'=0, 
U=0 on K'uL', [ü),l]K, c E, [w,l]L, c G. Fix such K,L,K',L'. 
We have: 
OJ E 1 on K U L and u = 0 on K'uL' => (K u L) n (K'u L') =0. 
Hence K,L,K' and L' are mutually disjoint subsets of jl,...,n-l} and it is 
easily seen that L^J^UK' C A an^ ['-"JLUL' c B • 

(5.9) Proof_for theorem 4.2 case b■ 

We show that if A,B c |0,lJn are permutation invariant, then 
condition(i) in lemma 5.7 holds. The proof can then be completed by induction 
on n (using lemma 3.12, noting that {n,n+l| 4- supp(A*) n supp(ftB) and that, 
in the notation of the lemma, for all i,j € {0,1 } the pair A*(i,j), *B(i,j) 
also falls under theorem A.2, case b). Suppose: 
(5.10) OJ 6 (AkDB01 n B°aA01) \ (B^A01 u A0OB01) 

u e A lOB D 1 ==■ 3K,L C jl,...,n}, s.t. [w]K c A 1, 
[ü)]L c B 0 1 , and K n L = 0. Fix such K,L. 

We have [[U]K l] c A, [[»]L *] - B. 
Assume: 3i g L hi± = 1, Fix such an i. 
Define K'=K u {i}, L' = L\{i}. Obviously K' n L' - 0. 
By the permutation invariance of A and B we have 

[ M p *] = A. [W L.1] = B - » [.]K, c A " and [ M L , c B'] 
-»> u 6 B ' D A 0 1 . This is in contradiction to (5.10). 

Hence the assumption " 3i ( L u] = 1" is false, so that: w = 0 on L. 
Analogously, because u is in BOQA 0 1 but not in A°LBoi, we get that for 
certain disjoint K,L c (l,...,n-l): [w] c A01, [u] c B° and 01 = 1 on K. 

K L 



Hence, since u = 0 

Summarizing: [to I 

on L and 1 on K} L and K are disjoint. 

= B01, fwl c 01, and L n K = 0, i.e. u 

However, this is in contradiction with (5.10). Therefore, we may conclude 
that the r.h.s of (5.10) equals 0, hence: 
(5.11) (A^B01) n (B°DAÜ1) c (B^A01) U (A°nBD1).0f course we may replace the 
r.h.s. of (5.11) by its intersection with the l.h.S, which is: (B^DA01 u 
A^01)n(A1DB01nBctlA01) - (B^A01 n A 1 ™ 0 1 nB°DAül ) U CA°DB0] n A ^ B ^ n B ua 
A 0 1 ) , which is contained in the r.h.s. of the condition (i)in lemma (5-7). 
Analogously, by 0-1 symmetry, we can prove that also A°PB 0 1 n B DA J is 
contained in the r.h.s. of (5.7,1). The required result now follows from 
that lemma. 

6. Proof of Theorem 4.2^ case c. 

We first state some definitions and lemmas - A representation of an event A 

is a set {[».]_ |i€l} of cylinders s.t. u [u j = A. 
1 Ki i€I i 

(6.1) Definition Let. ^ - { [ia± ] K . | ±€ j] 

and <ft« [[ülj]K |j€j} be sets of cylinders. The pairjc,̂ ft is called 
seml-disjoint if: 
Vlei jeJ : K n L - 0 or [« ] n [a ] 

1 j 
A pair of events A,B is called semi-disjoint if there exists a semi-disjoint 
pair of representations of A a_nd_ B. 

Remark: Note that these pairs of events form exactly case(c) in the theorem. 
The set of maximal cylinders of an event A is denoted by MR(A). Clearly MR(A) 
is a representation of A. 
(6.2) Lemma: Let A and B be events and let A be a representation of A. 
If the property(*) (see below) holds for all w and for all n, K, then the 
pair .A, MR(BN) is semi-disjoint. 

( * ) : [ [ T I ] R € A , u€[ n ] K nB) *[<■>] c c B . 

Proof: Let [y] t MR(B), [ n ] R € ^ and [ n ] R n [ T ] L + $• 
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Then for a suitable a this intersection can be written as [oL T. 
(Note that for such o [n]K= [a]„ »[Y] L = [°]r)' Tt l s n o t difficult to see 
t h a t [°},\v = U Ü M ] I wC[ö]v ,1 Which, by (*), is contained in B. Hence 
[O]T\V 1S a cylinder of B. But then, also [Y]T\ , i s a cylinder of B. 

This is only possible if L\K - L- Hence K n L = 0. 

6.3 Lemma The pair of__s_et_s D,E is semi-disjoint if and only ifjzhe ,,pair 
MR(D), MR(E) is semi-disjoint. 
Proof The "if-part" is trivial so we only have to prove the other direction: 
If the pair D,E is semi-disjoint-„then by definition there Is a seml-dis joint 
pair2>,£ of representations of D and E. It is not difficult to show that if 
we take A=Dl,jt=2)and B=E, then (*) in lemma 6.2 holds for all w, n and K. 
Hence, by that lemma, the pair CD, MR(E) Is semi-disjoint. Applying lemma 6-2 
once more (this time we take A=E, ^=MR(E) and B=D) gives the result. 

n n 

y(AOB) < p(A) u(B). 
Remark By applying lemma 3.4 analogously to the application In the proof of 
lemma 3.5 the result can be extended to case c of the theorem. It Is even 
sufficient to give a proof for the case that each ki»l; however, the proof 
for general kj, which we give, is not more complicated. See also (4,3,c). 

Proof of lemma 6.4. The case n=l is trivial. We shall prove that If the 
result holds for n-1 (where n>2), then it also holds for n. The proof 
consists of five parts, 1, II, ill, lv, v. First, let il, A and B be as In the 
conditions of the lemma. We shall define A, B, for which we 
prove in parts i-iii that: M(A) - U(A), u(B = u(B) and 
u(A'nB') = u(AnB). Further, we show in part iv that the pair £,Bf is also semi-
disjoint, so that AnB = A B. Hence, it is sufficient to prove that u(ALTB) < 
u(A)u(B). This will be done in part v by applying the induction hypothesis 

to a* - n ji,...,k }. 
l-l' i 

Flrst some definitions: 
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(6.5) Definition 

3i+= (C i MR(B) | n E supp(C)) 
3T« {C (- MR(B) | n ^ supp(C)| 

jT t jgp + and A~ are defined analogously. 

(6.6) Definition If V = |l k n j , ̂ hen_ V = | H,i+] , . . . , k n ) , 
where i = kn-|v|-!-l, and V = (l,...,|v|}. 

(6.7) Definition 

(a) B+ = u (|>' V(u')]l, "here V(ui') - |j|(u',j) f B+). 
Hi'«ft' 

(b) A+ . u ([ill' W(w)]l, where W(u') » )jU»',j) e- A+1. 

u' 6S1' 

(c) B = B- u B+. 

(d) A - A- u A+. 

Ue are now ready to start the real work: 
(i) It is easy to see, by conditioning on Ml <%i—1> thac> f o r a 1 1 

D for which sup (D) e (l,...,n-l): 
li(D"B+) = u(D nB +, and u(DnA+) - !J(DnA+). 

(ii) Using (I), we get u(B) - :j(B-)+]i(B+)-u(B~nB+) = 
- u(E-)+v(B+) - t(B _nB +) = ll(B), and analogously, 
11(A) = 1>(X). 

(lil)Applicatlon of lemma 6.3 yields A+ n B+ = 8, and by conditioning on 
ul » - - • .uJn-1. lc follows that also A+ n B+=0, so 
that u(AnB) - u((A-uA+) n (B_UB+)) - u(A~nB-)+u(A-nB+) + p(A+nE") 
-u(A-nB_nB+) - u(A"nB-nA+). 

Now, by (1), we may, in the last expression, replace B+ by B+ and A + by A + 

and then, following the equations backwards, we get u(AnB) ■ u(AnB). 
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(iv) We shall now show that the pair A,B is semi-disjoint. First of all, it 
is clear that A " u MR(A +) and JTu MR(B +) are representations of A and B 

respectively. It will turn out that this pair of representations is semi-
disjoint: The pair MR(A+) , !-fR(B+) is obviously semi-disjoint, 

because, as we saw in (ill), A + n B + » 0. 
By lemma 6.3. the pair A~t3l~~ is also semi-disjoint. It remains to show that 

also the pairs it ,MR(B+) and $ , MR(A +) are semi-disjoint, and, by 
symmetry.it is sufficient to treat the first pair. This will be done by 
using lemma 6.2. 
Let [w' ] R

 e A~and U"'(ÜJ1,. .., (Jin) É [ W ' ] K n I +. Obviously 
[u]K = [l»']K. Let K' = |l, . . . ,n-l)\}'.. 

Define the map 
S= B * 2 * (1 kn( b y 

S(tl.T) - |j|[n] K n [y] K, n[. j] c B + ) . 
Define S(n,Y) analogously, replacing B + by B~+. We know, because 
Che pair A~j3l+ is semi-dis joint (lemma 4. 3 ) , that for all n€Sl, S( QI, m)cS( r,, m) . 
Further, the definition of B+ implies that 

S (tD,Lo) = S(tflfu), and V n Ê B, S(n,io) - sTn7£) • 

So we get: 
Vn C H S(ui,ijj) c S(n,LLi), and finally, because u € S(ID.Ü)). 

n 

Vn E B ui 6 S t ra in ) , so t h a t 

Vn e A [ n L n [u ] e B+, hence" [u] e B+( and so , by lemma 6 . 2 , 

the p a i r &~ , MR(B+) i s s e m i - d i s j o i n t . 

(v) F i rs t : d e f i n e , for D c B and 1 < i < kn > 

D1 - {ui' É B' I Cw' , i ) f D ] . 

Before we apply the induction hypothesis, we have to show that also the 
pair A , B is semi-disjoint (i=l,...,k ). This is easily seen by taking 
the 
representations 

= {C | C € MR(A)}, 
» |C | C € MR BJ. 

http://symmetry.it


The induction step is as follows: 
Let p' denote ulfi*, (i.e. u' is the uniform distribution on Q') . 
Let p = l/kn. 
We have: 

|l(A) u(B) - g(A n B) = u(A) u(B) - u(A n B) = 

k I . k 
-p [VCOp lV(B]) - p JV ((AnB)1) 

1-1 j - 1 1-1 
kn kn ~i ~i The last summation equals: p2 'l 1 u'(A n B') 
1-1 j-1 

k kn _s ^ 
= P2 I I u'(A~ n B ), which; by the induction hypothesis, is at 

1=1 j=l 
kn kn ~i ~i most p2 I I u'(A ) y'(B ). 
1-1 j-1 

So we have 
k k . 

u(A) u(B) - u(A n B) > p2 £n ^n u'(Aa) u'CB3) - u'CA1) u'(B ) 
i=l j=l 

- P2 I [u'CA1) - u'(AJ)] [u'(BJ) - y'CB1)] which Is non-negative 
i<j 

because, for all i,j, i<j implies A c A and B c B . 

7. Proof of Theorem 2.Id 

Apparently, there are mutually disjoint K,,Kj>...c[l,...,n} such that the 
support of each maximal cylinder of A is one of the K! s> gy j_eIlrma 
3.12 (noting that each A(IÜ') falls again under case d of the theorem) we may 
assume that y K± „ {i(...(nJ and by lemma (3.10) that each K± 
consists of consecutive numbers. Further we can reduce the problem to the 
case that for suitable ri-si: 

n 
(7.1) a = n ( l , . . . , r }, A={üjefi| 3i u < s } . 

i=l i i 
This can be seen as follows: For each i, let 

ft = {dj'e II S.][* u' *] is a maximal cylinder of A}; 
i€K, J 

take r, = \[ S . , and s. » £2, j. I .e the number of maximal cylinders 1 ' v l ' l' J 

of A which have support K^. Obviously, there exists a 1-1 map 

f.: [l,...,r,l * II S., which maps {1, . . -, s , lont o £2, Let y, - ( n \x. } o f,. 1 l ' IJ j r l * ' iJ l 1 v iJ i J6K, J6K. 

Now define f II f.: nfl,...»r.| ■* n, and v - n v,. 
i i , { ' ' iJ ' i i 

properties i and ii' in lemma 3.A hold. Application of that lemma gives that 
we may indeed restrict ourselves to case (7.1). 

Now we apply lemma 3.4 once more to reduce 7.1 to the binary case: 

Let ft' = {0,1f" x n {1, 
1 = 1 

II {l,...»r.}. Define g: ft' + ft by 
1=1 

y if x «0 
where, for L<l<n, g ^ x . ^ . z ^ = {z_ ±f . 

Also define, for K K n , the probability measures 

\i'. , u! and u' on 0,1} , 11 l , . . . , s t lx iy iz l ' < 1' and IT {l ,*>. , r . | respectively 
1 = 1 

ujy(j) ■ PIM^J) , j-l,..-,s1j ILMJ) = M I ^ T } , j-s^l,..., r±. 

n n n 
Finally, define u' ■ I u! x II u! x n u! . 

i - i l x i - i i y i - i i z 

It is not difficult to see that the properties i and Ii of lemma 3.4 hold 
with f=g and v=u') and that g-i(A) = 

u lx. ,. , . ,x ,y »..., y ,z. ,.. . ,z )€ft| 3i xJ =0 \. Application of this 
. ,, ■ L 1 n 1 n 1 n ' 1 ' rt̂  
i<i<n 

lemma and of lemma 3.11 (note that g"1(A) does not depend on the y's 
and zj_s) reduces the problem to the case that: 
(7.2) ft={0,l}n, A={weftj 31 a =0}, and for this case we have the following 
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direct proof: If ft and A are as in (7.2) then, for arbitrary B c R, 
(7.3) ti) € A D B ^ ^ u £ B, 3i w. = 0, (w, , w. ,,!,«. ,,...,W ) E B. 

1 1 l-l.i+l ' n 
Call an element w £ B maximal if there is no w'j* U in B with w'i W. Denote 

hence 
C?.*0 u(AÜB)< y(B)-u(Bmax). 

Further, for each u 6 Q; 

(7.5) MCJU1 | »*<»}) " w
n

= 0 ^ V = u(«)/wnMl MCWJ) < 

< ll(w)/u(l»"-»D = u(u)/(l-u(A)). 

Hence 

(7.6) u(B) - M( U (W' I (!)*€ B, u' < Ü)}) < J |iC {«• I»' «B, B \ < W } ) < 
u€B oî B 

max max 
j; u(o>) / (l-p(A)) = U(B M X) / (l-M(A)), 
a*B 

max 
so that 
(7.7) llB,,, 3 U(B)(1-U(A)) . 
Combining(7.4) and (7.7) ye get 
(7.8) y(ADB) « p(B)-u(B)(l-u(A)) = u(A)u(B). 
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ENIGE Bl.IDRAGEM TOT DE FERC.OLATIETHEORIE 

en verwante gebieden 

SAHENVATTIKC 

in de percolatietheorie bestudeert men de stochastische 
eigenschappen van netwerken v/aarvan de knooppunten en / of verbindingen 
met bepaalde kansen eigenschap A of eigenschap B he'bben. De specifieke 
betekenis van A en E hangt af van de aard van het probleem. Het onderwerp 
werd voor het eerst in de literatuur behandeld in 1957 door Broadbent en 
Hammorsley, die een wiskund,iq model probeerden te maken van de verspreiding 
van een qas of vloeistof door een poreus materiaal. 

Percolatiemodellen bleken spoedig van belang te zijn bij de beschrijving van 
diver se"coöperatieve"verschijnselen, zoals halfgeleiding, betrouwbaarheid 
van grote communicatienetwerken en de vorming van polymeren. Ook bestaat , 
er een grote mate van analogie met het Ising model voor ferromagneten. 
Dit proefschrift bestaat uit een algemene inleiding, gevolgd door zeven 
artikelen over percolatie en verwante gebieden. Bovendien wordt op ieder 
artikel afzonderlijk een kort commentaar gegeven. 

Het eerste artikel (A) betreft resultaten en vermoedens van Sykes en Essam 
(19G4) . 
Het tweede artikel (B) houdt zich bezig met de vraag welke kritische waar
schijnlijkheden kunnen voorkomen bij de subgrafén van een gegeven graaf, 
en formuleert een eigenschap van "unieke oneindige componenten", welke 
gebruikt wordt in artikel (D). 

De artikelen (C) en (E) laten tegenvoorbeelden zien op intuitief voor de hand 
liggende vermoedens van Hammersley en Welsh (1965) en Hammers ley (1957) . 
In artikel (D) (gezamenlijk werk met M.Keane) wordt een verband gelegd 
tussen twee belangrijke onderwerpen, namelijk de continuïteit van de 
percolatie-waarschijnlijkheidsfunctie enerzijds en het aantal en de aard van 
oneindige componenten anderzijds. 

Het artikel (F) (gezamenlijk werk met H.Kesten) is voortgekomen uit een 
geïsoleerd percolatieprobleem, dat echter aanleiding gaf tot een aantal 
ongelijkheden die op een breed gebied van toe-Dassing zijn. Een aantal 
resultaten in de betrouwbaarheidstheorie en in de percolatietheorie werden 
verbeterd, van een aantal andere werden eenvoudiger bewijzen gevonden. 



Artikel (G) (gezamenlijk werk met U. Fiebig) is gewijd aan een in het 
vorig artikel geformuleerd combinatorisch vermoeden betreffende het 
"disjunct optreden van gebeurtenissen". Dit vermoeden heeft betekenis 
voor de percolatietheorie (zoals voorbeeld 1.2 laat zien) maar heeft 
ook geheel andere interessante interpretaties (zoals voorbeeld 1.1). 
Enkele gevallen worden bewezen; één daarvan is een uitbreiding van de 
FKG-Harris ongelijkheid. 
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6.3 

AL = 

By a technical failure a part of the text i 
A154 has been omitned. The complete text is 

the first column of page 
as follows: 

The following references should be added 
to the list on p. 22-24: 

Kingman, J.F.C. (1973) Subadditive 
ergodic theory, Ann. Probab. _1_, 
883-909. 

Mc Diarmid, C. (1980) Clutter percolation 
and random graphs, Hath, Progr. Study 
13, 17-25. 

Whtnwecil lLwQYcnicnu^ndu^uivilct iur .faral lAaric! 
p, S,{p,n,) "S,{p-V;), then we can gcnenliie the above re
sult as follows: 

Theorem 1: Lei L be a lattice which has Only a finite 
number of classes ofequivalem vertices and which pCis«jes 
i pair of orthogonal symmetry-ales. Then 

The proof of Theorem 1 is similar to that of the special 
case of the simple quadratic lattice (see also Fisher1). 

3-SOME NONTRIVIAL SECTION-GRAPHS OFS WITH 
CRITICAL PROBABILITY P^fSf. 

In ihii section it will fint be shown that ^"{S'jn-)) 
■ P',"{S). where5(In-) denotes (he quadrant ofS with ver-

IM-Mt f (n./n)|n,fli>0|. Analogously S *({*] will denote the 

From thematching-properly (see Rcf. 1) it follows (hat 
the vertel 0 ■ (0,0) belongs to an infinite while cluster of 
5*(lff)irandonlyirthereisnoblackwaUin5(lrr>rromsome 
verte* (n.0) to some vertex (0.m),n./n>0. It LS Invial that the 



Stellingen bij het proefschrift "Some Contributions to Percolation Theory and 
related fields" van J. van den Berg, B januari 1985. 

1. De in [l] beschreven methode voor het simuleren van de golfhoogten onder een 
zich boven het oceaanoppervlak voortbewegende waarnemer is niet geschikt voor 
hoge snelheden, omdat de variantie van het gesimuleerde proces dan aanzienlijk 
(.+_ 35%) te laaq is. 
[l] R.T. Schmitke (1971), A computer simulation of the performance and dynamics 

of HHCS Bras d'or (FHE-400), Canadian Aerodynamics and Space Journal, 
March 1971. 

2. Door middel van laboratoriumproeven onderzoekt men in welke mate DNA beschadigd 
wordt door chemotheraoie en bestraling. In [2] wordt een wiskundiq model be
handeld van twee aanvankelijk onbeschadigde en van elkaar gescheiden DNA strengen 
die onderhevig zijn aan: (i) breuk; (ii) vorming van onderlinge verbindingen; 
(iii) aanhechting van andere celDrotelnen . Een stuk DNA waarmee het laatste 
heeft plaats qevonden is zo groot geworden dat het niet meer door bepaalde 
filters kan. De auteurs berekenen de fractie van het DNA materiaal dat tot 
dergelijke clusters behoort. Aan het einde van het artikel merken zij onder andere 
op dat " the calculation of the total length of all the fragments in a given 
cluster seems to pose a more difficult problem". Dit lijkt mee te vallen: de 
oplossing komt neer cp het inverteren van een Laplace transformatie -
[2] George H. Weiss and John Rice (1982), A combinatorial problem in pharmacology, 
J.Hath.Biology 14, 195-201. 

3. Het in [3] besproken model van een bosbrand is, in tegenstelling tot een bewering 
van de auteurs, geheel equivalent met gewone (d.w.z. onafhankelijke naaste-buur) 
lijnpercolatie. 
[3] Gary MacKay and Naeem Jan (198-1), Forest fires as critical phenomena, 

J. Phys. A _T7, L757 - L760. 

4. Voor simpele symmetrische exclusieprocessen (zie [4]) is bekend dat, gegeven 
de beaintoestand, voor iedere t > 0 en voor elk tweetal roosterpunten i,j 
{i / j) de gebeurtenissen {op tijdstip t bevindt zich een deeltje in i} en 
{op tijdstip t bevindt zich een deeltje in j} negatief gecorreleerd zijn. In 
deze stelling is de symmetrie conditie zeer belangrijk. Er is namelijk een voor
beeld van een proces waarvoor nog wel in ieder roosterpunt de ingaande rate 
gelijk is aan de uitgaande rate maar waarvoor de sytranetrie-conditie niet geldt 
en de uitspraak van de stelling onwaar is. 
[4] T.M. Liggett (1977), The stochastic evolution of infinite systems of 

interacting particles; in: Ecole d'été" de probabilités de Saint-Flour VI-
1976, LNM 598,'Springer-Verlag. 



5. Zij d > O, t,V,g >_ d en B de balk [0,*1 x [0,v] x [0,g]. Laten L, V en G 
meetbare deelverzamelingen zijn van respectievelijk het linker zijvlak, het 
voorvlak en het grondvlak van B. Laat verder C de cylinder zijn in B Aie lood
recht op het grondvlak staat en als basis G heeft (dus C - G x [0,g]. Definieer 
op analoge wijze C en C . Stel nu dat van elk van deze cylinders het gedeelte 
op afstand < d van de basis gekleurd wordt (Dus van C wordt de deelverzameling 
G x [0,d] gekleurd enz.). Dan geldt dat de fractie van C L U C v U C Q die ge
kleurd is maximaal is als L het gehele linker zijvlak, V het gehele voorvlak 
en G het gehele grondvlak is. 

6. Beschouw een groot net met vierkante mazen van lengte 1. Stel dat ten gevolge 
van slijtage breukvorming optreedt overeenkomstig een homogeen Poisson proces. 
Hierdoor valt het net (mogelijk) in fragmenten uiteen. De kans dat twee buur-
knoopounten tot verschillende fragmenten behoren is kleiner dan de overeen
komstige kans voor twee knooppunten met onderlinge afstand 2. 

7. Laat F een partitie van Z zijn in eindige klassen. Beschouw naas'ie-buur punt-
percolatie modellen waarbij tot verschillende klassen behorende punten onaf
hankelijk zijn, terwijl binnen iedere klasse afzonderlijk de punten open of 
gesloten zijn overeenkomstig een StJBU verdeling. Wanneer het antwoord op problee: 
1.11 van artikel F in dit proefschrift bevestigend is, dan voldoen al deze 
nodellen aan ongelijkheid 3.18. Voor modellen die bovendien voldoende periodicir 
teit bezitten zou dan tevens, in het kritische gebied, het volgende analogon van 
corollarium 3.15 gelden: P[B ] > c(d) n~ l d _ 1 ) / 2. 

8. Zij a € [0,1], A = [a, 1], x,y € [0,1], X > y , Voor diffusieproblemen raet 

reflecterende punten 0,1 geldt p (B(t) £ A) >_ P (B(t) € h], 0 < 't < «». 

9. Wie twee reizen als bijrijder op een vrachtauto maakt, een van New York naar 
Los Angeles en een van Stockholm naar Rome, behoeft geen econoom te zijn om 
in te zien dat de EEG geen wereldrol van betekenis kan spelen zolang haar in
wendige handelsobstakels niet verder geslecht worden. 

10. In verband met de steunverlening van de overheid aan noodlijdende bedrijven 
wordt vaak de kritiek qeult dat bescherming van deze, meestal verouderde, bedrij'* 
weggegooid geld is en ten koste gaat van levensvatbare en vernieuwende bedrijven. 
Wanneer men nu personen beschouwt als (dienstverlenende) ondernemingen die hun 
dienstenpakket (lees: kennis, vaardigheid en inzet) voortdurend dienen aan te 
passen aan omstandigheden en ontwikkelingen, dan zou een gelijksoortige kritiek 
op zijn plaats kunnen zijn. 

11. Bij het oogsten van biezen wordt men geconfronteerd met diverse lastige 
percolatieDroblemen. 


