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Percolation theory studies the stochastics of a network whose nodes

and/or connections randomly belong to one of two states. It was introduced
by Broadbent and Hammersley (1957) to model the spread of a gas or fluid
through a porous medium (the medium consists of a network of channels
which are randomly passable or blocked). The subject soon appeared to be
useful in the description of many cooperative phenomena, such as semi-

conduction, reliability of large communication networks and the formation

polymers, and it has many relationswith the Ising model of ferromagnets.

This thesis consists of seven articles and short notes on percolation theory
and related subjects , preceded by an introduction and a short comment

on each of the articles. The aim of the introduction is two-fold. In the

first place,

presenting examples of concrete phenomena, it gives the
non-specialist and even the non-mathematician an idea of the nature of
percolation theory. In the second place we sketch the history of percolation
theory and present rough ocutlines of the proofs of some of the main results
in Bernoulli percolation. This gives the interested mathematician an idea

of the methods used in percolation theory without having to go through all
the details, and may help in the study of the literature. No attention is
paid to renormalisation methods, although these methods are very interesting,

since the accent of this work ison rigorous results
At the end of the introduction we try to indicate what seems to be the
emphasis of actual research and we give a short introduction to first-passage

percolation.

1. Introduction

1.1. Examples

Example 1. Reliability of large communication networks.

Consider a large telephone network. Suppose that some of the connections
are broken. If the fraction of broken connections is small, there is a
reasonable probability, that from a given location communication is still
possible with locations arbitrarily far away. However, if the fraction is
above a certain critical value, the network breaks into many "islands",
on each of which internal communication is still possible, but which are
isolated from the others. Apparently, by varying the fraction of broken

connections a so-called percolation transition occurs. The term "percolation"



refers to the next example, which was, in fact, the motivation for

Broadbent and Hammersley to study these phenomena and introduce the

subject into the mathematical literature.

bsorption of fluid by a porous stone.

Example 2. Absoxption of LT —F = = —————

Suppose a large porous stone 1is surrounded by a fluid (or gas). The

empty space inside the stone is considered as a collection © atively

£

large holes interconnected by narrow channels. Suppose the fluid can only

flow through channels of a minimum width. 1f the fraction of suffic

wide channels is Very small, only the part of the stone very close to
the surface will be wetted, but if it is above a critical value the fluid

rall density of wet

will percolate, i.e. there will be a non-zero Oove

volume.

Reports of Schlumberger-Doll show that these kinds of models are actually

rVOLiY

interesting for practical research concerning oil-re

Koplik, Wi lkinson and Willemsen (1983).

Example 3. critical phenomena in a dilute ferromagnet.
A dilute ferromagnet may be modelled as follows: & mixture of magnetic
and non-magnetic atoms is randomly distributed among the nodes of a cubic

lattice. Let p be the concentration of magnetic atoms. If the temperature

is very low, neighbouring magnetic atoms will have parallel magnetic

spins. If we neglect interactions between atoms at larger distance the

following will happen: for low values of p there will be small clusters

of magnetic atoms. Inside a cluster the atoms all have the same spin, but
different clusters may have spins in opposite directions and the overall

magnetic spin will be zero. However, if the concentraticnjaincreases, the

above clusters grow and above 2 certain concentration an infinite cluster

occurs causing a non-zero overall magnetic spin.

The relationship petween percolation theory and the theory of ferromagnets

is much more subtle than appears from this example. Kasteleyn and Fortuin

(1969) have proved exact relations between percolation and the Ising model

of ferromagnets.

There are many other phenomena where percolation plays & role,rsuch as

spread of disease in an orchard, propagation of fire in a forest, the

formation of polymers, and semi-conduction. There are several publications

where these and other examples are discussed, e.9- Frisch and Hammersley

(1976) ,

, de Gennes

also contal

Sstauffer (1979) and

1s many results from simulation,

The last

renormalisation group

techniques and numerical methods.

1.2. The mathematical model.

Roughly speaking, percolation

of random networks,

connections and/or the nodes

interesting to know

remaining network;

(exampl

So consider a finite or countably infinite conn

interconnect

(nodes)

y eegs

to some random mechanism a ce

is open while the others are

we speak of site ( bond ) -perc

d percolaticn). The terms
§ 1.1, where the sites are th
if they are too narrow, are c
ferromagnet the random mechan

means magnetic,

between neighbouring atoms.

infinit
this phenomenon corresponds

1.1), porosit:

"closed" non-magnetic. The bonds

theory studies the connectivity properties

i.e. networks from which a certain fraction of the

is randomly taken away. In particular it is

connected subgraphs can occur in the

vy (example 2), and macroscopic magnetic

ed by bonds . (In most cases G is a regular
the 3-dimensional cubic lattice). According
ytain fraction of the sites and/or thebonds
closed (if only the sites (bonds )
olation; if both are concerned we speak of

"open" and nclosed" refer to example 2 in

e holes and the bonds are the channels, which,

losed to the fluid.

ism concerns the sites (atoms) and "open"

are abstract connections

Most results in the literature are concerned with models in which different

sites

is passable in two directions

( bonds ) behave independently.

Moreover we will assume that each bond

(although many results have been found for

so-called oriented percolation, see €.g. Durrett (1984)), and that G is

locally finite, i.e.
range percolation, see, €.9..

Newman (1984)).

that each site has finitely many bonds. (As to long-

Grimmett, Keane and Marstrand (1984), and

Before we go further we need some definitions:

A path from site s to site s'
where each Sy is a site andb,
i

is the length of the path.

is a finite seguence S=sS
al bl’b1'52'b2 ""bn'sn+1

is a bond between s; and Simt The number n
it

with long-range communication

ected graph G, which consists

are concerned

In the example of the dilute

Hsz
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A path is self-avoiding (s.a.}) if all s; s are different. & porous stone. Their first important observation was that, for many

. : graphs, P _ is non- trivial, i.e. not equal to 0 or 1. Hammersley (1957,
B path, or more generally a subgraph, is said tc be open if all its H

1959) gave upper and lower bounds for critical prababilities.
bonds (or, in the case of site-percolation, all its sites) are open.

An open cluster is a maximal connected open subgraph (so two sites s and Soon, attention was paid particularly to the regular two-dimensional
s' belong to the same open cluster iff there is an open path from s to s'). lattices (the square lattice, denoted by S, the triangular lattice T

and the hexogonal lattice H). A concept which soon appeared to be very
Analogously, a closed path, subgraph and cluster are defined. useful was duality. The dual niiors planar lattice L is obtained by putting
one site in each face of L and connecting sites which lie in adjacent
The distance between two sites s and s' is the length of the shortest path

faces (see fig. 1). The bonds of L are then in 1-1 correspondence with
from s to s'. a

those of L~, and each configuration on L (i.e. specification of open and

. closed bonds) induces a configuration on LY by calling a bond of .3 open
Now let all bonds (or sites) be indepedently open with probability p and

if and only if the corresponding bond of L is open.

closed with probability 1-p. For each site s define:

= i a re exists a site at dis >
(1.1) Pn(P,S? the probability that there exi a site at distance > n

of s, which belongs to the same open cluster as s.

Further, the percolation probability function is defined as:

(1.2) 6(p,s) = lim Pn(p,s)

ne

(clearly, this is the probability that s belongs to an infinite open

cluster) .

Finally, define

(1.3) B = inflp: 8 (p,s) > 0} ,

which is called the critical percolation probability.

Remarks:

i) BAs observed by Broadbent and Hammersley (1957), PH does not depend

on s because G is connected.

ii) The critical probability for bond-percolation is, in general, different

Example of a i £ d i i
from that for site-percolation (see Hammersley (1961) and Kesten lattgces' the Ei;;n;ulaia% ) The matching of the square lattice,

(1982, ch. 10)) . and the hexagonal lattice(--

1.3. Short history of percolation theory and sketches of proofs of some

important results.

As remarked in £ 1.1. Broadbent and Hammersley introduced percolation theory

in 1957 as a model of the spread of a fluid or gas in a random medium, e.q.



e

It is easily seen that the triangulaxr and hexagonal lattices are dual

to each other and that the square lattice is self-dual.

The following fact, which is intuitively obvious follows from results

of Whitney (1933).

(1.4) Lemma.

Each finite open cluster in L is surrounded by a closed circuit (by this
7 d
we mean a circuit of which all bonds are closed) in L°.

(Of course, the same holds with L and i exchanged.)

Hammersley used self-duality of the square lattice S to show, for bond

percolation on this lattice,
(1.5)

where A = limsup an ,where fn is the number of self-avoiding paths of
length n. (It is easily seen that A is between 2 and 3; although the exact
value of A is not known the approximate value of A is usually given as

X = 2.6; the accuracy of this approximation is also unknown. )
Remark to be more precise, self-duality is used to prove the second
inequality‘in (1.5); the first holds for any lattice, because,clearly,
Pn(p,s) < P (there exists an open self-avoiding path of length n, starting
iniis)t < pé (the number of s.a. paths of length n starting in s), which

1
tends to 0 if p < T
Harris (1960) proved that for bond-percolation on S

1
(1.6) Pais) > 5 -

His proof makes extensive use of duality arguments and also concerns a

correlation inequality which has become one of the basic tools in percolation.

To state the inequality we need some definitions: An event A is called
increasing (or positive) if, whenever a configuration belongs to A, each
configuration which can be obtained from the first by changing one or more
closed bonds (or, in the case of site percolation) sites) into open bonds
(sites), also belongs to A. If we exchange, in the above definition, "open"
and "closed", we.get the definition of a decreasing (or negative) event. It

is clear that if A is increasing its complement is decreasing and vice versa.

Harris' correlation inequality says:
(1.7) Lemma.

If A and B are both increasing (or both decreasing) then P(2NB) > P(A) P(B).

Remarks

(1) Fortuin, Kasteleyn and Ginibre (1971) have extended this result to
a class of models (including the Ising-model) where the sites (or bonds)
do not necessarily behave independently, and therefore (1.7) is usually

called the FKG-inequality.

(i1

Van den Berg and Kesten (1984) have obtained an inequality which says
that the probability that two increasing events occur "disjointly"

i all

than the product of the individual probabilities.

Fisher (1961) applied Harris' method of proving (1.6) to other sufficiently
regular planar lattices. The idea is that 6(p,L) > O implies, for each site,
the (a.s.) existence in L of arbitrarily large open circuits surrounding
that site. But then, by (1.4), there can not be an infinite closed path
in the dual (for such a path would intersect one of the above circuits which
is impossible). Hence, noticing that the bonds are closed with probability
1-p, we may conclude that p > pH(L) implies 1-p f_pH(Ld), which immediately
yields:

’

(1.8) P (L) + p (28 50

of which (1.6) is a special case.

The above results ((1.4)-(1.6) and (1.8))
As to site-percolation, the role of the dual lattice is played by the
so-called matching lattice, introduced by Sykes and Essam (1964): Consider
a mosaic (which, roughly speaking, is a planar lattice built up of non-
overlapping polygons which together cover the whole plane; (so S,T and H
are examples of mosaics). Choose a (possibly empty) subset of polygons and
draw all diagonals in these polygons. Call the lattice thus obtained L and
the lattice obtained by drawing all diagonals in the complementary subset

of polygons L*. L and L* form a so-called matching pair.

are all concerned with bond-percolation



Remarks:

(1) If L is the original lattice (which happens by taking the first
set of polygons empty) then L* is the lattice obtained by drawing
all diagonals in all polygons. So the matching of the square lattice

is the lattice in fig. 2.

(ii) Triangles have no diagonals, so each triangular lattice is self-matching.

q

Apparently, L and L* have the same sites, and a configuration on one of

the lattices induces a configuration on the other. Sykes and Essam
that for site-percolation on a matching pair L, L* the following (again

intuitively obvious) analog of (1.4) holds.

(e 5.9) Each open cluster in L is surrouned by a closed circuit in W
(and, of course, the same holds with L and L* exchanged).

Further, for site-percolation the following analog of (1.8) holds:

(1.10) pH(L) + pH(L*) 2ok

In particular, for the triangular lattice T:

o=

(LA p (T >

Remark

It can be shown (Fisher (1961)) that each bond-percolation problem on a
certain graph is equivalent to a site-percolation problem on the so-called
covering graph, and that the covering graph of a dual pair of planar

lattices form a matching pair. Given this fact, (1.8) is contained in (1.10).

Sykes and Essan (1964) made plausible (by analogy with statistical mechanics) ,

that in (1.8) and (1.10) equality holds, which yields immediately i = % fo
bond-percolation on § and site-percolation on T. By using an additional
relation between bond-percolation on T and on H (so-called star-triangle over-
lapping) they show that for a certain value of p (namely the root of the
cubic equation 1-3p + p3 =0) 6(p,T) > 0 is equivalent to 8(1~p,H) > O.

But if pH(T) + pH(H) = 1, this can only happen if p is exactly pH(T). Hence
pH(T) must be the root of the above equation, which appears to be 2 sin (7{‘6) '

T
angd pH(H) =1~ 251n(18).

-9-

However, their proof of equality in (1.8) and (1.10) was based on

an assumption (namely that the mean number of clusters per site is,

as a function of p, always singular at Py but nowhere else), which they

were not able to prove and which is still open (see Grimmett (1981)

and Kesten (1982, ch. 9)}).

As to the conjectured equality in (1.6), (1.8), (1.10) and (1.11),

mathematically speaking, not much progress was made between 1964 (the

year of publication of Sykes'and Essam'swork) and the late seventies.

Independently, Russo (1973) and Seymour and Welsh (1978) put new life

into the subject. They considered so-called sponge-crossing probabilities:

define, for a 2-dimensional lattice of which the sites are in ZZ, the

"sponge" T(m,n) as the subgraph of which all sites and bonds are in the

rectangular region 0 < x

<n, 0 <y <m. By a left-right crossing of T(m,n)

we mean a path inside T(m,n) from its lift to its right edge.

Define:

(1.12) P(m,n,p) = P [there exists an open left-right crossing of T(m,n)].

In addition to Py define two other critical probabilities:

(1.13) P, = inf{p: limsup P(n,n,p) > O} ,
2 n->e

and

(1.14) z=intlp: E(|w]) = =} ,

where E(Iw[) is the expected size of the open cluster W

belonging to a specified site, say 0. It follows immediately

that Bn 2 Py -

The Russo-Seymour-Welsh (RSW) theorem
the three critical probabilities: For

of sufficiently "nice" lattices L and

(L1991.55) R = )
N i
pH(L> + pT(L )=

and the same with L and L*

states the following relations between
site percolation on a matching pair

1%

exchanged.

The analog for bond-percolation on a sufficiently nice pair of dual

Planar lattices is:



-10~

(1.16) pT(L) = pS(L) '

a
pH(L) + pT(L Y =1 %

d
and, again, the same with L and L~ exchanged.

We shall give a rough outline of Russo's proof of (1.15) with L being

the square lattice. The more general result can be proved analogously.

First Russo ﬁroves that; 168D > pH(S), %32 P(n,n,p) = 1 which, by using
(1.10), is not very difficult. The most trechnical part is to show that
the latter also implies lim P(n,3n,p) = 1. Once we have this result it

is fairly easy that fg:meach a € N~ {0} the probability of an open
Vit alusR (0e 3t a) tends to I if nees (Alk, 1) s the part
of the plane where both coordinates have absolute value between k and 1).

This is illustrated by figure 3 and the following observations:

f19.3.

R n+l
The annulus A(3 a,3 a)
containing a circuit

which consists of parts

of:

a path from LU to RU
ve 9 59 UR,, AR
- B B Ty RA!‘I‘A
IRERR} vy AL, UL.

uL e a UR
2.3 .a [(=6.3.2)

v

i

To have an open circuit in above-mentioned annulus it is sufficient

to have, inside the annulus, an open path from LU to RU below the inner
square, from UR to AR right from the inner square etc. By the FKG-inequality
(1.7) the probability of this is larger than the product of the individual
probabilities which is P4(2.3na,6-3na,p) which tends to 1 if no= (by the
previous step in Russo’s proof). From this it can be proved that the expected

ze of a closed cluster in S* is finite, as follows:

Define

A(a) = sup{P [there is no open L-circuit in the annulus A(Bna,3n+la‘]:n € ).

It is clear, by (1.9), that if an open L-circuit exists in A(Bia,3i+1a)

for some i < n, then there cannot be a closed path in L* from 0 = (0,0) to

any site outside the outer edge of the last annulus, A(Bna,3n+1a)
n+la,3n+2a) which are in

Ttia

also clear that the expected number of sites in A(3

the closed L*-cluster belonging to O is at most P [3 closed L*-path from O

y n n+
to the outer edge of A(3 a,3

A(3n+la

1
a)] multiplied by the number of sites in
n+l n+2 a2

5 "a), which is at most ) (a) 4 , 9

» n > 0. So the expected

0]

ize of the closed L*-cluster belonging to 0 is at most: (the number of sites
©

1
“ (9.X(a))n+ , which holds for

in the region [x| < 3a, [y| < 3a) + 36 a Xr
- - ~ n=0
1 5 i
each a € N~{0}. By taking a such that A(a) < g’(whlch is possible, because
A(a) = 0 if a = =), the above series converges, so the expected L*-cluster

belonging to 0 is finite and, consequently, 1-p < pT(L*). Apparently,

p > py(L) implies 1-p < pT(L*). Hence pH(L) ke pT(L*) > 1. The other part,

1 8 pH(L) + pT(L*) < 1 is easier. One way is to use a theorem of Hammersley
(1958) which yields (as remarked in Van den Berg (1981)) that finite expected
T : :

cluster size implies that the Pn(p), n € N (see (1.1)) decrease exponentially

so that the relevant probabilities can be sufficiently estimated. With a

small amount of effort the above proofs also yield the result Pg = Pqp-
By the RSW theorem ((1.15),(1.16)), Sykes' and Essam's conjecture
(pH(L) + pH(L*) = 1 for site percolation, and pH(L) + pH(Ld) = 1 for bond

percolation) would be true if and only if:

7 ol & T

That this is indeed the case has been proved by Kesten (1980) for bond
percolation on the square lattice. In his article Kesten shows that, for

p. < %ﬁ ;iﬂ P(n,n,p) = 0 which yields, by definition of PS (and reminding
BSisibDas S

pH), by (1.16) and by selfduality of S the desired result

His proof is roughly as follows.

0o

pH = = T
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1 critical prokabilities for bond percolation on the triangular and hexagonal
S SE= i e Ft-ric | tices P ein 2ai ;

Suppose p < 7 Then, given the event that there exists an open left-right lattices are 2 sin (18) and 1-2sin (Ig) respectively.

crossing of T(n,n),it is, if n is large, rather likely that there are

many so-called pivotal bonds. (In this context a bond is called pivotal Summarizing we have, for site percolation on a matching pair of

"

(or critical) if there is an open left-right crossing which contains sufficiently nice" lattices L and L*:

the bond, but no open left-right crossing which does not contain this
bond). More precisely this means that: (1.20) pH(L) 25 e () = il
H

(1.18) there exists an o > 0O such that for each k the (conditional) and for a dual pair of sufficiently nice planar lattices:

probability that there are at least k pivotal bonds (with
1 i
respect to the event that there exists an open left-right (o) Py (L) + p (L) = 1.

crossingof T(n,n)) is larger than o if n is sufficiently large. ;
In particular, for bond percolation on S and site percolation on T. -

The proof of this is rather technical.
(1.22) pE
Further, given the events that there exists an open left-right crossing

and that there are at least k pivotal bonds, the conditional probability
Further, for bond percolation on T and H:

that there is still an open left-right crossing if the open bonds

independently remain open w}j;th probability p, and are closed with probability (123 pH(T) =0 cin (%) = lth(H)
1—p2 is, clearly, at most Py- So the conditional probability that, after

the second stage (keeping open bonc?s open with probability pz) there exists Adlfor midlthecs At
an open left-right crossing of T(n,n) given such a crossing exists after

the first stage (making bonds open with probability p, closed with (1.24) EraiDe ity

probability 1-p)is, for each k, at most 1-P [there are at least k
k N i 5

pivotal bonds] + P [there are at least k pivotal bonds]-Pzry which, by The key in the proof of (1.20) and (1.21) is that it is impossible, except

virtue of (1.18), can be put smaller than 1-o by taking n sufficiently large for one value of p, that the sequence P(n,n,p), n = 1,2, ..., is bounded

and fitting k. Summarizing we get (by choosing f between 1-o and 1, and away from O and 1. Russo (1982) discovered a more general phenomenon which

he "a i 4 i i
called "approximate zero-one law" and which gives an alternative proof

remarking that first making bonds open with probability Py and subsequently
oS (15 20N and = (10 1n)E

keeping them open with probability Py gives, statistically the same

result as making them open with probability Py pz):
Remarks

(Gl 5HeEn) 5 B ypli% _Vp2<13N\7’n>N
Sykes and E 5 i
o (nrnlplpz) T (n,n,pl) : Y. nd Essam (1964) also considered some 2- and 3-parameter problems.

For bond-percolation on S, with horizontal bonds open with probability p
1

and vertical bonds i S 3 .
Now suppose p < % Of course, for each m € N there exists a p, < 1 such el G LR EEeREsiliEy p, they obtained (makirg the
1 same kind of assumpti i = oy
that p < > pr;. Repeated application of (1.18) then gives thatP (n,n,p) < o ption as in the l-parameter case) that the critical
/ region is given by th o
for p sufficiently large. This holds for each m, so lim P(n,n,p) = 0. < Y Seeduaiaorn

o
(1.25) D
Russo (1981) applied Kesten's arguments to prove pH(L) + pH(L*) =1 1 2
: A da .
(for site percolation) and p, (L) + p,(L7) =1 (for bond percolation) SoEl e e S bl foaeTlen o T

more generally. Wierman completed Sykes' and Essam's "proof" that the



il

(1.26) p1+p2+p3—p1 Py p3=1.

An exact proof of (1.25) has been given by Kesten (1982) . (See also
Tibi (1984) who gives an alternative proof based on a multi-parameter
version of Russo's approximate O-1 law). Kesten also proved (1.26) under

the assumption Py = Py

1.4. Some of the main problems in actual research

a) Estimation of critical probabilities of other lattices

There seems not be to much hope that other interesting critical probabilities

than those mentioned in 8§ 1.3 can be exactly calculated, and it even appears

to be difficult to find reasonably sharp rigorous estimates. A problem

which often occurs in this respect is to show that the critical probabili

of a certain subgraph is strictly larger than that of the total graph.

For instance, consider site percolation on the square lattice S. By (1.21)

p,(8) + pH(S*) = 1. But S is a -subgraph of S* so we would expect pH(S) > Py

and hence pH(S) > %u This special case has been proved by Higuchi (1982).

Kesten (1982, ch. 10) proves a more general result but many cases are still

. open. As to Higuchi's result, this has recently been improved by Téth (1

who showed pH(S) > 0.502 (by elegant combinatorial arguments), but this is

still far from the value 0.59 ... expected by numerical extrapolation methods

For site percolation on the cubic lattice Campanino

i
and Russo (1984) have recently proved Py <t

and simulation results.

b. Smoothness properties and power estimates

For many functions occuring in 2-dimensional percolation smooth behaviour

outside Py has been proved (see, e.g. Russo (1978) , Grimmett (1981),

Keséen (1982, ch. 9)). However, for lattices of higher dimension almost

nothing has been proved rigorously and for 2-dimensional lattices the

behaviour at and near Py is one of the most interesting problems at the

moment. For many functions, for instance 6(p), it is believed that they

behave near p, as a power of PPy and that the exponents depend on the
dimension but not on the details of the lattice. Kesten (1981, 1982, ch. 8)
has shown that several functions are indeed bounded between two powers,
but in all the cases there is a large difference between the exponent in

the upper and the one in the lower bound . Some improvements have been made

by aizenman and Newman (1984) and Van den Berg and Kesten (1984).

5=

> number of infinite open clusters

For many dimensional lattices it was already observed by Harris (1960
and Fisher (1961), that above pH there exists exactly one infinite infinite
open cluster. For higher dimensions this is an open problem, though it

1

. T . aom ¥
is, e.g. true for bond percolation on Z~ with p > (Kesten) . Newman and

Schulman (1981) show for a class of periodic lattices imbedded in 7
that, for each p, the number of infinite clusters is, with probability

one, 0, 1 or =. Van den Berg and Keane (1984) show a relationship between

e number of infinite clusters and the continuity of the percolation

probability function.

d) Percolation in three and higher dimensions

Tn=factet!

s already been mentioned among the problems in (a)-(c),
but we prefer to mention it separately to accentuate that complete new
tools are required. Many proofs of 2-dimensional percolation are based on
the fact that certain paths necessarily intersect, which is no longer the

case in higher dimensions. Related to this is the concept of duality which

is not clear in higher dimensions. Aizenman, Chayes, Chayes, Chayes, Frohlich

ed random surfaces which may lead to more insight.

1.5. First-passage percolation

a few remarks on first-passage percolation, because only
one article in this thesis is concerned with first-passage percolation
and only deals with a very special problem which can be explained without
further knowledge of the subject.

In example 2 of § 1.1 it is shown that percolation can be used to model

the spread of a fluid through a porous medium. However, the model describes
where the fluid can flow but not how much time it takes. In 1965 Hammersley
and Welsh introduced the following model which does involve time:

Consider a graph G. To each bond b of G a non-negative random variable ey
(called the time-coordinate of b) is associated which represents the time
needed for a particle to travel along b from on of its endpoints to the

other. Generally it is assumed that the e 's are independent and have the

b
same distribution. The travel time of a path is the sum of the time coordinates

of the individual bonds in the path. For each pair of sites Sqv Sy the
shortest travel time from Sy to Sy denoted by t(sl,sq) is defined as the
infinum of the travel times of all paths from SIAEE Sy Most of the results
have been stated for the square lattice but also hold for many other




2-dimensional lattices.

The main result of Hammersley and Welsh (1965) is that, if the time

e £((0,0 n,0)) Y e
coordinates have finite mean, 5 + y in probability, where

B[t((0,0),(n,00)]
n

y = inf

The result (the proof of which uses the observation that the passage time

processis subadditive) was strengthened by Kingman (1968) who proved by his

rgence and conve

subadditive ergodic theorem thata.s. conv g in L1 hold, and
refined by several other people (see e.g. Cox and Durrett (1981) and Smythe

and Wierman (1978)). As to recent results and main problems see e.g.

Grimmett and Kesten (1982) and Kesten (1984) .

-17=

2. Short comment on the articles

Percolation theory on pairs of matching lattices (1981)

The intention of "Percolation theory on pai of matching lattices" (1981)

that Sykes' and Essam's assumption about the singularity of k

could be replaced by the assumption that the expected cluster size is finite
£OriD S Pq . This implies the required result without using the matching

relation (2).

er, when I wrote this paper I was not aware of the

mour and Welsh (see pp. 9-11 in this thesis). Because

of this, and result (see pp. 11-12), the paper missed its main

purpose. Yet, of it are of interest. In the first place it

early shows the strength of Hammersley's (1957) theorem an < an =

which has received less attention in the literature than it deserves,
Further, the mple of a fully triangulated planar graph of which the
critical probability is 1 , shows the importance of periodicity.

The estimate PA ~ 0.5925 for site percolation on the sqguare lattice
coinc th most of the approximations which have appeared later in

the literature.

B. A note on percolation theory (1982)

In this article we pose the question whether for each graph G and each

p > P“(G) there exists a subgraph of G of which the critical probability

equals p . It is shown that this is true if Pp { there exists exactly
one infinite open cluster } = 1. This follows from the observation that
if there is (a.s) exactly are infinite open cluster, the PH of this

clus

equal to PH(G)/p. This observation is also used in
paper D in this thesis, and recently Georgii (1984) used it to describe the

characteristics of infinite open clusters near the percolation threshold.

Grimmett (1983) gives, for bond percolation on the square lattice, a more

constructive answer to the question raised above.

C. A counterexample to a conjecture of J.M. Hammersley and p.J.A. Welsh
concerning first-passage percolation (1983)

In one of their introductory articles on first-passage percolation on the
square lattice Hammersley and Welsh conjectured that the expected cylinder
time from (o,0) to (n,0) 1s increasing in n . Our paper shows a

counterexample. The cylinder condition plays a crucial role in this
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counterexample and we think the conjecture is true if we drop this condition.
M. Keane and the author have solved several analogous problems for simpler

graphs (including a problem of Joshi (1978)).

Do (With M. Keane) On the continuity of the percolation probability
function (1984) :

Consider percolation on a graph G and let, for a certain site s ,

8 (p) denote the probability that s belongs to an infinite cluster.
+

It is not difficult to show that always B8(p ) = 6 (P). BAn important

problem is under which conditions also O(p ) = 0O (pP). Our paper makes

a connection with another problem, namely the problem of how many and

what kind of infinite open clusters occur. We prove that 6(p) — 8(P) =

p { s belongs to an infinite open cluster of which the criti probability
ezuals 1 } . Further, as observed in article B, if p > PH and

Pp { there is exactly one infinite open cluster ISk th?ﬁ the critical
probability of this infinite cluster is (a.s) equal to PH/p which is
strictly smaller than 1 , and hence 6(p ) = B(P).

. 5 d - 5
For nearest neighbour bond percolation on Z-, d >3, with p > % there is
indeed a unique infinite open cluster (as has been proved by Kesten), so
that in these cases 0 is continuous in the interval i,l] o =

e Russo (1978)). An

dimensional percolation much more is known

interesting problem is whether our result can be extended to multi-parameter
percolation., For instance, if a part of the bonds (or sites) is open with

probability P and the others are open with probability P, , is it always

1’ 2
true that 6 is continuous at (PI'P“) whenever 0 > 0 in an environment
of (Pl,Pz) and P { there is an unique infinite open cluster o= a2

1,52

E. Disproof of the conjectured subexponentiality of certain functions in

percolation theory (1984)
m

As observed in article 2, Hammersley's result P < Fn is important
nm

because it implies (for a large class of graphs) that if the expected size
of the open cluster containing a specified site is finite, Pn is
exponentially bounded from above. (See also Aizenman and Newman (1983)

and corollary (3.18) in article F).

Hammersley conjectured that a stronger result would hold, namely Fn+m < FnFm .

Our paper shows a counterexample. We do not know whether the conjecture is

true for homogenous percolation models.

Sl

Inequalities with applications to percolation and

reliability

An important "notion" of this paper is SNBU (Strongly New Better than Used)
In reliability theory this refers mostly to random life lengths. We show

that it is also interestin

a

to interpret the SNBU property in terms of random
outputs of certain products., Roughly speaking, consider a certain device

producing n items, the outputs of which are represented by the random

< o
XoresosrX o
1 i

variable
Moreover, each individual in a group of persons has a list of wishes (each

wish being of the form "I want at least a quantity W of the first item
2| 1 £ e .

of the seco e g e d i il
t econd item,eees Wn of the n item") and is satisfied if at

of his wishes is fulfilled.

Definition (1.1) is equivalent to saying that the probability distribution
of the output ve ) ) b s 3
output vector (41,...,An) is SNBU 1if and only if the group as a

whole is always (i.e. for arbitrary numbers of individuals and for all lists

of wishes of the form mentioned above) better off (i.e. has a larger proba-

bility that each individual can be satisfied) if all individuals receive

ndent copy of the device of their own but are not allowed to exchange

with each other, rather than if there is only one device, the output
of which is distributed among the individuals in such a way that as many

as possible are satisfied.

In these terms problem 1.11 in our paper is equivalent to the following
question: 1is the composition of independent SNBU devices again SNBU?
This problem is, in fact, more general than conjecture 3.9 (which, however,
1s interesting 1n itself; see paper G). Theorem 1.6 (iii) states that
the answer to this question i1s affirmative if each of the devices produces
only one type of item. We also have an (unpublished) proof for the case
that at most one device produces more types of item. The binary case of
theorem 1.6 (iii) (i.e. the case that each deviceproduces only one type
of item and its output is O or 1) is treated in section 3 and interesting
applications to percolation theory are shown. Remark 3.5 (b) shows the
connection with theorem 1.6 (i) of Campanino and Russo (1984). It appears
that this theorem has been obtained earlier, see e.g. McDiarmid (1980),

who speaks of the "clutter theorem!, and Hammersley (1961)
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G. (With U. Fiebig) On a combinatorial conjecture concerning di Hence, if ,‘1(0) =1, ,,2(0) s 0 and ,,2“) > 0,
occurrence of events then
We would like to make some additional remar concerning the O -opezx (9) w(rOB) =1,
and conjecture (2.6). Sriaa
- ~ ¥
a) Consider conjecture (2.6).The condition that u is 3 | (10) p(#*o¥s) = u ([g x ¥ \ [o010 1 4

crucial, i.e., if this condition does not hold, then (2.7) is

easy to show). This is even so if we restrict ourselves in (2.7) to monotone i1) One may think (because of lemma 3.2,i) that, for all events D,E,Fl
events. (11) DA (B EE) :‘ e ctnt o] C,C' and C" are mutually perpendicular
b) The following very simple case shows in s how misleading cylinders of D,E and F respectively

intuition can be.

ever, this would imply that the O -operation is associative which is

Let not true as we have the following counterexample.
2
1y Q=1{0,1}~, B and Q as in (1) - (3)
(2) a=[ox u [*x0],
3) B=lox] u [»1], (12) ao(eos) =agfo tl=¢,
and while
@) po=py xpy (13) (aoB)oB = [ox]o ([0 x] u(*1]) =[01].
where Hence the [J -operation is not associative.
#‘1 and !12 are probability measures on (2
n
I iv)For 2 = {0,1 QB Bt PAS RSy ing subsets of

i) As remarked by Ahlswede (see p. G19), the probability iv)For { ) an 1By (B, /B, increasing sets of

o : the followi 1d 2 i i :
that two given events occur disjointly does not always increase by splitting e f owing holds(see(3.6) in article F)
a coordinate (by "increase"we mean'"strictly increase or remain unchanged") . (14) u (A]D Bl u ];2[] B2 e WL UPj(D Bk)$
The easiest counterexample follows from (1)-(4) above, where we have <(pt xp) (Al x Bl (L7 32\) UA}_ x Bk)'

(5) a¥ - [04 4] U [40 4] ' where ;4 1is a product probability measure on

6) ¥ = [ox 4] u [xx il We shall now show that (14) is not true for arbitrary events.

Note that the cylinders in the r.h.s. of (2),(3),(5) and (6) are exactly Consider (1) - (4). We have

the maximal cylinders of A,B,A¥ and ¥B respectively. Hence(by lemma 3.2.ii) G e e = T )

() agB = ([0%]n [*1])u ([*0]n [0%]) =[0o1}u [oo]=[o¥, iin

8 a¥o¥e = ([oxx] 0 [xxt]) u( prox]n [oxx])y ([*0*]n [xx1]) = 16) axa y Qx5 = (x@) | [1110],

= {ox 1Ju {oo0x ul * 0 1], Hence, the probability of the l.h.s. of (15)equals 1 and (if Hy andu2

which does not contain the element (0,1,0). are non-trivial) the probability of the l.h.s. of (16) is strictly smaller
than 1.
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Percolation theory on pairs of matching lattices
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An important magnitude in percolation theory is the critical probability, which is defined as the
supremum of those values of the occupation-probability p, for which only finite clusters occur. In
1964 Sykes and Essam obtained the relation PY(L ) + P (L *) = 1, where L and L * are a pair of
matching lattices and P! denotes the critical probability (site-case). The proof was not complete,
but based on certain assumptions about the mean number of clusters. Though Sykes and Essam
suggested that the above relation holds for all mosaics (i.e., multiply-connected planar graphs) and
decorated mosaics, we have constructed a counterexample. Subsequently, for a more restricted

class of graphs, an alternative derivation of the Sykes—Essam relation is given, this time based on
the usual assumption that below the critical probability the mean cluster size is finite. The latter
assumption is also used to prove for some nontrivial subgraphs of the simple quadratic lattice S,
that their critical probability is equal to P (S ). Finally, for a certain class of lattices, sequences of
numbers are constructed, which converge to the critical probability. In the case of the site process
on S, the number with highest index we found, is 0.5925 + 0.0002, which seems to be a reasonable

estimate of P(S).

PACS numbers: 05.50. + g, 02.50.Cw

1. INTRODUCTION

Percolation problems arise in many branches of science
and engineering. Concerning physics, the most interesting
example is the dilute ferromagnet, where the concentration
of magnetic particles is p and the concentration of nonmag-
netic impurites is 1 — p. Below a certain value of p, the so-
called critical concentration P_, there are only finite clusters
of magnetic particles and therefore no spontaneous magne-
tism occurs at any temperature. On the other hand, ifp > P,
spontaneous magnetism will occur below a certain
temperature.

Generally, percolation can be described mathematical-
ly as follows. A graph G consists of abstract points, called
vertices (or sites or atoms) and connections between some of
these points, called bonds. These bonds may be oriented, in
which case they connect in only one direction, or nonorient-
ed. In this paper we only deal with nonoriented graphs, i.e.,
graphs of which all bonds are nonoriented.

With the graph G we now relate a so-called random
coloring as follows: Each vertex of G has, independently of
all other vertices, a fixed probability p of being colored black,
and g = 1 — p of being colored white. For such a realization
of this random coloring we distinguish two section-graphs of
G, one, called G,, containing all black, and the other, G,,,
containing all white vertices of G.

Percolation theory studies the properties of G, and G,
Especially, in the case that G is infinite, we are interested in
the critical value P, of p, above which infinite black clusters
appear.

A related model is that in which the bonds of G, instead
of the vertices, are randomly colored. This model and the
model above are known as the bond- and the site-percolation
process respectively. It appears that the site process is the
more general one, because the bond process on a graph G is,
in a certain sense, equivalent with the site process on the
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covering graph G © of G. Therefore, quite often certain re-
sults are proved for the site- and then translated to the bond-
case.

In 1964 Sykes and Essam' published some interesting
results for two-dimensional percolation processes. We shall
use much of their terminology. A more general introduction
to the subiject is to be found in, e.g., Refs. 2 and 3.

Remark: In this article we shall only deal with lattices
which are mosaics or decorated mosaics.

One of the main results of Sykes and Essam is the
relation

PUAL)EEE(LS =1 (O]

where L and L * are a pair of matching lattices and P de-
notes the critical probability for the site-percolation process.
This relation follows from the fact that the mean number of
black L clusters per vertex differs from the mean number of
white L * clusters per vertex by a finite polynomial ¢ ( p)
(where p is, as it will be throughout this article, the probabil-
ity of a given vertex being black), in formula:

k(pL)y=k( —pL*) +¢(p) 2)

Now Sykes and Essam derive (1) immediately from (2)
by the assumption (which has not been proved) that in the
domain 0<p<1 the function k is singular at ¢’ and nowhere
else.

Next they remark that the triangular lattice T is self-
matching, which implies, by (1), that:

PAT)=), 3)

and that (3) more generally holds for any lattice of which all
faces are triangular. However, it is easy to construct such a
lattice for which (3) is not true, as follows.

Figure 1(a) shows a sequence of triangles 4y, 4,, 4,,,
each of which (except A4,) has six vertices on its perimeter,

© 1981 American Institute of Physics Ats2
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FIG. 1(a) Lattice, consisting of a sequence of nested triangles Ao, A, Ay,
(b) The lattice obtained by triangulation of the lattice in (a). It appears that
the critical probability (site-case) of this lattice is, in contrast with the
Sykes—Essam relation, not } but 1.

one at each corner and one at the center of each of its edges.
The fully triangulated graph G in Fig. 1(b) is obtained
by drawing a bond in every nontriangular face of Fig. 1(a).

Considering the site-percolation process on G, we note
that, if p < 1; for each i > 0 the probability of the event that all
six vertices of 4, are white is g°> 0. Further, we observe that
any pair of the triangles with odd indices 4,, As, A5+, hasno
common vertex, hence the number of white vertices on the
perimeter of one of these triangles is independent of that on
the others. But then it follows from a well-known law of
probability theory that there is with probability 1 at ieast one
such 4, of which all six vertices are white. It is obvious that
such a triangle blocks all possible black walks starting in one
of the corners of 4,. This is the case for every p < 1, s0 we
may conclude that for this graph, which obviously is a mosa-
ic, P = 1, so that (3) and therefore (1) does not hold.

In Sec. 2 relation (1) will be derived for a restricted class
of lattices in a way that is totally different from that of Sykes
and Essam. The proof is based on the following assumption:

Assumption 1: 1f p < P? then the mean number of ver-
tices that can be reached from a given vertex via black walks
(i.e., the mean size of black clusters) is finite.

Though not proved, this assumption isnot unusual. Itis
even the main idea behind the method of estimating the criti-
cal probability by means of cluster-size expansion (see
Domb, Sykes®).
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It will appear that, besides (1), the assumption has other
interesting consequences. In Sec. 3, e.g., we shall use it to
prove for a certain class of subgraphs of the simple quadratic
lattice S, that their critical probability is the same as for S
itself. In Sec. 4 assumption 1, combined with a theorem of
Hammersley, leads to another mathematical approach of a
method to estimate the critical probability for certain lat-
tices. This method is rather similar to the renormalization
group method used by Reynolds et al*®

2. AN ALTERNATIVE DERIVATION OF:
POL) + PE(LY) = 1.

We shall first discuss some definitions and arguments
which lead to Lemma 1. Then we are ready to prove (1) for
certain lattices.

Let v be a vertex of some graph G.

N "(v) denotes the set of all vertices of G that can be
reached from v in n or fewer steps.

Further we define:

BOW) =N = (v},

B"(y) = N"0\N"~"(v).

We shall call B "(v) the sphere with center v and radius
1. Now consider the site-percolation process on G of which
every vertex is colored black with probability p and white
with probability 1 — p. Let S (p;v) be the mean number of
vertices that can be reached from v by black walks, and de-
note by S, ( p;v) the mean number of such vertices which lie
in B"(v), n = 0,1,2,-. It is clear that

S = 3 S.(p). o

Further let P, ( p;v) be the probability of the event that
at least one vertex outside N "(v) can be reached from v by a
black walk.

Every walk from v to a vertex outside N "(v) obviously
visits some vertex of B "(v) and the probability that at least
one vertex of the latter kind can be reached from vby a black
walk is not larger than S, ( p;v), so that

P, (p3v) <S,(piv); )
this, combined with (4) and assumption 1 gives:

Lemma 1:1fp <P, then 27_o P, (p3v) < -

For reasons of simplicity we shall first study as an ex-
ample the site-process on the simple quadratic lattice S, for
which with the help of Lemma 1 we shall prove (1). After-
wards the results will be generalized. Because for this lattice
the functions S,,, S, and P, do not depend on v, we shall omit
this parameter.

For p < PY(S), it follows, by Lemma 1, that the series
3 P,(p) converges and so, for some..i2 =N and positive real
number r:

S P (n=r=L (©)

n=M+1

Denote by ¥, W, and C the events that the vertex
0 = (0,0) belongs to an infinite white S * cluster, that all ver-
tices (0,0), (0, —1),...,(0, — M ) are white. and that the vertex
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0 is black or surrounded by a black S circuit, respectively.

From the matching—property (see Appendix 1 of Ref. 1
for a proof) it follows that either I or C occurs. We also
note the following: If all vertices (0,0), (0, —1),...,(0, — M)
are white, then the event C can only occur if there is a black S
walk from a vertex on the Y axis below (0, — M ) to a vertex
on the Yaxisabove 0. Further, for each positive n, all vertices
on the positive Y axis lie outside N "((0, — n)), so that the
probability of the event that at least one of these vertices can
be reached from (0, — ) by a black walk is smaller than
P,(p). Therefore, if for events £, and E, Pr{E | |E,| denotes
the conditional probability of £,, given E,, it follows for
p<PYS):

Pri{CIW)< S P.p=r<l], (7)
N
and hence
Pr{W_ |>Pr(W ) Pr(W_|W}

=g "1 —Pr{C|W})>¢" (1 —1r)>0. 8)

So we have proved that, for p < P!(S'), there s a positive
probability that a given vertex belongs to an infinite white S *
cluster. In other words, if p < P(S), then 1 — p> P¥(S *).
This immediately yields, by taking p = P(S) — ¢, with e
positive and arbitrarily small:

PYS) +PS*)<L. ©
Fisher,” generalizing Harris’ method,” proved that for a cer-
tain class of lattices, to which S belongs, P'*)(L )

+ PPL?)>1, where L ” is the dual lattice of L and P*)
denotes the critical probability for the bond-percolation ﬁrw

cess. This result can be extended to the site-case, so that we
have, for 5,

PYS)+ PS>, (10)
which, combined with (9), yields the "vanted relation:
POS)+PU(S*H=1. an

When we call two vertices v, and v, equ ivalent if, forall n and
2.5, (pv)) =S, (p;v,), then we can g neralize the above re-
sult as follows:

Theorem 1: Let L be a lattice wh °h has only a finite
number of classes of equivalent verticc and which possesses
a pair of orthogonal symmetry-axes.  nen

POL) + POL ¥ = 1.
The proof of Theorem 1 is similz o that of the special
case of the simple quadratic lattice (s  also Fisher”).

3. SOME NONTRIVIAL SECTION-G \PHS OF SWITH
CRITICAL PROBABILITY P&/(S).

In this section it will first be she  that P&(S (Im))
= PUS), where S (7) denotes the«  drant of § with ver-

tex-set [(n,m)|n,m>0}. Analogously () will denote the
quadrant of S * with the same vertex as S (bm).

From the matching-property (s f. 1) it follows that
the vertex 0 = (0,0) belongs to an inf white cluster of
S*(4m)ifand onlyifthercisnoblack v 1S (4) fromsome
vertex (1,0) to some vertex (0,m),n,m !Lis trivial that the
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probability of the latter event is smaller than the probability

of the corresponding event for S, which, in the case that

p < PY(S), can be proved (in a similar way as in Sec. 2) to be

smaller than 1. So we have that, for p < P (S ) (which, by

(11), is equivalent with 1 — p> P(S#),

1 — p>P (S *(1m)). Hence it follows that
PO(S*Um)KPO(S). (12)
On theotherhand, because S *(17)isasubgraphofS *, it

is clear that the critical probability of the first cannot be

smaller than that of the second; hence

PO(S*(Um) = PO(S ™). (13)

The analog of (13) for Sis obtained by changing the roles
of Sand S *.

In the same way we can prove the following theorem:

Theorem 2: Let u be a positive real number and let S’ be
a connected subgraph of S containing the section-graph of §
with vertex-set

{(n,m)|0<n;0<m<un},
then

PO(S") =PYXS).

Remark: It is noted that similar results hold for many

other lattices, particularly for the triangular and the honey-
comb lattice.

4. ESTIMATES OF THE CRITICAL PROBABILITY

In this section for a certain class of lattices we shall
construct sequences of numbers which converge to the criti-
cal probability. As in the last two sections, we shall first take
as an example the simple quadratic lattice S.

Let K (n) be the so-called “‘box” with (n + 1) X (n + 1)
vertices (see Fig. 2).

By the upper, the lower, the left, and the right side of
K () we mean the sets {(0,n),(1,n),...,(n,n)},
{(0,00,(1,0),---,(m,0)}, {(0,0),(0,1),-..,(0,n), and
[(1,0),(n,1),...,(n,n)}, respectively.

0 4
FIG. 2. The box K (4) of the simple quadratic lattice
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FIG. 3. Example of a coloring of the box in Fig. 2. In this example the event
B,and not W' § occurs. The numbered vertices mark a black S walk from the
lower to the upper side.

Let B, (W,) be the event that there is a black (white) S
walk, entirely lying in K (n), from the lower to the upper side
of the box.

Analogously B (W ¥) denotes the event that there is a
black (white) S * walk, entirely lying in K (n), from the left to
the right side.

Further we define:

f,(p)=Pr{B,};[2(p) =Pr[B7]. (14)

From this definition and the fact that the probability
that a vertex is white is 1 — p, it follows that

Pr{#,) =/.(1—p); Pr{ W3] =/7(1 —p). (15)

Because of the matching-property cither B, or W7
takes place (see e.g., Fig. 3). Hence, by (14) and (15):

(P =1—/201—p) (16)

It will be shown that, for p < P XS ), the sequence f,, (p)
tends o zero. Analogously, if p < P&X(S *), then /( p) tends
to zero. For this we shall first state a stronger version of
Lemma 1.

Consider the site-percolation process on a graph G. Let
be a vertex of G. Define the following functions [with B "(v)
as defined in Sec. 2]: E, ( p;v)= the mean number of vertices
in B "(v) that can be reached from v by at least one black walk
of which all vertices, except the last one [which, of course, is
in B"(v)}, are in N "~ '(v). Further,

F,(p)=sup E.(p)-

In the case that G is a so-called medium?’ the following
holds: If, for certain n and p, F,(p) =4 <1, then, for each
nonnegative integer m and each vertex v:

F,(pw)<A'™", (17
where [m/n)] denotes the integer part of (m/n) and with
P,,(p;v) as defined in Sec. 2. This theorem, which is due to
H ley,'® was for d and proved by him for the
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bond-case,'" but it is easily seen that also the above site-
version holds. ]

Now if the medium G contains only a finite number of
classes of equivalent vertices (equivalent used in the same
sense as in Sec. 2), then it follows from assumption 1 that in
the case that p is smaller than the critical probability, for
each vertex v, 2% _ o E,.( p;v) < . Hence, (because of the
finite number of equivalence classes) in that case there will be
some n such that F, ( p) < 1. Next, application of Hammers-
ley’s theorem leads to the following lemma:

Lemma 2: 1If p < PG ), then there exists a A (p) < 1,
such that for all /n and all vertices v:

P, (piv) <A "(p).

Remark: If, in Hammersley's theorem, [n/n] would be
replaced by (m/n), then Lemma 2 follows trivially from the
above reasonings (take A { p) =4 /"), with A as in Hammers-
ley’s theorem). The presence of the | ]-function makes only a
slight change of the proof necessary.

We are now ready to prove the statement about the
limiting behavior of /, ( p): From the definition it is clear that
£, (p)issmaller than the probability of the event that there is
ablack Swalk, not necessarily lying entizely in the box K (n),
from some vertex (i,0) to some vertex (j,n) (0<i, j<n) Fur-
ther, for each i and j, the vertex (j,n) lies outside
N"~'((,0)) so that, for p < P7(S), it follows from Lemma 2
that

f(p)< 2 P, (p0) <(n+1DA""'(p), (18)

0

so that f,, ( p)—0 for n— 0.

Of course the same arguments hold for §°%, i.e., if
p<PY(S*) then, for n—co,

S3(p)—0. (19)
But, from (11), p < P(S *) is equivalent with

FIG. 4. The function / ( p) for = § and n = 20.
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1 —p> PY(S). Hence, by combining (16), (18), and (19), we
have the following theorem.

Theorem 3: Denote by £, ( p) the probability of the event
that there is a black S walk, which connects the lower and the
upper side of the box K (n) and which does not leave this box.
Then, for n— oo

/,(p)—0, for p < P(S),
Lulp)—1, for p>PS).

Of course, by symmetry, an analogous theorem holds
for S *.

Remark: The substance of this theorem is already men-
tioned in earlier papers, e.g., by Reynolds et al.*® (who show
even more, namely that the “unstable” fixed points of the
/,’s converge to the critical probability), but our proofis new.
Their theory is based on scaling-arguments, which are very
interesting but rather heuristic. On the other hand, our ap-
proach does not give insight in the theory of critical expo-
nents. The interested reader is also referred to work by
Kirkpatrick.'?

Though Theorem 3 says nothing about the limiting-
behavior of £, ( p) in the case that p = P (S'), we do have the
following theorem:

Theorem 4: Let rbe any real number in the open interval
(0,1) and let g, :[0,1]—[0,1] be the inverse function of /,,
then

lim g,(r) = P(S).

This theorem follows from Theorem 3 and the fact that
every f, (p) is continuous (it is a polynomial) and increasing
in p, while, for each n, £, (0) =0 and /, (1) = 1.

Every polynomial £, is computable (because for every n
there is only a finite number of ways in which the vertices of
B (n) can be colored black and white); hence Theorem 4 in-
deed provides sequences of numbers which converge to the
critical probability. Unfortunately, even for rather small #, it
takes very much time to calculate £, . For various values of n
and p, estimates of /, ( p) are made by Monte Carlo simula-
tions (see e.g., Fig. 4). These values lead to estimates of g,, (7).
Though every number between 0 and 1 is allowed, we made
the most natural choice and took r = .

TABLE 1

f,(p) 059 0591 0592 0593 0594 0595

0454 0.560

20 + i
0,009 0.009
0433 0462 0495 0527 0533 0567

n I 120 i + + & + =
0.0i2 0012 0012 0012 0012 0012
0405 0450 0477 0.526 0.539 0.584

160

ik ox 2 ps b +
0012 0012 0012 0012 0012 0012

Aise

J. Math. Phys., Vol. 22, No. 1, January 1981

(b)

FIG. 5(a) The box K (2) of the covering-lattice of S. (b) Unit-cell of the
lattice in (a).

Linear interpolation in the intervals [ p,, , ,p,,], where
Pr.i(p,.)is the largest (smallest) p in Table 1 such that the
uncertainty region of /, ( p) lies entirely below (above) | (that
i5: praos = 0.591, pyags = 0.593; preoy = 0.592,

Pz = 0.593), yields:

Zyo(}) = 0.5922 + 0.0003,

€120(1) = 0.5922 + 0.0003, (20)

81e0(1) = 0.5925 + 0.0002.

The results (20) give the impression that the last value,
0.5925 4 0.0002, is a reasonable estimate for the critical
probability. This estimate is within the uncertainty region of
the less precise result of Sykes e al.,'* who obtained P (S )
=0.593 + 0.002, and a little smaller than the estimate of
Reynolds et al.,® who found 0.5935 * § 0005

Finally it should be remarked that analogs of Theorems
3 and 4 hold for many other lattices, specifically for those

FIG. 6. By drawing one di 1 in each face of the simple quadratic lattice,
we abtain this lattice, which is isomorphic with the regular tnangular
lattice.
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which have a pair of orthogonal symmelry-axes and are reg-
ularly built up of rectangular unit-cells (see e.g., Fig. 5). In
these cases we take for K (n) the box consisting of 7 < n unit-
cells.

Remarkable cases are those of the lattice in Fig. 5,
which is the covering-lattice of the simple quadratic lattice,
and of the triangular lattice 7, which is isomnorphic with the
lattice formed by drawing one diagonal in each face of the
simple quadratic lattice (see Fig. 6).

From the self-matchingness of these lattices and the
symmetry of their boxes it follows that in these cases /, ( p)

= [*( p), which, by (16), yields for all n and p:

fLp+LA=p=1 @n
and hence
LW=1 (22)

But, for these lattices, } is exactly the value of P(S), so
that £, ( p) is constant at the critical probability.
From (22) it also follows that, for all n

g.(}) = P(S). (23)

So if we take r = | then, for these lattices, Theorem 4 yields
an exact result.

Added in proof: In Sec. 4 a theorem of Hammersley is
used to prove that, for
p<PYS)lim,_, (n+ 1P, _.(pw)= 0 and hence
lim,_._, f,(p) =0 [see Lemma 2 and (18)]. It is possible to
derive this result directly, i.e., without using Hammersley’s

CAae J. Math. Phys., Vol. 22, No. 1, January 1981

theorem, namely as follows: P, ( p;v) (see definition in Sec. 2)
is obviously decreasing in . Further, if p < P(S), then, by
Lemma 1 (Sec. 2), £ P, ( piv) < . Hence, if p < P!"(S), then,
with [n/2] denoting the integer part of n/2

0<nP,(p) <2 }: P, p;v)—0, for nn— .
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Abstraet. In percolation theory the critical probability P.(G) of an infinite connected graph
G is defined as the supremum of those values of the occupation probability for which only
finite clusters occur.

An interesting question is the following: is each number between 0 and 1 the critical
probability of some graph? It will be shown that the answer is positive.

A remarkable intermediate result is that for an important class of graphs the following
holds: for each p = P.(G) there exists a subgraph of G with critical probability equal to p.

1. Introduction

Percolation theory, introduced by Broadbent and Hammersley in 1957, has become a
fascinating field. It has many applications, especially in physics, where it gives insight in
cooperative phenomena (e.g. spontaneous magnetism in a dilute ferromagnet) but also
in biology (epidemics in a large orchard), geology and chemistry. Many such examples
are described in Frisch and Hammersley (1963) and Shante and Kirkpatrick (1971).

Let G be an infinite non-oriented connected graph of which each vertex is the
starting point of only a finite number of bonds. To this graph the following random
mechanism is attached. Each bond is, independently of all other bonds, undammed
with a fixed probability p and dammed with probability 1 —p. The terms dammed and
undammed have been introduced by Broadbent and Hammersley for reasons of
clearness (they describe the process as water, which is supplied to a given vertex and
spreads from there through the undammed bonds). However, we prefer to use the
terminology of Sykes and Essam (1964), and replace the words undammed and
dammed by black and white respectively. Consequently, a walk is said to be black
(white) if all its bonds are black (white). Further, the following definitions are
important. For each vertex v, P,(p; v) denotes the probability that there are at least n
vertices that can be reached from v via black walks. Obviously, P,(p; v) is decreasing in
n and hence the limit lim, .« P,(p; v) exists. This limit is denoted by Pw(p; v).

The critical probability is defined as follows:

P.(v) =sup {p|Pu(p; 0) = 0}. (y

Broadbent and Hammersley, who dealt with the more general case of partially
oriented and not necessarily connected graphs, proved that if v, and v, are two vertices
such that there exists a walk from v; to v, and also a walk vice versa, then Pc(vy) = Pc(v2).

+ Present address: Physics Laboratory TNO, Room 3506, Oude Waalsdorperweg 63, 2597 AK The Hague,
The Netherlands.
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Hence, since we consider only connected graphs, in our cases all vertices of a graph G
have the same critical probability, which we denote by P((Q).

In another percolation model not the bonds but the vc'rlilces are randomly coloured.
In this so-called site model we can give analogous dcﬁmt‘lons as for the bond modg],

In general the critical probability for the bond process is not equil)to that of (h'i site
process. Therefore, to make a distinction, we denote them by P (G) and P (G)
respltcct:;ege; shown (Fisher 1961) that the bond-percolation procc{ss on a'graph Gis
equivalent with the site process on the so-called covering graph G of G, i.e.

P (G)=P(G). (2)

We now turn to the central question of this paper: is any nluaner p(0<p=1)the
critical probability of some graph G? It will be shown that this is md?ed the case. F:Jom
(2) it follows thatitis sufficient to give a proof for the bo.nd model. This proof is base lon
some well known results concerning the bond-percolation process on the square lattice,

which we shall discuss in § 2.

2. The bond percolation process on the square lattice

The square lattice, denoted by S, consists of vertices {(n, m)|n, meZ}, which all have

i of their four neighbours. ;
on’;&?:::—::ﬁz;:i:l lattice $%of S is %onstmcted als follo:lvs (see figure 1). P\{t one pf)mt
in the centre of each face of S. These points {(n +3, m+ Dln, m € Z} form th.c vert’ex set
of §°. As we see, this graph 59 is again a square lattice, sO thz?t S and its ‘du<}l a}:e
isomorphic. (This is generally not the case, e.g. the dual of the triangular lattice is the
honeycomb lattice.) Therefore S is said to be self-dual.

Figure 1. § and its dual §%.

Each bond of S crosses exactly one bond of §¢ so that the bonfi set of S is in 1.—1
correspondence with that of $%. S0 each colouring of the bonds of S induces a colouring
of the bonds of S°. ) ; '

The following lemma is intuitively obvious. A proof is to be found in Whitney

(1933).

& . . . d .
Lemma 1. Each finite black cluster of S is surrounded by a white Cll’CUItdOf 5¢. (This
remains true after changing the terms black-white and/or the terms S-S°.)
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We shall now pay attention to the value of the critical probability P‘cb)(S) of S.
Hammersley (1957), using the self-duality of S, proved that e '<PP(S)=1-e",
where v is the so-called connective constant of §. The lower bound has been improved
by Harris (1960), who showed that P” (§) =3. Although for a long time there had been
many indications that in the last expression even equality holds (see e.g. Sykes and
Essam, 1964), only recently a correct mathematical proof has been given, namely by
Kesten (1980).

So we have

P =2 @)

It has been proved by Harris (1960) that, for p > P (8), almost surely (As) there
exists exactly one infinite black cluster. Hence, by (3) we have

Lemma 2. If p>3, then (as) there is exactly one infinite black cluster in S.

Because this lemma plays an important role in the rest of the paper we let the proof
(in a slightly different form) follow here. First note that the set of bonds of § is
countable. When we denote the colour black by the number 1 and white by 0, then we
can associate each bond b; with a random variable x; which has the value 1 with
probability p and the value 0 with probability 1— p, and such that {x;li e N} is a set of
independent random variables. In these terms the event that there exists at least one
infinite black cluster in S is a tail event of the sequence (x;), i € N (because, for each n,
the existence of such a cluster does not depend on the colours of the bonds
bo, by, ..., b,). Hence, by Kolmogorov’s 0-1 law, the probability of this event is either
0 or 1. Now for p >3 this probability is, by (3), larger than 0 and therefore equal to 1.

The fact that, for p >3 (As) not more than one infinite cluster exists can be seen as
follows. Let v, and v, belong to the infinite black clusters C; and C; respectively. The
probability of a bond to be white is 1 —p, which is smaller than 3, so that (as) all white
clusters in §¢ are finite.

But then it can be derived from lemma 1 that (as) each finite set of vertices of ¢ is
surrounded by a black circuit in 8, so (As) there exists a black circuit in § which has both
vertices v, and v, in its interior. It is obvious that this circuit connects Cy and Cs, hence
these clusters are one and the same.

3. A proof for the interval 5,11

In § 2 it has been stated that, for p larger than 3, there exists (As) exactly one infinite
black cluster in S. It will appear that (as) the critical probability P of this cluster is
equal to 5/p. Then, by varying p in the interval (3, 1], we can, for any value in [3, 1),
‘create’ a subgraph of § of which the critical probability is equal to that value.
Subsequently, by a kind of trick, namely multiplication of the bonds of S, this result can
be extended to the region (0, 1). Next, only the trivial numbers 0 and 1 rest. As to the 3
value 1, the easiest example of a graph with this critical probability is the linear chain
consisting of vertices vy, va, v3, . . . and one bond between any pair (v,, v.+3). (In fact
this graph can be considered as the section graph of § with vertex set {(x, 0)|x eN}.)
Finally, the tree-like medium in figure 2 with vertex set {v, -7 =1, m <n!}, contains,
for each k, the Bethe lattice of order k, so that its critical probability is, for each k, not
larger than 1/k and hence equal to 0.
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Figure 2. Example of a graph with critical probabihity 0.

We shall now prove the statement at the beginning of this section that, for p > 3, the
critical probability of the infinite black cluster is (As) equal to 3/p.

Let p; be a number in the interval (3, 1]and let {b,{i & N} be the set of bonds of S. To
this set corresponds a set X ={x,|i €N} of independent random variables, such that
Pr{x;=1}=1-Pr{x, =0} =p;. :

The value 1 (0) of each random variable x; corresponds with the state black (white)
of its corresponding bond b, Further, let p, be any number in [0, 1] and let ¥ =
{y.]i € N} be a set of independent random variables such that Pr{y, = 1) = 1 - ‘,’r{;\-, = (l} =
p» and X and Y are independent sets of random variables. Finally, define Z =
{zi|zi=xiyi; i eN} ‘

The black subgraph corresponding to the x; is called B', and the one corresponding
to the z; is called B".

By the results in § 2 the following statements hold. ;

(i) Because p; >1, B' contains (As) exactly one infinite cluster (see lemma 2), which
we call C.

(ii) B"isasubgraph of B' and contains (As) no or exactly one infinite cluster. In the
last case that cluster is a subgraph of C.

(iii) If p»<3/p, then, for all i, Pr{z, = 1} = p1p2 < I and hence (As) B” consists only
of finite clusters.

(iv) On the other hand, if p,>3/p1, then, for all i, Pr{z, = 1}>3 and hence (As) B"
contains an infinite cluster, which, as stated in (i1), is a subgraph of C.

Now from the above it follows by definition that, (as) the critical probability of C is
indeed equal to 3/p;. Hence the class of those subgraphs of § which have .cmical
probability /p; is not empty. Next, by varying p, in the interval (3, 1], and noting the
example of a graph with critical probability 1 at the beginning of this section, we obtain
the following theorem.

Theorem 1. Let p be a number in the interval [3,1]. Then there exists a connected
subgraph L of the square lattice with critical probability BEUE =

Remark. If G is a planar lattice, regularly built up of unit cells and possessing E(beair of
orthogonal symmetry axes, then it can be shown (see Fisher 1961), that Pc"(G)+
po (Gd) =1, where G* denotes the dual lattice of G. From this, by using the arguments
in the proof of lemma 2, it can be proved that the following generalisation of that‘lerlnrfla
holds: if p > P (G) then there exists exactly one infinite black cluster in G. This, in its
turn leads to a generalisation of theorem 1.
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Each p =P (G) is the critical probability of some subgraph of G.
An interesting question is whether this holds for all lattices.

4. Extension of the result in § 3 to the interval [0, 1]

Let 8" be the graph obtained by replacing each bond of § by n parallel bonds, 1 =1 (see
figure 3). For each colouring of the bonds of §" a colouring of the bonds of § can be
defined as follows: each bond of S is coloured black if at least one of the bonds of the
corresponding n-tuple in §” is black, otherwise it is coloured white. Hence, if p is the
probability that a bond of §" is coloured black, then the probability of a bond of § to be
black is 1 —(1—p)". Further, note that there is an infinite black cluster in S if and only if
there is one in S". From these reasonings it follows that p =P (S") if and only if
1=(1=p)" =P (S), which equals £, so that

PR (SH=d=li= pR{shia—1= e 4)

\

Figure 3. The lattice 5°.

Now we can apply the ideas of § 3 to §", which leads to the following theorem.

Theorem 2.
o S

Further, if the probability p that a bond of §" is black, is larger than P& (§"), then (as)
there exists exactly one infinite black cluster in $" and the critical probability of that
cluster is equal to P (S")/p.

Now because lim, . P& (") =0, the following theorem follows by varying  and p

in theorem 2 (and again noting the example of the graph with critical probability 1 in
§3).

Theorem 3. For each p in the interval (0, 1] there exists, for a certain n, an infinite

connected subgraph of S, of which the critical probability (bond case) is equal to p.

Theorem 3, together with the example of a graph with critical probability 0
(figure 2), completes the work.

Remark. If we do hot want to deal with graphs with multiple bonds, like the S", we can
handle them as follows. Define (instead of §") §"" as the graph obtained by replacing
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each bond of S by an n-tuple of series of two bonds (figure 4). It is easily seen that the
critical probability of S"” is equal to (P (§™))/? and a straightforward repeat of the
arguments, earlier applied to $", leads to an analogue of theorem 37

Figure 4. The lattice s
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A COUNTEREXAMPLE TO A CONJECTURE OF J. M.
HAMMERSLEY AND D. J. A. WELSH CONCERNING FIRST-
PASSAGE PERCOLATION

Jj. VAN DEN BERG,* Delft University of Technology

Abstract

Consider first-passage percolation on the square lattice. Hammers-
ley and Welsh, who iniroduced the subject in 1965, conjectured that
the expected minimum travel time from (0,0) to (n, 0) along paths
contained in the cylinder 0=x=n is always non-decreasing in n.
However, when the bonds have time-coordinate 1 with probability p
and 0 with probability 1—p (0<p<1), then, for p sufficiently small,
we get a counterexample.

EXPECTED CYLINDER TIMES

1. Intreduction

First-passage percolation was first introduced by Hammersley and Welsh in 1965. For
more recent literature see e.g. Smythe and Wierman (1977).

Consider the square lattice S. To each bond b of S, independent of all other bonds, a
random non-negative number is assigned, called the time coordinate, which can be
considered as the time needed to travel along b from one of its endpoints to the other.
The trave! time of a path is defined as the sum of the time coordinates of its bonds.
Hammersley and Welsh defined the cylinder time 1, as the infimum of the travel times
of all cylinder paths from (0, 0) to (n, 0) (i.e., paths which, except for the starting point,
are contained in the cylinder O <x = n). They conjectured that the expectation 7, of 1, is
always non-decreasing in n. Before we go further, we slightly modify the definitions by
replacing the < sign in the above cylinder condition by =, and we denote the analogs of
t, and 7, by t, and 7, respectively. It 1s clear that, for each n, 7,,.1 =7, + 7. In the next
section we give an example where T{>75, 50 that 7,>7,;, thus showing that the
conjecture is false.

2. The counterexample

Consider the case where the time-coordinates are 1 with probability p and 0 with
probability 1-p,0<p<1.
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Figure 1. The two cut sets of size 3, which Figure 2. Two cut sets of size 3 which block
block the cylinder paths from (0, 0) to (2, 0) cylinder paths from (0, 0) to (1,0). The other

two are obtained by reflection in the line
1
X=3

Lemma. For p | 0,

2.1) Pt;=1]=P[1; #0]=4p”+o(p").
(2.2) Plt;z1]= Pt #0]=2p  +o(p”).
(2.3) Plta=2]=o(p’).

Before we prove the lemma, we show its consequences. It is clear that ¢] is either 0 or 1
and that t} can only have the vailues 0, 1 and 2. Hence, by the lemma

Ti=E[{]=Plii=1]=4p +o(p’),

and

5= E[14]= P[t= 1]+ Pt} = 2] = 2p° +o(p"),

and clearly, for p sufficiently small, 7] is larger than 73, as we stated in the introduction.

The lemma can be shown as follows. As to (2.2), t5#0 if and only if there is a
so-called cut set (a set of bonds which blocks all cylinder paths from (0, 0) 1o (2,0)),
with all bonds having time-coordinate 1. The smallest of these cut sets consist of three
bonds, and there are exactly two of them (see Figure 1). It is easily seen that the
probability that for at least one of them all bonds have time-coordinate 1, is 2p3+a(p“).
All other cut sets are larger and the probability that for at least one of them all bonds
have time-coordinate 1 is o(p?). (This follows from the facts that the cut sets correspond
to certain paths in the dual lattice (see Whitney (1933)) and the number of paths of
length n, starting at a given site, is exponentially bounded in n).

An analogous argument holds with respect to the event [t} = 1]. Again the smallest
cut sets have size 3, but now there are four smallest cut sets (see Figure 2) which is
responsible for the factor 4 in (2.1).

Finally, (2.3) holds because, clearly, there are three disjoint cylinder paths from (0, 0)
to (2,0), and the probability that each of them contains at least two bonds with time
coordinate 1 is the product of the individual probabilities which obviously are o(p).
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ON THE CONTINUITY OF THE PERCOLATION PROBABILITY FUNCTION

by

+
J. van den Berg and M. Keane

ABSTRACT. Let G be a countably infinite, connected, locally finite
graph, and let g be a designated vertex of G. Denote by 6(p) the

percolation probability function for bond percolation on the pointed
graph (G’SO)' We show that

s belongs to an infinite p-open

0
6(p-) = 8(p) - Pr connected component of G, which itself
has critical probability ome.

As a corollary, we deduce that if p 1s strictly larger than the
critical probability for bond percolation on G, and if for p there

is a unique infinite p-open cluster (e.g. if G is ZZ with nearest
neighbor bonds), then © 1s continuous at p.

§1. DEFINITIONS AND NOTATIONS

Let S be a finite or a countably infinite set, and let B be a
collection of two-element subsets of S. Thus G = (S,B) 1s a (finite or
infinite) undirected graph. The elements of S are called sites (= vertices)
of G and those of B bonds (= edges) of G. If the bond b contains the

sites s and t, then we say that b links s and t (or t and s).

A path m din G is a (finite or infinite) sequence m = (bl’bz"")
of elements of B such that there exists a sequence s = (SO’SI"") of
elements of S such that for each i = 1, bi links Sy1 and Sy- Clearly,

S is determined uniquely by m. If a path w = (bl’b .,bn) {s finire,

0
with ns = (50,51,4.., sn), then S is called the initial site of n and
s, the terminal site of m . If n is infinite, then s is the initial

site, and it is convenient to call = cthe terminal site (although it is not a
site). If w is a path with initial site s and terminal site t, then we
say that w Jjoins s with t, and write s L

Let gq € S. The connected component of G containing Sy is the
subgraph of G whose sites are 5o together with all t € S for which there

+
Financially supported by the Netherlands Organization for the Advancement
of Pure Research (ZWO).
®© 1984 American Mathematical Society
(0271-4132/84 5100 + $.25 per page
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E nds in B

exists a path T which joins E and t, and whose bonds are all bon
which link any of these sites with another of these sites. G 1s connected if
5y) conn AtEe onent of G containing s,
for some sy (= for each sg), the counected comp 1t o 0

is G.

§2. PERCOLATION PROBABILITY AND CRITICAL PROBABILITY.

In this paragraph, we suppose that G = (S,B) 1s a given infinite

i X, ) E ection of independent identi
connected graph. Let Qxb)b €B be a collec N 7
distributed random variables indexed by the bonds of G, with common

distribution given by

o
A
=]

A
4

1A

-

I’ 0 1E X
Priki=x)s x if 0

L 1 s R B

¢ : 5 e\asy that
Let 0=p <1, For a given realization of the process (Ab)b ¢B ¥e say that

o

- sed 1f X, = p. A path
the bond b € B is p-open if Ab < p, and p-closed i P

b
m= (b ,bz,...) is p-open if for each bi in Tiy b1 is p-open.
ik

2
£ s =S and
by GP = (sP,BP) the (random) subgraph of G given by

BP = {b € B: b is p-open}

i E: ling with a
Now choose and fix a site sj € S, so that we are de:al;in(7 zpt -
éointed graph G = (S,B,so) and random pointed subgraphs GR= (55,8 ,sO).

4 : s, We
Let ég be the (pointed) conmected component of G containing 5

call ég the p-open cluster (graph) containing sg.

DEFINITION

1) The percolation probability function of the pointed graph. G :(S,B,SO)

is given by

8(G,p) = 0(p) = Pr{GE is infinite}

2) Tﬁe critical probability of the graph G (see remark 4) 1is given by
exitlead Sproueie o
G) = = =0 = 0} = inf {p: 8(p) > 0}
py(6) = py = sup {p: 8(p)

REMARKS
1. These definitions are due to Broadbent and Hammersley [2] where we heve

modified the notation to sult our purposes.

2 It is clear that 6(p) is a non-decreasing function of p.
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3. It is not hard to deduce that if the graph 6 is locally finite
(= each s € S is contained in only a finite number of bonds), then

9(p) 1is continuous from the right (see [7]).

=

In general, the percolation probability function depends on the choice of
So° However (see e.g. [2]), it is quickly shown that the critical
probability Py is the same for each choice of sy 2s G 1s supposed
connected.

5

Note that if G is locally finite,
"
O(p) = Pr{there exists a p-open path ™ with s. -+ =}

Though we restrict to bond percolation on undirected graphs, it is easily
seen that analogs of the results in section 3 hold for site percolation,

and for percolation on directed graphs.

STATEMENT OF THE RESULTS.

Recently, some interest has been shown in determining the value of Py

([5), [8], [9]) and the behavior of the function 68(p) and related functions

for a variety of graphs. Except for regular two-dimensional graphs (see [7]
and [8]) and examples where percolation is identical with "infinite 1ife" in
birth-death processes, it does not seem to be known whether the function 8(p)

is continuous, although this is expected to be true for a wide class of graphs

(e.g. 2% with nearest neighbor bonds, d = 3). On the other hand, Harris [4]

has shown for 22 that for p above the critical probability Py (= %,
Kesten [5]), the random graph GP possesses exactly one infinite connected
component with probability one, (for a generalization to regular two-dimensional
graphs see Fisher [3]), and Newman-Schulman ([6]), have investigated the
possibility of existence of more than one infinite connected component of cP
in a general setting

We hope that the following result, which links the continuity of P

with the number and types of infinite connected components, will help to
clarify the situation.

THEOREM. Let G = (S,B,so) be a countably infinite, connected, locally
finite graph. Then for v =g pe=si

8(p-) = 6(p) - Pr{ég is infinite and its critical probability is one}

COROLLARY . Let G be as in the theorem. Furthermore, suppose that

P> PH(G) is such that with probability one, G° contains exactly one infinite

connected component. Then 6(p) is continuous at D
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Note that regular two-dimensional graphs([3] and [4]) satisfy the conditions of
the corollary (see also Russo ([7] and [8]), who proves in addition continuilty

at p = pH(é) and differentiability at p # H(G)). Kesten (private

L, AT an e ne 1 o
communication), has shown that for p > 7 2 with nearest neighbor bonds

satisfies the conditions of the corollary.

§4. PROOFS

To prove the theorem, we must show that

(*) 1im 8(p') = Pr(Gg
2D
P

. o~ ; . - i=
Let H = (S,B,sg) be a pointed infinite connected subgraph of G (with poin

is infinite and pH(Gg) =1}

ovg

s.), and note that under the condition ég = H, the joint (condirtional)
(Bfss : -

b o i.d ¢ on distribution
distribution of the process (Ab)b 3 is i.i.d. with common distri

given by

(O XS
Pr{X, = x|ép =} = £
b 0 P

o> p

-
lim 6(p') = Pr { 3 p’ < p with Gb infinite} ,
5

0
p'Po

p'f P

Noting that

= ﬁ, we see that i1t is sufficient

and conditicning both sides of (*) by

to show that

ety S
Pr { 3p' < p with cg infinite | Gf = H}

I

P &P -
Pr{pH(GO) < 1((;0 }
gt pH(ﬁ) =1
b pde) <1

Using now the information on the joint distribution of the process (Xb)b ¢B

under the condition ég - ﬁ, this translates to the requirement that

sy 0 4f py(®) =1
Pr{3 p" < 1 with Hg infinite} =
1 1f pH(H) <1 A

The case pﬂ(fl) = 1 is obvious, and 1if pH(H) < 1, then choose p with
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pH(ﬁ) = e By definition of pH(ﬁ), for almost every realization the
random subgraph B of H contains an infinite connected component, since
this event is a tail event with positive probability. This component may not
contain Sg» but since H 1is connected, there is a finite path 7 joining g
with an infinite component, and since we may assume with no loss of generality
that Xb < i for all b, it follows that ﬁg is infinite for some bp" < 1

(p" = max (p, max Xb)) almost surely. This finishes the proof of the theorem.
b e

To prove the corollary, we show that under the given hypotheses,

Pr{ég is infinite and PH(CS) =1} = 0.

Choose p with pH(é) < P < p. Then for almost every realization, gk
contains an infinite connected component (by the 0-1 law for tail events)

which is contained in the (unique) infinite connected component of Gp. Thus,

choosing H and conditioning on ég =H as in the proof of the theorem, we
see that
Py (©)

o
pu(Gy) = =

almost surely (see also [1]), and this (together with remark 3) proves the

corollary.
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DISPROOF OF THE CONJECTURED SUBEXPONENTIALITY OF
CERTAIN FUNCTIONS IN PERCOLATION THEORY

J. VAN DEN BERG,* Delft University of Technology

Abstract

Consider bond-percolation on a graph G with sites S(G). We
disprove the conjecture of Hammersley (1957) that the function
1 — Sup;.s() E [the number of sites s’ at distance n from s which can
be reached from s by an open path which, except for s’, only passes
through sites at distance smaller than n from s] is always subexponen-
tial.

1. Introduction

Percolation theory has been introduced by Broadbent and Hammersley (1957). For a
recent introduction to the subject see Kesten (1982). Chapter 1.

Let G be a locally finite graph (i.e. the number of bonds incident to any site is finite)
and denote the set of sites of G by S(G). Let the bonds of G, independent of each
other, be open with probability p and closed with probability 1— p. The length of a path
is the number of bonds it contains. The distance between two sites is the length of the
shortest path which connects them. Define, for s € S(G):

N"(s) is the set of sites at distance =n from s.

B"(s) is the set of sites at distance n from s.

E,(s) is the expected number of sites s’ B"(s) for which there exists an open path
from s to s’ which, except for s’, only passes through sites in N"7(s).

Finally, define F, =sup,.s(c) En(s).

Though E, and F, also depend on p, we omit this parameter.

Hammersley (1957) conjectured that F, ., = F.F, always. In the next section we show
that there exists a case for which F,>F? so that the conjecture is false.

2. The counterexample

Consider, for a positive integer r, the graph with 1+r+r” sites denoted by c; s,
1=i=r, and s, 1=i,j=r; and with bonds (¢, s;), 1=i=r; (s, 5), 1 =i, j=r, i#]; and
(si, s.5), 1=i,j=r. This graph can be imagined as a central site ¢, surrounded by and
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connected with a complete graph on r sites, each of which having a bond to r other sites
which have no further connections.

Now consider bond-percolation on this graph with p the probability of a bond to be
open. It is clear that, for each site s, E,(s) equals p times the number of bonds incident
to s and this is maximal if s is one of the s;’s, in which case it equals 2rp. So

(To apoear in Journal of Applied Probability)

Inequalities with 11 i i
@.1) =2 applications to percolation
Further, F, is at least E,(c) which, by symmetry, equals the number of sites at distance and reljabilit

2 from ¢ multiplied by the p1obability of the event that at least one of them, say s,,, can
be reached from c by an open path. (By the structure of the graph the condition of
containing no sites, except si,, outside N'(c) is automatically fulfilled.) Note that this
event occurs if and only if the bond (sy, 5,,) is open (which happens with probability p)

and there exists, inside the complete graph on the set {c, s, s2, " * *, 5.} an open path
from c to s,. Denote the probability of the latter event by P(p, r). Using independence J. van den Berg and H. Kesten
we get
(2.2) F,=r’pP(p, r).
Hence, by (2.1) and (2.2)

F,
(2.3) Ly

Fi 4p
It is easily seen that for fixed p Abstract
(2.4 limP(p,r)=1, 0<p=1l. .

n A probability measure u on IRE is defined to be
Now fix p between 0 and 3. Then, for r sufficiently large, the right-hand side of (2.3) is S .
larger than 1, in contradiction to the conjecture. gly ilew Better than Used (SNBU) if u(A+B) < u(A) u(B)
Remarks. for all increasing subsets A, B c R" 4o Bors Sni = STaEt bl s
(i) With the help of the finite graphs above it is easy to obtain a counterexample +

concerning an infinite connected graph. For example, connecting the site ¢ with an equivalent to being Mew Better than d i i i
infinite chain does not increase the value F;. 9 Used (NBU distributions
(ii) One might think that the conjecture is true if, in the definition of E"(s), all open

play an important role in reliabili
paths of which all sites are in N"(s) are allowed. However, consider the tree consisting e )

We derive an

‘C)én*:“:cltzdcw‘;"}]‘:chlssi:::zrfii‘fw,t,h, zL: S:ZZ Stgsa,ﬂ,s. m:; f:c:azih l;];; Thr: 55:&% inequality concerning products of HNBU probability measures,
el Bl e e | Sl e nes e g el R
Zg;';.path from ¢ to s5,,]1Z36(p>+p>—p®) which, if p=3, appears to bé larger than | probability measures on R, , then the product-measure

WS oup X p, xo.oxuooon RY O is SNBU. A discrete
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application (3.15) gives a lower bound for the tail of the
cluster size distribution for bond-herco]ation at the critical
probability. Further applications are simplified proofs of some
known results in peroclation. A more general inequality (which
contains the above as well as the FKG-Harris inequality) is
conjectured and connections with a recent inequality of

(+)
Campanino and Russo are indicated.

(+) It appears that Campanino’s and Russo's inequality has beer.l
used before by Hammersley and ilcDiarmid. See also discussion
SN Chs W2 Sof Sthis thesis.

1 Definitions and main results

Because our main theoremholds for e = [0,=) as well

asy FINE=R (0N 2 R ] we shall use the same symbol R to denote
either one of these sets.

e = (x],...,xn) and y = (yl,...,yn), then x >y means

XS Y . AT N c ] cn RO R" is called increasing

if x >y implies f(x) > f(y). A subset A of R" s

called increasing if its indicator function (denoted by IA) is

increasing. If A and B are two subsets of Rn, then

A+ B ={a+blaecA, beB}). It follows from Dellacherie
and Meyer [7], Theorem II11.18 and Sect. III. 33a that A + B is
universally measurable when A, B are Borel sets of IRE & il

particular A + B belongs to the completion of the Borel o-field

of m: with respect to each probability measure.

n

A probability measure u on R is Strongly New Better

than Used (SHBU) if

(A1) u(A + B) < u(A) u(B),
for all increasing Borel sets A, B c R

For n =1 and R = R+ this is equivalent to the usual

definition of a New Better than Used (NBU) distribution. There-

fore, in the one-dimensional case, we will say NBU instead

of SNBU (see also section 2).

n

Let n > 2. For an increasing set AcC R and ST AN

i # j, we define the image of A under (i,j)-identification as

the set of all x € R" for which there exists an a € A such



¥ -4-

that X > a, + a, and X > a

e rikpls ol

k
This definition is illustrated by the following
example: Suppose someone receives a certain amount A of

apples, np of pears and Ne of citrons. He is satisfied

if, for a certain increasing set A < N3 5 (na,np,nc) e A. How-

ever, if he changes his mind, and wants each pear to be replaced

by an apple, then he is satisfied if (na,np,nc) e A* where

A* is the above defined image of A under (1,2)-identification.
The above definition has the following natural extension.

Dandelet s ® be a

Let A be an increasing subset of R
partition of the set {1,2,....n}, Choose for each class Fe3d

a representative i_. e F. Now the image of A wunder identification

F
according to the pair (3, {1F:Fs 3}) 1is defined as the set

of all x e R" for which there exists an aeA such that for

each class F: x ) a;- Again Theorem III1.18 and

2 >
(S
Sect. I11.33a of Dellacherie and Meyer [7] show that for a

n

Borel set A of R, its image under identification belongs
.to the completion of the Borel sets with respect to any

probability measure.

(1.3) Lemma. Let Hyoealy be NBU probability measures
on R andSlict SN, 7 s S he such that ¥y = uj. Then
for all increasing Borel sets B o= !

(1.4) u(A) > u(A*),

where A* denotes the image of A under (i,j)-identification,
n

and u is the product-measure Hy x My XX pp on R

FAC5

Proof: Without loss of generality we may assume i = 1, j = 2.
In terms of random variables (1.4) is equ%valent to saying that
if x], XZ,...,Xn are independent random variables whose
distribution on R is NBU, and X1 and X are identically

2
distributed, then

{(0.5) P[(XI,XZ,..A,XH) e A] > P[(X],X3,X4,...,Xn) e Al

where A'= ((z] +xz,x3,x4,...,xn}:(xl,xz,...,xn) e A} Rn_1. This
inequality can now be proved as follows: Given X3 = x3,

X4 = XA""’xn = B0 the conditional probability of the event

in the left hand side of (1.5) is, for each X12%5 with

(x],xz,x3,...,xn) € A, larger than or equal to P[X1 2R i

e =k
Since X1 and X2 are i.i.d. this probability equals
P[X] > x1] P[X1 = xz]. Hence the above mentioned conditional

probability is at least

sup {P[X] Z.X]J P[X1 37x2]:(x],x2,x .,xn) e A}

30

On the other hand, the conditional probability of the event

‘in the right hand side of (1.5) is exaétly

P[X] & {x]+x2:(x],x2,x3,...,xn) e A}] which, because X] is a
one-dimensional random variable, equals

sup {P[X] = x1+x2]:(x],x2,x3,...,xn) eAl} and this is, by the

NBU property, at most
sup {P[K] > x]] P[X] > XZJ:(X1‘x2‘X3""’Xn) e A}. J

(1.6) Theorem

(Sif) et HyoHoses sy be NBU probability measures on R and

let 3 be a partition of the index set {1,...,n}, with the
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property that Hy's with indices in the same class are

identical. Further, choose for each class F e & a

representative ti F and let, for an increasing Borel set

Ac Rn, A* denote the image of A under identification

according to (&, (iF:F € §}). Then:

() 7)) u(A*) < u(A),
n
where u is the product-measure My X ou, X o X1 pion Réiaes
) Let ViaVpse sV be NBU probabjlity measureson R. Denote
by v the product-measure Vg K XL X o R", and
le A], AZ""’Ak and B], BZ’ "Bk be increasing Borel sets
of R". (Mence, U (A, x B;) 1is a subset of R°" and
o 1<i<k
. St 3 2m
v x v is a probability measure on R 7).
Then
(@123) vl U (A1+Bi)) < (v x v)( u (Aﬁ x Bﬁ)).
Ttk b=l
(iii) Let Hyakgoe ooty be NBU probability measures on R

and HES RIS e ex 1 the product measure. Then, for all

increasing Borel sets ALSBEC R

(1.9) u(A + B) < p(A) u(B),
e ens s s SNBIUE

Proof. (i) follows by applying lemma 1.3 successively to all

pairs (i,j) with, for some class Fe 3, i =i and JjeF, j 7 i.

=) =V = =0 = v =\
My ® e M DTy Vil S0P s T Vo el
o= ovXv)., 3 the partition with classes {1, m+l1},
{2, DMt 2 USSR o 1 and set of representatives {1,2,..,m}
and A = u (A, x B.), then according to (1.7) we get
Jeu sl L i

(v x V)(A*¥) < (v x V) (A).
%his reduces to (1.8) because, as is easily seen,

A* = (U (A, + B.)) x R™, so that (v x V)(A*) = v( U (A;+8,
< <4

(iii) follows immediately from (ii) by taking k = 1. []
(1.10) Remarks.

(a) Originally we had a different proof, of part (iii) of tﬁe

above theorem only. However, we noticed that the special case

EHE HGHHDE ey cal My concentrated on {0,1} <can also be derived
from Theorem 2.1 of Campanino and Russo [6], (which is more general
than that special case of (iii)). Campanino and Russo's formulation
led us to the more general result (i) (from which Theorem 2.1 of

Campanino and Russo can again be retrieved; see also Remark 3.5(b)).

(b) We have also proved that if p is an SNBU probability

n

measure on R and v dis an NBU probability measure on R, then

T
the product measure p x v on o 1 is “SNBU (the proof o this
involves some more technicalities than that of (iii)).

However, the following problem, which arises naturally in the

context of the above results is still unsolved:
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(1.11) Problem. Let u and v be SNBU.probability measures on

R"  and Rm respectively. Is the product measure u X v on
R™™  always SNBU?
We note that the following variant is not hard to prove.

Call a measure u on R" ENBU (extended NBU) if

(1.12) RO R EB D= s ) (A X B5))
for any family of increasing sets Ai and Bi' It holds in
general that if wu and v are ENBU on R"  and Rm,

n+m

respectively, then u x v is ENsU on R
One final comment. If there is only one pair A], B] in

(1.12), then (1.12) reduces to (1.1). Thus ENBU is stronger

than SNBU. On the other hand (1.8) shows that any product of

one-dimensional NBU measures is actually ENBU.(+)

(+) Just before this thesis was finished, we saw that the
reverse also holds: each ENBU measure is a product of
one - dimensional NBU measures,

g g

2. Applications to reliability.

In reliability theory (for a description of the subject

see e.g., Barlow and Proschan [3]) a non-negative random
variable T is called NBU if its corresponding pfobability

measure on R, is NBU which means that (see section 1), for

or equivalently,

(f22) PRI =t ok t2] =PIy & t1] P> tz]

Marshall and Shaked [14] introduced a multivariate extension

of (2.2) by defining a random vector T==5T "Tn) to be

PR
Multivariate New Better than Used (MNBU) if, for all

increasing Borel sets A c RE and all  x,u >0,

823} P e (v AT < S P i1 = OeAs| P [T Ry V] 1

where X A = {)xa:aeA}. The main result in their paper was
that=if ST and T sane s MNBIESandisisfasTaa nd S = dne
independent, then (S,T) is also MNBU (compare with problem

1.11). This yielded the following

Corollary: IEE il ....,Tn are independent NBU random

variables, then

(1) T (s e e NS

(ii) g(T1""’Tn) is NBU, whenever g 1is a non-negative

measurable subhomogencous increasing function.
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(a function g on mﬂ' is called subhomogeneous if

g{ax) < ag(x) for all x € mﬂ and all a > 1). This corollary

is improved by the following corollary of theorem 156 g e

(254 )& Goncillary: 1 T]""’Tn are independent one-dimensional

NBU random variables, then

n
(a) For all increasing Borel sets A, B < IR,

PLT s T)) e AtBY < PI(T;,...,T ) ehl P[(T],...,Tn) eB]
(b) g(T],...,Tn) is NBU whenever g:mjr ~ R, is a measurable

increasing function with the property

(21E) ) [arb,=) © 9 (a.=) + g '(b,=), ¥as b > 0,

where g_] ZR=r gl o )Res A ]

Proof: (a) follows immediately from theorem e S

(b) Suppose Ti""’Tn and® ‘g fulfill the conditions.  Theni
= y
Pl noos il lies sl s Rlifisane oG (s i sl
= =
SR Ge T ) e g (5,2t g (5=l
= -1
= P[(T],..,,Tn) e g (su=) ] P[(T],~..,Tn) cgeait =]
=P[g(T],...,Tn)>s]P[g(T],...,Tn)>t]. [
(2.6) Remarks. (a) implies (i) because (A *p)A © AA + pA.

(b) implies (ii) because each increasing non-negative subhomogeneous

function has the property (2.5), which can be seen as follows:

o =l
\ ,n T L . s 3 -
Letiig IR =R be increasing and subhomogeneous and let,
: > = . 2
for certain ayeb 50, x e 0F ([azh, =) i o g L) E> et b T ey

=1 =
g((a+b) ' ax) > (a+b) ' ag(x) > a and, analogously,
g((a+b)—’ bx) > b. Hence X = (a-lrb}'—i ax + (a+b)i] bx:" disEtihe

sum of an element of g*](a,m) and an element of g-](b,m),

(b) In studies of NBU random variables these variables usually
represent Tife lengths. However, the following interpretation
of corollary 3.1(a), in which the variable represent amounts of

certain products, might also be interesting: Suppose two

people, say A and B, have to share the random output of a

certain producer. A wants at least an amount a, B at least

an amount b. If the output has an NBU distribution, then,

by the definition of NBU, the following statement holds: the
probability that the output can be shared such that A and B

are both satisfied is not larger than the product of the

probability that A would be satisfied if he had the total output
for himself and the analogous probability for B. Now consider

the case of n producers with independent random outputs, each
having an NBU distribution. If A(B) wants at least an amount
ai(b]) of the first product, az(bz) of the second product etc. then
by the independence of the variables, it is obvious that the
probability that A and B are both satisfied is still no larger
than the product of the probability that A respectively B, are
satisfied. However, corollary 2.4(a) says that the statement

still holds in the case that A and B are, within certain limits,
willing to obtain somewhat less of one product in exchange for some-

what more of some of the other products.
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3. Applications to Bernoulli sequences and percolation. (i3:2) PIANB] < P[A] P[B],
Let @ = {0,1}". An event in- 2 is called increasing or £ a5 4E posifﬂve and B is negative.
positive if its indicator function is an increasing function on
Q@ (i.e., increasing in each coordinate separately). An event This inequality, which is one of the basic tools in percolation
is called decreasing or negative if its complement is increasing. theory, is now usually considered as a special case of the
1f A and B are positive events we denote by A o B the FKG inequality first proven in [9]. We now show that the
event that A and B “occur disjointly". More precisely, A o8B inequality (3.1) is reversed if A N B s replaced by A o B.
is defined as follows: Each w = (w;, ..., w ) € @ is uniquely This new inequality turns out to be a special case of Theorem
determined by the set K(w) © {1, ..., n} of all indices i for 1.6 (iii).
which wy = 1. Now we AoB if and only if there exists a
K' c K(w) such that w', determined by .K(w') = K', belongs to A, (3.3) "Theorem. Ef A ‘and--B - are positive events Schen
and w", determined by K(w") = K(w)\K' belongs to B.
(3.4) PEA0u Bl < =D AR PRI
Example. If A 1is the event ({at least k1 of the mi's are
equal to 1} and B the event {at least k, of the w,'s are Proof: 1In order to use Theorem 1.6 (iii) we imbed the state
equal to 1}, then A o B is the event f{at least k, + k, of space @ in WN" = {0, 1, ...}". We still use P to denote
the w;'s are equal to 1}. (see below for further examples). the image measure under this imbedding. Thus P[N"Na] = 0 and
It is clear that A o B s contained in A N B. Further, P[{x}] is unchanged if x & Q. Further, we replace each
notice that Ao B8 =B o A and Ao (BoC)=(Ao8B)ocC. positive event A @ by the smallest increasing subset A
Now let P be the probability measure on @ under which of MW" containing A. Thus A is replaced by
Wps eee, Wy are independent and P[mi:1] =1 —P[mi ecniy
Harris [11] proved that ‘ A = e J x e A such that x < y}.
{(3.1) P[A N B] > P[A] P[B], This operation does not change the probability of A because
if A and B are both positive events, only a set of probability zero is added. One now easily sees
that A o B differs from ; + g by a set of probability
or, equivalently, ZE Y0 MeELN e e (z], R Zn) £ A £ é can have positive

mass only if each z; equals 0 or 1L = This, 9 f = zi=mvE ey
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X £ A, y = B, then one must actually have x & A, y ¢ B and W i=1, ..., n are independent. Under P all w,'s with indices
: ol i g i

the ones among the coordinates of x and y cannot cccur in the same class are equal with probabi]i’ryv 1, while the families

at the same place (since oy Shollnge 1 dimplies 2 2. Vetes (”“1’ :ieF}, Fe s, are independent. MNow let A be the event

Finally, noting that a probability measure on M with all that, foriat leastiona s CiciCondiing=1 S forallesi Fat T rn

mass concentrated on {0,1} dis always NBU, the thecrem

(3577 P _[AT < P [A
follows directly from Theorem 1.6 (iii). p,a3-e = p[ ]
(3.5) Remarks. In order to show that this follows from Theorem 1.6(i) imbed &
o ; G n = . = <
(a) Analagously, a special case of theorem 1.6 (ii) is that for positive again in W and replace A by A, exactly as in the proof of Theorem 3.3.
e S e EPh g o e i N s
T A], 81* Az’ 82, o Ak’ Bk ca, Denote the image of Pp under the imbedding of £ in I by Pp‘
Choose a representative iF for each class F e 5, and form (A)* from
(3.6) P[A]oBlquoBZU...UAkDE‘,]i = —
Kk A by identification according to (g, {iF}). One can verify that

< (D) [A.’XB UA, x B UA..UALAZB].

— 1 2 2 k
Roughly speaking, this means that the probability that, for at Teast one PP [(A)'1 = Pp [(Cgc {x s i 1 for each i e C})*]
ity A]- and 81’ occur disjointly, is smaller than the probability that, for ~
at least one 1, A]- and Bi occur on independent copies of the probzbility ¥ 'DD [Cgc L XiF =1 foreach F with FnC# 8]
space.
= F

el S S = A R R O e A G TR (1 P e Y|
(b) In the same way the following result of Campanino and Russo [G] € P,a

can be derived as a special case of theorem 1.6(i): Let & be a partiticn ¥ y
(In the second equality we use the fact that C N F is either empty or

of {1, ..., n} (Campanino and Russo state the result also for the . 2 2
consists of a single element only.) Thus by (1.7)

countable case, i.e., with Q= (O,HlN , but that extension is rather

straightforward) and let C be a family of subsets of {1, ..., n} such S SR
Pos [A] = p[(/%)*] < P [A] =P [A],
that for each Ce C and Fe & C OF contains at most one element. P P

Consider, for a given e [0,1], two probability measures P_ and P_ _
2 # P Bisd ‘ which is just (3.7).

on @ under both of which each w, is equal to 1 with probability

p and equal to 0 with probability 1-p (i=1, ..., n). Under Pp the
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Conversely, it is possible to derive (3.4) and (3.6) from (3.7)

by applying (3.7) in the space Q° with suitable choices of I and C.

(c) Ahlswede and Daykin [1] have presented a rather general theory of
correlation inequalities including the FKG -inequality. However, it
seems that (3.4) does not fit in this framework and it might be the

first step in a new direction (see also (d)).

(d) The operation "o" has been defined for positive events only. However,
define for arbitrary events A and B < Q the event A B as

fallows: First, for w = (wi’ A mn) R ARl KR s N el e t

C(K,w) denote the cyliner event {w' : o' e @ and w; = w; el rubl e

v
i

Ltet K denote {1, ..., n\K. Now define

(3.8) AQB={w:JKkec{l, ..., n) such that
c(K,w) €A and C(K,u) B}.

Clearly AO B c A NB. We have the following conjecture
(3.9) P[AQ B] < P[A] P[B] for all events A and B.

It is easily seen thats it = ARSiisEposiitivelande=Bane gatiives,
ANEB s exactly AN B, and ife A and =B dvre bothepositive
it equals A o B, so that (3.9) includes the FKG-Harris
inequality as well as our inequality (3.9). Morcover, if the
answer to problem (1.11) is affirmative for the case that

; = 2 -
wor v is a probability measure on IN°, concentrated on

=0T

the elements (1,0) and (0,1), then (3.9) follows in a way
comparable with the derivation of Theorem 3.3 from Theorem

Tenliian,

Exampies and applications in percolation theory.

Let G be a finite or countably infinite graph. A path

from site s to site s' is a finite sequence of the form

= 5, S 1 = s i) a 4
(s] S,.@15E 5,5 B unes S gt s s'), where each e TS
an edge connecting the sites S5 and Si47- There is no

loss of generality for our purposes if we restrict outselves
to paths which are self-avoiding (which means that all 51.5 in
the above sequence are different). The length of a path is
the number of edges it contains. Now suppose that the edge is
open (or passable) with probability Po and closed with
probability 1 - p,, and that all these events for different
edges are independent. A path or, more generally, a subgraph,

is said to be open if all its edges are open. An open cluster

is a maximal connected open subgraph of (. Percolation

theory (introduced by Broadbent and Hammersley [5]) studies
questions 1ike: what is the probability of the existence of an open
path between two specified sites, and [in the case where ( is
infinite) do there exist, with positive probability, infinite

open clusters? The above case is called bond-peveplations 1f.
instead of the edges, the sites of G are randomly open or
closed, one speaks of site-percolation. For a recent introduction
to these problems see, e.g., [12], Ch. 1 . Also models have

been studied in which the edges are only passable in one direction

(see e.g. [8]).
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The following special case of theorem 3.3 is useful in
percolation theory (see also (3.12) below).

(3.10) Corollary. Let, for some k > 2, V], VZ’ e Vk
be sets of paths of a graph G. Assume that all the edges

sites) of G are independently open or closed. Call two

paths disjoint if they have no edge (site) in common. et

SRR b st iedeven it Ehat ati liea stfonelfo s tiie

paths in Vi is open. Then:

(3.11) P [There exist pair wise disjoint open paths

T EV?’ LE V27 ooy M€ Vk] i,P[E]] P[Ez] e P[Ek].

Proof: MWe may restrict ourselves to the case where G is

finite (by obvious limit arguments). Now if we take Q = {O,]}E,
where E is the set of edges of G (Q = {0,1}5, where S is
theSsetio fisiitesto it G andstakeliw =1 Sor. 0 (g s loor 0)
according as the edge e (site s) is open or closed, then it

is not difficult to see that the event in the left-hand side of
(3.11) corresponds with E} o E2 o o) Ek and the result

follows by repeated application of theorem 3.3. [:j

(3.12) Remark. By using (3.6) or (3.7) one can also derive

a similar result in first-passage percolation (see [13], Sect. 4).

The following result is a simple pronf of the first “tree
graph bound" of Aizenman and Newman ([2], Prop. 4.1). Their
bounds for higher connectivity functions can be derived in the
same way. Let t(v,w) = P [v is connected to w by an open

path].

ED

(3.13) Corollary. Consider bond-percolation on a graph @.

Let 5)3 S, and 53 beNs fte sihof SR Tes T han

(B P[s], s, and s, belong to the same oben cluster]

=) t(sy,s) tls,,s) t(sy,s)
s a site
of G

Proof. The result follows by using Corollary 3.10 and the
observation that S5 Sp and Sg belong to the same open cluster
if and only if there exists a site s (which may be equal to

one of the STIS) such that there are disjoint open paths from

s1 to s, from s, tos and from S5 to s, respectively. L_

The nicest application is an improvement of a result for
critical percolation in two dimensions. As an example we
consider bond percolation on the square lattice, which is the
graph with sites {(n,m) | n,me Z}. (It is easy to derive
analogous results for other two-dimensional lattices). On this
graph each site (n,m) has exactly four edges incident to it,
namely those between (n,m) and the sites (n = 1, m x 1).
Suppose all edges are independently open with probability p
and denote the corresponding probability measure by Pp. Let
Bn be the event that there exists an open path from the origin
to some site at distance > n from the origin. (The distance
from (n], nz) to (m], mz) is defined as ]n] - m1i +

iy mzl). Clearly Pp[Bn] is decreasing in n. It is known
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. with the left-and right-hand edge 5 el
([12], p. 54 and Theorem 5.1) that for p < % there exists ' e L e

n( Also, the distance between a site in {n} x [0, 2n-1] and a

a A(P) <1 such that P [B] < 27(p), while for p > 3%

. - S 8- site in the left- ar vi S is 5
lim P [Bn] > 0. When p is equal to the critical probability L : oranlghtiedge ot SN ERTs Salwe v -S> 2uns

n-+o

Consequently, by "Cors 3.10
% then Pp[Bn] tends to 0, but not exponentially. Smythe and

1

wierman ([16] p. 61) gave an easy proof of P.[B 1 > -—. ; 2n-1 o .
X T 5 < Py [(n,i) is connected by two disjoint open paths
Later Kesten ([12] Theorem 8.2) showed that there exist i=0 =
(G 7 & B Sl anme BRI S 6 p" Y. However, the value of . S 2 =
1P to the Teft and right edge of S(n)] < 2n{P,[B T}°. L_
Yy which follows from his calculations appears to be very small. =
i
It is believed that P,[B T - L~ for some C » 0, 0 < ¢ <\
s
(see [17]). Even though we cannot prove such a power law, the Lastly we give a new and simplified proof of a result of
following result greatly improves the estimates for Hammersley [10]. First consider bond-percolation on a graph G.
obtainable from [12]. The proof uses a refinement of Smythe By the distance between two sites of G we mean the minimal
and Wierman's idea and Cor. 3.10. number of edges in any path which connects these sites. For
(Another
el e Yy sitte SSs o TN d e i hie

{3.15) Corollavys (3.07).)

P lB.] > ?%ﬁ . N,(s) = collection of sites at distance < n from s,
Proof: Consider the subgraph S(n) of S which consists of Bn(s> = collection of sites at distance exactly n from ¢
the part of S situated in the rectangle 0 < x < 2n,
0 <y < 2n-1. It is well-known from duality arguments (see pn(s) =P [J open path from s to a site in Bn(s)]
[1sl, sor116),p: 31} that the P%- probability that there if no> 1, and Po(s) =T
exists an open path which lies in S(n) and which connects the
left-hand edge of S(n) with its right-hand edge equals %. We say that a path belongs to Nn(s) if all sites of the path,

Further it is clear that such a pat passes throug at least s ’
except for i i 5
X its endpoint, lie in N (S), and we de ine, L foren: > ],

one of the sites {n} x [0, 2 n - 1]. Hence at least one of

the 2n sites in the above set has two disjoint open connections = x ; e
| J p E _(s) = expected number of sites s' ¢ Bn(s) for which

there exists an oppen path from s tpesct

belonging to N__,(s).



We take Eo(s) = 1. Finalidy, for 'n > D we set

(3.16) U= w12 8 & E =S sUpSSER(S R

Hammersley [10] has proved that

Ln/m}
(3.17) P & )
Where [n/mj is the integer part of n/m. A direct conseguence
of this result is that if the expected size of the open cluster
is finite, then the radius of the open cluster has a distribution
with an exponentially bounded tail (see also [ 12, Sects Bu —and
[2], Sect. 5 for a stronger result). Here we give an easy proof
of the following inequality which is somewhat stronger than

. . n

(3.17) (since by induction (3.18) will imply an 2 {E e

m

(3.18) Corollary.

Pn+m < Em Pn >0

Erood s Ifisshs SOr £ M. sequatks zero sthe sresult ds-trivigle - Assume
n,m >0 and fix s. Suppose there exists an open path from s to
B"+m(s). Denote by s' the first site on the path (starting

from s) which lies in Bm(s). Then, clearly, there exist
EWoRdiisioiintNopen paths , sthes firstif rom s is = tol s =anid

belonging to N

m_](s), and the second from s' to B ., (s).

Furthermore it is clear that B . (s) has distance at Jeast
n from s', so that the second path passes through Bn(s').
Thus
PR () = Z ) P [J two disjoint open paths, one
SHaB Ry
m
from s to s' and belonging to Hm_1(s), and the other

from s' to some site in B_(s')]

n

By Cor. 3.1 0 this expression  is at most

Y pRull 3 open path from s to s' which belongs

to Nm_](s)] Pn(s') <SRESfis D

This holds for all s, so that (3.18) follows. [:J

If one considers site percolation then (3.18) remains valid
(and the proof goes through practically unchanged) provided one
redefines Pn and En as follows: Nn(s), Bn(s) and (3.16)
remain as before, but

PG = 3 open path from a neighbor of s to a

SUGE OF B G w2 s Pe) = 1.

En(s) = expected number of sites s' € Bn(s) for which

there exists an open path from a neighbor of s to

s' and belonging to Nn_](s), nE - EO(S) =81
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Another application of Cor. 3.10 is fo be found in
van den Berg [4], where it is used to prove that for one-parameter
bond-percolation on Ez the site (0,0) always has at least as
high a probability to be connected by an open path to (1,0)

SRt O (P05
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On_a Combinatorial Conjecture Concerning Disjoint Occurrence of Events.

J. van den Berg and U. Fiebig

Abstract

Recently Van den Berg and Kesten have obtained a correlation-like inequality
for Bernoulli sequenes. This inequality, which goes in the opposite direction
of the FKG inequality, states that the probability that two monotone (i.e.
increasing or decreasing) events "occur disjointly"” is smaller than the
product of the individual probabilities. They conjecture that the
monotonicity condition is immaterial,i.e. that the inmequality holds for all
events.

In the present paper we try to make clear the intuitive meaning of the
conjecture and prove some non—trivial special cases, one of which, a pure

correlation inequality, is an extension of the FKG-Harris inequality.



1.Introduction.

§ N e 9% e Ve & A itive interpretation
In[{j a2 conjecture is stated which has the intuitive interpr o

civen by the following example.

(1.1) Example

Suppose two children make a 1list of their wishes for Christmas. The first
child is satisfied if he gets at least one of the combinations in the

following list:

1) a green teddy-bear and a blue car.
2) a red teddy-bear.

3) a blue car and a blue football.

The second child has the following list:

1') a blue teddy-bear and a blue car.
2') a red teddy-bear.

3') a red football.

4') a blue football.

Now suppose Santa Claus takes twoc boxes and puts in each of them a teddy-
bear, a football and a car. However, he doesn't consider the colours and
chooses the toys randomly from large sacks, each sack containing one type of
toy in several colours. We assume that this happens in such a way that the
six colours in the two boxes may be considered as independent random
variables, and that the contents of the two boxes are stochastically
identical (i.e. the colour of the football in the first box has the same
distribution as that of the football in the second box etc.)

Consider the following two options:

a) Santa Claus gives only onme box to the two children and they must try to
share the contents of this box in such a way that both are satisfied, i.e.
get at least one of the combinations on their respective lists. It is easy to
check that this is only possible if the box contalns at least one of the

following compositions of combinations of the first and the second list:

1 x 3' : a green teddy-bear, a blue car and a red football.
1eger 4t a green teddy-bear, a blue car and a blue football.
2 x 3' : a red teddy-bear and a red football.

2 x 4" : a red teddy-bear and a blue football.

3 x 2' : a blue car, a blue football and a red teddy-bear.

b) This option is as follows: Both children receive a box but they are not

allowed to exchange toys. In this case the box given to the first child must
contain at least one of the combinations 1,2,3, and the box given to the
second child must contain at least one of the combinations 1',2°,37,4". (Note
that these events are independent).

When for each type of toy the probability distribution of its colours is
known, ome can calculate, for both options, the probability that both
children are satisfied. The conjecture in [2] is equivalent to saying that
this probability for the second option is larger than for the first option
and that this holds for arbitrary numbers of different toys and possible
colours, for all probability distributions of the colours and for any pair of
lists of wishes.

The investigations which led to the conjecture in [2} were motivated by

the following percolation problem:

(1.2) Example

Let each bond b of a locally finite graph G, independent of the other bonds

be open with probabllity py and closed with probability l-pp. A

path from s to s' is a sequence s=s},b},s2,b2,.+« , b7, sp=s', where
8]1,82+++, Sy are sites of G and each bj is a bond of G connecting sj
and s34, i=l,... .n-1. An open path is a path of which all bonds are

open. Two paths are disjoint if they have no bonds in common.

Let V1,V2,W]1 and W2 be sets of sites of G. Further, let A be the event
that there exists an open path from a site of V1 to a site of Vz’ and B the
corresponding event with respect to W) and Wp. It follows from a result of
Harris(1960) that A and B are positively correlated, i.e. P(AnB)>P(A)P(B).
(We come back to Harris' result in section 4). Now the problem is whether, on
the other hand, the probability that there exist two disjoint open paths of
which one goes from a site of V1 to a site of V2 and the other from a site of
W, to a site of wz, is smaller than P(A)P(B). In [2] it is shown that this is

indeed the case. However, the following related problem is unsolved:
Consider again the above graph G. This time the bonds are not randomly open
or closed, but they have a random direction. More precisely, if b is a bond

with endpoints $)»S, then it has, independent of the other bonds, probability
pp(sl,s2) to be directed from sl to s2 and probability Pp(s2,sl)=

1-py(s1,s2) to be directed from s2 to s1. A directed path from s to s'

is a sequence as shown above, with the additional property that each by is
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directed from sy to 8444, i=l,..., n-1.

The problem, analogous to the one for the open-closed case, 1s now whether
the probability that there exist two disjoint directed paths of which one
goes from a side of V, to a site of V, and the other from a site of W) to a
site of W, 1s, again, smaller than the product of the individual
probabilities.

These two problems (the solved open-closed problem and the unsolved
random-direction problem) represent speclal cases of the conjecture.

In section 2 we give a formal description of the conjecture after
introducing the necessary definitions and notation. We also present an
attractive special case which, as shown in section 3, turns out to be
equivalent to the full conjecture. In section 3 we also show some other
equivalent forms of the conjecture, try to make clear the relation to  the
examples in section 1, introduce additional definitions and notation, and
give some general results concerning the conjecture.

In section 4 we state our main result, theorem 4.2, which consists of four
non-trivial, proved, special cases of the conjecture. The first is an
extension of the speclal case proved in [2], and also contains Harrls
inequality mentioned in example 2. In section 4 we further give some
corollaries and examples.

The proofs of the four cases of theorem 4.2 are rather long and, except
for the first two cases whose proofs are related, completely different.

Therefore they are given 1n three different sections, section 5,6 and 7.

2. Formal statement of the conjecture.

Let @ = S} x Sy X... X Sp with 51,52, ++. , Sp finite subsets of IN.

Realisations (i.e. elements of Q) are denoted by ¥ = (¥],...., wy). The
support of an event (a subset of Q) 1s defined as the set of all indices on
which it depends. More precisely, if A c Q then

(2.1) supp(A) := {i]|1<i<n,Juw,w'€RV j#1 uf=wl; wea, w ks ).

Two events A and B are said to be perpendicular to each other,denoted
by AlB, if supp (A)nsupp(B)=¢, For weR and KC{l,.-.,n} we define the cylinder

(2.2) |wlg := {0'|w'€Q,0] = v for all i€Kf.

(2.3) Remarks i) Though[mh,; depends on @ we omit this parameter.

ii)Note that this notation is not unique; wmaybe replaced by each m'é[m]K.
If A,B c Q we say that w is a disjoint realisation of A and B if w is an

element of both A and B but "for disjoint reasons”. Formally the set A O B of

disjoint realisations of A and B is defined as:

(2.4)

408 := {we@IKLc {I,....,0} KnL=9, [0k cA and (0], <B}.

(2.5) Remark. Note that we again omit the parameter Q.

Our subject, the conjecture stated in [21 , is the following:

(2.6) Conjecture

Let n € W\{0}. Let S be a finite subset of I and M oa

probability measure on Si, i=l,...,n. Further ,define % = S1%Sp%ee. xSy

ﬂ U:Ul):pzx...xun. M
(2.7) VA,BcQ u(AOB) < p(A)u(B).
The special case that, for each i, Si={0,1} and i (0)=1y(1)=}% gives:
(2.8) Conjecture
1t 2={0,1}n (nem| o}y, chen
(2.9)  VABco, |amB| 2nc< (a]ls],

where

denotes cardinality.
It will be shown in section 3 that the above special case is equivalent to

the full conjecture 2.6.

We finish this section with the following example:



(2.10) Example

Let Q:{O,l}u} A={(wl,u2,m3,mq)€ﬂ| at least two wis are equal
to 0} and B={(m1,m2,w3,m“)€ﬂi at least one wj equals 0 and at least one
wj equals it
Then ACB= {(w;,wp,ws,w,)€R| exactly three of the wjs are equal to 0}.
Further |A| = 11, |B| = 14 and |AmB| = 4 which, multiplied by 2% is indeed
A

smaller than |A||B|. (This example falls under case b of theorem

3. General results concerning the —operation.

Several results in this section, especially in the beginning, are almost
trivial. However, they may help to get familar with the O-operation and make
it possible to shorten the proofs of the more interesting results.

We start by stating some properties of the O-operation leading to
equivalent definitions of ACB and, subsequently, to equivalents of (2.7)-

Next we show the connection with the examples in section 1. We also prove,
as announced in section 2, that the special case (2.8) implies the full
(2.6). We do this with the help of a more general principle which will be
used throughout in the sections 5-7 and is therefore presented as a separate
lemma (lemma 3.4). Finally, we prove another useful result (lemma 3.9) and
introduce some additional notation and definitions. It is easily seen that

the O-operation has the following properties and we omit the proof

(3.1) Lemma

(1) AOB c A n B,

(11) If ALB then ACB = AnB.

(iii) AOB = BOA.

(iv) (A v A)OB> ((AOB) v (A0B))-

Using these properties, several definitions of AOB, equivalent to the one
in section 2, can be given. First we define the following: A set C is called
2 maximal cylinder of A if: CcA, C is a cylinder and there is no cylinder
C'cA with C ;‘C‘_

(3.2) Lemma

(1) AOB = u{cnC'|C is a cylinder of A, C' is a cylinder of B and CIC'}.

3 = u{CmC’i C is a maximal cylinder of A,

C' is a maximal cylinder of B, ClC'j.
(iii) AOB = u{A'nB'|A'cA,B'<B and A'lB'}.

Proof(i) Follows immediately from definition (2.4) and the definition of "L".

(ii) It is clear that the r.h.s. of (i) does not change if we restrict

ourselves to maximal cylinders.

(iii) By (i) it is obvious that the l.h.s of (iii) is contained in the
r.h.s. We prove the other direction as follows: By lemma 3.1(iii,iv),
ACB > U{A'DB"A'CA,B'CB} which contains, of course, U{A‘ZB'IA":A,B%:B,A'L B'}
which, by lemma 3.1(ii) is equal to the r.h.s. of 3.2(iii).

Using the above lemma we get several equivalents of conjecture 2.6:
(3.3) Lemma

The following statements (i,ii,iii,iv) are equivalent to (2.7):

(@) (el (e Ci)) <u( u ¢)u u cp), where
1<i<m 1<i<m 1<i<m

meW| {0}, Ci, Cic 2 cylinders, CilC}, i=1,...,m.
(11wl wu (AinBi)J <uC u A) u( u B, where:
1<i<m 1<icm 1<i<m
wel| {0} Aj,Bi<®, A; LB;, i=1,...,m.

(1) u(u{Cincgliel, STerls cich}) < u(u ci) u( v (Ci))’ where
i€l i€l’

I,I' are finite index sets, and C;j,i€I and Cj,jEI' are cylinders in Q

(iv) u(U{AinBj|iEI, Je1, AiiBj}) < u[.u Ai)u[ u_ B,), where
i€l i€eI'

HECIEY ini
5 are finite index sets, and Ai,in and Bj,jel' ArelSubsctalof ﬂ.
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Proof (2.7) <==>(i): (2.7.) implies (i) by taking A= v C_,
1<i<m

B = U C! and noting that, by 3.2.(i), the l.h.s. of (i) is
1<icm

contained in ACOOB. Conversely, (i) implies (2.7) by taking, for (Ci’ci)lfism

all possible pairs (C,C') with C a cylinder of A,C' a cylinder of B and CHGHE
and again using 3.2(i).

(2.7) <=> ii: As the above proof; this time use 3.2(iii) instead
of 3.2.(i).
(2.7) <=> (iii): Analogous to the first case.

(2.7) <=> (iv) : Analogous to the second case.

We shall now briefly discuss the examples 1.1 and 1.2 in the light of the
above definitions and results. As to example 1.1, let, if there are n
different types of toys, S1,52,..., Sp represent the sets of the possible
colours, and take Q= 51xSox «seXSpe
The combinations 1,2,3,...,k on the first list and 1',2',3',..., &' on the
second list correspond with cylinders CI,CZ,C3...,Ck and ci,cé,c%..., CL
respectively. Further, the set of compositionms 1",2%,3",... corresponds
exactly with {cinc3|1<i<k, 1542, cilc_!_l} el T, A
lemma 3.3(iii), it 1s clear that the example, in its general setting (i.e.
arbitrary number of different toys etc.) is indeed an interpretation of the
conjecture.

As to example 1.2, assume that G is a finite graph, (Otherwise we can use
obvious limit arguments,) Now let n={0,1}‘E|, where E is the set of
bonds of G and take, for w€®, wi=1 or 0O according as the bond bj is open
or closed (or, in the random—direction case, according as the direction of
bj. Then the events {there exists an open (directed) path from a site of Vi
to a site of VZ} and {there exists an open (directed) path from a site of Wy
to a site of Wz} can be considered as sets A,Bci. It is easy to check that
the event {there exist two disjoint open (directed) paths of which one goes

from a site of V1 to a site of V2 and the other from a site of Wl to a site
of “2} corresponds with ACB, which clarifies the connection with the

conjecture.

_g_
Lemma 3.3 yields rather trivial equivalents of conjecture 2.6. More
interesting is the equivalence of this conjecture to conjecture (2.8). This
equivalence will be proved by using the following lemma which is also useful

in many other applicationms.

(3.4)Lemma Let, for 1<i<m, 1<j<m, Sj and Tj be finite subsets of W,

and pj and Vj probability measures on Sj and Tj respectively.

Further, let H=HjXupX...xup and y= Y, XV, Xe..x v pE the respective product

ra 1
measures on (=5;xS;%...xSp) and Q'(=T;xTyx...xTp). Finally, let A and B
be subsets of @, and f: Q'+ a map with the following properties: (i and(ii

or 14 ye
i) w(w) = vw(£H(w) for all weq-.

ii) If C1 and C2 are cylinders contained in 2, and C; L Cp,
then f‘l(Cl) i f'l(Cz)-

ALY 1f C) and Cp are maximal cylinders of A and B respectively and C; L Cp
then £71 (¢1) L £71 (Cy)-
Then (denoting £~1(A) by A' and £-1(B) by B'): n(ADB)<u(A)u(B) if v(A'DB*)
< v(A")v(B').

Remarks a) Note that we do nmot in(ii) and (ii') require that f'l(Cl) and

f'l(Cz) are cylinders.
b

~

Note that (ii') is weaker than (ii) so that the latter is
superfluous, since we require(i) and ((ii) or (ii')). However we
also state (ii) because in many cases treated in this article,

this stronger condition does hold.

Proof By lemma 3.2(ii) we have f£~| {(AOB) = f“(tqcincz\ C1 is a maximal

cylinder of A, C; is a maximal cylinder of B, CllCZ}) which, of course
=U{f“1(C1)nf'1(Cz)| C1 is a maximal cylinder of A, C, is a maximal cylinder

of B, Clicz} which, by property 1i' of f, is contained in
U{A]'_ nBi]Aic AT BicB', AilB]'_} which, by lemma 3.2 (iii), is equal to A'OB'.

Hence u(AOB) = v(£~1(AOB)) < w(A'DB') <v(A')w(B') = u(A)u(B).
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Lemma 3.5

The Conjectures 2.6 and 2.8 are equivalent.

Proof We only have to prove that if conjecture 2.8 is true then conjecture
2.6 is also true, since the other direction is trivial. So suppose conjecture

2.8 is true. Let Q:slxszx...xsnwnh si: {511’512""’ Si’ki}’ i=l,e00,0.

Further let, for 1<i<m,uj be a probability measure on Sji, and W=M)XppX .+« eXln-.

Define Pi,j = “i(si,j) = u{mi = si,j}' Since we have a

finite system, it is clear that, for each AcQ, u(A) is a continuous function
of (pi,j) 1<i<n, 1<j<ky. Using this and the fact that every

Py,j can be approximated to arbitrary precision by numbers of the form
2.27M, g MeEW, it is clearly sufficient to consider the case that

there exist integers M and Ci,j, 1<i<n, 1%j<ki, such that Py j =

Ci,j 27M. So assume that the pi,j'S are indeed of this form.

Now consider, for each i=1,2,...,n, the set {0,1]M, and order the
elements of this set, e.g. lexicographically:(o,ﬁ,...,O), (b0 5 s OB
(0515 -0 (%0 -een 0)Retca(He refer to this ordering in section 5).
Define the map fii{o,le + 84 as follows: The first Cy ;

elements (with respect to the above ordering) are all mappedto S;;, the
next Cy j elements to Si,2 etc. Now apply lemma (3.4) with 2 and u

as above and Q'={0,1}UM (i.e. Tiz{O,l}, 1<i<nM), V the uniform

distribution on Q' and £:Q' » Q@ as defined by

5 ' , ]
y Whpgpenss Qpyrensesealn jyypyaee s wl)

f(u.\i,..-,
= (fl(wi)_,_ m&), fz(mﬁ+1""’ méM)""""’ fn(win—l)M+l""’m;M))'

We finish this section with some additional notation and with two lemmas
which are useful in the proofs of the results in section 4.
(3.6) Notation Let n,m be positive integers.
Denote, for ki€m, wiemi,

AjeN*L, (1=1,...,m):

m
(3.7) (ul,eee,u)i= (“’i,--~a“’ll<i""‘“T:---'“’km)-

(3.8) [Al,.,., A] = A xA x...xA .
m LSr2: m

n
Further, for Sl""”sn AN findte i = 1] Gi,
i=1
2 n
£, 20, 04T Sny Ac 10058 5 Be i S,z
i=1 - i=g4rtl
24T
(3.9) |[&, *,Bll:=1[4 B WS c R
i=0t1

a) Of course, when we use the notation of (3.9) the 5j,2+1<i<i+r, are
assumed to be known.

b) If no confusion is possible we omit the commas in (3.8) and (3.9), and
the "r® dn (3.9}

c) If an Aj in (3.8) consists of one element w, we write "w" instead of
B

d) The notation (3.9) can be extended in an obvious way to more “EENg

(3.10) Lemma

Let,for i=1,...,n, Si be a finite subset of IN and H{ a probability: measure

n
on S . Let O = Il Si and py= I e Define, for m a permutation of

{l,...,n}, m=(w1,...,wn) € Q, and D c Q:

m(w) = (mv(l)’."’mn(n)) and (D) = {ﬂ(m)[m € D}.

n n
Further, let S! = S 1= = = =
3 i (i) and Hy u“(1>, {1 e O =T Si, and p'= I ui.
i=1 i=1
Then, for all A,B c Q:
(3.11)  p'(w(A)) = u(4), w'(w(B)) = u(B), u'(m(A)am(B)) = n(AOB).
Proof The proof is straightforward.
(3.12) Lemma
n
et A.B c I 5 Ko supp(A)\ supp(B), K_ c supp(B su
RS A0 A K, =K
e SR pp(B) | supp(4), K, =K, UK,

K={1,...,n} \KAB' By the preceding lemma we may assume for our purpose that,

for certain-r,s,t30: K={1,...,t}, Ky_{npg el )
e .

Kg={r+s+l,...,r+sft=n}, and KAB={r,...,n}.
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Define, for w' € I Si’ and D c Q,
léKAB
D(w') := {m € I S_‘ (w,w') € D}.
% i
i€k

Let 1; be a probability measure on Sj (i=1,2,...,0),
& ~

w= T y, and u= T u.
=1 1 ik

If:

(3.13) Vu'e T S, N(AGw)OB(W)) < H(A(e") TB(w')),
e
AB
then:

(3.14) u(amB) < u(A) u(B)-

Proof Define, in addition to the above, for mAE i Si and MBE I Si:

ieK, i€Ky
Aw,) i= {we 18| [Gw *] cA}and Bu) = {we 1 S [[w*w]eBs}
s iex T = 2 dEE - 2
It is easily seen that if w' = (mA,mB) el Si then A(mA) = A(w'"),
iEKAB

B(wg) = B(w'), and (ADB)(w') = A(w')DOB(w') = A(w,)OB(wg) -

Let u, = I€I Hiodly = 'ﬂg Hes and W = B e
i KA i€ky
If the condition in (3.13) holds, then:
w(AmB) = § p([AmB(w') w']) =
'
w

= g BAGWDBBW) < Jryp(e") WAGD) WBGLN) =
w W

= T myuy) uplep) H(alw,)) H(Bug)) =
“A Y
T uyCuy) WCAGw)) T plup) W(B(ug)) =
“A “B

B i

= ) ouCfAw) w, ¥ ] ou([Bloy) * w]) =
IAJA wB
= w(A)u(B),
where w' is summed over II Si’ w, over g Si and wp over I Si).
iEKAB 1€KA iGKB

4. Statement of main results

We state in theorem 4.2 four special cases of conjecture Z.6 which are
proved in the sections 5-7. The theorem is followed by a short dfiscussfiom of

each of the cases.

(4.1) Remark. We can also prove the special case that the maximal cylinders
of A or B are mutually disjoint. The proof is stralghforward, (Use lemma
3.2.(ii) and the fact that each set is the union of its maximal cylimders, )
Further, we have a (rather complicated)proof for the case that ﬂ={0,1}“’

p is the uniform distribution an 2, and A or B has at most 3 maximal
cylinders.

For the first case of theorem 4.2 we need two definitions.

Let, as usual, Sl,... ,5 be finite subsets of IN and

n
Q= 1 Si' If w,w' € Q then w > w' means w, > w

N ;, i=l,...,n. A set Ac Q

is called increasing or positive if w'€A whenever w'€Q, w'> » and w€A.

Analogously,A is decreasing or negative if w'€A whenever w'é€R, w'< w and w€A.

The events A and B in the open-closed case of 2.1 are examples of increasing
events. However the corresponding events in the random—direction case can

be represented neither as increasing nor as decreasing events.

(4.2) Theorem

Let, for 1<i<n, 5 pe a finite subset and Hi a probability measure on Si.

Let T S1X...,XSn, U=U1X...Xup,

and A,BcR. In each of the following cases we have:
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(4.3) u(ADB) < u(A)u(B).

(a) There exist increasing D,FcQ and decreasing E,G c © such that A=DnE and

B=FnG.

(b) @ = {0,1}" and A,B are both permutation invariant

(i.e if the coordinates of an element of A(B) are permuted, the result is

again an element of A(B).)-.
c) There are cylinders Cj, i€I and C!, i€J such that
=jere are cy incers o4 =i —lt—

A=11> C.uB = U GV and Fordalll e et s CRIC! S or s G incl o= (.
aeE o T L SRl
(d) There are cylinders Ci’ i€l such that A = u Ci’ Ci is a maximal
ael
cylinder of A, 1€, and for all i,j€I:C, L Cj or supp(Cy) = SuPP(Cj).

Proof: The cases (a) and (b) are proved in section 5, the case (c) in section

6, and the case (d) in section 7.

(4.3) Discussion of Theorem 4.2.

(a) Note that this result includes the case that A and B are both
increasing and the case that A is increasing and B decreasing. The first has
been proved, for ﬂ={0,1}“ by Van den Berg and Kesten (1984), who
obtained it as a special case of a result concerning so-called NBU measures.
They had several other (unpublished) more direct proofs. One of these, which
we call the splitting method, is closely related to the proof of the clutter
theorem (see[ﬁ] and [6}) and can be refined to prove a and b.

If A is increasing and B decreasing and Q={O,1}“ then AOB = ANB and
we get, by (a),u(AnB) < p(A)u(B). This is equivalent to Harris' inequality.
In fact Harris' inequality says that increasing events are positively
correlated to each other but, since the complement of an increasing event is
decreasing, this is the same as saying that an increasing and a decreasing
event are always negatively correlated to each other. See also the discussion
of (c¢) which also contains Harris' inequality as a special case.
LBL In spite of serious attempts we have not been able to prove the
permutation-invariant case more generally, i.e. for Q={O,l,...,k}“, k>2.
That result would have the interesting consequence that the multinomial

distribution is SNBU (see [2] for a definition of SNBU).
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(c) Note that, in this case, AOB = AnB so that we have a correlation
inequality. As a special case we have @ = {0,1}", A increasing and B
decreasing (because the maximal cylinders of an increasing event are always

of the form [WIJK and those of a decreasing event of the form [mG]K
where w! is the element (1,1,...,1) and @Y the element (0505 oiwey D)) 35t 0 LS
reduces again to Harris' inequality which was also obtained as a special case
of (a). Harris' inequality has been extended by Fortuin, Kasteleyn and
Ginibre [3] to a larger class of probability measures on {O,l}“.

The FKG inequality in turn is contalned in a rather general theory developed
by Ahlswede and Daykin {1}. However, apart from some common special cases,
like Harris' inequality, there does not seem to be a relationship between
conjecture 2.6 and [1].

Another example of (c¢) is the following:
(4.5) Example

Define, for positive integers 1,m,

By .p := [(x,y)EHﬂ | 0<x<g, O<y<m}.

>
The boundary of By,m is defined as

5(Bﬁ,m) = {(x,y)EBg’m| x=0 or x=% or y=0 or y=m},

and the interior of Bg)m as

int(Bg p) i= BL m \5(Bl,m)'

The sets Bl’m,l,m,GIN\{O}, and their images under translations
Z2 » 7Z2 are called boxes. Now suppose that each site sez?

is, independent of the other sites, black with probability pg and white

with probability l-pg. A box is called black (white) if its boundary is
black and its interior is white (black). Let V be a finite region in
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222, e,g, for certain positive integer r,

v = {(x,y)ez? | |x|,|y|<z}-

Further let A be the event {there exists a black box in V} and B the event
{there exists a white box in V}. It is not difficult to check that this falls
under case (c) in our theorem, so we get P(A n B) < P(A) P(B). Note that
Harris' inequality cannot be applied here because neither A, nor B, is

increasing or decreasing.

(d) This case has the following interesting consequence:

(4.6) Corollary

Let X],X2,+++,Xp be independent random variables with values in TR

(or another set, it turns out that the set is immaterial).
Let for 1<i<n, Aj,Bi and Ci be subsets of RR.
Then:
(4.7) P{there are three different i,j,k<n such that xiEAi, ijBj and xkeck} <
< i i € € .
HEl e @Y ERE e B.} p{3i x;ec }

Remarks (i) theresult can be extended to four types of sets or more (i.e.

A{s, Bis, C;s y D;s etc.) We show how (4.7) follows from our theorem; the

above mentioned extension can be proved by induction on the number of
different types of sets.

(ii) For the case with two types of sets, and for the case that, for each i,
the sets with index i are mutually disjoint, there is a more direct proof.
However, if there are no additional conditions, we don't know a proof of
(4.7) which is more direct than that of the full theorem 2.1(d) of which it
is a corollary.

Proof of the corollary. First we remark that the l.h.s. of (4.7) is

completely determined by the following probabilities:

(4.8) Pi(q,r,s) := P{xgc A(q) N B(r) N c(s)} , q,r,52(0,1},1% %, where,
for a set V, V(0) denotes V and V(1) denotes V¢, Therefore it is

sufficient to prove the corollary for the case that each X{ can only have a

finite number of values. Hence it is equivalent to the following:

(4.9) Let, for 1=1,2,...,n, Sy be a finite subset of W, Y oa

probabllity measure on Sy and Aj, By, C; subsets of Sy. Further,

let QA=Slx...xsn and N=P]XpgXe.oXpp-

Ihen:

(4.10) u{(w),...,0n)| there exist different i,3,k such that
wi€Aj,w B4 and wsCk} € w{(wy,...,wp)| 31 wi€A1} x

x {0y e eown) | 33 03€B5) u{Cup,eeryon)| Tk weeCi)-

Proof of (4.9) Define A := [(wl...,mn) | 3i wi€A;},and define B and

C analogously. It is easy to see that the event of the 1l.h.s. of (4.10) ica

subset of AD(BOC), and that A,B and C have the property mentioned in case d of

theorem 4.6. Now the result follows by applying this theorem twice.

5. Proof of Theorem 4.2, case a and b.

In case b we have Q = {0,1}“, and for a it is sufficient, by virtue
of lemme 3.4 (take £ as in the proof of lemma 3.5, noting that f~1(A) is
increasing (decreasing) if A is increasing (decrasing)) to restrict
ourselves to the binary case. The proofs are based on the splitting method
mentioned in section 4, which we shall explain here. First some definitions.
(Mind the notation 3.6 - 3.9 which will be used frequently). In the following

we always assume n>l.

(5.1) Definition
If Ac{0,1}n, then

1

Al = {u]we{0,1}"", (w,1)eA}

8% = {ufue{0,1}", (u,0en},

AL = ATAl = fulue (0,1}, [u 4] < 4l.
Apparently, for Ve{0,1}n-1

Vel < [v1]ca

v cal ol {V O] c A.

VcAol@[V*]cA.

The following observations are frequently used:
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(5.2) Observations.

}n-l

i) £ e {0,1

S ARC {0,1}“, mnG {0,1}, w = (Z,mn)

and  Kc {l,...., n-l}, then [w]g c &4 < [B]g < a0,
i i al s

ii) A" nB = (An B), where i denotes 0,1 or Ol.

111) A= [aAV 1] u [a% 0].

(5.3) Lemma For A,B c {0,1}™:

1y camy?t = alme®h v 3.

11) om)® = %% v 3%,

111y o)t = almE®! o 8%a%) v (a'm® o %R0
1

v 3'0a% 0 a%E% o (8 0% o 8%,

1
Proof i) We prove that the 1l.h.s. is contained in the r.h.s. The reverse can

be proved analogously.

W= (9, ,0n-1) €(ADB)! = (u,1) € ADB =

JK,L c{l,...,n} KnL = ﬂ,[m l]K c A, [m OJL CB

For K,L as above, al least one of these sets does not contain n. Suppose
n ¢ L. We show that this implies w € AlOBOLl (Analogously (note the
symmetry) n ¢ K implies w € BlgaOly,

n¢ L= 1L c{l,...,n—l} = (see 5.2(i)) =

= [o]L < BOL.

Further, [w,1]y c A = [mlx‘ c Al where k' = k\{1}. Hence,
because L n K' = @, w € AlpgBoOl,

ii) Analogous to (i)(by A-B symmetry or O-1 symmetry)

iii)Follows from (i), (ii) and definition 5.1.

(5.4) Definition. For the pair A,B C{O,l)n we define the pair

A%, *B c{0,1}nt]l py.

63 = Mt s e, @) G ORI 5 o) = Al

*B = {01,000, wne1) € {01} | CupseesugoysoneydeB)

Further, if » = M1x...xup, where p is a probability measuren on {0,1}, then
is i the probability measure WjX...Xupxu, on {0,1}“+1-

© = i) =

Note that A* = [A k] and *B = n([B *j)(where m is the map which exchanges
the last two coordinates of each element of B

Also,

(5.5) (1) B (&%) = uw(a); (i1) fi(*B) = u(B).

Roughly speaking, A* and *B are obtained by "making A and B independent in
the last coordinate by splitting this coordinate’. Analogous operations
can be defined for the coordinates 1l,..., n-1. Intuitively one would expect
that, after applying one of these split operations, the probability of ACB
always increases. This would imply that Conjecture 2.6 is true, because then,

after successively “splitting” all coordinates 1,...,n we would have,
for the "mew"” A and B (denoted by A*,°B):

A" L "B hence p(AOB) < w(A'D'B) = § (A7) W('B) = u(A)u(B).

However, R. Ahlswede showed 2 counterexample and afterwards we have
observed that it goes wrong very often. It appears that the probability

of ADB does increase if (ADB)Ol = AOlgpOl  which (as we shall

show) holds for case a of our theorem. We shall prove that a weaker condition

is also sufficient, which we use to prove case b of the theorem.

(5.6) Lemma. Let A,Bc{0,1}n, Then a*m*B = [A%B® 0 0] u [almBC 1 0]
v [A%Bl 01 ]u [AloB! 11 ].

Proof Let r,s €{0,1};

We show that for all mE{O,l}“‘l :(w,r,s)€A*O*B <> WEATORS .,
(w,r,s)€A*0*B < JK,Lc(l,...nt+l) s.t. KnL=§,

[(wr S)]K = A*,[(w T s)}L < *B. However, bacause (n+l) gsupp(A¥)
and n ¢ supp(*B), the last statement is equivalent to

it oo it iliasy et agEad vl (ol = e
and [w]L' c BS <> w € ATQBS.

(5.7) Lemma Let A,B c {0,1}“.

(i) If (AmB)0l = (AloBOl n A®mBOl) y (BlmAOl n BOOAOL),
then fi(A*o*B) > w(AOB).
(i1) If (AmB)Ol = AOIOBOL then fi(a*m*B) > w(ADB).

Proof See lemma 5.3(iii). We only have to prove (i) because (ii) is weaker.

Suppose the condition in i holds. Let s (W),.e.,0p-1) be



G- 20 -

given. We show that the conditional probability of A*O*B is always at
least the conditional probability of AOB: We have four cases

(a,b,c,d).First let p = u{m‘mn:l}
a) ® ¢ ((aOB)! u (AOB)?). Then the conditional probability of AOB=0.

% € (amB)!\ (ADB)O. Then (T,wn) € AOB iff wy=1, which has
probability p. On the other hand, by lemma 5.3, W € AloBO1 or

b

~

% € BlOAOL. If @ € AlmBO! then it is sufficient,in order to
have (m,um,mn+l)€A*D*B,that w,=1, which has probability p.
Analogously, if & € BIOAO! it is sufficient that w,4y=1, which

also has probability p.
c) B¢ (AEE)O\ (ADB)I- This case is analogous to case b.
d) w e (AmB)! n (amB)O.

Hence ® € (AEIB)OI. So the conditional probability of ACB equals 1. We
have to show that also the conditional probability of A*O*B equals 1: By the
condition in (i),

T AlmEtl o AHR2 or G plo a®! o 8o a0

Suppose the first holds (By 0-1 symmetry the reasoning is analogous if the

latter holds).

€ AllI!BO1 ==> (see lemma 5.6) [B 1 *] c A*O*B.
5 e a%08% == (4 0 #] c a*mB.

Hence [a * *] c A*T*B, so that, indeed, the conditional probability of A*O *B

equals 1.

(5.8) Proof for theorem 4.2, case a.

We show that, if n»2 A,B c {0,1}0 and A,B have the property mentioned in
case a, then the condition in lemma 5.7(ii) holds. This is sufficlent because
also A* and *B fall under case a, so we can successively split all
coordinates. (More formally the proof can be completed by induction on the
number of "unsplit” coordinates).

So, let A,B {O,I}n, A=DNE, B=FNG, where D and F are increasing,

and E and G decreasing subsets of {0,1}“, It is easily seen that

) e

w € AOB if and only if there are mutually disjoint K,K', L,L' < {1,...,n},
such that w=1 on KuL and »=0 on K' u L' and [uw]y € D, [w]g: < E,

[“L < F and [w],, © G- Suppose w E(ADB)OI. We shall show that this

. 01 L

implies w € A9lOBY), so that (AOB)?! c AClOBOl. The reverse inclusion is
trivial. w €(AB)0l = (w,0) € ADB and (w,l) € AOB. (w, 0) € ACB

= 3K,Le {1,...,n-1} s.t. KnL=@, w=1 on KuL, and [(w,0)Jx < D,

HCHDIE = 00 (@008 G e = sidguttet il oo nsillice, w0 Gl =l

w=0 on K'uL', [w,l]K, cE [w,l]L, c G. Fix such K,L,K',L’'.

We have:

w=1lonKulLand ws=0onKWL'= (KulL)n (K'uL'" =0.

Hence K,L,K' and L' are mutually disjoint subsets of {1,...,n—1} and it is

easily seen that [w}KUK' c A% and [“’]LUL' c g0l,

(5.9) Proof for theorem 4.2 case b.

We show that if A,B c {0,1}“ are permutation invariant, then
condition(i) in lemma 5.7 holds. The proof can then be completed by induction
on n (using lemma 3.12, noting that {n,n+l} ¢ supp(A*) n supp(*B) and that,
in the notation of the lemma, for all 1,j € {0,1} the pair A*(1,j), *B(d,3)
also falls under theorem 4.2, case b). Suppose:

(5.10) w € (AloBO! n B%AOL) \ (BlDA®! y A%mBO1)
w € AloBO! = 3Jx,L c {1,...,11}, s.t. [“’]K = Al,
[w], = 8%, and K 0 L = @. Fix such K,L.
We have [[“’]K 1] c A, [[“"JL *] < B.
Assume: 3i € L wj = 1. Fix suchan i.
Define K'=k u {i}, L' = L|{i}. Obviously K' n L' = 0.
By the permutation invariance of A and B we have
([l *1 < A ([l 1) e B = [l < A% ana [[o],, < 2']
==> y € B'OA%L. This is in contradiction to (5.10).

Hence the assumption " 3Ji € L wj = 1" is false, so that: ® = 0 on L.

Analogously, because w is in BY0A?! but not in AWDBOl, we get that for

certain disjoint K,T ¢ {1,...,n-1}: [w]_ < A%!, [w]_ cB? and w = 1 on K.
& %
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Hence, since w = 0 on L and 1 on %, L and K are disjoint.

g = i 01 01
Summarizing: [M]L c 01, [m}N c 0l and LnK=6, i.e. w € AlOBYL.
K

However, this is in contradiction with (5.10). Therefore, we may conclude
that the r.h.s of (5.10) equals @, hence:

(5:11) (AloBO1) n (890a01) < (BlmA%1l) u (A%OBOl).0f course we may replace the
r.h.s. of (5.11) by its intersection with the l.h.s, which is: (Bloa0l y
ARROl)n(aloBOlnBfmA®l) — (B'DAOD n AloBOlaBmall) u (A%B91 o Alop0ln B0g
A0y, which is contained in the r.h.s. of the condition (i)in lemma (5.7).
Analogously, by 0-1 symmetry, we can prove that also A00OB0l o Bloa®! is
contained in the r.h.s. of (5.7,i). The required result now follows from
that lemma.

6. Proof of Theorem 4.2, case c.

We first state some definitions and lemmas. A representation of an event A

is a set {[mi]K_IiEI} of cylinders s.t. v lo, ], = A-
d: e ot

(6.1) Definition Let 4 = {[mi]l(i‘iel}

and § = {[Njh(jwje‘l} be sets of cylinders. The pairst, P is called
semi-disjoint 1f:

Viel jeJ i Kjn 1, =0 or [o;]

A pair of events A,B is called semi-disjoint if there exists a semi—-disjoint

pair of representations of A and B.

Remark: Note that these pairs of events form exactly case(c) in the theorem.
The set of maximal cylinders of an event A is denoted by MR(A). Clearly MR(A)
is a representation of A.

(6.2) Lemma: Let A and B be events and let s be a representation of A.

1f the property(*) (see below) holds for all w and for all n, K, then the
pair A, MR(BN) is semi-disjoint.

¢ ([nJess welnlyms) » [o] < 3.

Proof: Let [y}LE MR(B), [n]KEJt and [n]K n[y]L # 0.
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Then for a suitable ¢ this intersection can be written as [GJKuL.

(Note that for such g [n}l\,: [U}K ’['Y}L = [O}L)- It is not difficult to see
that [GJL\K = U{[mJ o ‘ ME[U]KUL} which, by (*), is contained in B. Hence

K

is a cylinder of B.

[‘7]7 \K is a cylinder of B. But then, also [Y]L\K

This is only possible 1f L\K = L. Hence K n L = f.

6.3 Lemma The pair of sets D,E is semi-disjoint if and only if the pair

MR(D), MR(E) is semi-disjoint.

Proof The "if-part” is trivial so we only have to prove the other direction:
1f the pair D,E is semi-disjoint jthen by definition there i1s a semi-disjoint
pair®D,§ of representations of D and E. It is not difficult to show that if
we take A=D', £_Dand B=E, then (%) in lemma 6.2 holds for all w,n and K.
Hence, by that lemma, the pair D, MR(E) 1s semi-disjoint. Applying lemma 6.2
once more (this time we take A=E, s£=MR(E) and B=D) gives the result.

n
6.4 Lemma Let Q = I {l,...,k } and let p =
i=1 e i

L=~

; ui, where pi is the

uniform distribution on {l.‘.,ki } (i=1l,...,n). (Hence M is the uniform
distribution on ﬂ')££ A,B 1s a semi-disjoint pair of subsets of Q, then:
u(AOB) < u(A) u(B).

Remark By applying lemma 3.4 analogously to the application in the proof of
lemma 3.5 the result can be extended to case c of the theorem. It is even
sufficient to give a proof for the case that each ki=1; however, the proof

for general ki, which we give, is not more complicated. See also (4.3,c).

Proof of lemma 6.4. The case n=l is trivial. We shall prove that if the
result holds for n-1 (where n»2), then it also holds for n. The proof
consists of five parts, i1, 11, iii, iv, v. First, let 2, A and B be as in the
conditions of the lemma. We shall define X, E, for which we
prove in parts i-iii that: “(X) = 1(A), u(B = u(B) and
u(EnB) = u(AnB). Further, we show in part iv that the pair A,f is also semi~
disjoint, so that AnB = A B. Hence, it is sufficient to prove that u(xﬂi) <
U(X)u(g)‘ T?is will be done in part v by applying the induction hypothesis
to Q' = nn {1,...,1(1}.

=l

First some definitions:
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(6.5) Definition

B {c € MR(B) | n € supp(C)}-
&= {c € MR(B) | n ¢ supp(C)}-
Bt =u .
B™ =u 5

Ay f€h+ and A~ are defined analogously.

(6.6) Definition If Vc {1,...,kp}, then ¥ = {2,241,..,kn},
wherelf = tnm V|5 andsve=SiT00 VT

(6.7) Definition

(a) B = u {[o v(u)]}, where V(w') = {3lcu',5) € BH]

w'eq’

(® F = v {[u W@}, where W(w') = {3, 1) € ath
w' Q'

(c) B =35y Et.

(d) A = A-u at.

We are now ready to start the real work:

(1) It is easy to see, by conditioning on O ale i s thatsfor=all
D for which sup (D) < {1,...,n—1}:
u(pnety = W(DNEH, and w(DnAT) = u(DNAH).

(11) Using (1), we get u(B) = w(B)+u(BH)-u(B~nB*) =
= u(B)+u(B+) - p(B~nET) = u(B), and analogously,
u(a) = u(&).

(iii)Application of lemma 6.3 yields At n Bt = @, and by conditioning on
Wi,eessuwp1, it follows that also At n Bt=¢, so
that u(AnB) = u((A"UAT) n (B-UB)) = W(ATNB™)+u(A™nB*) + p(ATnBT)
-u(A=nB~nB") - u(A"nBnAT).

Now, by (1), we may, in the last expression, replace B+ by Bt and AT by AT

and then, following the equations backwards, we get u(AnB) = p(AnB).
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(iv) We shall now show that the pair X,E is semi-disjoint. First of all, it

is clear that 4 u MR(AT) and BU HR(E+) are representations of A and B

respectively. It will turn out that this pair of representations is semi-
disjoint: The pair HR(X+), HR(§+) is obviously semi~disjoint,
because, as we saw in (111i), A* n B+ = 9.
By lemma 6.3. the pair f{"ﬂ’,- is also semi-disjoint. It remains to show that
also the pairs#& ,MR(F*) and B , MR(A*) are semi-disjoint, and, by
symmetry,it is sufficient to treat the first pair. This will be done by
using lemma 6.2.
Let [M'JK € A and W=(W1 ey n) G[m'}K n B+. Obviously
[olg = [0 ]k Let kK'={1,...,n-1}\k.
Define the map
S: 2 x8>{l,...,k ] by
stnyy) = {il[nlg 0 [yl 0lx 31 5t}
Define g(ﬂ,Y) analogously, replacing BT by B*. We know, because

the pair A;B+ is semi-disjoint (lemma 4.3),that for all néQ, S(w,w)=S(n,w).
Further, the definition of B+ implies that

5 (w,w) = S(w,0), and ¥n € 2, 5(n,w) = S(n,)-
So we get:
Vn € Q g(w,m) o g(n,w), and finally, because Wy € g(m,m),

n € Q wy iz g(n,w), so that

n € 9 [n}K n[w] o B+,  hence [w] 268 B+, and so, by lemma 6.2,
K K
the pair 4-, MR(B*) is semi-disjoint.

(v) First define, for Dc Q and 1 < 1 < kn,
p! = {u' €@ | (u',1) € D}.
Before we apply the induction hypothesis, we have to show that also the
cell 3t . -
pair A", B® is semi-disjoint (i=1,...,kn). This is easily seen by taking
the
representations
i i~
= {¢]| ce Mm@},
1 5
= {c’| c e & B}.
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The induction step is as follows: take r, = [T S B 1= | Qif, i.e the number of maximal cylinders
jEK
Let p' denote ulﬂ', (i.e. p' is the uniform distribution on Q'). UF
Let p = 1/kq. of A which have support K;j. Obviously, there exists a 1-1 map
We have: > = bt £ {1,“.,1—1} > 1 Sj, which maps {1,...,si}onto 9y Let v, = ( o ui) o f,.
u(A) u(B) - u(A n B) = u(A) u(B) - u(A n B) = JEKy JeKy

k Zaact : k . Now define f = I f,: H{l,...,ri} + %, and v = I v,.
n g’ n Lo n A 1 1 1
= Jur@p Y EY - p [Mut ((BnB)T)
i=1 =1 =1 Note that f-1(a) = {u;e Tl so i ige wj < sj}, and check that the
i

> 4
kn kn i 1 -
4 2 x B
The last summation equals: p 'il _Elu'(A n BY) properties i and ii' in lemma 3.4 hold. Application of that lemma gives that
i=1 j=
kn Kn ~i ~i o 5 : we may indeed restrict ourselves to case (7.1).
= p? Z ) u'(A" n B7), which, by the induction hypothesis, is at
i=1 j=1 Now we apply lemma 3.4 once more to reduce 7.1 to the binary case:
k k i n n
most p2 I° M wrAY) wr@h. Let 2 = {0,1}" x T {1,...,5;,} x T {1,...,r;}. Define g: @' + @ by
i=1 j=1 i=l i=1
: : {CSPETRS cY a2 )78 (%)551521)5 85(%,,7552,) 500058 (X 5y 2 0,
o we have
y if x,=0
Kk k : 5 : 7 L i
S = 7 ~ ~ ~i where, for 1<i<n, (o 2 .
WA uB - uan B > p2 30 P @ wd@) - w@ v @Eh , 8y = ;g w1
ol :
= p? Z [ '(Ki) = '(KJ)} [ '(ﬁj) - '(ﬁl)] which is non-negative
P “ H M u M Also define, for 1<i<n, the probability measures
<j : : S
because, for all i,j, 1<j implies % ¢ &' and Bi < 8. R n n
“ix’ Uiy and Uiz on {O,l} 3 1 {l""’si} and I {1,...,ri} respectively by:
i=1 i=1
7. Proof of Theorem 2.1d i (0) = 1=y (1) = u{mi< Si};
WG = e e R e s () = W=tk d=sbl ool il
Apparently, there are mutually disjoint Kl,Kz,...c{l,...,n} such that the iy L5 i) > 22 eab i u{ i i} 158 e
support of each maximal cylinder of A is one of the K;)S‘ By lemma u{mi<sj u{mi>5j}
3.12 (noting that each A(w') falls again under case d of the theorem) we may 23 o n
Finally, define p' = 1 uix X [ u:;_ I uiz
assume that Y Ky = {1,...,n} and by lemma (3.10) that each Kji i=1 i i

consists of consecutive numbers. Further we can reduce the problem to the TE s imonRaTEFlculr to seotbhat thefpropertioo (E ANl e nrE (oot

case that for suitable ry,sj: with f=g and v=p') and that g_l(A) =
= u {Xl"”’xn’yl""’ yn’zl""’zn)em Ji xi=0}. Application of this

eDss i<i<n

Il =8

{l,...,ri}, A={m€ﬂ| =il w, < si}.
=it l
This can be seen as follows: For each i, let lema and of lemma 3.11 (note that g=(A) does not depend on the Yis
and zjs) red th bl :
Qi = {w'e 1 s,| [* ' *] is a maximal cylinder of A}; e o uges S et ctolitheeascthat
1ek, 3 ‘ (7.2) 9={0,1}", a={weq| 1 ©;=0}, and for this case we have the following
|



G=2280=

direct proof: If @ and A are as in (7.2) then, for arbitrary B < Q,

(7.3) w € AOB<—w € B, 31 w, = 0, (m],.‘.,mi_l,!,mi+l,...,mn) € B.
Call an element o € B maximal if there is no w'# w in B with w'z w. Denote

the set of maximal elements of B by B Obviously, by 7.3, ACB < B\ B

ax max’

hence
(7.4) u(ACB)< u(B)-u(Bp,.)-.
Further, for each w € Q:

(7.5) u({o'|o'<u]) = ol Wop) = W@/ Ly uuy) <

< p(w)/u(l,eesyl) = u(w)/(1-u(A))-
Hence

(7.6) u(B) = u( v {m‘\ w'€e B, o' < m}) < z u({m']m'EB, u'<m}) <

wEB weB
max max
i w(w) / (1-u(a)) = ”(Bmax) / (1-u(A)),
W€ ax
so that

(7.7) w(Bpay 2 W(B)(1-H(A))-
Combining(7.4) and (7.7) we get
(7.8) u(AmB) < u(B)-u(B)(1-u(A)) = u(A)u(B).
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ENIGE BIJDRAGEN TOT DE PERCOLATIETHEORIE

en verwante gebieden

SAMENVATTING

In de percolatietheorie bestudeert men de stochastische

chappen van netwerken waarvan de knooppunten en / of verbindingen

met bepaalde kansen eigenschap A of eigenschap B hebben. De specifieke

nis van A en B hangt af van de aard van het probleem. Het onderwerp

voor het eerst in de literatuur behandeld in 1957 door Broadbent en
Hammersley, die een wiskundig model probeerden te maken van de verspreiding

van n gas of vloeistof door een poreus materiaal.

Percolatiemodellen bleken spoedig van belang te zijn bij de beschrijving van
codperatieve''verschijnselen, zoals halfgeleiding, betrouwbaarheid
van grote communicatienetwerken en de vorming van polymeren. Ook bestaat .

er een grote mate van analogie met het Ising model voor ferromagneten.

Dit proefschrift bestaat uit een algemene inleiding, gevolgd door zeven
artikelen over percolatie en verwante gebieden. Bovendien wordt op ieder
artikel afzonderlijk een kort commentaar gegeven.

Het eerste artikel (A) betreft resultaten en vermoedens van Sykes en Essam
(1964) .

Het tweede artikel (B) houdt zich bezig met de vraag welke kritische waar-
schijnlijkheden kunnen voorkomen bij de subgrafen van een gegeven graaf,

en formuleert een eigenschap van "unieke oneindige componenten", welke
gebruikt wordt in artikel (D).

De artikelen (C) en (E) laten tegenvoorbeelden zien op intuitief voor de hand
liggende vermoedens van Hammersley en Welsh (1965) en Hammersley (1957).

In artikel (D) (gezamenlijk werk met M.Keane) wordt een verband gelegd
tussen twee belangrijke onderwerpen, namelijk de continuiteit van de
percolatie-waarschijnlijkheidsfunctie enerzijds en het aantal en de aard van
oneindige componenten anderzijds.

Het artikel (F) (gezamenlijk werk met H.Kesten) is voortgekomen uit een
geisoleerd percolatieprobleem, dat echter aanleiding gaf tot een aantal
ongelijkheden die op een breed gebied van toepassing zijn. Een aantal
resultaten invde betrouwbaarheidstheorie en in de percolatietheorie werden

verbeterd, van een aantal andere werden eenvoudiger bewijzen gevonden.
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Artikel (G) (gezamenlijk werk met U. Fiebig) is gewijd aan een in het
vorig artikel geformuleerd combinatorisch vermoeden betreffende het
"disjunct optreden van gebeurtenissen". Dit vermoeden heeft betekenis
voor de percolatietheorie (zoals voorbeeld 1.2 laat zien) maar heeft
ook geheel andere interessante interpretaties (zoals voorbeeld 1.1).
Enkele gevallen worden bewezen; één daarvan is een uitbreiding van de

FKG-Harris ongelijkheid.
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By a technical failure a part of the text in the first column of page

A154 has been omitted. The complete text is as follows:

The following references should be added

to the list on p. 22-24:
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ergodic theory, Ann. Probab. 1,

883-909.
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Arse

When we call two vertices v, and v; equivalentif, for all n and
£.5.(p0)) = S,(piwy), then we can generalize the above re-
sult as follows:

Theorem 1: Let L be a lattice which has only a finite
number of classes of equivalent vertices and which possesses
2 pair of orthogonal symmetry-axes. Then

PENL)+PIL)=1.

The proof of Theorem 1 is similar to that of the special
case of the simple quadratic lattice (see also Fisher”).

3. SOME NONTRIVIAL SECTION-GRAPHS OF S WITH
CRITICAL PROBABILITY ~2/(S).
In this section it will first be shown that P{'(S ({m)
= P1(S), where S ({) denotes the quadrant of S with ver-
tex-set | (n,m)|n,m>0]. Analogously § *(}) will denote the
quadrant of 5 * with the same vertex-set as S ({).
From the matching-property (sce Ref. 1) it follows that
the vertex 0 = (0,0) belongs 1o an infinite white cluster of

S *(tz)ifandonly lack walkin 5 (}
vertex (7,0) to some vertex (O,m),m,m>0. Itis trivial that the

J. Math, Prys., Vol. 22, No. 1, January 1981




Stellingen bij het proefschrift "Some Contributions to Percolation Theory and

related fields" van J. van den Berg, B januari 1985.

1=

De in (1] beschreven methode voor het simuleren van de golfhoogten onder een

zich boven het oceaanoppervlak voortbewegende waarnemer is niet geschikt voor

hoge snelheden, omdat de variantie van het gesimuleerde proces dan aanzienlijk

(+ 35%) te laaqg is.

[1] R.T. Schmitke (1971), A computer simulation of the performance and dynamics
of HMCS Bras d'or (FHE-400), Canadian Aerodynamics and Space Journal,

March 1971.

Door middel van laboratoriumproeven onderzoekt men in welke mate DNA beschadigd
wordt door chemotherabie en bestraling. In [2] wordt een wiskundig model be-
handeld van twee aanvankelijk onbeschadigde en van elkaar gescheiden DNA strengen
die onderhevig zijn aan: (i) breuk; (ii) vorming van onderlinge verbindingen;
(iii) aanhechting van andere celoroteinen , Een stuk DNA waarmee het laatste
heeft plaats gevonden is zo groot geworden dat het niet meer door bepaalde
filters kan. De auteurs berekenen de fractie van het DNA materiaal dat tot
dergelijke clusters behoort. Aan het einde van het artikel merken zij onder andere
op dat " the calculation of the total length of all the fragments in a given
cluster seems to pose a more difficult problem"”. Dit lijkt mee te vallen: de
oplossing komt neer cp het inverteren van een Laplace transformatie .

[2] George H. Weiss and John Rice (1982), A combinatorial problem in pharmacology,

J.Math.Biology 14, 195-201.

. Het in [3] besproken model van een bosbrand is, in tegenstelling tot een bewering

van de auteurs, geheel equivalent met gewone (d.w.z. onafhankelijke naaste-buur)
lijnpercolatie.
[3]) Gary Mackay and Naeem Jan (1984), Forest fires as critical phenomena,

J. Phys. A 17, L757 - L760.

. Voor simpele symmetrische exclusieprocessen (zie [4]) is bekend dat, gegeven

de beaintoestand, voor iedere t > 0 en voor elk tweetal roosterpunten 1)

(L # J) de gebeurtenissen {op tijdstip t bevindt zich eendeeltie in i} en

{op tijdstip t bevindt zich een deeltje in j} negatief gecorreleerd zijn. In

deze stelling is de symmetrie conditie zeer belangrijk. Er is namelijk een voor-

beeld van een proces waarvoor nog wel in leder roosterpunt de ingaande rate

gelijk is aan de uitgaande rate maar waarvoor de symmetrie-conditie niet geldt

en de uitspraak van de stelling onwaar is.

[4] T.m. Liggett (1977), The stochastic evolution of infinite systems of
interacting particles; in: Ecole d'été de probabilités de Saint-Flour VI-
1976, LNM 598, Springer-Verlag.




Zaino

zij d > 0, £,v,g > d en B de balk (0,21 x [0,v] x [0,9]. Laten L, V en G
meetbare deelverzamelingen zijn van respectievelijk het linker zijvlak, het
voorvlak en het grondvlak van B. Laat verder CG de cylinder zijn in B die lood-
recht op het grondvlak staat en als basis G heeft (dus C, = G x [0,q9]). Definieer
op analoge wijze CL en Cv' Stel nu dat van elk van deze cylinders het gedeelte
op afstand < d van de basis gekleurd wordt (Dus van CG wordt de deelverzameling
G x [0,d] gekleurd enz.). Dan geldt dat de fractie van ¢y, U gy Ucg die ge-
kleurd is maximaal is als L het gehele linker zijvlak, V het gehele voorvlak

en G het gehele grondvlak is.

Beschouw een groot net met vierkante mazen van lencte 1. Stel dat ten gevolge
van slijtage breukvorming optreedt overeenkomstig een homogeen Poisson proces.
Hierdoor valt het net (mogelijk) in fragmenten uiteen. De kans dat twee buur-
knooppunten tot verschillende fragmenten behoren is kleiner dan de overeen-

komstige kans voor twee knooppunten met onderlinge afstand 2.

Laat F een partitie van 23 zijn in eindige klassen. Beschouw naaste-buur punt-
percolatie modellen waarbij tot verschillende klassen behorende punten onaf-
hankelijk zijn, terwijl binnen iedere klasse afzonderlijk de punten open of
gesloten zijn overeenkomstig een SNBU verdeling. Wanneer het antwoord op problee:
1.11 van artikel F in dit proefschrift bevestigend is, dan voldoen al deze
modellen aan ongelijkheid 3.18. Voor modellen die bovendien voldoende periodici=
teit bezitten zou dan tevens, in het kritische gebied, het volgende analogon van

corollarium 3.15 gelden: P[5, ] > c(@) e aadiAe

2ij a € [0,1], A = [a,1], x,y € [0,1], x > y. Voor aiffusieproblemen met
reflecterende punten 0,1 geldt px(sm €nji> py(s(c) €Al gct<w

Wie twee reizen als bijrijder op een vrachtauto maakt, een van New York naar
Los Angeles en een van Stockholm naar Rome, behoeft geen econoom te zijn om
in te zien dat de EEG geen wereldrol van betekenis kan spelen zolang haar in-

wendige handelsobstakels niet verder geslecht worden.

In verband met de steunverlening van de overheid aan noodlijdende bedrijven
wordt vaak de kritiek geuit dat bescherming van deze, meestal verouderde, bedrij:
weggegooid geld is en ten koste gaat van levensvatbare en vernieuwende bedrijven.
Wanneer men nu personen beschouwt als (dienstverlenende) ondernemingen die hun
dienstenpakket (lees: kennis, vaardigheid en inzet) voortdurend dienen aan te
passen aan omstandigheden en ontwikkelingen, dan zou een gelijksoortige kritiek

op zijn plaats kunnen zijn.

Bij het oogsten van biezen wordt men geconfronteerd met diverse lastige

percolatieproblemen.



