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Abstract: Modelling the stochastic evolution of a large-
scale fleet or network generally proves to be challenging due
to the large number of variables and their interactions. This
difficulty may be compounded through complex relationships
between various assets in the network. Although a great
number of probabilistic graph-based models (e.g., Bayesian
networks) have been developed recently to describe the be-
haviour of single assets, one can find significantly fewer
approaches addressing a fully integrated network. An ex-
tension to the standard dynamic Bayesian network is pro-
posed by introducing an additional dimension for multiple
elements. These elements are then linked through a set of
covariates which translate the probabilistic dependencies. A
Markov chain is utilized to model the elements and develop
a distribution-free mathematical framework to parametrize
the transition probabilities without previous data. This is
achieved by borrowing from Cooke’s method for structured
expert judgement and also applied to the quantification of
the covariate relationships. Some metrics are also presented
for evaluating the sensitivity of information inserted into the

covariate-DBN where the focus is given on two specific type
of configurations. The model is applied to a real-world ex-
ample of steel bridge network in the Netherlands which are
related through traffic load patterns. Numerical examples
highlight the inference mechanism and show the sensitivity
of information inserted in various ways. It is shown that in-
formation is most valuable very early and decreases substan-
tially over time. Resulting observations entail the reduction
of inference combinations and by extension a computational
gain to select the most sensitive pieces of information.

1 INTRODUCTION

Degradation modelling in reliability and risk analysis is a
topic that has attracted countless pieces of research work.
Throughout the past decades, researchers have drawn little
attention to fleet- or network-scale problems. More specifi-
cally, in the ground transportation infrastructure field, a few
recent papers treat bridge networks [10]. As one would ex-
pect, when considering systems on a much larger scale, the
number of variables and uncertainties increases significantly
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as compared to looking only locally at individual assets. The
individual/independent approach also does not facilitate cost-
efficient strategies in terms of future maintenance plans at
a larger scale. Efficient and effective use of data has be-
come even more desirable with the growing use of contin-
uous monitoring that asset managers may use to either up-
date the current knowledge of a system or formulate predic-
tions on various key indicators. In the reliability field many
different type of assets are continuously and efficiently moni-
tored (e.g., roads, buildings, bridges, etc.), however it is often
cost-prohibitive and not vital to place a monitoring installa-
tion at each individual asset. By consequence, collected data
varies in size and informativeness from asset to asset so that
much effort is often given to identifying the most relevant
and sensitive elements. This paper provides a framework for
exploiting the dependency between assets and propagating
partial information throughout the network. Thus, a degra-
dation assessment of the entire network can be made from
only a subset of information obtained from various points.

Particularly for deterioration modelling, uncertainty sur-
rounding the degradation process is highly present from en-
vironmental conditions, material properties, etc for instance.
Markov-based models are now widely accepted as suitable
stochastic processes especially in the bridge degradation
modelling domain [23]. It is common practice to exploit in-
spection data on various parts of an asset to model both the
component-level and the overall condition through Markov
processes. The main task in Markov-based models reduces
almost exclusively to the assessment of the transition proba-
bilities. Several general methodologies have been developed
to using condition ratings data as well as those specific to
bridges [14, 20, 22, 27, 21]. In the case where condition rat-
ings are not available, synthetic condition states can be sam-
pled from assumed prior distributions or degradation models.
In particular, in [28], condition state values are randomly
generated to represent a range of condition states at each
ten-year interval using Weibull distribution and a Latin hy-
percube simulation. However the degradation pattern comes
from knowledge of the specific area of concern or is some-
what assumed a priori like in [17] where a hazard exponential
model is used to derive the Markov transition probabilities.
While almost the entire literature encourages the use of ei-
ther the two methodologies mentioned, there is a scarcity of
models investigating the case where very limited field data
are to be used.

The objective of this paper is to model the degradation for
a network of ”similarly classified” assets under very limited
data. It is denoted ”similarly classified” assets as those state
evolutions are highly correlated. A new methodology is pro-
posed to parametrize the transition probabilities of a Markov
chain of a particular asset. In absence of the aforementioned
data, or where data is very limited, a method is proposed to
quantify the mean duration of the first passage time between

degradation conditions to derive the transition probabilities
through a simple linear equation. The expected durations
of transitions are elicited by means of the classical Cooke’s
method [5] for combining expert opinions. This provides a
procedure that fully quantifies in a probabilistic way dura-
tions of transition. Furthermore, Cooke’s method also allows
us to provide a distribution-free method in order to obtain the
transition probabilities. To our knowledge, this is the first ap-
plication of Cooke’s method to parametrize a Markov chain.

Information on underlying mechanisms (covariates) inter-
acting with one another may be available for some of the
most relevant elements. Their role is twofold: (1) they serve
as factors impacting degradation upon which the Markov
process depends and (2) to generate a coherent probabilis-
tic framework to address dependency among assets in the
network-scale problem. Multi-dimensional (e.g., spatial) de-
pendencies that may exist in the network elements are con-
veyed through these covariates. The new methodology pro-
posed in this paper extends the classic framework of dy-
namic Bayesian networks (DBNs) by providing an approach
to model the state of a large-scale set of assets in a consistent
manner without necessary data for the standard parametriza-
tion approaches. The extended DBN, which is termed a
covariate-DBN, also allows the propagation of new informa-
tion from assets for which data is available into others for
which data may be limited. The conditional probabilities of
the DBN are also derived using the structured expert judg-
ment (SEJ) approach described above for the Markov chain.

BNs have been extensively used in reliability and civil en-
gineering where high-dimensional probabilistic evaluation is
necessary. For discrete BNs, the quantitative burden related
to both the quantification of conditional probability assess-
ments and the inference mechanism are known to be the main
limitations. [3, 4] introduce a high-dimensional probabilistic
model using BNs for safety and risk analysis in the railway
domain where 7,820 variables (on separate BNs) have been
used. [30] proposed a DBN model for probabilistic assess-
ment of tunnel construction performance including a modi-
fied version of the Frontier algorithm to perform inference.
One of the advantages shown in each of the three above-
cited articles is that BNs can be a powerful tool to quantify
the risk of extraordinary events. In this paper it is provided
a global methodology through the so-called covariate-DBN
model for asset management. Computationally, it is shown
that the inference combinations can significantly be reduced
by advantageously exploiting results regarding the sensitiv-
ity of unexpected events. It should be noted that the [9]
have developed an aggregated method and algorithm for
classes of directed acyclic graphs thus encompassing BNs,
but not solely. Their purpose is to model spatio-temporal
data and can be applied to every chain graph where an
aggregation process is present. However, their model is
not able to capture timely updated information by the in-
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tegration of covariates, and thus also not measuring the
impact of this data as we do. Our proposed model is not
restricted to spatio-temporal data, even though we con-
sider this example for the bridge network.

The use of embedded covariates in a DBN suggests an
analogy with Markov switching models [11] as they were in-
troduced to model this type of stochastic process by adding
conditionality through either observed or unobserved vari-
ables. These types of models were extensively developed in
econometrics and finance whose main purpose is to capture
switching regimes of time series data. The method’s purpose
here is, however, not to model changes in time series switch-
ing regimes but rather covariates are introduced with the
twofold above-mentioned role. Secondly, modelling degra-
dation through observable covariates also relates to the work
of [29] and [1] in survival analysis. Deterioration dynamics
is driven by continuous stochastic processes and covariates
in both approaches, however, highly-dimensional models are
not addressed as is done through a DBN.

In a very recent paper by [33], they develop a DBN
approach including nodes representing spatial dependency
across different location for revealing trophic dynamics in
fisheries ecology. However, the proposed framework is spe-
cific to the application considered through spatial nodes and
thus does not offer a general methodology to address classes
of problems discussed above. Moreover, it is emphasized
that the spatial characteristic may not be a systematic factor
to generate the network. One could also think of other links
found between multiple elements, such as common material
properties, relationships between physics-based phenomena,
etc.

The remainder of the paper is organized as follows. The
following section presents the degradation process frame-
work combining a discrete Markov process with a DBN
where the two-dimensional network-scale extension is pre-
sented. First, the procedure of estimating the transition prob-
abilities is detailed. Second, how its dynamics is influenced
by covariates and the network-scale DBN is formulated. Sec-
tion 3 introduces the SEJ method to calibrate the Markov
transition probabilities and conditional probabilities in the
covariate-DBN model. Section 4 highlights a bridge net-
work deterioration example based on traffic and load as se-
lected covariates. Section 5 provides numerical experimen-
tation highlighting the benefits of inference throughout the
covariate-DBN model before drawing final conclusions and
providing perspectives on future work.

2 DETERIORATION FRAMEWORK

A finite discrete-time Markov stochastic process {D(k)
t , t ≥

0} is used to model the degradation for element k. When only
focusing on a single element superscript (k) will be omitted.
The goal is simply to describe the probability that each of the

elements can be in a particular state at time t conditionally on
the previous state and some selected covariates. covariates
are used to represent observable random variables that influ-
ence the degradation process {Dt}. To address the network-
scale issue, an extension of the classic Dynamic Bayesian
network (DBN) framework is presented. For the reader’s
convenience, notations can be found in Table 1.

2.1 MARKOV CHAIN

Discrete-time Markov processes have been extensively used
in the context of risk, reliability and maintenance manage-
ment for civil infrastructures [2, 8]. The Markov property
mainly characterizes this class of stochastic processes. Re-
call that this property stipulates that it is only needed to know
where the process Dt stands at present time t (first order), as
opposed to rely on its complete history, to predict in a prob-
abilistic sense how the process behaves in the future. It is
denoted by {1, ...,Ω} the set in which Dt takes values. Con-
ventionally, it is written the one time step transition proba-
bility pi, j from state i to j, i, j ∈ {1, ...,Ω}, the probability
P(Dt+1 = j|Dt = i). In the present case it is assumed a se-
quential degradation, meaning that only the pi,i, pi,i+1 > 0
with pi,i + pi,i+1 = 1. As it is assumed that bridges are in
the best condition when newly constructed, P(D0 = 1) = 1.
The stochastic process {Dt , t ≥ 0} that models degradation is
usually defined by the (Chapman-Kolmogorov) equation

P(Dt = j|D0 = 1) = Pt(1, j) (1)

where Pt is the transition probability matrix (TPM) to the
power t and Pt(1, j) refers to row 1 and column j of Pt , with
1 ≤ j ≤ Ω and for every t ≥ 0,∑ j P(Dt = j|D0 = 1) = 1. A
set of n ≥ 1 so-called covariates is further introduced which
designate random variables denoted by Θt =(θ1,t , ...,θn,t) for
each time step t, with (θ1,t , ...,θn,t)∈C1×·· ·×Cn, so that the
process {Dt} is dynamically influenced by such quantities.
The transition probabilities are thus given by

pi, j = ∑
c1,...,cn
∈C1,...,Cn

P(Dt = j|Dt−1 = i,θ1,t = c1, ...,θn,t = cn)

×P(θ1,t = c1, ...,θn,t = cn)

(2)

Covariates may either directly or indirectly impact {Dt}. An
indirect covariate would impact another covariate rather than
directly Dt . This is precisely the reason why Bayesian net-
works are used as a suitable framework to handle the depen-
dence structure and make transparent its visualization and
quantification. The latter is introduced in the section 2.3
where the complete definition of the new DBN framework
is presented.
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Table 1: Notations

Ca state space for covariate θ
(k)
a,t S time horizon

D(k)
t Markov chain describing deterioration for element

k at time t
ωωωΘ matrix containing information for each covariate

across time and element
fX probability density function of random variable X ω

θ
(k)
j,t

entry of matrix ωωωΘ

fX |Y conditional probability density function of X given
Y

σi,Θ sensitivity metric for deterioration state i under in-
formation Θ

k asset or element index µ
(k)
ω time at which a single piece of information is in-

serted
K number of elements/assets η

(k)
ω time up to which consecutive pieces of information

are inserted starting at t = 0
n number of covariates per element k and time t θ

(k)
a,t covariate a for element k and time t

pi, j Markov transition probability from state i to j Θ
(k)
t set of covariates for element k and time t

pa(·) set of parent variables Ω worst deterioration state of {D(k)
t }

P Markov transition probability matrix

2.2 BAYESIAN NETWORKS

Bayesian networks (BNs) are probabilistic graphs of relative
recent development as their formalism was put forward by
[26]. A compact way of defining BNs can be divided into
two parts, namely graphical and probabilistic denoted by the
couple (G ,P). Often those are described as the qualitative
and quantitative features, respectively. A BN is a directed
acyclic graph (DAG) and G = (N ,E ), where sets N and
E respectively represent nodes and arcs or arrows. Elements
of E will be expressed as (u;v). In probabilistic terms, nodes
are univariate random variables and arcs translate probabilis-
tic dependencies. The other part P refers thus to a proba-
bilistic characterization through conditional distributions as-
sociated to G between (sets of) nodes linked by the arcs. The
complete characterization of a BN reduces solely to the as-
sessment of the couple (G ,P).

A BN encodes the probability density or mass function on
a set of variables X = {X1, ...,XN} by specifying a set of con-
ditional independence statements in the DAG associated with
a set of conditional probability functions. It thus provides a
representation of a high dimensional probability distribution
on X. The joint probability mass function fX1,...,XN over vari-
ables {X1, ...,XN} can be expressed as

fX1,...,XN =
N

∏
i=1

fXi|pa(Xi) (3)

where pa(Xi) denotes the set of parents for node Xi. Dis-
tributions can be discrete, continuous or a mixture of both.
However in this paper it is exclusively made use of the dis-
crete case. It is referred to [7] and [12] for a broader survey
on the remainder classes.

In the same manner it is denoted by X the set of n variables
{X1, ...,Xn}, Y and Z designate sets of n variables {Y1, ...,Yn}

and {Z1, ...,Zn} respectively. Furthermore, it is understood
the notation X⊥ Y|Z to suggest that X and Y are condition-
ally independent given Z which is equivalent to write X 6⊥ Y
saying that X and Y are marginally dependent. Likewise,
it is used X 6⊥ Y|Z to make explicit that X and Y are con-
ditionally dependent given Z. As briefly mentioned before,
a remarkable property coming from graph theory that BNs
possess is called the directional separation (d-separation).
The latter transcribes a graphical attribute corresponding to
three distinct visual layouts into probabilistic (in)dependence
statements between sets of variables. The cases of concern
regarding the d-separation property are summarized as fol-
lows:

• X ← Y → Z; this means that X is independent of Z
given Y (X⊥Z|Y), however X and Z are not marginally
independent (X 6⊥ Z)

• X→ Y→ Z; this layout has the same interpretation as
the previous one

• X→ Y← Z; in this case, one has X 6⊥ Y|Z implying
X⊥ Y

Another feature which makes BNs attractive is symbolized
by the ability to perform inference. More specifically, the
network can be used to update the probability distribution
over the state of a subset of variables when information be-
comes available for other variables. Regarding the founda-
tions of exact inference mechanism, we refer again to [26].
Exact inference in the discrete case is an NP-hard problem
meaning that the complexity is exponential in the number
of states and degree1 of nodes. Hence, approximation algo-
rithms like variational or Monte Carlo methods emerged in

1the degree of a node is understood by the number of edges incident to it
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order to mitigate the computational burden for high dimen-
sion and complex BNs. Readers are referred to [16] for a
large review on probabilistic inference for graphical modelsn
and more recently [32]. In the bridge engineering field, in-
formation can stem from inspection data, crack measurement
testing or even monitoring systems collecting inputs regard-
ing traffic as shown in section 4.

In a static discrete BN, nodes stand for discrete random
variables which are the most common version that have
been developed in risk and reliability modelling [35]. The
BN displayed in Fig. 1 shows how the set Θ of four time-
independent covariates, namely Θ=(θ1,θ2,θ3,θ4), and state
node D can be linked when not accounting for any time nor
network dimensions. In this example, nodes θ2 and θ4 are di-
rectly connected to D. Nonetheless, a more suitable version
in the present case refers to dynamic BNs accounting for time
dynamics through the process {Dt} which is presented in the
next section.

Θ

D
θ1

θ2

θ3 θ4

Figure 1: Static covariate-BN structure

2.3 COVARIATE-DBN

While BNs are useful for modelling a dependence structure
among random variables, they do not capture the evolution
over time. For modelling dependencies between stochastic
processes by direct or indirect covariates as described above
in eq. (2), a convenient tool is Dynamic Bayesian networks
(DBNs). Especially in degradation modelling, DBNs are a
well suited [31]. Time is represented as a discrete time slices
or steps which are connected by directed arcs from nodes in
slice t to nodes in slice t +1. Note that the network structure
is identical in each slice (i.e., does not change over time). A
DBN that contains time-dependent conditional distributions
is denoted a non-homogeneous DBN. Furthermore, the de-
pendence between the deterioration nodes is in compliance
with the Markovian property. Only time slice t is dependent
on time slice t +1; thus, only current information is required
to assess the probabilistic evolution (i.e, it is memoryless).
Like the static version, the characterization of a DBN is de-
fined by the graph structure at time t, between t and t + 1.,
and the assessment of the conditional distributions for t = 0
and between slices t and t +1. Similar to the static BNs, in-
ference may also be performed and there have been specific
algorithms developed for DBN frameworks [25].

An extension of the classic DBN formulation is proposed
at a fleet- or network-level through the covariates introduced

above. Network covariates make use of relationships be-
tween one or several elements composing the network. These
could stand, for instance, for operating and environmental
conditions, structure characteristics, material properties, etc.
While data may be unavailable for the key metric of interest
(i.e., Dt ), information on various covariates may be obtained.
These covariates can then be used as a means to insert infor-
mation that will be propagated throughout the network due
to their dependence structure with state of interest Dt . This
extends the traditional DBN which contains only time depen-
dence to additional dependence dimensions. In our model
this second dimension is conveyed by the covariates.

Let Θ
(k)
t =(θ

(k)
1,t , ...,θ

(k)
n,t ) be the set of n covariates at time t

for element k of the network. Note the addition of superscript
k for the multiple-element case. A visual representation ex-
ample of the extended DBN model is reported in Fig. 2. It
contains n = 4 covariates per time slice t for a network com-
posed of two elements k = {1,2}. The set of covariates for
each element k = {1,2}, Θ

(1)
t and Θ

(2)
t is represented by the

big dashed circles. It is assumed that in our proposed ex-
tended DBN the dependence structure does not change over
time, but may change between elements k. Covariates may
evolve independently or depend on other covariates and may
or may not directly impact {Dt}. This is shown with θ

(k)
4,t be-

ing independent of (θ (k)
1,t ,θ

(k)
2,t ,θ

(k)
3,t ) with k = 1,2. Precisely,

for element 1 the covariates θ
(1)
2,t and θ

(1)
4,t are directly impact-

ing {D1
t } whereas for element 2, θ

(2)
1,t and θ

(2)
4,t are playing

this role. Again, once this structure is set for each element
it is kept over the whole time horizon. Although not shown
in Fig 2, for a given element, covariates could also have a
time-varying distribution. The latter has already been intro-
duced in [31], but without incorporating a second dimension
as is done in this paper. The connections across the different
elements are thus made through the set of covariates Θ

(k)
t . It

is also shown in Fig. 2 that θ
(k)
1,t and θ

(k)
4,t are the covariates

performing the linking task. It is assumed that each element
has the same set of covariates Θ

(k)
t , although the dependence

structure between covariates of different elements may vary
according to the data. The DBN structure can be general-
ized similarly to what characterizes a classic DBN. For time
epoch 0≤ t ≤ S and network element 1≤ k ≤ K, there must
be specified:

• the covariate dependence structure for each element
k denoted by G

(k)
Θ

= (N
(k)

Θ
,E

(k)
Θ

) with N
(k,t)

Θ
={

Θ
(k)
t

}
, E

(k)
Θ

=
{(

pa
(

θ
(k)
a,t

)
;θ

(k)
a,t

)
,1≤ a≤ n

}
and

its set of conditional distribution functions P
(k)
Θ

={
f
θ
(k)
a,t |pa

(
θ
(k)
a,t

),1≤ a≤ n
}

• the covariate-to-element dependence structure denoted
by G

(k)
D↓Θ

= (N
(k)

D↓Θ
,E

(k)
D↓Θ

) with N
(k)

D↓Θ
=
{

D(k)
t

}
, E

(k)
D↓Θ

=
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{(
pa
(

D(k)
t

)↓Θ(k)
t

;D(k)
t

)}
and set of conditional dis-

tribution functions P
(k)
D↓Θ

=

 f
D(k)

t |pa
(

D(k)
t

)↓Θ(k)
t

where

pa(X)↓Y designate the set of parents for node X re-
stricted to node set Y.

• the element-to-element dependence struc-
ture denoted by G

(→)
Θ

= (N
(→)

Θ
,E

(→)
Θ

)

with N
(→)

Θ
=

{
Θ

(k)
t : 1≤ k ≤ K

}
, E

(→)
Θ

={(
pa
(

θ
(k)
a,t

)
;θ

(k)
a,t

)
: pa(θ (k)

a,t ) 6⊂Θ
(k)
t ,1≤ a≤ n

}
and conditional probability set P

(→,t)
Θ

={
f
Θ
(k)
t |pa

(
θ
(k)
a,t

) : pa
(

θ
(k)
a,t

)
6⊂Θ

(k)
t ,1≤ a≤ n

}
The complete covariate-DBN can now be defined for
time horizon S and bridges network size K as BK,S =

{G K,S,PK,S} where G K,S,PK,S are summarized, respec-
tively, through each of the graph and probabilistic sets in-
troduced above.

Θ
(1)
t

D(1)
t

θ
(1)
1,t

θ
(1)
2,t

θ
(1)
3,t

θ
(1)
4,t

. . .. . .

D(2)
t

Θ
(2)
t

θ
(2)
1,t

θ
(2)
2,t

θ
(2)
3,t

θ
(2)
4,t

. . .. . .

Figure 2: A two-element Covariate-DBN with 4 covariates
at time t

2.4 NETWORK SENSITIVITY ANALYSIS

A methodology is proposed for evaluating the sensitivity of
covariate information inserted into the network at different
points in both time t and dimension k. This aids identify-
ing the key elements of the network, the types of informa-
tion with the greatest impact, and when and where to ob-
serve the network in order to obtain said information. Re-
call that the set of covariates Θ

(k)
t = (θ

(k)
1,t , ...,θ

(k)
n,t ) takes val-

ues in C1 × ·· · ×Cn. Let ωωωΘ =

(
ω

θ
(k)
a,t

)
1≤a≤n
0≤t≤S
1≤k≤K

be the n-

by-S-by-K matrix of one possible combination where each
ω

θ
(k)
a,t
∈ Ca ∪NOI, represents the possible information that

can be inserted adding the ”no information (NOI)” state. The
unconditional case is simply the matrix ωωωΘ with all entries
being NOI. The total number of possible combinations of
injecting evidence for the covariate-DBN model is given by
all the permutations among the set {C1, ...,Cn}KS given by

eΘ = ((|C1|+1)×·· ·× (|Cn|+1))KS−1 (4)

with T being the time horizon, K the total number of ele-
ments and |Ca| the cardinality of each set Ca,a ∈ {1, ...,n}.
One way to measure the value of the propagated informa-
tion is to check how much it affects the posterior probabil-
ity distribution. Fix bridge 0 ≤ k ≤ K and degradation state
i∈ {1, ...,Ω}, the following sensitivity measure can therefore
be computed

σi,Θ =

∣∣∣P(D(k)
t = i)−P(D(k)

t = i|ωωωΘ)
∣∣∣

P(D(k)
t = i)

(5)

From eq. (5) above, σi,Θ ∈ R+,∀(i,ωωωΘ) ∈ {1, ...,Ω}× n×
S×K. Examples of the values obtained are depicted in
section 5. This metric may provide insight on when and for
what duration new information should be obtained as well as
the quantity and location deployed across the network. Let

τ = inf
{

t ≥ 0 : ∀a,k,ω
θ
(k)
a,t
6= NOI

}
, therefore

σi,Θ

{
= 0 if t < τ

> 0 otherwise
(6)

This means that the earliest piece of evidence being inserted
only impacts the posterior probabilities of P(D(k)

t = i|ωωωΘ)

for t > τ .
To study how sensitive the network reacts, it is prohibitive

to cover the list of all possibilities as eΘ grows exponentially
along K and S. Two different types of configurations are put
forward to gain insight from a large covariate space: 1) the
effect of information being inserted individually at different
points in time and 2) the cumulative effect of inserting in-
formation at multiple points in time. The study is further re-
stricted to the case where only the same type of information
is entered over time.

For fixed a ∈ {1, ...,n} and k ∈ {1, ...,K}, let µ
(k)
ω ∈

{0, ...,S} be the time a single piece of information(
ω

θ
(k)
a,t

)
0≤t≤S

is inserted into the network. Furthermore, let

η
(k)
ω ∈ {0, ...,S} be the time up to which consecutive pieces

of information are inserted beginning at t = 0. Then the ma-

trix ωωωΘ =

(
ω

θ
(k)
a,t

)
0≤t≤S
1≤k≤K

can be a function of η
(k)
ω and the

binomial coefficient
( S

η
(k)
ω

)
which gives all possible orderings
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for a specific number of pieces of evidence. Thus we obtain

dσi,Θ

dη
(k)
ω

{
= 0 if t ≥ τ

> 0 otherwise
(7)

This shows that for a specific element k and a certain covari-
ate θa,t , regardless of the way pieces of information are incor-
porated, i.e. the various permutations among the set Ca, σi,Θ

increases or is constant along η
(k)
ω . This result holds for cu-

mulative information incorporated across different elements.
This results is particularly desirable in the reliability domain
as it highlights the usefulness to obtain field data in a tem-
poral cumulative manner from a specific element or several
of them. Not only does it primarily impact its own poste-
rior distribution but it additionally affects the probability of
the other elements. The sensitivity metric given in eq. (5)
facilitates the quantitative identification of elements in the
network with minor consequence on others and thus reduce
the need of observation.

3 PARAMETRIZATION THROUGH EXPERT
JUDGMENT

The goal here is to parametrize the transition probabilities of
the Markov chain Dt . The classical SEJ model developed by
[5] is used which is a performance-based weighted averaging
model to aggregate individual experts distributions into a sin-
gle combined one. It is both a widely accepted [6] and appro-
priate method when quantitative data is missing, of dubious
quality, or is insufficient for obtaining desired outcomes.

3.1 COOKE’S MODEL FOR ELICITING EXPERT
OPINIONS

The protocol of [5] was followed which provides a clear
statement of the questions to be answered, documents crit-
ical underlying assumptions, and establishes a logical struc-
ture for the elicitation interview. Experts are asked to spec-
ify their quantiles (e.g., 5th, 50th and 95th) of an uncertainty
distribution regarding variables of interest and seed variables
tailored to the problem considered. Seed variables are known
quantities used to compute two measures of performance of
the experts: the calibration and information scores. Loosely,
calibration measures the statistical likelihood that a set of
experimental results correspond, in a statistical sense, with
the experts assessments. Information measures the degree to
which a distribution is concentrated. The weights are derived
from experts calibration and information scores, as measured
on seed variables. Seed variables serve a threefold purpose:

(i) to quantify experts performance as subjective probabil-
ity assessors

(ii) to enable performance-optimized combinations of ex-
pert distributions

(iii) to evaluate and hopefully validate the combination of
expert judgments.

3.2 CALIBRATION OF pi, j

Several developments must be made in order to apply the
Cooke’s method to parametrize a Markov chain. Instead of
explicitly eliciting pi, j expected transition time between con-
secutive states i to i + 1 are asked. Cooke [5] shows that
directly estimating probabilities should be avoided as per-
forming such a task is known to be challenging and gener-
ates greater uncertainty. Whenever possible, one can over-
come this challenge by asking quantities which experts
are more familiar with to derive the ones of interest. If
not, relative frequencies are used as is done in this paper
for Q2.

In order to quantify pi, j introduced in eq.(2), the expected
time it takes for a bridge to transit between states i and j is
given by

E[Ti, j] = 1+ ∑
k 6= j

E[Tk, j]pi,k (8)

where Ti, j = inf{M : DM = j,DM−1 6= j, ...,Dm+1 6= j|Dm =

i} is a strictly positive integer random variable and represents
the first passage time from state i to state j, with 0≤m < M.
When j = i one has E[Ti,i] = 1/πi, where πi is the limit dis-
tribution of the Markov chain for state i, limt→+∞ P(Dt =

i) = πi. Typically, as state {Ω} is the only absorbing state,
π = (π1, ...,πΩ) = (0, ...,1) so E[Ti, j] = ∞,∀i ≥ j. In other
words, we have a strictly degrading process that will
eventually arrive in the failed state if no action is taken.
In the very general case where P is complete, i.e., when in-
terventions improving the state of an element are allowed,
the transition probability matrix is given by

P =

 p1,1 . . . p1,Ω
...

. . .
...

pΩ,1 . . . pΩ,Ω


Moreover, matrix E of the expected first passage time tran-

sitions is given by

E =

 E[T1,1] . . . E[T1,Ω]
...

. . .
...

E[TΩ,1] . . . E[TΩ,Ω]


¿From eq. (8), the following linear system of equations has
to be solved

P∗(E−diag(E)) = E−1 (9)

where ∗ is the usual matrix product operator, diag(E) is the
matrix having the values E[Ti,i] and zeros in each of the other
entries and 1 is the matrix having ones in every entry. Solv-
ing matrix equation (9), where the entries of matrix P
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are the unknowns, allows to indirectly quantify this ma-
trix of interest given matrix E so that experts are spared
from directly estimating transition probability values.

For matrix E, the entry (i, j) (with i 6= j) is non infinite
if there exists M > 0 such that ∀m ∈ [0,M),P(XM = j|Xm =

i) > 0⇔ PM−m(i, j) > 0. This means that there must ex-
ist a path starting from state i to reach state j in order to
have a finite (expectation of) first passage time. Recall that
pi,i + pi,i+1 = 1 so only the pi,i or pi,i+1 need be specified
due to the sequential degradation assumption. Moreover,
this assumption allows the reduction of eq. (9), for each
i ∈ {1, ...,Ω}, to the following simplified equation

pi,i = 1− 1
E[Ti,i+1]

(10)

so that only Ω− 1 expected transitions have to be elicited.
Note that if the pure sequential degradation assumption
is relaxed, e.g., deterioration jumps are allowed or spon-
taneous improvements may occur, eq. (9) would still need
to be solved. However, the reduction to (10) would no
longer hold and more passage time transitions would
have to be elicited. From eq. (10), E[Ti,i+1] ≥ 1 time step
otherwise it yields pi,i < 0. If an expert gives an estimate
where E[Ti,i+1]< 1, one can simply rescale the time step to a
smaller time unit. The time step should not exceed the min-
imum time for an asset to transition two states in order to
maintain the sequential degradation property. A lower bound
for the time step would be the minimum time necessary for
the asset to transition from any given state. Parametrizing the
model amounts to calibrating the quantities P(Dt = j|Dt−1 =

i,θ1,t = c1, ...,θn,t = cn) (eq. (2)) and E[Ti,i+1] (eq. (10)), as
the joint distribution P(θ1,t = c1, ...,θn,t = cn) is assumed to
be empirically obtained. The two main expert judgment elic-
itation questions are then formulated as follows

Q1 ”Could you provide the 5th,50th,95th quantiles of your
uncertainty distribution about the expected years that it
takes for each of the K elements considered to transit
between each of the states in {1, ...,Ω} ?”

Q2 ”Consider a sample of 100 000 data points each rep-
resenting the following event. At time t − 1 a certain
element k was in a certain condition state (1, ...,Ω) and
the covariates directly incident to the process D(k)

t were
observed to be in each their possible states (i.e., cardi-
nality of the state space of incident covariates). Recall
that it is assumed elements can only deteriorate to their
next worse state or remain in the same state at the next
time step. Out of these 100 000 samples, what is the
number of these assets transitioning to their next worse
state at the next time step ?”

Note that Q1 and Q2 must be elicited for each element k,
thus the number of questions to be asked is 2K. More gen-
erally, for any number of questions q for each element k, the

total number of questions becomes qK. However, the total
network size may be dramatically increased while limiting k,
by considering different classes in which multiple elements
belong to the same class. Thus, a very large network can be
constructed without needing to elicit responses for each ele-
ment if they are of the same class, hence the introduction of
similarly classified assets. This will be detailed in the fol-
lowing sections of our bridge application in which hundreds
of bridges may be present but only a few classes. In such a
context, only questions on the classes need be elicited and
not each individual bridge in the network. This further high-
lights the limited data framework application of this model.

The covariate-DBN methodology is summarized through
the diagram displayed in Fig. 3. The arrows from the SEJ
(Q2) node pointing to eq (2) is more precisely referring
to conditional probability portion P(Dt = j|Dt−1 = i,θ1,t =

c1, ...,θn,t = cn) that makes the one-to-one correspondence
link between the covariates Θ

(1)
t , ...,Θ

(K)
t and the Markov

processes {D(1)
t }, ...,{D

(K)
t }. The latter are specified by the

expectation of the random variable Ti,i+1 (eq. (10)) which is
parametrize from SEJ by Q1. The dashed double-oriented
arrow among the covariate sets refers to the possible depen-
dence relationships between them. Note that Fig. 3 only rep-
resents one slice in time, therefore the t subscript has been
omitted. To represent the total time horizon, Fig. 3 would be
repeated for all t ∈ {0, ...,S}.

SEJ (Q2)

Θ
(1)
t , . . . ,Θ

(K)
t

{D(1)
t }, . . . ,{D(K)

t }

E[T (1)
i,i+1], . . . ,E[T (K)

i,i+1]

SEJ (Q1)

possible dependencies across
covariate elements

eq. (2) eq. (2)

Figure 3: Diagram of the covariate-DBN methodology

4 BRIDGE NETWORK APPLICATION

This section treats degradation modeling for a network of
motorway steel bridges. Two different classes of motorway
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bridges are specifically considered with a steel (so-called or-
thotropic) bridge deck, namely moveable and fixed. On the
network of motorways in the Netherlands there are approx-
imately 100 steel bridges, divided into movable and fixed
types [15]. These types should be quite representative of
the category encompassing motorway steel bridges located
in the Dutch bridge network. A key characteristic of a bridge
is its deck plate thickness. The thickness of the bridges may
vary throughout the network. It is assumed that the deck
plate thickness for moveable and fixed bridge is chosen to be
12mm and 10mm, respectively. Furthermore, the thickness
and type of deck plate overlay are assumed a 6 mm thick
epoxy overlay and a 100 mm asphalt is applied for moveable
and fixed bridges, respectively.

The underlying physical deteriorating process considered
here is fatigue crack growth in the bridge deck which oc-
curs due to repetitive loading by vehicles’ axles. Fatigue is
a degeneration process developing in time such that it can
be detected before they grow so large that they obstruct the
safe use or even integrity of the structure. It is assumed
that the crack growth rate decreases for increasing deck plate
thickness and surface finish. By consequence, the covariates
chosen are traffic and loading as they are the main endoge-
nous contributors in this mechanism. The covariate traffic
is given by the number of axles per kilometre per lane av-
eraged over the total number of lanes. In turn, loading
is described as the kilo-Newtons (kN) per axle per kilo-
metre per lane averaged over the total number of lanes.
Data coming from a monitoring system located in the Nether-
lands is available, presented subsequently and used to evalu-
ate some of the (conditional) probability distribution sets.

4.1 DEPENDENCE STRUCTURE

Traffic and loading covariates are denoted by {T (k)
t } and

{L(k)
t }, respectively. Thus, Θ

(k)
t = (T (k)

t ,L(k)
t ), for any bridge

k. The typical dynamic dependence structure for the deteri-
oration of any bridge k is sequential, that is, T (k)

t → L(k)
t →

D(k)
t for any time slice t. The edges connecting successively

the degradation nodes D(k)
0 , ...,D(k)

S are translating the tem-
poral aspect of the model. The traffic covariate is used serve
as the dependence link connecting bridges. Traffic dynam-
ics have been monitored and quantified in the Netherlands,
for instance [34]. The set of bridge-to-bridge edges E

(→,t)
Θ

is specified through traffic dynamics. A possible layout is
shown though in Fig. 4 which captures a distribution of K
bridges across a highway section. In this case, for any time
step t ≥ 0, nodes {T (k)

t } and {T (k+1)
t } are bonded in a con-

secutive manner. A pair of bridges are (un)conditionally in-
dependent given sets of covariates. This defines the depen-
dence graph structure G K,S; only the conditional distribution
set PK,S has to be specified.

T (1)
0 L(1)

0

D(1)
0

T (1)
1 L(1)

1

D(1)
1

. . .

T (1)
S L(1)

S

D(1)
S

T (2)
0 L(2)

0

D(2)
0

T (2)
1 L(2)

1

D(2)
1

. . .

T (2)
S L(2)

S

D(2)
S

...
...

...

Figure 4: Example layout of covariate-DBN structure BK,S

4.2 TRAFFIC AND LOAD DATA

Data on traffic and loading is obtained from a Weigh-In-
Motion (WIM) system. In [24] the same data coming from
a WIM installation is input to model multidimensional dis-
tribution of axle loads together with other related quanti-
ties. A thorough investigation of dependencies between these
quantities through a copula representation is presented. Here
WIM data is used to derive a probability distribution on traf-
fic density defined as the number of axles per time over a
100m bridge. In addition, the conditional probability dis-
tribution of loading given traffic density is derived assum-
ing the covariate-DBN dependence structure presented in the
previous subsection. This monitoring installation was set on
a two-lane (fast and slow) motorway a few kilometres from
a steel bridge in the Netherlands. As only the mechanism
of fatigue for orthotropic steel bridges is investigated, load-
ing coming from fluctuating stresses caused by vehicles is
in general the most important factor and is seen as a ran-
dom variable whose distribution is yearly stationary. The na-
ture of traffic intensity influencing the loading behaviour is
also stochastic [24]. Both distributions of loading and traffic
are computed given sample distributions bootstrapped from
WIM data. The data is first exploited so that kernel density
estimators are computed for fast and slow lanes in a con-
gested traffic configuration. Axles’ positions and weights
are further obtained by queuing all the vehicles the system
recorded over a month. More precisely, a so-called ’train’ of
vehicles is created. By bootstrapping over a number of fixed
vehicles among the total amount of recorded vehicles, a ran-
dom distribution of vehicles is derived. The generated train
provides each fast and slow lane vehicles’ separation, axle
position and weight, and the number of vehicles per lane.
The loading moments are then computed using a finite ele-
ment method whose discretization step is that of the triangu-
lar Bartlett window over the span of the bridge. In this case,
the highest loading moment for a vehicle crossing the bridge
occurs when it is located halfway through it.

The scatter plot displaying the number of axles against
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(a) Scatter plot of the number of axles against loading conditionally on
{#axles > 0}

Load [kN]
0 500 1000 1500
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F

×10-3
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(b) Probability density of the total load conditionally on {#axles > 0}

Figure 5: Load distribution conditionally on {#axles > 0}

loading and the marginal probability distribution function
(PDF) of loading are illustrated in Fig. 5(a) and 5(b), re-
spectively. Both distributions are plotted conditionally on
the number of axles being strictly positive. Equivalently,
this means there is always loading on the bridge. Many
of the recordings refer to a no-loading scenario, namely
P(L(k)

t = 0) = P(#axles = 0) = 0.432, for any k. In this
configuration, the load variable is discretized by setting the
following thresholds. A Heavy loaded situation is seen as
all the recorded loads lying above the 97th quantile bin of
the load PDF conditioned on their being at least one axle.
Numerically, this value represents 751.189 kN which can
also be written as P(L(k)

t ≤ 751.189 kN|#Axles > 0) = 0.97.
In Fig. 5(b) the Heavy load is represented by the shaded
area below the PDF curve. Similarly, for Normal and
Light loading states, values lying in between the 90th and
the 97th quantile bins and below the 90th quantile bin are
chosen respectively. These are shown in Fig 5(a) through
the dark and light grey scatter points for the Normal and
Light loading cases. This way the probability distribu-
tion f

L(k)t |pa
(

L(k)t

) is fully determined. For every time slice

t, the quantification of the conditional probability distribu-

tion of traffic nodes
{

f
T (k)

t |pa
(

T (k)
t

)}
1≤k≤K

was in turn ob-

tained from the National Data Warehouse for Traffic Infor-
mation (NDW) measurements performed in 2013 from sev-
eral Dutch highways [34] and broken down into a 3-state
space {High,Medium,Low}. It is further denoted by L =

{Heavy,Normal,Light} and T = {High,Medium,Low} the
sets that processes L(k)

t and T (k)
t take, respectively, value in.

4.3 ELICITATION RESULTS

The complete SEJ experiment is presented in [18]. The
elicitation was carried out with three experts on steel bridge
reliability and management. Particularly, the seed questions
refer to historical data on crack length collected between
2006 and 2011 at a highway steel bridge in the Netherlands.
A typical seed question asked to the experts is the following:

”An 80 mm crack was detected located in the deck
plate 33 years after construction, what would be its length
the following year?”

By varying the time gap between two crack measurements,
the age of the bridge at the time of the first measurement, the
crack measurement technique as well as the crack location, a
total number of 12 seed questions were asked. The remainder
of the questionnaire comprises the questions of interest Q1
and Q2 which were introduced in section 3.2. They must be
asked for each element k (moveable of fixed bridge), loading
configuration L = {Heavy,Normal,Light} and type of tran-
sition considered (1→ 2,2→ 3 and 3→ 4), making a total
of 24 items of interest. Q1 allows fully calibrating the tran-
sition probability matrix as shown in eq. (10) while the sec-
ond question provides the missing conditional probabilities
of node Dt given Dt−1 and Lt as the covariate-DBN structure
introduced in section 4.2 suggests. From notation introduced

in section 2, we have
{

f
D(k)

t |pa
(

D(k)
t

)}
1≤k≤K

. From the law
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of total probability, we get

f
D(k)

t
(x) =


∑

l∈L
P
(

D(k)
t = x|L(k)

t = l
)

P(L(k)
t = l) t = 0

∑
l∈L

∑
y∈{x,x−1}

P
(

D(k)
t = x|D(k)

t−1 = y,L(k)
t = l

)
×P(L(k)

t = l)P(D(k)
t−1 = y)

t > 0

(11)

In particular, the terms P
(

D(k)
t = x|L(k)

t = l
)

(for t = 0)

and P
(

D(k)
t = x|D(k)

t−1 = x−1,L(k)
t = l

)
are the ones elicited

from Q2. As a consequence, the burden for experts (i.e, the
number of queries) increases in the number of states Ω for
the Markov processes D(k)

t , the number of edges that are in-
cident to the Markov chain

(
E

(k)
D↓Θ

)
, and the number of states

of the incident covariates.
Using the results in Table 2 by taking the median values

(50th percentile) together with eq. (10), the corresponding
transition probability matrices for each class of bridge can be
derived. Moreover, from eq. (8) and eq. (10), the complete
matrix of expected duration of transition can be retrieved as
well

PM =


0.954 0.046 0 0

0 0.905 0.095 0
0 0 0.834 0.166
0 0 0 1

 ,

PF =


0.976 0.024 0 0

0 0.797 0.203 0
0 0 0.824 0.176
0 0 0 1



EM =


∞ 21.62 32.14 38.16
∞ ∞ 10.52 16.54
∞ ∞ ∞ 6.02
∞ ∞ ∞ 1

 ,

EF =


∞ 41.14 46.08 51.77
∞ ∞ 4.94 10.63
∞ ∞ ∞ 5.69
∞ ∞ ∞ 1


where subscripts M and F denote the moveable and fixed

classes, respectively. Backward reasoning also applies, that
is, conditioning on one or more states of the covariates, the
conditional transition probability matrix can be computed
as well as the conditional expectation matrix using eq. (8).
Upon this basis, the annual probability distribution of process
Dt to reach the worst state, P(Dt = 4|D0 = 1) (eq. (11)), us-
ing the IT DM combined distribution are displayed in Fig. 6
for both moveable and fixed bridge categories. For each dis-
tribution the median (50th quantile) is presented. The dif-
ferences in sensitiveness through inserted information high-
lighted by the posterior distributions are quite sharp. Unlike
the case featuring a Normal load, observe that distributions

Table 2: Assessments obtained from the performance based
combination scheme (IT) for expected transitions (Yrs) be-
tween sequential degradation conditions defined in Table 3
after removing one seed question

Bridge type Transition 5th 50th 95th

1→ 2 3.09 21.62 49.45
Moveable 2→ 3 5.04 10.52 24.59

3→ 4 3.30 6.02 28.18

1→ 2 4.73 41.14 54.60
Fixed 2→ 3 3.81 4.94 20.25

3→ 4 1.15 5.69 34.56

conditioned on a heavy load do not differ much between the
two classes of bridge considered.
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Figure 6: Performance based combination of the median es-
timate for annual probability distribution to reach worst state
(see Table 3) for both Moveable and Fixed bridges classes.

5 NUMERICAL EXPERIMENT

Various experiments are presented to show the sensitivity
of the posterior degradation distribution to inserting various
types of information at different points in time. As an illus-
trative example, a subset network of bridges is constructed
using the new covariate-DBN model introduced in section
2.3. This network is illustrated in Fig 9. The quantification
methods used for the conditional probability sets are those in-
troduced in sections 4.2 and 4.3. The network is comprised
of four bridges, three moveable and one fixed, whose lay-
out is similar to that of Fig. 4 having the same set of co-
variates Θ

(k)
t = {T (k)

t ,L(k)
t } standing for traffic density and

loading. The example relates to bridges located at the inter-
section highways A2 and A15 in the Netherlands. A15 has
one of the most dense yearly traffic while A2 is more average
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[34]. Such a configuration is supposed to be representative
for many real-world cases. For the example, bridges 1 (fixed)
and 2 belong to A15 and bridges 3 and 4 to A2.

The PPTC algoritm (probability propagation in trees
of clusters) for inference first developed by [19] is used
in our study. More specifically, the PPTC extended by
[13] as a more efficient approach for dynamic BNs is im-
plemented through the Bayesian network framework Smile
application programming interface (API). It is shown how
much the network beliefs are modified when information
is obtained from various covariates and elements at differ-
ent points in time. As previously discussed, this can lead
to prohibitive number of combinations. Scenarios leading
to changing traffic conditions are numerous as well as their
loading characteristics. Examples affecting traffic conditions
include maintenance for one or more bridges in the surround-
ing network area, traffic accidents or environmental disasters.

Consider a single 4-state condition space for both bridge
categories (fixed and moveable) whose conditions are de-
fined in Table 3.

A first example of inference is illustrated in Fig. 7
where the (conditional) CDF of the condition states for
Bridges 1 and 3 are plotted at each time step for a time
horizon S = 50 years. Left figures (Fig. 7(a)) stand for the
unconditional (NOI) case while right figures (Fig. 7(b))
show updated distributions conditionally on consecu-
tively inserting evidence of ”high traffic” between year 5
and year 10 for Bridge 1. Observations that can be drawn
are:

• While Bridge 1 is the only one of fixed type, its degra-
dation curve shows very little difference compared to
Bridge 3. Moreover, they also belong to motorways
having different traffic characteristics

• In the right-hand column, the probability area for
state 4 has increased for both bridges with respect to
the no information case. This demonstrates that the
distribution of Bridge 3 is slightly sensitive to infor-
mation obtained from Bridge 1.

In general, inserting information that deviates more sig-
nificantly from the expected should have a greater impact
on the sensitivity. The propogation of information is mainly
governed by the conditional probability distributions across
traffic nodes obtained from [34]. For instance, the condi-
tional distribution T (3)

t |T
(2)

t is given in Table 4. The same
tests were carried out using Low and Medium states individ-
ually in the same context and updated distributions showed
minor modification. Similar observations were also drawn
with respect to Bridges 2 and 4. Fig. 7 showed the cumulative
effects of inserting high traffic information into the network.
The effect of inserting high traffic information individually
as shown in Fig 8 are examined. The horizontal axis denotes

(µ(k)
ω ) the vertical axis the sensitivity measure σi,Θ computed

as defined in eq. (5) for state i = 4. Each plot represents a
fixed time slice t ∈ {5,10, ...,S = 50}, the boldest curve rep-
resents t = 5 and lightest curve refers to t = 50. Thus, the
”t = 5” curve represents the sensitivity at t = 5 of inserting
”high” traffic information individually over the time horizon.
Notice that once information has been inserted posteriorly to
the fixed time epoch (µ(k)

ω > t), the sensitivity drops to zero as
previously detailed in eq (6). The sensitiveness dramatically
decreases both as information is inserted later in time and
evaluated later in time. Thus, the figure shows that it is most
relevant to insert information as early as possible and the re-
turn on information dramatically decreases over time. The
same comments can be made for Bridge 3 and more generally
shows a lesser amplitude for the σ4,Θ curves. For example,
µ
(k)
ω peaks at ∼ 18% for Bridge 1, while the maximum does

not reach 14% for Bridge 3. This reduced sensitivity is to be
expected as it has a downstream impact from where the in-
formation was directly obtained Bridge 1. Similar tests were
performed for the remainder of the network, namely Bridges
2 and 4, which showed similar behavior.

Likewise, analyses on η
(k)
ω were performed as defined in

section 2.4 for cumulative information. Sensitivity curves for
η
(k)
ω are displayed Fig. 10. The various grey gradient curves

read in similar fashion to those of the plots displayed in Fig 8.
Compared to the single insertion case (Fig. 7), the sensitiv-
ity increases dramatically for every fixed time epoch. This
is evidenced by comparing the ’t = 5’ curves; the sensitiv-
ity for Fig. 10 peaks above 120% whereas Fig. 7 (Bridge
1) does not pass 20%. Most importantly, the figure demon-
strates that more information is always better and informa-
tion loses its value over time. The latter can be explained by
the distribution of each state being bounded asymptotically
by some upper and lower conditional distributions as shown
in Fig. 6. In the case of most or least expected information
being inserted consecutively from t = 0 throughout the net-
work, the degradation distribution will correspond to respec-
tive bounding distribution. In this numerical experiment, the
upper bound corresponds to the least expected information
(i.e., high traffic/heavy loading) being inserted. Although,
not demonstrated from the experiment, we believe that re-
gardless of the manner information is inserted (i.e., consec-
utive or not), more information will always have a greater
impact on sensitivity.

6 CONCLUSIONS

An extension to the classic dynamic Bayesian network
framework which is termed the covariate-DBN is proposed. a
second dimension for K elements is added as well as method
for indirectly linking them through a set of covariates. It is
further proposed a Markov chain as the underlying stochas-
tic process for the covariate-DBN. In the case where limited
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Table 3: Bridge condition states
State Definition
1 - Excellent Almost no damage/cracks are present. A newly constructed bridge is assumed to start from this state.
2 - Fair At least one crack in the deck plate that can be detected ultrasonically [30mm, 100mm]
3 - Mediocre Multiple cracks are present [30mm, 500mm]; at least one crack requires repair
4 - Poor Multiple significant fatigue cracks with at least one >500mm in the deck plate that needs urgent repair; this

condition does not mean a collapse but a threat to safety and/or functionality.
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Figure 7: Impact of High Traffic Information on the Network

Table 4: Conditional probability distribution of traffic pro-
cess T (3)

t given T (2)
t

T (3)
t |T

(2)
t Low Medium High

Low 0.934 0.0448 0.0385
Medium 0.0492 0.879 0.0651
High 0.0168 0.0762 0.8964

data is available, a formal mathematical framework is devel-
oped making use of Cooke’s method for structured expert
judgement to parametrize a Markov chain and the covariate
relationships between elements in the covariate-DBN. Some
metrics are also presented for evaluating the sensitivity of in-
formation inserted into the covariate-DBN.

The proposal is then applied to a real-world bridge net-

work application based on steel bridges in the Netherlands.
It is shown how traffic and load information may serve as
covariates to link bridge elements in the covariate-DBN.
An actual expert judgment elicitation was carried out to
parametrize the model using the prescribed methods. Nu-
merical experiments show that information is most valuable
as early as possible, and the value of information decreases
over time.

While the model is applied to a specific bridge network
scenario, different sets of covariates could be envisioned in
the same framework. Furthermore, we believe the model
could be expanded to other bridge types and civil infrastruc-
ture. Applications are not only limited to degradation mod-
elling but could include other fields and contexts such as fi-
nancial asset modelling and disease propagation.

In sections 2.4 and 5, it is shown how one could reduce the
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Figure 8: Sensitivity curves for σ4,Θ plotted against m(1)
ω where the colour gradient from dark to light grey for each curve indicates

fixed time epochs for each plot spaced by 5 years for bridge 1 (left) and bridge 3 (right).

Figure 9: Map of the Dutch bridge network at the intersection
of highways A15 and A2
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information inserted is state High for node T (1)

t

computational intractability referring to running through all
the possible combinations of inference. In particular, from
figures 8 and 10 it is observed that :

• cumulative inserted pieces of information dominate
over individual piece of information; in other words,

any inference combination having a lower number of
inserted pieces of information than its cumulative coun-
terpart will show a less sensitive change in the poste-
rior distribution. Practically speaking, continuous mon-
itoring should prevail as opposed to condition-based (by
also taking into account cost constraints)

• the sensitiveness of the inserted information decreases
in time so that pieces of evidence inserted at early
epochs should be preferred over later ones. This means
that if significant and unexpected event are observed
(represented by the type of inserted information), the
sensitivity metric is also able to capture those.

Thus, by advantageously combining the two above observa-
tions, one could selectively opts for the most sensitive com-
binations of inference. This further results in substantially
decreasing the inference choices.

As for any Markov-based model, our approach can be
validated through classic statistics test, e.g. Fisher’s con-
tingency table for verifying Markovian order if data is
available. However, one of the main purposes here is
in particular to represent a large-scale network with the
simplifying assumption that assets are grouped into sim-
ilarly classified types. By consequence, one can mainly
quantify those categories in a general and subjective fash-
ion, hence the need of experts. The classical BN valida-
tion methods [7] may also be applied to our model.

For discrete BNs the main limitation of the proposed
methodology refers to dimensionality. Our model further
increases this complexity through the added k dimension.
Other classes of BNs dealing with continuous distributions
could facilitate the parametrization procedure. For exam-
ple, a dynamic non-parametric class recently developed [12]
could be a useful tool to overcome this. An extension to influ-
ence diagrams would provide a decision making framework
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for the underlying covariate-DBN to facilitate managers ap-
plying model forecasts.
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