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Abstract

With the growing concern of aging infrastructures, the need for effective and non-intrusive monitoring
techniques has become increasingly important. While most current methods rely on active testing, this
study explores the potential of using ambient noise interferometry as a passive method for Structural
Health Monitoring (SHM) of concrete structures. It investigates whether the Green’s function (GF) of
concrete medium can be adequately estimated from traffic noise to assess its health condition.

Two datasets are examined: a validation dataset from a laboratory experiment simulating ambient noise
on a pre-stressed concrete girder, and real-world traffic noise data from the Maastunnel in Rotterdam.
For each dataset, the following aspects are analyzed: (1) signal characteristics, including amplitudes
and frequency distributions; (2) the optimal pre-processing scheme, incorporating temporal and spectral
normalization, along with frequency filtering; and (3) the coherence of the resulting GF estimation from
interferometry, particularly time of wave arrivals.

The results from the validation dataset demonstrate that ambient noise interferometry can reliably re-
construct the GF for concrete medium, indicating its effectiveness for monitoring changes such as crack
formation and strain changes. However, the analysis of actual traffic noise data did not provide sufficient
evidence to support its use for SHM with the current setup. Although a coherent and usable frequency
range for traffic noise was identified, the limited amount of data led to a low signal-to-noise ratio (SNR),
which made it challenging to highlight relevant features.

Moving forward, future researchers are encouraged to collect sufficient amount of data for analysis to
better determine the feasibility of reconstructing the GF with ambient traffic noise. Additionally, explor-
ing alternative sampling methods like continuous recording could address one of the limitations of this
research. Finally, employing decomposition methods may help in increasing the SNR.
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1
Introduction

1.1. Context
Civil infrastructure is an important asset of every society as it enables economic activities that contribute
to economic and social welfare, fostering overall development and improving the quality of life for its
inhabitants. Because of this, the safety and integrity of these structures becomes a top priority. Failure
due to structural degradation and hazardous events could lead not only to economic losses, but also to
the loss of human lives [1].

For large-scale infrastructure, concrete is commonly used because of its exceptional versatility, durability,
strength, and cost-effectiveness [12]. However, like any other material, it is susceptible to deterioration
in health and performance due to several factors such as aging, fatigue, environmental effects, and
lack of quality control. Natural disasters also pose a threat to the performance and life of the structure.
Therefore, measures must be put in place to ensure the reliability of large-scale concrete structures until
the end of their intended design lives or beyond. To address this, regular maintenance and monitoring
are required.

Recently developed and increasing in popularity is the field of structural health monitoring (SHM) [1],
which focuses on continuous or periodic monitoring of engineering structures to assess their structural
integrity. SHM can be defined as the process of implementing a damage identification strategy to allow
early detection of damage at the incipient level so that necessary precautionary measures could be
applied proactively [23]. If done correctly, SHM ensures structural safety and reduces rehabilitation
costs significantly [28].

In the usual practice of SHM, the predominant method is a combination of visual inspections followed
by localized non-destructive testing (NDT) at typical points of failure or where possible damage is seen.
However, earlier NDTs, such as ultrasonic pulse velocity (UPV), fiber optic sensing (FOS), and eddy
currents, require active testing, which is intensive in terms of time, cost, and personnel.

In this study, the primary concept explored was using passive ambient noise to characterize a heteroge-
neous medium through interferometry, a technique adapted from seismological practices. One specific
application within seismology involves utilizing the Green’s Function, which is the impulse response of a
medium estimated from cross-correlations of ambient noise, to reconstruct a three-dimensional image
of the Earth’s subsurface based on variations in wave speeds and group velocity maps [26, 36].

1
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In evaluating the velocities derived from the GFs using ambient noise in concrete structures, the goal
was to assess whether valuable information could be extracted, particularly concerning the presence
of damages such as surface cracks. Research indicates that cracks can notably decrease both the
amplitude and velocities of waves [33].

In this research, two datasets were used: the first from a previous acoustic emissions (AE) test of a
prestressed concrete girder in a lab, and the second from passive traffic noise data collected from the
Maastunnel in the Netherlands.

The first dataset was used to develop a signal-processing algorithm and validate the concept, taking
advantage of the reduced uncertainties of a laboratory experiment. The second dataset was for testing
the effectiveness of the concept on actual passively gathered traffic noise data.

1.2. Research Questions
• Can the Green’s function between a pair of sensors installed on a concrete structure be retrieved
through the interferometry of the received signals?

• Can changes in the estimated Green’s function be detected and used to draw conclusions
about the state of the concrete structure?

• Can the arrivals of waves be detected in the estimated Green’s function between a sensor
pair?

• How effective is traffic noise interferometry in monitoring the structural health of concrete structures
in both laboratory and real-world conditions?

• What frequency range must be extracted to obtain coherent signals that are suitable for
Green’s function estimation in the context of concrete structure monitoring?

• What is the optimal pre-processing procedure to enhance the quality and coherence of signals
extracted from ambient traffic noise data?

• How do the characteristics of signals from lab-simulated ambient noise experiments compare
to those obtained from real-world ambient traffic noise, and what adaptations are necessary
to successfully apply these methods in real-world scenarios?
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1.3. Research Approach

Figure 1.1: Research workflow

The main objective of this study was to explore the potential of using ambient traffic noise to estimate
the Green’s function of a concrete medium, with the goal of aiding the monitoring of both time- and
space-dependent properties of concrete. This capability could help in detecting and localizing potential
structural damage. The study began with a validation dataset derived from a controlled laboratory exper-
iment, where the noise source was well-defined, serving as a basis and benchmark. Subsequently, the
method developed and validated using the laboratory experiment data was applied to a real concrete
structure (the Maastunnel) for further evaluation and comparison. Finally, conclusions and recommen-
dations were made.



2
Review of Related Literature

2.1. Ambient Noise Data Processing
Ambient noise is the typical or persistent background noise that is present in any given environment. This
includes noises generated by both natural sources, such as wind and rainfall, and man-made sources,
such as traffic and other human activities. Using ambient noise recordings for interferometry (Section
2.2) eliminates the need for active sources, allowing for easier and cheaper acquisition and repeated
measurements.

When collecting ambient noise data, the time series of the signal is generally expected to be flat, with
occasional distinct peaks from random high-amplitude events. To emphasize the ambient noise and
prevent these high-amplitude events from obscuring it, normalization and band-pass filtering are applied
[4].

In this study, both analyzed datasets were from ambient noise sources, however one was obtained in a
laboratory setting with minimal random noise, while the other was from actual field recordings.

Due to the variations in data collection conditions, different pre-processing techniques were used on
each dataset. Once the pre-processing was done, the data was cross-correlated and then stacked to
ultimately obtain an estimation of the Green’s function.

In the subsequent sections, the processes that were done will be further explained.

2.2. Seismic Interferometry
In the field of seismology, seismic interferometry (SI) pertains to themethod in which the cross-correlation
of ambient seismic noise at two receiver locations provides an estimate of the Green’s function (GF),
representing the impulse response of the medium between the two stations as if one of them had been
an active source (Figure 2.1) [32]. This is further explained in Section 2.2.3.

When ambient noise is influenced by transient and high-amplitude events, the formation of a broad-
band diffuse wavefield is hindered, increasing the required amount of data and resulting in poorer GF
estimations [10]. The ideal scenario for obtaining theGF between two receivers occurs when the ambient
noise wavefield is diffuse and equipartitioned, with energy uniformly distributed across all directions and
modes, facilitating faster convergence towards an accurate GF (Section 2.2.3).

4
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A simple application of retrieving the GF using SI is the retrieval of the direct wave in a one-dimensional
(1D) plane (Figure 2.1). Suppose there are two aligned sensors (s1 and s2) and a plane wave emitted by
an impulsive source located at an extreme end of either sensor travels towards them. The wave is then
received by the two sensors at different times (t1 and t2). By cross-correlating the signals received by the
two sensors, a virtual impulse response system is formed, where the first sensor hit acts as the source
(s1) and the second one (s2) as the receiver. The resulting system shows the time lag, both positive
and negative, at which the two signals are most alike. As a result, the common paths are eliminated
(the portion between the source and s1), and only the parts of the signal between the two sensors are
retained.

Figure 2.1: Direct wave interferometry in 1D. (a) Plane wave emitted rightwards along the x-axis from impulsive source at xs.
(b) Impulse received by s1, which is also the Green’s function G(x1, xs, t). (c) The Green’s function G(x2, xs, t). (d) The result

of the cross-correlation of b and c where s1 has become the virtual source (G(x2, x1, t) [32].

As mentioned in Section 1.1, this study focused on exploring the possibility of monitoring a concrete
structure by estimating the GFs between different sensor pairs through the interferometry of ambient
traffic noise. A similar study was conducted [25], where geophones recorded ambient traffic noise data
from a concrete bridge and used Passive Image Interferometry (PII) to detect velocity fluctuations within
the medium and deduce changes.

PII [26] was originally applied to obtain velocity variations within the subsurface using ambient noise
from a volcano. Simply put, PII combines noise correlations to obtain GF reconstructions and Coda
Wave Interferometry (CWI) to determine velocity variations (Section 2.3).

In their study, Salvermoser et al. [25] estimatedGFs from noise correlations and focused on the coda, the
later-arriving waves, while disregarding the first arrivals. The longer travel paths of coda waves result in
more scattering, making them sensitive to small changes because they contain more information about
the medium. Their findings indicated that ambient traffic noise could be used to detect damage presence
by mapping velocity variations. However, the study faced limitations in spatial resolution due to the low
sensitivity of the sensors used.

In contrast, this research utilized high-frequency resonant sensors and focused on the coherence of
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wave arrivals to assess the structural condition of concrete medium. The consistency and coherence
of the wave arrivals were used to detect changes in the medium by comparing the results between
uncracked and cracked conditions. This approach was chosen to potentially enhance spatial resolution
and sensitivity to changes in the medium.

2.2.1. Temporal normalization
In seismology, temporal normalization, otherwise known as time domain normalization, is a process that
is used to reduce the effects of instrumental irregularities and non-stationary events on cross-correlated
seismic data [4]. Additionally, this is also done to suppress the influence of transient signals [13] (Figure
2.2). This ensures that the signals are easily comparable to other signals by adjusting the amplitude
scales and imposing a specific range.

In this study, two methods of temporal normalization were investigated to see which would yield more
coherent signals. The investigation was deemed necessary since there is currently no literature that
specifically analyzes ambient traffic noise at higher frequencies, hence the characteristics of the elastic
waves produced are still unknown. It is also important to recognize that elastic waves from different
sources differ, so there is not a single temporal normalization scheme that is universally effective.

The first method explored was the one-bit normalization which disregards the values of the amplitudes
by replacing all positive and negative values with 1 and -1, respectively. Campillo and Paul [6] proved
that the cross-correlation of one-bit normalized data yielded similar results to the cross-correlation of the
same data that is truncated. Salvermoser et al. [25] used one-bit normalization to reduce the influence
of direct surface waves on passive traffic noise data by decreasing their distinctive amplitudes.

The second method, running-absolute-mean normalization (RAM), involves weighting values in a time
series by the average of the absolute time series values within a specific time window. The size of this
window varies depending on the characteristics of each dataset. In a study by Bensen et al. [4], they
determined that a window width equal to half the maximum period of the considered band-pass range
was effective, suggesting it as a useful initial guideline. However, they noted that the window size could
be varied significantly while still producing similar results.

The normalization weight for this method, denoted as ωn, for a time point n is calculated using the formula
[4]:

ωn =
1

2N + 1

n+N∑
j=n−N

|dj | (2.1)

Here, (2N + 1) is the width of the normalization window, which dictates the amount of amplitude informa-
tion that is retained, and dj is a discrete time series. The resulting weight is used to obtain the normalized
datum, d̃n.

d̃n =
dn
ωn

(2.2)

Bensen et al. [4] successfully used this normalization method to obtain surface wave dispersion mea-
surements from ambient seismic noise.

Similarly, Groos et al. [13] investigated the effectiveness of different temporal normalization schemes
on seismic noise and found that RAM was a highly effective non-linear temporal normalization method
that successfully suppresses transient signals.



2.2. Seismic Interferometry 7

Figure 2.2: One-bit and RAM normalization of a synthetic signal with a transient event.

2.2.2. Spectral whitening
In the context of ambient noise, the goal of spectral whitening is to broaden the signal frequency band [4].
Ambient noise data often contain persistent and prominent noise sources, causing the resulting signal
and cross-correlation functions to be dominated by these sources. Spectral whitening equalizes or
normalizes energy in the frequency domain, reducing the overpowering effects of dominant frequencies
and ensuring that other frequencies are also significantly represented. This process effectively ’whitens’
the signal.

For this research, spectral whitening was performed by normalizing the signals using an envelope func-
tion. This envelope function was derived by taking the magnitude of the analytic signal, obtained through
the absolute values of the Hilbert transform of the signal. Subsequently, the root-mean-square (RMS)
envelope was computed by applying a sliding window of a consistent, pre-defined length to calculate
the RMS at each point. Finally, the Fourier transform of the original signal was divided point-wise by the
corresponding values of the RMS envelope.

Figure 2.3: Envelopes for spectral whitening (synthetic signal).

The RMS at any point along the signal can be computed with the following formula:
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RMSi =

√
1

n

∑
i

x2
i (2.3)

In equation 2.3, n refers to the length of the sliding window, i refers to the frequency bin, and xi is the
magnitude of the Fast-Fourier Transform (FFT) of the signal at frequency bin i.

Figure 2.4: Spectral whitening of a synthetic signal using the RMS envelope

In Figure 2.4, the original synthetic signal features a periodic trend with two dominant frequencies at ap-
proximately 5 Hz and 20 Hz. After spectral whitening, the trends are greatly reduced, and the frequency
spectrum becomes more normalized. While the whitened signal alone may seem less informative, it is
still very useful for applications that uses other concepts such as cross-correlations.

2.2.3. Green's function retrieval
Cross-correlation is a method that quantifies the similarity between two different signals by summing
the products of their values when one is shifted by a time lag t. Given two different signals observed at
stations A and B, the cross-correlation function (CCF) between them can be computed as:

CCFAB(t) =

∫
A(τ) ·B(τ + t)dτ (2.4)

After the individual CCFs for a given station pair over a specific period are obtained, they are stacked
together to collectively enhance the signal-to-noise ratio (SNR). This stacking process involves group-
ing CCFs computed using consistent time windows, such as hourly segments for daily data or daily
segments for longer periods like a month or a week. Different stacking methods exist [35], with the most
common being either the summation or the averaging of CCFs from multiple windows. These methods
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aim to enhance the coherence and reliability of the signals [35]. Although the underlying assumption for
ambient noise is that it is free of transient signals, this is often not the case in reality. Therefore, stacking
over a longer period helps average out random noise and transient events, allowing the consistent and
coherent signals to emerge more clearly

The SNR value used to evaluate the stability of the stacked CCFs [4] can be solved with the following
equation:

SNR =
max(|SCCF |)√
1
m

∑n+m
i=n CCF 2

i

(2.5)

Here, the numerator is the maximum amplitude within the signal window, denoted as SCCF . This window
contains the expected or observed signal amidst the background noise. The denominator represents
the root-mean-square (RMS) of the trailing noise window [4]. When selecting the trailing noise window, it
is common practice to choose a region a few samples after the expected signal. This approach ensures
that the noise window contains only background noise and does not include any contributions from
the noise induced by the signal in question. Figure 2.5 illustrates the windowing process done for the
calculation of the SNR.

Figure 2.5: Example of getting the SNR value of a synthetic signal. Solid vertical red lines and dashed vertical blue lines
represent the chosen signal window and chosen noise window, respectively.

When cross-correlations are stacked over longer periods, the resulting waveform represents an estimate
of the GF or the system’s impulse response. The higher the SNR value obtained from the estimate, the
more desirable it is. However, its limitation is that the reliability of an estimate cannot be assessed solely
based on a high SNR due to the absence of a theoretical value linking the two. Thus, a validation must
be performed to determine whether the obtained Green’s function is sufficiently representative of the
medium in question.

To understand how a Green’s function derived from cross-correlation appears, it is essential to consider
the structure of the resulting CCF. A CCF consists of two components: the causal part, corresponding
to the positive time lag, and the acausal part, corresponding to the negative time lag. The amplitudes of
the function are directly dependent on the direction of energy flux between two stations [29]. In an ideal
scenario where there is a perfectly isotropic distribution of sources around the two stations in question,
the resulting CCF’s causal and acausal parts will be symmetric about the time lag = 0. However, in
practice, this condition is difficult to achieve, and therefore asymmetry is often observed.
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Figure 2.6: Assymmetry of CCFs with respect to the distribution of sources [29].

2.3. Coda Wave Interferometry
Coda waves refer to the ‘tail’ or the later-arriving signals of a seismic event which follow the direct arrival
of primary waves. They are considered to be the superposition of scattered and reflected waves as a
result of their interactions with heterogeneous media. The medium in which the wave propagates may
be considered as an interferometer, hence the term coda wave interferometry (CWI) [31].

CWI is a method used to detect changes in a propagation medium by measuring subtle variations in
travel times within the coda. To perform CWI, the stretching technique is typically used, where a ref-
erence signal is compared to a ‘stretched’ signal by cross-correlating them. The stretching process
involves adjusting the time scale of the signal to align with the reference, and the extent of this adjust-
ment indicates the velocity change in the coda [25].

2.4. Wave Propagation in Concrete
To assess wave propagation in concrete, an impulse is transmitted from a source to a receiver at a known
distance, allowing for the measurement of velocity based on the recorded travel time. This process re-
veals properties of the medium, such as elasticity and material quality, and can also detect the presence
of defects [12]. The underlying principle is the acoustoelastic property of elastic solids, which refers to the
change in propagation of a mechanical wave due to a change in stress within the medium [11]. For con-
crete, since the deformations within the medium are assumed to be small, the theory of linear elasticity
may be applied. Hence, Hooke’s law may be used. Moreover, despite the usual non-homogeneous and
anisotropic nature of concrete, it can be effectively treated as a homogeneous material if the wavelength
of a propagating wave is significantly larger than the size of aggregates in the mixture.

2.4.1. Wave velocity
For a given medium, waves that propagate through it can typically be categorized as either body waves
or surface waves, depending on the manner in which they propagate. Essentially, body waves travel
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through the interior of the medium while surface waves travel along the surface.

Under body waves, there are two types: Primary waves (P-waves or longitudinal waves), with particle
motion parallel to wave propagation, and Secondary waves (S-waves or transverse waves), with particle
motion perpendicular to it. The velocities of these waves can be determined using the constitutive elastic
wave propagation equations which relate the propagation velocity to the basic properties of a medium
[3]:

vl =

√
E

ρ
· (1− ν)

(1 + ν)(1− 2ν)
(2.6)

vs =

√
E

ρ
· 1

2(1 + ν)
(2.7)

where vl and vs are the wave velocities in the longitudinal and transverse directions, respectively, E is
the modulus of elasticity, ρ is the material density, and ν is the Poisson’s ratio.

For concrete media, Rayleigh waves are the most commonly found surface waves. These are waves
produced from a linear combination of longitudinal and transversal vibrations from the interaction of P-
waves and S-waves [20]. Since the computation of the exact value of a Rayleigh wave’s velocity can
prove to be complex due to the heterogeneity and anisotropy of concrete, an approximation can be
solved with the following formula [37]:

vr = vs
0.87 + 1.12ν

1 + ν
(2.8)

where vr is the Rayleigh wave velocity.

For a concrete specimen with a grade of C40/50 with dynamic modulus of elasticity (Ed) = 36000MPa,
Poisson’s ratio (ν) of uncracked concrete = 0.2, and density (ρ) = 2500kg/m3, the corresponding wave
velocities are vl = 4000m/s, vs = 2450m/s, and vr = 2234m/s.

2.4.2. Wave attenuation
As waves propagate from a source to a receiver, a loss of energy is observed as the wave moves away
from the source. This phenomenon is called wave attenuation, which can be categorized as either
intrinsic or extrinsic attenuation. The loss of energy is directly reflected in the decrease of the wave’s
amplitude.

Intrinsic attenuation refers to the loss of energy that occurs within the medium. This occurs primarily
due to two mechanisms: absorption, which converts some of the energy into other forms, such as heat,
and scattering, which redistributes energy as the waves encounter heterogeneities and boundaries [14].
Extrinsic attenuation, on the other hand, relates to the consequences that arise from the chosen method
by which the attenuation measurements are taken [22].

During wave propagation in uncracked concrete, attenuation is primarily from geometric spreading loss
and material attenuation. The geometric spreading loss in body waves follows a spherical pattern,
spreading equally in all directions, while for Rayleigh waves it follows a cylindrical pattern as the en-
ergy is concentrated along the horizontal direction [5].
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2.5. Acoustoelastic Effect
The acoustoelastic effect refers to the phenomenon where changes in stress within an elastic medium
cause changes in wave velocity. When the medium is under compression, the wave velocity increases,
whereas under tension, it decreases [17].

Hughes and Kelly [16], using Murnaghan’s theory of finite deformation, derived the following equations
to represent the body wave acoustoelasticity of a material when a uniaxial stress σ11 is applied in 1-
direction [8]:

ρ0ν
2
11 = λ+ 2µ+

σ11

3K

[
2l + λ+

λ+ µ

µ
(4m+ 4λ+ 10µ)

]
(2.9)

ρ0ν
2
22 = ρ0ν

2
33 = λ+ 2µ+

σ11

3K

[
2l − 2λ

µ
(m+ λ+ 2µ)

]
(2.10)

ρ0ν
2
12 = ρ0ν

2
13 = µ+

σ11

3K

[
m+ 4λ+ 4µ+

λn

4µ

]
(2.11)

ρ0ν
2
21 = ρ0ν

2
31 = µ+

σ11

3K

[
m+ λ+ 2µ+

λn

4µ

]
(2.12)

ρ0ν
2
23 = ρ0ν

2
32 = µ+

σ11

3K

[
m− 2λ− λ+ µ

2µ
n

]
(2.13)

where ρ0 is the density, νij is the wave velocity propagating in direction i and polarization direction j,
λ and µ are Lamé parameters, l, m, and n are Murnaghan’s constants, and K = λ + 2/3µ is the bulk
modulus. Linearization of this system of equations can be simplified as [18]:

νσij = ν0ij(1 +Aijσ11) (2.14)

where νσij is the wave velocity under uniaxial stress σ11 at direction i and polarization direction j, ν0ij
is the initial wave velocity when no stress is applied, and Aij represents the acoustoelastic constants
based on designated Lamé parameters and Murnaghan’s constants.

2.6. First Arrival Time Detection
In seismic signal processing, detecting the arrival times of seismic waves is essential for localizing seis-
mic sources and characterizing subsurface conditions. Additionally, the arrival times allow for the identifi-
cation of different wave types, which is crucial for accurately constructing seismic models and developing
early warning systems.

To detect the arrival times of waves, visual inspection is an option, but it becomes impractical and ineffi-
cient when there is a large number of records to analyze. To address this, algorithms were developed for
automated detection, such as the threshold method, where specific thresholds are set for parameters
like amplitudes and SNR. However, a major limitation is its susceptibility to fluctuations in signal and
noise levels. Setting the threshold too low may lead to false detections, while setting it too high risks
missing actual first arrivals.

For this research, the arrival time detection algorithm used was the Akaike Information Criterion (AIC),
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developed by Akaike in 1973 [2].

2.7. Akaike Information Criterion (AIC)
The Akaike Information Criterion (AIC), developed by Akaike in 1971, is a method for quantifying the
goodness of fit of a statistical model for a specific order of an autoregressive (AR) process. The goal
was to find the lowest order that would fit the data best [21]. The criterion is quantified with the following
equation [2]:

AIC = −2 ln (L) + 2k (2.15)

whereL is themaximized value for the likelihood function for themodel and k is the number of parameters
in the statistical model [7]. The general idea is that the most suitable model had the lowest AIC value.

This method is convenient for detecting first arrivals as it involves dividing the time series into two parts
at the phase onset, determined by the lowest Akaike Information Criterion (AIC) value, providing an
estimate of the first arrival time. To locate this point of division, Carpinteri et al. [7] devised an AIC-
picking algorithm that only considers a user-defined window of finite length. The reason for the window
is that only the arrival of the first wave, which is usually the P-wave, is measurable as structural noise,
sensor interference, and wave reflections usually affect the latter phases. The following equation is used
to solve for the AIC values for each point a given window w:

AIC(kw) = kw log
(
var

(
Rw(1, kw)

))
+ (nw − kw) log

(
var

(
Rw(1 + kw, nw)

))
(2.16)

whereRw represents the signals in the defined window, nw is the last sample of the windowed time series,
and kw is the data point that ranges from 1 to nw. The terms var(Rw(1, kw)) and var(Rw(1 + kw, nw))

are the variances of the function from 1 to kw and 1 + kw to nw, respectively. The minimum AIC value
obtained within this window is detected as the first arrival.

2.8. Ensemble Empirical Mode Decomposition (EEMD)
Empirical Mode Decomposition (EMD) is a data-driven empirical analysis technique developed by Huang
et al. [15] for analyzing complex, non-stationary, and non-linear time series data. This method decom-
poses a signal into several Intrinsic Mode Functions (IMFs), which are simple oscillatory modes charac-
terized by zero-mean amplitude and frequency modulation. Each IMF encapsulates a specific oscillatory
pattern present in the original signal, and when combined, they reconstruct the original signal itself [38].
However, one of the weaknesses of the EMD method is ”mode mixing,” which occurs when a signal’s
amplitudes and frequencies exhibit monotony, causing the IMFs to become incoherent. To solve this
problem, Wu and Huang [34] further developed the method by adding white noise to the signal to un-
cover more realizations of the IMFs, which they then called Ensemble Empirical Mode Decomposition
(EEMD).

To decompose a signal into Intrinsic Mode Functions (IMFs), an iterative sifting process is used. This
process involves creating an upper and lower envelope of the time series using the local maxima and
minima, respectively. The mean of these envelopes is then calculated and subtracted from the original
signal. If the resulting difference meets the tolerance criteria, it is accepted as an IMF; otherwise, the
process is repeated with the new difference. Ultimately, if the last IMF closely resembles the mean
values of the envelopes within a predefined tolerance, it is considered the ’residual’. This process is
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illustrated in Figure 2.7.

Figure 2.7: Sifting process of EMD [24].

This method was explored in the latter part of this research’s analysis in an attempt to further denoise
the signal and highlight more coherent features of the sound waves. However, a significant limitation of
this method is its lack of a solid mathematical foundation, as its theory is primarily based on empirical
techniques.

Figure 2.8: Example of EMD on a synthetic signal.

2.9. Literature Review Summary
In the table below, the significant findings found in the literature review per subject or topic and its
relevance to this research is summarized.
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Table 2.1: Literature review summary.

Subject/Topic Key findings Relevance to research
Interferometry

• In seismology, interferometry in-
volves stacking multiple cross-
correlations of recordings between a
station pair to estimate the Green’s
function (GF) of the subsurface. This
GF effectively simulates a virtual
seismic signal between two sensors,
allowing either sensor to act as a
source or receiver [32].

• Ambient seismic noise recordings
have been successfully used to pro-
duce GFs with sufficient spatial reso-
lution to determine velocity variations
[26].

• Understanding the concepts behind
seismic interferometry is essential
for applying it effectively in concrete
structures applications.

• The ideal conditions necessary to
estimate a Green’s function (GF)
through interferometry must be un-
derstood in order to accurately as-
sess and analyze the resulting esti-
mations from the validation datasets
and ambient traffic noise data.

Signal pre-
processing

• Temporal normalization is used on
raw signals to mitigate the impact
of instrumental irregularities, non-
stationary events [4], and transient
events [13].

• Spectral whitening of ambient noise
aims to broaden the signal’s fre-
quency band by equalizing or normal-
izing signals in the frequency domain
[4].

• For any given signal dataset, deter-
mining the necessary and optimal
pre-processing scheme is important
for effectively extracting the desired
features. Minimizing the effects of
external influences is essential to
achieve more coherent results.

Wave Propaga-
tion in Concrete

• Wave propagation in concrete is an-
alyzed using the principles of acous-
toelasticity in elastic solids to discern
properties of the medium and de-
tect defects [12]. This is achieved
by measuring the velocities of artifi-
cially induced impulses traveling from
a source to a receiver at known dis-
tances.

• Assuming that deformations of con-
crete structures are small relative to
the structure’s size, the theory of lin-
ear elasticity may be applied.

• This concept is crucial for the prac-
tical application of this research, as
wave speeds are directly related to
wave arrivals, which is analyzed for
the investigated concrete structures.
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Subject/Topic Key findings Relevance to research
Wave First Arrival
Detection

• In signal processing, the detection
of arrival times enables the localiza-
tion of sources, characterization of
the medium’s conditions, and identi-
fication of different wave types.

• Carpinteri [7] developed an arrival
time picking algorithm based on the
Akaike Information Criterion (AIC),
originally proposed by Akaike [2] to
assess the goodness of fit of a statis-
tical model for a given order of an au-
toregressive (AR) process. The AIC
parameter is computed for each point
within a predefined window length,
and the point with the lowest value is
selected as the first arrival time.

• In the practical application of this
research, the focus is on detecting
the arrivals observed from the esti-
mated Green’s function through am-
bient noise interferometry. To ensure
consistency and objectivity in arrival
time detection, an automatic picking
algorithm is essential.

Traffic Noise Inter-
ferometry State of
the Art

• Salvermoser et al. [25] used Passive
Image Interferometry (PII), a method
that combines noise correlation and
Coda Wave Interferometry (CWI), to
infer changes in a concrete bridge by
examining velocity variations. They
analyzed the ‘coda’ obtained from the
GF estimates and found that traffic
noise could potentially be used for
monitoring purposes. However, they
noted poor spatial resolution due to
the low sensitivity of the instrument
used.

• This study aimed to address sev-
eral gaps in research, including
the methodology of data collection,
the instruments employed and their
corresponding sensitivities, the fre-
quency ranges considered, and the
analysis approach for ambient traffic
noise. Additionally, the study aimed
to propose a method for localizing
damages.



3
Methodology

This chapter introduces the datasets used and their corresponding collection methods, the algorithm
building and optimization, the role of the algorithm in post-processing, and the methods used for analyz-
ing the data.

As mentioned in section 1.1, this research used two datasets: one from a laboratory experiment and
another from field recordings on a concrete tunnel. These datasets will be further explained in the
following sections.

3.1. Validation Dataset
The dataset used to validate the proof of concept and initially form the algorithm was collected from an
acoustic emissions (AE) experiment conducted on a precast concrete girder in the Stevin laboratory at
TU Delft. This involved repeatedly dragging a chain back and forth along a straight line between two
points as the loads applied on the concrete girder were increased incrementally.

Although the experiment (refer to Figures 3.1 and 3.2) was mainly intended to measure AE parameters
focusing on amplitudes, energies, and AE event counts, the data was still ideal for assessing the con-
cept of ambient noise interferometry on concrete structures for the following reasons: 1) there were no
unexpected random noise sources, as the only source was the chain being dragged; 2) the experiment
continued until cracks formed, allowing for comparisons of signal behavior between undamaged and
damaged states; and 3) the locations of damage could be pinpointed since the experiment was con-
ducted in a controlled laboratory environment, allowing for verification if a change was observed in the
signal.

3.1.1. Experimental setup
The concrete member used in the experiment was a 15m-long precast concrete girder, consisting of two
separate members — one 11.25m long and the other 3.5m long. These were then made continuous
using a topping and a cross-beam, both cast in situ (refer to Figure 3.1). One support was positioned
beneath the cross-beam, while the other was situated at the further end of the girder, away from the
cross-beam, effectively creating an overhanging portion. The loading points were located 0.63 meters
from the end of the overhang and 4.77 meters from the opposite end of the girder, positioned within
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the middle third of the fully-supported section. In Figure 3.1, the translucent gold and red rectangles
represent the sensor zones for the top layer and web sensor groups, respectively.

Figure 3.1: Dimensions of the precast concrete girder in millimeters (mm) [9].

To generate the ambient noise, a heavy chain was pulled across the surface of the girder at a consistent
velocity for each load increment. The chain was moved along the surface starting adjacent to one of the
hydraulic loading jacks (P2), then across to the other jack (P1), and back again.

Figure 3.2: (left) Cross-section of the girder and (right) chain dragging on top of the girder [9].

3.1.2. Sensor layout and details
Piezoelectric sensors were used in the experiment, positioned on top of the girder (sensors 19 to 27)
and along the web (sensors 11 to 18), spaced at various distances from each other. They were aligned
in a straight line, parallel to both the girder’s length and the chain’s path. With an operating frequency
range of 40-100 kHz, the minimum sampling frequency required to prevent aliasing 200 kHz, which was
well within the sampling frequency used for the experiment which was 2.5 MHz. Despite the sensor’s
upper operational frequency limit, a higher sampling rate was still preferred to achieve better temporal
resolution for the samples.
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Figure 3.3: Layout of sensors attached to the concrete girder and the two loading points, P1 and P2.

3.1.3. Data collection
The data collection method involved recording on a ”hit” basis, resulting in a discretely sampled dataset.
Initially, all sensors were activated and prepared to receive signals before the chain was dragged. Upon
detection of a sound wave that exceeded the amplitude threshold of 40 decibels (dB) for any given
sensor, recording started and lasted for approximately 1.64 milliseconds, constituting one hit. The time
of detection relative to the very first signal recorded by any of the sensors was then also noted. If during
the recording the wave’s amplitude fell below the threshold, the amplitude of the recorded signal flattened
(as seen in Figure 3.7), and the recording continued until the hit’s duration was done. This hit-recording
process continued until the chain returned to its initial position, and the procedure was repeated for each
load case.

Figure 3.4: Example of one hit (AE Chain Experiment).

3.2. Ambient Traffic Noise Dataset
To test the algorithm’s applicability to real-world ambient traffic noise, data was collected from the Maas-
tunnel, an underwater tunnel in Rotterdam that accommodates pedestrians, cars, and bikes. Sensors
were placed under the road slab in the middle of the tunnel, specifically beneath the portion where cars
passed, capturing traffic noise. Data was collected twice within a two-hour window of typical traffic, from
11 AM to 1 PM. Both recordings had a duration of about 50 minutes each.

The challenge with this dataset, compared to the validation dataset, lay in the many potential sources of
noise, such as waves hitting the exterior of the tunnel, power lines, and the presence of pedestrians and
bikers, since these recordings were made in the field. Additionally, the spatial distribution, the signal
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magnitudes, and the frequency spectrum were inconsistent and unknown, making this dataset more
complicated.

3.2.1. Sensor layout and details
The sensors were strategically placed underneath the 350 mm-thick road slab where motorized vehicles
traversed in a single direction. As shown in Figure 3.5, this location was ideal because it allowed for
easy access and avoided any road closures or disturbances during installation and testing.

For the sensors, the same piezoelectric-based (PZT) sensors mentioned in the validation dataset in
Section 3.1.2 were used. The sampling frequency was set to 2 MHz to ensure higher temporal resolution
for the recorded signals.

Figure 3.5: Cross-section of the Maastunnel [30].

In the road section, five sensors were installed along a straight line parallel to the flow of traffic, equally
spaced at 0.5 m. Theoretically, this made the analysis simpler as the energy from the waves would
travel along the same path. In essence, this dataset is similar to the validation dataset in terms of the
major direction of energy and sensor placement. However, very different results were expected with the
Maastunnel dataset because the spatial distribution of sources was unknown. Additionally, the road slab
in the Maastunnel is part of a much larger structure, allowing the sensors to detect noise from various
sources.

Figure 3.6: Layout of sensors underneath the Maastunnel road section.
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3.2.2. Data collection
The data collection method was identical to that of the validation dataset. The sensors were activated to
start recording but were configured to only record on a ”hit” basis. Sound waves were recorded as ”hits”
once the sensors detected an amplitude higher than the threshold of 45 decibels (dB), and recording
continued for approximately 5.12 milliseconds. When the amplitude of the hit went below the threshold,
the signal flattened, and the recording persisted until the consistent duration of the hit was maintained.
In addition to the amplitude content of a given hit, the absolute recording times of each hit with respect
to the very first hit were also recorded.

Figure 3.7: Example of one hit (Maastunnel).
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3.3. Algorithm Development and Functionality
The post-processing of the data was done with a Python script, whose development and functionality
are elaborated upon in the subsequent sections.

Figure 3.8: Flowchart of methodology

3.3.1. Process of matching and aligning ambient noise data
When conducting interferometry in seismology, all signals received by a given station (A) are cross-
correlated with signals from another station (B), including those received by only one of the two stations,
which could result from the source location, signal direction, or reflections and trajectory changes caused
by subsurface heterogeneities. The issue arises when signals received by the two stations are not from
the same wave but are still cross-correlated. Since cross-correlation measures the similarity between
signals recorded at two different locations, if the signals do not share the same physical path, the result-
ing CCF will likely contain spurious arrivals. These spurious arrivals make the resulting CCF, unphysical,
meaning it does not correspond to any real physical phenomenon [27]. Consequently, no meaningful
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information about the medium between the stations can be derived, making it unhelpful towards the es-
timation of the GF. However, because a large number of signals are usually considered for each station
pair and it is assumed that signals originate from all directions, the incoherent parts of the CCFs may
cancel out after stacking them over a long period. Ideally, this will result in an estimation of the GF of the
medium, which contains all types of waves, including body waves, surface waves, andmultiply-scattered
waves, between a station pair.

In this research, because both datasets are limited in terms of number of samples, duration of recording,
and distribution of sources, together with the fact that a single concrete girder and a concrete tunnel are
in much smaller scales compared to the earth’s subsurface, it is difficult to assume that simply cross-
correlating all the signals received by both station pairs would eventually normalize, though it is possible
if data for longer periods of time is available.

To address these limitations, a signal-matching scheme was used to only consider direct waves that
travel from one station to another, with a small tolerance for indirect waves that reflect towards the
second station. This was done by comparing the arrival times of all the hits recorded by each station
for a given station pair. The differences in arrival times were then compared against the expected travel
time of waves for a specific distance, with reference to a conservative estimate of the speed of sound in
concrete, typically around 4000m/s.

Figure 3.9: Examples of considered signal trajectories (arrows) between sources (stars) and receivers (triangles) for sensors
that are a) on the same surface as the noise sources (Top View) and b) on different surfaces (Side View).

In Figure 3.9a, the possible trajectories for surface waves depending on the location of the source are
shown. In Figure 3.9b, trajectories are depicted for scenarios where the sources are on a different
surface than the sensors. As seen in this figure, the original wave can either be fully reflected (small-
dashed line), fully converted into a surface wave (large-dashed line), or partially reflected and partially
converted into a surface wave.

After the hits from a given station pair were matched, they were then aligned by adjusting the later-
received signal with respect to the earlier-received one. This adjustment involved shifting the samples
of the later-received signal by an amount equal to the absolute difference between the recording times of
the hits at the two stations, divided by the sampling rate. This synchronization was necessary because
each hit was only recorded once a wave was detected by the sensor and was not continuously recorded.
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Figure 3.10: a) Unsynchronized signal pair and resulting CCF and b) synchronized signal pair and resulting CCF.

3.3.2. Data normalization and frequency analysis
Once the matched hits were synchronized, temporal and spectral normalization were done to remove
outliers and to smooth out the signals. Given the limited literature available on either of the investigated
datasets, two different temporal normalization methods — one-bit normalization and running-absolute-
mean (RAM) normalization — were tested to determine which would yield more coherent CCFs. For
spectral whitening, the only method tested was whitening of the signal in the frequency domain through
the use of an envelope function. This function is expounded on in Section 2.2.2.

Afterwards, the frequency distribution of the resulting CCFs from the chosen normalization scheme were
investigated to ensure that only the frequencies with coherent signals were included in the further steps.
This was done by first checking the frequency spectra of the signals then subjecting them to a series of
low-pass, high-pass, and band-pass Butterworth filters to find the optimal range.

3.3.3. Estimating the Green's function
After determining themost appropriate pre-processing scheme for each dataset, signals between a given
station pair were cross-correlated and stacked. The stacking method used was simple averaging of all
the computed CCFs for each station.
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Figure 3.11: Example of stacking of 3 random CCFs from the validation dataset.

3.4. Analysis of Results
For each dataset, the analysis began after obtaining estimations of the GF for all sensor pairs. The
estimated GFs were first subjected to visual inspection to evaluate their coherence and symmetry around
the time lag of zero. The results were then compared with the expected behavior, considering the
experimental setup, the condition of the structure, and the assumed distribution of noise sources, such as
typical wave velocities in concrete (refer to Section 2.4.1) and possible asymmetry in the GF estimation
if more waves were expected from one side of a sensor pair (refer to Section 2.2.3).

Upon visually evaluating whether a GF estimation was coherent enough, it was then tested to determine
if valuable information regarding the waves and the medium could be derived. By observing the arrival
times of waves and their phases, corresponding wave speeds could be calculated.

For GF estimations that exhibited clear arrivals, an automatic arrival time detection algorithm was nec-
essary because visual inspection alone was unreliable due to its subjectivity. For this purpose, the AIC
algorithm was employed (refer to Section 2.7).

A limitation of the AIC algorithm is that it will always detect an arrival, as it bases its detection on the AIC
values found at every point within a predefined window. Therefore, it was important to use the algorithm
in conjunction with critical visual inspection to ensure accuracy. Refer to Figure 3.12.

Figure 3.12: Example of AIC automatic detection algorithm finding arrivals irrelevant of a signal’s coherence.

The wave speeds calculated for different station pairs were compared to each other and to the theoretical
wave speeds for consistency and patterns. Additionally, they were assessed based on the prevailing
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structural condition during testing. For example, in the validation dataset, wave speeds were compared
between a sensor pair before and after cracks were detected. This information is crucial for localizing
and detecting damage in the structure.



4
Validation Dataset Results and

Discussions

Initially, the analysis conducted on the validation dataset focused on the simplest scenario, which was the
0 kN load case. This was done to try and limit the number of uncertainties while finding the optimal pre-
processing scheme to use. When considering loaded structures, it is important to take into account that
there could be damageswithin that already exist or are forming internally that still cannot be seen from the
exterior because these can result to unexpected behaviors in the resulting GF estimations. Additionally,
the acoustoelastic effect of waves travelling through elastic media should also be considered as this may
also influence the signal. Generally, a medium under compression exhibits faster wave speeds, while
one under tension exhibits slower wave speeds (Section 2.5).

After having decided on the optimal scheme and the correct frequency bandwidth, the different load
cases were considered to see whether expected patterns would emerge given the damage condition
and stress state at different loads.

Figure 4.1: Top view showing the layout of the top sensors and the path of the chain (signal source).

4.1. Dataset Characteristics and Optimal Pre-processing Scheme
The first aspect analyzed in the dataset was the distribution of hits based on the expected arrival times,
given the known path of the chain. It was anticipated that the number of hits for each sensor would
peak as the chain passed by, since no other noise sources were introduced into the experiment. To
visualize this, histograms were plotted for each sensor group (on top of the slab and on the web), where
the y-axis represented the number of hits, while the x-axis represented the absolute recording times of
each hit relative to the very first hit recorded by the leftmost sensor (sensor 27), not the moment when
the chain first started moving. The plots, arranged from top to bottom starting with the sensor closest to
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the chain’s origin and ending with the farthest, are shown in Figure 4.2. Each histogram had a bin width
equivalent to 5 seconds.

Since there was no synchronized video recording while the chain was being dragged, the exact times
when the chain was adjacent to any of the sensors were unknown, as this was not considered an impor-
tant parameter during the experiment. However, using the available recordings, the known total elapsed
times, and the known distance traveled by the chain, an estimated chain speed of roughly 0.134 m/s
was deduced.

With this chain speed, the position of the chain could be inferred. The peak in the histogram was first
visually observed for the very first sensor (sensor 27). Using this observation and the estimated chain
speed, the times the chain passed the succeeding sensors were then determined. These times are
marked with red dashed lines in the subsequent figures.

Figure 4.2: Hits for sensors 19-27 (top layer sensor group) for the 0 kN load case.

In Figure 4.2, a peak for sensor 27 is observed around the 10-15 second bin. It is assumed that the
chain passes the sensor at 10 seconds within this bin. Given that the adjacent sensor (sensor 19) is 0.5
meters away, the estimated time the chain passes it is around 13.7 seconds, which still falls within the
same bin. Using this approach for the subsequent sensors, the movement of the chain is traceable until
sensor 21. However, the trend is not reflected for sensors 22 and 23. The trend resumes for sensor 24,
but again disappears for sensors 25 and 26.
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While some sensors did not show the expected trend, those that did exhibited a reverse pattern, moving
from left to right and then back again, which was the anticipated behavior.

Figure 4.3: Hits for sensors 11-18 (web sensor group) for the 0 kN load case.

In Figure 4.3, the assumed time when the chain is nearest to sensor 11 is not based on the peak in the
histogram but rather on the previously assumed time for sensor 27. Given that they are 0.75meters apart
along the longitudinal axis of the beam, the estimated time that the chain passes sensor 11 is around
15.6 seconds. Although this does not coincide with the peak, a consistent trend from the leftmost sensor
(11) to the rightmost sensor (18) of the web sensor group is observed, effectively portraying the relative
location of the chain. This pattern also reverses as the chain moves back to its origin.

This observation is significant because it demonstrates that despite the sensors on the web being much
farther from the source in the vertical direction and the sound waves needing to pass through the inter-
face between the web of the precast girder and the cast-in-situ slab, the distribution of signals remains
consistent with expectations.

In both Figures 4.2 and 4.3, it is observed that after the initial peaks in the histograms caused by the
chain passing next to the sensors, there are sudden drops in hits before they increase again. This
pattern likely occurs because as the chain moves further away from a sensor, the signals undergo more
attenuation, reaching a level undetectable by the sensor until louder sounds are generated by the chain
changing directions. This change in direction results in the subsequent increase in hits near the middle
of the histograms.

The next step was to evaluate the optimal normalization scheme using stacked and band-passed cross-
correlations of matched signals between a given station pair. This approach was chosen because relying
on the cross-correlation of only one or a few pairs might not have provided a representative sample.
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Some cross-correlations might have been unphysical, especially if the signals were incorrectly paired
(see Section 3.3.1). By stacking multiple CCFs, the noise produced by the unphysical cross-correlations
was averaged out, and the more significant and recurrent features were emphasized.

Figure 4.4: Raw (a - black), one-bit normalized (b - blue), and running-absolute-mean normalized (c - green) stacked
cross-correlations of different sensor pairs.

In Figure 4.4, it is observed that the stacked CCFs for the three pairs shown (27-19, 19-20, and 25-26)
have asymmetric arrival times around time lag = 0, with only pair 27-19 having significant energies on
both the causal and acausal parts. For sensor pairs 19-20 and 25-26, the asymmetry of their CCFs (as
explained in Section 2.2.3) indicates that the distribution of sources is more concentrated on one side of
the sensor pairs than the other. Given the positions of these two sensor pairs relative to the path of the
chain, it is logical that their CCFs exhibit higher concentrations on opposite sides of time lag = 0: pair
19-20 has higher amplitudes and more coherent phase information in the causal part, while pair 25-26
shows this in the acausal part.

However, there is an inconsistency with pair 27-19. Despite being positioned further to the left than pair
19-20, it shows high energy distributions on both the causal and acausal parts of the CCF. A possible
explanation for this anomaly is that pair 27-19 is situated directly above a cross-beam, unlike the other
pairs which are just located on top of the web of the girder (refer to Figures 3.1 and 3.3).

Among the three temporal normalization schemes considered (no normalization, one-bit normalization,
and RAM normalization), the CCF showing the clearest arrivals was obtained from the original, non-
temporally-normalized data, followed by the RAM-normalized data. The one-bit-normalized data, on the
other hand, emphasized the low-frequency component of the CCF, resulting in a wavelike appearance,
as seen in the second row (b) of Figure 4.4.

Next, spectral whitening was applied to the non-temporally-normalized data, as well as in conjunction
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with the two temporal normalization methods, to further explore the optimal pre-processing approach for
this dataset.

Figure 4.5: Spectrally whitened raw (a - black), one-bit normalized (b - blue), and running-absolute-mean normalized (c - green)
stacked cross-correlations of different sensor pairs.

In Figure 4.5, it is observed that spectral whitening successfully emphasizes the peaks of the CCFs in
the time domain, compared to the plots in Figure 4.4. However, because spectral whitening equalizes
the frequency distribution of a signal, the low-frequency component observed in Figure 4.4b becomes
apparent in all the plots in Figure 4.5. Additionally, more high-frequency components are introduced,
which tend to dominate the time series, making it look noisier and obscuring the arrivals of the higher-
amplitude events.

Upon comparing all possible combinations of normalization schemes, it was determined that the spec-
trally whitened raw stacked CCFs for all station pairs exhibited the highest coherence, with the clearest
arrival times and the most emphasized peak amplitudes in the time domain. A plausible reason for
this is that the data originated from a controlled laboratory experiment where no other noise sources
were present besides the chain being dragged. There were no significant external natural influences or
unexpected high-amplitude events that could obscure the signal.

After determining the optimal normalization scheme, the frequency spectra of the raw signals were then
analyzed to identify the frequency range that provided the clearest arrivals.



4.1. Dataset Characteristics and Optimal Pre-processing Scheme 32

Figure 4.6: Frequency distribution of hits of the top layer sensors.

Figure 4.7: Frequency distribution of hits of the web sensors.

From Figures 4.6 and 4.7, it can be seen that the sensors on the top layer and the web mostly show
signals in the 20 - 50 kHz range, with a few exceeding 100 kHz. Other frequencies are less prominent,
which is addressed through spectral whitening.

To determine the frequencies to investigate based on their coherence and significance in contributing
to the resulting CCFs, and to understand their overall effect on the GF estimates, the matched, aligned,
and spectrally whitened hits from sensors 19 and 20 were cross-correlated and stacked. This combined
signal was then subjected to a series of low-pass and high-pass filters to identify the coherent frequency
range and denoise the signals. Notably, the point at which frequency filtering is performed is irrelevant,
as the results are the same whether it is done before or after spectral whitening (see Figure A.3 in the
Appendix). For better visual representation, the CCFs below were spectrally whitened beforehand.
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Figure 4.8: Low-passing and high-passing the Green’s function estimate for sensor pair 19-20.

In Figure 4.8, it is observed that after applying a low-pass filter at 50 kHz, no significant changes occur
in the signal. The results from applying low-pass filters at 50 kHz and 70 kHz are seemingly identical.
Similarly, after applying a high-pass filter at 30 kHz, no significant changes are observed for a lower
cutoff frequency.

Based on these observations, it was decided that the frequency range to be considered for this dataset
would be from 20 kHz to 60 kHz.

4.2. Green's Function Estimation
Following the decision on the pre-processing scheme for this dataset, GF estimations were obtained for
all adjacent sensor pairs within the concrete girder. Given that the sensors were placed in two different
locations (top layer sensor group and web sensor group) with different conditions, they were analyzed
separately. Additionally, the GF estimations were also investigated for other load cases applied in the
experiment.

As explained in Section 3.1.1, the concrete girder in the validation dataset had two load application
points. Although the loads applied at these points were always of equal magnitude, the effective load
on the girder was not simply twice the magnitude of the applied load. This was due to the geometry of
the girder and the points of application relative to it. These loading conditions are summarized in Table
4.1. For simplicity, the load cases will be referred to in the latter sections by the applied load per point
of application, as shown in the left column of Table 4.1.
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Table 4.1: Loads considered for further analysis of wave speeds.

Approx. applied load (kN) Effective load (kN)
0 0
100 164.08
200 321.58
400 653.2
600 978.93
800 1306.66

4.2.1. Top layer sensor group
The initial idea tested for determining whether the estimated GF through ambient noise interferometry
in concrete structures was accurate involved checking for normal moveout (NMO) by pairing a single
sensor with subsequent sensors at increasing distances or offsets. The goal was to see whether the
first arrival of a wave in the first sensor pair would be linearly related to the first arrival of the same wave
in the subsequent sensor pairs. To test this, sensor 27 was chosen as the virtual source, and sensors
19-22 were chosen as the receivers.

Figure 4.9: Stacked cross-correlations and corresponding frequency content of virtual source-receiver pairs with sensor 27 as
the source, with yellow lines indicating the arrivals.

In Figure 4.9, the GF estimations for the four sensor pairs are plotted using the same y-scale to em-
phasize differences in signal amplitudes as sensor distances increase. Among these pairs, only pair
27-19 displays a coherent GF estimation, with peaks indicating apparent arrivals highlighted in yellow at
approximately -200 and 150 microseconds. For the other three pairs, at distances beyond 0.5 meters,
the estimations become monotonic, with only a few indistinct peaks. As a result, detecting arrivals and
phase changes becomes challenging, rendering the results incoherent for identifying arrivals.

A possible reason for this is the inherent dispersivity of concrete, which pertains to the tendency of wave
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velocities to vary with frequency. This dispersivity arises from the highly heterogeneous composition of
concrete, which includes aggregates of different grain sizes, cement binders, and steel reinforcements.
This heterogeneity causes different frequency components of a wave to travel at varying speeds. An-
other reason could be the matching and aligning algorithm used. Because the algorithm is based on
the time a wave is detected by a sensor, a longer distance between a pair allows for a larger window of
time for signals to arrive. This can lead to falsely matched signals, resulting in an unphysical CCF that
corresponds to an incorrect GF estimation between the two sensors in question.

In addition, post-experiment analysis revealed that sensors 21 and 22 were not optimally coupled to
the beam. Discrepancies were observed in the amplitude content of the signals recorded by these two
sensors, indicating possible loose coupling.

Based on the observations from Figure 4.9, it can be suggested that estimating the GF between two
stations spaced up to 0.5 meters using ambient noise may be more reliable. This is consistent with
the fact that higher frequency components exhibit greater attenuation [19], particularly since the high
frequencies of 20 - 60 kHz were investigated. However, further research is still necessary to confirm this.
Moving forward, in the interest of minimizing the distance between sensor pairs to get more coherent GF
estimations, only adjacent sensor pairs were analyzed. The distance between pairs varied from 0.5m
to 0.8m.

Figure 4.10: Stacked cross-correlations and corresponding frequency content of adjacent sensor pairs of the top layer sensor
group.

In Figure 4.10, GF estimations for the adjacent pairs following pair 27-19 are presented, with all plots
using the same y-scale, similar to the approach in Figure 4.9. When comparing the results of Figures 4.9
and 4.10, it is evident that the GF estimations in Figure 4.10 are much more coherent. Clear first arrivals
are observed for the sensor pairs, with pairs 19-20, 24-25, and 25-26 showing distinct first arrivals on
the expected side of the time lag = 0.
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Pair 19-20, situated on the left side of the sensor layout, exhibits more energy coming from the right side,
resulting in a dominant causal part. The same behavior is observed for pairs 24-25 and 25-26, which
are situated on the right side of the sensor layout, leading to a more dominant acausal side.

For pair 20-21, a slightly symmetric stacked CCF is observed with minor amplitude differences between
the causal and acausal parts. This result was unexpected because, like the other pairs, the energy was
expected to be more dominant on one side. A possible explanation is the previously mentioned coupling
issues with sensors 21 and 22, which may have caused unequal amplitude contributions from sensors
20 and 21. Given the additional uncertainty with sensor 21, it was excluded from further analysis.

To further investigate and verify the consistency and accuracy of the findings in Figure 4.10, adjacent
sensor pairs 27-19, 19-20, and 25-26 were examined by checking their corresponding GF estimations
for all the other load cases. These particular pairs were chosen as they were deemed representative of
the rest of the group in terms of location and conditions.

Figure 4.11: Causal and acausal parts of the Green’s function estimation of pair 27-19 at different loadings.



4.2. Green's Function Estimation 37

Figure 4.12: Causal and acausal parts of the Green’s Function estimations of pair 19-20 at different loadings.

As seen in Figures 4.11 and 4.12, the GF estimations for pairs 27-19 and 19-20 remain consistent from
load cases 0 to 200 kN. However, from 400 kN onwards, significant drops in the amplitude content
occur, and noise increases in the estimations for both pairs. For the 27-19 pair, the amplitudes equalize,
obscuring the wave arrivals that are clear at lower load cases. The same is observed for the 19-20
pair, although a clear peak of amplitudes amidst the noise can still be discerned until 600 kN, when it
disappears. These occurrences can be attributed to the flexural cracks that develop near the supports
at 400 kN (see Figure 4.13). The introduction of cracks causes sound waves to lose energy as they
pass through and scatter. This energy loss and scattering are reflected in the corresponding amplitude
contents of the GF estimations.

Another observation in both figures is the slight stretching in the GF estimations from 0 kN to 200 kN,
marked by yellow vertical lines. The peak gradually shifts to the right as the load increases, which can
be attributed to acoustoelastic effects (Section 2.5).

Since the sensor pairs were located on or near the top of the intermediate support, they were in the
tension zone due to the negative moment induced in this area by the loading. Consequently, sound
waves traveled more slowly, which resulted in the delay of the occurrence of the peak.



4.2. Green's Function Estimation 38

Figure 4.13: Beam cracking found near the support.

Figure 4.14: Causal and acausal parts of the Green’s Function estimation of pair 25-26 at different loadings.

Further substantiating the findings in Figures 4.12 and 4.13, Figure 4.14 shows that the GF estimation
for pair 25-26 remains coherent. Despite a slight equalization of amplitudes at 600 and 800 kN, the
peaks remain visible.

This response was expected, as these sensors were located near the midspan of the beam, where
tensile stress was lowest, and no flexural cracking occurred. Additionally, the first cracking in a vertically
loaded beam typically occurs in the tensile zone at the bottom, opposite to where the sensors were
positioned. However, it should be noted that there was a decrease in amplitude as the load increased.
This could be due to the lower energy waves detected by the sensors, caused by cracks forming in other
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parts of the girder, along with the acoustoelastic effects of concrete.

4.2.2. Web sensor group
For the hits recorded by the sensors on the web, the same pre-processing scheme used for the sensors
on the top layer was applied. This decision was based on an assessment of the optimal normalization
procedure, which showed that only spectral whitening had a significantly positive effect, whereas the
temporal normalization methods were insignificant. This is illustrated in Figure 4.15.

Note that the differences in amplitudes in Figure 4.15 are not significant, as different normalization meth-
ods can affect the magnitude of the resulting amplitudes.

Figure 4.15: Different pre-processing methods and the corresponding stacked CCFs for pair 11-12.
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Figure 4.16: Green’s function estimations and corresponding frequency content of adjacent sensor pairs of the web sensor
group.

In Figure 4.16, it is observed that even though the frequency content of the signals from the web sensor
group is almost identical to that of the top layer sensor group and the same pre-processing methods are
used, the resulting GF estimations are significantly less coherent. Although some peaks are clear, there
is too much noise in all of the estimations to reliably detect arrival times and distinct features.

This difference can be attributed to the greater distance of the web sensor group from the source com-
pared to the top layer sensor group. Given that high frequencies were considered, attenuation was
more significant, especially in a highly heterogeneous medium like concrete. Additionally, the source
was located at the slab, which has a much wider width than the web (see Figure 3.2), requiring sound
waves to travel specific paths to reach the web sensors. This is corroborated by the fact that the web
sensors recorded fewer hits than the top sensors (see Figures 4.2 and 4.3). Furthermore, the noisy
GF estimations can be attributed to the multiple reflections that some waves undergo before reaching
the web sensors, causing them to arrive at similar times as other waves, possible creating unphysical
signals which further obscure the arrivals.

To further investigate the estimated GFs, the behaviors of pairs 11-12, 12-13, 16-17, and 17-18 under
different loads were examined. The results are illustrated in Figures 4.17 and 4.18.
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Figure 4.17: Causal and acausal parts of the Green’s Function estimations of pairs 11-12 and 12-13 at different loadings, with
yellow lines and green lines indicating the arrivals and peaks, respectively.

Figure 4.18: Causal and acausal parts of the Green’s Function estimations of pairs 16-17 and 17-18 at different loadings, with
yellow lines and green lines indicating the arrivals and peaks, respectively.

The GF estimations in Figures 4.17 and 4.18 again show very noisy signals, with possible multiple wave
arrivals obscuring each other. Despite this, certain consistent patterns are observable in both figures.
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In Figure 4.17, although the wave arrivals for pairs 11-12 and 12-13 are not very clear, consistent jumps
and peaks in amplitude are observable across the 0-200 kN load cases, as indicated by the yellow
vertical lines. For pair 11-12, amplitude peaks are consistently observed at approximately -125, -250,
100, and 300 microseconds. However, starting from the 400 kN load case, these peaks become less
prominent, and more arrivals closer to the 0 time lag are visible. Similarly, for pair 12-13, despite showing
significantly more noise, consistent amplitude peaks are observed around -300, 100, 260, and 350
microseconds.

These observations align with the changing girder conditions as the load increases. Similar to what was
observed for the top layer sensor group, the GF estimations of sensor pairs near the support started to
exhibit noisier signals beginning at the 400 kN load case, likely due to the cracks that developed on the
girder at this load, as shown in Figure 4.13.

For sensor pairs 16-17 and 17-18 shown in Figure 4.18, consistent amplitude peaks are observed
throughout the load cases. Unlike the other sensors, these peaks remain stable. These sensors were
positioned on the right portion of the sensor array, similar to pair 25-26 on the top layer, where more
energy was observed in the acausal part. Additionally, since sensors 16-18 were also at the midspan of
the beam, the cracking that occurred at the supports at 400 kN had minimal effect on the GF estimations
between these sensors, resulting in a consistently clear trend.

For pair 16-17, the most prominent peak in amplitude is observed around -300 microseconds and is
noticeable across all load cases. Similarly, for pair 17-18, prominent peaks are consistently observed
around -100, -250, and -300 microseconds across all load cases.

4.2.3. Decomposing Green's function estimations of the web sensor group using
EEMD

To further enhance signal denoising, frequency isolation, and emphasize wave arrivals in the time do-
main, an empirical method known as Ensemble Empirical Mode Decomposition (EEMD) (see Section
2.8) was employed on the normalized and band-passed GF estimations for the web sensor group. De-
spite EEMD being a frequency-isolating method in itself, the band-passing prior to its application was
deemed more advantageous as it allowed for the removal of unwanted frequency components, poten-
tially leading to more meaningful IMFs related to wave arrivals.

This further step was not considered necessary for the top layer sensor group since the coherence of
their GF estimations was already deemed sufficient.

As EEMD is purely empirical, the choice of which Intrinsic Mode Function (IMF) to analyze was subjec-
tive.
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Figure 4.19: Decomposing the Green’s function estimation of sensor pair 11-12 with EEMD.

In Figure 4.19, the results of EEMD are presented. The original GF estimation for sensor pair 11-12 is
first augmented with white noise and then subjected to the sifting process described in Section 2.8. This
process, depicted in the figure, isolates signal features based on their frequency in the time domain, with
longer periods becoming more prominent as the IMF number increases.

Based on the outcomes observed, IMF4 was selected for further investigation across all other sensor
pairs and corresponding load cases for the web sensors.
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Figure 4.20: IMF4 for pairs 11-12 and 12-13 for all load cases, with yellow lines and green lines indicating the arrivals and
peaks, respectively.

Figure 4.21: IMF4 for pairs 16-17 and 17-18 for all load cases, with yellow lines and green lines indicating the arrivals and
peaks, respectively.
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From Figures 4.20 and 4.21, it is evident that EEMD effectively isolates the previously observed peaks
and wave arrivals depicted in Figures 4.17 and 4.18 amidst the noise.

In Figure 4.20, significant energy appears on both the causal and acausal sides of the IMF4s, as indi-
cated by the amplitude content in the GF estimations. The consistent peaks identified in Figure 4.17 are
more pronounced with this decomposition method, emphasizing both the clarity of the trends and loss
of coherence observed from the 400 kN load case onwards.

Figure 4.21 demonstrates that the decomposition method effectively enhances the energy distribution
from the sources, particularly emphasizing the dominance of the acausal parts for sensor pairs 16-17
and 17-18. Moreover, the consistent peaks identified in Figure 4.18 are more prominently displayed
following decomposition, notably the peak around -300 microseconds for pair 16-17 and peaks around
-100 and -300 microseconds for pair 17-18.

4.2.4. Comparative analysis of the sensor groups
The following observations were made:

• Although the estimated Green’s functions from the top layer sensor group were much more co-
herent compared to those of the web sensor group, consistencies were found for all sensor pairs
before and after cracking. This demonstrates their capability for local damage detection or anomaly
detection.

• Despite the differences in source locations, wave travel distances, and the expected energies and
trajectories of waves, the amplitude content featured by the GF estimations of both sensor groups
did not vary greatly.

• The Green’s function estimations from the web sensors contained more noise due to the signifi-
cantly longer path of the sound waves and the need to cross an interface.

• The dominance of either the causal or acausal parts, depending on the source distribution, was
consistent for both sensor groups.

4.3. First Arrival Detection using AIC Algorithm
This section aimed to employ an automatic first arrival detection algorithm based on the Akaike Informa-
tion Criterion (AIC) (see Section 2.7) to determine the wave speeds of the first-arriving waves from the
GF estimations of various adjacent sensor pairs. The algorithm detects the time of first arrival, which
was checked on either side of the 0 time lag, depending on the position of the sensor pair relative to the
chain path, influencing whether the causal or acausal part was examined.

Specifically, this analysis focused on sensor pairs 27-19, 19-20, and 25-26, as they were deemed rep-
resentative of the entire top layer sensor group dataset. For pairs 27-19 and 19-20, the causal part was
investigated, while for pair 25-26, the acausal part was examined. Due to the significant noise in the
GF estimations of the web sensor group, which caused challenges in identifying wave arrivals, these
results are not discussed further in this section. Additional findings regarding arrivals and wave speeds
detected for the top layer sensor group can be found in Appendix A.
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Figure 4.22: Arrival times detected with AIC picker for estimated Green’s functions of 27-19, 19-20, 25-26 at 0kN

As observed in Figure 4.22, the AIC automatic picking algorithm identifies the lowest AIC value within a
given window (the length of the green line) for each sensor pair and selects that as the first arrival. The
following table summarizes the arrival times and corresponding wave speeds depicted in Figure 4.22.

Table 4.2: Wave speeds from the AIC-picked first arrivals for each sensor pair of the 0 kN load case.

Sensor pair Distance (m) Arrival time (µs) Wave speed (m/s)
27-19 0.5 136.4 3665.7
19-20 0.5 169.6 2948.1
25-26 0.8 255.6 3129.9
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Figure 4.23: AIC-picked arrival times for pair 27-19 at different load cases.

Table 4.3: Arrival times and wave speeds for pair 27-19 at different load cases.

d = 0.5m Arrival time (µs) Filtered Speed (m/s)
0kN 136.4 3665.7
100kN 138.0 3623.2
200kN 142.0 3521.1
400kN 215.2 2323.4
600kN 115.6 4325.3
800kN 180.4 2771.6

For sensor pair 27-19, as seen in Figure 4.23, a consistent arrival time is found across the 0-200 kN load
cases, corresponding to consistent wave speeds. As mentioned in Section 4.2.1, cracks developed in
the beam near the supports at 400 kN, leading to the drastic change in arrival time. This arrival time is
unreliable due to the increased noise in the signal and the equalization of amplitudes, possibly caused
by the presence of cracks. This is a non-ideal scenario for using the arrival time algorithm, as explained
in Section 2.7.
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Figure 4.24: AIC-picked arrival times for pair 19-20 at different load cases.

Table 4.4: Arrival times and wave speeds for pair 19-20 at different load cases.

d = 0.5m Arrival time (µs) Filtered Speed (m/s)
0kN 169.6 2948.1
100kN 169.6 2948.1
200kN 172.8 2893.5
400kN 177.6 2815.3
600kN 232.8 2147.8
800kN 143.2 3491.6

In Figure 4.24, similar to pair 27-19, pair 19-20 exhibits consistent arrival times and corresponding wave
speeds from 0 to 200 kN load cases. However, at 400 kN, the coherence in detected arrival times
become unreliable. Despite both pairs being equidistant, notable differences in arrival times and wave
speeds were observed.

A noticeable observation for both sensor pairs 27-19 and 19-20 is the slight increase in arrival times,
leading to a decrease in wave speeds as the loading increases just before cracking occurs. This aligns
with the earlier observation in Section 4.2.1, where a slight stretching was noted in the GF estimations
from 0 to 200 kN for both sensor pairs.

Additionally, between the two pairs, the increase in arrival times for the 0 to 200 kN load cases is more
apparent for pair 27-19, as it was positioned closer to the support and thus experienced higher tensile
stresses. This observation is consistent with the concept of acoustoelasticity (see Section 2.5).
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For pair 27-19, before crack development, wave speeds consistently ranged between 3500-3600 m/s,
whereas for pair 19-20, the speed was approximately 2900 m/s. This discrepancy can be attributed to
the inherent spatial variation of wave velocities in concrete, influenced by factors such as density, poros-
ity, and aggregate size distribution. The heterogeneous nature of concrete, coupled with construction
practices, curing conditions, and reinforcement levels, contributes significantly to these variations.

Despite these uncontrollable differences, Both sensor pairs fall within the expected range of sound wave
speeds in concrete, estimated roughly in Section 2.4.1. For concrete of grade C40/50, typical wave
speeds range from 2234 m/s (Rayleigh wave) to 4000 m/s (primary wave), considering standard values
of modulus of elasticity and Poisson’s ratio.

Figure 4.25: AIC-picked arrival times for pair 25-26 at different load cases.

Table 4.5: Arrival times and wave speeds for pair 25-26 at different load cases.

d = 0.8m Arrival time (µs) Filtered Speed (m/s)
0kN 255.6 3129.9
100kN 255.6 3129.9
200kN 255.2 3134.8
400kN 252.4 3169.6
600kN 253.6 3154.6
800kN 185.2 4319.7

For sensor pair 25-26, as shown in Figure 4.25, the arrival times and wave speeds remain consistent
across almost all load cases, except for the 800 kN case. Despite the earlier arrival detected by the
algorithm at 800 kN, it cannot be concluded that a significant change occurs in the medium between
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the two sensors. The trend of the amplitudes remains consistent throughout the load cases, with the
GF estimation amplitude decreasing at 800 kN and becoming more obscured by random background
noise, as explained in Section 4.2.1. The flatness of the green line (AIC values) in the 800 kN load case
indicates that the arrival time could be picked up at any of those points. Therefore, it is still possible
that the arrival time remains unchanged but is obscured by the added noise or the equalization of the
amplitudes. A clearer view of the peak prominence at around -300 microseconds is shown in Figure
4.14.

As discussed in Section 4.2.1, this stability was expected given the location of sensor pair 25-26 with
respect to the beam, explaining the minimal observed change.

From the analysis of the three sensor pairs, it can be inferred that detecting arrivals and wave speeds
derived from the GF estimates between sensor pairs on concrete structures may be an effective method
for monitoring damages and strain changes that develop in the medium.



5
Ambient Traffic Noise Results and

Discussions

This chapter addresses an ambient traffic noise dataset from the Maastunnel in Rotterdam. Due to the
limited available literature on this type of noise dataset, there is little knowledge of what to expect, and
no established guidelines exist for data management and pre-processing.

The data processing followed these steps: first, the data characteristics were examined; next, the optimal
pre-processing method was selected; and finally, the GF estimations were analyzed.

Since the Maastunnel is an old structure and lacks a reference baseline, interpreting the results from the
dataset was challenging. However, because cracks were observed between sensors 3, 4, and 5 (see
Figure 3.6), the GF estimations involving these sensors were used as the primary point of comparison.
These estimations were then compared with those from the uncracked areas between sensors 1, 2, and
3.

5.1. Dataset Characteristics and Optimal Pre-processing Scheme
The first aspect investigated with this dataset was the distribution of hits. As mentioned in Section
3.2.1, the data for the Maastunnel consisted of two recordings, both taken on the 16th of December
2022. The first recording began at 11:56:55 and lasted around 52 minutes, while the second recording
started at 12:53:23 and lasted approximately 47 minutes. To represent each recording, two separate
histograms are presented. For analyzing the distribution of hits across all five sensors, the bin sizes for
the histograms were set to 100 seconds each.

51
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Figure 5.1: Hits for sensors 1-5 in the Maastunnel (Recording 1).

Figure 5.2: Hits for sensors 1-5 in the Maastunnel (Recording 2).

In Figures 5.1 and 5.2, a notable observation is the disparity in the number of hits recorded by sensors
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1 and 2 compared to sensors 3, 4, and 5. This significant difference was later attributed to the presence
of cracks in the medium between sensors 3, 4, and 5.

Examining the features, the pattern of hits and prominent peaks is quite similar for the first two sensors
and the last three sensors, respectively. However, unlike the validation dataset, no clear patterns can
be discerned across all sensors. The peaks in the histograms might be due to an influx of cars passing
through the sensors within the 100-second time window represented by each bin. Despite the sensors
being oriented parallel to the road section, amoveout of hits similar to what was observed in the validation
dataset is unlikely, given the speed of the cars. With an assumed maximum speed in the Maastunnel of
approximately 13.9 m/s (50 km/h), it would only take a car 0.04 seconds to pass a sensor spacing of 0.5
meters. Therefore, detecting the passage of an individual car using the recorded hit times is challenging.
Since the traffic flow is nearly continuous, a uniformly distributed random noise field can be assumed.
This is further supported by the lack of distinct patterns even after adjusting the bin sizes.

The next step was to determine the optimal normalization scheme for the dataset. The schemes tested
were identical to those used for the validation dataset, including one-bit and RAM normalization in the
time domain and spectral whitening using an envelope function. The running window length for RAM
normalization in the time domain and the window used for the envelope function in the frequency domain
were the same for both the validation and Maastunnel datasets. The results for sensor pair 1-2 are
presented in the figure below, with results for the remaining pairs available in Appendix A.

Figure 5.3: Normalization schemes for the stacked CCFs of sensor pair 1-2.

In Figure 5.3, the most coherent figure is the non-normalized raw stacked CCF. Among the six figures, it
shows the clearest peaks and is least affected by the low-frequency component that introduces a wave-
like pattern. Another observation is that the stacked CCF from one-bit normalization results in a single
smooth peak because the normalization reduces amplitudes to either -1 or 1, removing any amplitude
variations. Hypothetically, the non-normalized raw stacked CCF would be the best choice among the
options. However, it is essential to conduct spectral whitening to equalize the frequency content of the
CCFs, particularly for this real-world dataset with its significant noise uncertainties. Therefore, only the
figures in the second row were considered and compared.

Among the three schemes in the second row, the better options appeared to be either the spectrally
whitened scheme alone or the RAM + spectral whitening. However, it was difficult to determine which
of these would be the best option, especially given the very incoherent results produced by the one-bit
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normalization. Therefore, all three schemes were considered in the next step, which is the frequency
analysis.

To determine a rough frequency range to investigate, the spectrograms of the hits per sensor and the
frequency spectra of the sensor hits were examined. Below, only the spectrograms for sensors 1 and 3
are presented, as they were representative of their respective ’groups’ observed in Figures 5.1 and 5.2.

Figure 5.4: Frequency spectra of sensors 1 and 3.

Figure 5.5: Frequency spectra of some hits of sensors 1 and 3.

In Figure 5.4, the spectrogram for the hits on sensor 1 shows a concentration in the 20 - 40 kHz frequency
range, while for sensor 3, it is primarily within 20 - 30 kHz. Both spectrograms also display a few outliers
exceeding 100 kHz. This observation is further supported in Figure 5.5, where the frequency distributions
of a few randomly selected hits for both sensors are presented.

A common feature in the signals from both sensors is that, despite the high concentration within certain
frequency ranges, a broad band of frequencies is still present. Smaller peaks around 100 kHz can also
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be observed, particularly in hits 600 to 602 for sensor 1 and hits 601 and 602 for sensor 3.

Additionally, the amplitude of the frequency spectra is worth noting, especially for hit 600 of sensor 3.
This hit stands out because the frequencies appear to flatten after 60 kHz. However, this is not due to the
absence of higher frequencies but rather the strong concentration around 20 kHz, with an amplitude of
about 30, which makes the other frequencies appear much lower by comparison. When compared to the
other hits in Figure 5.5, hit 600 exhibits a different magnitude. The presence of hits like this emphasize
the importance of applying spectral whitening.

Given these observations, the next step involved applying a series of frequency filters to the normalized
GF estimation for sensor pair 1-2 using the three normalization schemes discussed previously. It was
observed that including frequencies below 10 kHz introduced a low-frequency component that domi-
nated the GF estimates. To address this, band-pass filtering with 10 kHz as the lower limit was used.
The figure below shows the results of this band-pass filtering. Details on the low-pass and high-pass
filtering applied can be found in Appendix A11 and A12.

Figure 5.6: Band-passing for sensor pair 1-2.

In Figure 5.6, it is observed that for all three normalization schemes, the GF estimates stabilize after
the upper limit reaches 30 kHz. For the whitened and RAM + whitened schemes, noticeable differences
continue up to 35 kHz, beyond which changes are minimal. Higher frequency signals beyond these
upper limits are found to be incoherent, likely due to the increased attenuation of higher frequency
components.

Therefore, the ideal frequency range was determined to be 10–30 kHz for the one-bit normalization
scheme and 10–35 kHz for the other two schemes. Among these, the combination of one-bit normal-
ization and spectral whitening produced the most coherent GF estimates, with the least high-frequency
noise and the clearest arrivals.
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For the subsequent analysis of GF estimations from each sensor pair, one-bit normalization with spectral
whitening was used as the normalization scheme. The signals were then band-pass filtered with a lower
limit of 10 kHz and an upper limit of 30 kHz.

5.2. Green's Function Estimation
In this section, it is explored whether the estimated GFs or impulse responses from the traffic noise, with
the chosen pre-processing approach applied, yield valuable information regarding the medium between
the sensors. To do this, GF estimations for each pair are presented in the figure below.

Figure 5.7: Normalized and Bandpassed (10-30kHz) GF estimations for all sensor pairs.

As depicted in Figure 5.7, despite implementing one-bit normalization, spectral whitening, and band-
pass filtering within a reduced noise frequency range, the data still shows numerous peaks and noise
that obscure meaningful information. Unlike the validation dataset, where recordings before and af-
ter crack occurrences allowed for establishing a baseline, the data in this study was based solely on
recordings collected during installation. This situation resembles the challenges observed with the web
sensor groups in the validation datasets, where some amplitude peaks were discernible but the arrivals
remained unclear. In the validation dataset, knowledge of the structural condition enabled deductions
linking the behavior of the GF estimations to the structural integrity of the member. For the Maastunnel
dataset, no prior recordings were available, and knowledge of the condition of the road section was
incomplete. Therefore, the results obtained in this study may serve as the ’baseline,’ assuming no sig-
nificant damages or defects were present at the time of measurement. However, without further tests,
this assumption cannot be validated.

To further explore the GF estimations from this dataset, an additional investigation was conducted to
attempt to improve signal coherence and resolution. In some practices where there is an unequal dis-
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tribution of sources around given sensor pairs, averaging the causal and acausal parts of the stacked
CCFs is done to enhance signal coherence and resolution, under the assumption that non-essential
noises may be averaged out. This method was also explored in this study and is illustrated in Figure
5.8.

Figure 5.8: Averaged causal and acausal parts for all sensors.

In Figure 5.8, it can be observed that averaging the causal and acausal parts of the stacked CCFs does
not lead to a significant improvement in coherence. This result should be noted for future studies, as
further validation may be required to confirm its effectiveness.

In the following section, the GF estimations were decomposed using EEMD. The objective was to further
decompose the estimates in order to extract distinct features, such as clear peaks in amplitudes, which
could indicate significant events.
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5.2.1. Decomposing Green's function estimations using EEMD

Figure 5.9: Decomposed Green’s function estimation of pair 1-2 with EEMD.

Figure 5.10: Decomposed Green’s function estimation of pair 3-4 with EEMD.
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As seen in Figures 5.9 and 5.10, the IMFs are extracted from the original signal after white noise is intro-
duced. The first three IMFs represent high-frequency components due to the inherent high-frequency
content of the signal in the time domain. By the time IMF4 is reached, these high-frequency compo-
nents have been completely decomposed. Based on these observations, IMF4 was selected for further
investigation across all sensor pairs. The comparison of four sensor pairs is illustrated in Figure 5.11.
The EEMD-decomposed IMFs for sensor pairs 2-3 and 4-5 can be found in Appendix A.

Figure 5.11: IMF4s of all sensor pairs.

In Figure 5.11, it can be observed that, compared to Figure 5.7, the GF estimations exhibit clearer arrivals
due to successful decomposition into multiple IMFs using EEMD. The chosen mode function, IMF4,
features high amplitude and relatively lower frequency components, making the peaks more discernible.
For example, in sensor pair 1-2, multiple arrivals are evident at approximately -1000, -125, 250, and 600
microseconds. Although the arrival at -125 microseconds corresponds to a wave speed of 4000 m/s,
which matches the P-wave speed estimated in Section 2.4.1, its accuracy is still uncertain and currently
unverifiable. Furthermore, while clear peak arrivals were anticipated for pair 2-3, they were not expected
for pairs 3-4 and 4-5 due to the cracks observed around those sensors.

Due to the inconsistencies observed and the current uncertainties, it was difficult to draw definitive inter-
pretations at this stage.

In this section, it was demonstrated that EEMD had the capability to bring out and emphasize features
such as peaks and arrival times of waves. However, it was challenging to assert certainty in the obser-
vations. Nonetheless, further investigation into EEMD in future studies may be worthwhile.



6
Comparative Analysis of Ambient

Traffic Noise and Validation Datasets

In this chapter, comparisons of the findings between the two datasets are discussed in terms of inherent
characteristics, appropriate pre-processing schemes, relevant frequency bands, and the coherence of
resulting Green’s Function estimations, as well as their applicability for Structural Health Monitoring
(SHM).

6.1. Dataset Characteristics and Optimal Pre-processing Schemes
In terms of characteristics, the differences between the datasets were predictable, as seen in the plotted
histograms for each dataset. The hits for the laboratory experiment were clear, with known sources, un-
like the ambient traffic data, which involved randomly-sourced signals. Additionally, the sensor locations
relative to the noise sources significantly impacted the datasets. Within the laboratory experiment itself,
substantial differences were observed between the two sensor groups, and even more pronounced
differences emerged when comparing the laboratory data to the ambient traffic data.

The web sensor group in the laboratory dataset more closely resembled the ambient traffic data, as both
involved sound waves traveling through the medium. In contrast, the surface sensors in the laboratory
considered only surface waves, which were more straightforward.

In terms of relevant frequencies, the validation dataset achieved sufficient coherence within the 20 to
60 kHz range after pre-processing. Conversely, the coherent range for the ambient traffic dataset was
found to be 10 to 30 kHz. Despite both datasets featuring the same peak frequency ranges at around
20 to 40 kHz, the ambient traffic dataset featured a broader frequency spectrum with components that
ranged from 0 to 110 kHz. For both datasets, including frequencies outside the determined bands in
their GF estimations introduced dominant low-frequency trends and high frequency components that
obscured wave arrivals.

In terms of normalization procedures, spectral whitening was applied to both datasets to normalize
the energy and ensure consistent representation across the entire frequency bandwidth. However, for
the ambient traffic dataset one-bit normalization was additionally used to enhance signal coherence. In
contrast, none of the investigated temporal normalization methods were applied to the validation dataset,
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as they were not beneficial.

6.2. Green's Function Estimations and Practical Applicability
As mentioned in the previous section, the relatively clear understanding of sound source distribution
within the validation dataset made the analysis and interpretation of the GF estimations from different
sensor pairs easier. This was particularly evident for the top layer sensors, where the dominant direction
of energy could be directly linked to the location of the sensor relative to the chain path. Similarly,
although less directly, this trend was also observed with the web sensor group. Despite multiple arrivals
and peak amplitudes on both sides of the GF estimations, the more dominant side remained apparent.

In contrast, the ambient traffic noise dataset introduced greater complexity due to the random distribu-
tion of noise sources, which is more reflective of the ambient noise encountered in seismology. The
continuous and unpredictable traffic flow presented a more realistic challenge for interpreting GF esti-
mations. Despite these challenges, this complexity offers valuable insights into real-world applications,
contrasting with the validation dataset where fewer uncertainties provided clearer explanations.

It is also worth noting that the GF estimations for the web sensor group in the validation dataset can still
be compared to those from the ambient traffic noise dataset, particularly regarding multiple arrivals.

Additionally, as mentioned in Section 5.2, the ambient traffic noise dataset faced the challenge of lacking
a verifiable baseline. This was the first attempt to reconstruct the dataset from that specific structure
with those particular sensors, and the absence of active testing to support the findings made it difficult
to make definitive claims. Nevertheless, the results from the ambient dataset were promising, as some
features observed could be corroborated, as discussed in Section 5.2. Furthermore, with more data
available, it is highly likely that the GF estimations using the algorithm in this research will achieve a
higher signal-to-noise ratio, making the GF estimations more coherent.

For future work, it may be valuable to use the findings from this research as a basis for comparison with
future studies.



7
Concluding Remarks

The previous chapters presented an exploratory study focused on addressing two primary questions:
1) whether the Green’s function of a concrete medium can be estimated through the interferometry of
ambient passive noise, and 2) how effective the estimated Green’s function is in monitoring the structural
health of concrete structures in both laboratory and real-world conditions. In this chapter, the findings
from this research allow to answer these questions. Additionally, recommendations for further research,
pertinent to this study but beyond the scope, will also be provided.

7.1. Conclusions
The main conclusions from this research are listed below:

• The Green’s function of a concrete medium can be reliably estimated through interferometry us-
ing signals received by a pair of sensors, provided there is a sufficient volume of data to yield a
higher signal-to-noise ratio (SNR). This Green’s function estimation accurately reflects the arrivals
of waves passing through the sensor pair.

• The analysis of the validation dataset revealed that the Green’s function estimation is effective for
monitoring changes in concrete, such as crack formation and strain variations. This effectiveness
was observed for sensor pairs spaced up to 0.8 meters. However, the performance at greater
distances requires further verification.

• The analysis revealed that the validation dataset achieved coherence between 20 and 60 kHz,
while for the ambient traffic noise, it was coherent between 10 and 30 kHz, despite its broader
frequency range. Spectral whitening was necessary for both datasets to equalize the distribution
of frequencies. Additionally, one-bit normalization was necessary for the ambient traffic noise,
whereas the validation dataset provided the best results without any temporal normalization.

• Upon comparing the Green’s function estimations from the two datasets, it is evident that the esti-
mations vary significantly depending on the placement of sensors relative to the noise source. This
difference was particularly evident when comparing the estimations from different sensor groups
within the validation dataset.

• Based on the current findings of this research, it cannot be conclusively inferred that ambient traffic
noise is suitable for structural health monitoring (SHM) of real structures. While coherent patterns
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in the Green’s function estimation from the sensor pairs in the concrete tunnel were observed after
signal processing, SNR remained poor. This likely resulted from the limited amount of available
data and insufficient recording time.

7.2. Recommendations and Outlooks for Future Works
In addition to the conclusions, the following are the recommendations for those who wish to pursue this
topic further:

• Collect data over a longer period per recording and across more days to obtain a more represen-
tative Green’s function.

• Explore using a lower sampling frequency to get more manageable data file sizes to accommodate
longer recordings and faster data processing.

• In this study, a sampling frequency of 120 kHz would have been theoretically sufficient for the
chosen frequency ranges for both datasets, allowing for a reduction in the number of samples
by factors of approximately 20 and 40 for the validation and real-world datasets, respectively.
However, the analysis showed that having more samples was more advantageous, as it im-
proved the accuracy and spatial resolution of the results (see Figure A.15 in Appendix A).
Therefore, a proper sampling frequency remains to be explored.

• Explore alternative sampling methods, such as continuous recording over multiple fixed time win-
dows. Synchronized and continuous data recording eliminates the need to align ’hits’ and more
closely resembles seismic noise interferometry.

• Investigate alternative decomposition methods to denoise data and emphasize specific features.
For instance, consider further exploring Ensemble Empirical Mode Decomposition (EEMD), which
was used in this study.

• Reevaluate frequency ranges suitable for analyzing real-world traffic noise data and explore addi-
tional normalization techniques.

• Conduct an active experiment where one sensor - assuming it is a transducer - can act as a source
so that the true Green’s function can be compared to the one estimated through interferometry.
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Appendix A

Figure A.1: Top sensor group spectograms (AE)
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Figure A.2: Web sensor group spectograms (AE)

Figure A.3: Bandpassing at different points of the processing (AE).
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Figure A.4: Low-pass filtering of GF estimation of sensor pair 27-20 (AE).

Figure A.5: Estimated GFs for s23-24 and s24-25 pairs.
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Figure A.6: AIC Picks for the estimated GF of s23-24 pair.

Table A.1: Arrival times and wave speeds for pair 23-24 at different load cases.

Arrival time (µs) Filtered Speed (m/s)
0kN 182.40 2741.2
100kN 100kN 165.60
200kN 200kN 182.00
400kN 400kN 12.80
600kN 600kN 99.60
800kN 800kN 186.40
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Figure A.7: AIC Picks for the estimated GF of s24-25 pair.

Table A.2: Arrival times and wave speeds for pair 24-25 at different load cases.

Arrival time (µs) Filtered Speed (m/s)
0kN 312.40 1600.5
100kN 308.40 1621.3
200kN 308.40 1621.3
400kN 226.00 2212.4
600kN 341.60 1463.7
800kN 9.60 52083.3

Figure A.8: Normalization schemes for the stacked CCFs of sensor pair 2-3.
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Figure A.9: Normalization schemes for the stacked CCFs of sensor pair 3-4.

Figure A.10: Normalization schemes for the stacked CCFs of sensor pair 4-5.
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Figure A.11: Lowpassing for sensor pair 1-2.

Figure A.12: Highpassing for sensor pair 1-2.
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Figure A.13: IMF4 of pair 2-3 (MT)

Figure A.14: IMF4 of pair 4-5 (MT)
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Figure A.15: Green’s function estimations for sensor pair 19-20 in the validation dataset for data with sampling frequencies of
2.5 MHz (left) and 125 kHz (right).
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