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Learning-Based MPC for Fuel Efficient
Control of Autonomous Vehicles With
Discrete Gear Selection

Samuel Mallick

Abstract—Co-optimization of both vehicle speed and
gear position via model predictive control (MPC) has been
shown to offer benefits for fuel-efficient autonomous driv-
ing. However, optimizing both the vehicle’s continuous
dynamics and discrete gear positions may be too computa-
tionally intensive for a real-time implementation. This letter
proposes a learning-based MPC scheme to address this
issue. A policy is trained to select and fix the gear positions
across the prediction horizon of the MPC controller, leaving
a significantly simpler continuous optimization problem to
be solved online. In simulation, the proposed approach
is shown to have a significantly lower computation bur-
den and a comparable performance, with respect to pure
MPC-based co-optimization.

Index  Terms—Model predictive control

autonomous vehicles, learning.

(MPC),

[. INTRODUCTION

OR OPTIMAL control of autonomous vehicles (AVs),

model predictive control (MPC) is a powerful and preva-
lent method [9], [15]. In this context, co-optimization of an
AV’s speed and gear-shift schedule is a promising approach
to achieve high-performing and fuel-efficient autonomous
driving; however, considering the gear-shift schedule requires
the online solution of a mixed-integer nonlinear program
(MINLP) [1], for which the computational burden can be
intensive.

To address this issue the MINLP can be made easier
to solve by relaxing the problem or by finding heuristic
numerical solutions [5], [11]. However, the relaxed problem
can still be difficult to solve, and approximate solutions can
be suboptimal. Alternatively, a decoupled approach can be
used. In this case, first the speed is optimized, and next a
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gear-shift schedule is selected for the given speed using, e.g.,
a learning-based gear controller [14], or dynamic program-
ming [12]. However, decoupling speed control and gear control
is suboptimal compared to the joint optimal control of both
together. Finally, the computational burden can be alleviated
by using a learning-based controller that controls both speed
and gear-shift schedule in place of an MPC controller [7];
however, in contrast to an MPC controller, a learning-based
controller is not able to guarantee constraint satisfaction.

In light of the above issues, this letter presents a novel
learning-based MPC controller for the co-optimization of speed
and gear-shift schedule for an AV. Taking inspiration from [4],
a learned policy selects and fixes the gear positions across the
prediction horizon of the MPC controller, such that optimal
control and constraint satisfaction are handled by a nonlinear
program (NLP), rather than an MINLP. A neural network (NN)-
based policy is proposed where, to address the exponential
growth of the policy’s action space with the prediction horizon,
arecurrent architecture is used. The policy learns to select gears
that are optimal for the original optimization problem, rather
than decoupling the gear-shift schedule from the speed control,
such that, in contrast to [12], [14], the notion of co-optimization
is retained. In this way, the MPC controller is able to consider
the gear and powertrain dynamics without optimizing explicitly
over discrete inputs, in contrast to [5], [11]. Furthermore,
unlike pure learning-based controllers [7], the use of the MPC
controller gives constraint satisfaction. To this end, we propose
a backup gear-shift schedule that can guarantee feasibility of
the MPC optimization problem. Finally, due to the recurrent
architecture, the policy, once trained for a specific prediction
horizon, generalizes over prediction horizons without the need
for retraining.

I[I. PROBLEM SETTING

Consider the vehicle and powertrain models [11]

T(Hn(t) = g(1) + CV2 (1) + ma(t) + Fp(?),

w(t) = (30/7) - n(H)v (1), ey

with ¢ continuous time, a the acceleration, v the velocity, and
m the mass of the vehicle. Furthermore, C is the wind drag
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coefficient, FY, is the brake force, T is the engine torque, and
w is the engine speed. The friction function

g(t) = umg cos (a(t)) + mg sin (a (t)), 2)

with @ the rolling friction constant and g the gravitational
acceleration, defines the road friction for road angle o, which,
for simplicity of presentation, is assumed to be constant, i.e.,
a(f) = o and g(f) = G. The lumped gear ratio n(f) =
z(j(1))z¢/r is determined by the final drive ratio zf, the wheel
radius r, and the transmission gear ratio z, a discrete variable
selected by the gear position j € {1, ..., 6}. To model engine
dynamics the torque rate of change is constrained as |T(r)| <
ATmax. Furthermore, consider the fuel model [11]

mi(t) = co + cro®) + c20()T(1), 3)

with cg, ¢1, and ¢y constants. The variables Fy,, T, and w are
physically bounded above and below, e.g., Tmin < T < Tmax-
Note that the bounds on @ implicitly bound v between
TT - Wmin? T - Wmax!
T30 z(1)ze 30 z2(6)z
For convenience, in the following, we define a function that
maps a speed and gear choice to the engine speed
30-v Z(])Zf. 5)
rm
We consider the control of an AV to track a reference
trajectory in a fuel efficient manner. Denote the vehicle
position, reference position, and reference velocity at time
t as p(t), pref(?), and vre(?), respectively. The performance
metric is
Ksim
P =" BL([pedn) vkAD] . [prerkn), vier(kan] )
k=0

Vmin Vmax 4

w,)) =

+Le(v(kAD), T(kAD, j(kAD), (6)

where 8 > 0 expresses the importance of tracking against fuel
efficiency, and k is a discrete-time counter for time steps of
At seconds. The tracking cost

L(xy) =@x—y ' 0x~-y) (7)

quadratically penalizes deviations from the reference trajec-
tory, with O € R?*? a positive-definite weighting matrix. The
fuel cost L¢(v,T,j) = At(co + cro(v,j) + coo,j) T)
penalizes the fuel consumption over a time step.

I11. LEARNING-BASED MPC

In this section we introduce the proposed controller for the
task. Defining the state, reference state, and control input as

x(k) = [pkan), vkan] ',
Xuet (k) = [pref(kAD), vier(kAD] T
u(k) = [T(kA?), Fy(kAD), j(kAt)]T, ®)

(1) can be approximated with the discrete-time dynamics
x(k+1) = f(x(k), u(k)), with

X1 + At
fl,u) = X+ %(ulz(t:g)zf _ Cx% —uy — G)) s )

where subscripts select an element of a vector, e.g., x; is the
ith element of the vector x.

A. Mixed-Integer Nonlinear MPC

Consider an MPC scheme with prediction horizon N > 1
defined by the following MINLP:

N
> BL(x(ilk), Xt (i + K))

J(x(k), Xref(k)) = x(}cI)l,IuI}k) —
N—-1
+ ) Le(xa(ilk), wi (ilk), w3 ilk))  (10a)
s.t.  x(0]k) =l )(c)(k) (10b)
for i=0,...,N—1:
x(i + 11k) = f(x(ilk), u(ilk)) (10c)
2 (i + 1K) = x2GlK)| < dmax At (10d)
for i=0,...,N—2:
lup (i + k) — u1(ilk)| < ATmax At (10e)
lu3 (i + 11k) — w3 (ilk)| < 1 (10f)
(x(k), u(k)) € C (10g)

where x(ilk) and u(ilk) are the predicted states and inputs,
respectively, i steps into the prediction horizon of the MPC
controller at time step k. Furthermore, bold variables gather a
variable over the prediction horizon, e.g.,

x(k) = [xT©OlK), ..., x" NIK],

Xret (k) = [xep(h), .., Xpop(k + N)]T. (11)

If no solution exists for (10) J(x(k), Xref(k)) = o0 by
convention. The constraint (10e) enforces the engine torque
dynamic behavior, (10f) prevents skipping gears when shifting,
and (10d) limits acceleration to amax. The bounds on engine
torque, engine speed, and brake force are grouped in

C= {(Xs u)‘ Tinin < u1(ilk) < Tmax,

Fb, min < u2(ilk) < Fb, max s

Wmin = w(xZ(i|k)v “3(l|k)) = Wmax,

Wmin = w(x2(i + 11k), u3(i|k)) = Wmax,

i:O,...,N—l}. (12)
The last condition in C, relating x> (i + 1|k) to u3(ilk), ensures
that the gear at time step k + i maintains the engine speed
within its bounds for all r € [(k + i) At, (k+ i+ 1)At].

The MINLP (10) provides a state feedback controller via
solving (10) at each time step k and applying the first
element u*(0|k) of the optimal sequence u*(k) to the system.
However, the computation required to solve (10) online renders
it unsuitable for a real-time implementation, i.e., the com-
putation time is larger than the available real time for the
MPC to make a decision. In the following, we introduce an
alternative MPC controller that can be executed efficiently
online.



MALLICK et al.: LEARNING-BASED MPC FOR FUEL EFFICIENT CONTROL OF AVs

1119

B. Learning-Based Nonlinear MPC

Let us define a reduced control action that does not include
the gear choice as u/(k) = [T(kA?), Fo(kAD]T. We then
introduce the following MPC controller, parameterized by a
gear-shift schedule j(k) = [j(0|k), ..., j(N — 11017

N
T (3, Xees (8, J)) = min 3 BL((IR), xer(i + )

u/(k; i=0
N—1
+ ZLf(Xz(ilk), u} (ilk), j(ilk)) (13a)
i=0
s.t. (10b), (10d), (10e) (13b)
(x(k), [u/'T(O|k),j(O|k), e
.
u"T (N — 1]k), j(N — 1|k)] )ecC (13¢)
fori=0,...,N—1
. . 1. T /o i T
x( + 11k) = f(x(lk), [u’ (l|k),j(l|k)] ) (13d)
fori=0,...,N—2:
UG+ 1k) —jGlk)| < 1. (13e)

With j prespecified, no discrete variables are optimized in
the problem (13), which can now be solved efficiently using
numerical nonlinear solvers. Note that if j = uj, the optimal
gear-shift schedule from (10), then J(x, Xeef, j) = J (X, Xref)-

We propose the use of a learned policy that selects and fixes
the gears over the prediction horizon based on the optimal
solution to the MPC problem from the previous time step.
Define the shifted solutions to (13) at time step k, i.e., the
optimal control and state trajectories from time step k — 1
advanced by one time step, as

x(k) = [x" k), x* T Q2lk— 1), ..., x* TNk — 1)]T e R?,
vk =[u*TAk-1),...,
WHTN =1k =1, T(N =1k = D] e R?.

Note that the first element of x(k) is replaced with the state
x(k), such that in the case of modeling errors the real state is
present. Furthermore, define the shifted gear-shift schedule

it = [j(1Jk— 1), ..., j(N =1k — 1), j(N — 1]k — 1)]T. (14)

Consider the selection of j by a policy, parameterized by 6,

j = n@(i9 ﬁ/vxref,j), (15)

as a function of the reference trajectory and the shifted
solutions from the previous time step.! Note that for simplicity
the time index (k) is dropped. In Section IV the architecture
and training of mg are described.

Observe that there are many choices for j for which (13)
has no solution. While we can expect my to almost always
provide at least a feasible j (if not optimal), here we propose a
backup solution that will be useful for guaranteeing feasibility
at deployment. We then prove that this backup solution, while

1f o would be time-varying then o would be an additional input argument.

Algorithm 1 Control Algorithm at Time Step k

Inputs: x(k), Xer(k), X(k), 0 (k), and j(k)
Jk) < 7o (X(k), W (k), Xper(k), j(K))
Solve (13) for J(x(k), Xgef(k), j(k)) and w’*(k), x* (k)
If J = oo then j(k) < o (x2(k))
Solve (13) for J(x(k), Xref(k), j(k)) and w'*(k), x* (k)
Apply [u"*T(0lk), j(0|1<)]T to the system

potentially suboptimal, always provides a feasible j. Define
the set of feasible gears for a given velocity v as:

oW =[jell....6)wmn = 0. ) <wma). (16)

and ¢ as any mapping from v to one of the gears j € ®(v),
e.g., ¢(x2) = maXjcap(xy) /. The backup solution, defined by
the function o, is then

j=0() =[p), ..., ¢x)]"

Furthermore, define a map from gears to velocities that satisfy
the engine speed constraints as 2(j) = {v|j € ®(v)}.

Proposition 1: Assume that, for j € {1,..., 6} and for all
xp € Q2(j), there exist u; and up such that Thin < u1 < Thax,
Fo, min < 42 < Fp, max, and

a7

M0 02y G =0,

(18)

Then, for a state x(k) such that vpin < x2(k) < Vmax, and
a gear-shift sequence j(k) = o(x2(k)), problem (13) has a
solution, i.e., J(x(k), Xref(k), j(k)) < o0.

Proof: See the Appendix. |

As x% is positive and monotonic, verifying condition (18)
for a given vehicle involves checking only the endpoints of
the range Q2(j) for j=1,...,6, yielding 6 x 2 conditions to
be verified. The condition is satisfied for reasonable vehicle
parameters, including those used in Section VI. Note that
Proposition 1 guarantees instantaneous feasibility of (13).
Recursive feasibility follows trivially if the true underlying
system is (9). In the case of modeling errors, e.g., when
the dynamics (9) are a discrete-time approximation of the
continuous-time system (1), a robust MPC formulation would
be required for recursive feasibility and constraint satisfaction.
This is left for future work.

The proposed control algorithm is given in Algorithm 1. If
the gear-shift schedule proposed by 7y is infeasible, the control
input is computed using the backup gear-shift schedule (17),
which is feasible by Proposition 1.

IV. GEAR-SHIFT SCHEDULE PoLICY
For convenience in the following, define g(i) to stack the
ith elements from X, 0/, X and j, e.g.,
g(0) = [x" (ky, w7 (U = 1), x5k, j( Ik — D]
gIN —1) = [x*TWlk— 1), u"*T(N - 1]k — 1),
xl(k+N—=1),j(N— 1]k — 1)]T. (19)

ref

We propose to model the policy mg with an NN, with the
parameter 6 the model weights. Representing my with a
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the largest probability and applies a clipping: n(6(0)) = A,
and for i > 0
Ai if —1<x—ji—1k <1
n(8()) = {jG— k) — 1if A; —j(i — 1]k) < —1 (23)
Ji—1k) + 1if A; —jGi — 1]k) > 1
with A; = argmax;§;(i). The clipping ensures that j can be
feasible by satisfying constraint (13e).
The policy 7y can be trained in a supervised manner using
a dataset of input-output pairs
Fig. 1. Recurrent NN, with hidden states h;, showing how the chain of

inputs sequentially generates the gear-shift schedule. The maps ¢ and
n are input and output transformations.

standard feed-forward NN has the key issue that the action
space grows exponentially with the prediction horizon N,
while the input space grows linearly. Indeed, for a given N
there are 6" possible gear-shift schedules and 4(N + 1) + 2N
inputs (from X, Xef, i, and j). An NN capable of representing
the input-output mapping as N increases may need to be
very large and highly complex. Furthermore, there is an
explicit temporal relationship between gear-shifts, which is not
structurally enforced in a feed-forward NN. In light of these
points, inspired by [4] we propose a sequence-to-sequence
recurrent architecture using a recurrent NN (RNN), as shown
in Figure 1. The inputs X, W, Xyef andj are considered as N
different inputs in a chain, i.e., the vectors g(i) € R’ for i =
0,...,N — 1. A single RNN is trained with input space R’,
where the output is a single gear position. The output sequence
of N gear positions is then generated by sequentially evaluating
the RNN on the chain of inputs g(0), ..., g(N—1). In this way
the recurrent structure results in a constant number of inputs
and outputs for the network for any prediction horizons, with
only the number of sequential evaluations changing with the
horizon. Furthermore, the temporal relationship is structurally
enforced, i.e., the gear at time step i + k considers the prior
gears and inputs via the hidden state A;.
More formally the policy is defined as

7o (% W, Xeet, J) = [n(y(w(q(m), ho)>, s

n(y(w(q<N - 1), th))T,

where the input mapping v, defined by
T
v(g=[x"uw T x| ) = [(x )T,

X2 — Vmin

(20)

X2 ref — Vmin

.
T w(xz,p,j] , 21)

Vmax — Vmin ' Vmax — Vmin
transforms the inputs into a representation that contains the
tracking error, the vehicle and reference velocities, and the
predicted inputs, including the engine speed. This representa-
tion is chosen to give the RNN the most relevant information

for selecting j. The model function of the RNN is

50 = [310). . 860] " = (v (). 1),

where §;(i) is the probability of choosing gear j at the ith output
in the sequence. The output mapping n selects the gear with

(22)

T = (505 et B B

In Section VI the collection of 7 is detailed. With the number
of inputs and outputs of the model function y independent
of the prediction horizon N, an added benefit of the RNN
architecture is that, once trained, the policy can be applied
to an MPC controller with larger N by applying longer input
sequences. Furthermore, the policy can be trained with data
generated by different controllers with different horizons N.

(24)

V. COMPARISON CONTROLLERS

In this section we outline three controllers against which
the proposed method will be evaluated.

MINLP-Based MPC: This MPC controller solves the
MINLP (10) at each time step k, applying u*(0lk) to the
system. This controller provides the baseline performance for
all other controllers, but is highly computationally intensive.

Mixed-Integer Quadratic Program-Based (MIQP) MPC:
This controller follows the approach from [11], where the
MINLP (10) is relaxed such that the remaining optimization
problem is an MIQP. In particular, a McCormick relaxation is
applied to the bi-linear term in Ly, the quadratic term in the
dynamics is replaced by a piecewise-linear approximation, and
all bi-linear terms in the dynamics, e.g., u1z(u3), are replaced
by mixed-integer inequalities (see [11] for details).

Hierarchical MPC: This controller follows the principle of
decoupling the optimization of the vehicle speed from the gear-
shift schedule. To this end, the simplified dynamics x(k+1) =
f (x(k), F(k)) are considered, where

~ _ X1 + Atxp
fo F) = [x2+%(F—cX§—G) ]

The input F replaces Tz(j)z¢/r — Fb, the desired braking force
and the applied force from the engine torque combined with
the gear. The following NLP is solved:

(25)

N
J(x(k), Xrer(k)) = ff(%“ ZLt(x(ilk), Xref (i + k) (26a)
F(k) i=0
st (10b), (10d) (26b)
for i=0,...,N—1:
x(i + 1]k) = f(x(ilk), F(ilk)) (26¢)
Toin 2% Fiy max < FUIK) < Frax (%) (260)

i=0,...,N (26¢)

Vmin < X2(lk) < Vmax

where the fuel cost cannot be considered as the powertrain
dynamics are not modeled. The bound Fp,ax (k) is determined
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(a) N =15. (b) N = 15 with headwind. (c) N = 20.

Fig. 2. Top: distribution of (29) across 100 episodes with median marked. Bottom: distribution of average MPC solve time for each episode across
100 episodes with median marked. The maximal time of all steps is marked with a red triangle.

TABLE |
VARIABLE BOUNDS FOR THE VEHICLE
Symbol a v F,-10~° T w-10"3
Bounds [—3,3] [2.2,44.4] [0, 9] [15, 300] [0.9, 3]

at each time step k by considering the gear that provides the
most traction for the current velocity
z(f)ze

max .
JjEP(x2(k) r

Finax (k) = Tax - 27
The gear is then selected as j(kAf) = ¢(xp(k)) and clipped
such that (10f) is respected. In our simulations we found
JkAD) = ¢(x2(k)) = maxjep, k) to perform the best.
Finally, T(kAtf) and Fy(kAt) are decided as

Tmin F*(0lk) <0
T(kAt) =1 Fopr |
{ Gaamz FrOlk) =0
[ =F*(0lk) + DminzG*ADZE B 15) < 0
Fy(kAr) = {0 r mom <o, o8

with the torque rate constraint (10e) applied with clipping.

VI. SIMULATIONS

In the following, MINLP problems are solved with
Khnitro [3], MIQP problems are solved with Gurobi [6], and
NLP problems are solved with Ipopt [13]. These solvers are
each state-of-the-art for the respective type of optimization
problem. All coefficients defining the vehicle model can be
found in [11], with bounds given in Table 1. Source code is
available at https://github.com/SamuelMallick/mpcrl-vehicle-
gears.

For training the policy mp and for evaluation of the con-
trollers, we consider episodic highway-driving scenarios with
a = 0. Each episode requires a vehicle, initialized with a
velocity in the range [viin + 5, Vmax — 5] ms~!, to track a
random reference trajectory for 100s. Randomized reference
trajectories are constructed as follows. Beginning with velocity
x2.1ref(0) ~ U(15,25), the acceleration of the reference tra-
jectory changes over five randomly spaced intervals. For the
first and last interval the acceleration is zero, with random
values in [—0.6, 0.6] ms ™2 for the other intervals. Additionally,
the reference velocity is clipped to the range [5,28] ms™!

(18-100 kmh™!). To train my with supervised learning the
dataset 7 is generated using the MIQP-based MPC controller.
While the solution provided by MIQP is an approximation
of the MINLP solution, we found the quality sufficient to
train the policy mp, and the computation time required to
generate the data less. Data is generated from 300 episodes,
with N = 15, and used to train an RNN with 4 layers of
256 features in the hidden state, followed by a fully connected
linear layer.

A. Evaluation

To evaluate the performance of the controllers we compare
the performance metric P, defined in (6), over 100 episodes
(not present in the training of mg). We select § = 0.01, tuned
to balance the relative importance of the fuel consumption
and the quadratic tracking error, and Q = diag(1l,0.1). All
MPC controllers use a horizon of N = 15, and both the
MPC controllers and the underlying simulation use a time
step of At = 1s. The backup solution is defined via ¢ (xp) =
mMaXjea(v,) /. For the first time step of each episode there
are no shifted solutions available. Hence, for the proposed
approach the policy g is not used for the fist time step, with
instead the MIQP-based MPC problem providing j.

Using MINLP-based MPC (denoted NM) as a baseline,
define the cost increase introduced by each controller as

APigpe = 100 - M,
Pnm
with type € {QM, LM, HM} representing the MIQP-based
MPC, the proposed approach, and the hierarchical MPC,
respectively. Figure 2(a) shows a box-and-whiskers plot of
AP and the solve time required for each controller’ It can
be seen that LM requires significantly less computation time
than QM and NM, with QM and NM unable to always find
a solution within the MPC sample time At. Furthermore,
the performance drop is negligible, with the median even
improving over QM, likely due to the use of the exact fuel
and friction models in the prediction model. In contrast,
while HM requires even less computation time than LM,
as an even simpler NLP is solved, the performance drop

(29)

2Knitro experienced occasional numerical issues when solving (10). In
these cases, the MINLP solver Bonmin [2] is used as a backup solver.
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is significant. For LM the backup solution was used for
0.27% of time steps. For these time steps the average 1-norm
difference between the policy and backup gear-shift schedules
|70 (X, W, Xpef, j) — 0 (x2)]1 was equal to 12. Representative
state and input trajectories are shown in the longer online
version of this letter [8].

It is well known that MPC controllers have a level of
inherent robustness thanks to re-optimization at each time
step [10]. To explore the preservation of this robustness in the
proposed learning-based MPC controller, a further evaluation
is conducted for 100 episodes where a strong disturbance
in the form of a time-varying headwind vy (f) € [8, 14]
ms~! is present. This disturbance is unmodeled for the MPC
controllers, but affects the true dynamics of the system. The
headwind changes the relative velocity of the vehicle when
calculating wind drag, i.e., the drag term in (1) becomes C(v+
V)2 Figure 2(b) shows the cost increase and the solve time
over 100 episodes under headwind disturbance. LM retains a
performance that is comparable to that of the mixed-integer
approaches, with a superior computational burden. The backup
solution was used for 2.15% of time steps.

Finally, we explore the scaling of the approaches with the
prediction horizon N, and the generalization of the proposed
approach to different horizon lengths. An evaluation is con-
ducted for 100 episodes (without headwind) with N = 20.
The proposed approach LM uses the policy my trained with
N = 15, ie., no retraining. Figure 2(c) shows the cost
increase and the solve times. Again, LM retains a comparable
performance to the mixed-integer controllers with superior
computation time, demonstrating how the learned policy can
generalize to horizons longer than that on which it was trained.
For LM the backup solution was used for 0.43% of time
steps.

VIl. CONCLUSION

In this letter we have proposed a novel learning-based
MPC controller for fuel efficient autonomous driving. By
learning a policy that selects the gear-shift schedule over the
MPC prediction horizon, the benefits of speed and gear co-
optimization, i.e., fuel efficient tracking, are retained without
the computational burden of solving a mixed-integer program.
The result is a controller that achieves a performance com-
parable to approaches that solve mixed-integer programs, and
that has a computational burden comparable to sub-optimal
approaches that decouple speed and gear optimization. Future
work will look at extending the approach to vehicle platoons
and addressing model mismatch with robust MPC.

APPENDIX
PROOF OF PROPOSITION 1

Proof: We prove Proposition 1 by showing the existence of
a specific feasible solution to (13), namely a constant-velocity
trajectory. We show that J(x(k), xef(k), j(k)) < oo with j(k) =
o (xp(k)) for the solution x(k), w’(k) with

x(ilk) = [x1(k) + Tx2 (k) At, xz(k)]T, i=0,....,N (30)

and constant input u'(ilk) = [u;, w]T fori=0,...,N—1,
with Tipin < #1 < Tax, Fb, min < #2 < Fb, max such that
uz(9(2(0) )z

— Cx5(k) —up — G =0. (31)

r
By the assumption in Proposition 1 this control input exists for
any xp (k) with vin < x2(k) < vmax and for gear j = ¢ (x2(k)).
The dynamics constraints (13d) are satisfied by this solution
as (30) and (31) satisfy the equality constraint, i.e., for i =
0,...,N—1 we have

f(x(i|k), [1, us, qb(xz(k))]T) = x(i + k).

Furthermore, the constraints (13b) and (13e) are trivially
satisfied by this solution with constant velocity x»(k), engine
torque uj, and gear ¢(xp(k)). Finally, constraint (13c) is
satisfied as Tmin < u1 < Tmax, Fbo,max < 42 < Fp, max, and
Wmin < o@2(k), d(x2(k))) < wmax by the definition of ¢.
Hence, all constraints are satisfied, with x(k), u’(k) one of
potentially many feasible solutions. Indeed, this solution could
be used as a feasible initial guess for a numerical solver. M

(32)
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