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Piecewise deterministic Markov processes are an important new tool in
the design of Markov chain Monte Carlo algorithms. Two examples of fun-
damental importance are the bouncy particle sampler (BPS) and the zig–zag
process (ZZ). In this paper scaling limits for both algorithms are determined.
Here the dimensionality of the space tends towards infinity and the target dis-
tribution is the multivariate standard normal distribution. For several quanti-
ties of interest (angular momentum, first coordinate and negative log-density)
the scaling limits show qualitatively very different and rich behaviour. Based
on these scaling limits the performance of the two algorithms in high di-
mensions can be compared. Although for angular momentum both processes
require only a computational effort of O(d) to obtain approximately inde-
pendent samples, the computational effort for negative log-density and first
coordinate differ: for these BPS requires O(d2) computational effort whereas
ZZ requires O(d). Finally we provide a criterion for the choice of the refresh-
ment rate of BPS.

1. Introduction. Piecewise deterministic Markov processes (PDMPs, [13]) have turned
out to be of substantial interest for Monte Carlo analysis, see, for example, [3, 8, 31, 37],
which have particularly focused on potential for applications in Bayesian statistics, although
their uses are far wider, see, for example, [29, 32] for applications in physics. However, there
are still substantial gaps in our understanding of their theoretical properties. Even results
about the ergodicity of these methods (including irreducibility and exponential ergodicity
problems) often involve intricate and complex problems [5, 11, 14].

The two main PDMP methodologies for Monte Carlo algorithms are the zig–zag [3] and
the bouncy particle sampler (BPS) [8], and we refer to these papers for applications of these
methods. Interesting hybrid strategies are certainly possible but are currently under-explored.
The important practical question for Monte Carlo practitioners concerns which methodology
should be chosen, with currently available empirical comparisons giving mixed results.

The focus of the present paper is on shedding some light on these questions by providing
a high-dimensional analysis of these two classes of PDMPs. Our approach will identify weak
limits of PDMP chains (suitably speeded up) as dimension goes to infinity. Such analyses are
of interest in connection with computational cost estimation of Monte Carlo methods (see,
e.g., [34, 36]).

Since we focus on the theoretical properties, in this article we do not give the full de-
scription of the implementation of PDMPs. Monte Carlo methods based on PDMPs are new
techniques and their implementation is not straightforward. The main difficulty in imple-
menting PDMPs is the generation of nonhomogeneous Poisson processes corresponding to
the jump components of PDMPs. This is an active area of research and progress has been
made in this regard. See, for example, Section 3 of [3], Section 2.3 of [8] and [12].
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1.1. Piecewise deterministic Markov processes. We shall consider two particular classes
of PDMPs (zig–zag and BPS) which have proved to be valuable for Monte Carlo sampling.
Their constructions begin in the same way. We are interested in sampling from a target dis-
tribution �d which has density Z−1

d exp(−�d(ξ)) with respect to d-dimensional Lebesgue
measure with normalising constant

Zd =
∫
Rd

exp
(−�d(ξ)

)
dξ <∞.(1.1)

Zig-zag and BPS proceed by augmenting this space to include an independent velocity vari-
able taking values uniformly on a prescribed space �⊂R

d . Both algorithms define Piecewise
deterministic Markov dynamics which preserve this extended target distribution on the aug-
mented state space Ed =R

d ×�. The difference between zig–zag and BPS lies in the choice
of � and the dynamics for moving between velocities.

For both algorithms we shall make use of independent standardised homogeneous Poisson
measures, N say, on R+ × R+, so that E[N(dt,dx)] = dt dx. In our notation we will use
a superscript Z to indicate the zig–zag process, and a superscript B to refer to the bouncy
particle sampler.

1.1.1. Zig–zag sampler. For the zig–zag sampler the set of possible directions is given
by

�= Cd−1 := {−1,+1}d,

with χd denoting the uniform distribution on Cd−1, and constructs a Markov chain on the state
space EZ,d = R

d × Cd−1. Let λZ,d = (λ
Z,d
1 , . . . , λ

Z,d
d ) : EZ,d → R

d+. The zig–zag sampler

with the jump rate λZ,d generates a Markov process {xZ,d
t = (ξ

Z,d
t , v

Z,d
t )}t≥0 on EZ,d such

that

ξ
Z,d
t = ξ

Z,d
0 +

∫ t

0
vZ,d
s ds, (t ≥ 0),

and v
Z,d
t = (v

Z,d
1,t , . . . , v

Z,d
d,t ) is defined by

v
Z,d
i,t = v

Z,d
i,0 − 2

∫
(0,t]×R+

v
Z,d
i,s−1{z≤λ

Z,d
i (x

Z,d
s− )}N

i(ds,dz) (t ≥ 0, i = 1, . . . , d)

for independent Poisson random measures N1, . . .Nd , where x
Z,d
0 = (ξ

Z,d
0 , v

Z,d
0 ) is an EZ,d -

valued random variable.

1.1.2. Bouncy particle sampler. For the bouncy particle sampler the set of possible di-
rections is given by

� :=Sd−1 = {
x ∈R

d : ‖x‖2 = 1
}

with ψd denoting the uniform distribution on Sd−1, and constructs a Markov chain on the
state space EB,d = R

d ×Sd−1. Let κd : EB,d →Sd−1 be a function and let λB,d : EB,d →
R+. Then BPS with the jump rate λB,d and the refreshment rate ρd > 0 generates a Markov
process {xB,d

t = (ξ
B,d
t , v

B,d
t )}t≥0 defined by

ξ
B,d
t = ξ

B,d
0 +

∫ t

0
vB,d
s ds (t ≥ 0),
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and v
B,d
t is defined by

v
B,d
t = v

B,d
0 +

∫
(0,t]×R+

(
κd(xB,d

s−
)− v

B,d
s−

)
1{z≤λB,d (x

B,d
s− )}N(ds,dz)

+
∫
(0,t]×Sd−1

(
u− v

B,d
s−

)
Rd(ds,du),

where Rd is a homogeneous random measure which is independent from N with intensity
measure

E
[
Rd(ds,du)

]= ρd dsψd(du).

Without refreshment the bouncy particle sampler may not be ergodic in general [8]. The
refreshment rate using the random measure Rd was referred to as restricted refreshment in
[8], and other choices were also considered in that paper.

In this work, we describe the zig–zag sampler and the bouncy particle sampler as jump
processes, since it is straightforward to derive semimartingale properties with these forms.
In contrast, in the Monte Carlo community, these Markov processes are usually described
with stopping times as in [3, 8]. It looks different, but the associated jump process can be
recovered from stopping times as described in Section 4 of [13]. Using stopping times, the
process v

Z,d
i,t has the survival function

Fu = exp
(
−

∫ t+u

t
λ

Z,d
i

(
xZ,d
s

)
ds

)
(u > 0)

for the next jump time when the current time is t . This gives the hazard rate −F ′
t /Ft =

λ
Z,d
i (x

Z,d
t ). On the other hand, the jump size is −2v

Z,d
i,t . The compensator of the random

measure associated with the jump of z
Z,d
i,t is the product of the Dirac measure at the jump size

−2v
Z,d
i,t and the hazard rate distribution, that is,

μP
i (dt,dx)= δ{−2v

Z,d
i,t }(dx)λ

Z,d
i

(
x

Z,d
t

)
dt

=
∫
z∈R+

δ{−2v
Z,d
i,t }(dx)1{z≤λ

Z,d
i (x

Z,d
t )} dt dz.

Therefore, the random measure associated with the jump of z
Z,d
i,t can be denoted as

μi(dt,dx)=
∫
z∈R+

δ{−2v
Z,d
i,t }(dx)1{z≤λ

Z,d
i (x

Z,d
t )}N

i(dt,dz)

for a Poisson random measure Ni . The process v
Z,d
i,t is a pure jump process, and so we have

v
Z,d
i,t = v

Z,d
i,0 +

∫
(0,t]×R

xμi(ds,dx),

which yield the form presented in Section 1.1.1. A similar derivation yields the form of the
bouncy particle sampler.

1.2. Finite dimensional properties. In this section we briefly review finite dimensional
properties of the piecewise deterministic processes. Here and elsewhere, we denote the
d-dimensional Euclidean inner product by 〈x, y〉 = ∑d

i=1 xiyi and the norm by ‖x‖ =
(〈x, x〉)1/2.
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Let Fi(v) be the function that switches the sign of the ith element of v ∈ Cd−1. By The-
orem II.2.42 of [23] and Proposition VII.1.7 of [33], the infinitesimal generator LZ,d of the
Markov process corresponding to the zig–zag sampler is defined by

(
LZ,dϕ

)
(ξ, v)= 〈∇ξϕ(ξ, v), v

〉+ d∑
i=1

λ
Z,d
i (ξ, v)

(
ϕ
(
ξ,Fi(v)

)− ϕ(ξ, v)
)

for ϕ :EZ,d →R such that ϕ(·, v) ∈ C1
0(Rd) (v ∈ Cd−1) where C1

0(Rd) is the set of differen-
tiable functions with compact support. Here, ∇ξ = (∂/∂ξi)i=1,...,d is the derivative operator
and we will denote it by ∇ when there is no ambiguity. Let �d :Rd →R+ be a smooth func-
tion with (1.1). Set λZ,d(x) so that λ

Z,d
i (ξ, v) − λ

Z,d
i (ξ,Fi(v)) = ∂i�

d(ξ)vi . As discussed
in, for example, [3, 5], the Markov process corresponding to the zig–zag sampler is �Z,d -
invariant where �Z,d =�d ⊗ χd .

The infinitesimal generator LB,d of the Markov process corresponding to the bouncy par-
ticle sampler is defined by(

LB,dϕ
)
(ξ, v)= 〈∇ξϕ(ξ, v), v

〉+ λB,d(ξ, v)
(
ϕ
(
ξ, κd(ξ, v)

)− ϕ(ξ, v)
)

+ ρd

(∫
ϕ(ξ,u)ψd(du)− ϕ(ξ, v)

)

for continuous functions ϕ : EB,d → R satisfying ϕ(·, v) ∈ C1
0(Rd) (v ∈Sd−1). We assume

a constant refreshment rate, that is, ρd ≡ ρ > 0, and κd is a reflection function defined by

κd(ξ, v)= v− 2
〈∇�d(ξ), v〉
‖∇�d(ξ)‖2 ∇�d(ξ)(1.2)

and finally λB,d(ξ, v) = max{〈∇�d(ξ), v〉,0}. As discussed in, for example, [8, 14] the
Markov process corresponding to the bouncy particle sampler is �B,d invariant, where
�B,d =�d ⊗ψd .

1.3. Summary of the main results. In Section 2, we study the asymptotic properties of
piecewise deterministic processes. This section summarises the main results in that section.
For simplicity, all results in Section 2 assume that the initial value of ξ is generated from the
target distribution, and the initial value of v is generated from the uniform distribution on the
direction space. We only consider the standard normal case, that is,

�d(ξ)= ‖ξ‖2

2
.

In agreement with this assumption, the jump rate of the zig–zag sampler is

λ
Z,d
i (ξ, v)=max{ξivi,0} = (ξivi)

+, i = 1, . . . , d, (ξ, v) ∈EZ,d ,

and the jump rate and the refreshment rate of the bouncy particle sampler are

λB,d(ξ, v)=max
{〈ξ, v〉,0

}= 〈ξ, v〉+, ρd(ξ, v)= ρ > 0, (ξ, v) ∈EB,d ,

and the reflection function satisfies (1.2). Analogous to [34], we focus on relevant finite-
dimensional summary statistics. The angular momentum process, the negative log-target den-
sity process and the first coordinate process are defined by

t �→
〈
ξt ,

vt

‖vt‖
〉
, t �→ d1/2(d−1‖ξt‖2 − 1

)
, t �→ ξ1,t ,
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TABLE 1
Size of continuous time intervals required to obtain approximately independent samples for the piecewise

deterministic processes

Method Angular momentum Negative log-density First Coordinate

ZZ O(1) (Thm. 2.2) O(1) (Thm. 2.5) O(1) (Thm. 2.6)
BPS O(1) (Thm. 2.8) O(d) (Thm. 2.10) O(d) (Thm. 2.13)

respectively, for both the zig–zag sampler and the bouncy particle sampler. As d →∞, the
stationary distributions of these statistics converge to centred normal distributions (with vari-
ances 1, 2 and 1, respectively). We compare the convergence rates of the zig–zag sampler (ZZ)
and the bouncy particle sampler (BPS) for these summary statistics. Table 1 summarises the
results.

The computational effort per unit time of the processes is proportional to the number of
switches per unit time interval, multiplied by the computational effort per switch. In com-
plete generality, computational effort per switch of both zig–zag and BPS are O(d). How-
ever zig–zag has the ability to exploit an available conditional independence structure to offer
improved computational efficiency. For the sake of this discussion, we shall assume a partic-
ularly strong form of conditional independence, though weaker versions of this exist giving
smaller computational advantages. We shall say that the target density has a sparse condi-
tional independence structure if, for all i the derivative ∂�d(ξ)) depends only on an O(1)

number of components of the vector ξ . Note that this assumption is natural in statistics where
models are constructed explicitly from such conditional independence relationships. In the
case of sparse conditional independence structure, zig–zag achieves O(1) computational ef-
fort per event. See, for example, [4] for a detailed consideration on how to benefit from sparse
conditional independence.

However experiments and theory suggest that zig–zag may perform poorly in the case of
highly anisotropic targets. See, for example, [1, 27].

For zig–zag and BPS, these are as given in Table 2. In particular for the case of product
target distributions as studied theoretically in most of this paper, the zig–zag can be imple-
mented with the higher efficiency described in the top row of Table 2. On the other hand we
do not see a way in which the generic BPS as described in this paper can utilise conditional
independence. However it is worth noting that generalisations of zig–zag termed local BPS by
[8] and other variants as discussed in [32] also share computational advantages from sparse
conditional independence. However in the context of a general partial correlation structure,
implementation costs are an order of magnitude greater for the zig–zag (as is the case for
relevant competitor algorithms such as MALA and HMC). Thus we give two complexities
for zig–zag in Table 2 which can be thought of as best and worst cases according to the above
discussion.

In order to obtain the algorithmic complexity required to draw approximately independent
samples, we should multiply the required continuous time scaling with the computational

TABLE 2
Computational effort of the piecewise deterministic processes

Method � events/unit time Comp. effort/event Combined effort/unit time

ZZ (with independence) O(d) (Cor. 2.4) O(1) O(d)

ZZ (general case) O(d) (Cor. 2.4) O(d) O(d2)

BPS O(1) (Cor. 2.9) O(d) O(d)
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TABLE 3
Algorithmic complexity to obtain approximately independent samples

Method Angular momentum Negative log-density First Coordinate

ZZ (with independence) O(d) O(d) O(d)

ZZ (general case) O(d2) O(d2) O(d2)

BPS O(d) O(d2) O(d2)

complexity per continuous time unit. By doing so, we obtain the algorithmic complexities of
the ZZ and BPS as listed in Table 3.

In terms of which algorithm, BPS or zig–zag should be implemented in any specific sit-
uation, the conclusions to the findings of Table 3 tentatively suggest that in the context of
sparse conditional independence structure the zig–zag seems to have better complexity prop-
erties, but that for general target densities the methods have the same complexity. Of course
these conclusions need to be treated with caution given the relatively specialised nature of
the theory which underpins Table 1.

Analogous to [34], we also study the choice of the refreshment jump rate ρ that maximizes
the speed of the limiting process. The limiting process of the negative log-target density of the
BPS sampler is the Ornstein–Uhlenbeck process. The process attains its maximal speed when
the ratio of the expected number of refreshment jumps to that of all jumps is approximately
0.7812 (see Figure 1). This result provides a practical criterion for selecting the refreshment
rate; see Remark 2.12. In Section 2.3, we analyse this criterion for more general target prob-
ability distributions.

Asymptotic limit results illustrate some similarities and differences with the Metropolis–
Hastings (MH) algorithm. Typically, high-dimensional limiting processes of MH algorithms
are diffusions [34, 35]. In contrast, the first two summary statistics processes of ZZ converge
to non-Markovian Gaussian processes and the first coordinate process of ZZ and the angu-
lar momentum process of BPS have pure jump process limits. At the same time, like MH
algorithms, our results show that the piecewise deterministic processes can exhibit diffusive
behaviour. In particular the latter two summary statistics processes for BPS have diffusion
limits. Diffusion limits are known for PDMPs [9, 20], but have to our knowledge have not
been established for dimension tending to infinity.

In this paper, we mainly consider the case of a standard normal stationary distribution.
Experimental results of Section 3 suggest that the obtained results remain valid for general
distributions of product form. For nonproduct strongly correlated distributions such as in
[24] the convergence rates could be different. This remains a topic of active research; see also
Section 4. Also, throughout this paper, we assume stationarity of the process. The behaviour

FIG. 1. Monte Carlo estimated values of the covariance function K(t,0) (left) and the diffusion coefficient
σ(ρ)2 (right).
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maybe different from the current study if the initial distribution is far from the centre region
of the target distribution. This remains a topic of active research.

2. High-dimensional properties. We analyse high-dimension properties of the zig–zag
and BPS samplers. Throughout in this paper, we assume strong stationarity of the Markov
processes. Our first main objective is the analysis of the angular momentum processes

S
Z,d
t =

〈
ξ

Z,d
t ,

v
Z,d
t

‖vZ,d
t ‖

〉
= d−1/2〈ξZ,d

t , v
Z,d
t

〉
,(2.1)

S
B,d
t =

〈
ξ

B,d
t ,

v
B,d
t

‖vB,d
t ‖

〉
= 〈

ξ
B,d
t , v

B,d
t

〉
.(2.2)

The behaviour of the angular momentum processes illustrates the dissimilarity of the zig–zag
and BPS samplers.

The angular momentum processes do not completely capture the asymptotic properties
of the Markov processes. For the understanding of long-time properties, it is more natural
to consider the behavior of the negative log-target density. Observe that there is an interest-
ing connection between the angular momentum process and the negative log-target density
processes:

d
∥∥ξZ,d

t

∥∥2 = 2d1/2S
Z,d
t dt, d

∥∥ξB,d
t

∥∥2 = 2S
B,d
t dt.

Additionally we will study the number of switches (jumps)∑
0≤t≤T

1{�S
Z,d
t �=0},

∑
0≤t≤T

1{�S
B,d
t �=0}

up to T > 0, where �Xt = Xt −Xt−. Finally, we will check the convergence rates for the
coordinate processes.

REMARK 2.1 (Proof strategy). In the high-dimensional MCMC literature, as in [34],
the Trotter–Kato-type approach is the most popular which uses convergence of generators to
prove convergence of Markov processes. Classical literature is [19]. In this paper, we closely
follow the semimartingale characteristics approach taken in [23], which is natural to the non-
Markovian processes which arise in our analysis. See Section IX.2a of [23] for the connection
between the two approaches.

2.1. Asymptotic limit of the zig–zag sampler. In this section, we study the asymptotic
properties of the zig–zag sampler. All the proofs are postponed to Appendix A. To state the
first results, we introduce a stationary piecewise deterministic jump process

Tt = T0 + t − 2
∫
(0,t]×R+

Ts−1{z≤Ts−}N(ds,dz)(2.3)

with T0 ∼N (0,1). We will show that the process has the same law as that of (ξ
Z,d
i,t v

Z,d
i,t )t≥0

for each i = 1, . . . , d where ξ
Z,d
i,t and v

Z,d
i,t are ith components of ξ

Z,d
t and v

Z,d
t respectively.

By Itô’s formula, the process has the infinitesimal generator

Gf (x)= f ′(x)+ x+
(
f (−x)− f (x)

)
.(2.4)

In Section C we show that there exists a unique solution of the martingale problem corre-
sponding to G. By this expression, N (0,1) is the invariant distribution of T = (Tt )t≥0 by
Proposition 4.9.2 of [19]. In particular, T is a stationary process. Set

K(s, t)= E[TsTt ].(2.5)
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This covariance kernel will play an important role in this work. Some properties are collected
in Proposition C.3.

Our first result is the asymptotic limit of the angular momentum process SZ,d = (S
Z,d
t )t≥0.

We discuss the continuity of the sample path of the limit process.

THEOREM 2.2. The process SZ,d , defined in (2.1), converges to SZ = (SZ
t )t≥0 in dis-

tribution in Skorohod topology where SZ is the non-Markovian stationary Gaussian process
with mean 0 and covariance function K(s, t). The Gaussian process is locally α-Hölder con-
tinuous for any α ∈ (0,1/2), but it is not locally α-Hölder continuous for any α ≥ 1/2.

REMARK 2.3 (Hölder continuity). See [25], eq. (2.2.8), or Section A.1 for the definition
of local α-Hölder continuity.

The path continuity property explains why the path of SZ resembles that of Markov dif-
fusion processes since diffusion processes have the same local α-Hölder continuity property.
Despite the similarity, the limit process SZ is a non-Markovian Gaussian process, unlike most
of the scaling limit results related to classical MCMC methods.

The second result concerns the number of switches for the zig–zag process, indicating
the computational cost of the process. The following results show that the process SZ,d , the
number of switches per unit time is O(d).

COROLLARY 2.4. The number of switches of SZ,d over a time interval (0, T ] scaled by
d−1 satisfies

d−1
∑

0≤t≤T

1{�S
Z,d
t �=0} −→

T√
2π

in probability as d →∞

for any T > 0.

The third result is the analysis of the negative log-target density process. As for the angu-
lar momentum process, the limiting process is a non-Markovian Gaussian process. We also
discuss the sample path property. We call a process differentiable if there is a modification
such that each path is differentiable almost surely. See Section A.3 for the definition.

THEOREM 2.5. The negative log-density process

Y
Z,d
t := √d

(‖ξZ,d
t ‖2

d
− 1

)
converges to a non-Markovian stationary Gaussian process Y Z with mean 0 and covariance
function

L(s, t)= 2− 2
∫ t

s

∫ t

s
K(u, v)dudv.

Moreover the Gaussian process Y Z is differentiable with respect to the time index t .

Finally we consider the first coordinates of ξ . Let

πk(ξ)= πd
k (ξ)= (ξ1, . . . , ξk) for ξ = (ξ1, . . . , ξd) ∈R

d,

denote the operation of taking the first k ∈ {1, . . . , d} components of a d-dimensional vector.
If k > d , then we set

πk(ξ)= πd
k (ξ)= (

ξ1, . . . , ξd,

k−d︷ ︸︸ ︷
0, . . . ,0

)
.

Let φk(x) be the density of the k-dimensional standard normal distribution N (0, Ik).
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THEOREM 2.6. For any k ∈N and d ≥ k, the law of the process Z
Z,d,k
t := πk(ξ

Z,d
t ) does

not depend on d , and ZZ,d,k is an ergodic process. In particular, for any N (0, Ik)-integrable
function f :Rk →R, we have

1

T

∫ T

0
f
(
Z

Z,d,k
t

)
dt −→

∫
Rk

f (x)φk(x)dx in probability as T →∞.

REMARK 2.7 (Joint limiting processes of the angular momentum, the negative log-density
and the first coordinate processes). The joint process of the first two processes has a Gaus-
sian limit by the central limit theorem of the processes. The diagonal components of the corre-
sponding covariance kernel are K(s, t) and L(s, t). The off-diagonal component is the covari-
ance of the angular momentum and the log negative-density processes. Since dY

Z,d
t = 2S

Z,d
t ,

off-diagonal component of the corresponding covariance kernel is

M(s, t) := E
[
Y Z

s SZ
t

]= 2−1 ∂L(s, t)

∂t
=−2

∫ t

s
K(t, u)du.

The first coordinate process is asymptotically independent from the other processes.

2.2. Asymptotic limit of the bouncy particle sampler. In this section, we study the asymp-
totic properties of the bouncy particle sampler. All the proofs are postponed to Appendix B.
The limiting process of the angular momentum is represented as

SB
t = SB

0 + t − 2
∫
(0,t]×R+

SB
s−1{z≤SB

s−}N(ds,dz)

+
∫
(0,t]×R

(
z− SB

s−
)
R(ds,dz),

(2.6)

where R is the random measure with the intensity measure

E
[
R(ds,dz)

]= ρ dsφ(z)dz,

where φ denotes the N (0,1) density function. By Itô’s formula, the process SB = (SB
t )t≥0

has the infinitesimal generator

Hf (x)= f ′(x)+ x+
(
f (−x)− f (x)

)+ ρ

(∫
R

φ(y)f (y)dy − f (x)

)
.(2.7)

In Section C we show that there exists a unique solution of the martingale problem corre-
sponding to H .

The process is N (0,1)-invariant by Proposition 4.9.2 of [19]. Observe that the process SB
t

follow the same dynamics as that of Tt between the refreshment times.

THEOREM 2.8. The process SB,d , defined in (2.2), converges in law to SB.

In fact, if ρ = 0, then the law of SB,d is identical to the law of SB for any d ∈ N. Indeed,
say g(ξ, v)= f (〈ξ, v〉) for (ξ, v) ∈EB,d . Then (without refreshment), for s = 〈ξ, v〉,(

LB,dg
)
(ξ, v)= 〈

v,∇ξ g(ξ, v)
〉+ 〈ξ, v〉+(g(ξ,−v)− g(ξ, v)

)
= f ′

(〈ξ, v〉)〈v, v〉 + 〈ξ, v〉+(f (−〈ξ, v〉)− f
(〈ξ, v〉))

= f ′(s)+ (s)+
(
f (−s)− f (s)

)
,

which establishes that if ρ = 0, then SB,d is a Markov process with generator H .
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COROLLARY 2.9. The expected number of switches of SB,d over a time interval (0, T ]
does not depend on d and is given by

E

[ ∑
0≤t≤T

1{�S
B,d
t �=0}

]
= T

(
1√
2π

+ ρ

)
.

Observe that Tρ is the expected number of refreshment jumps, and T/
√

2π is the expected
number of bounce jumps. Unlike the zig–zag sampler, the number of switches is random even
in the limit d →∞. This is the reason why we consider expectation rather than the limit in
Corollary 2.9. Note that each switch changes all components of the direction v. On the other
hand, the zig–zag sampler only changes one component in each switch.

THEOREM 2.10. The normalised negative log-target density process

Y
B,d
t := √d

(‖ξB,d
dt ‖2

d
− 1

)

converges to the stationary Ornstein–Uhlenbeck process Y B such that

dY B
t =−σ(ρ)2

4
Y B

t dt + σ(ρ)dWt,

where

σ(ρ)2 := 8
∫ ∞

0
e−ρsK(s,0)ds

with K(s,0) defined in (2.5), and where (Wt)t≥0 is the one-dimensional standard Wiener
process.

The speed of the negative log-target density process is determined by the diffusion coeffi-
cient σ(ρ)2.

PROPOSITION 2.11. The continuous function σ(ρ)2 satisfies

lim
ρ→+0

σ(ρ)2 = 8
∫ ∞

0
K(s,0)ds = 0, lim

ρ→+∞σ(ρ)2 = 0.

In particular, there exists ρ∗ ∈ (0,∞) such that σ(ρ∗)2 = supρ∈(0,∞) σ (ρ)2.

The covariance function K(t,0) and the diffusion coefficients σ(ρ)2 do not admit simple
expressions. These functions can be written as infinite sums of convolutions, and numerical
evaluation is difficult. On the other hand, simple Monte Carlo calculations yield good esti-
mates of these functions (Figure 1). The Monte Carlo estimates also provide that the value of
ρ maximising σ(ρ)2 is around ρ� ≈ 1.424. The ratio of the expected number of the refresh-
ment jumps to that of overall jumps is

ρ∗
1√
2π
+ ρ∗

≈ 0.7812.(2.8)

Note that the choice of ρ is not scale invariant, that is, if we apply the target distribution with
the negative log-density �d(ξ)= ‖ξ‖2/(2γ 2), the maximiser depends on γ > 0. However the
above jump ratio does not depend on the scale, making the 78.12% rule a possible criterion
for the choice of the refreshment rate. In fact, as will be established in Section 2.3, the choice
(2.8) maximizes σ 2(ρ) for a general class of (non-i.i.d.) distributions.
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REMARK 2.12 (Choice of the refreshment rate). In practice, by Corollary 2.9 and Theo-
rem 2.10, a suitable optimization target would be

comp. effort

approx. indep. sample
= comp. effort

time unit
× # time units

indep. sample
∝

(
C1√
2π

+C2ρ

)
1

σ 2(ρ)
.

Here C1 and C2 represent the computational complexity of a bounce jump and of a refresh-
ment, respectively. These constants depend strongly on implementational aspects, for exam-
ple the Poisson thinning scheme used for simulating bounces. As a crude simplification, it
may be argued that the computational cost of a bounce is significantly more expansive than
that of a reflection, that is, C1 � C2, since bounce jumps involve a thinning procedure and the
computation of a gradient of the target distribution. With this approximation in mind, it be-
comes reasonable to maximize σ 2(ρ) with respect to ρ in order to obtain high computational
efficiency.

Finally, we consider the coordinate process convergence for the bouncy particle sampler.

THEOREM 2.13. For any k ∈ N, the process ZB,d,k = (Z
B,d,k
t )t≥0 defined by Z

B,d,k
t :=

πk(ξ
B,d
dt ) converges to the stationary Ornstein–Uhlenbeck process ZB,k satisfying the SDE

dZ
B,k
t =−ρ−1Z

B,k
t dt +

√
2ρ−1 dWk

t

for k ∈N where Wk is the k-dimensional standard Wiener process. In particular, any bounded
continuous function f :Rk →R, we have

1

T

∫ T

0
f
(
Z

B,d,k
t

)
dt −→

d,T→∞

∫
Rk

f (x)φk(x)dx in probability.(2.9)

Note that (2.9) is a double limit. In other words, for all ε > 0 and γ > 0, there is a K > 0
such that for all d > K , T > K ,

P

(∣∣∣∣ 1

T

∫ T

0
f
(
Z

B,d,k
t

)
dt −

∫
Rk

f (x)φk(x)dx

∣∣∣∣ > γ

)
< ε.

This means that the limits with respect to d and T can be freely interchanged. The robustness
of the result in terms of the choice of d and T is important for Markov chain Monte Carlo
analysis since the practitioner may use T = d2 or T = d10, or even T =√d .

REMARK 2.14 (Joint convergence of the angular momentum, the negative log-density and
the first component processes). Unlike the zig–zag sampler case, the angular momentum
does not share its time scaling with the other observables for the bouncy particle sampler.
Therefore, the only nontrivial joint process is the combination of the negative log-density
and the first component processes, and these two processes are asymptotically independent.

2.3. Choice of the refreshment ratio for the bouncy particle sampler in the general case.
In Section 2.2 we discussed the choice of the refreshment ratio which maximizes the diffusion
coefficient. In this section we will show that it is also possible to estimate the coefficient
directly, without resorting to scaling limits. This implies a more general validity of the rule
(2.8) for maximizing the diffusive speed.

Let 0 = σ0 < σ1 < · · · < σN be the refreshment times. The diffusion coefficient can be
estimated by

σ̂ 2
N(ρ) := 4ρN−1

N∑
n=1

(
�d(ξB,d

σn

)−�d(ξB,d
σn−1

))2(2.10)
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that is, an asymptotically unbiased estimator of the diffusion coefficient (see Proposi-
tion 2.16). Observe that ρ−1N is asymptotically equivalent to T = σN , and the sum in (2.10)
is an estimator of the quadratic variation σ 2(ρ)T of the process Y B divided by 4. One could
monitor the estimator for different values of ρ in order to select the choice of ρ which max-
imises σ̂ 2

N(ρ).
For non-Gaussian, non-i.i.d. case, the relevance of the coefficient is not immediate. How-

ever, we may still treat it as a criterion since if the value is large, we expect that the process
moves relatively well. So we want to understand the behaviour of the coefficient in situations
that are different from the standard Gaussian case.

For the general case, we still assume stationarity of the process, and assume the following.
Let �d be a thrice differentiable function, and assume the Lipschitz-type condition∥∥∇�d(x)−∇�d(y)

∥∥≤ l
(‖x − y‖),(2.11)

where l :R+→R+ is a nondecreasing function. We use notation

∇2�d(ξ)[u, v] =
d∑

i=1

∂2�d(ξ)

∂ξi ∂ξj

uivj , ∇3�d(ξ)[u, v,w] =
d∑

i=1

∂3�d(ξ)

∂ξi ∂ξj ∂ξk

uivjwk

and ∇2�d(ξ)[u⊗2] = ∇2�d(ξ)[u,u], and ∇3�d(ξ)[u⊗3] = ∇3�d(ξ)[u,u,u]. We also as-
sume consistency conditions

E

[∣∣∣∣‖∇�d(ξ
B,d
0 )‖2

d
−H

∣∣∣∣
]
−→
d→∞0,(2.12)

E
[∣∣∇2�d(ξB,d

0

)[(
v

B,d
0

)⊗2]−H
∣∣] −→

d→∞0(2.13)

for H > 0. The following nonexplosive condition is also assumed:

sup
ξ∈Rd

sup
u∈Sd−1

∣∣∇2�d(ξ)
[
u⊗2]∣∣ < C, sup

ξ∈Rd

sup
u∈Sd−1

∣∣∇3�d(ξ)
[
u⊗3]∣∣ < C(2.14)

for some C > 0, that does not depend on d .

REMARK 2.15. Conditions (2.12) and (2.13) are related to the convergence of the trace
of the Fisher information matrix when �d is the negative log-likelihood function.

In the following proposition, we denote SB
t (ρ) for the process defined in (2.6) to specify

the value of the refreshment rate.

PROPOSITION 2.16. Under the assumption of (2.11)–(2.14) with ξ
B,d
0 ∼ �B,d , the

stochastic process SB,d = (S
B,d
t )t≥0 defined by S

B,d
t := 〈∇�d(ξ

B,d
t ), v

B,d
t 〉 converges to an-

other stochastic process (H 1/2S
B,d

H 1/2t
(H−1/2ρ))t≥0. In particular,

4ρE
[(

�d(ξB,d
σn

)−�d(ξB,d
σn−1

))2] −→
d→∞H 1/2σ 2(H−1/2ρ

)
.

Proof of this proposition is in Appendix D. Since the limit of S
B,d
H is the time-scale change

of SB, we can still use the 78.12% rule (2.8) for the choice of ρ. More precisely, the expected
number of all jumps and that of the refreshment jumps up to time T are

T H 1/2
(

1√
2π

+H−1/2ρ

)
, Tρ
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with respectively. Therefore the fraction of the number of refreshment jumps is

H−1/2ρ
1√
2π
+H−1/2ρ

.

On the other hand, H 1/2σ 2(H−1/2ρ) is maximised when H−1/2ρ = ρ∗. Therefore we will
have the same ratio 78.12% as before when H 1/2σ 2(H−1/2ρ) is maximised.

3. Experimental results.

3.1. Validation of the scaling limits for target that are not standard normal. In order to
investigate the dependence of our results on the distributional assumptions we will carry out
computer experiments with respect to four different d-dimensional target distributions:

(i) The standard normal distribution.
(ii) A correlated Gaussian distribution, for which Var(ξi) = 1 and Cov(ξi, ξj ) = ρ (for

i �= j ) where we take ρ = 0.9.
(iii) (ξ1, . . . , ξd) are i.i.d. Student distributed with ν = 4 degrees of freedom.
(iv) (ξ1, . . . , ξd) is a d-dimensional spherically symmetric Student distribution with ν = 4

degrees of freedom (see [7]).

For these four distributions we run both the zig–zag sampler and the bouncy particle sam-
pler with a refresh rate of 1.4. In all cases the zig–zag process with speeds vZ ∈ {−1,+1}d is
run on a fixed continuous time interval [0, T ] where T = 100. The bouncy particle sampler
with speeds vB ∈Sd−1 = {v ∈R

d : ‖v‖ = 1} is run on a continuous time interval [0, d × T ],
which for the purpose of this section is equivalent to a BPS at speed increased by a fac-
tor d run on a time interval [0, T ]. These combinations of velocities and interval length are
such that the processes with respect to the observables “first coordinate” and “log density”
converge in distribution to their limiting processes as specified in this paper, at least for the
standard normal distribution. All processes are started from a random sample from their re-
spective stationary distributions.

In the experiments, for a given trajectory (ξ(t))t≥0, we define the standardised error with
respect to an observable h as

Eh =
1
T

∫ T
0 h(ξ(s))ds − πd(h)√

Varπd (h)
,

where πd represents the probability distribution with unnormalised negative log density �d .
The “first coordinate” observable corresponds to h(ξ)= ξ1 and the “log density” observable
corresponds to h(ξ) = ‖ξ‖2. The continuous time integral representing the ergodic average
(given the piecewise deterministic trajectory (ξ(t))0≤t≤T ) can be evaluated analytically. In
the box plots below the standardised squared error is displayed for increasing dimension,
based on 1000 experiments.

As to be expected from the theory developed in this paper the distribution of the stan-
dardized squared error for the standard normal distribution (Figure 2) is stable with respect
to increase in dimension. BPS seems to be more robust in the presence of correlations (Fig-
ure 3), in particular with respect to the first coordinate. In the case of a factorized heavy tailed
distribution (Figure 4) we see that the behaviour of both zig–zag and BPS is very robust. Fi-
nally in the case of a spherically symmetric example (Figure 5) we see similar behaviour for
the different samplers with a nonconstant dependence on dimension.
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FIG. 2. Standardized squared errors standard normal distribution. ZZ is cyan, BPS is red.

3.2. Validation of the refreshment rate choice. In this section we consider the optimality
criterion (2.8) in the non-Gaussian, non-i.i.d. setting. Specifically, we consider a simulated
logistic regression problem, constructed as follows. We randomly generate a d-dimensional
multivariate standard-normal “true” parameter ξ and n covariates x(i) ∈ R

d , (i = 1, . . . , n)
with the first component fixed at one and the other components generated according to a
d − 1-dimensional standard normal distribution. Next independent Bernoulli observations
y(i) ∈ {0,1} are generated according to the logistic probability

P
(
Y (i) = 1 | x(i), ξ

)= 1

1+ exp(−ξ�x(i))
.

FIG. 3. Standardized squared errors correlated Gaussian distribution, Var(ξi ) = 1, Cov(ξi , ξj ) = ρ = 0.9,
i �= j . ZZ is cyan, BPS is red.
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FIG. 4. Standardized squared errors i.i.d. Student distribution with ν = 4 degrees of freedom. ZZ is cyan, BPS
is red.

The same procedure that generates the data (x(i), y(i))i=1,...,n is used to specify the prior and
likelihood (conditional on x(i)) for ξ , that is, the prior is a standard normal distribution and
the likelihood is the product of logistic probabilities, as follows:

π0(ξ)∼N (0, Id), L(ξ | x, y)=
n∏

i=1

P
(
Y (i) = yi | x(i), ξ

)
.

This determines the posterior probability distribution

π
(
ξ | x(i), y(i))= L(ξ | x, y)π0(ξ).

FIG. 5. Standardized squared errors spherically symmetric Student distribution with ν = 4 degrees of freedom.
ZZ is cyan, BPS is red.
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FIG. 6. Experimental estimation of the average limiting diffusivity of the log density process for a logistic re-
gression posterior distribution as a function of the relative amount of refreshments, as described in Section 3.2.
We see that the diffusive speed is maximized around a relative number of refreshments of approximately 0.75,
agreeing closely with (2.8). Here we have taken the dimensionality to be d = 50 and the number of covariates
n= 1000. Experiments have been carried out for a discrete grid of 20 different values for ρ, ranging from 0.125
to 16, and for each value of ρ the relative amount of refreshments was obtained over 100 experiments over a
continuous time horizon T = 10,000, along with the average estimated diffusive speed according to (2.10).

For this target probability distribution, the bouncy particle sampler is run for different val-
ues of the refreshment rate ρ. For every experiment, the relative number of refreshments
is recorded along with the estimated diffusive speed of the log density process, −�(ξ) =
logπ(ξ | x(i), y(i)). To estimate the diffusive speed of the process we use the estimator (2.10).
The experimental result is displayed in Figure 6, and shows that also for a high-dimensional,
correlated, non-Gaussian target distribution the limiting diffusive speed of the log density
processes is maximized at the refreshment rate ρ∗ satisfying (2.8).

4. Discussion. In this paper we considered the high-dimensional asymptotic analysis
of ZZ and BPS. The target probability distribution is assumed to be the standard normal
distribution. This assumption is indeed restrictive, but the results can be extended to more
general target distributions. For the ZZ sampler, it is straight forward to generalise it to a
target distribution with a product from

∏d
i=1 F(dξi) where F is a probability measure on R.

For the BPS sampler, we have proved convergence of the angular momentum for a general
target distribution in Section 2.3.

One of the major computational advantages of PDMP methods is the easy applicability of
principled subsampling methods giving substantial computational advantages for instance, in
the setting of simulation of Bayesian posteriors with large data sets. However it has also been
noted empirically that subsampling can slow down the convergence of PDMP samplers, see,
for example, [3]. Therefore it would be very interesting to generalise our work in this paper
to consider limits of subsampled PDMPs in order to quantify the effect of subsampling on
algorithm performance. It would also be natural to generalise our results to cover the various
generalisations and alternatives of BPS and zig–zag such as the coordinate sampler [39] and
random velocity zig–zag [38].

Recently, the convergence rates of BPS and ZZ have also been studied by [1] and [15].
In the former article, they studied L2-exponential convergence rates of Markov semigroups
corresponding to the PDMPs under fairly general assumptions. The BPS convergence rate
O(d) considered here is in agreement with their results after noticing that they assumed√

dSd−1 as the direction space. On the other hand, the convergence rate obtained by [15] is
O(d1/2), which is different from ours since this work studied a different scaling limit regime.
In Theorem 2.13, we obtained the Ornstein–Uhlenbeck process limit for the first coordinate
process. This scaling limit regime does not describe the optimal choice of ρ for a single
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component since it can be accelerated arbitrarily by taking ρ ↓ 0. The work [15] studied
another scaling limit regime by taking ρ = O(d−1/2), and proved that the first coordinate
process, together with the velocity, converges to a randomised Hamiltonian Monte Carlo
process. However, in their regime, the negative log density process will be degenerate by
Theorem 2.5. Therefore, if one starts from an initial point ξd

0 ∈ R
d with large log negative

density, the process stays in that region in the limit. Therefore, the process does not reach
to the smallest log negative density area in this regime. For this reason, we did not use a
diminishing refreshment rate. See Section 2.5 of [15] for some empirical comparison between
the two regimes. Similarly, our results agree with the very recent contribution [27].

APPENDIX A: THE CONVERGENCE OF THE ZIG–ZAG SAMPLER

A.1. Proof of Theorem 2.2. Let SZ = (SZ
t )t≥0 be a Gaussian process with mean 0 and

covariance K(s, t)= E[TsTt ] where T is defined in (2.3). First, we prove that the Gaussian
process SZ is not a Markov process, although T is a Markov process.

LEMMA A.1. The stationary Gaussian process SZ is not a Markov process.

PROOF. By Theorem V.8.1 of [17] together with the continuity of t �→K(t,0), if SZ is
a Markov process, then

K(t,0)= e−ct

for some c ∈R. Therefore, the first and the second derivatives of K(t,0) at t = 0 are −c and
c2 with respectively. However, this is impossible by derivatives calculated in Proposition C.3.
Thus the process SZ is not a Markov process. �

Next we prove convergence of SZ,d . We denote the space of continuous and càdlàg func-
tions on [0,∞) by C[0,∞) and D[0,∞), respectively. A sequence of D[0,∞)-valued pro-
cesses Xd = (Xd

t )t≥0 is called C-tight if it is tight and any limit point is in C[0,∞) with
probability 1. By Corollary VI.3.33 of [23], if Xd and Yd are C-tight, then (Xd

t + Yd
t )t≥0 is

C-tight. On the other hand, the sum of tight sequence of processes is not tight in general.

LEMMA A.2. The process SZ,d converges to SZ.

PROOF. Observe that S
Z,d
t = d−1/2 ∑d

i=1 T d
i,t where

T d
i,t = ξ

Z,d
i,t v

Z,d
i,t .(A.1)

By construction, (T d
i,t )t≥0 (i = 1, . . . , d) are independent processes and have the same law as

that of T . By using the fact, we prove tightness of the sequence of processes (S
Z,d
t )t∈(0,T ] for

each T > 0 by the central limit theorem of stochastic processes. By (C.1), we have

sup
0≤t,u≤T

|Tu − Tt | ≤ 2 sup
0≤t≤T

|Tt | ≤ 2|T0| + 2T .

Observe that any moments of the right-hand side of the above inequality exist since T0 ∼
N (0,1). By using this bound, for the Poisson random measure N(dt,dz), we have∑

t<v≤u

1{�Tv �=0} =
∫
(t,u]×R+

1{z≤Ts−}N(ds, dz)≤N(A),
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where A = (t, u] × (0, |T0| + T ] since |Tt | ≤ |T0| + t by (C.1). Let λ = |u − t |(|T0| + T ).
Then we have

P
(
N(A)≥ 1

)= 1− e−λ ≤ λ, P
(
N(A)≥ 2

)= 1− e−λ − λe−λ ≤ λ2

2
.

Since if there is no jump, Tt has the deterministic move, and we have∑
t<v≤u

1{�Tv �=0} = 0 =⇒ Tu − Ts = u− s.

Hence if t ≤ u≤ T , we have

E
[
(Tu − Tt )

2]= E

[
(Tu − Tt )

2,
∑

t<v≤u

1{�Tv �=0} = 0
]

+E

[
(Tu − Tt )

2,
∑

t<v≤u

1{�Tv �=0} ≥ 1
]

≤ |u− t |2 +E
[(

2|T0| + 2T
)2 × λ

]
≤ C|u− t |

for some C =CT > 0. On the other hand, if s ≤ t ≤ u≤ T∑
s<v≤u

1{�Tv �=0} = 1 =⇒ ∑
s<v≤t

1{�Tv �=0} = 0 or
∑

t<v≤u

1{�Tv �=0} = 0

and hence∑
s<v≤u

1{�Tv �=0} = 1 =⇒ (Tu − Tt )
2(Tt − Ts)

2 ≤ |u− s|2(2|T0| + 2T
)2

.

Therefore,

E
[
(Tu − Tt )

2(Tt − Ts)
2]= E

[
(Tu − Tt )

2(Tt − Ts)
2,

∑
t<v≤u

1{�Tv �=0} = 0
]

+E

[
(Tu − Tt )

2(Tt − Ts)
2,

∑
t<v≤u

1{�Tv �=0} = 1
]

+E

[
(Tu − Tt )

2(Tt − Ts)
2,

∑
t<v≤u

1{�Tv �=0} ≥ 2
]

≤ |u− s|4 + |u− s|2E[(
2|T0| + 2T

)2]
+E

[(
2|T0| + 2T

)4 × λ2

2

]

≤ C|u− s|2
for some C = CT > 0. These inequalities imply the conditions (i, ii) in Theorem 2 of [21].
Therefore, by Theorem 2 of [21], we have central limit theorems for the sum of the copies of
(Tt )t∈(0,T ]. In particular, (S

Z,d
t )t∈(0,T ] is tight.

On the other hand, for any 0≤ t1 < t2 < · · ·< tk , any k-dimensional random variable

(
S

Z,d
t1

, . . . , S
Z,d
tk

)= d−1/2
d∑

i=1

(
T d

i,t1
, . . . ,T d

i,tk

)
converges to a normal distribution by the finite-dimensional central limit theorem since the
random variables (T d

i,t1
, . . . ,T d

i,tk
) (i = 1, . . . , d) are independent and have the same law as
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that of (Tt1, . . . ,Ttk ). Hence (S
Z,d
t )t∈(0,T ] converges to (SZ

t )t∈(0,T ] by Lemma VI.3.19 of [23].
Then the convergence of (S

Z,d
t )t≥0 to (SZ

t )t≥0 also follows from Theorem 16.7 of [6]. �

We call a D[0,∞)-valued processes X = (Xt)t≥0 locally α-Hölder continuous if there
is a C[0,∞)-valued process X̃ with the same law as that of X such that there exists δT >

0, hT (ω) > 0 and

P

(
ω ∈� : sup

|u−v|≤hT (ω),0≤u,v≤T

|X̃u(ω)− X̃v(ω)|
|u− v|α ≤ δT

)
= 1

for any T > 0.

LEMMA A.3. SZ is locally α-Hölder continuous for α ∈ (0,1/2) but it is not locally
α-Hölder continuous for any α ≥ 1/2.

PROOF. The mean zero Gaussian process SZ satisfies SZ
t ∼ N (0,1) and SZ

t − SZ
0 ∼

N (0, σ (t)2) where

σ(t)2 := E
[(

SZ
t − SZ

0
)2]= E

[(
SZ

t

)2]+E
[(

SZ
0
)2]− 2E

[
SZ

t SZ
0
]= 2− 2K(t,0).

Observe that σ 2(0)= 0. By Proposition C.3 we have

σ(t)2

t
= σ(t)2 − σ 2(0)

t

=−2
K(t,0)−K(0,0)

t
−→
t→0

−2∂tK(t,0)|t=0 = 8φ(0),

and in particular, for sufficiently small h > 0, we have a local bound ct ≤ |σ(t)2| ≤ Ct (0≤
t ≤ h) for some c,C > 0. On the other hand, since we have σ(t)2 ≤ 2E[(SZ

t )2 + (SZ
0 )2] = 4,

there is a global bound |σ(t)2| ≤ Ct (t ≥ 0) for some constant C > 0. Therefore, the (2n)th
moment of SZ

t − SZ
0 ∼N (0, σ (t)2) is

E
[∣∣SZ

t − SZ
0
∣∣2n]= (2n− 1)!!∣∣σ(t)2∣∣n ≤C|t |n

for some C > 0 for any n ∈ N. Thus, local α-Hölder continuity for any α ∈ (0,1/2) follows
from Kolmogorov–Čentsov’s theorem (Theorem 2.2.8 of [25]).

On the other hand, by Proposition C.3, the second derivative of K(t,0) around t = 0 is
positive and hence σ(t)2 is concave around t = 0. Therefore, by Slepian’s lemma (Theo-
rem 7.2.10 of [28]), we have

lim
t→0

sup
|u−v|≤t,0≤u,v≤1

|SZ
u (ω)− SZ

v (ω)|√
2σ 2(u− v) log(1/|u− v|)

≥ 1(A.2)

almost surely. If SZ is locally 1/2-Hölder continuous, then there exists a process S̃Z, with the
same law as SZ, such that for t ≥ 0, and for some δ > 0,

|S̃Z
t+h(ω)− S̃Z

t (ω)|√
2σ 2(h) log(1/|h|)

≤ δ
|h|1/2

√
2c|h| log(1/|h|)

for sufficiently small h. The right hand side converges to 0 which contradicts (A.2). Thus S̃Z

and SZ cannot be locally 1/2-Hölder continuous with probability 1. �

PROOF OF THEOREM 2.2. The claim follows by Lemmas A.1–A.3. �
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A.2. Proof of Corollary 2.4. PROOF OF COROLLARY 2.4. The convergence of the
switching rate comes from the law of large numbers. Observe that

d−1
∑

0≤t≤T

1{�S
Z,d
t �=0} = d−1

d∑
i=1

∑
0≤t≤T

1{�T d
i,t �=0},

where (T d
i,t )t≥0 (i = 1, . . . , d) are independent copies of (2.3). See the proof of Lemma A.2.

Therefore, by the law of large numbers, we have

d−1
∑

0≤t≤T

1{�Sd
t �=0} −→

d→∞E

[ ∑
0≤t≤T

1{�Tt �=0}
]
= E

[∫
(0,T ]×R+

1{z≤Tt } dz dt

]

=
∫ T

0
E
[
T +

t

]
dt = T√

2π

by Tt ∼N (0,1). �

A.3. Proof of Theorem 2.5. We call a D[0,∞)-valued processes X differentiable with
respect to the time index t if there is a C[0,∞)-valued process X̃ with the same law as that
of X and another C[0,∞)-valued process (∂X̃t (ω))t≥0 on the same probability space as that
of X̃ such that

P

(
ω ∈� : lim

h→0

X̃t+h(ω)− X̃t (ω)

h
= ∂X̃t (ω),∀t ∈ (0, T )

)
= 1

for any T > 0.

PROOF OF THEOREM 2.5. The map (αt )t≥0 �→ (
∫ t

0 αs ds)t≥0 from D[0,∞) to C[0,∞)

is continuous. Also, by Theorem 2.2, the sequence SZ,d converges in law to SZ. Therefore,
the sequence of processes (Y

Z,d
t − Y

Z,d
0 )t≥0 (d ∈N) is C-tight since

Y
Z,d
t − Y

Z,d
0 = d−1/2(∥∥ξZ,d

t

∥∥2 − ∥∥ξZ,d
0

∥∥2)
= 2

∫ t

0
SZ,d

u du −→
d→∞2

∫ t

0
SZ

u du
(A.3)

in distribution in Skorohod topology. Also, ξ
Z,d
0 ∼Nd(0, Id) and we have

Y
Z,d
0 =√d

(‖ξZ,d
0 ‖2

d
− 1

)
=⇒
d→∞ N (0,2).

Thus (Y
Z,d
t )t≥0 = ((Y

Z,d
t − Y

Z,d
0 ) + Y

Z,d
0 )t≥0 is C-tight. On the other hand, by the finite-

dimensional central limit theorem, (Y
Z,d
t1

, Y
Z,d
t2

, . . . , Y
Z,d
tk

) converges in distribution to some
normal distribution for any k ∈N and any t1 < · · ·< tk , since

(
Y

Z,d
t1

, Y
Z,d
t2

, . . . , Y
Z,d
tk

)=√d

(‖ξZ,d
t1
‖2

d
− 1, . . . ,

‖ξZ,d
tk
‖2

d
− 1

)

=√d
−1

d∑
i=1

(∥∥ξZ,d
i,t1

∥∥2 − 1, . . . ,
∥∥ξZ,d

i,tk

∥∥2 − 1
)

=: √d
−1

d∑
i=1

Ud
i

and Ud
i (i = 1, . . . , d, d ∈ N) are mean 0 and independent and identically distributed since

every component of ξZ,d is an independent zig–zag process due to the decoupling of the
switching rate. Thus by Lemma VI.3.19 of [23], Y Z,d converges to a Gaussian process, which
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will be denoted by Y Z with a covariance function denoted by L(s, t). Since the covariance
function of Y Z,d and Y Z are the same, and dY

Z,d
t = 2S

Z,d
t dt , we have

L(s, t)= E
[
Y Z,d

s Y
Z,d
t

]
= 1

2

(
E
[(

Y Z,d
s

)2]+E
[(

Y
Z,d
t

)2]−E
[(

Y Z,d
s − Y

Z,d
t

)2])
= 1

2

(
4− 4E

[{∫ t

s
SZ,d

u du

}2])

= 2− 2
∫ t

s

∫ t

s
E
[
SZ,d

u SZ,d
v

]
dudv.

Furthermore, since the covariance function of SZ,d and T are the same, we have

L(s, t)= 2− 2
∫ t

s

∫ t

s
E[TuTv]dudv = 2− 2

∫ t

s

∫ t

s
K(u, v)dudv.

From this expression, we can conclude that the limiting process Y Z is non-Markovian as
in Lemma A.1. Because if it is a Gaussian process, the second derivative of the convariance
function L(t,0) at t = 0 should be negative that is impossible by the expression of L(s, t).

Finally, since (Y Z
t − Y Z

0 )t≥0 and (2
∫ t

0 SZ
u du)t≥0 have the same law by (A.3) and the latter

process is differentiable, the process Y Z has a differentiable version. �

A.4. Proof of Theorem 2.6. PROOF OF THEOREM 2.6. Let (ξZ
t )t≥0 be the process

such that ξZ
0 ∼N (0,1) and vZ

0 are independent and P(vZ
0 =+1)= P(vZ

0 =−1)= 1/2 and

ξZ
t = ξZ

0 +
∫ t

0
vZ
s ds (t ≥ 0),

and

vZ
t = vZ

0 − 2
∫
(0,t]×R+

vZ
s−1{z≤ξZ

s−)}N(ds,dz) (t ≥ 0),

where N(dt,dx) is the homogeneous Poisson measure with the intensity measure dt dx. The
process (ξZ

t )t≥0 was studied extensively by [2]. In particular, it is ergodic by Proposition 2.2
of [2]. Therefore, for k ∈N, if (ξZ

i,t )t≥0 (i = 1, . . . , k) are independent copies of (ξZ
t )t≥0, we

have

1

T

∫ T

0
f
(
ξZ

1,t , . . . , ξ
Z
k,t

)
dt −→

T→∞

∫
Rk

f (x)φk(x)dx(A.4)

almost surely, where f :Rk →R is a Nk(0, Ik)-integrable function.
On the other hand, the processes (ξ

Z,d
k,t )t≥0 (k ∈ {1, . . . , d}, d ∈ N) are independent and

identically distributed with the same law as that of (ξZ
t )t≥0. Since

1

T

∫ T

0
f
(
πk

(
ξ

Z,d
t

))
dt = 1

T

∫ T

0
f
(
ξ

Z,d
1,t , . . . , ξ

Z,d
k,t

)
dt

has the same law as that of the left-hand side of (A.4), the claim follows. �
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APPENDIX B: THE CONVERGENCE OF THE BOUNCY PARTICLE SAMPLER

B.1. Some preliminary results.

B.1.1. Some remarks on semimartingale characteristics and majoration hypothesis. As
commented at the end of Section C, we use the martingale problem approach to show scal-
ing limit results instead of the classical Trotter–Kato approach. For this approach, we need
some knowledge on semimartingale theory. A nice introduction to semimartingale theory
can be found in Chapters I and II of [23]. Our notation will generally follow this reference.
A semimartingale X = (Xt)t≥0, is called locally square-integrable if it has the canonical de-
composition

Xt =X0 +Mt +B ′
t , t ≥ 0,

such that M = (Mt)t≥0 is locally square-integrable local martingale, and B ′ = (B ′
t )t≥0 is pre-

dictable process with finite variation (see Definition II.2.27). We consider the convergence of
a sequence of semimartingales. We prove the convergence by using the so-called character-
istics (B ′,C, ν) and the modified second characteristic C̃′. We briefly explain these charac-
teristics for locally square-integrable semimartingale. Note that as in Section IX.3b.2, for a
locally square-integrable semimartingale, we can treat the characteristics without truncation
function h(x) in Definition II.2.16.

The first characteristic B ′ was already introduced as above. We denote μX for the random
measure associated to the jumps of X, that is,

μX(ω; dt,dx)=∑
s>0

1{�Xs(ω) �=0}δ(s,�Xs(ω))(dt,dx).

The third characteristic ν(ω; dt,dx) is the intensity measure of the random measure μX , and
C̃′ = (C̃′

t )t≥0 is the predictable quadratic variation of M . The second characteristic C is the
predictable quadratic variation of the continuous part of X, but in this section, C ≡ 0 since
the processes SB and SB,d do not have continuous martingale parts.

For example, the Markov process SB defined in (2.6) has the following decomposition
where we use the single random measure form implicitly (see Remark B.1 below). By the
definition for the stochastic integral with respect to random measures (Section II.1d), the
square integrable martingale part is

Mt =Mt

(
SB)=−2

∫
(0,t]×R+

SB
s−1{z≤SB

s−}
{
N(ds,dz)− ds dz

}
+

∫
(0,t]×R

(
z− SB

s−
){

R(ds,dz)− ρ dsφ(z)dz
}
.

The predictable process part is

B ′
t = B ′

t

(
SB)= t − 2

∫ t

0

{(
SB

s

)+}2 ds − ρ

∫ t

0
SB

s ds,(B.1)

which is the sum of the deterministic part t and the intensity measure of the random measure
part. By Theorem II.1.33, the predictable quadratic variation of M is

C̃ ′
t

(
SB) := 4

∫ t

0

{(
SB

s

)+}3 ds + ρ

∫ t

0

(
1+ (

SB
s

)2)ds.

The random measure μ= μSB
is defined by the integral form

g ∗μt :=
∫

g(x)μt (dx)
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:=
∫
(0,t]×R+

g
(−2SB

s−
)
1{z≤SB

s−}N(ds,dz)

+
∫
(0,t]×R

(
g
(
z− SB

s−
))

R(ds,dz),

where g : R→ [0,∞) is a continuous bounded function. The random measure ν(ω; dt,dx)

is its compensator which is defined by

g ∗ νt :=
∫

g(x)νt (dx)

:=
∫ t

0
g
(−2SB

s

)(
SB

s

)+ ds + ρ

∫ t

0

∫
R

(
g
(
z− SB

s

))
dsφ(z)dz.

(B.2)

By this decomposition SB is also a homogeneous jump process in the sense of Section III.2c,
where b(x)= 1− 2(x+)2 − ρx, c(x)≡ 0 and K(x,dy)= (x+)δ{−2x}(dy)+ ρφ(y − x)dy.

On the other hand, the process SB,d is not a Markov process, and has the expression

S
B,d
t = S

B,d
0 + t − 2

∫
(0,t]×R+

S
B,d
s− 1{z≤S

B,d
s− }N(ds,dz)

+
∫
(0,t]×Sd−1

(〈
ξB,d
s , u

〉− S
B,d
s−

)
Rd(ds,du),

(B.3)

by Itô’s formula. We denote (B ′d,Cd, νd) and C̃′d for the characteristics and modified second
characteristic of SB,d . As in the above example, we have

B ′d
t := t − 2

∫ t

0

{(
SB,d

s

)+}2 ds − ρ

∫ t

0
SB,d

s ds,

C̃′d
t := 4

∫ t

0

{(
SB,d

s

)+}3 ds + ρ

∫ t

0

(‖ξB,d
s ‖2

d
+ (

SB,d
s

)2
)

ds,

and

g ∗ νd
t :=

∫
g(x)νd

t (dx) :=
∫ t

0
g
(−2SB,d

s

)(
SB,d

s

)+ ds

+ ρ

∫ t

0

∫
Sd−1

g
(〈
ξB,d
s , u

〉− SB,d
s

)
dsψd(du)

for a continuous bounded function g.
Finally, we introduce strong majorisation property which is important to prove tightness

of the sequence of processes. For two increasing processes X = (Xt)t≥0, Y = (Yt )t≥0, X

strongly majorises Y if X − Y = (Xt − Yt )t≥0 is an increasing process, that is, almost all
paths of Xt(ω)− Yt (ω) are increasing; see [23], Definition VI.3.34. We denote Y ≺X if X

strongly majorises Y .

REMARK B.1. Piecewise deterministic Markov processes in this paper are naturally de-
scribed by stochastic integrals with respect to several independent random measures. How-
ever, it can also be possible to express these integrals by using single random measures. At
the same time, we can always recover the separate random measure expression from a sin-
gle random measure representation. We do not use the single random measure representation
explicitly in this paper, but we implicitly use the form when we apply theorems in literature
that use the single random measure form.
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B.1.2. Some remark on spherically symmetric distribution. Some of the characteristics
of semimartingales SB,d and Y B,d are written by the expectation of Ud which will be defined
in (B.4), and Ud will be approximated by a Gaussian random variable. We will quantify this
approximation error by the result in [16].

As mentioned above, we need to show that

Ud := d1/2〈e, v〉,(B.4)

where v ∼ ψd and e is a unit vector, converges to the standard normal distribution and we
need to quantify the approximation error. The distribution is extensively studied by [16]. For
example, since |〈e, v〉|2 follows the Beta distribution with parameters 1/2 and (d − 1)/2, we
have

E
[∣∣Ud

∣∣α]= dα/2B(α+1
2 , d−1

2 )

B(1
2 , d−1

2 )
−→
d→∞

�(α+1
2 )

�(1
2)

2α/2(B.5)

for α >−1, where we used Stirling’s approximation. Moreover,∥∥L(
Ud)−N (0,1)

∥∥
TV =O(1/d)(B.6)

for ‖ν‖TV = sup | ∫ h(x)ν(dx)|where the supremum is evaluated over those measurable func-
tion h(x) bounded above by 1. Since the expectations in the semimartingale characteristics
are not bounded functions, we need the following proposition to quantify the approximation
error.

PROPOSITION B.2. For any ε > 0, k ∈N and W ∼N (0,1),

sup
|h(x)|≤(1+|x|)k

∣∣E[
h
(
Ud)]−E

[
h(W)

]∣∣=O
(
dε−1).

PROOF. Without loss of generality, we can assume ε ∈ (0,1/2). Let |h(x)| ≤ (1+ |x|)k .
To apply (B.6), we consider a bounded modification

ha = h(x)1{|h(x)|≤a}
for a > 0. Then∣∣E[

hdε

(
Ud)]−E

[
hdε (W)

]∣∣≤ dε
∥∥L(

Ud)−N (0,1)
∥∥

TV =O
(
dε−1).

By Markov’s inequality, the error due to the modification of h(Ud) is∣∣E[
hdε

(
Ud)]−E

[
h
(
Ud)]∣∣≤ E

[∣∣h(Ud)∣∣, ∣∣h(Ud)∣∣ > dε]
≤ E

[∣∣h(Ud)∣∣{ |h(Ud)|
dε

}(1−ε)/ε]

≤ dε−1
E
[(

1+ ∣∣Ud
∣∣)k(1+(1−ε)/ε)]=O

(
dε−1)

by (B.5). Similarly, the error due to the modification of h(W) is dominated by∣∣E[
hdε (W)

]−E
[
h(W)

]∣∣≤ E
[∣∣h(W)

∣∣, ∣∣h(W)
∣∣ > dε]

≤ E

[∣∣h(W)
∣∣{ |h(W)|

dε

}(1−ε)/ε]

≤ dε−1
Ey

[(
1+ |W |)k(1+(1−ε)/ε)]=O

(
dε−1).

Hence the claim follows by the triangle inequality. �
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B.1.3. Remark on Stein’s method. We will use a martingale problem approach for the
convergence of stochastic processes and hence we will show the convergence of character-
istics of semimartingales. In order to prove the convergence of characteristics, we will use
Stein’s identity and Stein’s method.

Thanks to the results in Section B.1.2, the semimartingale characteristics are, essentially,
written by expectations with respect to normal distributions. For calculation involving Gaus-
sian random variables, Stein’s identity is useful:

E
[
Wf (W)

]= E
[
f ′(W)

]
,(B.7)

where W ∼N (0,1) and f is sufficiently smooth.
Stein identity (B.7) characterises the standard normal distribution: W ∼ N (0,1) if and

only if (B.7) is satisfied for every differentiable function f with E|f ′(W)|<∞. Moreover,
by using Stein’s method, the deviation from N (0,1) is bounded by the deviation from Stein’s
identity. The usefulness of Stein’s method is illustrated in the monographs Chen et al. [10]
and Nourdin and Peccati [30]. In this paper, we will use the following result due to Proposi-
tion 3.2.2 of [30].

LEMMA B.3. For any h : R→ R such that E[|h(W)|] <∞ for W ∼N (0,1), there is
the unique solution f :R→R of the ordinary differential equation (called Stein’s equation)

Lf (s) := f ′(s)− sf (s)= h(s)−E
[
h(W)

]
(B.8)

such that limx→±∞ φ(x)f (x)= 0.

There are many important properties of the solution of Stein’s equation. We remark here
the integration-by-parts formula∫

(Lf )(x)g(x)φ(x)dx =−
∫

f (x)g′(x)φ(x)dx(B.9)

for smooth functions f,g. Also, we would like to remark the following lemma which provides
a sufficient condition for N (0,1)-integrability of Stein’s solution. For β > 0, let

|||f |||β = sup
x∈R

e−β|x|∣∣f (x)
∣∣.

If |||f |||β <∞, f is N (0,1)-integrable.

LEMMA B.4. For β > 0, there exists Cβ <∞ such that for any h : R→ R, such that
E[h(W)] = 0 for W ∼N (0,1), we have

|||f |||β ≤Cβ |||h|||β,(B.10)

where f is the solution to (B.8) such that limx→±∞ φ(x)f (x)= 0.

PROOF. Without loss of generality, we can assume |||h|||β < ∞. By equation (3.23) of
[30], Stein’s solution is given by

f (x)= φ(x)−1
∫ x

−∞
h(y)φ(y)dy =−φ(x)−1

∫ ∞
x

h(y)φ(y)dy.

Therefore, if x ≥ 0, we have

e−βx
∣∣f (x)

∣∣= (
eβxφ(x)

)−1
∣∣∣∣
∫ ∞
x

h(y)φ(y)dy

∣∣∣∣
≤ (

eβxφ(x)
)−1

∫ ∞
x

∣∣h(y)
∣∣φ(y)dy(B.11)

≤ |||h|||β
(
eβxφ(x)

)−1
∫ ∞
x

eβyφ(y)dy.



3386 J. BIERKENS, K. KAMATANI AND G. O. ROBERTS

With a similar calculation for x ≤ 0, we obtain the inequality (B.10) with the constant

Cβ = sup
x≥0

cβ(x), cβ(x) := (
eβxφ(x)

)−1
∫ ∞
x

eβyφ(y)dy.

Observe that eβxφ(x) = eβ2/2φ(x − β). Also, if y ≥ 1, we have φ(y) ≤ yφ(y) and hence
�(−x)≤ φ(x) by integrating y ∈ [x,∞). Therefore, if x ≥ β + 1,

cβ(x)= φ(x − β)−1
∫ ∞
x

φ(y − β)dy

= φ(x − β)−1�
(−(x − β)

)≤ 1.

Also, x �→ cβ(x) is continuous, and hence bounded on [0, β + 1]. Hence Cβ <∞ and the
claim follows. �

B.2. Proof of Theorem 2.8. PROOF OF THEOREM 2.8. We apply [23], Theorem
IX.3.48, to SB,d with stopping time

τa

(
SB)= inf

{
t > 0 : ∣∣SB

t

∣∣≥ a or
∣∣SB

t−
∣∣≥ a

}
for a > 0. Let τd

a = τa(S
B,d). First we prove the local strong majoration hypothesis (i) of

Theorem IX.3.48. By the expression of the predictable process B ′ in (B.1), the total variation
process (see Section I.3a) of B ′ up to the stopping time τa is

Var
(
B ′)τa

t =
∫ t∧τa

0

∣∣1− 2
{(

SB
s

)+}2 − ρSB
s

∣∣ds.

By construction of ν in (B.2), we have

{|x|2 ∗ ν
}τa

t =
∫
|x|2νt∧τa (dx)=

∫ t∧τa

0

{
4
{(

SB
s

)+}3 + ρ
(
1+ (

SB
s

)2)}ds.

Hence

Var
(
B ′)τa ≺ F1(a),

{(|x|2) ∗ ν
}τa ≺ F2(a),

where

F1(a)t = t
(
1+ 2a2 + ρa

)
, F2(a)t = t

(
4a3 + ρ

(
1+ a2)).

Note that C ≡ 0. Thus (i) of Theorem IX.3.48 follows, since Var(B ′)τa and {(|x|2) ∗ ν}τa are
strongly majorised by F(a)= F1(a)+ F2(a).

Second we prove (ii)–(v) of Theorem IX.3.48. If we take b > 2a, then

{|x|21{|x|>b} ∗ ν
}t∧τa = ρ

∫ t∧τa

0

∫
R

∣∣z− SB
s

∣∣21{|z−SB
s |>b}φ(z)dz ds

≤ ρ

∫ t

0

∫
R

(|z| + a
)21{|z|+a>b}φ(z)dz ds −→

b→+∞0,

which proves (ii) of Theorem IX.3.48. The existence and uniqueness of the martingale prob-
lem of (2.7) is proved in Section C. Thus local uniqueness condition (iii) of Theorem IX.3.48
comes from Lemma IX 4.4. Continuity condition (iv) is obvious. Since we assume stationar-
ity, both S

B,d
0 and SB

0 follow the standard normal distribution. Thus (v) of Theorem IX.3.48
follows.
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Finally we check the condition (vi) of Theorem IX.3.48. Recall that, by construction,

∥∥ξB,d
t − ξ

B,d
0

∥∥≤ t =⇒ sup
0≤t≤T

∣∣∣∣‖ξ
B,d
t ‖2

d
− 1

∣∣∣∣= oP(1)(B.12)

for any 0≤ t ≤ T since ‖vB,d
t ‖ = 1 and ξ

B,d
0 follows the standard normal distribution. Thus

for any 0≤ s ≤ t ,

B ′d
s −B ′

s

(
SB,d)= 0,

∣∣C̃′d
s − C̃′

s

(
SB,d)∣∣≤ ρ

∫ t

0

∣∣∣∣‖ξB,d
s ‖2

d
− 1

∣∣∣∣ds = oP(1),

and hence the conditions [Sup-β ′loc] and [γ ′loc-D] of (vi) are satisfied. For Condition IX.3.49
of (vi), let gb(x)= x21{|x|>b} for b > 2a. Then

gb ∗ νd
t∧τd

a
= ρ

∫ t∧τd
a

0

∫
Sd−1

gb

(〈
ξB,d
s , u

〉− SB,d
s

)
ψd(du)ds

≤ ρ

∫ t

0

∫
Sd−1

gb

(∣∣〈ξB,d
s , u

〉∣∣+ a
)
ψd(du)ds.

By stationarity together with the fact that L(〈ξB,d
0 , u〉)= L(S

B,d
0 ), we have

P
(
gb ∗ νd

t∧τd
a

> ε
)≤ ε−1

E

[
ρ

∫ t

0

∫
Sd−1

gb

(∣∣〈ξB,d
s , u

〉∣∣+ a
)
ψd(du)ds

]

= ε−1tρE
[
gb

(∣∣SB,d
0

∣∣+ a
)]

.

Therefore, by taking the lim sup as d →∞ of the expectation on the right-hand side of the
above inequality gives

lim sup
d→∞

P
(
gb ∗ νd

t∧τd
a

> ε
)≤ ε−1tρE

[
gb

(∣∣SB
0
∣∣+ a

)] −→
b→∞0

by SB
0 ∼N (0,1) which establishes Condition IX.3.49 of (vi). Finally, we check [δloc-D] of

(iv). By construction for any bounded, continuous function g, we have

εd
t : = g ∗ νd

t − (g ∗ νt ) ◦ SB,d

= ρ

∫ t

0

∫
Sd−1

g
(〈
ξB,d
s , u

〉− SB,d
s

)
ψd(du)ds − ρ

∫ t

0

∫
R

g
(
z− SB,d

s

)
φ(z)dz ds.

Therefore, by stationarity of the process, we have

E

[
sup

0≤s≤t

∣∣εd
s

∣∣]

≤ tρE

[∣∣∣∣
∫
Sd−1

g
(〈
ξ

B,d
0 , u

〉− S
B,d
0

)
ψd(du)−

∫
R

g
(
z− S

B,d
0

)
φ(z)dz

∣∣∣∣
]

≤ tρ‖g‖∞E
[∥∥L0

(〈
ξ

B,d
0 , u

〉)−N (0,1)
∥∥

TV

]
,

where u ∼ ψd and L0(X) is the conditional distribution of X given ξ
B,d
0 and v

B,d
0 , and

‖g‖∞ = supx∈R |g(x)|. By the property of the spherically symmetric distribution ψd , we
have

L0
(〈
ξ

B,d
0 , u

〉)= L0

(‖ξB,d
0 ‖

d1/2 d−1/2
〈

ξ
B,d
0

‖ξB,d
0 ‖ , u

〉)
= L0

(
αdUd),

(
αd)2 := ‖ξB,d

0 ‖2

d
.

(B.13)
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Therefore the total variation distance in the above expectation is∥∥L0
(
αdUd)−N (0,1)

∥∥
TV ≤

∥∥L0
(
αdUd)−N

(
0,

(
αd)2)∥∥

TV

+ ∥∥N (
0,

(
αd)2)−N (0,1)

∥∥
TV.

The first term in the right-hand side equals to (B.6) which converges to 0, and the second
term is dominated by

2
∣∣1− (

αd)2∣∣ −→
d→∞0 in P

by Proposition 3.6.1 of [30]. This proves [δloc-D]. Thus, the condition (iv) of Theorem
IX.3.48 of [23] is proved. Hence the claim follows. �

B.3. Proof for Corollary 2.9. PROOF FOR COROLLARY 2.9. By the expression (B.3),
the expected number of switches of SB,d per unit time is

E

[ ∑
0≤t≤T

1{�S
B,d
t �=0}

]
= E

[∫
(0,T ]×R+

1{z≤S
B,d
s− }N(ds,dz)+Rd

(
(0, T ] ×R

)]

= E

[∫ T

0

(
SB,d

s

)+ ds + ρT

]

= TE
[(

S
B,d
0

)+ + ρ
]

= T

{∫
R

x+φ(x)dx + ρ

}
= T

(
1√
2π

+ ρ

)
. �

B.4. Proof for Theorem 2.10. Thanks to the memoryless property of the exponential
distribution, we can assume that a refreshment jump occurs at t = 0 since it does not affect
the law of (ξ

B,d
t , v

B,d
t )t≥0. By Proposition II.1.14 of [23], we can construct a probability

space so that there are stopping times 0= σ0 < σ1 < σ2 < · · · with Fσn -measurable random
variables Wd

n (n≥ 1) such that

Rd(dt,dx)=∑
n≥1

1{σn<∞}δ(σn,Wd
n )(dt,dx),(B.14)

where P(Wd
n ∈A|Fσn−)=ψd(A).

The proof strategy of Theorem 2.10 is as follows. The first step is to show the convergence
of Y B,d at refreshment times (σn)n≥0. For that purpose, we consider a pure step Markov

process Y
B,d

defined by

Y
B,d

t :=∑
n≥0

Y
B,d
σn/d1[ σn

d
,
σn+1

d
)
(t)=∑

n≥0

d1/2
(‖ξB,d

σn
‖2

d
− 1

)
1[ σn

d
,
σn+1

d
)
(t).

The pure step Markov process has a simpler structure which is characterised by the so-called
finite transition measure. Since σj/d−σj−1/d follows the exponential distribution with mean
1/ρd , its finite transition measure Kd(x,dy) is∫

R

f (y)Kd(x,dy)= ρdE
[
f
(
Y

B,d
σ1/d

− Y
B,d
0

)|Y B,d
0 = x

]
in the sense of IX.4.19 of [23]. Then we will apply Theorem IX.4.21 of [23] to the Markov

process Y
B,d

in Lemma B.5. To apply the theorem, the key step is the proof for the conver-
gence of the semimartingale characteristics. For this step, Stein’s techniques work efficiently.

After the proof of Lemma B.5, finally we will show that the difference between Y
B,d

and
Y B,d is ignorable.
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LEMMA B.5. The process Y
B,d

converges in law to Y B.

PROOF. We can construct (S
B,d
t )t∈[0,σ1) so that

S
B,d
t = Tt (0≤ t < σ1),(B.15)

where T follows (2.3) with T0 = S
B,d
0 = x, and independent from the refreshment times

(σn)n≥0. We apply Theorem IX.4.21 of [23]. Since the limiting process is the Ornstein–
Uhlenbeck process, hypothesis [23], IX.4.3, is satisfied. By the central limit theorem,

L(Y
B,d

0 ) converges to N (0,2) = L(Y B
0 ), and hence condition (iii) is also satisfied. There-

fore, it is sufficient to prove conditions (i) and (ii).
The condition (i) corresponds to the (locally uniformly in y) convergence of

b′d(y) := ρdE
[
Y

B,d
σ1/d

− Yd
0 |Y B,d

0 = y
]

and

c̃′d(y) := ρdE
[(

Y
B,d
σ1/d

− Yd
0
)2|Y B,d

0 = y
]
.

For simplicity, we will denote E[·|Y B,d
0 = y] by Ey[·]. First, we check the convergence of the

drift coefficient b′d . Since d‖ξB,d
t ‖2 = 2S

B,d
t dt , we have

∥∥ξB,d
σ1

∥∥2 − ∥∥ξB,d
0

∥∥2 = 2
∫ σ1

0
S

B,d
t dt = 2

∫ σ1

0
Tt dt = 2

∫ ∞
0

1{t≤σ1}Tt dt.

Since σ1 and T are independent, we can rewrite b′d(y) as

b′d(y)= ρd1/2
Ey

[∥∥ξB,d
σ1

∥∥2 − ∥∥ξB,d
0

∥∥2]
= 2ρd1/2

∫ ∞
0

Py(t ≤ σ1)Ey

[
E
[
Tt |T0 = S

B,d
0

]]
dt

= 2ρd1/2
∫ ∞

0
e−ρt

Ey

[
ht

(
S

B,d
0

)]
dt,

where ht (x) := E[Tt |T0 = x]. Now we are going to approximate S
B,d
0 by a Gaussian random

variable. For α > 0, by (C.1), we have∣∣ht (αx)
∣∣= ∣∣E[Tt |T0 = αx]∣∣≤ E

[|Tt ||T0 = αx
]≤ |αx| + t ≤ (|α| + t

)(
1+ |x|).

Conditioned on y, we show that the difference of the law of S
B,d
0 and the normal distribution

N (0, (αd)2) is small, where

(
αd)2 := ‖ξB,d

0 ‖2

d
= 1+ d−1/2y.

By the property of ψd , we can rewrite the expectation of S
B,d
0 in terms of Ud (see (B.4)) since

Ly(S
B,d
0 )= Ly(α

dUd) as in (B.13) where Ly is the conditional distribution given Y
B,d
0 = y.

Therefore, we can apply Proposition B.2 with k = 1 and ε ∈ (0,1/2) to S
B,d
0 . We have∣∣Ey

[
ht

(
S

B,d
0

)]−Ey

[
ht

(
αdW

)]∣∣≤ (∣∣αd
∣∣+ t

)
O

(
dε−1),(B.16)

where W ∼N (0,1). Since αd → 1 locally uniformly in y, we obtain that the drift coefficient
is an expectation of the Gaussian random variable with ignorable approximation error:

b′d(y)= 2ρd1/2
∫ ∞

0
e−ρt

Ey

[
ht

(
αdW

)]
dt +O

(
dε−1/2).
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We are in a position to apply Stein’s method. Let ft be Stein’s solution for Lft = ht . Observe
that E[ht (W)] = E[ht(T0)] = E[Tt ] = 0. By Lemma B.4, ft and f ′t = xft + ht are N (0,1)-
integrable. Therefore,

Ey

[
ht

(
αdW

)]= Ey

[
f ′t

(
αdW

)− αdWft

(
αdW

)]
= Ey

[
f ′t

(
αdW

)− (
αd)2

f ′t
(
αdW

)]
= (

1− (
αd)2)

Ey

[
f ′t

(
αdW

)]
=−d−1/2yEy

[
f ′t

(
αdW

)]
,

where we used Stein’s identity in the second line. Since αd −→d→∞ 1 locally uniformly in
y, by the dominated convergence theorem, we have

b′d(y) −→
d→∞b′(y) := −2ρy

∫ ∞
0

∫
R

e−ρtf ′t (x)φ(x)dx dt.

To finish the calculation of the drift coefficient, we rewrite the expectation in the right hand
side without using Stein’s solution. By Stein’s identity together with (B.9),∫

R

f ′t (x)φ(x)dx =
∫
R

xft (x)φ(x)dx

=
∫
R

(
x2

2

)′
ft (x)φ(x)dx

=−
∫
R

x2

2
ht (x)φ(x)dx

=−E
[(T 2

0

2

)
E[Tt |T0]

]
=−2−1

E
[
T 2

0 Tt

]
.

We used Stein’s identity in the first line, and the integration by parts formula (B.9) with
ft = Lht and g(x)= x2/2 in the third line. We can rewrite this expectation as an integration
with respect to the covariance function K(s, t). By the mixing property (C.6) with k = 2, the
right-hand side of the above equation equals

2−1 lim
s→∞E

[(
T 2

s − T 2
0
)
Tt

]= E

[∫ ∞
0

TsTt ds

]
=

∫ ∞
0

K(s, t)ds =
∫ t

0
K(s,0)ds,

where we used (C.1) in the first equation, and (C.2) with K(s, t) = K(t − s,0) for the last
equation. Therefore we obtain the expression of the drift coefficient:

b′(y)=−2ρy

∫ ∞
0

e−ρt
∫ t

0
K(s,0)ds dt =−2y

∫ ∞
0

e−ρsK(s,0)ds.

Second, we check convergence of the diffusion coefficient. By d‖ξB,d
t ‖2 = 2S

B,d
t dt ,

c̃′d(y)= ρEy

[(∥∥ξB,d
σ1

∥∥2 − ∥∥ξB,d
0

∥∥2)2]
= 4ρEy

[{∫ σ1

0
S

B,d
t dt

}2]
= 4ρEy

[{∫ σ1

0
Tt dt

}2]
.

As in the drift coefficient case, since σ1 and Tt are independent, we have

E

[{∫ σ1

0
Tt dt

}2∣∣∣∣T0 = S
B,d
0

]
=

∫ ∞
0

∫ ∞
0

E
[
1{s,t≤σ1}TtTs |T0 = S

B,d
0

]
dt ds

=
∫ ∞

0

∫ ∞
0

e−ρ max{s,t}hs,t

(
S

B,d
0

)
dt ds,
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where hs,t (x)= E[TtTs |T0 = x]. Observe that if t ≥ s ≥ 0, by (C.1), we have∣∣hs,t (αx)
∣∣= ∣∣E[TtTs |T0 = αx]∣∣≤ (|αx| + t

)(|αx| + s
)≤ (|α| + t

)2(1+ |x|)2
.

Therefore by Proposition B.2 with k = 2, we can approximate the expectation of S
B,d
0 by that

of a Gaussian random variable:∣∣E[
hs,t

(
S

B,d
0

)]−E
[
hs,t

(
αdT0

)]∣∣≤ (∣∣αd
∣∣+max{s, t})2

O
(
dε−1)

for any ε ∈ (0,1). Therefore, we can conclude

c̃′d(y)= 4ρ

∫ ∞
0

∫ ∞
0

e−ρ max{s,t}
Ey

[
hs,t

(
αdW

)]
ds dt +O

(
dε−1).

Hence by the dominated convergence theorem, we have

c̃′d(y) −→
d→∞4ρ

∫ ∞
0

∫ ∞
0

e−ρ max{s,t}K(s, t)ds dt =: c̃′(y),

since E[hs,t (W)] = E[hs,t (T0)] = E[TtTs] = K(s, t). By change of variable (s, t) �→ (t −
s, t)=: (u, t), we have

c̃′(y)= 8ρ

∫
0<s≤t<∞

e−ρtK(s, t)ds dt

= 8ρ

∫ ∞
0

∫ ∞
u

e−ρtK(u,0)dt du(B.17)

= 8
∫ ∞

0
e−ρuK(u,0)du.

Therefore, the condition (i) of Theorem IX.4.21 of [23] follows.
Finally, we check condition (ii). By Markov property, for any ε > 0, we have∫

R

Kd(x,dy)|y|21{|y|>ε} ≤ ε−2
∫
R

Kd(x,dy)|y|4 =: ε−2δd(y).

By construction of Kd , we can rewrite δd(y) as

δd(y)= ρdE
[(

Y
B,d
σ1/d

− Y
B,d
0

)4|Y B,d
0 = y

]
.

By Hölder’s inequality,

δd(y)= ρd−1
Ey

[(∥∥ξB,d
σ1

∥∥2 − ∥∥ξB,d
0

∥∥2)4]
= 16ρd−1

Ey

[{∫ σ1

0
S

B,d
t dt

}4]

= 16ρd−1
Ey

[{∫ σ1

0
Tt dt

}4]

≤ 16ρd−1
Ey

[
σ 4

1
(∣∣SB,d

0

∣∣+ σ1
)4]

=O
(
d−1)

locally uniformly in y where we used (C.1) in the inequality. Therefore, the condition (ii)
follows. Thus, the claim follows by Theorem IX.4.21 of [23]. �

PROOF OF THEOREM 2.10. We showed that the process Y
B,d

converges in law to Y B.
Therefore, by Lemma VI.3.31 of [23], it is sufficient to show

εd
T := sup

0≤t≤T

∣∣Y B,d
t − Y

B,d

t

∣∣ −→
d→∞0
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in probability for any T > 0. Let

AT = (0, T ] ×R and λT = ρT .

Then Rd(AT ) follows the Poisson distribution with mean λT . In particular, Rd(AdT )/d is
tight. Since Rd(AT ) is the number of the refreshment jumps until T > 0, we have

εd
T ≤ sup

j≤Rd(AdT )

sup
σj≤dt<σj+1

∣∣Y B,d
t − Y

B,d
σj /d

∣∣.
On the other hand, for σj ≤ dt < σj+1, we have∣∣Y B,d

t − Y
B,d
σj /d

∣∣= d−1/2∣∣∥∥ξB,d
td

∥∥2 − ∥∥ξB,d
σj

∥∥2∣∣
≤ 2d−1/2

∫ σj+1

σj

∣∣SB,d
t

∣∣dt

≤ 2d−1/2
∫ σj+1

σj

(∣∣SB,d
σj

∣∣+ t
)

dt

= 2d−1/2
(∣∣SB,d

σj

∣∣(σj+1 − σj )+ 1

2
(σj+1 − σj )

2
)
,

where we used (C.1) in the third line. Therefore, for any J ∈N,

P
(
εd
T > ε

)≤ P
(
Rd(AdT ) > dJ

)
+ P

(
2d−1/2 sup

j≤dJ

(∣∣SB,d
σj

∣∣(σj+1 − σj )+ 1

2
(σj+1 − σj )

2
)

> ε

)

≤ P
(
Rd(AdT ) > dJ

)+ dJP

(
2d−1/2

(∣∣SB,d
0

∣∣σ1 + 1

2
σ 2

1

)
> ε

)
.

If we take J ∈N large enough, the first probability in the right-hand side of the above inequal-
ity can be small. The second term converges to 0 by Markov’s inequality together with the
fact that S

B,d
0 ∼N (0,1) and σ1 follows the exponential distribution with mean 1/ρ. Hence

the claim follows. �

B.5. Proof for Proposition 2.11.

PROOF FOR PROPOSITION 2.11. By Proposition C.3 together with Lebesgue’s domi-
nated convergence theorem, the claim is obvious. �

B.6. Proof for Theorem 2.13. First, we prove that the process ZB,d,k can be approx-
imated by a pure step Markov process. Second, we show that this approximated process
converges to an Ornstein–Uhlenbeck process which completes the proof of Theorem 2.13.

B.6.1. Approximation of the process. Let

Z
B,d,k

t :=∑
n≥0

Z
B,d,k
σn/d 1[ σn

d
,
σn+1

d
)
(t),

be the pure step version of ZB,d,k . By construction, we have the following decomposition
imitating the Doob–Meyer decomposition

�Z
B,d,k

σn+1/d
:= Z

B,d,k

σn+1/d
−Z

B,d,k

σn/d =
∫ σn+1

σn

πk

(
v

B,d
t

)
dt =Md

n+1 +Ad
n+1,(B.18)



SCALING LIMITS OF PDMPS 3393

where

Md
n+1 =

∫ σn+1

σn

πk

(
vB,d
σn

)
dt, Ad

n+1 =
∫ σn+1

σn

πk

(
v

B,d
t − vB,d

σn

)
dt.

Now we want to extract a predictable component from Ad
n+1. Let (Fd

t )t≥0 be the underly-
ing filtration. For N ∈N, we show the following.

LEMMA B.6.

E

[
dN−1∑
i=0

∥∥Ad
i+1

∥∥2

]
−→ 0.

PROOF. By stationarity assumption, each Ad
n has the same law. Therefore it is sufficient

to show that dE[‖Ad
1‖2] −→ 0. For the spherical symmetricity of the process vB,d , we have

dE
[∥∥Ad

1

∥∥2]= dE

[∥∥∥∥
∫ σ1

0
πk

(
v

B,d
t − v

B,d
0

)
dt

∥∥∥∥2]
= kE

[∥∥∥∥
∫ σ1

0
v

B,d
t − v

B,d
0 dt

∥∥∥∥2]
.

Since the stopping time σ1 is independent from Fd
σ1−, by the dominated convergence theorem,

it is sufficient to show that E[‖vB,d
t − v

B,d
0 ‖2] −→ 0 for any t > 0, where v

B,d
t follows the

stochastic differential equation defined in Section 1.1.2 without refreshment jumps. We have

v
B,d
t − v

B,d
0 =

∫
(0,t]×R+

ψ(u, z)N(du,dz), ψ(t, z) := −2S
B,d
t−

ξ
B,d
t−

‖ξB,d
t− ‖2

1{z≤S
B,d
t− }.

Therefore by Theorem II.1.33 of [23],

E
[∥∥vB,d

t − v
B,d
0

∥∥2]= E

[∫
(0,t]×R+

∥∥ψ(u, z)
∥∥2 dudz+

∥∥∥∥
∫
(0,t]×R+

ψ(u, z)dudz

∥∥∥∥2]
.

By stationarity of the process together with Fubini’s theorem, we have a bound

E
[∥∥vB,d

t − v
B,d
0

∥∥2]≤ 4E
[
t
{(

S
B,d
0

)+}3 1

‖ξB,d
0 ‖2

+ t2{(SB,d
0

)+}4 1

‖ξB,d
0 ‖2

]
.

The variable S
B,d
0 follows the standard normal distribution, and ‖ξB,d

0 ‖−2 follows the inverse
of the chi-squared distribution with d degrees of freedom which is on the order of d−1 by
Lemma 4.1 of [24]. Thus, the expectation in the above has on the order of d−1 by the Cauchy–
Schwarz inequality. Thus E[‖Ad

i+1‖2] is on the order of d−2 which proves the claim. �

COROLLARY B.7.

sup
n=1,...,dN

∥∥∥∥∥
n−1∑
i=0

Ad
i+1 −E

[
Ad

i+1|Fd
σi−

]∥∥∥∥∥ −→d→∞0

in probability.

PROOF. Consider a filtration (Fd
σn−)n. A discrete process (Xn)n=0,1,... is L-dominated

by (Yn)n=0,1,... in the sense of I.3.29 of [23], that is, E[|Xτ |] ≤ E[|Yτ |] for any bounded
(Fd

σn−)n-stopping time τ where

Xn :=
∥∥∥∥∥
n−1∑
i=0

Ad
i+1 −E

[
Ad

i+1|Fd
σi−

]∥∥∥∥∥
2

, Yn :=
n−1∑
i=0

∥∥Ad
i+1

∥∥2
.
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Then, by Lenglart’s inequality (I.3.30 of [23]), we have

P

(
sup

n≤dN

Xn ≥ ε
)
≤ η

ε
+ P(YdN ≥ η)

for ε, η > 0. Therefore, the convergence of supn≤dN Xn comes from Lemma B.6. �

Now we show that a predictable component E[Ad
n+1|Fd

σn−] has a simpler expression
E[Bd

n+1|Fd
σn−] where

Bd
n+1 =−

∫ σn+1

σn

∫ t

0

1

d
πk

(
ξB,d
σn

)
ds dt

up to negligible term. Note that

E
[
Bd

n+1|Fd
σn−

]=−ρ−2

d
πk

(
ξB,d
σn

)
.

LEMMA B.8.

sup
n=1,...,dN

∥∥∥∥∥
n−1∑
i=0

E
[
Ad

i+1|Fd
σi−

]−E
[
Bd

i+1|Fd
σi−

]∥∥∥∥∥ −→d→∞0

in probability.

PROOF. By stationarity of the process together with the Cauchy–Schwarz inequality, it
is sufficient to show dE[‖E[Ad

1 − Bd
1 |Fd

0−]‖2]1/2 −→ 0. By spherical symmetricity of the
processes, we have

E
[∥∥E[

Ad
1 −Bd

1 |Fd
0−

]∥∥2]= k

d
E

[∥∥∥∥E
[∫ σ1

0

∫
(0,t]×R+

ψ(s, z)N(ds, dz)dt |Fd
0−

]∥∥∥∥2]

= k

d
E

[∥∥∥∥E
[∫ σ1

0

∫ t

0
ψ(s)ds dt |Fd

0−
]∥∥∥∥2]

,

where

ψ(t, z)=−2S
B,d
t−

ξ
B,d
t−

‖ξB,d
t− ‖2

1{z≤S
B,d
t− } +

ξ
B,d
t−
d

,

ψ(t)=−2
{(

S
B,d
t

)+}2 ξ
B,d
t

‖ξB,d
t ‖2

+ ξ
B,d
t

d
.

By the Cauchy–Schwarz inequality together with the dominated convergence theorem, it is
sufficient to prove dE[‖E[∫ t

0 ψ(s)ds|FB,d
0− ]‖2] −→ 0 where ξ

B,d
t and v

B,d
t follow the stochas-

tic differential equation defined in Section 1.1.2 without refreshment jumps. Let

ψ1(t)=−2
{(

S
B,d
t

)+}2
{

ξ
B,d
t

‖ξB,d
t ‖2

− ξ
B,d
t

d

}
,

ψ2(t)=−{
2
{(

S
B,d
t

)+}2 − 1
}ξ

B,d
t − ξ

B,d
0

d
,

ψ3(t)=−{
2
{(

S
B,d
t

)+}2 − 1
}ξ

B,d
0

d
,
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so that ψ(t) = ψ1(t) + ψ2(t) + ψ3(t). Convergence of dE[‖ψ1(t)‖2] = dE[‖ψ1(0)‖2]
follows from the Cauchy–Schwarz inequality as in the proof of Lemma B.6. Conver-
gence of dE[‖ψ1(t)‖2] also follows by the Cauchy–Schwarz inequality together with the
uniform bound ‖ξB,d

t − ξ
B,d
0 ‖ ≤ t . Therefore the proof will be completed if we show

dE[‖E[∫ t
0 ψ3(s)ds|FB,d

0− ]‖2] −→ 0.
By (B.3), up to the refreshment time, we have

S
B,d
t = S

B,d
0 + t − 2

∫
(0,t]×R

S
B,d
s− 1{z≤S

B,d
s− }N(ds,dz).

By this fact,

E

[∫ t

0
ψ3(s)ds|FB,d

0−
]
= E

[
t − 2

∫
(0,t]×R

S
B,d
s− 1{z≤S

B,d
s− }N(ds,dz)|Fd

0−
]
ξ

B,d
0

d

= E
[
S

B,d
t − S

B,d
0 |Fd

0−
]ξB,d

0

d

= E
[
ht

(
S

B,d
0

)− S
B,d
0 |Fd

0−
]ξB,d

0

d
,

where ht (x)= E[Tt |T0 = x]. Let L0−(X) be the distribution of X conditioned on Fd
0−. Since

the initial velocity is independent from the initial state, we have L0−(S
B,d
0 )= L0−(αdUd) as

in (B.13) where Ud is defined in (B.4) and (αd)2 = ‖ξB,d
0 ‖2/d . In particular, E[SB,d

0 |Fd
0−] =

0. Moreover, by (B.16), we can substitute ht (S
B,d
0 ) by ht (α

dW) where W follows the stan-
dard normal distribution. Finally the claim follows by the dominated convergence theorem
since αd → 1 and E[ht (W)|Fd

0−] = 0. Therefore, dE[‖E[∫ t
0 ψ3(s)ds|FB,d

0− ]‖2] −→ 0 which
proves the claim. �

LEMMA B.9.

sup
n=1,...,dN

∥∥∥∥∥
∫ σn/d

0
b′
(
Z

B,d,k

t

)
dt −

n−1∑
i=0

E
[
Bd

i+1|Fd
σi−

]∥∥∥∥∥ −→d→∞0

in probability, where b′(x)=−ρ−1x.

PROOF. Since the difference in the norm is

−
N−1∑
i=0

(
σi+1 − σi − ρ−1)ρ−1

d
πk

(
ξB,d
σi

)
and it is a martingale. Therefore the claim follows from Doob’s inequality (I.1.43 of [23]).

�

Since Z
B,d,k

is a pure step process, the semimartingale characteristics are entirely de-
scribed by a random measure as described in Theorem II.3.11(b) of [23] (See also Proposi-
tion II.2.17). Therefore, we have the first and modified second characteristics as follows:

B ′d
T = ∑

n:σn≤T

E
[
�Z

B,d,k

σn/d |Fσn−1−
]
,

C̃′d
T = ∑

n:σn≤T

E
[(

�Z
B,d,k

σn/d

)⊗2|Fσn−1−
]−E

[(
�Z

B,d,k

σn/d

)|Fσn−1−
]⊗2

.
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Also the corresponding random measure is

g ∗ νd
T =

∑
n:σn≤T

E
[
g
(
�Z

B,d,k

σn/d

)|Fσn−1−
]

for a bounded smooth function g(x). Here, for a vector v = (v1, . . . , vk) ∈R
d , v⊗2 is a k× k

matrix with (i, j)th element vivj .

LEMMA B.10. The process Z
B,d,k

converges in law to ZB,k .

PROOF. The first and the modified second characteristics of ZB,k are

B ′
T =

∫ T

0
b′
(
Z

B,k
t

)
dt, C̃′

T = 2Tρ−1.

We apply Theorem IX.3.48 of [23]. Conditions (i)–(iv) are obvious since the limit is the
Ornstein–Uhlenbeck process. The condition (v) is also clear since in this case, both ηd and
η are the k-dimensional standard normal distribution. Therefore we only need to check four
conditions in (vi).

First we can assume that the number of refreshment jumps until time T , Rd((0, T ] × R)

is smaller than dN for some N ∈N by the argument of the proof of Theorem 2.10. Let νd be

the random measure corresponding to Z
B,d,k

. For g ∈ C1(R) (See VII.2.7 of [23]), we can
assume that |g(x)| ≤ 1 for any x and g(x)= 0 for |x|< b for some b > 0. Then

g ∗ νd
T ≤

∑
n:σn≤T

P
(∥∥�Z

B,d,k

σn/d

∥∥ > b|Fσn−1−
)
.

Therefore, it is sufficient to prove

dN∑
i=1

P
(∥∥�Z

B,d,k

σn/d

∥∥ > b
) −→
d→∞0

for [δloc-D]. This is also a sufficient condition for 3.49 of Theorem IX.3.48. By equation
(B.18), we have ∥∥�Z

B,d,k

σn/d

∥∥≤ ∥∥Md
n

∥∥+ ∥∥Ad
n

∥∥.
The convergence of Ad

n part directly follows from Lemma B.6 with Chevyshev’s inequality,
and the convergence of Md

n part follows from Markov’s inequality together with the fact that
the square of each component of vB,d

σn
follows the Beta distribution with parameter 1/2 and

(d − 1)/2. Condition [Sup-β ′loc] follows by Corollary B.7–B.9. Finally we check [γ ′loc-D].

By the decomposition of �Z
B,d,k

, we have

C̃′d
T = ∑

n;σn≤T

E
[(

Md
n

)⊗2 +Md
n ⊗

(
Ad

n −E
[
Ad

n|Fσn−1−
])

+ (
Ad

n −E
[
Ad

n|Fσn−1−
])⊗Md

n +
(
Ad

n −E
[
Ad

n|Fσn−1−
])⊗2|Fσn−1−

]
.

The first term is

E
[(

Md
n

)⊗2|Fσn−1−
]=E[

(σn − σn−1)
2πk

(
vB,d
σn−1

)⊗2|Fσn−1−
]= 2ρ−2d−1Ik.

From this fact together with Lemma B.6, the other term converges to 0. By the same argument
as Lemma B.9, the claim follows. �

LEMMA B.11. The process ZB,d,k converges in law to ZB,k .
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PROOF. By Lemma VI.3.31 of [23], it is sufficient to show

εd
T := sup

0≤t≤T

∥∥ZB,d,k
t −Z

B,d,k

t

∥∥ −→
d→∞0

in probability. Let At be as in the proof of Theorem 2.10. Then we have

εd
T ≤ sup

0≤j≤Rd(AdT )

sup
σj≤t<σj+1

∥∥πk

(
ξ

B,d
t

)− πk

(
ξB,d
σj

)∥∥.
Therefore, for J ∈N,

P
(
εd
t > ε

)≤ P
(
Rd(AdT ) > dJ

)
+ P

(
sup

0≤j≤dJ

sup
σj≤t<σj+1

∥∥πk

(
ξ

B,d
t

)− πk

(
ξB,d
σj

)∥∥ > ε
)

≤ P
(
Rd(AdT ) > dJ

)+ dJP
(

sup
0≤t<σ1

∥∥πk

(
ξ

B,d
t

)− πk

(
ξ

B,d
0

)∥∥ > ε
)
.

On the other hand, ∥∥πk

(
ξB,d
s

)− πk

(
ξ

B,d
0

)∥∥≤ ∫ s

0

∥∥πk

(
vB,d
u

)∥∥du

and the forth moment of the norm is on the order of d−2. Thus by Markov’s inequality, εd
T is

negligible. �

B.6.2. Proof of Theorem 2.13.

PROOF OF THEOREM 2.13. Weak convergence of ZB,d,k has been proved. Therefore,
the proof of Theorem 2.13 will be completed if we can show the law of large numbers (2.9).
The proof is essentially the same as that of Lemma B.4 of [24].

Let ‖f ‖∞ = supx∈Rk |f (x)|. Without loss of generality, we can assume
∫

f (x)φk(x)dx =
0. It is sufficient to show that

Id,T := E

[∣∣∣∣ 1

T

∫ T

0
f
(
Z

B,d,k
t

)
dt

∣∣∣∣
]
−→

d,T→∞0.

Since the limiting process is the ergodic Ornstein–Uhlenbeck process, for any ε > 0 we can
find T0 > 0 so that

IT0 = E

[∣∣∣∣ 1

T0

∫ T0

0
f
(
Z

B,k
t

)
dt

∣∣∣∣
]

< ε

by the law of large numbers. By dividing the interval [0, T ] into shorter intervals with length
T0, we have

Id,T = E

[∣∣∣∣∣ 1

T

[T/T0]−1∑
k=0

∫ (k+1)T0

kT0

f
(
Z

B,d,k
t

)
dt + 1

T

∫ T

T0[T/T0]
f
(
Z

B,d,k
t

)
dt

∣∣∣∣∣
]

≤ T0

T

[T/T0]−1∑
k=0

E

[∣∣∣∣ 1

T0

∫ (k+1)T0

kT0

f
(
Z

B,d,k
t

)
dt

∣∣∣∣
]

+ 1

T

∫ T

T0[T/T0]
E
[∣∣f (

Z
B,d,k
t

)∣∣]dt.

Then by stationarity of the process ZB,d,k together with the weak convergence of ZB,d,k , we
have

Id,T ≤ T0

T

[
T

T0

]
Id,T0 +

T − T0[T/T0]
T

‖f ‖∞ −→
d,T→∞ IT0 ≤ ε,

which completes the proof. �
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APPENDIX C: ERGODIC PROPERTIES OF THE LIMITING PROCESSES

In this section, we study the ergodic properties of the limiting processes SB and T together
with existence and uniqueness of the solution. First we show the existence and uniqueness
of the strong solutions of (2.3) and (2.6). The existence of a strong solution and pathwise
uniqueness of the processes directly comes from Theorem IV.9.1 of [22]. Here we show a
basic idea of the proof because of its importance as well as the fact that we are using an
explicit form of pathwise construction in this paper. By Proposition II.1.14 of [23] (see also
III.1.24), there are stopping times 0 < τ1 < τ2 < · · · with Fτn -measurable random variables
Zn (n≥ 1) such that

N(dt,dz)=∑
n≥1

1{τn<∞}δ(τn,Zn)(dt,dz).

By this expression, we can construct the process T uniquely in the time interval [0, τ1] by

Tt =
{
x + t, 0≤ t < τ1,

Tτ1− + 1{Zn≤Tτ1−}(−2Tτ1−), t = τ1.

Similarly, we can construct a pathwise unique solution in the time interval [0, τn] for any
n ∈ N, and hence Tt is determined globally. It is easy to see that the process is nonexplosive
since |Tt | ≤ |T0| + t .

For (2.6), in the same way, there are stopping times 0 < σ1 < σ2 < · · · with Fσn-
measurable random variables Wn (n≥ 1) such that L(Wn|Fσn−)=N (0,1) and

R(dt,dx)=∑
n≥1

1{σn<∞}δ(σn,Wn)(dt,dx).

Then we can construct the unique solution in time interval [0, σ1] by

SB
t =

{
Tt , 0≤ t < σ1,

W1, t = σ1.

Then, the process (SB
t )t∈[σ1,σ2] proceeds according to (2.3) up to time σ2− starting from

SB
σ1
=W1 in the same way as above. By iterating this procedure, we can construct a unique

solution in time interval [0, σn] for any n ∈ N, and hence SB
t is determined globally. Since

σn − σn−1 (n= 1,2, . . .) are identically distributed, the process is nonexplosive. Therefore,
the existence and uniqueness of the strong solutions of (2.3) and (2.6) follows.

Next we consider existence and uniqueness of solution of martingale problems correspond-
ing to (2.4) and (2.7). For this purpose, it might be natural to use a combined representation
for (2.6) introduced in Remark B.1. Then by Itô’s formula, weak solutions of (2.3) and (2.6)
solve martingale problems corresponding to (2.4) and (2.7). Since weak solutions of (2.3) and
(2.6) are unique by pathwise uniqueness, we also have uniqueness of martingale problems by
Theorem 2.3 of [26].

Let ψ be a σ -finite measure on a measurable space (E,E). Then a continuous time Markov
process Xt is said to be (ψ-)irreducible if

ψ(A) > 0 =⇒ Ex[ηA]> 0 (∀x ∈E),

where ηA is the occupation time defined by

ηA =
∫ ∞

0
1{Xt∈A} dt.

A simple sufficient condition for ψ-irreducibility is

ψ(A) > 0 =⇒ Pt(x,A)=: Px(Xt ∈A) > 0 (∀x ∈E, t ≥ T )
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for some T > 0 which is also a sufficient condition for aperiodicity of the Markov process.
A measurable set C ∈ E is said to be small if there exists t > 0, ε > 0 and a probability
measure ν such that

Pt(x,A)≥ εν(A) (∀x ∈ C,∀A ∈ E).

This Markov process is said to be V -uniformly ergodic if there exists a probability measure
�, a constant γ ∈ (0,1),C > 0 and V :E →[1,∞) such that∥∥Pt(x, ·)−�

∥∥
V ≤ CV (x)γ t ,

where

‖ν‖V := sup
f :E→R

|f (x)|≤V (x)

∣∣∣∣
∫
E

f (x)ν(dx)

∣∣∣∣.
A simple Foster–Lyapunov-type drift condition was established by [18]. By using their results
the following can be proved.

THEOREM C.1. The Markov process SB is irreducible, aperiodic and any compact set
is a small set. Moreover, it is V -uniformly ergodic for V (x)= 1+ x2.

THEOREM C.2. The Markov process T is irreducible, aperiodic and any compact set is
a small set. Moreover, it is V -uniformly ergodic for some e|x| ≤ V (x)≤ 2e|x|.

Since the process T only changes the sign of the process in each jump time, by Itô’s
formula, it satisfies that

T 2
t − T 2

0 = 2
∫ t

0
Ts ds, and |Tt | − |T0| =

∫ t

0
sgn(Ts)ds,(C.1)

where sgn(x) is the sign of x ∈R. Here, in order to apply Itô’s formula for the latter, first ap-
ply the formula to fε(x)= (ε+x2)1/2 and then take the limit ε → 0. Moreover, the following
result summarizes some properties of the covariance kernel of T . See also Figure 1.

PROPOSITION C.3. The covariance function K(s, t)= E[TsTt ] of T satisfies∫ ∞
0

K(s,0)ds = 0(C.2)

and

∂tK(t,0)|t=0 =−4φ(0)=−2

√
2

π
, ∂2

t K(t,0)|t=0 = 1.(C.3)

C.1. Proof of Theorem C.1. Construct T and SB as in the above. We also set σ0 = 0 and
W0 = SB

0 . First, we prove irreducibility and aperiodicity of the Markov process. For K > 0,
let νK be the Lebesgue measure restricted to[−K,K]. Consider an event

BT = {
ω ∈� :R(

(0, T ] ×R
)= 1,N(CT )= 0

}
,

where CT = (0, T ] × [0, |x| + |W1| + T ]. On the event, since R((0, T ] × R) = 1 there is a
single refreshment jump σ1 until T > 0. Recall that in each interval [σi, σi+1), the process
SB has the same behavior as that of T with Tσi

=Wi . Therefore, by (C.1), we have

ω ∈ BT =⇒ ∣∣SB
t

∣∣≤
{|x| + t if t < σ1,

W1 + t if σ1 ≤ t ≤ T ,
=⇒ sup

t≤T

∣∣SB
t

∣∣≤ |x| + |W1| + T .
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Therefore, on the event BT , the number of jumps due to N up to time T is∫
(0,T ]×R+

1{z≤SB
s−}N(ds,dz)≤N(CT )= 0.

Therefore, except for the refreshment jump time σ1, SB moves deterministically, and hence

ω ∈ BT =⇒ SB
t =

{
x + t if t < σ1,

W1 + (t − σ1) if σ1 ≤ t ≤ T .

Now we calculate the probability of the event BT . Since Rd,N and W are independent, if
|x| ≤K , then

Px(BT )= Px

(
R
(
(0, T ] ×R

)= 1
)× P

(
N(CT )= 0

)
= {

ρT e−ρT }× {∫
R

e−(|x|+|y|+T )T φ(y)dy

}

≥ {
ρT e−ρT }× {

cT e−(K+T )T }
,

where cT = ∫
exp(−T |y|)φ(y)dy. On the other hand, for the Markov semigroup (Pt )t≥0 of

SB, we have

PT (x,A)= Px

(
SB

T ∈A
)≥ Px

(
SB

T ∈A,BT

)
= Px

(
W1 + (T − σ1) ∈A,BT

)
= Ex

[∫
A

φ
(
y − (T − σ1)

)
dy,BT

]

≥ inf
0≤s≤T

∫
A∩K

φ
(
y − (T − s)

)
dyPx(BT )

≥ κT νK(A)Px(BT ),

where κT = inf0≤s≤T infy∈K φ(y − (T − s)). By these estimates, we obtain

PT (x,A)≥ κT νK(A)
{
ρT e−ρT }× {

cT e−(K+T )T }
for x ∈ [−K,K].

Thus, the Markov process is νK -irreducible and aperiodic, and any compact set is a small set.
Second, we prove V -uniform ergodicity. We need to check

HV (x)≤−γV (x)+ b1C(C.4)

for some γ, b > 0, a small set C and a drift function V : R→ [1,∞) where H is defined in
(2.7). However, by taking V (x)= 1+ x2, we have

HV (x)

V (x)
= 2x + ρ(1− x2)

1+ x2 −→|x|→∞−ρ.

Thus, the drift condition is satisfied for C = [−R,R] and γ = ρ/2 when R is sufficiently
large. Thus V -uniform ergodicity follows by Theorem 5.2 of [18].

C.2. Proof of Theorem C.2. Let K > 0 and consider x ∈ [−K,K]. Let T = 2K + 1,
and define

BT = {
ω ∈� :N(ω;CT )=N(ω;DT )= 1

}
,

where DT ⊂ CT are subsets of R+ ×R+ such that

CT = (0, T ] × [
0, |x| + T

]
, DT = [

(1− x)+, T
]× [0,1].
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On the event BT , the number of jumps until time T is∫
(0,T ]×R+

1{z≤Ts−}N(ds,dz)≤N(CT )= 1

since |Tt | ≤ |x| + T (0 ≤ t ≤ T ) by (C.1). Thus the number of jumps is at most 1. On the
other hand, if there is no jump, then Tt = x+ t (0≤ t ≤ T ). However, since (1−x)+ ≤ t =⇒
1≤ x + t = Tt− we have∫

(0,T ]×R+
1{z≤Ts−}N(ds,dz)≥N(DT )= 1.

Therefore, there is a single jump until time T . Then, on the event BT , we have

Tt =
{
x + t if t < τ1,

−(x + τ1)+ (t − τ1) if τ1 ≤ t ≤ T ,

and hence, for a Markov semigroup (Pt )t≥0 of T , we have

PT (x,A)= Px(TT ∈A)≥ Px(TT ∈A,BT )

= Px

(−(x + τ1)+ (T − τ1) ∈A,BT

)
= Px

(−(x + τ1)+ (T − τ1) ∈A|BT

)× Px(BT ).

We have

Px

(−(x + τ1)+ (T − τ1) ∈A|BT

)
=

∫ T

(1−x)+
1A

(−(x + s)+ (T − s)
) ds

T − (1− x)+

≥ T −1 Leb
(
A∩ [−x − T ,T − x − 2(1− x)+

])
,

where Leb is the Lebesgue measure. On the other hand,

Px(BT )= Px

(
N(DT )= 1

)× P
(
N

(
CT ∩Dc

T

)= 0
)

= (
T − (1− x)+

)
e−(T−(1−x)+) × e−(T (|x|+T )−(T−(1−x)+))

=: c(T , x).

Since c(T , x) > 0 (x ∈ R), the Markov process is Leb-irreducible and aperiodic since we
have PT (x,A) > 0 by taking T > 0 sufficiently large. Also, by cT := infx∈[−K,K] c(T , x) > 0
we have

PT (x,A)≥ cT T −1 Leb
(
A∩ [

K − T ,T −K − 2(1+K)+
]) (

x ∈ [−K,K]).
Thus any compact set is a small set.

Finally, we prove V -uniform ergodicity. We need to check the drift criterion (C.4) for
γ > 0, a small set C and V : E → [1,∞) and G defined in (2.4) in place of H . Construct a
continuously differentiable function V :E →[1,∞) so that

V (x)=
{

2 exp(x)− 1, x > 4,

exp(−x), x ≤ 0.
(C.5)

Then GV (x) = (2 − x)ex + xe−x ≤ −V (x) for x > 4, since xe−x ≤ (ex − 1)e−x ≤ 1 for
x > 0. Also, GV (x)=−V (x) for x < 0. Thus the drift condition holds with V (x), C = [0,4]
and γ = 1. Thus the claim follows by Theorem 5.2 of [18].
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C.3. Proof of Proposition C.3. By V -uniform ergodicity of the Markov process T , for
s ≤ t and k ∈N, we have∣∣∣∣E[

T k
t |Ts = x

]− ∫
ykφ(y)dy

∣∣∣∣≤Ckγ
t−sV (x)(C.6)

for some Ck > 0, γ ∈ (0,1) and hence the covariance function has exponential decay property∣∣K(s, t)
∣∣= ∣∣E[

TsE[Tt |Ts]]∣∣≤ C1γ
t−s

E
[|Ts |V (Ts)

]= Cγ t−s

for some C > 0 since the marginal distribution of T is the standard normal distribution and
using the explicit form of V given by (C.5).

PROOF OF PROPOSITION C.3. By (C.6) with k = 2, we have

0= lim
t→∞E

[(
T 2

t − T 2
0
)
T0

]
= lim

t→∞E

[(∫ t

0
2Ts ds

)
T0

]
= 2 lim

t→∞

∫ t

0
K(s,0)ds = 2

∫ ∞
0

K(s,0)ds.

Hence we have (C.2).
Next we calculate the derivatives of K(t) := K(t,0). By Itô’s formula together with the

Lebesgue convergence theorem, we have

h−1(K(t + h)−K(t)
)= h−1

E
[
(Tt+h − Tt )T0

]
= h−1

E

[∫ h

0

(
1− 2

(
T +

t+s

)2)dsT0

]

−→
h→0

E
[(

1− 2
(
T +

t

)2)T0
]
.

The first derivative at t = 0 is

K ′(0)= E
[(

1− 2
(
T +

0

)2)T0
]=−2

∫ ∞
0

x3φ(x)dx =−2

√
2

π
.

Similarly, the second derivative at t = 0 is

h−1(K ′(h)−K ′(0)
)= h−1

E
[{(

1− 2
(
T +

h

)2)T0
}− {(

1− 2
(
T +

0

)2)T0
}]

=−h−1
E

[∫ h

0

(
4T +

t − 2
(
T +

t

)3)dsT0

]

−→
h→0

−E[
4
(
T +

0

)2 − 2
(
T +

0

)4]
=−E[

2T 2
0 − T 4

0
]= 1. �

APPENDIX D: NON-GAUSSIAN RESULTS

First we show that the process SB,d converges to SB
H,t := H 1/2SB

H 1/2t
(H−1/2ρ). Let

B ′0(ρ), C̃′0(ρ) and ν0(ρ) be the first, modified second and third characteristics of SB(ρ)

(See Section B.1.1). Then the first and modified second characteristics of the process SB
H are

given by

B ′
T =H 1/2B ′0

H 1/2T

(
H−1/2ρ

)
, C̃′

T =HC̃′0
H 1/2T

(
H−1/2ρ

)
and the third characteristic is given by

g ∗ νT = g
(
H 1/2·) ∗ ν0

H 1/2T

(
H−1/2ρ

)
.
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Therefore, by the change of variable formula, we have

B ′
T =HT − 2

∫ T

0

{(
SB

H,t

)+}2 dt − ρ

∫ T

0
SB

H,t dt,

C̃′
T = 4

∫ T

0

{(
SB

H,t

)+}3 dt + ρ

∫ T

0

(
H + (

SB
H,t

)2)dt

and

g ∗ νT =
∫ T

0
g
(−2SB

H,t

)(
SB

H,t

)+ dt + ρ

∫ T

0

∫
R

(
g
(
u− SB

H,t

))
φH (u)dudt,

where φH is the probability density function of N (0,H). On the other hand, the process SB,d

satisfies

S
B,d
T = S

B,d
0 +

∫ T

0
∇2�d(ξB,d

t

)[(
v

B,d
t

)⊗2]dt − 2
∫
(0,T ]×R+

S
B,d
t− 1{z≤S

B,d
t− }N(dt,dz)

+ ρ

∫
(0,T ]×Sd−1

(〈∇�d(ξB,d
t−

)
, u

〉− S
B,d
t−

)
Rd(dt,du),

by Itô’s formula. The first and modified second characteristics are

B ′d
T :=

∫ T

0
∇2�d(ξB,d

t

)[(
v

B,d
t

)⊗2]dt − 2
∫ T

0

{(
S

B,d
t

)+}2 dt − ρ

∫ T

0
S

B,d
t dt,

C̃′d
T := 4

∫ T

0

{(
S

B,d
t

)+}3 dt + ρ

∫ T

0

(‖∇�d(ξ
B,d
t )‖2

d
+ (

S
B,d
t

)2
)

dt,

and the third characteristic is

g ∗ νd
T :=

∫
g(x)νd

T (dx) :=
∫ T

0
g
(−2S

B,d
t

)(
S

B,d
t

)+ dt

+ ρ

∫ T

0

∫
Sd−1

g
(〈∇�d(ξB,d

t

)
, u

〉− S
B,d
t

)
dtψd(du)

for a continuous bounded function g. For the proof of Proposition 2.16, we will apply The-
orem IX.3.48 [23] by showing convergences of the characteristics. To show the convergence
of C̃ ′d , we need the next lemma.

LEMMA D.1. For T > 0, we have

sup
0≤t≤T

∣∣∣∣‖∇�d(ξ
B,d
t )‖2

d
−H

∣∣∣∣ −→
d→∞0.(D.1)

PROOF. Let Xd
T be the left-hand side of (D.1). By Itô’s formula,

‖∇�d(ξ
B,d
T )‖2

d
− ‖∇�d(ξ

B,d
0 )‖2

d
= 2d−1

∫ T

0
∇2�d(ξB,d

t

)[∇�d(ξB,d
t

)
, v

B,d
t

]
dt.

Let Mt := ∇2�d(ξ
B,d
t ), at := ∇�d(ξ

B,d
t )/‖∇�d(ξ

B,d
t )‖ and bt := v

B,d
t . By (2.14), we have

∣∣Mt [at , bt ]
∣∣= 1

2

∣∣Mt

[
a⊗2
t

]+Mt

[
b⊗2
t

]−Mt

[
(at − bt )

⊗2]∣∣≤ 2C.

Also, we have a bound

‖∇�d(ξ
B,d
t )‖2

d
≤Xd

t +H
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by the triangle inequality. Therefore we have

Xd
T ≤Xd

0 + sup
0≤t≤T

∣∣∣∣‖∇�d(ξ
B,d
t )‖2

d
− ‖∇�d(ξ

B,d
0 )‖2

d

∣∣∣∣
≤Xd

0 + 2d−1 sup
0≤t≤T

∣∣∣∣
∫ t

0
Ms[as, bs] ×

∥∥∇�d(ξB,d
t

)∥∥ds

∣∣∣∣
≤Xd

0 + 4CT d−1/2(Xd
T +H

)1/2 ≤Xd
0 + 4CT d−1/2(1+Xd

T +H
)
,

where we used a1/2 ≤ 1+ a for a > 0. Hence

Xd
T ≤

(
1− 4CT d−1/2)−1(

Xd
0 + 4CT d−1/2(1+H)

) −→
d→∞0

in probability since Xd
0 −→ 0 in probability by (2.12). �

Next we show the following lemma to prove the convergence of B ′d .

LEMMA D.2. For T > 0, we have

sup
0≤t≤T

∣∣[∇2�d(ξB,d
t

)][(
v

B,d
t

)⊗2]ds −H
∣∣ −→
d→∞0.(D.2)

PROOF. Let NR(t) and NB(t) be the number of refreshment jumps and that of bouncy
jumps respectively. Since NR(T ) = Rd((0, T ] × R) follows the Poisson distribution with
intensity ρT , it is P-tight. Suppose that the interval [s, t) does not include refreshment jump
times. Then, by Itô’s formula, we have

∣∣∣∣SB,d
t

∣∣− ∣∣SB,d
s

∣∣∣∣= ∣∣∣∣
∫ t

s
∇2�d(ξB,d

u

)[(
vB,d
u

)⊗2] sgn
(
SB,d

u

)
du

∣∣∣∣≤ CT .(D.3)

Therefore, if 0= σ0 < σ1 < · · · are the refreshment jump times, we have a bound

sup
t∈[0,T ]

∣∣SB,d
t

∣∣≤ CT + sup
n=0,...,NR(T )

∣∣SB,d
σn

∣∣.
The right-hand side is P-tight since SB,d

σn
(n= 1,2, . . .) has the same law as that of S

B,d
0 , and

NR(T ) is P-tight. Thus Bd
T := supt∈[0,T ] |SB,d

t | is P-tight. By this fact,

NB(T )=
∫
(0,T ]×R

1{z≤S
B,d
t− }N(ds, dz)≤N

(
(0, T ] × [

0,Bd
T

])
is also P-tight.

Let Xd
t be the random variable in the absolute value in the left-hand side of (D.2). For

ε > 0, let Dε = {0= t0 < · · ·< tN } ⊂ [0, T ] be a finite set that includes all refreshment jump
times and max |ti − ti−1|< ε. If the interval [s, t) does not include refreshment jump times,
then

Xd
t −Xd

s =
∫ t

s
∇3�d(ξB,d

u

)[(
vB,d
u

)⊗3]du

−
∫
(s,t]×R

∇2�
(
ξ

B,d
u−

)[(
κd(xB,d

u−
))⊗2 − (

v
B,d
u−

)⊗2]1{z≤S
B,d
u− }N(du,dz).

By (2.14), we have ∣∣Xd
t −Xd

s

∣∣≤ |t − s|(C + 2CNB(T )
)
.
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Then we have

sup
0≤t≤T

∣∣Xd
t

∣∣≤ sup
t∈D

∣∣Xd
t

∣∣+ ε
(
C + 2CNB(T )

)
and the first term in the right-hand side converges to 0 by (2.13) which proves the claim. �

LEMMA D.3. SB,d converges to SB
H .

PROOF. We apply Theorem IX.3.48 [23]. The proof follows the same line as that of
Theorem 2.8 and conditions (i)–(iv) of Theorem IX.3.48 directly follow from the argument
in the proof of Theorem 2.8. The condition (v) follows from (B.6) with condition (2.12).
Conditions [δloc-D] and 3.49 can be proved in the same line as that of Theorem 2.8. Finally,
we need to check conditions [Sup-β ′loc], [γ ′loc-D] of (vi) which follow from Lemmas D.1 and
D.2. �

PROOF OF PROPOSITION 2.16. By stationarity,

4ρE
[(

�d(ξB,d
σ1

)−�d(ξB,d
σ0

))2]= 4ρE

[{∫ σ1

0
S

B,d
t dt

}2]

= 4ρ

∫ ∞
0

∫ ∞
0

E
[
1{s,t≤σ1}SB,d

s S
B,d
t

]
ds dt.

By (2.14) together with Itô’s formula for SB,d , we have a uniform bound∣∣SB,d
t

∣∣≤ ∣∣SB,d
0

∣∣+Ct

by (D.3). Thus, for s ≤ t ,∣∣E[
1{s,t≤σ1}SB,d

s S
B,d
t

]∣∣≤ E
[
1{t≤σ1}

(∣∣SB,d
0

∣∣+Ct
)2]

= P(t ≤ σ1)E
[(∣∣SB,d

0

∣∣+Ct
)2]

≤ P(t ≤ σ1)2E
[∣∣SB,d

0

∣∣2 + (Ct)2]
= e−ρt2E

[‖∇�(ξ
B,d
0 )‖2

d
+ (Ct)2

]
.

Therefore, by (2.14), this value is bounded above by exp(−ρt) times a polynomial of t . Thus
by the dominated convergence theorem,

4ρE
[(

�d(ξB,d
σ1

)−�d(ξB,d
σ0

))2] −→
d→∞4ρ

∫ ∞
0

∫ ∞
0

E
[
1{s,t≤σ1}SB

H,sS
B
H,t

]
ds dt.

Now we are going to substitute SB
H,t in the right hand side by H 1/2SB

H 1/2t
(H−1/2ρ). For

this substitution, the refreshment jump time σ1 is also changed to H−1/2σ1. Therefore, the
right-hand side of the above equation equals to

4ρ

∫ ∞
0

∫ ∞
0

E
[
1{s,t≤H−1/2σ1}

(
H 1/2SB

H 1/2s

(
H−1/2ρ

))(
H 1/2SB

H 1/2t

(
H−1/2ρ

))]
ds dt

= 4ρ

∫ ∞
0

∫ ∞
0

E
[
1{s,t≤σ1}SB

s

(
H−1/2ρ

)
SB

t

(
H−1/2ρ

)]
ds dt

= 4ρ

∫ ∞
0

∫ ∞
0

e−H−1/2ρ max{s,t}K(s − t,0)ds dt =H 1/2σ 2(H−1/2ρ
)
,

where the last equation follows from the change-of-variable formula (B.17). �
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