
 
 

Delft University of Technology

Machine learning and circular bioeconomy
Building new resource efficiency from diverse waste streams
Tsui, To Hung; van Loosdrecht, Mark C.M.; Dai, Yanjun; Tong, Yen Wah

DOI
10.1016/j.biortech.2022.128445
Publication date
2023
Document Version
Final published version
Published in
Bioresource Technology

Citation (APA)
Tsui, T. H., van Loosdrecht, M. C. M., Dai, Y., & Tong, Y. W. (2023). Machine learning and circular
bioeconomy: Building new resource efficiency from diverse waste streams. Bioresource Technology, 369,
Article 128445. https://doi.org/10.1016/j.biortech.2022.128445

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.biortech.2022.128445
https://doi.org/10.1016/j.biortech.2022.128445


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



Bioresource Technology 369 (2023) 128445

Available online 5 December 2022
0960-8524/© 2022 Elsevier Ltd. All rights reserved.

Machine learning and circular bioeconomy: Building new resource 
efficiency from diverse waste streams 

To-Hung Tsui a,b, Mark C.M. van Loosdrecht c, Yanjun Dai d, Yen Wah Tong a,b,e,*

a Environmental Research Institute, National University of Singapore, 1 Create Way, 138602, Singapore 
b Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, 
Singapore, 138602, Singapore 
c Department of Biotechnology, Delft University of Technology, the Netherlands 
d School of Mechanical Engineering, Shanghai Jiaotong University, 800 Dongchuan Road, Shanghai, 200240, China 
e Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore   

H I G H L I G H T S G R A P H I C A L  A B S T R A C T

• Machine learning applications for four
critical biorefinery systems are
analyzed.

• Characteristics and limitations of com-
mon algorithms are summarized.

• Advancements against modeling tech-
niques of mechanistic approaches are
studied.

• Collective efforts for next-stage machine
learning applications are highlighted.
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A B S T R A C T

Biorefinery systems are playing pivotal roles in the technological support of resource efficiency for circular 
bioeconomy. Meanwhile, artificial intelligence presents great potential in handling scientific tasks of high- 
dimensional complexity. This review article scrutinizes the status of machine learning (ML) applications in 
four critical biorefinery systems (i.e. composting, fermentation, anaerobic digestion, and thermochemical con-
versions) as well as their advancements against traditional modeling techniques of mechanistic approach. The 
contents cover their algorithm selections, modeling challenges, and prospective improvements. Perspectives are 
sketched to further inform collective efforts on crucial aspects. The multidisciplinary interchange of modeling 
knowledge will enable a more progressive digital transformation of sustainability efforts in supporting sustain-
able development goals.   
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1. Introduction 

The significance of a circular bioeconomy has been put forward by 
the European Union to support climate actions as a part of the Paris 
agreement (Stegmann et al., 2020). By its definition, it aims to divert the 
disposal of waste streams and re-create their social-economic values, 
through upcycling their circularity within bioresource systems. Biofuels 
and bioproducts recovery from waste streams present a great potential 
to provide sustainability pursuits for energy and resources at a regional 
scale (Tsui & Wong, 2019). The resource recovery can be achieved via 
biological conversion methods (including fermentation, anaerobic 
digestion, and composting) in mild environments or via much faster 
thermochemical processes. The emerging policy agenda across countries 
are closely relevant to many researchers and decision-makers in 
exploring new strategies through cascading use of biomass, contributing 
to achieving the United Nations’ sustainable development goals. Despite 
this, there is a wide range of upcoming challenges that would determine 
the degree of success. Particularly, integrated biorefinery systems 
involve high-dimensional complexity that varies across different spatial 
and temporal circumstances, which adds complications to technological 
and policy formulations. 

Artificial intelligence technologies are playing increasing roles in 
engineering design and scientific research. Traditionally, approaches of 
mechanistic modeling have been mathematically developed to simulate 
the fixed assumptions of complex physical/ chemical / biological 
interaction within biorefinery systems, as well as computational fluid 
dynamics and heat/mass transfer inside their reactor designs (Tsui et al., 
2016; Clauser et al., 2021). The existing difficulties/ inefficiencies to 
model complex systems are making mechanistic assumptions, deter-
mining mathematical structures of various processes, and calibrating a 
large number of model parameters. Thus, when it comes to the details of 
implementation, the complication of diverse feedstocks, targeted bio-
fuels/ bioproducts, and pathways of biorefinery technologies have been 
more often managed by experimental methods, though they are known 
to be time-consuming, expensive, and manpower-intensive (Li et al., 
2021; Cruz et al., 2022). With the recent advance in Machine Learning 

(ML) algorithms, it provides researchers with more accessible opportu-
nities of developing new system efficiency in a solution approach that 
can directly build on available data. 

Recently, there has been a surge in ML applications for biorefinery 
systems. They are happening against the backdrop of digital trans-
formations required in each industry and academic discipline to address 
rising sustainability challenges of resource efficiency. Without a doubt, 
ML can expand the task scale which potentially provides new progress in 
modeling techniques of system prediction/ optimization. It can be asked 
whether this is finally the moment or if much more effort is still missing 
for such a regime shift in circular bioeconomy. Therefore, this review 
article aims to provide an updated examination of the fast-growing roles 
of ML and existing mechanistic modeling techniques on the four critical 
biorefinery systems (i.e. anaerobic digestion, composting, fermentation, 
and thermochemical conversion). The overall computational concepts 
and algorithms of ML are briefly summarized. The core review contents 
focus on the multidisciplinary interchange of modeling knowledge 
under the wide range of scientific tasks advanced by ML, where their 
targeted biofuels/bioproducts recovery, input parameters, and opti-
mized predictive algorithms are summarized. Based on the review 
findings, perspectives are sketched to convey research needs and future 
direction. 

2. An overview of machine learning 

Every ML application begins with a precise scientific/ technological 
task. Once the scope of ML tasks is defined, data collection can be pro-
ceeded, followed by sequential computational steps (Fig. 1). Data 
preparation is crucial in the high-quality development of predictive al-
gorithms. Particularly, biorefineries applying microbiological methods 
that consider systems biology can have a large number of features, 
whereas microarray datasets can contain up to sixty thousand features 
with several hundred samples. The data features could be prone to 
overfitting issues. Before ML computation, the process of feature selec-
tion (manual or automatic) allows for eliminating irrelevant features 
and retaining subsets of the most influential features for model training. 

Fig. 1. Summary of computational steps.  
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Feature engineering would cost more analytical efforts, but it can often 
improve the training data with better feature representation. The overall 
ML computational steps involve cycles of (i) model training – analysis of 
data patterns by algorithms; (ii) model validation – hyperparameters 
tuning to optimize the predictive performance; and (iii) model assess-
ment – testing by used and unused datasets (Fig. 1). There are different 
kinds of assessment metrics (such as confusion matrix and Gini coeffi-
cient), which depends on the type of ML model and the implementation 
plan. The brief introduction of common algorithms below provides a 
quick entry for readers with less ML background. As further illustrated in 
sections 3 and 4, algorithm selection could be challenging in the current 
research landscape of resource recovery, and it is determined by a wide 
range of factors (e.g. algorithm principle for data, modeling objective, 
computational constraints). 

2.1. Regression methods 

Regression analyses (e.g. the simplest form as the least squares 
method) have existed for many years to examine correlations between 
target outputs and independent variables. Their general limitations are 
the simplicity of inputs/outputs, so there could be a severe impact of 
outliers on performance. Common types of regression techniques 
include polynomial/logistic regression and their processing methods. 
For data not following linear relationships, polynomial methods can be 
applied for correlation by polynomial equations of the nth degree. Lo-
gistic methods can be used for discrete problems, and shrinkage methods 
(e.g. ridge regression) can be further used to handle data suffering from 
multicollinearity. Kernel smoothing is a non-parametric technique, 
whereas the computation process applies linear classifiers to non-linear 
needs by mapping non-linear data into a higher-dimensional space 
(Hastie et al., 2009). Compared to other ML algorithms, the overall 
advantages of regression methods are less complex to perform and with 
fast computational speed. 

2.2. Artificial neural networks 

Artificial neural networks (ANNs) are based on the biomimicry of 
how the human brain processes information and passes signals to other 
neurons in the next layer. During the model development, the neuron 
network (of hidden and output layers) learns data patterns by accord-
ingly adjusting the weights of each neuron and feeding back its pre-
dictions. For solving operations on the weighted sum of the neurons, 
activation functions (e.g. softmax function, sigmoid function, hyperbolic 
tangent function) have been developed to improve the performance 
(Karlik and Olgac, 2011). ANNs are appealing to model non-linear re-
lationships, and the advantages of high prediction accuracy are often 
observed even in high-dimensional inputs. Some examples of deep- 
learning architectures include recurrent neural networks, long short- 
term memory, convolutional neural network, spatiotemporal graph, 
and convolutional networks. The frameworks provide an efficient 
computational approach to handling time-series applications on bio-
refinery systems. However, their drawbacks are often described by their 
black-box nature of poor interpretability. Regarding this, model- 
agnostic methods (e.g. feature permutation and global surrogate 
models) can provide a more accessible way to interpret the ML 
computation. Since the development of accurate neural networks re-
quires a large data size, the computational costs are generally higher. 

2.3. Decision tree methods 

Decision tree methods are known for handling both classification and 
regression problems. Based on the hierarchical if/else questions, the 
tree-structure computation classifies the data inputs and derives de-
cisions from branches. Random forest (RF) and gradient boosting are 
two common ensemble methods. In terms of their fundamental differ-
ence, gradient boosting makes use of weak learners to improve 

prediction as a sequential method, whereas RF averages the results of 
decision trees to overcome each limitation. In terms of hyperparameter 
tuning, gradient boosting models tend to outperform an RF, but RF has 
fewer hyperparameters and can do satisfactory predictions even under 
sub-optimal tuning. Compared to other ML algorithms, tree-based 
models can be trained rapidly with lower computational costs, but 
they are also prone to overfitting. Pruning is a strategy to relieve the 
overfitting issue by removing excess branches. Through the introduction 
of a cost-complexity criterion, the general principle of pruning is based 
on the compensation between the goodness of fit and generalization 
capability (Schmidhuber, 2015). Due to the hierarchical nature, a high 
variance could be observed, when the training data is subjected to small 
changes. Another general characteristic of decision tree methods is their 
average performance on regression tasks. 

2.4. Support vector machines 

Support vector machines (SVMs) can handle regression and classi-
fication problems, and they are known for their capability for binary 
classification tasks. In principle, SVMs map training examples in space 
thereby distancing the width between the categories, and support vec-
tors of data points result in the hyperplane construction. For solving 
non-linear problems, data variables can be mapped into a high- 
dimension space by kernel functions (including radial basis functions 
and nth-degree polynomials). The computational tasks include pattern 
analysis of general types (e.g. clusters, classifications, and correlations). 
Least-squares SVMs are a well-known class of kernel-based methods. For 
many real-world applications across fields, SVMs have performed well in 
prediction (Somvanshi et al., 2016). For high-dimensional datasets of a 
limited size, they were also shown to yield good predictions, compared 
to other ML algorithms. However, SVMs are less ideal for large sample 
volumes and indirect probability estimation during cross-validation. 
Attributed by the way of support vectors in constructing hyperplanes, 
SVMs are generally shown to be less sensitive to outliers. 

3. Optimization of resource efficiency and modeling techniques 

Biorefinery experiments often need long-term trials, and the meth-
odological procedures also require sophisticated facilities. To illustrate 
the status of ML applications on biorefinery systems, this section sum-
marizes the specific examples of the latest research and how ML can 
optimize efficiencies in exploring resource recovery from waste streams. 
Each sub-section is started with a summary of these biorefinery pro-
cesses and mechanistic modeling, followed by a discussion of their ML 
methods aiding the application purposes (e.g. predictions, optimization, 
or other scientific tasks). 

3.1. Composting 

Aerobic composting is an effective approach to recycling agricultural 
wastes into nutrient-rich biofertilizers. Over the years, experimental 
researchers have been studying the factors (e.g. inoculum sources, C/N 
ratio, air supply, and pH) controlling compost maturity and other 
mechanistic phenomena (e.g. greenhouse gas emission, nutrients loss) 
(Ren et al., 2022; Sun et al., 2020). Composting systems can be operated 
in open environments (e.g. through agitated windrow patterns and static 
solid beds) or in-vessel bioreactors (of fixed, agitated, or rotating forms). 
During the temperature-rising phase, microbial activities emit a large 
quantity of heat themselves. The thermophilic environments (up to 
70–90 ◦C) can contribute to a greater rate and extent of organic degra-
dation. In terms of resource conservation, the high-temperature condi-
tions would lead to nutrient loss. In-depth modeling is important to 
understanding feedstock inputs (and other processing parameters) for 
energy transfer and nutrient conversion. By doing so, organics trans-
formation can be optimized by in-vessel systems (through temperature 
control, duration of microbial phases, features of bulking agent, turning 
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frequency, etc.). 
Quantitative models can assist in understanding how system features 

(i.e. feedstock characteristics and control measures) affect composting 
of different priorities (e.g. length of the composting regime, compost 
characteristics, pollution control). For example, the optimization prin-
ciple of aeration techniques can build on the simulation of oxygen 
consumption rates and patterns by microbial activities. For in-vessel 
composting of multiple substrates, six models were developed for indi-
vidually simulating the rate of change in oxygen, moisture, carbon di-
oxide, temperature, microbial biomass, and feedstock over the time 
scale. Mathematical models (mainly built on empirical equations, 
Monod-type equations, and first-order kinetics) can be used to describe 
the intermediate conversion patterns of biomass. Monod’s growth ki-
netics simulate biological-mixture decomposition and it could fit the 
kinetics requirements of major degradation. However, the application of 
Monod-type equations is less popular and it is often constrained by the 
experimental practicability of excessive variables. In contrast, the first- 
order kinetic equation is the most common application for composting 
simulation, although the method was less suitable to model organics 
conversion at constant temperature parameters. The detailed evaluation 
of biofertilizers currently mainly relies on plant growth testing and 
genomic sequencing. At the current stage, the modeling techniques that 
consider end-product compost regarding its safety, quality, and reuse 
performance were still not put into much attention. 

Currently, the research of ML on aerobic composting is still in the 
early stage. Table 1 summarizes the recent ML applications on aerobic 
composting, and the scope of scientific tasks can be divided into three 
aspects. Firstly, the agricultural interests of bioproduct qualities 
(including predictive variables of compost maturity, carbon dioxide 
emission, humification degree, and nutrient contents) (Ding et al., 2022; 
Li et al., 2022a; Hosseinzadeh et al., 2020). RF and ANN are commonly 
observed to have the best prediction performance, and the accuracy of 
R2 was usually > 0.9. Secondly, the monitoring of contaminant residues 
such as pesticides, hormones, and antimicrobials (Kyakuwaire et al., 
2019). The transfer of antimicrobial-resistant bacteria/ genes from an-
imal agriculture is a widespread consequence of antimicrobial use. Thus, 
the recycling process through composting has raised safety concerns in a 
circular bioeconomy. To monitor their effective degradation, re-
searchers have applied ML to study the tetracyclines reduction from 
chicken manure (Alavi et al., 2019). However, the recent progress of ML 
applications is far from the microbiological details to support the ex-
amination down to the gene level as well as further mitigation 

monitoring. For other contaminants such as bio-plastic degradation, 
Yamawaki et al. (2021) applied RF and XGBoost (extreme gradient 
boosting) to simulate the weight-loss ratio. However, the prediction 
accuracy was up to 0.38. Given that the analysis was based on a limited 
size of experimental data and there are no other similar applications 
(also based on 13C-CP/MAS spectra and initial crystallinity) for further 
comparisons, it cannot generalize implications at this review stage on 
whether existing ML algorithms have limitations to handle the predic-
tion of contamination and their correlated impacts. Thirdly, the opti-
mization needs of system design. The interpretive and optimization 
methods of ML can be applied to analyze conversion patterns in com-
posting. Soto-Paz et al. (2020) used the particle swarm optimization 
method together with ANN (accuracy of 0.97) to assist in the co- 
composting design of sugarcane filter cakes. Moncks et al. (2022) 
applied ML to develop a sensor adjustment method for the automatic 
monitoring of moisture content during composting. The accuracy (R2: 
0.9939) was further verified by gravimetric analysis and the prediction 
obtained by the sensor node. 

3.2. Fermentation 

Fermentation biorefineries can convert biomass into chemical 
building blocks and biopolymers (Zhang et al., 2021). Common building 
blocks include fatty acids (such as lactic, itaconic, butyric, and succinic 
acids) and alcohols (such as ethanol, 1,3-Propanediol, 2,3-Butanediol, 
glycerol, etc). Some popular examples of biopolymers from waste 
streams include alginate, polyhydroxyalkanoate, cellulose, glycogen, 
cyanophycin, xanthan, and dextran. The biopolymer types from the 
microbial processes can be summarized into four major categories (i.e. 
polyamides, polysaccharides, polyesters, and polyanhydrides). Common 
considerations for system designs include the availability of engineered 
or wild-type microbes, control methods of their metabolic pathways as 
well as nutrient requirements for fermentation. The biosynthesis effi-
ciency can also be controlled by networks of regulatory pathways sub-
jected to external stimuli, and the microbiological responses are a type 
of cell protection mechanism through carbon /energy storage. An effi-
cient simulation of the fermentation environments (such as the design of 
extracellular conditions and nutrient configurations) is crucial for 
screening/ prediction of technological options to inform economic 
feasibility. 

To analyze and optimize genome-scale pathways, mechanistic ap-
proaches build on modeling metabolic network reconstruction to study 

Table 1 
Key findings from the literature on composting.  

Biomass Scientific Tasks Major parameters Algorithms Best 
accuracy 

Reference 

Kitchen waste Prediction of composting 
maturity 

pH, C/N ratio, TOC, GI, EC, OM, nitrogen fractions, 
composting time, temperature, moisture 

KNN, LR, DT, SVR, 
RF 

RF; 
R2:0.975 

Ding et al. (2022) 

Compost Sensor adjustment for 
moisture monitoring 

Sample temperature, air temperature, humidity, 
sample moisture, days 

LR, MLP, IBK IBK; R2: 
0.9075 

Moncks et al. 
(2022) 

Green waste Prediction of carbon 
dioxide emission 

CO2, TOC, TN, C/N ratio, cellulose, hemicellulose, 
lignin 

AdaBoost, Bagging, 
GB, RF, kNN, DT 

RF; R2:0.88 Li et al. (2022a) 

Sugarcane filter cake Optimized design of co- 
composting 

Mixing ratio, Turning frequency, Temperature, pH, 
O2, TOC, TN, TP, Respirometric index 

ANN-PSO ANN; R2: 
0.97 

Soto-Paz et al. 
(2020) 

Cardboard, Boxwood leaves, 
Sawdust 

Prediction of total nitrogen 
& phosphorus conservation 

TN, pH, EC, C/N, NH4/NO3, TP, water soluble 
carbon, DEH enzyme 

LR, ANN ANN; R2: 
0.999 

Hosseinzadeh 
et al. (2020) 

Chicken manure, Bagasse Prediction of tetracyclines 
reduction 

Time, Tetracycline hydrochloride, oxytetracycline 
hydrochloride, chlortetracycline hydrochloride, 
bagasse fraction 

ANN ANN; R2: 
0.99 

Alavi et al. (2019) 

Bioplastic, Compost Prediction of weight-loss 
ratio in bioplastic 
degradation 

moisture content, degradation period, initial 
crystallinity, and features of 13C-CP/MAS spectra 

RF, XGBoost RF: R2: 0.38 Yamawaki et al. 
(2021) 

Chicken manure, Cow dung, 
Sewage sludge, Garden 
waste, Rice straw 

Prediction of humification 
degree 

categories at genus level, humic acids, fulvic acids, 
OM, TOC 

RF, LR RF; 
R2:0.9694 

Yang et al. (2022) 

Remarks: Instance Based Learner (IBK), Particle Swarm Optimization(PSO), Decision Tree (DT), LR (Linear regression), ML(Multilayer perceptron), GB(Gradient 
Boost), AdaBoost (Adaptive Boosting). 
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genetic information (such as associated phenotype of gene-protein- 
reaction) within the system biology (Bordbar et al., 2014; Zhang et al., 
2022a, Zhang et al., 2022b). Flux balance analysis and metabolic flux 
analysis are two common methods to study the reactions within the 
metabolic network. For example, flux balance analysis has also been 
used to understand of modulation of carbon flux distribution for the 
biosynthesis of ethanol and butanol (Kaushal et al., 2018). Metabolic 
flux analysis was applied to study pH influences on intracellular activ-
ities of β-lactamase producing Bacillus licheniformis (Çalik and İleri, 
2007). Compared to data-driven methods, mechanistic approaches 
based on existing knowledge allows the extraction of deeper patterns in 
the underlying mechanism. More mechanistic models can subsequently 
be developed for context-specific interests (Long et al., 2015). For 
example, the integration of omics data can help study the metabolism 
under different conditions (Rai & Saito, 2016), where the data could also 
be used for validation and searching for solution space. The modeling 
methods have been widely applied for many bioproducts/ bio-
processing, including lipids, chemicals, food, and recombinant proteins 
(Calmels et al., 2019; Huang et al., 2020; Parichehreh et al., 2019; 
Aminian-Dehkordi et al., 2020). Conventional methods for achieving 
optimal fermentation conditions are through uniform design, orthog-
onal experimental design, and response surface methodology (RSM). 

The development of integrated mechanistic models is increasingly 
challenging due to the fast-growing data size and dimensions. Table 2 
summarizes the recent ML applications on fermentation biorefineries 
(including microbial lipid, bioethanol photo-fermentation, bacterial 
cellulose, etc.). To optimize fermentation conditions, researchers mainly 
apply ANN and SVM to build models. The predictive advantage of ANN 
against the conventional RSM method was investigated in the case of 
lipase production (Nelofer et al., 2012). Patil et al. (2017) similarly 
observed the advantage of ANN (over SVM and also RSM) for recovery 
prediction of arginine deiminase by Pseudomonas putida. In other similar 
comparisons, ANN often demonstrates a better performance of both R2 

and adjusted- R2 values (Sydney et al., 2020; Monroy et al., 2018). In 
view of potentially obtaining local optimum and slow convergence, 
genetic algorithms can be together applied for searching optimum so-
lution sets. In an application study of dark fermentation using Box- 
Behnken design, a hybrid approach that combines an ANN and RSM 

was applied to accelerate convergence and identification of critical pa-
rameters (Wang et al., 2021a). In a recent study of lipid fermentation 
from cellulosic ethanol wastewater, ANN and SVM were compared for 
their predictive performances on organic degradation, lipid, and 
biomass yields (Zhang et al., 2020). Regarding the scale of omics data-
sets, ANN possesses an appealing advantage in supporting the data 
analysis. For training models from smaller samples in similar applica-
tions, SVM is often more capable of locating optimal solutions than ANN. 
For other ML algorithms, RF and SVM were reported to predict the 
output targets (of solid recovery and cellulose enrichment) from 
cellulose-rich materials (Phromphithak et al., 2021). In this investiga-
tion, the best performance was achieved by RF, and the R2 coefficients 
were 0.94 and 0.84, respectively. RF was also recently applied for 
fermentation prediction in microbial electrolysis cells (Wang et al., 
2021b). While the most recent ML applications focus on the direct 
optimization of operating parameters (Dong and Chen, 2019; Ahmad 
et al., 2021; Vinitha et al., 2022), it has great potential for broader 
guidance (e.g. pathways control by gene-annotated strain in metabolic 
engineering) (Hannigan et al., 2019). It deserves more ML research ef-
forts (e.g. gene editing targets for rational strain designs). 

3.3. Anaerobic digestion 

Anaerobic digestion is a recognized approach for the large-scale 
recycling of organic waste into bioenergy and digestate which is a po-
tential organic fertilizer. Compared to the previous two biological 
methods (i.e. composting and fermentation), anaerobic digestion sys-
tems rely more on the balanced functional structure of diverse microbes 
to degrade organic matters, where a disturbance in the synergistic bal-
ance can directly affect reaction stability (Tsui et al., 2021; Lee et al., 
2022a,b). In terms of system designs, the physiology and engineering 
requirements of methanogenic microorganisms fundamentally differ 
from acidogenic and acetogenic microbes. Different reactor configura-
tions (e.g. continuously stirred tank reactor, leach bed reactor, fixed bed 
reactor, sequencing batch reactor, phase-separated system, and up-flow 
anaerobic sludge bed) have been developed for different operational and 
optimization needs (Tsui et al., 2018; Mao et al., 2021a,b). 

Quantitative models are essential for understanding and optimizing 

Table 2 
Key findings from the literature on fermentation.  

Biomass Scientific Tasks Major parameters Algorithms Best 
accuracy 

Reference 

Cheese whey Prediction of hydrogen 
fermentation volume 

pH, COD, HRT, Fe, Ni, Biomass proportion, Ethanol, 
Acetate, Butyrate 

GB, SVR, RF, 
AdaBoost, MLP, LR, 
RR 

GB; R2: 
0.985 

Hosseinzadeh et al. 
(2020) 

Tea, Sugar Recovery prediction of bacterial 
cellulose from Kombucha 

Mass and concentration of feedstocks, Mass of 
inoculum, pH, Duration, Temperature, Types of tea 
extracts 

LR, XGB, PL XGB; R2: 
0.9048 

Priyadharshini 
et al. (2022) 

Date pulp waste Prediction of lactic acid 
production 

pH, HRT, batch/ cyclic mode, enzymatic, and non- 
enzymatic pretreated samples 

ANN ANN; 
R2:0.99 

Ahmad et al. 
(2021) 

Cellulosic ethanol Prediction of microbial lipid 
fermentation 

Biomass concentration, Time, Glucose concentration BP-ANN, SVM SVM; R2: 
0.996 

Zhang et al. (2020) 

Corn stalk Prediction of biogas 
fermentation 

Weight, Ultrasonic duration, Single/dual-frequency, 
Alkali pretreatment time 

LS-SVM LS-SVM; 
R2: n.a. 

De Clercq et al. 
(2019) 

Mixed streams Prediction of cellulose recovery Cellulose enrichment factor, Solid recovery, 
Lignocellulosic characteristic, Pretreatment condition, 
ILS identity, Catalyst loading 

SVM, RF, GB RF; R2: 
0.94 

Phromphithak 
et al. (2021) 

Lignocellulosic 
hydrolysate 

Identification of important 
genus in hydrogen electro- 
fermentation 

Taxonomical information (Anode &cathode), 
Electrochemical performance 

RF RF; R2: n.a. Wang et al. (2021a, 
b) 

Mixed streams Optimization of bioethanol 
production 

Biomass characteristics, Enzymatic saccharification 
process parameters, Glucose yield, Fermentation 
process parameters, Ethanol yield 

SVM SVM; R2: 
0.9762 

Vinitha et al. 
(2022) 

Sugarcane vinasse Prediction of hydrogen 
production rate 

Lactate, Acetate, Propionate, Butyrate, Time ANN ANN; 
R2:0.987 

Sydney et al. 
(2020) 

Acetate, Butyrate, 
Sodium glutamate 

Prediction of photo- 
fermentations rate 

Time, Iron, Vitamin, Molybdenum, Light intensity, pH ANN ANN; 
R2:0.939 

Monroy et al. 
(2018) 

Remarks: PL (Polynomial regression); BP(Backpropagation); RR(Ridge regression). 
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the implementation of anaerobic digesters, especially in evaluating en-
ergy balance and mitigation measures for improved economic sustain-
ability (Tsui et al., 2022a, Tsui et al., 2022b). Simplified models are 
primarily based on empirical and kinetic methods. Empirical oxide- 
reduction reactions theoretically assume the complete organic degra-
dation into carbon dioxide, methane, and other simple compounds. 
Since the methods do not incorporate factors (such as microbial growth 
and inhibition), they are good at the fast estimation of simple substrates 
(e.g. lactose and sucrose) but not process monitoring/ control. Fitzhugh 
model, cone model, transfer function, and modified Gompertz model are 
the most common kinetic models to simulate methane yields (Tsui et al., 
2020). Anaerobic Digestion Model No. 1 (ADM1) is a comprehensive 
method that incorporates a wide range of kinetic equations. It has been 
proven the scale-up feasibility for simulating the impacts of substrate 
effects and operating modes on digester (Fatolahi et al., 2020). How-
ever, due to the complexity of physicochemical reactions and microbial 
conversions, the incomplete understanding of possible mechanistic re-
lationships may hinder the prediction needs, and it also requires sig-
nificant efforts for parameter calibration. 

Data-driven ML technique is more independent of solving in-
teractions involved in the ADM1 model, since the prediction could be 
entirely built on available data. Table 3 summarizes the most recent ML 
application of anaerobic digestion. ML algorithms are able to handle 
high-dimension data, but the selection of appropriate algorithms for 
anaerobic digestion has been shown to be critical to achieving the 
modeling purpose. Several ML algorithms (e.g. ANN, RF, SVM, k-nearest 
neighbors) and adaptive neuro-fuzzy interference systems (ANFIS) have 
been often applied for modeling the non-linear relationships in AD ap-
plications (Wang et al., 2020; Alejo et al., 2018; Park et al., 2021; Li 
et al., 2022b; Zareei and Khodaei, 2017). However, as shown in Table 3, 
there is no dominant advantage of a single algorithm having such a 
generalization ability for different scientific tasks. The different perfor-
mances could be due to the variable format in their datasets as well as 
the design variation of biological systems. For the reactor configuration 
of upflow anaerobic sludge bed, a good prediction accuracy (R2: 0.9793) 
of methane yields was achieved by the ANN model (Antwi et al., 2017). 
In the application of biogas prediction, ANN models are more effective 
on a controlled laboratory scale, while RF and XGBoost seem to be more 
accurate for industrial digesters of complex feedstocks (De Clercq et al., 
2019 & De Clercq et al., 2020; Tufaner and Demirci, 2020). In anaerobic 
co-digestion of lignocellulose wastes (e.g maize straw and spent 

mushroom compost), ANFIS models were shown to have a better pre-
diction of biogas performance (Najafi & Ardabili, 2018). Apart from 
biogas prediction/optimization, researchers also applied ML to study 
changes in effluent quality (e.g ammonia) in two-phase reactors system 
(Alejo et al., 2018). The beneficial use of zero-valent iron an additive for 
promoting methane enhancement by syntrophic communities was 
analyzed by ML application (Xu et al., 2021). Besides, Long et al. (2021) 
investigated genomic data for identifying key microbial species and 
control strategies, where the best prediction accuracy of R2: 0.82 was 
achieved by RF. Though the datasets were obtained from limited 
experimental studies, the study provided an important exploration of 
genomic data for the prediction of complex interactions. Factually, the 
characteristic of the microbial community is known to be more deter-
mined (than short-term operating parameters) on the performance of 
anaerobic digestion (Vendruscolo et al., 2020). 

3.4. Thermochemical conversions 

Through the thermochemical processes of torrefaction/pyrolysis/ 
gasification, the product outputs from biomass include syngas, bio-oil, 
and biochar. A hydrothermal method is a type of variation that em-
phasizes application for wet biomass (Song et al., 2021; Li et al., 2020b). 
Compared to the methods of biological conversion, thermochemical 
conversion requires more energy input in the presence of gasifying 
agents, and the conversion rate is much faster. Key controlling param-
eters include heating rate, temperature range, retention time, and 
catalyst applications. The reaction chemistry and fluid dynamics of 
thermochemical processes are sensitive to reaction conditions and 
feedstock properties. For example, bio-oil and syngas are the major 
products at low residence times (with high heating rates). In general, 
gasification (temperatures of >600 ◦C) favor secondary cracking re-
actions and syngas production which can be used for energy generation 
or chemical synthesis. At a lower temperature range (400 to 550 ◦C), 
bio-oil is generally observed in higher yield. A lower temperate (with an 
extended residence time) in torrefaction and slow pyrolysis could in-
crease the amount of biochar recovery. 

Modeling efforts for thermochemical processing include reactor 
configuration, process monitoring, and product upgrading. Operators 
can control process parameters (e.g. gasifying agents, biomass charac-
teristics, pressure, and temperature) to deliver their ideal outputs. The 
approaches mainly include kinetic methods, thermodynamic 

Table 3 
Key findings from the literature on anaerobic digestion.  

Biomass Scientific Tasks Major parameters Algorithms Best accuracy Reference 

Poultry manure Ammonia prediction in two-phase 
system 

TVS, COD, initial TAN ANN, SVM SVM; R2: 0.898 Alejo et al. (2018) 

Wheat straw Co-digestion design C/N ratio, temperature, retention time LR, ANN, ANFIS ANFIS; R2: 0.9996 Najafi & Ardabili. 
(2018) 

Mixed streams Input study for industrial-scale system Waste types (Food waste, percolate, 
chicken litter, fish waste, etc.) 

LR, SVM, RF, XGBoost, 
kNN 

kNN; R2: 0.87 De Clercq et al. 
(2019) 

Diverse streams Identification of key microbial species 
for control strategies 

Genomic data, VFAs, temperature, OLRs, 
HRT 

GLMNET, RF, kNN, 
ANN, XGBoost 

RF; R2:0.82 Long et al. (2021) 

Sewage sludge & 
Swine manure 

Bioenergy enhancement by zero-valent 
iron 

TS, vS COD, ISR, pH, temperature, dosage, 
particle size 

RF, XGBoost, ANN XGBoost; R2: n.a Xu et al. (2021) 

Food waste Prediction in continuous system pH, alkalinity, COD, VFA RF, XGboost, SVR, 
RNN 

RNN; R2: 0.9731 Park et al. (2021) 

Mixed streams Identification of key feedstock 
composition for biogas prediction 

TC, TN, C/N ratio, cellulose, xylan, lignin, 
glucan content, temperature 

RF, GLMNET, SVM, 
kNN 

GLMNET; R2: 0.73 Wang et al. (2020) 

Mixed streams Optimization of operating parameters C/N, VS/TS, HRT, OLR, pH, SCOD, 
temperature, biochar dosage 

Ensemble model GBR &SVR; 
R2:0.82& 0.86 

Li et al. (2022b) 

Mixed streams Biogas prediction for industrial-scale 
digesters 

Loading rates, waste types RF, EN, XGBoost XGBoost; R2:0.88 De Clercq et al. 
(2020) 

Cow manure & 
Maize straw 

Optimization of mixing intensity C/N ratio, TS, mixing intensity ANFIS ANFIS; R2: 0.99 Zareei & Khodaei. 
(2017) 

Bovine & Swine 
Slurry 

Network analysis of microbial 
communities 

Relative abundance of each taxon RF RF; R2: n.a. Vendruscolo et al., 
2020 

Remarks: ANFIS (adaptive neuro-fuzzy interference system), LR (Logistic regression), EN (Elastic net), RNN (Recurrent neural network), GB (Gradient boosting). 
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equilibrium, and computational fluid dynamics (CFD). Kinetic methods 
can simulate variables in temperature profiles and outputs composition 
under non-steady phases. Due to the microscopic complexity (e.g 
gas–solid contact, particle size evolution), good accuracy is usually 
difficult to achieve, and research efforts are ongoing to combine rate 
laws and CFD models for improved computation. Depending on the 
methodology (e.g Eq-sing or Eq-separate method), thermodynamic 
equilibrium can simulate maximum product output under ideal condi-
tions (e.g. fully mixed conditions) and also actual yields (through 
empirical adjustments and reaction factors) (Cerinski et al., 2021). To 
consider the non-equilibrium product distributions, kinetic methods are 
necessary to assist the prediction. The overall predictive capability of 
thermochemical models builds on as much as consideration of all re-
actions and transport phenomena, but details are ignored to simplify 
assumptions of some cases. For instance, conversion reactions of hy-
drocarbon species (e.g. tar formation) are ignored in gasification 
systems. 

As discussed, one challenge of thermodynamic equilibrium models is 
to handle a large number of mechanistic assumptions, while a reduced 
accuracy could be observed when the process conditions (e.g. low- 
temperature gasification) derail from equilibrium (Safarian et al., 
2019). Researchers have applied ML algorithms (e.g. RF, SVM, ANN, and 
GB) to predict the gaseous products, bio-oil, and char yields from diverse 
waste streams. Through the parameter inputs of elemental analysis and 
chemical constituents, ML algorithms were compared to predict the 
heating value from different biomass (with the best accuracy of R2 >

0.94 by RF) (Xing et al., 2019). Table 4 summarizes the recent publi-
cation of ML applications on thermochemical conversion. The algo-
rithmic optimization together with ML models has shown the advantage 
of automated solutions searching against conventional methods (e.g. 
trial-and-error-based and RSM methods). With the help of feature se-
lection by genetic algorithm, ML algorithms were compared for the 
prediction of bio-oil yield (best accuracy of R2 > 0.98 by RF) (Ullah 

et al., 2021). For ML application of other biofuels, the recovery of 
methyl levulinate from waste peanut shells (using catalytic conversion 
at a lower temperature) was investigated by ANN (optimized by a ge-
netic algorithm) (Li et al., 2020a). Direct hydrogen production as a 
biofuel has also been of interest to researchers (Tang et al., 2020; Li 
et al., 2022c). Traditionally, the non-linear systems relationships are 
difficult to be managed by building lots of assumptions. For the next 
stage of research efforts, more modeling explorations on environmental- 
friendly methods (e.g. suitable use of catalysts) and reactor designs (e.g. 
solar and microwave-assisted gasification) are important (Foong et al., 
2020). Furthermore, the combined use of ML algorithms and optimiza-
tion techniques shows great potential for their multi-objective optimi-
zation (e.g lower exhaust emission and higher utilization efficiency of 
engine performances). 

4. Perspectives on research needs and future direction 

The above sections examine the recent ML applications in each 
biorefinery system as well as the status of mechanistic approaches for 
mathematical modeling. As discussed, mechanistic approaches alone 
cannot often be squarely handled for all modeling needs, and it has 
resulted in most researchers/ engineers tending to use simplified 
models. In the past, artificial intelligence technologies could never 
become a standard tool in biorefinery or the larger context of circular 
bioeconomy, but it is clear that recent ML developments have triggered 
more interest by researchers, as reflected by the recent surge of publi-
cations on the topic. This review article illustrates the wide range of 
feasibility for ML modeling and process control of bioproduct/ biofuel 
recovery. ML can serve as an important modeling tool for solving non- 
linear relationships, but the performance of different algorithms var-
ied in those scientific tasks. The review findings indicate there is no 
single algorithm perfect (or sufficiently robust) for all modeling needs of 
targeted resource efficiencies. Thus, the updated summary of their 

Table 4 
Key findings from the literature on thermochemical conversions.  

Biomass Scientific Tasks Major parameters Algorithms Best accuracy Reference 

Agriculture & forest waste, 
Algae 

Prediction of gaseous products AC-FC-V, CHNO, Highest temperature, 
Heating rate, Particle size, Sweep gas flow 
rate 

RF, SVM RF; R2: 
0.85–0.87 

Tang et al. (2021) 

Lignocellulosic biomass, 
Herbaceous plant, Algae- 
based feedstock 

Prediction of bio-oil yield Particle size, Nitrogen flow rate, AC-FC-V, 
CHNO, Heating rate, Highest Temperature 

SVM, RF, DT, MLR RF; R2: 0.98 Ullah et al. (2021) 

Lignocellulose biomass Prediction of biochar yield and 
carbon contents 

Pyrolysis conditions, Lignin, Cellulose, 
Hemicellulose, AC-FC-V, CHNO, Particle 
size 

RF RF; R2:0.8548 Zhu et al. (2019) 

Fermentation biomass Prediction of remaining 
residuals 

Heating rate, Temperature, Weight loss at 
various heating rates 

SVM SVM; 
R2:0.9999 

Shahbeig and 
Nosrati (2020) 

Mixed streams Prediction of product 
distribution and bio-oil 
heating value during fast 
pyrolysis 

Fluidization number, Pyrolysis 
temperature, AC-FC-V, CHNO, Particle size 

ANN, SVM ANN; R2: 
0.988 

Chen et al. (2018) 

Waste peanut shells Optimization of methyl 
levulinate yield 

Ratio of waste peanut shells to methanol, 
Metal sulfate loading, Reaction 
temperature, Reaction time 

ANN-GA ANN; R2: 0.89 Li et al. (2020a) 

Mixed streams Prediction of bio-oil yield and 
hydrogen contents 

Ash content, CHNO, Highest temperature, 
Heating rate, Liquid oil production, 
Particle size, Nitrogen flow rate 

RF, MLR RF; R2: 0.92 
& 0.79 

Tang et al. (2020) 

Lignocellulosic biomass Prediction of solid products 
from biomass torrefaction 

Moisture content, CHNO, Ash content, 
Sample size, Residence time, Temperature, 
Fractions of reacting gas 

Lasso, Ridge regression, 
KRR, DT, AdaBoost, GB, 
RF, ET, kNNs, SVM 

GB; R2:0.9 Onsree and 
Tippayawong 
(2021) 

Mixed streams Optimization of hydrothermal 
gasification conditions 

Biomass characteristics, Temperature, 
Pressure, Catalyst loading, Solvent to 
biomass ratio, Residence time, Product gas 
yield 

Random Forest RF; R2:0.9878 
&0.9865 

Gopirajan et al. 
(2021) 

Fruits, Agri-wastes, 
Briquettes/pellets, 
Industry wastes, Forest 
wastes 

Prediction of biomass HHV 
from ultimate or proximate 
analysis 

Mass fractions of fixed carbon, Volatile 
matter, Ash, CHNO 

ANN, SVM, RF RF; R2: 0.94 Xing et al. (2019) 

Remarks: MLR(Multi-Linear regression), GA (Genetic algorithms), ET (Extremely-randomized trees), KRR(Kernel ridge regression). 
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algorithmic performances has become more crucial for reference by 
researchers. Based on the above findings, prioritization can be made to 
explore algorithms according to their proven applicability. 

Currently, data quality could be a major challenge for the next-stage 
ML application. During the review process, it was observed that using 
homogeneous datasets from the same research group often led to better 
prediction performance. And for studies collecting data from literature 
of experimental research, there is often a lack of clear consistency or 
clarity of data processing reported by researchers. One good example of 
data concerns is anaerobic digestion. Experimental studies have been 
observed for inconsistencies in their analytical methodology (e.g 
whether the BMP protocol was applied). The uninformed practices could 
lead to significant differences in models’ training and the results of 
model comparison. Therefore, a lack of data protocol for each bio-
refinery system is a crucial factor hindering concrete guidance of what 
approaches are potentially more applicable for the data training and 
follow-up applications. It will be valuable to understand the impacts of 
data quality (including experimental designs and data processing steps) 
on computational improvement. In parallel efforts, experimentalists 
should be informed about data specification for improving experimental 
designs more systematically. 

Algorithms with simpler structures are often stereotyped as having a 
less ideal performance for complex relationships, while those complex 
structures (e.g. ANN) might achieve better performance but less inter-
pretability. While approaches (such as partial dependence analysis) 
were developed to support a partial interpretation of internal ML 
mechanisms, only very limited studies have further applied them in 
recent biorefinery publications. It was also seldom addressed by re-
searchers whether their improved performance comes with increasing 
computational costs (e.g. larger size of training data and more data 
processing). Researchers need to consider the tradeoffs between accu-
racy needs and computational costs. For example, simple models may 
present advantages for real-time process control as compared to com-
plex algorithms. Developing new strategies of ensemble learning models 
and more robust evaluation approaches will be important to meet the 
increasing needs of different scientific tasks. The field of ML had started 
to grow for some years, but in the biorefinery community, with very few 
exceptions, a lag of about 3–5 years was observed in their application 
status. For future direction (already happening in artificial intelligence 
frontiers), the combination of rapid computation and reliable data 
sources can offer opportunities for the creation of digital twins and 
therefore better process/ tracking control (e.g. high-frequency adaptive 
optimization and blockchain technologies), leading to more innovation 
systems in circular bioeconomy. The intergenerational well-being from 
global climate actions needs more innovations for sustainability pur-
suits, and these will require more scientific & technological progress 
from collective efforts. 

5. Conclusions 

Recent progress in machine learning (ML) provides more accessible 
opportunities for digitalization to biorefinery communities, contributing 
to a more progressive development of a circular bioeconomy. The joint 
innovation will unfold new potentials of sustainability efforts as a sys-
tems approach to supporting sustainable development goals. This review 
article systematically examines the status of recent ML applications for 
four critical biorefinery systems (including composting, fermentation, 
anaerobic digestion, and thermochemical conversions) as well as their 
advancement of scientific/ technological tasks. Perspectives are 
sketched to convey research needs and future direction. 
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