
Impact of audio codec and quality on genre classificaton and BPM recognition in
Essentia

Sjoerd Hulleman
Supervisors: Cynthia C. S. Liem , Jaehun Kim

EEMCS, Delft University of Technology, The Netherlands
{s.hulleman}@student.tudelft.nl, {c.c.s.liem, j.h.kim}@tudelft.nl

Abstract
Music Information Retrieval (MIR) is a field of re-
search that focusses on extracting information from
music related data. This includes the genre of mu-
sic and the beats per minute (BPM) of a song.
Pipelines that extract this information from mu-
sic are called feature extractors. Essentia is a li-
brary for such feature extraction. Often, the audio
codec and quality is not considered in research se-
tups within the field of MIR, while this could have
an influence on the results. Therefore the main re-
search question is ”How do different audio codecs
and audio quality impact genre classification and
beats per minute (BPM) recognition in Essentia?”.
To answer this, the genre has been narrowed down
to rock and the chosen audio codecs are FLAC,
MP3 LAME and OGG Voribs. In collaboration
with Muziekweb, a Dutch music library that col-
lects all music that has been released in The Nether-
lands, it was possible to gather music files in loss-
less format. To degrade the audio quality, clas-
sify songs and recognize BPM, python pipelines
for codec conversion, rock genre classification and
BPM recognition were created an ran on this data.
It has been concluded that changes in audio codec
and quality have an influence on genre classifica-
tion and BPM recognition in Essentia. It has not
been concluded which codec and quality is best to
use in the field of MIR. Further research is needed
to answer this.

1 Introduction
Music Information Retrieval (MIR) focuses on extracting
audio features from music, such as tempo, genre and tone.
Genre classification and BPM recognition are part of the
practice of Music Information Retrieval. Feature extractors
transform music into numbers such as rhythm descriptors
and tonal descriptors. These numbers are used in pipelines to
automatically associate humanly meaningful information to
these numbers. In many cases these feature extractors make
use of machine learning techniques (Liem and Kim, 2021),
which will also be the case for this research. Essentia is such
a feature extractor. It ”is an open-source C++ library for

audio analysis and audio-based music information retrieval”
(Essentia, 2019).

Over the past years it has been questioned if machine
learning procedures which extra audio features actually
extract musically meaningful information (Liem and Kim,
2021). From this, the background of this research originates.
Earlier research has been performed on this subject. Urbano
et al. (2014) researched the robustness of some of the popular
music signal features with varying audio quality. Their
results showed that these are robust within reasonable limits.
In this context, robustness means that the extracted features
have little to no change compared to the results with the
original audio quality.

Liem and Mostert (2020) have conducted research, from
which it is concluded that audio quality and codecs could
have an influence on results of feature extraction. However,
this is not concluded with certainty. Furthermore, lossy
formats ”distort the original signal and therefore may affect
the computation of descriptors” (Urbano et al., 2014).

In the field of MIR, datasets are not always supplied
with their original music corpus. This means researchers
will have to obtain the music files themselves (Urbano et al.,
2014). A reason for datasets not including original music
files can be copyright. Spreading original music files without
the artist’s permission is not legal. In the end this means that
MIR is often based on music that may use different audio
encodings (Urbano et al., 2014).

According to Liem and Mostert (2020), anomalous be-
haviour in feature extraction can be caused by audio codecs
and compression rates. These are also ”rarely explicitly
considered and reported in evaluation setups” (Liem and
Mostert, 2020). This means we are not sure if audio codecs
and compression rates have an impact on audio feature
extraction.

Impact of audio quality and codecs therefore is an im-
portant subject to research, since this can possibly have
a major impact on performance of, for example, genre
classification. Essentially, if an audio file is encoded with
a lower bitrate, meaning less bits are used per second, less

1

Delft University of Technology, In Partial Fulfilment of the Requirements For the Bachelor of Computer Science and Engineering



data is present in the file. This is a loss of information,
thus a music extractor will have less information to use. If
audio quality and codec has a large impact on this process, it
should always be considered when performing audio feature
extraction.

This research focuses on the following research ques-
tion: ”How do different audio codecs and audio quality
impact genre classification and beats per minute (BPM)
recognition in Essentia?”. In this research, the FLAC (Free
Lossless Audio Codec) encoding will be used as the original
lossless format. This will then be degraded to different MP3
and OGG encodings with different bitrates, which are lossy
encodings. The research will be split into the following
sub-questions:

1. What is the performance of genre classification with
FLAC encoding?

2. What is the performance of BPM recognition with
FLAC encoding?

3. How is genre classification influenced by MP3 qual-
ity/bitrates?

4. How is genre classification influenced by OGG qual-
ity/bitrates?

5. How is BPM recognition influenced by MP3 bitrates?

6. How is BPM recognition influenced by OGG qual-
ity/bitrates?

The paper is structured as following, the data, algorithms and
pipelines are discussed in section 2. The results of the re-
search are shown with accompanying figures in section 3. In
this same section these results will be discussed and conclu-
sions will be drawn. Future work will be presented in section
4. In section 5, the context of responsible research will be
discussed.

2 Methodology
In this section, all components needed for the research and
their details will be discussed. In subsection 2.5 it is ex-
plained how these components are combined and in the final
subsection the retrieval of results is explained. The code used
for this research and the results of the research can be found
on a GitLab1 repository.

2.1 Essentia
To conduct this research, Essentia was used. With this library,
a Python environment was set up to process the audio files
and extract audio features. The audio features which were
used for this research are genre and BPM.

2.2 Dataset and justification
To be able to conduct research on audio, a dataset is needed.
In this case, this audio was rock music. To justify the choice
of rock music, results of previous work of Sturm (2014)
were used. This work researched the effects of ”irrelevant

1https://gitlab.ewi.tudelft.nl/cse3k-21q2-music-faithfulness/
project-sjoerd-hulleman

transformations” on audio files to genre classification.
Irrelevant transformations are transformations on the music
audio files which do not change the music itself. This can for
example be the addition of white noise or a change in bitrate
or encoding.

Figure 1 shows the results of Sturm (2014). From these re-
sults it can be concluded that the genre classifiers ”rock pop”,
”metal punk” and ”jazz blues” are most sensitive to these
transformations. Therefore it will be interesting to research
if audio codecs and quality will have a major impact on the
classification of these genres. This research will focus on the
genre rock , following from the ”rock pop” classifier used by
Sturm (2014).

To evaluate the robustness, often a ground truth is needed.
A ground truth means in this case, a dataset which has the
correct labels which describe the genre and BPM of the
songs included. In collaboration with Muziekweb, it has
been possible to create a large dataset of music. Muziekweb
is a Dutch music library which exists since 1961, they
collect all music that has been released in The Netherlands
(Muziekweb, 2021b). Muziekweb is run by a team of music
professionals, among which musicologist (Muziekweb,
2021a). In collaboration with the TU Delft, they can provide
songs based on our needs. All songs were labeled with their
genre. This way it was possible to create a dataset which had
a ground truth.

Gathering data within the field of music information re-
trieval can be challenging due to copyright issues. It is not
possible to simply share artists’ full music without making
agreements. Therefore the research group has signed a data
delivery and non-disclosure agreement with Muziekweb,
which means we cannot share the music with anyone.

To create a dataset of rock songs, the rock page of
Muziekweb has been explored. From this, 66 albums
within the rock genre have been selected. This was done
by hand-picking albums on the rock page of Muziekweb2.
Hand-picking these albums should not have influenced the
results of this research, since these albums have already been
classified within the rock genre by the experts of Muziekweb.
The total songs in all albums amount to 1003 songs. These
songs are produced by 53 different artists.

2https://www.muziekweb.nl/en/Link/T00000000354/Rock

2

https://gitlab.ewi.tudelft.nl/cse3k-21q2-music-faithfulness/project-sjoerd-hulleman
https://gitlab.ewi.tudelft.nl/cse3k-21q2-music-faithfulness/project-sjoerd-hulleman
https://www.muziekweb.nl/en/Link/T00000000354/Rock


Figure 1: Genre classification before (left) and after (right) transformations. Reprinted from ”A Simple Method to Determine if a Music
Information Retrieval System is a ‘Horse’”, by Sturm B. L., 2014, IEEE Transactions on Multimedia, 16(6), p. 1636-1644.

3



2.3 Codecs and quality
Changing audio quality and codec was done with the Au-
dioSegment module of the Pydub library (Jiaaro, 2021). This
library internally uses the FFmpeg library which can convert
to LAME MP3 VBR (Variable Bit Rate) and OGG Vorbis for-
mat (FFmpeg, 2014). A Python pipeline was created to load
all FLAC files provided by Muziekweb and then convert them
into the following codecs:

• MP3 96 kbps
• MP3 128 kbps
• MP3 256 kbps
• MP3 320 kbps
• OGG Vorbis 64 kbps
• OGG Vorbis 96 kbps
• OGG Vorbis 128 kbps
• OGG Vorbis 320 kbps

FLAC is a lossless audio codec, this means ”audio is com-
pressed in FLAC without any loss in quality” (Xiph, 2019).
The audio files supplied by Muziekweb were in CD quality,
meaning it is at 44100 Hz sample rate at 16 bit. This is one of
the highest digital audio qualities and therefore was suitable
to function as the ground truth data quality for this research,
which also functions as the data to answer sub-questions 1
and 2.

MP3 is also called MPEG-1/2 Layer-3, which is an
open standard (Brandenburg, 2001). This means anyone
can create an encoder and decoder which complies with the
MP3 standard. The difference in MP3 encoders/decoders lies
within the method of decoding and encoding. This method
can be patented by companies. Companies cannot be owner
of the MP3 standard (Brandenburg, 2001).

The bitrate range of the MP3 standard is 96 kbps to
320 kbps (Adobe, 2022). Kbps means kilobits per second,
so how many bits are used to encode the audio signal every
second. This is a lossy format, this means ”the higher
the compression ratio becomes, the lower the resulting
final audio quality” (Hans and Schafer, 2001). A higher
compression ratio means a lower bitrate.

MP3 encoders can encode with CBR, VBR and ABR.
CBR stands for Constant Bitrate, this means the encoder will
encode on a preset bit rate (e.g. 320 kbps) over the entire
file. VBR is Variable Bitrate, this means the encoder will
only write as many bits as needed to create a MP3 file. An
advantage of VBR over CBR is that it will use less space for
the same bitrate. However the file size of a CBR encoded
file is predictable, that of a VBR encoded file is not due
to the variable amounts of bits used every second. ABR,
Average Bitrate, is a comprimise between VBR and CBR. It
is supplied with a target bitrate and varies its encoded bits
around that target bitrate (Hydrogenaudio, 2020).

LAME is an encoder/decoder within the MP3 standard.
It is open source licensed. Currently ”LAME is considered

the best MP3 encoder at mid-high bitrates and at VBR”
(LAME, 2017). The development of LAME mainly focuses
on increasing the speed and quality of encoding.

OGG Vorbis is a ”fully open, non-proprietary, patent-
and-royalty-free, general-purpose compressed audio format
for mid to high quality (8kHz-48.0kHz, 16+ bit, polyphonic)
audio and music at fixed and variable bitrates” (Xiph, 2016).
This means OGG Vorbis also is a lossy codec. OGG Vorbis
has a better compression rate, this means OGG Vorbis will
sound better at the same bitrate as e.g. MP3. Or at the same
audio quality, OGG Vorbis will have a smaller file size (Xiph,
2003).

The quality of OGG Vorbis is ”not best measured in
kilobits per second, but on a scale from -1 to 10 called
’quality’” (Xiph, 2003). But to easily compare to MP3,
we can express this quality setting in an average bitrate.
A quality setting of 0 is similar to 64 kbps average and a
quality setting of 10 is similar to 400kbps (Xiph, 2003). A
maximum of 320 kbps is used since this already ensures a
very high quality and will outperform MP3 320 kbps in terms
of quality.

2.4 Genre classification and BPM recognition
For genre classification the pre-trained TensorFlow models
of Essentia were used. TensorFlow is an ”end-to-end
open source platform for machine learning” (TensorFlow,
2021). Specifically for genre classification the Tensor-
flowPredictVGGish algorithm of Essentia was used3. This
algorithm, in combination with the genre rosamerica4 dataset
available in Essentia, has been shown to have the highest
accuracy with 0.94 (Essentia Labs, 2020). A CNN model in
combination with the genre electronic dataset has a higher
accuracy of 0.95, but this dataset does not contain the rock
genre.

To recognize the BPM or tempo of songs, the Rhyth-
mExtractor2013 algorithm5 of Essentia has been used. This
is the most up to date and effective algorithm of Essentia to
give a tempo estimation for the input song.

2.5 Implemented pipeline
All before mentioned algorithms resulted in pipelines created
in Python. An overview of these pipelines are shown in figure
2. To convert the FLAC files supplied by Muziekweb into
MP3 and OGG Vorbis, an audio converter was written. This
audio converter loaded all songs in FLAC format using the
AudioSegment module from the Pydub library. To make the
audio converter as efficient as possible, it loaded every FLAC
file only once and then converted it into all before specified
MP3 and OGG Vorbis bitrates using AudioSegment. All

3https://essentia.upf.edu/reference/streaming
TensorflowPredictVGGish.html

4https://mtg.github.io/essentia-labs/news/tensorflow/2020/01/
16/tensorflow-models-released/

5https://essentia.upf.edu/reference/std RhythmExtractor2013.
html

4

https://essentia.upf.edu/reference/streaming_TensorflowPredictVGGish.html
https://essentia.upf.edu/reference/streaming_TensorflowPredictVGGish.html
https://mtg.github.io/essentia-labs/news/tensorflow/2020/01/16/tensorflow-models-released/
https://mtg.github.io/essentia-labs/news/tensorflow/2020/01/16/tensorflow-models-released/
https://essentia.upf.edu/reference/std_RhythmExtractor2013.html
https://essentia.upf.edu/reference/std_RhythmExtractor2013.html


formats of the audio files were saved to provide the option of
re-using them if needed.

These audio files were then fed into a pipeline which
classified the song into genres and estimated its BPM. For
this, the MonoLoader included in Essentia was used6. The
MonoLoader mixed the stereo channels of each audio file
into a single channel. This was needed since the RhythmEx-
tractor2013 and TensorflowPredictVGGish algorithms only
accepted a single channel.

For the TensorflowPredictVGGish algorithm, the song
was loaded with a sample rate of 16000 Hz. This was needed
since this algorithm only works at this sample rate according
to the instructions of Essentia Labs (2020). The song fed
into the RhythmExtractor2013 algorithm was sampled at
its original sample rate of 44100 Hz, since this algorithm
needed this sample rate in order to work correctly. All results
were saved into a CSV file.

FLAC Audio converter
MP3

96, 128, 256, 320 kbps

OGG Vorbis
64, 96, 128, 320 kbps

FLAC
MP3

96, 128,
256, 320 kbps

OGG Vorbis
64, 96,

128, 320 kbps

MonoLoader
(sample rate=16000 Hz)

MonoLoader
(sample rate=44100 Hz)

TensorflowPredictVGGish RhythmExtractor2013

CSV files

Figure 2: Overview of the implemented pipelines.

2.6 Calculating results
The results found by these pipelines are expressed in the
probability per genre and an estimation of the amount of
beats per minute for each song. Results for the genres rock,
pop, jazz, rnb, dance, hip hop, classic and also speech were

6https://essentia.upf.edu/reference/std AudioLoader.html

given by the implemented pipeline, but only the rock genre
was used for this research.

For the rock genre probability we have taken the mean
of all results for each codec. In the same manner, we have
taken the mean of the BPM estimations per codec.

Furthermore, another good measure to show deviations
in results is the mean squared error (MSE). The MSE is
a better measure to show deviations instead of the mean
deviation. With a mean deviation results might cancel out
due to deviations being positive as well as negative numbers.
The MSE does not have this side effect. The formula for the
MSE can be found in equation 1.

1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

In this equation, when calculating the MSE for rock prob-
ability, Yi is the probability for each song for each codec
and Ŷi is the probability for the same song in FLAC. When
calculating the MSE for BPM estimation Yi is the BPM
estimation for each song for each codec and Ŷi again is the
BPM estimation for the same song in FLAC. Sub-questions
1 and 2 form the baseline for the calculations with MP3 and
OGG results. We calculated the MSE for the results of OGG
and MP3 file encodings to answer sub-questions 3 up to and
including 6.

To visualise these results on song level, we took the
log squared error with base 10 for each song per codec. This
can be seen in the boxplots in figure 4 and 6. Note that the
mean of the log10 squared error in equation 2 is different to
the log10 of the MSE calculated with equation 1.

log10((Yi − Ŷi)
2) (2)

When calculating this measure for BPM, some calculations
lead to log(0), which is not possible. To prevent this, these
cases have been mapped to 1−10.

3 Results, discussion and conclusion
After running all pipelines the results of the genre classifica-
tion and BPM or tempo esitmation with Essentia have been
evaluated. The results are expressed in the probability per
genre and an estimation of the amount of beats per minute.
Since this research focusses on the rock genre specifically,
we will look at the probability for rock. All tables are ordered
from low to high. Higher or lower does not mean better or
worse in this context, this is only to clearly show there are
differences with each codec.

When drawing conclusions from the presented data,
our goal is not to decide which codec gives a better predic-
tion for the rock genre probability or the BPM. This is also
something we can not conclude from our data, especially
for the rock genre classification since most rock songs are
often not purely rock, but also other (sub)genres. This means
the algorithm probability will most likely never reach 100

5



percent certainty of a song being rock. The BPM estimation
can be checked on being better or worse among different
codecs, since a song is composed at a certain BPM, but this
is not within the scope of this research. Our goal is to show
the impact of audio quality and bitrates.

3.1 Genre classification

Audio codec Rock probability
OGG 64 kbps 0.205927

OGG 320 kbps 0.219653
FLAC 0.223278

MP3 320 kbps 0.223490
MP3 256 kbps 0.223890
OGG 128 kbps 0.226068
MP3 128 kbps 0.238958
MP3 96 kbps 0.244565
OGG 96 kbps 0.249704

Table 1: Mean algorithm probability for rock.

Figure 3: Algorithm rock probability per codec for all songs.

In table 1 we can see the mean of the probability for rock.
In figure 3 the rock probability is visible per song, for all
used audio codecs. This is shown as a boxplot, which clearly
shows the range of the probabilities.

From table 1 it is very clear to see that the three high-
est quality codecs, FLAC, OGG 320 kbps and MP3 320
kbps, have similar results. With MP3 320 kbps being the
most similar to our baseline codec FLAC. With further
degradation of the audio into the other codecs, the mean rock
probability also keeps changing with a significant amount.
There seems to be a consistent change in probability when
getting to lower quality audio, however OGG 64 kbps makes
a jump to the top of the table. If we also look at figure 3 it is

clear there is variation in rock probability when changing to
each codec.

Audio codec MSE rock probability
FLAC 0

MP3 320 kbps 0.000001
MP3 256 kbps 0.000002
OGG 320 kbps 0.000024
OGG 128 kbps 0.000054
MP3 128 kbps 0.000449
MP3 96 kbps 0.001160
OGG 96 kbps 0.001369
OGG 64 kbps 0.001511

Table 2: Mean squared error (MSE) of rock probability with results
from FLAC as expected value.

Figure 4: log10 squared error of rock probability for all songs com-
pared to FLAC. Logarithmic transformation is only done for visual-
ization purpose. To prevent taking a logarithm of zero, these cases
have been mapped to 1−10.

In table 2 we can see the mean squared error (MSE) of the
rock probability for all songs for each codec. As explained in
the methodlogy section, the MSE is a better measure to show
deviations instead of the mean deviation. In this table we can
see a strong correlation between the MSE going up when
degrading the audio quality. What also stands out is that,
although claimed by OGG Vorbis they are the best encoder
for mid to high quality (Xiph, 2016), MP3 gets a lower MSE
at similar bitrates. However, with this information we can not
conclude which codec sounds better for the human listener.
A further visualization of this data can be seen in figure 4. As
indicated in the methodology, this measure uses the log (base
10) squared error per song. From these tables and figures we
can clearly see there is a variation in rock genre probabilty
between different quality codecs.

6



Considering all before mentioned data and findings, we
can conclude the audio codec and quality has an impact on
the genre classification of rock in Essentia. No conclusion
however can be drawn on which codec is best suited for
this genre classification task. Especially when looking at
the MSE shown in table 2 and figure 4 we can see there is
variation in the results of genre classification when using
different audio codecs and quality.

3.2 BPM recognition

Audio codec Mean BPM
MP3 96 kbps 123.225859
OGG 64 kbps 123.506569
MP3 128 kbps 123.594979
OGG 96 kbps 123.606059

OGG 128 kbps 123.678289
MP3 256 kbps 123.815350
MP3 320 kbps 123.846293

FLAC 123.934706
OGG 320 kbps 124.029516

Table 3: Mean BPM per codec.

Figure 5: BPM estimation per codec for all songs.

Table 3 shows the mean BPM per codec. This is also
visualised as a boxplot in figure 5. Looking at table 3 we can
see that, just like with table 1, the highest quality codecs,
FLAC, OGG 320 kbps and MP3 320 kbps have similar
results in the mean BPM per codec. However, to draw a
better conclusion we should once again look at a better
measure to spot differences.

In table 4 we can see the MSE of BPM per codec, which is a
better measure than the mean BPM. If we look at this table is

Audio codec MSE BPM
FLAC 0

MP3 320 kbps 18.640363
MP3 256 kbps 27.831408
OGG 320 kbps 29.732891
MP3 128 kbps 37.494367
OGG 128 kbps 66.388747
MP3 96 kbps 68.39757
OGG 96 kbps 75.439119
OGG 64 kbps 112.913352

Table 4: Mean squared error (MSE) of BPM with results from FLAC
as expected value.

Figure 6: log10 squared error of BPM compared to FLAC. Logarith-
mic transformation is only done for visualization purpose.

visible that the MSE gets large relatively quickly compared
to the MSE in table 2. This is mainly caused by BPM being
higher numbers than algorithm confidence. Squaring these
numbers leads to a larger results quickly. What stands out
between these two tables is that the order of codecs from
lowest to highest MSE is exactly the same, while the rock
classification algorithm and BPM recognition algorithm are
two separate algorithms.

As mentioned earlier, these algorithms also run on a
different sample rate input. The codecs having the same
”ranks” in these tables could point to a correlation between
audio quality and mean squared error compared to FLAC
format. This table is visualized in figure 6. As indicated in
the methodology, this measure uses the log (base 10) squared
error per song and maps cases of log(0) to 1−10. This figure
clearly shows the BPM estimation is affected by changes in
audio quality and codecs, while figure 5 gives the idea that
the BPM estimation is rather stable.

While the mean BPM estimation stays rather stable ac-

7



cording to table 3 and figure 5, table 4 and figure 6 gives
clear evidence there is a variation in the results for the BPM
estimation per song. Therefore we can conclude the audio
codec and quality have an impact on BPM recognition in
Essentia.

4 Future work
The main take away from this research is that audio codecs
and quality should be more explicitly considered in future
work. Looking at our results, these factors have a clear
influence on the produced results. The least which could be
done, is keeping to a single audio codec and bitrate for all
audio used in a research. This filters out the influence of
different codecs within the results of that particular research.
Our results could also indicate audio codecs and quality have
an influence on other feature extraction pipelines within the
field of MIR. Therefore further exploration of the influence
of these factors within MIR can be done.

This research can also be further extended. As men-
tioned earlier, checking if the BPM estimation gets closer to
the actual BPM of a song was not part of this research. This
makes for an opportunity for further research, where this
dataset can be cross referenced with a dataset that indicates
the real BPM of a song. With this data, research can be done
on which audio codec and quality give the best results in
terms of BPM estimation.

Our dataset can also be extended with more songs or
more genres. Growing a dataset often positively influences
the accuracy of estimators and classifiers. In combination
with this, also more codecs can be researched on their
influence on MIR.

5 Responsible Research
To ensure all results of this research are reproducible, all
code and metadata used for this project has been uploaded
to a GitLab repository. Only the audio files will not be up-
loaded anywhere. We cannot share these files since they are
copyright protected by the artist. Also a non-disclosure/data
delivery agreement has been signed with Muziekweb. This
means we are legally not allowed to share the music files
shared by Muziekweb. This would also be unethical, sharing
these files could lead to unwanted sharing on other parts of
the internet.

The results of this research have not been affected by
my personal preferences. While rock genre is one of my
genres of choice when I listen to music, my choice was
supported by data which indicated which genre could be
most affected by ”irrelevant changes”, as explained in the
methodology section. This turned out to be the rock genre.
During the album selection procedure, I may have selected
artists that I am familiar with. This does not affect the results
however, since these albums were never selected outside the
rock genre label of Muziekweb. All selected songs are within
the rock genre.

Furthermore, there was no personal interest in a certain
conclusion for this research. There is no personal advantage
for me with any conclusion drawn for this research.

Finally, we have contributed to the field of MIR. We
have shown audio quality and codec has an influence on the
results obtained in the field of MIR. This supports future
research done in this field. Also a bug has been found in
Essentia and reported on their Github page7. This will
help build new and better version of Essentia, which will
positively influence all users of the Essentia library.

7https://github.com/MTG/essentia/issues/1228

8

https://github.com/MTG/essentia/issues/1228


References
Brandenburg, K. (2001). Mp3 and aac explained. AES 17th

International Conference on High Quality Audio Coding.
Essentia (2019). Homepage. Retrieved November 24, 2021,

fromhttps://essentia.upf.edu/index.htmll.
FFmpeg (2014). FFmpeg MP3 Encoding Guide. Re-

trieved November 17, 2021, from https://trac.ffmpeg.org/
wiki/Encode/MP3.

Hans, M. and Schafer, R. (2001). Lossless compression
of digital audio. IEEE Signal Processing Magazine,
18(4):21–32.

Jiaaro (2021). Pydub. Retrieved January 17, 2022, fromhttps:
//pydub.com/.

Liem, C. and Kim, J. (2021). Do automated music processing
pipelines actually extract musical information? Retrieved
November 12, 2021, fromhttps://projectforum.tudelft.nl/
course editions/42/projects/1189.

Liem, C. and Mostert, C. (2020). Can’t trust the feeling?
how open data reveals unexpected behavior of high-level
music descriptors. In Proceedings of the 21st Interna-
tional Society for Music Information Retrieval Conference,
pages 240–247. Virtual/online event due to COVID-19;
21st International Society for Music Information Retrieval
Conference, ISMIR 2020; Conference date: 11-10-2020
Through 15-10-2020.

Muziekweb (2021a). Colofon - Muziekweb. Retrieved
December 16, 2021, from https://www.muziekweb.nl/
Muziekweb/Informatie/Colofon.

Muziekweb (2021b). Welkom op Muziekweb - Muziek-
web. Retrieved December 16, 2021, from https://www.
muziekweb.nl/Muziekweb/Informatie/Welkom.

Sturm, B. L. (2014). A simple method to determine if a music
information retrieval system is a ‘horse’. IEEE Transac-
tions on Multimedia, 16(6):1636–1644.

TensorFlow (2021). TensorFlow. Retrieved December 16,
2021, from https://www.tensorflow.org/.

Adobe (2022). Understanding audio bitrate and audio qual-
ity. Retrieved January 11, 2022, from https://www.adobe.
com/creativecloud/video/discover/audio-bitrate.html.

Essentia Labs (2020). A collection of TensorFlow mod-
els for Essentia. Retrieved December 16, 2021,
from https://mtg.github.io/essentia-labs/news/tensorflow/
2020/01/16/tensorflow-models-released/.

Hydrogenaudio (2020). LAME - Hydrogenaudio
Knowledgebase. Retrieved January 11, 2022, from
https://wiki.hydrogenaud.io/index.php?title=LAME#
VBR .28variable bitrate.29 settings.

LAME (2017). LAME MP3 Encoder. Retrieved January 11,
2022, from https://lame.sourceforge.io/.

Xiph (2003). Vorbis.com:FAQ. Retrieved January 11, 2022,
from https://xiph.org/vorbis/faq/#what.

Xiph (2016). Xiph.org. RetrievedJanuary11,2022,fromhttps:
//xiph.org/vorbis/.

Xiph (2019). FLAC - Free Lossless Audio Codec. Retrieved
January 11, 2022, from https://xiph.org/flac/.

Urbano, J., Bogdanov, D., Herrera, P., Gómez, E., and Serra,
X. (2014). What is the effect of audio quality on the ro-
bustness of mfccs and chroma features? In Proc. of the
15th Conference of the International Society for Music In-
formation Retrieval (ISMIR 2014), pages 573–578, Taipei,
Taiwan.

9

https://essentia.upf.edu/index.htmll
https://trac.ffmpeg.org/wiki/Encode/MP3
https://trac.ffmpeg.org/wiki/Encode/MP3
https://pydub.com/
https://pydub.com/
https://projectforum.tudelft.nl/course_editions/42/projects/1189
https://projectforum.tudelft.nl/course_editions/42/projects/1189
https://www.muziekweb.nl/Muziekweb/Informatie/Colofon
https://www.muziekweb.nl/Muziekweb/Informatie/Colofon
https://www.muziekweb.nl/Muziekweb/Informatie/Welkom
https://www.muziekweb.nl/Muziekweb/Informatie/Welkom
https://www.tensorflow.org/
https://www.adobe.com/creativecloud/video/discover/audio-bitrate.html
https://www.adobe.com/creativecloud/video/discover/audio-bitrate.html
https://mtg.github.io/essentia-labs/news/tensorflow/2020/01/16/tensorflow-models-released/
https://mtg.github.io/essentia-labs/news/tensorflow/2020/01/16/tensorflow-models-released/
https://wiki.hydrogenaud.io/index.php?title=LAME#VBR_.28variable_bitrate.29_settings
https://wiki.hydrogenaud.io/index.php?title=LAME#VBR_.28variable_bitrate.29_settings
https://lame.sourceforge.io/
https://xiph.org/vorbis/faq/#what
Retrieved January 11, 2022, from https://xiph.org/vorbis/
Retrieved January 11, 2022, from https://xiph.org/vorbis/
https://xiph.org/flac/

	Introduction
	Methodology
	Essentia
	Dataset and justification
	Codecs and quality
	Genre classification and BPM recognition
	Implemented pipeline
	Calculating results

	Results, discussion and conclusion
	Genre classification
	BPM recognition

	Future work
	Responsible Research

