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Retrosynthetic Life Cycle Assessment: A Short Perspective
on the Sustainability of Integrating Thermoplastics and
Artificial Intelligence Into Composite Systems

Vahid Yaghoubi* and Baris Kumru*

Over the past 30 years, the polymer composite industry has flourished,
producing advanced structural materials for the aviation, energy, and
transportation sectors. However, the use of crosslinked thermoset matrices
has been linked to significant end-of-life challenges, presenting a critical issue
for the industry. Moreover, the industry is characterized by numerous
labor-intensive processes. In alignment with Industry 4.0 principles, two
major routes have been identified to enhance sustainability: the utilization of
high-performance thermoplastic matrices and the integration of artificial
intelligence in manufacturing. Nevertheless, there are substantial concerns
regarding the life cycle assessment of these technologies, which are not
accounted for in the initial calculations, including the environmental footprint
of polymer synthesis and energy requirements for training AI. This perspective
aims to address potential and significant CO2 emissions from chemical
feedstocks and the high computing requirements of these new technologies.

1. Introduction

Polymers are important class of materials being utilized in var-
ious objects and engineering materials across diverse scales.
Performance of bare polymers can be boosted when compos-
ite systems are designed, which offers attractive thermomechan-
ical properties to be employed for transportation and energy
industry.[1] Fibre reinforced polymer composites (FRPC) serve
this purpose, which is generated by merging polymer matrix with
continuous fibre systems (i.e., carbon, glass).[2] Carbon, glass
and aramid fibres offer high thermal stability, low density and
high mechanical performance ideal for structural applications,
whereas biobased fibres such as flax and bamboo are suited for
secondary structures.[3] Polymer matrices are classified based
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on the nature of crosslinking, and
crosslinked thermoset matrices are dom-
inant choices in structural parts (i.e.,
aircraft wings and fuselage, wind turbine
blades) in industry.[4] Thermosetting
resins such as epoxy and cyanate esters
are employed for this aim.[5] For ther-
moset composite formation, monomers
are impregnated into fibres and cured to
afford thermosetting composites since
thermosets are not processable after
curing.[6] It is important to mention
that there are serious developments on
vitrimer matrices (resins with dynamic
reversible crosslinking behavior, some
commercial vitrimeric hardeners such
as Recyclamine and Vitrimax), however
it currently takes no part in industrial
systems.[7]

It is inevitable that for such a big market with high produc-
tion volumes, sustainability metrics play a vital role for circu-
lar development of composite industry.[8] Thermoset compos-
ites face serious circularity problems despite great performances,
mainly due to crosslinked resin which prevents reformability
and recyclability.[9] Hence, fibre-matrix separation is not possi-
ble therefore composite waste is a serious concern in society to-
day despite advancements on pyrolysis, solvolysis and mechan-
ical recycling.[10] The production process of fibers and matrix
constituents in the industry is a matter of concern when eval-
uating sustainability standards. These processes often demand
the consumption of substantial amounts of energy and involve
the use of toxic chemicals. Additionally, curing prepregs requires
the maintenance of high temperatures. These aspects collectively
represent a significant challenge, as they do not align with the
principles of sustainability. In addition to landfill, losing such
valuable materials at the end of life possesses a serious loss.
Although the industry is highly skilled in thermoset composite
manufacturing and joining over few decades, non-repairability
and non-recyclability resulted in a search for alternative ma-
trices. Thermoplastic polymers (TP) are non-crosslinked plas-
tics which can bear amorphous or semicrystalline structure.[11]

TPs are vastly abundant in daily life in non-composite form
and address diverse range of applications.[12] Introducing TP
as matrix to composite structures offer advantages of remold-
ability, repairability and recyclability which can not be achieved
by thermosetting resins.[13] Additionally, joining techniques of
thermoplastic composites (i.e., welding) enable lightweight so-
lution compared to riveting.[14] TP composites are being used
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in many sectors employing TPs such as polyamides, poly(lactic
acid), polyacrylates and polypropylene using various manufactur-
ing methods.[15] On a molecular scale, thermomechanical per-
formance of a resin can be translated into chemical structure of
starting products, so that highly aromatic systems are affiliated
to improved thermomechanical properties compared to aliphatic
systems.[16] Therefore, when higher thermomechanical proper-
ties are strived, high-performance thermoplastics are chosen.[17]

Polymers such as poly(phenylene sulfide) (PPS), polyether sul-
fone (PES), poly(ethylene imide) (PEI), polyether ether ketone
(PEEK) and polyaryl ether ketone (PAEK) are promising candi-
dates for structural applications and notable amount of research,
funding and products based on such composites are being devel-
oped.

The integration of artificial intelligence (AI) into composite
manufacturing is anticipated to revolutionize this field in the
coming years. AI offers unparalleled capabilities in the design
and optimization of manufacturing processes and structural con-
figurations. These advanced technologies have the potential to
significantly reduce waste, thereby enhancing efficiency and sus-
tainability. The application of AI in this domain ranges from pre-
dictive maintenance of manufacturing equipment to the opti-
mization of material usage and minimization of defects during
production. Such improvements not only contribute to cost sav-
ings but also reduce the environmental footprint of manufactur-
ing operations.

On the other hand, a prevailing trend in AI development poses
a big challenge to these sustainability gains. The current trajec-
tory in AI research and application is towards the creation of
increasingly large and complex models.[18] These models, while
offering higher accuracy and improved predictions, come with
a steep environmental cost. The computational power required
to train, test, and run these large-scale AI models leads to sub-
stantial energy consumption. Consequently, this results in a sig-
nificant carbon footprint, potentially offsetting the sustainability
benefits that these technologies aim to achieve.

In this insightful perspective article, we delve into an alter-
native examination of the use of high-performance thermoplas-
tics and artificial intelligence (AI) in manufacturing, with a spe-
cific focus on sustainability. These two technological frontiers
are redefining the landscape of the composite industry by pre-
senting unprecedented opportunities for sustainable operations.
However, it is imperative to highlight several crucial aspects that
warrant attention. Firstly, while high-performance thermoplas-
tics offer a promising pathway towards more sustainable mate-
rials, their production processes and life cycle impacts need thor-
ough evaluation. The intricate balance between their advanced
properties and the environmental footprint of their synthesis is a
critical consideration for true sustainability.

Secondly, the integration of AI in manufacturing processes
represents a groundbreaking advancement. AI has the potential
to optimize production efficiency, reduce waste, and enhance the
lifecycle performance of composite materials. However, the en-
vironmental impact of developing and running these sophisti-
cated AI systems, including their energy consumption and the re-
sources required for their operation, must be critically assessed.
This perspective aims to provide a comprehensive understand-
ing of these technologies not just as isolated advancements but
as part of a larger ecosystem where their sustainability implica-

tions are deeply intertwined with their operational benefits. By
doing so, it underscores the importance of a holistic approach in
evaluating technological innovations in the composite industry,
ensuring that the pursuit of sustainability remains at the fore-
front of these developments.

1.1. High Performance Thermoplastics and Sustainability

High-performance TP are increasingly recognized for their myr-
iad advantages over traditional thermoset matrices, particularly
in terms of their impact on the life cycle assessment (LCA). These
advanced materials offer a suite of benefits crucial for sustainable
and efficient manufacturing. Notably, their potential for welding
to join layers represents a significant advancement, potentially
eliminating the need for riveting and thereby achieving consid-
erable weight reduction.[19] This is complemented by their re-
formability, repairability, and exceptional chemical and aqueous
stability, culminating in enhanced recyclability.[20] In contrast to
thermoset prepregs, which are characterized by high reactivity
and necessitate cold-temperature transportation to inhibit cur-
ing, thermoplastic prepregs exhibit remarkable stability with an
almost infinite shelf life.[21] This stability significantly simplifies
logistics and storage, presenting a more practical solution for
manufacturing processes.

Furthermore, the adaptability of high-performance thermo-
plastics to additive manufacturing methods opens avenues for
fabricating complex and precise geometries.[22] Such technolog-
ical adaptability is critical in advancing manufacturing capabili-
ties across various sectors, including aerospace, automotive, and
energy. However, it is crucial to acknowledge the inherent chal-
lenges posed by the physical properties of high-performance ther-
moplastics. Their high melting points and viscosities can in-
troduce complications in impregnation processes, presenting a
technical hurdle that requires addressing.[23] This underscores
the necessity for ongoing research and innovation in processing
techniques to fully harness the potential of these cutting-edge
materials.

The field of composite materials is witnessing a pivotal shift,
with the LCA of thermoplastic composites gaining increasing
prominence in recent years. This burgeoning interest is a tes-
tament to the potential of high-performance TP in structural
composite systems, challenging the long-standing dominance of
thermoset systems. A thorough review of the literature reveals a
common trend: the LCA of thermoplastic composites typically
commences from the manufacturing phase of the composite.
This approach predominantly focuses on quantifying and com-
paring the energy requirements and CO2 emissions associated
with the manufacturing processes of thermoset versus thermo-
plastic composites.[24]

Furthermore, extensive investigations delve into the potential
recycling pathways, the energy demands of these processes, the
value of the output products, and their cumulative effect on the
environment.[25] Such studies are integral in painting a compre-
hensive picture of the sustainability of these materials. However,
we contend that there exists a critical oversight in the current
methodology for performing the LCA of high-performance ther-
moplastic composites. The significant impact of the chemical
feedstocks and the processes involved in synthesizing these
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polymers are often underrepresented in LCA evaluations.[26]

This gap in analysis represents a substantial limitation, as it
overlooks a crucial element in the lifecycle of these materials.
The chemical synthesis stage, with its inherent energy consump-
tion and potential environmental impacts, is a pivotal factor that
warrants serious consideration.

Recent article by Beckham and colleagues elucidated the im-
pact of chemical feedstock and supply chain energy requirements
of commodity polymers on total calculated energy demands.[27]

Shockingly, but expected from chemistry point of view, genera-
tion of starting products from petrorefinery and synthetic pro-
cedures to manufacture polymers (i.e., catalyst, heat) have im-
pressive effect on LCA, which is normally hidden in general cal-
culations. As an example, calculations on energy requirement
increase 3 times when chemical feedstock input is considered,
which is brutal.

In the realm of sustainable composites, high-performance
thermoplastics (TP) such as Polyether Ether Ketone (PEEK) and
Polyphenylene Sulfide (PPS) stand out as particularly noteworthy
matrices. The fabrication of these polymers presents a fascinat-
ing area of study, especially considering their potential impact
on the Life Cycle Assessment (LCA) of thermoplastic compos-
ites when the chemistry involved is accounted for in LCA calcu-
lations. Adopting a bottom-up approach to assess the potential
impacts of polymer synthesis conditions and monomers is es-
sential to gain a more comprehensive understanding of thermo-
plastic matrices.

Given the complexities involved in obtaining accurate LCA
data for such polymer production, we advocate the use of a “ret-
rosynthetic LCA” methodology. This approach involves a reverse
engineering process of a polymer. To effectively implement this
method, one must first identify the monomers composing the
polymer, followed by an exploration of their synthesis starting
from petrorefinery products, if feasible. Acknowledging that each
step in this process requires energy (and potentially catalysts)
for chemical conversion, as well as various separation and pu-
rification steps, and energy for processing polymers into forms
such as films or pellets, the focus should be on the impact of
the base molecules themselves. It’s also crucial to note that cur-
rent commercial synthetic routes, which may employ different
solvents and conditions, could vary slightly. This variability ne-
cessitates consideration of conversion rates and mole reactivities
in the retrosynthetic LCA. Additionally, chemical hazard symbols
offer valuable insights into the toxicity of the molecules used in
these processes.

To illustrate this concept, we present two potential examples
focusing on PEEK and PPS. These examples are designed to pro-
vide a clearer understanding of the retrosynthetic LCA approach
and its implications for evaluating the sustainability of high-
performance thermoplastics. This approach underscores the im-
portance of a thorough and nuanced analysis of polymer produc-
tion processes in assessing the environmental impact of thermo-
plastic composites (Scheme 1).

Example approach on PEEK

PEEK is manufactured from a polycondensation reaction of
monomers 4,4′-Difluorobenzophenone and disodium salt of hy-
droquinone at high temperatures (above 250 ˚C) using diphenyl

sulfone solvent (Scheme 2). This reaction is known with high
conversion affording polymer and sodium fluoride byproduct.
In the second step, we identify how monomers are manufac-
tured. 4,4′-Difluorobenzophenone is made from the reaction of
fluorobenzene and p-fluorobenzoyl chloride in presence of alu-
minium chloride catalyst affording hydrochloric acid byproduct.
Disodium salt of hydroquinone is prepared by treating hydro-
quinone in sodium hydroxide solution. One can delve further
into the synthesis of fluorobenzene, p-fluorobenzoyl chloride and
hydroquinone for further analysis to access LCA of smaller or-
ganic molecules. However, it has been already challenging to ob-
tain a commercial synthetic route for p-fluorobenzoyl chloride.

Example approach on PPS

PPS is manufactured from a polycondensation reaction of
monomers 1,4-dichlorobenzene and sodium sulfide at high tem-
peratures using N-methyl-2-pyrrolidone solvent (Scheme 3). This
reaction is known with high conversion affording polymer and
sodium chloride byproduct. In the second step, we identify how
monomers are manufactured. 1,4-dichlorobenzene is obtained
from the reaction of benzene and chlorine in presence of fer-
ric chloride catalyst affording hydrogen chloride byproduct. In
this case, one can easily conclude from literature that compo-
nents benzene, chlorine and 1,4-dichlorobenzene are notoriously
toxic. Sodium sulfide is generated from the reduction reaction
of sodium sulfate in presence of carbon affording two moles of
CO2 as byproduct. This stage can already generate enough input
on potential LCA of sodium sulfide monomer component in PPS
polymerization. If not, one can delve further on the production
stages of sodium sulfate.

Our analysis reveals critical deficiencies in the LCA of high-
performance TP. These deficiencies stem from four key areas: the
nature and toxicity of chemical inputs, the intricacies of a global
supply chain, the substantial energy demands, and the complex-
ity inherent in the production process. These factors significantly
influence the LCA outcomes for high-performance TPs and their
monomers, yet they remain largely underrepresented in current
assessments.

To rectify this, we propose a refined best practice for LCA
calculations of high-performance TP composites. This approach
involves incorporating the impacts of material composition at
their most fundamental level, focusing on the simplest monomer
forms. For example, in the case of PPS, this would mean account-
ing for the environmental impacts of basic constituents such as
benzene, chlorine, sodium sulfate, and carbon. By adopting this
methodology, LCA calculations can provide a more accurate and
holistic representation of the environmental footprint of high-
performance TPs, thereby facilitating more informed and sus-
tainable material choices in various industries.

1.2. Sustainability and Artificial Intelligence

Sustainability and AI can be seen as sustainability with AI, and
sustainability in AI. The former is more appreciated and can be
interpreted as using AI to optimize, automate or predict differ-
ent processes in order to achieve sustainability.[28] However, the
latter is not that clear and thus is the main focus of this section.
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Scheme 1. Retrosynthetic LCA flowchart on high-performance thermoplastic pellet production (PEEK is exemplified) starting from petrocracking, and
integration of AI in composite manufacturing.

It should be mentioned that, in this paper, we will focus on the
environmental sustainability, although it will have indirect effect
on the other two pillars of sustainability, i.e., social and economic.

An in-depth analysis of environmental sustainability in artifi-
cial intelligence necessitates a comprehensive evaluation of the
entire life cycle of an AI model, which encapsulates three criti-
cal stages: data collection and storage, model development, and
deployment. A prevailing trend in the field is the development
of increasingly complex models, trained on expansive datasets
to achieve optimal accuracy. This approach is vividly depicted in
Figure 1, which chronicles the evolution of model training costs
over the past decade. The comparison ranges from AlexNet in
2012, with a training cost of 5.4e-3 petaflop-seconds per day (pfs-
day)1, to the much more advanced GPT-4 in 2023, requiring a
staggering 2.4e5 pfs-day. This trajectory highlights the escalat-
ing computational demands in AI model training, underscor-
ing the need for substantial resources and raising critical ques-
tions about the environmental implications of these technologies
(Figure 2).

Table 1 indicates that this rise in training cost resulted from
the increase in model complexity, from 62.3 M parameters in
AlexNet[29] to 170 trillion parameters in GPT-4[30] and will lead

to generating large carbon footprint at the model training stage,
primarily due to electricity usage for powering computing equip-
ment and cooling systems. For instance, a transformer with 213
million parameters generate about 283.5 tons of CO2 during
training with Neural Architecture search (NAS). This is nearly
five times the lifetime emissions of the average American car (in-
cluding the manufacturing of the car itself).[31] This CO2 emis-
sion increased to 552 tons for training GPT-3.

The advent of Industry 4.0, which is characterized by inte-
grating AI and digital technologies in industrial processes, can
potentially exacerbate the environmental impact of AI.[34] For
instance, a study shows that the number of IoT devices is ex-
pected to reach 75 billion by 2025[35] and they will generate about
217.3 petabytes (PB) of data per day meaning 79.4 ZB in year
2025.[36] This not only indicates the carbon footprint in the data
generation and processing stage but also shows the increasing
demand for AI models and consequently their environmental
footprint.

This highlights the urgent need for responsible and optimized
use of AI. It is imperative to develop energy-efficient algorithms
and promote the use of renewable energy in data centers.[37]

Additionally, research into low-power hardware and quantum
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Scheme 2. Retrosynthetic approach for PEEK (chemicals in red circle are byproducts from reaction to synthesize a molecule/polymer next to it).

computing could also play a pivotal role in reducing the carbon
footprint of AI. The goal should be to strike a balance between
technological advancement and environmental sustainability.[29]

In the rapidly evolving landscape of artificial intelligence, a
paradigm shift is being observed in the deployment of AI models,

emphasizing the importance of positioning these systems near
the end-user, at the very edge of the network. This strategic place-
ment, in close proximity to where the data originates, is known
as Edge AI[38] and increasingly recognized for its critical role in
promoting environmental sustainability. The implementation of

Scheme 3. Retrosynthetic approach for PPS (chemicals in red circle are byproducts from reaction to synthesize a molecule/polymer next to it).
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Figure 1. Training time of the common deep learning models, inspired
from.[32]

Edge AI brings a plethora of additional advantages that are piv-
otal in today’s interconnected world. One of the primary bene-
fits is enhanced reliability. By decentralizing the processing of
data, Edge AI reduces the dependency on central servers, thereby
mitigating the risks associated with server downtimes and net-
work disruptions. This local processing ensures that critical AI
applications remain operational even in the face of connectivity
issues, which is especially crucial in sectors like healthcare and
autonomous vehicles where uninterrupted service is imperative.
Another significant advantage of Edge AI is its ability to drasti-
cally reduce latency. In traditional cloud-based AI systems, data
must travel to distant servers for processing, resulting in notable
delays. Edge AI, by contrast, processes data on local devices, en-
abling real-time or near-real-time responses. This immediacy is
essential for applications requiring swift decision-making, such
as in manufacturing automation and real-time analytics.

Table 1. Comparison between complexity and training cost of AI models.

Model Year of
Development

Number of
Parameters

Training Cost
(Peatflops/s-day)

Training
(tons CO2)

AlexNet[29] 2012 6.23E+07 5.4E-03 –

Transformer
w. NAS[31]

2019 2.13E+08 – 283.5

GPT-3[33] 2020 1.75E+11 3.6E+03 552

GPT-4[30] 2023 1.70E+14 2.4E+05 –

Moreover, Edge AI substantially enhances privacy and data se-
curity. By processing data locally, sensitive information does not
need to traverse the internet to reach a central server, thereby re-
ducing the exposure to potential data breaches. This aspect is in-
creasingly relevant in the era of stringent data privacy regulations
and growing cybersecurity threats. Efficient bandwidth usage is
another hallmark of Edge AI. Traditional cloud-based models of-
ten involve transferring large volumes of data over the network,
consuming significant bandwidth and incurring costs. Edge AI,
by processing data locally, minimizes the need for data transmis-
sion, thereby alleviating network congestion and reducing oper-
ational costs.

Given that edge devices are resource-constrained and energy-
sensitive, designing effective neural network architecture for spe-
cific edge devices is an urgent yet complex task. In this regard,
Neural Architecture Search (NAS) can play a crucial role. NAS
is an automated framework to optimize the architecture of arti-
ficial neural networks for, computational cost, energy efficiency,
and performance.[38] NAS has already outpaced the best human-
designed architectures on many tasks. However, NAS also faces
some issues in terms of energy and time consumption, which
limit its scalability and applicability. Therefore, the recent NAS
methods have been mainly focused on developing strategies to
reduce the energy and time consumption of NAS, by Early stop-
ping, Weight sharing, One-shot and zero-shot methods, etc.[38]

Figure 2. Overview of the current AutoML and NAS pipeline.[41]

Adv. Sustainable Syst. 2024, 2300543 2300543 (6 of 8) © 2024 The Authors. Advanced Sustainable Systems published by Wiley-VCH GmbH
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These strategies can make NAS more efficient and sustainable
for AI systems. Besides that, to take into account the other con-
straints for developing and deploying optimized AI models, such
as latency, memory requirement, energy consumption, robust-
ness, fairness, etc.[39] NAS methods are being integrated with
multi-objective optimization approaches. These methods aim to
find a set of Pareto-optimal architectures, which are the ones that
cannot be improved in one objective without degrading another.
By doing so, they can offer a range of trade-offs between different
aspects of performance and sustainability for AI systems.[40]

With the advancement of quantum computers and their asso-
ciated algorithms, on the other hand, one can see its high poten-
tial to revolutionize the fight against climate change. It could help
develop climate technologies able to abate carbon on the order of
7 gigatons a year of additional CO2 impact by 2035. Quantum
computing is also an environmentally friendly technology itself.
A study jointly published by NASA, Google, and Oak Ridge Na-
tional Laboratory showed that a quantum computer required only
0.002% of the energy consumed by a classical computer to per-
form the same task.

Quantum Machine Learning (QML) is a promising paradigm
that harnesses the power of quantum computing to address com-
plex problems in various domains, including new material dis-
covery, climate change, and sustainability. It was shown that us-
ing QML can lead to exponential speed up provided that the data
is available in the quantum format.[42] For instance, IBM Re-
search has proposed a new approach to accelerate the discovery
of new materials. This approach uses AI, hybrid cloud, automa-
tion, and eventually quantum computing. The goal is to speed up
the discovery of new materials by 10 to 100 times.[43]

While there have been significant advancements in Noisy
Intermediate-Scale Quantum (NISQ) devices and QML algo-
rithms, their application to industrial problems is not a trivial
task due to the fundamental differences between quantum and
classical computers. This can lead to quantum algorithms that
are quite different from their counterparts in classical computers.
As such, it’s crucial to develop new methods and algorithms that
can assist the modeling and analysis of applications along with
the development of NISQ devices. Otherwise, powerful quantum
computers with very limited means to use will be formed.[44]

2. Conclusion

The composite industry is undergoing a significant transfor-
mation, guided by an unwavering commitment to sustainabil-
ity. This evolution is particularly evident in the context of re-
cycling challenges associated with crosslinked thermoset matri-
ces. A promising solution has emerged in the form of high-
performance thermoplastics for structural applications. These
materials boast numerous benefits, including recyclability, re-
pairability, and weldability. However, a more refined understand-
ing of their LCA values is crucial.[45] A critical issue lies in the syn-
thesis of polymers, which are not directly derived from petrore-
fineries. Instead, they undergo complex synthetic steps to form
monomers, often involving highly toxic chemicals and harsh
chemical processes. This raises significant sustainability con-
cerns. A realistic assessment of the LCA for high-performance
thermoplastic polymer synthesis is essential for a transparent un-
derstanding of the sustainability of these systems.

Moreover, the manufacturing processes for composite materi-
als, whether using thermoplastic or thermoset resin matrices, dif-
fer markedly. These processes range from curing in epoxy resin
composites to high-temperature impregnation in thermoplastic
composites, each with distinct energy implications that must be
factored into sustainability calculations. Our current vision sug-
gests a retrosynthetic approach to the LCA of high-performance
thermoplastics. This involves investigating the monomers of
these thermoplastics and their synthetic steps, starting from
petrocracking. A critical examination of chemical structures and
their toxicity, especially the use of halogenated compounds,
strongly indicates that the production of high-performance ther-
moplastics is currently far from sustainable. Achieving true cir-
cularity, where both fiber and matrix properties are preserved,
thus eliminating the need for new production, may be the key to
sustainability. Collaboration across academia, the composite and
chemical industries, and government support is vital for foster-
ing sustainable composite design in the near future.

From an AI perspective, this paper delves into two significant
areas: Neural Architecture Search (NAS) and Quantum Machine
Learning (QML). We explore how these technologies can con-
tribute to sustainable AI development. NAS optimizes neural net-
work architectures for specific performances, such as accuracy
and complexity, while considering constraints like latency, mem-
ory usage, energy consumption, robustness, CO2 emissions, and
fairness. Quantum Computing, on the other hand, offers promis-
ing avenues towards meeting environmental sustainability goals.
This cutting-edge technology has the potential to balance AI in-
novation with environmental conservation, heralding a new era
of technological advancement in harmony with ecological preser-
vation.
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