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Driver and Pedestrian Mutual Awareness for Path
Prediction and Collision Risk Estimation

Markus Roth *“, Jork Stapel

Abstract—We present a novel method for vehicle-pedestrian
path prediction that takes into account the awareness of the driver
and the pedestrian towards each other. The method jointly mod-
els the paths of vehicle and pedestrian within a single Dynamic
Bayesian Network (DBN). In this DBN, sub-graphs model the
environment and entity-specific context cues of the vehicle and
pedestrian (incl. awareness), which affect their future motion and
allow to increase the prediction horizon. These sub-graphs share
a latent state which models whether vehicle and pedestrian are on
collision course; this accounts for a certain degree of motion cou-
pling. The method was validated with real-world data obtained by
on-board vehicle sensing (stereo vision, GNSS and proprioceptive).
Data consist of 93 vehicle and pedestrian encounters, spanning
various awareness conditions and dynamic characteristics of the
participants. In ablation studies, we quantify the benefits of various
components of our proposed DBN model for path prediction and
collision risk estimation. Results show that at a prediction horizon
of 1.5 s, context-aware models outperform context-agnostic models
in path prediction for scenarios with a dynamics change, while
performing similarly otherwise. Results further indicate that driver
attention-aware models improve collision risk estimation compared
to driver-agnostic models.

Index Terms—Collision risk estimation, driver awareness, path
prediction, pedestrian awareness.

I. INTRODUCTION

ORE than 1.35 million people are killed yearly in traffic
M worldwide, according to a much cited report of the
World Health Organization [1]. Pedestrians make up 23% of
this number. More than half of serious crashes between vehicles
and pedestrians occur outside dedicated crossing locations (e.g.
zebras, traffic lights) with marked right-of-way [2].

Despite the recent interest and effort spent on higher levels
of automated driving (SAE level 3+), for the foreseeable future,
the reality on the road (and the accident numbers) will largely
be determined by assistance systems where the driver is still
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Fig. 1. The system assesses mutual awareness of pedestrian and driver in a
scenario of a potentially crossing pedestrian. Cues about the driver, pedestrian
and spatial environment are collected from on-board sensors. A probabilistic
framework based on a Dynamic Bayesian Network (DBN) estimates latent states
of awareness of the driver and pedestrian to predict their future motion. Based
on the predicted paths, collision risk is estimated.

required to keep the eyes on the road. This especially holds for
pedestrian safety in urban traffic.

Pedestrians are highly manoeuvrable; they can stop walking
or change direction in an instant. This makes it challenging to
predict their paths. Current active pedestrian safety systems on
the market provide driver assistance (SAE level 0-2). They are
conservatively designed in their warning and control strategy,
emphasizing the current pedestrian state (i.e. position) rather
than prediction, in order to avoid false system activations (i.e.
automatic braking and evasive steering [3]).

Camera-based driver monitoring systems can detect fatigue,
drowsiness, distraction, gestures, signs of being drunk and readi-
ness to take over from automated driving. On-market systems
for collision warning have been employed as early as 2007
(Toyota/Lexus) monitoring head pose and eye opening.
Recent releases allow for extended SAE level 2 capabilities
while driving on specially mapped highways (Cadillac Super
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Cruise, 2018), in traffic jams with restricted velocity (BMW
Extended Traffic Jam Assistant, 2018), or in single-lane cruising
(Nissan ProPilot, 2019). Mercedes-Benz’s latest S-Class fea-
tures a driver camera that monitors driver’s readiness to take
over from automated driving mode on highways in an SAE level
3 system. This legally allows the driver to perform non-driving
related tasks for up to 10 s under specific conditions.

Active safety systems on the market stand to gain from im-
proved path prediction capability of both ego-vehicle and other
road users. Furthermore, they can benefit from more information
regarding which specific parts of the scene have been perceived
by the driver, to ascertain whether this includes the potential
hazard. Ideally, a prediction horizon of 2.5 s is achieved, at
which point the driver “feels no danger” [4]. For the pedestrian
case, we will be hard pressed to achieve accurate predictions for
a 1.5 s time horizon, as will become apparent. In this paper,
we consider the setting of a potentially crossing pedestrian
and an approaching vehicle which has the right-of-way (i.e. no
dedicated crossing location). We present a method which uses
context cues about the spatial environment, driver-pedestrian
mutual awareness and potential motion coupling to estimate the
future paths of both participants and associated collision risk.
See Fig. 1 for an illustration of the overall system.

Specifically, we extend the Dynamic Bayesian Network
(DBN) method from Kooij et al. [5], [6], which performs path
prediction for an individual pedestrian, to the mutual vehicle-
pedestrian case. As in [5], [6], we capture that pedestrian aware-
ness of the on-coming vehicle will likely affect his/her future
path. In our method we also model that driver awareness of the
pedestrian will likely affect the future ego-vehicle path. We use
head pose (pedestrian, driver) and eye gaze (driver) as proxies
for awareness, as the latter cannot be determined directly.

There are several reasons for choosing a physics-based DBN
approach for path prediction, as opposed to the popular neural
networks. First, a DBN allows more easily to incorporate expert
domain knowledge by means of its graphical model structure.
Second, a DBN is interpretable, one can inspect the values of
its latent variables and follow how it reaches its output. This is
especially important for safety-critical applications. Third, one
can expect a DBN to deal well with smaller datasets, as it has a
comparatively small set of parameters, which will minimize the
effects of over-training. Finally, recent work by Pool et al. [7]
suggests that a DBN can deliver competitive path prediction
results compared to a recurrent neural network (RNN), when its
parameters are optimized by backpropagation as well.

The paper outline is as follows. Section II presents the related
work. Section III describes the proposed context-based path
prediction model for vehicle and pedestrian. Sections IV and V
describe the collected dataset and the procedures for parame-
ter estimation. Section VI describes the experimental results.
Section VII provides a discussion and Section VIII lists the
conclusions.

II. RELATED WORK

Road user path prediction has attracted a lot of attention
in recent years, see surveys regarding the ego-vehicle [8] and
Vulnerable Road Users [9], [10]. Path prediction methods

require positions as input. Ground plane positions relative to
a vehicle coordinate system can be obtained from detections
in various sensors (e.g. camera [11], radar [12], LiDAR [13],
or a combination thereof [13], [14]). If ground plane positions
relative to a global coordinate system are needed (e.g. this
paper), then vehicle ego-motion compensation is necessary as
an additional pre-processing step. For this, a combination of
GNNS, INS and vehicle proprioceptive sensing can be used.
Following sub-sections focus on context cues and motion
models used for path prediction.

A. Context Cues for Path Prediction

In the most rudimentary form, cues for path prediction consist
of point kinematics, i.e. positions and velocities of the relevant
object. It has however been well established that the use of
additional “context” cues can improve path prediction perfor-
mance [10]. These can be categorized into object cues, and static
and dynamic environment cues.

Object context cues refer to cues pertaining to the object of
interest itself. For example, Keller and Gavrila [15] improve
pedestrian path prediction by using dense optical flow features
extracted from a pedestrian bounding box. Kooij ef al. [5]
use relative head orientation as a “proxy” for the pedestrian’s
awareness of the oncoming ego-vehicle while crossing. Kooij et
al. [6] and Pool et al. [ 7] incorporate the arm gesture of a cyclist
to predict its turn at an intersection. Quintero et al. [16] recover
full 3D articulated pose of a pedestrian to better predict crossing
action.

Object context cues can also refer to properties derived from
the driver of the ego-vehicle, when interested in predicting
the future ego-vehicle path. Typical such cues are driver head
orientation or gaze, or performed driver actions, as inferred from
accelerator pedal position, braking force and steering wheel
angle. For example, Roth et al. [17] employ driver head pose
to capture the driver’s awareness of a crossing pedestrian.

Static environment context cues refer to elements of the
static traffic infrastructure which will likely influence road user
motion, such as road topology [7], [ 18], road markings and traffic
lights.

Dynamic environment context cues capture the presence and
motion properties of other road users (including that of the
ego-vehicle itself) that may influence the target road user’s
behavior, i.e. to avoid hazards or to minimize hindrance. For
example, [5],[6], [17],[19], [20] use basic kinematics properties,
such as relative distances and velocities, and the expected point
of closest approach.

B. Motion Models

Models for human motion trajectory estimation can be sub-
divided into physics-based, pattern-based and planning-based
methods [10]. As motivated earlier, we focus here on physics-
based methods, which represent motion by explicitly defined dy-
namic equations of one or more underlying dynamical models.
Simple motion dynamics can be modeled by Linear Dynamical
Systems (LDS), which commonly assume a linear relationship
between states and measurements with Gaussian noise. Under
these assumptions, the Kalman Filter (KF) [21] is an optimal
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TABLE I
LATENT CONTEXT STATES, THEIR ASSOCIATED OBSERVATION AND THE PURPOSE WITHIN THE DBN STRUCTURE. STATES ARE GROUPED BY VEHICLE/DRIVER
(COMMON SUPERSCRIPT V'), PEDESTRIAN (SUPERSCRIPT PP) AND SHARED CONTEXTS

Latent State Abbr. Observation

Abbr. Purpose

sV driver-head-orientation (gaze)
HSY -

ALY vehicle-distance-to-location
MV -

X A%

driver-sees-pedestrian
driver-has-seen-pedestrian
vehicle-at-location
vehicle-motion-model

vehicle-position-state vehicle-position

HOV  encodes driver’s awareness of the pedestrian

- memorizes driver’s (past) awareness of the pedestrian

DLY manifests typical location of braking (ped. crossing location)
- switches between driving and braking LDS

YV LDS for vehicle state estimation

sP pedestrian-head-orientation
HSF -

ALP  pedestrian-distance-to-location
MrP -

X P

pedestrian-sees-vehicle
pedestrian-has-seen-vehicle
pedestrian-at-location
pedestrian-motion-model

pedestrian-position-state pedestrian-position

HOP  encodes pedestrian’s awareness of the driver/vehicle

- memorizes pedestrian’s (past) awareness of the driver/vehicle
DLP
- switches between walking and standing LDS

manifests typical location of stopping (curb)

LDS for pedestrian state estimation

collision-course cc minimum-future-distance

separates early crossings from critical crossing

filtering algorithm, which has been widely applied for pedestrian
and vehicle tracking [8], [22].

In the scope of collision analysis, motion models play a
role for predicting paths of targets such as a potentially cross-
ing pedestrian and the ego-vehicle. The probabilistic models
described here allow to extrapolate observed behaviors into
the future while accounting for uncertainties in the assumed
dynamics and observations.

Since traffic behavior may change at any time, a common
approach is to treat the complex dynamics by switching between
or combining multiple motion models at each prediction step,
e.g., by using Switching LDS (SLDS). SLDS can be extended
by dynamical models to incorporate contextual cues for path
prediction [6], [16]. Li et al. [23] combine the path prediction
output of Kooij et al. [6] with a sequence-to-sequence trajectory
generation method to leverage the complementary advantages
of hand-crafted models and data-driven methods.

Different methods have been introduced to predict the paths
of multiple interacting road users, e.g., Social Force models for
human-human interactions [24]. For pedestrian-vehicle encoun-
ters, e.g., Kooij et al. [6] assume that the vehicle does not change
motion dynamics, while Braeuchle et al. [25] use a Bayesian
Network to find an appropriate vehicle motion model which
minimizes pedestrian injury risk. The pedestrian motion model
is fixed based on initial velocity. Gupta et al. [26] simulate
actions (speed up, slow down) of a self-driving vehicle within a
negotiation cycle with a crossing/yielding pedestrian to optimize
traffic throughput.

III. JOINT VEHICLE AND PEDESTRIAN PATH PREDICTION
A. Overview and Main Contributions

Kooij et al. [6] note that a pedestrian’s decision to continue
walking or to stop in a crossing scenario is mainly influenced by
the presence of an approaching vehicle on collision course, the
pedestrian’s awareness thereof, and the position of the pedestrian
with respect to the curbside. This knowledge is encoded in
a context-based SLDS (a special DBN), where latent discrete
states control the switching probabilities between the continuous
state dynamics of walking and standing.

¥
@@@@@@

Fig. 2. Graphical model representation of the Dynamic Bayesian Network
(DBN). Discrete nodes are rectangular, continuous nodes are circular. Grey
nodes represent observable variables while the other nodes represent latent
states. Dashed lines depict temporal connections between latent context states
in subsequent time instances. Driver-related nodes are shaded in green while
pedestrian-related nodes are shaded in blue. Context state description and
purpose are provided in Table 1.

In this work, we are interested in vehicle-pedestrian collision
risk, thus we extend the prediction component to the ego-vehicle.
We analogously argue that the vehicle’s outcome of continue
moving or stopping is mainly influenced by the presence of an
approaching pedestrian on collision course, the driver’s aware-
ness thereof and the distance of the vehicle to the pedestrian’s
crossing location. We model pedestrian and vehicle motion with
two SLDSes which are linked to each other by a shared latent
state, which captures the motion coupling between the two
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objects. The proposed DBN is shown in Fig. 2 (see Table I for
the corresponding node descriptions).

Our main contributions are:

e We present a method for joint path prediction and collision
risk estimation of vehicle and pedestrian using observed
kinematics, mutual awareness, and environment cues.

e We provide an ablation study of the effect of various context
cues on situations where an intervention of either road user
is needed to avoid a collision.

e We apply our method on real sensor data from a vehicle.

Compared to our earlier work [17], we add collision risk

analysis and perform more extensive evaluations (incl. estimated
head pose and estimated eye gaze in addition to invasively
measured head pose [17]) on a new and larger dataset.

B. DBN

The DBN consists of two sub-graphs, one for the pedestrian
and one for the vehicle. The pedestrian sub-graph is congruent
with the DBN of Kooij et al. [6]. The vehicle sub-graph displays
analogous behavior for the vehicle, by encoding driver aware-
ness by driver gaze and braking manifestation by being close to
the crossing location of the pedestrian.

1) Pedestrian-Related Context States: The pedestrian P can
exhibit one of two motion types: walking (M} =mPE .,
constant velocity) and standing (M} = ml;,, constant po-
sition). The motion state of the pedestrian contains two-
dimensional positions and velocities: X/ = [x¢, ys, 2, vs] T .
This results in the linear state transformation matrices:

10At 0 1000

(mby) _ [OL O ALE ey (0100

A 001 o0 | A ooto| ™
000 1 0001

The vehicle observes pedestrian world positions Y, € R?
without velocities, resulting in the corresponding observation
matrix C* = [é ? 8 8}.

For the context-based SLDS, the switching state Mtp of the
pedestrian motion model is encoded in the DBN as a categorical
distribution Mtljrl = Cat(MP, AL 1, HS11,CCy1) as
shown in Fig. 2. The pedestrian awareness context S*’; models
whether the pedestrian sees the approaching vehicle. Head ori-
entation HOF, forms the evidence. The context variable HS*,
memorizes whether the pedestrian has seen the vehicle in the
past, acting as a logical OR between previous HS*; ; and
current ST,. The environment context ALY, models whether
the pedestrian is near the curb, thus encoding where a pedestrian
would normally stop to yield for oncoming traffic.

2) Vehicle-Related Context States: The vehicle motion state
is X\ = [z, ys, 1, 9:) 7. Ituses a constant velocity model while
driving, and a velocity decay model for braking:

10At 0 10At 0

(mie) — |01 O ALL iy y |01 0 At

A 001 0 y AT 00 d 0 ()
000 1 00 0 d

The decay parameter d = ¥/0.5 ~ 0.93 is empirically chosen
torepresent a velocity half-life of 0.5 s, i.e., the velocity becomes
d'® = 0.5 of its initial value after 10 discrete time steps (0.5 s).
This results in a mean initial deceleration of ~ 4.2 m/s? over
the first second, reflecting moderate braking. Also, the vehicle
V' observes its own velocity, resulting in the observation matrix
cv = [é 1o 8}

0010

For the vehicle, the context-based SLDS’ switching state
MY is encoded as a categorical distribution M}, =
Cat(M) , ALY ;1 1,HSV ;11,CCyy1). The driver awareness
context SV ; models the driver’s awareness of the pedestrian. It is
inferred from the attention eccentricity H OV, 1i.e., the absolute
visual angle difference between the driver’s center of gaze (or
head direction) and the pedestrian. The context variable H.SV;
memorizes whether the driver has seen the pedestrian analo-
gous to HS”;. The static environment context AL"; indicates
whether the vehicle is at a distance from the pedestrian’s crossing
location where the driver can be expected to yield, assuming
he/she has the intention to do so.

3) Shared Context State: Both pedestrian and vehicle dy-
namics depend on C'C}, which indicates whether pedestrian and
vehicle are on a collision course. It uses the minimum distance
D™ obtained when linearly extrapolating the trajectories with
their momentary estimated velocities [20].

C. Inference

During inference the DBN states are propagated over time
by incorporating observations in a forward filtering procedure
(predict, update) following [6]. At each time step ¢, the entire
state of the DBN is represented by the 9 discrete latent states
(4 vehicle, 4 pedestrian, 1 shared) and two partially observable
continuous latent states (X', X/'), see Fig. 2. During the predict
step, the value of each discrete latent state changes according
to a fixed transition table, based on the values of its input
states, i.e., each state’s input nodes in Fig. 2, including the
state from the previous time step t — 1 (dashed line). During the
update step, observations are incorporated based on the context
likelihood distributions, see Fig. 3. The intermediate goal is to
have the motion model switching states for both vehicle (M)
and pedestrian (M /") which represent the switching probability
of the SLDS of each road user. The two continuous latent states
XY, X[ are propagated over time using observations (V;",
YtP ) by standard LDS means, i.e., Kalman filter. Prediction into
the future without observation follows the same procedure, but
without the update steps. Overall, this results in predicted motion
states including uncertainties for both vehicle and pedestrian.
To keep inference tractable, we apply Assumed Density Filter-
ing [27], resulting in the probability distributions of X', X[ to
be each modeled by a Gaussian Mixture (K=2).

IV. PARAMETER ESTIMATION

We set the DBN model parameters by performing a data-
driven initialization step, followed by a gradient-based optimiza-
tion step, using the dataset we introduce in Section V.
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Fig. 3. Original and fitted context likelihood distributions. See Section I'V-A for details. (a) D™ Minimum distance along approach (m), (b) DL Pedestrian

distance to curb (m), (¢) DLY": Vehicle distance to crossing location (m), (d) HO® : Pedestrian head orientation (deg), (¢) HOV : Attention eccentricity (measured
head pose) (deg), (f) H OV': Attention eccentricity (estimated head pose) (deg), (g) H OV Attention eccentricity (estimated eye gaze) (deg).

A. Model Parameter Initialization

Model parameters relate to motion dynamics and context.
They are initialized similar to Kooij et al. [6].

1) Motion Dynamics: The underlying motion models of MV
and M7 are represented by LDSes which model process noise
() and observation uncertainty R. Process noise () of vehicle
and pedestrian are set for both position and velocity states and
are limited to diagonal matrix entries. Values were selected
to reflect model uncertainty under typical velocity changes of
drivers and pedestrians [28], [29]. Observation noise R is set
to reflect typical variance of measurement noise for pedestrian
detection and vehicle movement observed on-board our vehicle,
see Section V. The motion state transition matrices were ob-
tained as follows. The vehicle motion state M " was categorized
as braking when such activity was detected, analogous to ALY,
and as driving otherwise. The pedestrian motion state M* was
categorized as standing in all scenarios where a pedestrian stops
starting from three frames preceding TTE = 0 (see Section V-B
for definition of TTE), similarly to AL* below. The motion
state at all other time instants was categorized as walking. The
motion state transition matrices were then obtained by counting
and normalizing the occurrences of the respective transitions.
The initial motion states assume the vehicle and pedestrian are
driving and walking.

2) Context: To obtain the parameters for binary context
states, we need to establish their ground truth values; we do
so in a two-step approach. In the first step, ground truth val-
ues were roughly obtained by setting some states to the same
values for the entire scenario based on its definition (S¥, SV,
C(C), by manual annotation (AL” = 1 <= TTE = 0), or
by an automatic observable criterion (ALY = 1 for all mo-
ments after first deceleration, i.e., pressing the brake pedal).
This yields the context likelihood distributions as shown by
the histograms in Fig. 3. Parametric distributions were fitted
by Maximum-Likelihood-Estimation and are shown by line

plots. The parametric form of the distributions was chosen
heuristically: Gaussian (DLY, DLY), Gamma (D™", HOV)
or von-Mises distribution (HOT).

In a second step, more accurate ground truth values for
the context states were obtained on the basis of the obtained
context likelihood distributions. For context states ALY, ALY
and CC, the values were re-assigned based on a maximum
likelihood criterion (e.g., CC =1 <= D™ < 2.6 m, see
Fig.3(a)). For ST and SV, re-assignment was done heuristically.
We re-assigned S = 1 <= HOT € [-30,30]° due to the
largely overlapping distributions caused by miss-estimation of
the head pose estimation algorithm. We re-assigned SV = 1
<= HOY < 10° whenever we use the head orientation and
< 4° otherwise for the eye gaze orientation. The transition
matrices which represent the transition probabilities conditioned
on the input states (i.e., incoming links in the DBN graph)
were obtained by counting and normalizing the re-assigned
binary context values between adjacent time steps. The transition
probabilities of HSY and HS* are implemented as a binary
OR in order to memorize the last state in accordance with their
definition in Section III-B1.

The initial context states values were set conservatively at
the beginning of each encounter: driver/pedestrian not looking,
vehicle not near crossing location and pedestrian not at curb.

B. Model Parameter Optimization

We employed the gradient-based method of Pool et al. [7] to
obtain optimized model parameters. In short, the method per-
forms back-propagation similar to neural networks on the DBN
parameters on a differentiable loss function. We maximize the
observation log likelihood of the vehicle and pedestrian under
their respective predicted Gaussian distributions, see Eq. (4).
All intermediate time-steps up to the prediction horizon are
incorporated into the loss function to enforce a consistent path.
Measurements with time-to-event (TTE) € [—2.5 s, 3.0 s| are
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considered for optimization, to cover periods of typical motion
dynamics. Missing intermediate measurements are ignored for
optimization. TT'E is defined in Section V.

Optimization has been performed while enforcing properties
of the DBN variables to keep the state representation inter-
pretable, such as probabilities residing in [0,1] and process and
observation noises remaining positive definite. We also enforce
the latter to be diagonal matrices with variability along elements
of main direction of travel to reduce degrees of freedom and
obtain more stable convergence in the optimization process.

The model parameters chosen for optimization are: process
noises (()) of pedestrian and vehicle, transition probabilities,
and context observation distribution parameters. The model was
implemented in Python 3 using PyTorch 1.4 and was optimized
using Adam [30].

V. DATASET
A. Scenarios

93 vehicle-pedestrian encounters with 4 trained drivers and
4 pedestrians were staged on two empty public roads. Each
encounter consisted of a single pedestrian with the intention to
cross the street in front of the approaching vehicle. The encoun-
ters represented nine disjoint scenarios (8-20 encounters each)
with different combinations of situation criticality (collision
course/sufficient time to cross), pedestrian behavior (stop at
curb/cross), pedestrian awareness of the approaching vehicle
(aware/unaware), vehicle behavior (brake/continue) and driver
awareness of the approaching pedestrian (aware/unaware). The
included scenarios are listed in the left of Table III.

All scenarios (except the anomalous scenario 9%) encode the
following behaviors:

® An aware pedestrian will yield to the vehicle. Pedestrian
awareness is inferred from pedestrian head pose.

e An aware driver brakes for an inattentive pedestrian ap-
proaching the curb. Awareness is inferred from driver head
or gaze orientation.

¢ In non-collision-course crossing scenarios, both partici-
pants continue walking/driving.

e Unaware participants continue walking/driving.

Scenarios 1 to 4 represent non-collision-course conditions,
meaning the pedestrian has sufficient time to cross. Scenarios 5
to 7 are safe through a change in behavior by either the driver
or pedestrian due to awareness of the other participant. Scenario
8 represents a collision where both driver and pedestrian are
unaware of each other’s presence. Scenario 9% represents an
anomalous scenario: the pedestrian crosses despite being aware
of the approaching vehicle. The anomalous scenario is not
considered for model parameter estimation.

Pedestrians were instructed to either “continuously observe
the vehicle” or to “keep facing forward and don’t look at the
vehicle”. Drivers were instructed to either “keep looking at
the pedestrian” or to “avoid looking at the pedestrian” while
approaching the pedestrian.

While scenarios 8 and 9? represent collisions, naturally, no
actual collision took place during data collection. Instead, the

vehicle was brought to a full stop before colliding with the pedes-
trian. The vehicle’s velocity and position data were artificially
replaced with a constant velocity model starting just before the
onset of braking.

To ensure safety, the road was overseen to halt the experiments
when other traffic entered the testing area. A co-driver provided
verbal instructions on when to brake. Target driving speed
was 20 km/h and pedestrians adopted their preferred walking
pace.

B. Instrumentation, Measurements and Ground Truth

All data were collected with a TU Delft experimental ve-
hicle, whose instrumentation is described in further detail
in [31]. Vehicle position, orientation and velocity are obtained
from an ego-vehicle localization system which fuses differ-
ential GNSS, IMU, steering wheel angle and wheel ticks.
We implement this by the Robot Operating System (ROS)
robot_localization package [32] and gain the transfor-
mations from vehicle frame to the world coordinate frame, which
is set to identity at the start of the system. The GPS maintains
a position accuracy of 4 cm while drift between GPS updates is
limited to 0.8% per unit of distance traveled. The road was ob-
served at 10 Hz using a forward-facing stereo camera (baseline
22 cm, 1936 x 1216 px) mounted behind the top-center of the
windshield to obtain a dense stereo depth image of the scene in
front of the vehicle.

Driver head pose and gaze were recorded with two systems.
Estimated eye gaze and head pose were recorded with a high-end
commercial off-the-shelf eye tracker (Smarteye: 4-camera Smart
Eye Pro dx 5.0, software version 8.2, running at 60 Hz with a
gaze accuracy down to 0.5°). Secondly, measured head pose
was obtained by a head-worn infrared-reflective marker tracked
by an optical marker tracking system (Smarttrack) mounted on
the rear seat head rest [17], [33]. Additionally, the driver was
observed by a camera mounted above the speedometer for visual
verification purposes. All sensor data were spatially calibrated
and resampled to a target rate of 20 Hz.

Measured pedestrian positions on the ground plane were
obtained in three successive steps: (1) 2D pedestrian bound-
ing boxes were estimated from the forward facing camera by
the Single-Shot-Multibox-Detector (SSD) of Braun et al. [11].
(2) Distance to camera was found by median stereo disparity [34]
of the 2D bounding box. (3) Transformation of this car-relative
pedestrian position to ground plane positions in world coordinate
frame was performed via ego-vehicle localization. The time be-
tween the first pedestrian detection and the pedestrian reaching
the curb was (min / max / mean = 1.3 s /3.2 s /2.9 s) over the
various sequences. In that period, the pedestrian detection recall
was 83%.

Similarly to Kooij et al. [5], we infer pedestrian’s focus-of-
attention from pedestrian head orientation. We apply the method
of Braun et al. [35] to obtain a single yaw angle representing
pedestrian head orientation.

In order to temporally compare prediction performance
among the various scenarios, a semantically meaningful event
was manually annotated for each sequence, as in [5], [15]. For
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scenarios where the pedestrian crosses, it represents the first
frame where a pedestrian’s foot crosses the curb. For scenarios
where the pedestrian stops, it represents the moment where the
last foot is placed on the ground near the curb. This implicitly de-
fines time-to-event (11" E) for each time-step of each sequence
(negative TT E: before event).

For each encounter, we obtained ground truth of the pedestrian
position in the world coordinate frame. The pedestrian’s path
of travel is defined in the world coordinate frame as a straight
line and corresponds to the path the participants were instructed
to move along. The pedestrian ground plane location is then
obtained by the intersection of the annotated path of travel with
the vertical plane spanned by the image column of the hip point
which we manually annotated in each frame. We employ map
information and ego-vehicle localization to estimate the location
of the curb side.

VI. RESULTS

To evaluate the incremental benefits of the DBN model com-
ponents for an intelligent collision warning system, we compare
six models with varying access to the used context cues on their
joint prediction performance of vehicle- and pedestrian-path and
collision risk. We adopt two evaluation metrics: the ability to
predict driver and pedestrian location 1.5 s into the future, and
collision risk across multiple prediction horizons. Evaluation is
performed using 5-fold cross validation.

A. Evaluation Metrics

_For each time ¢, each model creates a predictive distribution
Py st1+,(X¢) for state Xy and prediction horizon ¢,. Based on
the predictive distributions of both vehicle and pedestrian, we
evaluate individual path prediction performance and combined
collision risk.

1) Path Prediction Performance: Two performance metrics
are used to evaluate path prediction performance [5], [15]: (a)
Euclidean distance error between predicted expected position
and future ground truth position GTy4¢,:

€Irror (tp|t) = ‘E |:]5t—>t+tp (Xt):| - GTt—i—tp (3)
and (b) the log likelihood of the future ground truth position
GTy¢, under the predictive distribution:

loglik (¢,]t) = log [Eamp (GTt+tp)} @)

loglik encapsulates both the spatial error and certainty about
the position observation. Larger loglik values denote better
prediction performance.

2) Collision Risk: We determine the probability for a colli-
sion by taking the integral of the predictive distributions over
a collision area, which is defined by all possible intersections
between vehicle and pedestrian locations. Let P ,;1¢,(X¢) =
N (pese4e, ol +tp) be a single Gaussian predictive position
of either pedestrian P or vehicle V. The combined predictive
position is then defined as Pt‘itHP(Xf, X)) = Nsige, —

TABLE II
CONTEXT CUES AND NUMBER OF MOTION MODELS PER ROAD USER USED IN
THE MODEL VARIANTS. DBN SUFFIXES DENOTE USED CONTEXT:
P: PEDESTRIAN [6]; V: VEHICLE (AL""); H: DRIVER HEAD POSE; G: DRIVER
GAZE. E.g., DBN.pvg USES PEDESTRIAN, VEHICLE AND DRIVER EYE GAZE
AWARENESS CONTEXT

Context cue LDS SLDS DBN.p [¢] DBN.pv DBN.pvh DBN.pvg

Pedestrian at-curb - - X X X X
Pedestrian awareness - - X X X X
Collision course - - X X X X
Vehicle near-crossing - - - X X X
Driver awareness - - - - head pose eye gaze
# Ped. motion models 1 2 2 2 2
# Veh. motion models 1 2 2 2 2 2

2 2 .. .
u}gtﬂp, (af:prtp) + (UX%HP) ). The collision risk pre-
dicted from ¢ for ¢ 4 ¢, is given by:

CR(tpl0) = [ PP, (X0 XAXPIXY )

with A? being the combined spatial extent of vehicle and
pedestrian. If the predictive distributions for the vehicle and
the pedestrian are represented as Gaussian Mixtures (SLDS
and DBN variants), the overall collision risk is given by the
weighted pairwise collision risk between the Gaussian Mixture
components. This extends the collision risk estimation method
of Braeuchle er al. [25].

For the application of collision risk warning, collision prob-
ability has to be classified into collision or no collision, and
classification performance requires a ground truth for collision
outcome. We define collision ground truth as true for any time
instance where the vehicle and pedestrian ground truth overlap
given their position and spatial extent. In order to assess the colli-
sion risk prediction performance at various prediction horizons,
we select a fixed false positive rate (FPR) and find the attainable
true positive rate (TPR) for each prediction horizon ¢,,.

B. Model Variants

We evaluate four context-aware models, including the method
of Kooij et al. [6], which differ in their access to pedestrian
and vehicle context, and compare them to two context-agnostic
models. An overview of the used context cues of the models
is given in Table II. All models were optimized individually as
described in Section I'V.

1) Context-Agnostic LDS: Both linear dynamical systems
for pedestrian and vehicle path prediction are instantiated by
constant velocity motion models.

2) Context-Agnostic SLDS: Vehicle and pedestrian motion
are both modeled by context-agnostic SLDSes with the same
underlying motion models as the context-aware models (driv-
ing/braking, walking/standing) described below.

3) Context-Aware Models With Varying Pedestrian- and
Vehicle-Context: We analyze four variants of the model pre-
sented in Fig. 2 which take different amounts of context into
account: DBN.p represents the context-based pedestrian path
prediction method of Kooij et al. [6]. The method is driver-
agnostic and models the vehicle dynamics as a context-agnostic
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TABLE III
SCENARIO DECOMPOSITION (LEFT), MEAN PATH PREDICTION PERFORMANCE IN TERMS OF LOGLIK (CENTER) AND EUCLIDEAN DISTANCE ERROR (RIGHT) OF
VARIOUS MODELS FOR A PREDICTION HORIZON OF ¢, = 1.5 s. THE TOP AND LOWER HALVES OF THE TABLE CAPTURE THE PREDICTION PERFORMANCES OF
PEDESTRIAN AND VEHICLE ALONG THE DIMENSION OF MAIN TRAVEL (I.E. LATERAL AND LONGITUDINAL VS. VEHICLE MAIN AXIS). SEE SECTION VI-B FOR
MODEL DEFINITIONS. HIGHER LOGLIK AND LOWER EUCLIDEAN DISTANCE ERROR DENOTE BETTER PREDICTION PERFORMANCE. BOLD NUMBERS DENOTE
BEST-PERFORMING MODEL PER SCENARIO. GREY ROWS DENOTE SCENARIOS WITH A CHANGE IN DYNAMICS OF THE RESPECTIVE ROAD USER

Ped. Ped. Veh. Driver

DBN

DBN DBN DBN DBN DBN DBN DBN

Scen. CC LDS SLDS LDS SLDS
stops sees stops sees plc] pv pvh pvg plc] pv pvh pvg
Pedestrian 1.5 loglik Pedestrian 1.5s Euclidean error (cm)
1 0 0 0 o0 0 -33 —-22 -21 -21 -22 -22 64 99 48 51 52 51
2 0 O 0 0 1 —2.8 —2.7 -25 —-25 —24 —-24 83 140 112 110 110 111
3 0 0 1 0 0 -9.2 —-35 -31 -3.1 -36 —-3.7 7T 133 68 71 77T 73
4 0 0 1 0 1 -9.0 —-23 —-23 —-2.2 —-23 -23 54 73 55 50 46 49
5 1 1 1 0 1 —4.0 —-24 -18 —1.8 —22 22 122 131 84 86 91 91
6 1 1 1 0 0 -42 -25 -1.7 -1.7 -1.8 —1.8 114 131 83 87 87 87
7 1 0 0 1 1 -11 -15 -19 -1.8 —-1.7 —-1.7 58 90 71 70 70 70
8 1 0 0 0 0 -10 -13 -20 -19 —-19 -19 52 74 63 61 63 63
9 1 0 1 0 0 -15 —-18 —-21 —-2.0 —2.0 =20 63 100 79 T7r 73 73
non-anomalous, motion change (5-6) -4.1 -25 —-1.8 —-1.8 —-2.0 -2.0 118 131 84 87 89 &9

non-anomalous, no motion change (1-4, 7-8)

—44 -23 -23 -23 -24 -24 65

102 70 69 70 70

Vehicle 1.5s loglik

Vehicle 1.5s Euclidean error (cm)

—38.0
-31.2 —-6.1

—7.8

© o001\ N Wi —
—_———— 0 O OO
SO = —= OO
— o O ==~ —=OO0O
el leoloNeReNoNe)
SO O —= OO

-129 -2.8 -3.7 -3.6 -3.7 =38 63
—-4.5 —-1.5 —-24 -21

—2.7 =26 —2.1
-10 -1.0 -16 —-1.7 —-1.6 —1.6 46 47 39 81 45 45

—6.2 —2.2 —-28 —-28 —28 —-28 54 53 46 52 55 55
—-74 —-88 —6.0 —6.1
-79 =79 =70 -7.0 48 52 39 44 51 50

—6.1 60 62 49 53 55 55

66 55 56 58 58

—2.0 -2.0 48 54 48 117 69 69
-34 -14 -20 -20 —-1.8 —1.8 43 52 40 103 61 61
2020 2.2 245 189 195 149 175 175

? -11 -1.1 -16 —-1.8 —1.7 —1.7 38 47 34 78 45 45
non-anomalous, motion change (7) —-7.8 —2.7 —2.6 —2.1 —-2.2 -—-2.2 245 189 195 149 175 175
non-anomalous, no motion change (1-6, 8) —-139 —-3.2 —4.2 -3.7 -3.6 —3.6 52 55 45 72 56 56

SLDS. DBN.pvis vehicle-aware and extends DBN.p with vehicle
static environment cues but remains driver-agnostic. It includes
proximity of the vehicle to the crossing location of the pedes-
trian (AL"Y"). DBN.pvh additionally uses driver head pose as an
awareness cue (S"). DBN.pvg uses driver eye gaze instead of
driver head pose.

C. Path Prediction

Table III depicts average path prediction performance over
various encounters of a certain scenario in terms of loglik and
Euclidean distance error of both pedestrian and vehicle for a pre-
diction horizon ¢, = 1.5 s averaged over periods where typical
changes in dynamics occur (pedestrian: TTE € [—0.5 s, 2.0 s],
vehicle: TTE € [—0.5 s, 3.0 s]; TTE ranges define times where
predictions are made for). Let us consider three scenario types.

1) Normal Scenarios With no Motion Change: We first con-
sider the normal scenarios where no motion change occurs for
a certain road user (i.e. scenarios 1-4 and 7-8 for the pedestrian,
and scenarios 1-6 and 8 for the vehicle; the respective average
performances are listed in two separate rows of Table III).

We see that the LDS for thatroad user has a comparatively poor
loglik overall (—4.4 and —13.9, resp.), as the uncertainty region
of its single-Gaussian state representation is large to account
for possible motion changes. On the other hand, its maximum
likelihood estimate is comparatively accurate: the Euclidean

distance error is smaller than that of other models (65 cm and
52 cm, for pedestrian and vehicle resp.); this is to be expected
as its linear model precisely fits the actual motion.

We also observe that context-aware models are at least on-par-
with their context-agnostic (multi-motion) counterparts; cases of
outperformance suggest that the context in the former provides
more selective guidance when a motion change is probable.
Specifically, models that incorporate pedestrian context (all
DBN variants) are on-par-with (outperform) SLDS in terms of
the loglik (Euclidean distance error) metric for the pedestrian.
Models that incorporate vehicle context (DBN.pv, DBN.pvh and
DBN.pvg) are on-par-with SLDS in terms of the loglik and
Euclidean distance error metric for the vehicle.

2) Normal Scenarios With Motion Change: Let us now con-
sider the normal scenarios where motion change occurs for
a certain road user (i.e. scenarios 5-6 for the pedestrian, and
scenario 7 for the vehicle; the respective average performances
are listed in two separate rows of Table III).

We see that the context-aware models for a road user mostly
outperform their context-agnostic counterparts (LDS and SLDS)
in terms of loglik and Euclidean distance error for that road user.
We observe that having the full context of a road user does not
necessarily improve performance for that road user as opposed
to using only partial context (e.g. for the vehicle, DBN.pvh and
DBN.pvg underperform DBN.pv on Euclidean distance error).
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Fig.4. Loglik and standard deviation over time for a braking vehicle (scenario
7) for a prediction horizon ¢, = 1.5 s, and drawn at the moment for which the
prediction was created (i.e., the values shown at TTE = 0.0 s were predicted
from measurements of TTE = —1.5 s). The vehicle initiates braking for the
crossing pedestrian between —1.8 s and 0.6 s, with most vehicles braking from
0.0 s onward.

We also observe that adding context related to the other
user does not improve performance for the original road user
(e.g. adding vehicle context DBN.pvh and DBN.pvg does not
outperform pedestrian prediction performance by DBN.p). An
outperformance might have been expected, as a motion change
indicates an interaction between the road users, where such
other road user context could be helpful. Apparently, the motion
coupling by means of the CC state variable in the DBN is
(too) weak, and is possibly overshadowed by data issues (e.g.
measurement noise, insufficient data).

Fig. 4 shows a temporal analysis of vehicle path prediction
performance for sequences where the vehicle stops (scenario 7).
While the vehicle approaches the pedestrian with constant
velocity (I'TE < —0.2 s), the three compared models (LDS,
SLDS, DBN.pvg) show similar performance. As the vehicle
slows down, both LDS and SLDS increase in spread over various
sequences (shown by the standard deviations) and gradually
decrease in vehicle loglik. The SLDS model adapts more quickly
to the change of dynamics (switch from driving to braking)
compared to the LDS. The DBN.pvg model variant anticipates
the change in motion dynamics resulting in a higher loglik
and less uncertainty than the context-agnostic models, therefore
resulting in a better path prediction performance for the vehicle.

3) Anomalous Scenario: Finally, let us consider the anoma-
lous scenario 9. It is anomalous as the pedestrian crosses despite
seeing the vehicle. We observe in Table III a lower predic-
tion performance of the context-aware models (all DBN vari-
ants) regarding the pedestrian compared to the context-agnostic
models (SLDS and LDS). This is no surprise, as the context-
aware models were trained to expect stopping behaviour. Despite
this, performance degrades gracefully, since the measurements
of the walking pedestrian allow the context-aware models to
infer decent motion state estimates.

Fig. 5 shows a comparison between driver gaze (DBN.pvg)
and driver head pose (DBN.pvh) as contextual cue for SV
(sees-pedestrian). For SV = 1, driver gaze provides higher clas-
sification confidence in .SV (has-seen-pedestrian) compared to

1.0
—— DBN.pvg SP=1
0.8 -
igher is better) DBN.pvh SP=1
o | F e DBN.pvg SP=0
s0er o e DBN.pvh SP=0
iy 0.4 1
Q0.
024 ||  (lowerisbetter)  _..::
0.0 1 ]
-3 -2 -1 0 1 2 3 4
TTE (s)
Fig. 5. Classification performance of DBN.pvg and DBN.pvh on the hidden

HSY state on sequences where driver is instructed to be attentive (SY = 1)
and inattentive (SV = 0).

head pose. For S V' = 0, both models incorrectly believe that the
driver has seen the pedestrian for a similar fraction of sequences.
However, this classification accuracy did not yield a better
vehicle path prediction performance when comparing DBN.pvg
to DBN.pvh in Table III. We attribute this to the memorizing
effect of HSV.

Measured driver head pose (Smarttrack) provided virtually
identical results to estimated head pose (Smarteye) on all sce-
narios, and was therefor excluded from analysis.

D. Collision Risk Estimation

We first compare how collision risk estimates evolve over
time for the LDS, SLDS and DBN.pvg models on two exemplary
sequences with changing vehicle dynamics (scenario 7) and
collision (scenario 8), followed by an assessment of overall
collision risk prediction performance as function of prediction
horizon.

1) Scenario-Based Collision Risk: Fig. 6(a) shows collision
risk prediction for a sequence from scenario 7, where the vehicle
brakes due to an aware driver. Thus, a low predicted collision
risk is expected. For a prediction horizon ¢, = 0.75 s, all models
predict a negligible collision risk (dashed lines). Predicting ¢, =
1.5 s into future, the LDS and SLDS models anticipate a collision
risk of 66% and 56% respectively while the DBN.pvg model
keeps a collision risk below 10% throughout the sequence.

Fig. 6(b) shows collision risk over time for one sequence from
the collision scenario (scenario 8), where both the vehicle and
the pedestrian continue their respective motion, being unaware
of each other. The collision window depicts all time instances
defined as a collision in accordance with Section VI-A, i.e.,
where the geometries of vehicle and pedestrian overlap. Pre-
dicting 0.75 s into the future, all compared models (LDS, SLDS,
DBN.pvg) depict similar maxima of collision risk within the col-
lision window. With increasing prediction horizon, each model
becomes less certain, resulting in a lower predicted collision
risk.

The maxima are above 18% within the collision window
for the exemplaricly depicted sequence. Fig. 6 further shows
that only for DBN.pvg, there exists a range of collision risk
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Fig. 6. Collision risk estimates obtained from different models for a braking

vehicle (top) and collision (bottom) sequence. TTE indicates the time for which
the predictions were made. Values are shown for prediction horizons ¢, of
0.75 s and 1.5 s. (a) Sequence from scenario 7. Lower collision risk denotes
better performance. (b) Sequence from collision scenario 8. Higher collision
risk denotes better performance. The collision window C'W is shaded in red.

thresholds (10%—18%) for which a collision warning is triggered
in the collision sequence (Fig. 6(b)) but not in the non-collision
sequence (Fig. 6(a)).

2) Overall Collision Risk Prediction: To examine how colli-
sion risk prediction performance changes with prediction hori-
zon t,,, we select a FPR of 1% and evaluate the attainable TPR
as a function of ¢,, see Fig. 7. One observes that the context-
agnostic models (LDS and SLDS) significantly under-perform
the context-aware models (DBN variants). For a prediction hori-
zon up to 0.75 s, all DBN variants achieve a TPR close to 1.0.
They continue to perform similarly until a prediction horizon of
about 1.3 s, after which point the driver aware models DBN.pvh
and DBN.pvg obtain a small improvement. Towards a horizon
of 2.0 s, the TPR of the models drops towards 10%.

VII. DISCUSSION

We evaluated path prediction performance in three scenario
types within a time interval of a few seconds around a potential
motion change: in normal scenarios with no motion change,
in normal scenarios with motion change and in an anomalous
scenario. We did so as reporting aggregate performance would

1.0 A
0.8 1
064 N
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= —— sLDs
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prediction horizon t, (s)
Fig. 7. Collision risk TPR of different models obtained under a 1% FPR for

various prediction horizons. Higher values denote better performance.

not have been very insightful. This is because in reality, the time
steps in which “normal” scenarios apply with no motion changes
vastly outnumber the two other scenario types. Just considering
aggregate performance would strongly favor simple models like
the LDS (or a parameter setting of a more complex model that
essentially implements such a simple model). However, the time
instants involving motion changes should arguably carry more
weight, as they might strongly induce changes in collision risk.
Listing separate performance values for various scenario types
allows to side-step this weighting issue.

For normal scenarios with no motion change, the single-
motion model LDS performs best in terms of Euclidean dis-
tance error, albeit with by far the worst loglik performance of
all models. Context-aware models (DBN.p, DBN.pv, DBN.pvh,
DBN.pvg) were at least on-par with their context-agnostic
(multi-motion) versions (SLDS). They remained competitive
with the LDS on Euclidean distance error. The normal scenarios
with motion changes are those where the context-aware mod-
els can potentially shine. Indeed, we found the context-aware
models to mostly outperform their context-agnostic counter-
parts (LDS and SLDS). Anomalous situations which defy the
anticipated motions, but still occur in real-world traffic, provide
a challenge to a context-aware model. They might contradict
the expert knowledge encoded in the DBN structure or will not
adhere to the parameters estimated on a training set. Fortunately,
the probabilistic modeling allows for softer decisions: the switch
of motion dynamics not only depends on the pre-conditioning
context, but also on the current positional observations. Indeed,
the performances of context-aware models were shown to re-
main competitive with context-agnostic counterparts.

Overall, one observes that the models using both pedestrian
and vehicle context (DBN.pv, DBN.pvg, DBN.pvh) performed
best over the three scenario types. Full context was not shown
to improve path prediction performance (i.e. DBN.pvg and
DBN.pvh not outperforming DBN.pv). While DBN.pv, DBN.pvh
and DBN.pvg encode typical vehicle braking locations, variation
in braking behavior seems to limit the predictive value of the
driver awareness cue. Contrary to our expectations, measuring
driver gaze (DBN.pvg) yielded similar path prediction and colli-
sion risk estimation performance compared to measuring driver
head pose (DBN.pvh), i.e. see Fig. 7. However, when multiple

Authorized licensed use limited to: TU Delft Library. Downloaded on December 22,2022 at 14:12:52 UTC from IEEE Xplore. Restrictions apply.



906 IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, VOL. 7, NO. 4, DECEMBER 2022

road users or driving distractions are introduced, it is likely that
driver awareness will be dis-ambiguated more accurately from
gaze compared to head-pose. Other fixation-related metrics may
provide further insights in driver awareness, such as number
of fixations, total fixation duration and angle of first saccade
landing within 2° of the pedestrian [36], though such evaluations
would require natural as opposed to instructed viewing behavior,
and other spatial regions competing for attention.

In this paper, we chose to model mutual awareness and inter-
action between vehicle and pedestrian loosely, by means of the
shared context state C'C' (collision course) of the respective DBN
sub-graphs. This has the advantage that we could easily scale-up
to multiple road users, as their DBN sub-graphs can be designed
and optimized individually, and the number of dependencies
grow linearly. On the other hand, some limitations result from
this loose motion coupling. The driver-aware models (DBN.pvh,
DBN.pvg) encode the following: if one road user A is aware of
the other B, this influences the motion of A which affects the
shared collision course latent state C'C, which in turn influ-
ences the motion of B. Not modeling the dependency between
awareness of A and motion of B directly might lead to decreased
performance. Consider the path prediction performance of the
vehicle in scenarios 5 and 7. In both scenarios, the driver sees the
pedestrian, however, only in scenario 7 the vehicle stops (due to
the unaware pedestrian). The fact that the vehicle motion in the
driver-aware models is not directly influenced by the pedestrian’s
awareness might contribute to why DBN.pvh and DBN.pvg are
not the best performing models for scenario 7.

DBNSs provide a versatile structure to model expert knowl-
edge. Dependencies amongst pairs of road users could be added,
but limiting them to close spatial proximity, to remain scalable
with increasing number of road users. Additional cues could be
integrated, such as “exchanged” awareness [37], i.e. modeling
the driver’s belief about the pedestrian’s awareness in addition
to the driver’s awareness of the pedestrian’s presence.

One of the main insights of this paper is that context cues can
help. However, simply using more complex motion models with
additional context cues does not necessarily help prediction per-
formance, if those context cues are not sufficiently informative
or they cannot be reliably inferred from sensor measurements.
Differences in path prediction performance between context
cues can be very subtle and might also not materialize due to
small data sample effects and due to errors in the estimation of
ground truth.

VIII. CONCLUSION

We presented a novel method for vehicle-pedestrian path
prediction that takes into account the awareness of the driver and
the pedestrian towards each other. The method jointly modeled
the paths of a vehicle and a pedestrian within a single Dynamic
Bayesian Network (DBN). Subsequently, collision risk was es-
timated by a probabilistic intersection operation. Overall, this
work demonstrated an integrated system from on-board sensing
up to collision warning.

We evaluated the incremental benefits of pedestrian- and
vehicle-context in six models with varying access to the used

context cues, namely Linear Dynamical System (LDS, one mo-
tion model), Switching Linear Dynamical System (SLDS, two
motion models), DBN.p (pedestrian aware), DBN.pv (vehicle-
aware and driver-agnostic), DBN.pvg (driver-gaze as awareness
cue) and DBN.pvh (driver head pose as awareness cue).

For normal scenarios with no motion change, the single-
motion model LDS performed best in terms of Euclidean dis-
tance error, albeit with the worst loglik performance by far of
all models. Context-aware models (DBN.p, DBN.pv, DBN.pvh,
DBN.pvg) were at least on-par-with their context-agnostic
(multi-motion) versions (SLDS). They remained competitive
with the LDS on Euclidean distance error. On the normal sce-
narios with motion changes we found the context-aware models
to mostly outperform their context-agnostic counterparts (LDS
and SLDS). Even in an anomalous scenario, the performances
of context-aware models were shown to remain competitive
with context-agnostic counterparts. Overall, models using both
pedestrian and vehicle context (DBN.pv, DBN.pvg, DBN.pvh)
performed best on path prediction. This was also reflected in
collision risk estimation performance. For example, the collision
risk warning true positive rate (TPR) was raised from 18%
(pedestrian-aware model DBN.p of Kooij et al. [6]) to 27% for
DBN.pvg for a prediction horizon of 1.5 s and a false positive
rate (FPR) of 1% over the dataset.

Future work could involve improved pedestrian localization
(e.g. sensor data fusion), additional and more realistic motion
models within the SLDS, and more sophisticated context mod-
eling (e.g. driver awareness by fixation cues). Tests are needed
on large naturalistic datasets, consisting of rich traffic scenarios
with possibly multiple road users.
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