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Abstract—In this paper, we investigate the use of proxemics
and dynamics for automatically identifying conversing groups, or
so-called F-formations. More formally we aim to automatically
identify whether wearable sensor data coming from 2 people is in-
dicative of F-formation membership. We also explore the problem
of jointly detecting membership and more descriptive information
about the pair relating to the role they take in the conversation
(i.e. speaker or listener). We jointly model the concepts of
proxemics and dynamics using binary proximity and acceleration
obtained through a single wearable sensor per person. We test
our approaches on the publicly available MatchNMingle dataset
which was collected during real-life mingling events. We find out
that fusion of these two modalities performs significantly better
than them independently, providing an AUC of 0.975 when data
from 30-second windows are used. Furthermore, our investigation
into roles detection shows that each role pair requires a different
time resolution for accurate detection.

Index Terms—F-formation detection, wearable sensing, con-
versing groups, recurrent neural networks, role identification

I. INTRODUCTION

As social animals, most people interact and specifically
converse with each other on a daily basis. Regardless of the
specific type of the event that the interaction takes place,
the automatic detection of conversational interaction is the
first step to understanding the potential flow of interpersonal
influence. For example, being able to accurately identify
conversing groups allows us to analyse more complex social
phenomena such as attraction [1] or cohesion [2]. The analysis
of social behaviour is also shown to be crucial for security
and surveillance applications [3], [4]. This information is
beneficial for human robot interaction by allowing the robot
to identify an ongoing conversation to enter [5]. In this paper,
we investigate and provide a novel solution for the detection
of conversing groups and participants roles in the interaction,
relying solely on the fusion of multimodal sensor data, namely
acceleration and proximity and test our solution on a real life
crowded mingling event.

This paper was partially funded by the Dutch national program COMMIT
and the Netherlands Organization for Scientific Research (NWO) under project
number 639.022.606

We formalise the notion of conversing groups by referring
to Kendon’s definition F-formations [6]. Kendon defines F-
formations as a specific type of focused encounter where
participants tend to stay in close proximity and orient them-
selves to sustain conversation [6]. From the definition, it is
clear that proxemics, the spatial distance and bodily orien-
tation of participants, represents valuable information for the
identification of F-formations. Indeed, most related work from
the wearable and ubiquitous computing community heavily
relies on proxemics, extracting proximity and orientation in-
formation either from images [7]–[9] and/or wearable sensing
such as Infrared trans-receivers [10], [11]. However, there
are limitations to such approaches. The estimation of spatial
proximity with IR or radio-based sensors are shown to result
in various false detections, mainly caused by the surrounding
environment and furniture [12]. In crowded scenarios, possible
occlusions between people and objects can negatively affect
the robust estimation of proximity and orientation. In this
paper, we propose an alternate approach fusing the proxemics
and dynamics of interaction, based on the findings that people
tend to coordinate their movements during conversational
interaction [13]. This builds upon the work of Gedik and
Hung [14] where they proposed an approach that investigate
dynamics alone. Here we argue for the importance of the use
of both for better accuracy.

We investigate the fusion of proxemics and dynamics with a
publicly available dataset of real-life crowded mingling events
[15]. Such events are perfect candidates for analysing group
behaviour since groups of different sizes form and break over
time naturally, creating rich and varied behaviour to analyse.
During the mingling events used in our experiments, partici-
pants were fitted with a single sensor pack that was worn over
their necks with a lanyard. These sensor packs recorded their
bodily acceleration and the IDs of neighbouring sensor packs,
acting as binary proximity detections. Our proposed solution
uses these information sources as inputs to an Long Short
Term Memory (LSTM) network which models the temporal
dependencies of the data and learns a joint representation of
proxemics and dynamics. Subsequently, we delve deeper into
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the nature of the problem by investigating the detection of the
roles of the participants in the interaction in terms of whether
they are speaking or listening. Based on findings in social
science, speakers and listeners behave differently in interaction
[13]. We expect these roles to be identifiable and that they
could eventually help in distinguishing conversing partners
who are more or less involved with each other.

The novel contributions of this paper are as follows: (i) we
propose to fuse proxemics and dynamics through LSTM net-
works and show, with a specific time resolution, it significantly
outperforms using separate modalities, (ii) we investigate the
automatic detection of roles inside the interaction and find that:

• Group membership and roles in interaction can be jointly
detected.

• Each role pair requires a different temporal resolution of
analysis for satisfactory detection.

II. RELATED WORK

To better contextualise the nature of this paper, we present
a number of studies that focus on the automatic identification
of F-formations. We use a rough categorisation based on
the sensor types used in these studies. Most of the related
literature in this domain focuses on the use of proxemics, the
positions and orientations of the participants in a scene, as a
cue. Classically favoured modalities for F-formation detection
has been static images and videos. Throughout the years,
many different methodologies such as Hough voting [16], [17],
graph clustering with dominant sets [18], [19] and multi-payoff
evolutionary game theory [9] were used to detect F-formations
from static images or video.

Another widely used sources of information are wearable
and mobile sensing. Such devices provide proximity informa-
tion through Infrared (IR) and/or radio which is then used to
detect interactions between people. In general, the sensor data
is taken at face value and used directly as a proxy for conver-
sational interaction which can be used to infer F-formations.
However, most works mentioned here do not evaluate the ro-
bustness of such sensing systems since most studies aggregate
observed face to face detections over sufficiently long period
of time with the assumption of relatively low crowd density.
Such studies have tended to use these interaction proxies for
analysing long term social concepts such as centrality [20],
personality traits [21], social patterns in daily life [22], student
mental health [23], interest and affiliation [11] and dynamics
of interaction networks [24]. These studies might use custom-
made sensor packs [11], [20], [24] or employ mobile phones
[22], [23]. The temporal resolution of the analysis can range
from minutes [11], [24] to days [20] to months [22], [23].
Some studies explicitly infer body orientation in addition to
proximity [25], whereas some others infer the proximity from
GPS coordinates [26]. In [10], information from wearable
sensors is employed together with information from images
for F-formation detection.

There exist few studies that consider the dynamics of in-
teraction as cues for F-formation detection. Authors proposed
two methods for modelling the dynamics of proxemics from

video data in [5]. In [20], audio is used to infer speaking status
which was then used for refining the IR results on interaction
detection. Similarly, [27] used acceleration to infer various
social actions such as speaking, drinking, etc. Mutual infor-
mation between different participants’ social action streams
were then computed and thresholded to obtain F-formation
memberships. [14] built on these results and proposed new
measures between social action streams and group size based
training. To our knowledge, no other studies on F-formation
detection focused on fusing the proxemics and dynamics of
interaction from wearables.

Determining similar studies for role identification, in the
context of this paper, is not trivial. Identification of speakers
mainly falls under speaker detection [28] or recognition [29].
They aim to find out who the speaker is from an input stream.
These studies mostly employ sensors that registers the flow
of speech, such as audio [28], [29] or video that focuses
on the movement of the mouth [30]. Only a few studies
employ accelerometers for detecting speakers, similar to our
proposed approach [31]. However, none considers the roles in
the context of an interaction and focuses on the joint estimation
as our paper does. The benefit of modelling both jointly is that
the correlation between the different behaviours should help
us to better estimate conversational involvement and therefore
social influence from the perspective of speaker and listener
behaviour.

III. DATA

In our experiments, we used the data from the MatchN-
Mingle dataset which includes data from three separate speed
dating events took place in a local bar and joined by 92
participants in total [15]. In each event, speed dating sessions
were followed by a free mingling session of roughly one hour.
In the mingling session, participants freely interacted with each
other. Each participant wore a single custom badge-like sensor
pack on their necks with a lanyard. These sensor packs contain
an accelerometer and a radio-based binary proximity sensor,
recording at 20Hz and 1Hz, respectively. The recordings of
these sensor packs during the mingling sessions are used in
our experiments. The video recordings of the scene were only
used for obtaining F-formation and speaking status annotations
which has been used as ground truth in the roles detection
part of this study. 10 minute intervals from the mingling
session of each day, totalling in 30 minutes, were annotated
for F-formations. Sensor readings and annotations from these
30 minutes form the data used in this paper. During these
30 minutes, groups of various sizes ranging from dyadic
interactions to seven people were formed, creating a rich
testing environment. For more details regarding the dataset,
please refer to [15].

IV. METHODOLOGY

Figure 1 shows an overview of the proposed method and
conducted experiments. In this section, the pairwise represen-
tation procedure which creates the samples used in our exper-
iments will be first explained. Then, the methodologies and
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Fig. 1. Flow diagram of the proposed method

Fig. 2. Synthetic visualisation of pairwise representations (taken from [14])

experiment setups for group membership and roles detection
will be presented.

A. Pairwise representation

According to the literature, a group could be represented
as a collection of individuals [8] or as a set of dyadic
pairs [14], [18], [32]. In this paper, we selected pairwise
representations since we utilise, in addition to proxemics, the
dynamics of interaction realised through the coordination of
the movements of participants. Figure 2 shows a synthetic
visualisation of a possible scene with four people and two
F-formations. Pairwise representations of such a scene treat
each possible connection between people as a sample. These
samples are visualised in Figure 2 as green and red lines,
representing samples belonging to the positive (pair is in the
same F-formation) and the negative (pair is not in the same
F-formation) classes, respectively.

Since we are interested in the dynamics of interaction
which unfolds over time, the temporal resolution of the data
gains importance [9], [19]. An instantaneous representation
of the scene is not sufficient for exploiting the coordination
patterns between interacting partners. Hence, we used a sliding
window approach, with 50% overlap, over the sensor data of
participants. Samples in our experiments are formed by contin-
uous sequences of sensor data obtained from two participants.
Following sections will provide more information about the

dimensions of these input samples with respect to experiment
setups and chosen sliding window sizes.

B. Group membership detection

Since our samples are represented as time-series data, we
used recurrent neural networks. The proposed architecture is
visualised in Figure 3. Each sample is fed into a three-layer
LSTM [33] with 16 hidden units per cells. The cell number
varies according to the selected window size and equals to the
input sequence length. The number of layers and hidden units
were empirically found. The outputs of the last LSTM layer
cells are discarded except the last one which should ideally
contain the information extracted from the previous elements
of the sequences. This representation vector is then fed into a
feed-forward network which is composed of two linear layers
with Relu activation functions. This network reduces the vector
dimension from 16 to 8 and then maps it into an output vector
with dimensions identical to the number of classes for the
current experiment.

The model is trained end to end with a weighted cross
entropy loss on the output vector, defined by the equation
below:

loss(x, class) = weight[class]
(
−x[class] + log

(∑
j exp(x[j])

))
The pairwise representation creates high class imbalance in
the data, favouring the negative samples. Hence, we used a
weighted loss where the weights were set to be inversely pro-
portional to the label distribution. The network was optimised
with Adam. [34].

As shown in Figure 2, there are two classes for group
detection experiments; pairs that are in the same F-formation
and pairs that are not. A sample is treated as positive if the
two participants forming the sample are annotated as being in
the same group in the ground truth at least 66% of the sliding
window that the sample is extracted from.

We experiment with three different input combinations:
acceleration only, proximity only and fusion of the two.
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Fig. 3. Proposed model structure and information propagation through the network.

TABLE I
AVAILABLE INPUT SOURCES WITH RESPECTIVE IDS (P1 AND P2 STAND

FOR PARTICIPANTS 1 AND 2)

Input ID Definition
0 : 2 X,Y,Z accelerometer readings for P1
3 : 5 X,Y,Z accelerometer readings for P2
6 Binary proximity sequence between P1 and P2

Figure I shows the inputs used in these combinations. For
the first setup, tri-axial accelerations from two participants are
concatenated to form the samples (IDs 0 to 5). The second
setup uses the binary proximity stream only (ID 6). Samples
for the fusion setup is formed by the concatenation of the
acceleration and the proximity streams (IDs 0 to 6). In order
to have the same sampling rate, binary proximity readings are
up-sampled to 20Hz. As an example, with a window size of
15 seconds and an input combination of fusion, each sample
will be 300x7. The final size of the resulting dataset varies
according to the window size, both in the number of samples,
which is conversely proportional to the window size, and the
sequence length of each sample which is directly proportional
to it.

C. Joint prediction of membership and roles

We define two basic roles in an interaction: speaker and
listener. Since we use a pairwise representation, this results in
three different classes for each sample from pairs that were
already in an interaction: speaker&speaker, speaker&listener
and listener&listener. We use the speaking status ground truth
present in the MatchNMingle [15] to label someone as a
speaker or a listener. If a person is annotated as speaking at
least 30% of the window that the sample is extracted from,
this person is labelled as a speaker and listener otherwise.
This threshold was selected to allow a continuous turn-taking
behaviour to properly represent speaker&speaker pairs.

We formulate the experiments on role detection as four-
class classification problems that focus on jointly detecting the
existence of an interaction and the roles participants take in it.
These joint prediction experiments include all samples used in

the group detection experiments but the positive samples are
now relabelled with respect to the role pairs. This formulation
results in the following classes: pairs that are not in the same F-
formation, speaker&speaker pairs, speaker&listener pairs and
listener&listener pairs.

V. RESULTS AND DISCUSSION

Following subsections present the results of the group and
roles detection experiments. For both experiment types, we
used 80-10-10 training-validation-test split. While splitting,
we made sure there are no samples belonging to the same
pair of people in the train, validation and test sets to avoid
contamination.

To test the generalisation ability of our methods, we re-
peated the random splitting step 20 times, resulting in 20
different networks and 20 performances for each. Results for
group membership detection are then presented as the means
of these 20 repetitions. For the joint role and membership
detection experiments, confusion matrices for each run are
accumulated and normalised at the end, for a more detailed
evaluation in the multiclass case. Each model is trained for 50
epochs on the training set and the model with the lowest loss
on the validation set is used for evaluation on the test set.

A. Group membership detection
Due to highly imbalanced data, we selected Area Under

Receiver Operating Characteristic Curve (AUC for short) as
the evaluation metric. Figure 4 visualises the mean AUC scores
obtained for group detection with different input combinations
explained in the former section, with window sizes ranging
from 15 to 40 seconds. Firstly, acceleration only results seem
to be poor compared to the others, ranging from 0.52 to 0.57
(standard deviations are close to 0.06). Still, a one-sided paired
t-test showed that the results are significantly better than a
random classifier, regardless of the window size (p < 0.05).
We could also see that increasing the window size causes a
marginal increase in the performance. This is expected since
the dynamics of interaction, which we aim to capture through
acceleration, are expected to unfold in larger time resolutions.

We can see that proximity provides satisfactory performance
by itself, providing AUC scores ranging from 0.87 to 0.94.
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Fig. 4. Mean AUC scores for group membership detection with different
window lengths and inputs

Contrary to the pattern we saw for the acceleration only
performances, performances with the proximity information
tend to drop with the increasing window size. This is might
suggest that proximity itself is not enough for detecting
reasonably longer interactions.

Performances obtained with the fusion of acceleration and
proximity supports our claims regarding the nature of interac-
tions including both proxemics and dynamics. We see that the
performances obtained with fusion tend to be slightly lower
than the proximity ones for window sizes of 20 and 25. How-
ever, a paired one-tailed t-test showed no significant difference.
In other words, fusion always guarantees performances at
least as good as proximity. More interestingly, we can see
that when 30-second windows are used, fusion provides a
noticeable increase over the proximity with an AUC score
of 0.975. This result is shown to be significantly better than
the proximity one (p < 0.01). When analysed together with
the former results, we can conclude that dynamics captured
through body acceleration indeed provides more information
regarding the existence of an interaction between partners.
However, it should be noted that this effect heavily depends
on the size of the window, since the coordination of people
can only be robustly sensed in specific time resolutions.

B. Joint prediction of group membership and roles

Since we are dealing with a 4-class problem in joint
prediction, we present normalised confusion matrices which
make a more detailed evaluation possible. Following the group
detection results, we stick to the fusion of proximity and
acceleration for the experiments of the current section. Figures
5, 6, 7 show the performances obtained with window sizes
10, 15 and 25, respectively. These three window sizes are
empirically found out to be the best selections for the three
distinct role pairs. For the 4-class classification, a random
classifier is expected to obtain a normalised confusion matrix
with scores of 0.25 in the diagonal, which acts as the baseline.

In all of the figures, we can see that our model easily
identifies the no interaction class, providing normalised scores

Fig. 5. Joint prediction of group membership and roles confusion matrix for
10-second windows (accumulated over 20 repetitions and normalised)

close to 0.9. This is compatible with the results of the former
subsection where the proposed method with the fusion of both
modalities successfully managed to distinguish between the
presence and absence of an interaction between people.

The proposed method is relatively successful in distin-
guishing between role pairs and the performances have some
interesting implications. The highest performances for each
role pair are obtained with different window sizes. For the
speaker&speaker class, the highest performance is obtained
when 25 second windows are used. It is an expected result,
since we already discussed that in order to detect coordination
between interacting partners, longer time intervals are gener-
ally needed. This is especially true for speaker&speaker pairs
where the emergence of turn-taking patterns are necessary
for robust identification. We also see that, regardless of the
window size, many speaker&speaker pairs are falsely labelled
as speaker&listener pairs. One possible cause for this is the
speakers that were not expressive during interactions. Another
one is the limited amount of samples for speaker&speaker
pairs in the training set where they were at least three
times less than the others, resulting in them not being fully
represented. On the other hand, results show that both other
role pairs are equally misclassified as speaker$speaker pairs.
We can assume that listeners that were quite active in terms
of their movement might be the reason for this.

Highest performance for speaker&listener pairs, 0.66, is
obtained with the window size of 15 seconds. However, we
also see that nearly two-thirds of other role pairs are also
misclassified as speaker&listeners. With this window size, no
other role pair can be detected with a performance better
than random. This suggests that the model frequently favoured
the speaker&listener pairs over others. This is not directly
related to the distribution of the role pairs in the training
since the percentages of speaker&listener pairs were close to
listener&listener pairs. We can speculate that speaker&listener
pairs cover the largest variance of interaction patterns since
they include two different roles, which might be the reason
for these results.

For listener&listener pairs, the only performance which is
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Fig. 6. Group membership and roles confusion matrix for 15-second
windows (accumulated over 20 repetitions and normalised)

Fig. 7. Group membership and roles confusion matrix for 25-second
windows (accumulated over 20 repetitions and normalised)

better than random is obtained with a window size of 10
seconds. The performance, 0.26, is only marginally higher
than a random baseline. This is not surprising. There is
no specific pattern for listener&listener pairs as the turn-
taking for speaker&speaker pairs. Speaker&listener pairs can
be still detected through the coordination of the listeners’
backchannels as they react to the speakers. Lack of such
behavioural patterns for listener&listener pairs make them
relatively harder to model. These results show that more
research into listener behaviour is needed if listener&listener
pairs need to be robustly detected.

These results present the first attempts on investigating a
formerly understudied phenomenon. We can conclude that
proxemics and dynamics provide valuable information on
the roles of people in interaction. However, relatively low
performances, especially for listener&listener pairs, show that
much work needs to be done for obtaining robust solutions.
Next section discusses possible directions for further research.

VI. CONCLUSION AND FUTURE WORK

In this study, we investigated the automatic detection of
pairwise F-formation memberships and roles using wearable
sensors. We built our solution on proxemics and dynamics of
interaction which were sensed through proximity and accel-
eration. With an LSTM network, we were able to learn joint
pairwise representations of these modalities. These represen-
tations are then used to identify the presence of interaction
and the roles participant took in it. Our solution was fully
automatic and trained end-to-end, converting raw input data to
output labels. We tested our method on the publicly available
MatchNMingle dataset which was collected during real-life
mingling events. We also investigated different setups in
terms of input modalities and time resolutions. We tested our
method on 20 different splits of our dataset to evaluate its
generalisation capabilities.

Our experiments showed that using acceleration and prox-
imity together guarantees performance at least as good as
using separate modalities. With a window size of 30 seconds,
which was sufficient for interaction dynamics to arise, the

fusion of these modalities provided a mean AUC score of
0.975, significantly outperforming others. Our experiments on
the detection of role pairs showed that different role pairs
are better represented in different window sizes. Even though
we were able to detect each role pair better than a random
classifier, relatively low performances of these detections,
especially for the listener&listener pairs, showed there is still
room for improvement.

We believe there are many possibilities for extending this
work, both for group membership and role detection parts.
First of all, our formulation of the problem was based on a
pairwise representation of interactions. As a refinement step
to group membership detection, pairwise predictions of our
method can be used to create a complete scene representation,
similar to a proximity graph. There exist studies in the litera-
ture which provide a solution for this step [18]. By employing
one, we can refine the predictions of our method. Secondly,
our model treats the proximity and acceleration streams as
equals while learning joint representations. More sophisticated
formulations are also possible, such as using proximity streams
as pooling layers for acceleration, which might result in better
representation.

The fixed threshold used to identify speakers for training
might result in mislabelling some instances. For example, in
a 5 person group, if everyone speaks for an equal amount of
time in a given interval, their speaking lengths will correspond
to one-fifth of the window. In our current setup, none of
these people will be identified as speakers. A proper labelling
approach which considers the group size should result in better
identification. Moreover, previous work has already identified
the importance of using the group size information in the
training [14]. Using the group size as additional information
in the training phase might cover more varied behaviours of
different roles. Finally, in this work, we only focused on two
basic roles: speakers and listeners. However, social science
literature has vast knowledge of group behaviour and the roles
people take in interaction. Identifying more representative
classes and creating sophisticated models for representing
them should result in more satisfactory results.
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