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ABSTRACT 
Under future warmer climates, drought events are projected to occur more frequently with 
increasing impacts in many regions and river basins. This study focuses on exploring the 
potential of the LSTM deep learning (DL) approach for operational streamflow drought 
forecasting for the Rhine River at Lobith with a lead time (LT) of up to 46 days.  

The research investigates optimal spatial resolution, input and target variables, and loss 
functions. Four LSTM-based model architectures are developed and tested, incorporating 
both historical observation and forecast data to generate 46-step forecasts simultaneously. 
The robustness and stability of the models are assessed through cross-validation, and their 
performances are compared. Subsequently, the performance of the LSTM-based model is 
compared to the physically-based models, namely Wflow-Rhine and FEWS-Rhine, in 
forecasting streamflow drought. 

The results suggest that utilizing a subbasin spatial resolution, including historical discharge 
as input, and training the model on time-differenced data enhance the forecast skill. Among 
the evaluated models, the model architecture with two LSTMs in cascade exhibits stable and 
robust performance across the forecast horizon and is considered for operational use in this 
study. Comparisons between the DL model and physically-based models indicate that: 1) 
When using observed meteorology forcing from ERA5, the DL model demonstrates a notable 
performance compared to Wflow-Rhine simulation using the same forcing data. 2) When 
utilizing SEAS5 for forecasting, the DL model demonstrates skill over Wflow-Rhine in 
predicting discharge levels during the dry season up to 10 days ahead, as well as for discharges 
between 950 and 2200 m3/s across the entire forecast horizon. However, for discharges 
between 700 and 950 m3/s with longer LTs beyond 20 days, Wflow-Rhine shows skill over the 
DL model. 3) While FEWS-Rhine successfully forecasts drought events in 2018 throughout the 
forecast horizon, it tends to produce more Type I errors (false positives). The DL model, 
forecasting with SEAS5, accurately predicts drought events in 2018 for LTs up to 30 days and 
generally has higher precision values. Despite using different forcing datasets, the DL model 
can predict the timing and trend of past drought events, indicating its potential in capturing 
streamflow patterns. 

This study contributes to operational water management in the Netherlands by employing the 
LSTM deep learning approach in an operational framework for drought forecasting. By 
leveraging historical observation data and forecasted meteorology forcing data, these models 
achieve skillful performances for streamflow drought forecasts. Future research could focus 
on further enhancing model performance, exploring the applicability of the LSTM-based 
models in other river basins, and validating the results in real operational settings.   
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1 Introduction 

1.1 Research motivation 

Since the beginning of the 21st century, Europe has experienced a series of severe droughts 
(2003, 2015, 2018, and 2022), affecting a wide range of socio-economic sectors including 
agriculture, energy production, waterborne transportation, public water supply and 
freshwater ecosystem (EEA, 2010; Ionita et al., 2017; WMO, 2020). Under future warmer 
climate, drought events are projected to occur more frequently with increasing impacts in 
many regions and river basins (Cammalleri et al., 2020; Prudhomme et al., 2014; van der Wiel 
et al., 2019; Wanders & Van Lanen, 2015). The areas affected by droughts are typically larger 
than those for other hazards. But the slow onset of droughts allows more time for monitoring 
and forecasting. 

Droughts are generally classified into four categories (Tallaksen & Van Lanen, 2004; Van Loon, 
2015; Wilhite & Glantz, 1985): meteorological drought, soil moisture drought, hydrological 
drought, and socioeconomic drought. Van Loon et al. (2016) propose to broaden the definition 
of drought to include water shortage caused and modified by human processes. Hydrological 
drought is related to negative anomalies in surface and subsurface water. It is a result of 
climate variability, catchment characteristics and anthropogenic influences (Van Lanen et al., 
2013; Van Loon & Van Lanen, 2012). Climate variability includes precipitation deficits, heat 
wave induced high evaporation, freezing conditions in winter in snow-dominated catchments, 
or low temperatures in summer in glacier-dominated catchments (Van Loon, 2015). 
Catchment characteristics, such as land cover, soil types, geology, and groundwater storage 
capacity, show a significant relation with hydrological drought (Van Loon, 2015). 
Anthropogenic influences drive hydrological drought through water extraction, reservoir 
construction, as well as deforestation and urbanization (Van Loon et al., 2016). This research 
focuses on streamflow drought, which is a part of hydrological drought and is defined as 
below-normal river discharge (Van Loon, 2015). Drought duration, severity and frequency can 
be identified using the threshold level method (Figure 1-1). 

 

Figure 1-1 Threshold level method for streamflow drought identification, including an illustration of 
drought duration, deficit volume, and pooled events. The solid line is the observed or forecasted 

streamflow. The dashed line is the streamflow drought detection threshold. When the solid line drops 
below the dashed line, a drought takes place. (Modified from Van Loon (2015)). 

The Netherlands has experienced drought during the summer in recent years. The 2018, 
especially, was an extremely dry year with an averaged national water deficit of 309 mm 
(Kramer et al., 2019). Given its unique geographical composition, consisting of low-lying delta 
regions with peat and clay soils, as well as upland regions with sandy soils, the Netherlands 
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heavily relies on two large transboundary rivers, i.e., the Rhine and the Meuse, for fresh water 
supply.  

The Rhine enters the Netherlands at Lobith. The river first splits as the Waal River and 
Pannerdensch Kanaal at the Pannerdense Kop. The latter flows into the Lower Rhine. At the 
IJsselkop, the IJssel River leaves the Lower Rhine, supplying water to Lake IJssel. The Lower 
Rhine supplies water to feed the Amsterdam-Rhine Canal for inland shipping, drinking-water 
supply, and cooling power stations in Utrecht and Amsterdam. The rest flows into the Waal 
River towards the sea, acting as a force against water intrusion from the sea. The distribution 
of water through the branches of the Rhine is shown in Figure 1-2.  

 

Figure 1-2 Hydrological map of the Netherlands (Rijkswaterstaat, 2019). 

It is important to know how much water is currently flowing into Lobith and how much to 
expect in the coming period, as it determines the navigable depth for shipping and the 
availability of water for agriculture, nature and drinking water in a large part of the country. 
During dry periods, when the discharge at Lobith is lower than a certain threshold (Table 1-1), 
operational measures need to be taken to distribute river water according to the “priority 
sequencing hierarchy” (Rijkswaterstaat, 2019). Therefore, a reliable and robust forecasting of 
streamflow drought at Lobith is essential for Dutch water managers and stakeholders to 
develop robust strategies for drought mitigation and adaptation.  
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Table 1-1 River discharge criteria at Lobith for scaling up from level 0 (normal management, in Dutch 
“normaal beheer”) to level 1 (impending water shortages, in Dutch “dreigende watertekorten”). This 
includes the expectation that the situation will last longer than three days. The discharge criteria is 
important for being able to meet the water demand of, among others, agriculture, nature, industry, 

drinking water, process and cooling water and for a number of surface water functions such as shipping. 
Modified from de Vries et al. (2021) 

 

Efforts have been made on developing operational forecasting systems that can predict 
hydrological variables such as water levels and discharge. One such system is the FEWS-Rhine, 
a state-of-the-art operational flood early warning system developed for the Dutch 
government. This system utilizes physically-based hydrological models to forecast the 
discharge of the Rhine River at Lobith, offering a lead time up to 46 days based on available 
weather forecast products. The system also helps to provide a 5-day forecast established by 
Netherlands Water Management Center (WMCN) and a 14-day forecast with uncertainty 
bands that are reported on Rijkswaterstaat’s water reporting website1 (See Figure 1-3 for 
example).  

 

Figure 1-3 An example of 5-day forecast and 14-day forecast with uncertainty bands reported on 
Rijkswaterstaat’s water reporting website. This forecast starts on May 24th, 2023. The thick red line 

represents the 5-day forecast. The red “plume” represents the 14-day forecast with uncertainty bands 
where the light red is 10-90% band, and the dark red is 33-66% band. The 46-day forecast is not 

reported and shown on the website. 

However, the FEWS-Rhine system has primarily been calibrated for short-term and flood 
forecasting, with less emphasis on low flows dynamics or droughts. As such, there is a need 

 

1 https://waterberichtgeving.rws.nl/owb/droogtemonitor /rijnenmaas 
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to understand the performance of the system for low flows and develop an operational 
streamflow drought forecasting system that can accurately predict low flow events at Lobith. 
Such a system would be valuable in providing timely and accurate information to water 
managers, policymakers, and other stakeholders, enabling them to make informed decisions 
regarding water allocation and management during periods of drought. 

1.2 Problem statement 

Commonly applied methods for forecasting hydrological drought involve the use of physically-
based hydrological models combined with meteorological forecasts (Fundel et al., 2013; 
Sutanto et al., 2020; van Hateren et al., 2019). However, physically-based hydrological models 
do have limitations. Since they attempt to comply with the laws of conservation of mass, 
energy, and momentum, they heavily rely on the knowledge of boundary conditions, system 
stages, and system parameters (Hrachowitz & Clark, 2017). Obtaining accurate knowledge of 
these factors can be challenging, especially for large basins such as the Rhine basin. 
Additionally, anthropogenic influences on regulated rivers, such as reservoir operation and 
water extraction by power stations, can also be difficult to incorporate into the model due to 
a lack of information, which can negatively affect the skill of hydrological drought predictions 
and make calibration particularly challenging. 

Over the past few years, data driven approaches, such as deep learning (DL) models, have 
been explored and tested out increasingly in hydrology (Shen, 2018; Shen et al., 2021). In 
particular, studies have shown that Long Short-Term Memory (LSTM) models have been 
proven to be effective tools for the dynamic modeling of streamflow (Kratzert et al., 2019) 
and soil moisture (Fang et al., 2017), which has led to an increase in the use of DL techniques 
across all domains of hydrology. 

Recent literatures on drought prediction using data driven methods (Aghelpour et al., 2021; 
Amanambu et al., 2022; Borji et al., 2016; Dikshit et al., 2021; Shamshirband et al., 2020) and 
the literature review on machine learning applications for hydrological streamflow forecasting 
(Ibrahim et al., 2022) show a trend toward using DL models. Drought is a complex 
phenomenon involving several variables that are often correlated at various lag times, and 
deep neural networks can effectively capture the decay-weighted lag–lead sequence 
relationship, leading to better forecasting results at both short and long lead times (Dikshit et 
al., 2022). LSTM architecture is particularly effective in this regard, and recent research (Hunt 
et al., 2022) suggests that LSTMs outperform both random forest models and XGBoost on 
streamflow prediction problems, especially with increasing sample size. 

Most of the studies on drought forecasting using DL techniques focus on predicting drought 
indices such as meteorological drought indices Standardized Precipitation Index (SPI) and 
Standardized Precipitation and Evapotranspiration Index (SPEI) (Dikshit et al., 2022), as well 
as hydrological drought indices Streamflow Drought Index (SDI) (Aghelpour et al., 2021; Borji 
et al., 2016; Shamshirband et al., 2020). These indices are typically calculated on a monthly 
scale. There are relatively few studies using DL techniques to forecast streamflow drought or 
low flow time series on a daily scale. Sahoo et al. (2019) develop LSTM and RNN models to 
predict one-step-ahead monthly low flow time series using the past two months’ low flow 
values. Amanambu et al. (2022) use a transformer and a LSTM model with past daily stage 
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level as input to predict stage levels for multi-step ahead (i.e., 30, 60, 90, 120, and 180 days), 
which are then post-processed into hydrological drought series. However, these studies use 
the same variable for both input and output, without incorporating meteorology forcing. 
Moreover, none of these studies apply an operational framework where forecasted 
meteorological forcing data can provide additional and vital information for long-term, multi-
step ahead time series forecasting.  

Recent studies have shown that DL models can be used effectively for streamflow forecasting 
in operational frameworks. Google's operational flood forecasting system, for instance, 
models stage forecasting with two LSTMs that take into account historical and forecast 
precipitation, as well as stages of the target gauge and upstream gauges (Nevo et al., 2022). 
Hunt et al. (2022) used the LSTM model to predict streamflow at various river gauge stations 
across the western United States, demonstrating the effectiveness of the model in simulating 
streamflow during a testing phase when the models were fed with ERA5 data, and in 
forecasting streamflow at lead times of up to 10 days during an operational phase when the 
models were fed forecast variables from the European Centre for Medium-Range Weather 
Forecasts (ECMWF). 

There is a lack of research on using DL models for streamflow drought forecasting in 
operational frameworks, especially at lead time longer than 10 days. Hence, this research aims 
to fill this gap by investigating the potential of the LSTM deep learning approach for 
operational streamflow drought forecasting for the Rhine River at Lobith, with lead times up 
to 46 days ahead which is in line with the current forecasting system FEWS-Rhine. The study 
aims to assess the performance of a DL drought forecasting approach that could potentially 
provide improved forecast skills for operational water management of droughts in the 
Netherlands. By applying DL models in an operational framework, both near-real-time 
observation data and forecasted meteorology forcing data can be leveraged to improve the 
accuracy and lead time of streamflow drought forecasts. 

1.3 Research objective 

The overall goal of this research is to investigate the potential of the LSTM deep learning 
approach for operational streamflow drought forecasting for the Rhine River at Lobith, with a 
lead time of up to 46 days, on a daily scale.  

The first objective of this research is to explore different spatial resolution, input and target 
variables, and loss functions to identify the optimal combination for forecasting streamflow 
drought using LSTM-based models. This will involve additional information on snow, lake level 
and historical discharge at Lobith based on hydrological drought and operation knowledge 
and at which spatial resolution. Additionally, different target variables and loss functions will 
be tested to evaluate their impact on the model performance. 

The second objective is to develop and explore different model architectures that can handle 
the various data sources available in an operational framework. This will include exploring 
direct and recursive methods for forecasting multi-step ahead time series. The optimal 
combination of spatial resolution, input and target variables, and loss functions identified in 
the first objective will be used to compare the performance of the different model 
architectures. 
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The third objective is to compare the performance of the LSTM-based models with the 
physically-based model in forecasting streamflow drought. The research will examine how the 
forecast meteorology data could be integrated into the LSTM-based model and how it 
performs when compared to the distributed model Wflow-Rhine and current operation 
system FEWS-Rhine. This will provide insights into the relative strengths and weaknesses of 
the two approaches and inform the potential of LSTM-based models to supplement physically-
based models in an operational framework. 

1.4 Research questions 

Based on the aforementioned objective, the main research question for this study is: 

To what extent can the LSTM deep learning approach be used for operational streamflow 
drought forecasting for the River Rhine at Lobith? 

To address this question, three sub-research questions (SQ) have been formulated to align 
with the specific research objectives. 

SQ1: What combinations of spatial resolution, input and target variables, and loss functions 
can be used to optimize the performance of LSTM-based models for drought forecasting? 

SQ2: What LSTM-based model architectures are suitable for handling the various data sources 
available in an operational framework and how do they compare in performance? 

SQ3: How does the performance of the LSTM-based model compared to physically-based 
models for drought forecasting? 

1.5 Reading guide 

The report is structured as follows: Chapter 2 provides the theoretical background for the 
study, including the model framework for operational forecast, an overview of FEWS-Rhine 
and Wflow-Rhine, and an exploration of critical issues related to DL models for operational 
hydrological forecasting. Chapter 3 presents the study area, datasets and data processing 
steps, and gives an overview of the model architectures. Chapter 4 describes the experimental 
designs for each sub-research question. Chapter 5 presents and discusses the results of the 
experiments for each sub-research question. Chapter 6 states the limitations of the study and 
recommendations for future research in the field. Chapter 7 presents the conclusions and key 
findings of the study. 
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2 Backgrounds 
In this chapter, background information is given on the model framework for operational 
forecast in section 2.1. An overview of the FEWS-Rhine operation system that is currently 
being used in operation is provided in section 2.2. And the Wflow-Rhine, which is envisioned 
as the future model for operational use, is described in section 2.3. Two critical considerations 
related to the implementation of DL techniques for operational hydrological forecasting in this 
study are discussed in section 2.4. 

2.1 Model framework for operational forecast 

Real-time operational streamflow forecasts, which currently heavily rely on physically based 
models, often utilize a cascade of hydrological and sometimes also hydrodynamic models. 
These models are interconnected and are typically embedded in a data-management 
environment such as FEWS-Rhine. Model cascades operates in two main modes: historical 
mode and forecast mode (Weerts, 2009). 

The historical mode involves forcing the models with hydrological and meteorological 
observations over a limited time period preceding the forecast. This mode is used to initialize 
the model storages and establish the initial conditions. The forecast mode is employed to run 
the models over the required forecast lead time. In this mode, models are forced by outputs 
from other models, with the internal model states at the end of the historical run used as 
initial conditions for the forecast run. The outputs from other models may include 
meteorological forecasts such as precipitation, air temperature, and evaporation, as well as 
forecasts from upstream river locations. Figure 2-1 illustrates these different modes of 
operation and shows how they differ from the model calibration during which much longer 
period of records are used. 

 

Figure 2-1 Illustration of historical and forecast modes of operation for real-time operational streamflow 
forecast model. (Modified from Weerts (2009)) 

In operational forecasting, various time terms are used to specify different aspects of the 
forecast, for instance, forecast initialization time, horizon and lead time. Details of the 
relevant terms and notations used in the context of this study can be found in Appendix A. 
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2.2 FEWS-Rhine 

FEWS-Rhine is the operational system used by Rijkswaterstaat to generate forecasts for water 
levels and discharge in the Rhine. Initially, it was set up as a flood forecasting system, but its 
application has increasingly shifted in recent years to the entire discharge range. With FEWS-
Rhine, measured and forecasted meteorological, hydrological and hydrodynamic data from 
multiple sources are automatically imported, validated, transformed and prepared for various 
forecast models.  

To simulate the discharge from the sub-basins of the Rhine, FEWS-Rhine employs the HBV 
hydrological model, a lumped model from the Swedish Hydrological and Meteorological 
Institute (SHMI). In this model, each sub-basin is represented by interconnected "basins", each 
representing a hydrologically relevant zone. Figure 2-2 provides a visualization of the HBV sub-
basins for the Rhine. 

 

Figure 2-2 HBV sub-basins for the Rhine. 

FEWS-Rhine utilizes predicted precipitation and temperature data from European Centre for 
Medium-Range Weather Forecasts (ECMWF) meteorological models to force its forecast 
models. Three specific ECMWF forecast products 2  are employed for this purpose: the 
Atmospheric Model high resolution 10-day forecast (HRES), the Ensemble 15-day forecast 
(ENS), and the Ensemble extended forecast (ENS extended). These forecast products serve as 
inputs to the FEWS-Rhine system, enabling it to generate various outputs. Some of the outputs 
are further corrected with an autoregressive moving average model (ARMA). An overview of 
different forecast lines, including forecast products, horizon, frequency, and output correction, 
is provided in Table 2-1. 

 

2 Catalogue of ECMWF real-time products: https://www.ecmwf.int/en/forecasts/datasets/catalogue-
ecmwf-real-time-products 
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Table 2-1 Overview of different forecast lines. 

Forecast line notation Forecast 
product 

Forecast 
horizon 

Initialization 
frequency 

Output 
correction 

fews_hbv_hres_bias HRES 10 days Every day ARMA 
fews_hbv_ens_bias ENS 15 days Every day ARMA 
fews_hbv_ens_ext ENS extended 46 days Twice every week No correction 

2.3 Wflow-Rhine 

The distributed hydrological model wflow is being considered for operational and policy 
purposes to replace the HBV model as this would provide discharge predictions along the 
whole rivers and not at specific points only. As part of this transition, the wflow_sbm model 
has been developed for the Rhine and is currently undergoing experimental operational 
testing. The wflow_sbm model (Figure 2-3) is a spatially distributed hydrological model based 
on the topog_sbm model (Vertessy & Elsenbeer, 1999) with a kinematic wave approach for 
lateral subsurface and overland and river flow processes (Imhoff et al., 2020). 

 

Figure 2-3 Overview of the different processes and fluxes in the wflow_sbm model (van Verseveld et al., 
2023). 

Although the Wflow-Rhine model has not yet been implemented in operational settings, two 
sets of experimental results are available for assessing its simulation and forecasting 
capabilities. One is the simulation using the ERA5 dataset3, the other is the forecasting with 
the SEAS5 dataset4, a seasonal forecast product from ECMWF. These results will be used for 
comparison purposes in this study. 

 

3 https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5 
4 https://www.ecmwf.int/en/forecasts/documentation-and-support/long-range 
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2.4 Deep learning models for operational hydrological forecasting 

DL techniques have gained significant attention for their ability to accurately capture the 
complexity of highly non-linear systems. In the field of streamflow modeling, more recent 
studies have found DL techniques, such as Long Short-Term Memory (LSTM), to be a promising 
approach, providing improvements in prediction accuracy, scalability, and regional 
generalization compared to conventional conceptual models (e.g., Mosavi et al., 2019). LSTM 
models, specifically designed for processing sequential data like time series, have been 
successfully applied by Kratzert et al. (2019) in over 500 basins across the United States, 
demonstrating enhanced discharge predictions compared to conceptual models. A detailed 
description of LSTM architecture can be found in Kratzert et al. (2018). And a visualization of 
the standard LSTM cell is shown in Figure 2-4. 

 

Figure 2-4 Visualization of the standard LSTM cell, where c[t] denotes the cell state at time step t, h[t] 
the hidden state, x[t] the input. f stands for the forget gate, i for the input gate, g for the cell update, and 

o for the output gate (Kratzert et al., 2019). 

This study aims to design and apply DL models based on LSTM architectures. There are two 
critical considerations when utilizing LSTM-based models for this research. First, methods for 
effectively leveraging both historical observation and forecast data within a single DL model 
need to be explored to integrate them into an operational framework. Second, the challenge 
of multi-step time series forecasting using DL models needs to be addressed. Several 
strategies to tackle these issues are presented below. 

2.4.1 Leveraging both historical observation and forecast data 

In addressing the challenge of incorporating both historical observation and forecast data, two 
potential methods have been identified based on the literature review and expert knowledge.  

The first method involves using a single LSTM model, which is the most commonly used 
approach by far. During the training phase, historical observation data is utilized, while during 
the inference phase, forecast data is applied. This approach has been employed by Hunt et al. 
(2022) in their study on streamflow prediction in the western United States, where the LSTM 
models were trained using ERA5 reanalysis data as historical "observation", and during the 
operational phase, forecast variables from the ECMWF were used. 

The second method entails using two LSTM models, with one LSTM processing historical 
observation data and another LSTM processing forecast data. The two LSTMs can be 
connected either in parallel or in a cascade. Figure 2-5 and Figure 2-6 illustrate the model 
architecture for this method. 
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Figure 2-5 Illustration of two LSTMs in parallel. “Dense” means dense layer in DL models. 

 

Figure 2-6 Illustration of two LSTMs in cascade. “Dense” means dense layer, and “FC” represents fully 
connected layer in DL models. 

The parallel configuration is a straightforward approach where one LSTM processes the 
observation data while the other LSTM handles the forecast data. The two LSTMs 
independently learn representations from their respective inputs. The representations are 
concatenated and then fed into a Dense layer, which aids in generating the final outputs. 

The cascade configuration is inspired by the historical and forecast modes of operation in 
physically-based operational streamflow forecast model discussed in section 2.1. It is similar 
to the encoder-decoder architecture which is commonly used for sequence-to-sequence 
(seq2seq) problems like language translation. The first LSTM sequentially processes 
observation data from the past days, taking the variables such as historically observed 
precipitation, temperature, and potential evaporation. It runs until the current time, which is 
the forecast initialization time. The final cell state and hidden state of the first LSTM 
(represented as c[t] and h[t] in Figure 2-4) are passed through a fully connected layer, and the 
resulting “transferred states” are used as the initial cell state and hidden state for the second 
LSTM. The second LSTM then processes forecast data at each lead time, taking variables like 
forecasted precipitation, temperature, and potential evaporation.  

In the cascade LSTM approach, the first LSTM acts as the historical mode used to initialize the 
model’s storages and establish the initial conditions. The cell states in LSTM can be interpreted 
as storages in physically-based hydrological models (Kratzert et al., 2018). The second LSTM 
operates as the forecast mode, utilizing the internal model states (i.e., "transferred states") 
from the end of the historical run (first LSTM) as initial conditions for the forecast run. The use 
of fully connected layers to transfer states between the two LSTMs is inspired by Gauch et al. 
(2021) where the transferred states allowed modeling at multiple timescales. Notably, 
Google’s operational flood forecasting system also adopts a similar model structure for stage 
forecasting (Nevo et al., 2022). 
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2.4.2 Multi-step time series forecasting using DL models 

Multi-step ahead forecasting remains an ongoing challenge in time series forecasting. Ben 
Taieb et al. (2012) provide a comprehensive review and comparison of strategies for 
addressing this issue in neural network modeling. Two strategies, MIMO and recursive 
strategy, have been found to be useful for this study. 

The Multi-Input Multi-Output (MIMO) strategy is motivated by the need to capture the 
stochastic dependencies between future values, which can significantly impact forecast 
accuracy (Ben Taieb et al., 2012). In this approach, the forecasts for all steps are generated 
simultaneously. This strategy aligns well with LSTM models, as LSTM can output a value for 
each step it processes. Therefore, implementing the MIMO strategy in LSTM models is 
straightforward. 

The recursive strategy is the oldest and most intuitive forecasting strategy. It involves training 
a single model to perform one-step ahead forecasts. When conducting multi-step ahead 
forecasting, the model is first used to forecast the first step, and the value just forecasted is 
incorporated as part of the input variables for predicting the subsequent step (using the same 
one-step ahead model). This process continues until the entire forecasting horizon is covered. 
However, the recursive strategy may encounter challenges in multi-step ahead forecasting 
tasks due to error accumulation. Errors in intermediate forecasts can propagate forward, 
influencing subsequent forecasts.  

A study conducted by Lam et al. (2022) provides insights into modifying the recursive strategy. 
In their research, they developed a multi-step forecast autoregressive model called 
"GraphCast" for weather simulation, where they embedded the “autoregressive” or 
“recursive” idea within the model architecture. The model is trained on the full forecasting 
horizon, allowing it to learn the dependencies and dynamics of the time series data across 
multiple steps, thus helping to mitigate error propagation. 

The insights from the aforementioned studies provide guidance for designing DL model 
architectures to be utilized in this study. In section 3, a comprehensive description of the 
specific DL model architectures employed in this research will be provided.  
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3 Materials and methods 
In this chapter, information on the study area is introduced in section 3.1. Information on the 
datasets and sources is presented in section 3.2. A description of the DL model architectures 
designed and employed in this study is provided in section 3.3. General data processing steps 
are described in section 3.4.  

3.1 Study area 

The Rhine originates in Switzerland, flowing along 1230 km course before discharge into the 
North Sea. The Rhine basin has an area of 185,000 km2, covering major parts of Switzerland 
and Luxembourg, and parts of Germany, France, and the Netherlands. The topography of the 
basin varies from 4000 m in the Alps to 6 m below sea level in the Netherlands.  

The Rhine basin can be divided into nine subbasins (Figure 3-1), displaying different discharge 
behaviors. The southern alpine area is a “snow regime”, which is characterized by the 
interplay of winter snow cover, summer snowmelt, and relatively high summer precipitation. 
As a result, low water events occur mainly in winter, while flood events mainly in summer. On 
the other hand, subbasins such as Neckar, Main, and Mosel, which drain the low mountain 
regions, exhibit a “rain regime”. This regime is characterized by a dominance of winter flood 
and summer low water. In areas downstream of the Rhine, such as Cologne and Lobith, where 
the snow regime and rain regime overlap, a "combined regime" is observed. The discharge is 
more evenly distributed throughout the year (International Commission for the Protection of 
the Rhine, 2018). 

 

Figure 3-1 Nine subbasins of the Rhine River basin (Deltares, 2019) and the location of Lobith. 
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The river discharge climatology at Lobith based on different 10-year periods is shown in Figure 
3-2. During the summer months, more than 70% of the discharge at Lobith originates from 
the Alps (Middelkoop & van Haselen, 1999). Less is from other parts of the basin, as most of 
summer precipitation at other subbasins evaporates before it reaches the river. Average 
discharge at Lobith is highest in winter, most of which is from tributaries in subbasin Neckar, 
Main and Mosel with intense rainfall and low evaporation. Only 30% of the discharge at Lobith 
during winter months is from the Alps, as winter precipitation falls as snow (Middelkoop & 
van Haselen, 1999). 

 

Figure 3-2 River discharge climatology at Lobith based on different 10-year periods. (Data source: 
Rijkswaterstaat) 

3.2 Datasets 

3.2.1 Streamflow at Lobith 

Streamflow is the final output of the models employed in this study. Although the primary 
focus of the study is on streamflow drought, the decision has been made to utilize the model 
for forecasting the entire streamflow time series. Subsequently, the model performance is 
evaluated specifically during the dry period, which spans from April to September when 
streamflow droughts are most likely to occur at Lobith. For this study, streamflow drought at 
Lobith is defined as instances when the streamflow falls below the river discharge criteria 
outlined in Table 1-1. 

There are two primary reasons for the decision not to rely on DL techniques to directly output 
streamflow droughts. Firstly, droughts are relatively infrequent events, and as a result, the 
dataset available for streamflow drought time series modeling can be limited and biased. This 
poses challenges for DL models, which typically require extensive datasets to train on. 
Secondly, Long Short-Term Memory (LSTM) excels at processing lengthy time series data as it 
can retain information about important aspects of earlier time periods for modeling target 
variables in subsequent time periods. By solely focusing on modeling streamflow droughts 
during the dry season, the LSTM’s ability to leverage its long-term memory for events 
occurring in the wet season, such as snow accumulation which significantly influences summer 
flow at Lobith, would not be utilized effectively. Therefore, this study employs the DL model 
to forecast the complete streamflow time series and then concentrates on evaluating its 
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performance during the dry season to assess its effectiveness in forecasting streamflow 
drought. 

For this study, streamflow observations are essential for training the DL models, as well as to 
assess model performance. Observations are available from Rijkswaterstaat’s Waterinfo 
website5, on a daily scale from 1979 to the present. 

3.2.2 Meteorological parameters 

For physically-based hydrological models, specific input parameters are required. The wflow 
model, for instance, requires precipitation, air temperature, and potential evaporation time 
series as forcing inputs. On the other hand, DL models also rely on the input parameters to 
describe the meteorological conditions over time, although the specific choice of forcing 
parameters may vary. In this study, three parameters are used, i.e., total precipitation, 2 
meter temperature and potential evaporation. These parameters will be derived from the 
EOBS and ERA5 datasets, which provide observation data. Additionally, as part of the study, 
the performance of both models will be evaluated under operational conditions. To achieve 
this, forcing data from forecast products, including SEAS5 and ENS extended from European 
Centre for Medium-Range Weather Forecasts (ECMWF), will be incorporated. It is important 
to note that the forecast products used do not directly provide potential evaporation 
information. Therefore, the Makkink method (de Bruin, 1987) is applied to compute potential 
evaporation on a grid scale using 2 meter temperature and incoming shortwave radiation, 
both of which are directly available from the forecast products. 

EOBS: The EOBS dataset is based on observations from meteorological stations across Europe 
which are provided by the National Meteorological and Hydrological Services (NMHSs) and 
other data holding institutes. Daily observational meteorological parameters are available 
from 1950 to 2022, with spatial resolutions of 0.1° and 0.25°. 

ERA5: The ERA5 dataset is the climate reanalysis (fifth generation) of ECMWF providing 
atmospheric parameters with global coverage. All parameters are available from 1979 to 
present, a back-extension to January 1950 is already available. ERA5 has a spatial resolution 
of 0.25 degree (∼ 31km) and provides forcing time series on hourly time steps. The data 
origins from the reanalysis of observations and the model output from the ECMWF Integrated 
Forecast System. 

SEAS5: The SEAS5 is the fifth generation of the ECMWF seasonal forecasting system. It 
comprises ensembles of individual forecasts coupled to an ocean model and post-processed 
products of average conditions (e.g. monthly averages) with the associated uncertainty. 
Products are initialized at the first day of each month, and provide forecasts up to 7 months 
ahead, with daily temporal resolution. The SEAS5 data used in this study has been bias 
corrected. For simplicity, this report omits the “bias-corrected” notation for SEAS5. 

ENS extended: The ENS extended product is generated by the ENS model from ECMWF. The 
ENS model generates ensemble of forecasts which provide an estimate of the reliability of a 
single forecast. The ENS extended product is the extension of ENS up to 46 days. It is initialized 

 

5 https://waterinfo.rws.nl/#!/nav/index/ 
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twice a week, comprising ensembles of individual forecasts and post-processed products of 
average conditions (e.g. weekly averages) and the associated uncertainty. 

For further details and in-depth information about the forecast products provided by ECMWF, 
the forecast user guide is available for reference6. 

3.2.3 System storage parameters 

In addition to meteorological parameters, the contribution of discharge at Lobith is influenced 
by water storage in snowpack and large lakes, particularly in Switzerland, during dry periods 
(Demirel et al., 2013). Therefore, snow and lake level data are selected as potential additional 
input parameters for the DL models in this study.  

To incorporate snow data, the ERA5 dataset will be used, which provides essential snow-
related parameters such as snowfall and snow depth.  

Lake Constance in Alpine region has the most significant influence for the Rhine. Other 
reservoirs outside the Alpine region have less uniform storage management objectives and 
less significant influence for the Rhine (International Commission for the Protection of the 
Rhine, 2018). Therefore, in this study, the water level of Lake Constance obtained from 
Bundesamt für Umwelt BAFU7 will be used to represent the lake storage parameter. 

A summary of the datasets used in this study is presented in Table 3-1. 

Table 3-1 Summary of the parameters and datasets used in this study. 

Category Parameter Symbol Source Type 

Streamflow at 
Lobith Discharge Q Rijkswaterstaat (RWS) Observation 

Meteorology 
Total precipitation tp 

EOBS, ERA5 
SEAS5, ENS_extended 

Observation 
Forecast 2 meter temperature t2m 

Potential evaporation    pev 

Snow 
Snow depth sd 

ERA5 Observation 
Snowfall sf 

Lake 
Constance Water level wl BAFU Observation 

3.3 Model architectures 

In this study, LSTM-based model architectures are chosen for operational hydrological 
forecasting. Four model architectures are designed and tested specifically for the purpose of 
this study. Each of these architectures utilizes two groups of LSTMs, which effectively 
incorporate both historical observation and forecast data, and connected either in parallel or 
in cascade. Furthermore, all four architectures are designed to output the 46 steps of 

 

6 https://confluence.ecmwf.int/display/FUG/Forecast+User+Guide 
7 https://www.hydrodaten.admin.ch/de/2032.html 
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forecasting simultaneously. In this section, a detailed description of the four model 
architectures is provided. 

3.3.1 Model 1 

Model 1 (Figure 3-3) is designed with two parallel LSTM layers, which are subsequently 
connected to a Dense layer. LSTM-1 is responsible for sequentially processing the historical 
data from the past L days (also called the “look back window”), where meteorological and 
hydrological variables are provided as inputs at each time step. LSTM-1 operates until the 
current time (defined as the initialization time, see section 2.1) and generates a final output. 
LSTM-2 processes the future 46 days of data, taking only the forecast meteorological variables 
as inputs at each time step, and returns the full sequence of outputs. It should be noted that 
for inputs of LSTM-2, only forecast meteorological variables such as tp, t2m, pev, sd and sf are 
used. No hydrological variables such as lake water levels are used, as their forecast data is 
normally not available. The outputs from LSTM-1 and LSTM-2 are concatenated and fed into 
the Dense layer. This Dense layer produces 46 predictions simultaneously as the final output 
of Model 1. 

 

Figure 3-3 Illustration of Model 1 architecture. Note that X1 might include historical discharge Y from 
past L days. For simplicity, notation X1 is used to stand for all inputs of LSTM-1. 

A less extensive hyperparameter tuning is conducted for this model architecture, as the 
hyperparameters of the LSTM model for streamflow prediction have been studied and 
optimized by several studies (Gauch et al., 2021; Kratzert et al., 2018, 2019; Nevo et al., 2022). 
A detailed overview on hyperparameters and settings of Model 1 is provided in Appendix B. 

3.3.2 Model 2 

Model 2 (Figure 3-4) is constructed with two LSTMs arranged in a cascade configuration, 
followed by a Dense layer. LSTM-1 processes data from the past L days sequentially. The final 
cell state and hidden state of LSTM-1 are passed through a fully connected layer (FC), and the 
resulting “transferred states” are used as the initial cell state and hidden state for LSTM-2. 
LSTM-2 processes meteorological data of the future 46 days, and returns the full sequence of 
outputs. The outputs of LSTM-2 are then fed into the Dense layer, which produces the final 
output of 46 predictions simultaneously. Details on hyperparameters and settings of Model 2 
are presented in Appendix B. 
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Figure 3-4 Illustration of Model 2 architecture. Note that X1 might include historical discharge Y from 
past L days. For simplicity, notation X1 is used to stand for all inputs of LSTM-1. 

3.3.3 Model 3 

Model 3, shown in Figure 3-5, is an extension of Model 2. The key difference from Model 2 
lies in the handling of the final hidden state of LSTM-1 after passing through the FC layer. In 
Model 3, the final hidden state is not only used as the initial state for LSTM-2 but is also 
distilled using a Dense layer to lower dimension as “history representation”. This “history 
representation” is then concatenated with input X2 at each time step in LSTM-2. And LSTM-2 
returns the full sequence of outputs to Dense-1. By doing this, LSTM-2 is explicitly prompted 
to retain and utilize the initial state obtained from LSTM-1 throughout its processing.  

The intention behind this approach in Model 3 is to explicitly encourage LSTM-2 to preserve 
and utilize the initial state obtained from LSTM-1 throughout its processing. The concept of 
the "history representation" is inspired by the work of Wang et al. (2019), where a sequence-
to-sequence model is used with a vectorized history representation of dialog history to 
enhance response generation for generative conversational agents. Details on 
hyperparameters and settings of Model 3 are presented in Appendix B. 

 

Figure 3-5 Illustration of Model 3 architecture. Note that X1 might include historical discharge Y from 
past L days. For simplicity, notation X1 is used to stand for all inputs of LSTM-1. 

3.3.4 Model 4 

Model 4 (Figure 3-6) follows a distinct structure compared to the other models. It consists of 
LSTM-1, similar to the previous models, as well as 46 individual LSTMs dedicated to each 
forecast step. Each LSTM in Model 4 generates one prediction. Similar to Model 2 and 3, the 



19 
 

final cell state and hidden state of the previous LSTM are utilized to initialize the subsequent 
LSTM. Additionally, akin to Model 3, the final hidden state of LSTM-1 is distilled to a lower 
dimension and concatenated with input X2 at each forecast step. The main difference of this 
model compared to the others, is the inclusion of observed true values (Y) or predicted values 
(Ŷ) from the previous R days as inputs for each forecast step. By including this additional 
information, Model 4 aims to leverage temporal dependencies and historical patterns of 
streamflow for improved forecasting accuracy. Details on hyperparameters and settings of 
Model 4 are presented in Appendix B. 

 

Figure 3-6 Illustration of Model 4 architecture. Note that X1 might include historical discharge Y from 
past L days. For simplicity, notation X1 is used to stand for all inputs of LSTM-1. 

3.4 Data processing 

The general preprocessing and postprocessing steps and methods used in this study are 
described in this section. 

3.4.1 Preprocessing 

In the preprocessing stage, several general steps are followed to prepare the data for the DL 
models. These steps include the log-transformation of discharge, the differencing of log-
transformed discharge, the dataset splitting into training, validation, and testing sets, the 
scaling of parameters, and the preparation of sequences, as explained next in detail. 

Log-transformation of discharge 

To address the objective of forecasting streamflow drought in this study, the focus lies on low 
flows. As the discharge at Lobith exhibits a wide range, varying from below 1,000 m3/s in the 
dry season to over 10,000 m3/s in the wet season, it is necessary to apply a log-transformation 
to the discharge data. The log-transformation puts more emphasis on the low flow parts and 
therefore helps balance the representation of low flows and peak flows within the DL models. 

The log-transformed streamflow should be denoted as logQ. However, for simplicity, this 
report omits the explicit "log" notation. 
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Differencing of log-transformed discharge 

Several experiments carried out in this study will use time-differenced data, that is, the (log-
transformed) discharge differences between consecutive time steps. The time-differenced 
log-transformed discharge should be denoted as delta_logQ. For simplicity, this report omits 
the "log" notation. 

An example of the original streamflow, log-transformed streamflow, and time-differenced 
log-transformed streamflow at Lobith is illustrated in Figure 3-7. 

 

Figure 3-7 Example plot of the original streamflow, log-transformed streamflow, and time-differenced 
log-transformed streamflow at Lobith. 

Split of dataset 

The dataset is then split into training, validation, and testing subsets. During the development 
or experimental stage of DL model construction, training and validation subsets are used to 
facilitate the learning of data relations and obtain optimal model parameters. The trained 
model is then tested on the unseen testing dataset to provide a fair evaluation of its 
performance. The specific proportion of splitting between training+validation and testing 
datasets can vary based on the available amount of data. In this study, the exact splits will be 
described in each experiment's set-up. It should be noted that for operational use, the DL 
model should be retrained on the full dataset to generate the best real-time forecasts. 

Scaling of variables 

In this study, the DL models utilize multiple input variables that have varying value ranges and 
units. The model’s sensitivity to different variables would be affected, leading to a potential 
decrease in model performance. Therefore, it is necessary to perform scaling on the input 
variables. 

The scaling is done by standardization. The process begins by using the time series of the input 
variables solely from the training period. It is important to note that the scaler is created solely 
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based on the training dataset and does not include the validation or testing datasets. This is 
done to prevent any potential "data leaking" that could impact the fairness and accuracy of 
the model evaluation. From this training dataset, the mean �̅� and standard deviation 𝜎𝑥 for 
each variable are calculated. Then, for every value in the time series, the standardized value 
𝑥𝑠𝑐𝑎𝑙𝑒𝑑 is computed using Equation (3-1). The scaler, which comprises the mean and standard 
deviation of each variable determined using the training dataset, is stored locally. The same 
scaling method is applied to the target variable. 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − �̅�

𝜎𝑥
 (3-1) 

Preparation of sequences 

In time series modeling, the preparation of sequences is a crucial step to effectively utilize the 
available data and align with the specific model architecture. Based on the model 
architectures designed for this study, two different sequence lengths are required: 270 days 
(look back window) for LSTM-1 and 46 days (forecast horizon) for LSTM-2 (or the second group 
of LSTMs). A schematic of the sequence preparation is shown in Figure 3-8. 

 

Figure 3-8 Schematic of the sequence preparation. For each initialization time, the data sequences of 
past 270 days (light blue) are for LSTM-1. The data sequences of future 46 days (blue) are for LSTM-2 

(or the second group of LSTMs). 

3.4.2 Postprocessing 

In the postprocessing stage, there are general steps involved in handling the predicted values. 
These steps include back-scaling of the predicted value and back-transformation of the 
discharge. 

Back-scaling of predicted value: In the preprocessing step, the target variable (predicted 
values) also undergoes scaling, resulting in standardized values 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 . The mean �̅�  and 
standard deviation 𝜎𝑦  of the observed target variable are determined using the training 
dataset. The scaler will then be applied to back-scale the modeled target using Equation (3-2). 

𝑦 = 𝑦𝑠𝑐𝑎𝑙𝑒𝑑 × 𝜎𝑦 + �̅� (3-2) 

Back-transformation of discharge: In the preprocessing step, the discharge is log-transformed. 
However, after obtaining the modeled values, it is necessary to back-transform the modeled 
values to revert them to the right discharge values. Note that if the data is time-differenced 
during preprocessing, the results should first be added to the logQ from the previous day, and 
then back transformed to obtain the discharge values.  
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4 Experimental designs 
In this chapter, the experimental designs for each sub-research question are presented. 

4.1 Quantifying the impact of spatial resolution, input and target 
variables, and loss functions (SQ1) 

The first sub-research question aims to determine the optimal combination of spatial 
resolution, input and target variables, and loss functions for forecasting streamflow drought 
using LSTM-based models. The following information provides important details on each of 
these subtopics, and the experiment setup for the first sub-research question (SQ1) is 
provided in the end. 

4.1.1 Spatial resolution 

Meteorological parameters, such as tp, t2m, pev, sf and sd, contain both spatial and temporal 
information. The spatial resolution of these parameters plays a crucial role in studying and 
utilizing spatial differences. In this study, the spatially distributed variables will be processed 
and applied in two different resolutions: either as mean values across the entire Rhine basin 
(referred to as basin mean approach), or as mean values over the eight subbasins upstream 
of Lobith as depicted in Figure 3-1 (referred to as subbasin mean approach).  

4.1.2 Input and target variables 

The model considers various input variables, including the commonly used meteorological 
variables (tp, t2m and pev). Additionally, this study explores incorporating additional 
information on snow, lake levels, and historical discharge at Lobith. The addition of the latter 
is uncommon in physically-based hydrological models where the input does not include 
streamflow but mainly forcing data and catchment properties. 

Regarding the target variables, DL models offer greater flexibility compared to physically-
based hydrological models in selecting target variables. This study will investigate two options: 

• Training the model on discharge (Q) directly. 
• Training the model on the time-differenced data (delta_Q). 

The idea of predicting the time-differenced data arises from expert knowledge, indicating that 
DL models are more adept at capturing value changes rather than precisely modeling the exact 
values themselves. In this context, manual calculations are performed to obtain the first 
derivatives, while the subsequent derivatives are left to be handled by DL models. Several 
studies, such as Lam et al. (2022), have implemented this approach and demonstrated 
improved forecasting performance. 
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4.1.3 Loss functions 

This study explores the impact of different loss weights on forecast performance for each lead 
time. The LSTM-based models used in the study can directly output 46 forecast steps, 
indicating that they are trained to predict 46 outputs simultaneously. The mean squared error 
(MSE) is employed as the default loss function with equal loss weight for each output. 

However, considering the specific interest in forecasting streamflow droughts over longer lead 
times, this study aims to enhance the robustness of the forecast skill for extended periods. To 
achieve this, four types of loss weights are designed to experiment with, as illustrated in Figure 
4-1.  

• Type 0 represents the default scenario where the weights for different lead times are 
the same in the loss function.  

• Type 1 employs increasing weights, where the weight for each output increases as the 
lead time extends.  

• Type 2 adopts decreasing weights, assigning higher weights to shorter lead times and 
lower weights to longer lead times.  

• Type 3 uses a U-shaped weight distribution, assigning more weights to both shorter 
and longer lead times. 

 

Figure 4-1 Four types of loss weights designed for the experiments. 

4.1.4 Experiment setup 

Experiment workflow: 

The experiment workflow, as depicted in Figure 4-2, incorporates approaches to address SQ1. 
Firstly, Experiment 1A is conducted to investigate spatial resolutions. In this experiment, 
different spatial resolutions are combined with various input variables. Notably, the target 
variable Q and loss weight of type 0 are utilized and kept the same throughout Experiment 
1A. The spatial resolution identified from Experiment 1A based on the model performance 
evaluation, is then used for Experiment 1B. In Experiment 1B, different target variables with 
various input variables are tested while maintaining the same loss weights as type 0. The 
target and input variables identified from Experiment 1B based on model performance 
evaluation, is then used for Experiment 1C. In Experiment 1C, different types of loss weights 
will be experimented.  
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Figure 4-2 Schematic of the experiment workflow for SQ1. The multiplication factor here refers to the 
exploration of all possible combinations between the two sides. 

Model architecture: 

This experiment workflow is tested on all four model architectures, except that Experiment 
1B is not tested for Model 4, as the architecture of Model 4 cannot be easily modified to model 
delta_Q due to the inclusion of observed values (Y) or predicted values (Ŷ) from the previous 
R days as inputs for each forecast step and the long training time and computer memory 
required compared to other three model architectures. Therefore, in all the studies conducted 
for Model 4, the target variable of Q is used. 

Evaluation method: 

The model performance evaluation is conducted during the testing period, against observed 
discharges. The evaluation specifically focuses on the results obtained during the dry season, 
which is defined as the period from April 1 to September 30 in this study. Two evaluation 
metrics MAE and MAPE are used. MAE stands for the mean absolute error in unit the same 
as target (m3/s). MAPE stands for the mean absolute percentage error in unit 100%. Both MAE 
and MAPE are calculated for each time step (lead time) and averaged over the entire forecast 
time series within the dry season. 

An overview of the experiment setup for SQ1 is provided in Table 4-1. 
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Table 4-1 Overview of the experiment setup for SQ1. 

Experiment Spatial resolution Input variables Target 
variable Loss weight 

Experiment 1A 
Basin mean 

tp, t2m, pev 
+ Q_his 
+ sf, sd 
+ wl 

Q type 0 
Subbasin mean 

Experiment 1B Best spatial 
resolution 

tp, t2m, pev 
+ Q_his 
+ sf, sd 
+ wl 

Q 
type 0 

delta_Q 

Experiment 1C Best spatial 
resolution Best combination Best target 

type 0 
type 1 
type 2 
type 3 

General information  

Model architecture 
tested Model 1, Model 2, Model 3, Model 4 (except for Experiment 1B) 

Meteorology Dataset tp, t2m, pev: EOBS 
sf, sd: ERA5 

Training-validation-
testing period 

Training: [ 1979-10-01, 2013-09-30 ] 
Validation: [ 2013-10-01, 2016-09-30 ] 
Testing: [ 2016-10-01, 2019-09-30 ] 

Evaluation metrics MAE, MAPE 

4.2 Comparing different model architectures (SQ2) 

The second sub-research question focuses on evaluating the effectiveness of various model 
architectures for this study, and comparing their performances by employing the optimal 
combination of spatial resolution, input and target variables, and loss functions identified in 
SQ1. To accomplish this objective, two steps are taken: 

1) Cross-validation: Cross-validation is performed for each model architecture to obtain 
a robust estimate of the model's performance. 

2) Comparative analysis: The performances of different architectures are compared to 
determine the DL model used for operational use in SQ3. 

4.2.1 Cross-validation 

In SQ1, the models were trained on the same data splits to identify the optimal combination 
of spatial resolution, input and target variables, and loss functions. However, in order to 
obtain a more reliable estimate of the model's performance, it is necessary to test the model 
on different data splits. This approach allows us to assess the robustness and stability of the 
model when trained and tested on different time series datasets. It helps determine if the 
model overfits the training data when trained on the entire dataset. 
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There are several cross-validation techniques suitable for time series forecasting models 
(Cerqueira et al., 2020). For this study, the “sliding window with gaps” method is chosen. This 
method has several advantages: 

• This method maintains the temporal order of the data, which could provide better 
error estimations for time series data with potential non-stationarities. 

• The size of the training sets remains constant, which ensures that each iteration in the 
cross-validation is comparable. 

• The inclusion of gaps between training and testing sets enhances the independence 
between the two. This is particularly important when conducting cross-validation on 
LSTM models, as it helps evaluate the model's generalization capability. 

An illustration and details of the cross-validation method can be found in Appendix C. 

Cross-validation is performed on all four model architectures using the same datasets as in 
SQ1. The train-validation-testing splits for each iteration and the benchmark model are 
presented in in Table 4-2. 

Table 4-2 Train-validation-testing period for cross validation. 

 Train Validation Testing 
Iteration 1 [ 1979-10-01, 2000-09-30 ] [ 2001-10-01, 2004-09-30 ] [ 2016-10-01, 2019-09-30 ] 
Iteration 2 [ 1982-10-01, 2003-09-30 ] [ 2004-10-01, 2007-09-30 ] [ 2016-10-01, 2019-09-30 ] 
Iteration 3 [ 1985-10-01, 2006-09-30 ] [ 2007-10-01, 2010-09-30 ] [ 2016-10-01, 2019-09-30 ] 
Iteration 4 [ 1988-10-01, 2009-09-30 ] [ 2010-10-01, 2013-09-30 ] [ 2016-10-01, 2019-09-30 ] 
Iteration 5 [ 1991-10-01, 2012-09-30 ] [ 2013-10-01, 2016-09-30 ] [ 2016-10-01, 2019-09-30 ] 
Benchmark [ 1979-10-01, 2013-09-30 ] [ 2013-10-01, 2016-09-30 ] [ 2016-10-01, 2019-09-30 ] 

 

The model performance evaluation is carried out during the testing period, specifically 
focusing on the dry season, and comparing the model outputs against observed discharges. 
Similar to SQ1, the evaluation employs MAE and MAPE. In addition, the evaluation also 
analyzes the absolute error (AE) and absolute percentage error (APE) for each time step (lead 
time) over the entire forecast time series within the dry season. This analysis allows for an 
assessment of the variation and uncertainty of the model results at different lead times. 

4.2.2 Comparative analysis 

Following the cross-validation process, the model architectures that demonstrate robustness 
and stability are selected for further comparison. These chosen models are retrained on all 
available training data, and are subsequently evaluated on the testing data, following the 
same splits as specified in Table 3.8 for the benchmark model. To compare the models, the AE 
and APE for each time step across the entire forecast time series within dry season are 
analyzed. By conducting this comparative analysis, the model architectures that exhibit the 
skillful performance can be identified, thus could be selected for operational use in SQ3. 

4.2.3 Experiment setup 

An overview of the experimental setup for cross-validation and comparative analysis is 
provided in Table 4-3. 
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Table 4-3 Overview of the experimental setup for cross-validation and comparative analysis. 

 Cross-validation 
(Experiment 2A) 

Comparative analysis 
(Experiment 2B) 

Model architecture tested Model 1, Model 2, Model 3, Model 4 

Input variables Optimal combination from SQ1 
Meteorology Dataset tp, t2m, pev: EOBS 

sf, sd: ERA5 
Training-validation-testing 
period See Table 4-2 Same as benchmark in Table 4-2 

Evaluation metrics MAE, MAPE, AE, APE AE, APE 

4.3 Comparing the DL model with physically-based models (SQ3) 

The third sub-research question aims to compare the performance of the LSTM-based model 
identified in SQ2 with the physically-based models in forecasting streamflow drought. To 
conduct this comparison, three experiments were designed and executed based on the 
availability of forecast forcings and existing results from physically-based models. 

• Experiment 3A: the DL model forecasting with observed meteorology forcing from 
ERA5 versus Wflow-Rhine simulation with the same forcing 

• Experiment 3B: DL model forecasting with SEAS5 versus Wflow-Rhine forecasting with 
SEAS5 

• Experiment 3C: DL model forecasting with SEAS5 versus FEWS-Rhine forecasting with 
ENS_extended 

By conducting Experiment 3A and 3B, a general estimation of the forecast performance of the 
DL model relative to the wflow model can be obtained. Experiment 3C enables us to 
investigate the DL model's potential in generating past drought events when compared to the 
FEWS system. 

4.3.1 Experiment 3A: DL model vs Wflow-Rhine with ERA5 

Experiment 3A focuses on comparing the best of DL model with the best of wflow model. The 
best of DL model is the one that forecasts with historical observations of forcing (ERA5). The 
best of wflow model is hypothesized to be the one simulating with ERA5, which is to model 
streamflow one step ahead rather than carry out true forecasting. Details of this comparison 
experiment setup, including datasets used, meteorological parameters, training and 
comparison period, and evaluation methods, are outlined in Table 4-4.  

It should be noted that only three meteorological parameters (i.e., tp, t2m, pev, excluding sf 
and sd) are used for consistency with the inputs of the wflow model. Additionally, since the 
DL model uses the past 270 days of data as input and does not involve any forecasting results 
within this period, the actual comparison period only start 270 days after 2016-10-01. As for 
evaluation, both MAE and MAPE with standard deviation are calculated for each LT and 
averaged over the entire forecast time series within the dry season. 
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Table 4-4 Experimental setup details of Experiment 3A. 

 DL model Wflow-Rhine 
Input variables Optimal combination from SQ1 tp, t2m, pev 
Meteorology Dataset X1: ERA5 

X2: ERA5 ERA5 

Training period [ 1979-10-01, 2016-09-30 ] n/a 
Testing period [ 2016-10-01, 2019-09-30 ] 
Evaluation metrics MAE and MAPE with standard deviation (std) 

 

4.3.2 Experiment 3B: DL model vs Wflow-Rhine with SEAS5 

Experiment 3B aims to evaluate the performance of the DL model in forecasting streamflow 
drought in comparison to the wflow model, using the same forecast forcing product. The 
experimental setup for this comparison is provided in Table 4-5. 

Table 4-5 Experimental setup details of Experiment 3B. 

 DL model Wflow-Rhine 
Input variables Optimal combination from SQ1 tp, t2m, pev 
Meteorology Dataset Training mode: X1/X2: ERA5 

Forecast mode: X1: ERA5, X2: SEAS5 
Historical mode: ERA5 
Forecast mode: SEAS5 

Training period [ 1979-10-01, 2016-09-30 ] n/a 
Initialization time From 2017-10-01 to 2020-05-01, first day of each month 
Evaluation metrics CRPS, CRPSS 

 

Regarding the experimental setup, there are a few clarifications to be made: 

• Only three meteorological parameters (i.e., tp, t2m, pev, excluding sf and sd) are used 
in the experiments due to the unavailability of sf and sd in the SEAS5 dataset. 

• The SEAS5 dataset provides forecasts up to 7 months ahead with a daily temporal 
resolution. However, in the experiments, only the first 46 days of forecasts are utilized. 

• In the DL model for operational use, it is preferable to train the model on as much 
data as possible before initialization. However, for simplicity, the DL model is trained 
solely on the data from 1979 to 2016. This trained model is then employed for all 
forecasts. 

• The initialization times for the experiments span from 2017-10-01 to 2020-05-01, at 
first day of each month. This results in a total of 33 samples, with 14 samples in dry 
season. 

• The wflow model is forced with the full length (7 months) of the SEAS5 dataset, but 
for comparison purposes, only the first 46 days of forecast results are used. The initial 
states of the wflow model for each forecast are derived from the simulation results 
with ERA5, rather than the true observations. 

The evaluation will focus on the results initialized during the dry season. In this experiment, 
both the DL model and the wflow model generate ensemble forecasts, which are probabilistic 
forecasts. To assess and compare their performance, the evaluation employs two metrics: 
Continuous Ranked Probability Score (CRPS) and Continuous Ranked Probability Skill Score 
(CRPSS). 
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CRPS quantifies the dissimilarity between the cumulative density function of the ensemble 
forecast and the Heaviside function of the true observation. The optimal value is 0, and the 
score increases with the increasing inaccuracy of the probabilistic forecast. 

The CRPS can serve as a Skill Score (CRPSS) by comparing it to a reference forecast, which in 
this case is the Wflow-Rhine. The CRPSS is calculated using Equation (4-1). If the DL model 
forecast is perfect, its CRPS will be 0, and the CRPSS with regard to Wflow-Rhine’s forecast will 
become 1. If both forecasts demonstrate equal accuracy, the CRPSS will be 0. If the DL model 
forecast outperforms the wflow forecast, the CRPSS will yield a positive value. Conversely, the 
CRPSS will be negative.  

𝐶𝑅𝑃𝑆𝑆 =
𝐶𝑅𝑃𝑆𝐷𝐿 𝑚𝑜𝑑𝑒𝑙

𝐶𝑅𝑃𝑆𝑤𝑓𝑙𝑜𝑤−𝑅ℎ𝑖𝑛𝑒
 (4-1) 

4.3.3 Experiment 3C: DL model vs FEWS-Rhine 

Experiment 3C aims to assess the capability of the DL model in generating past drought events 
in comparison to the existing operational system, FEWS-Rhine. The experimental setup for 
this comparison is outlined in Table 4-6. 

Table 4-6 Experimental setup details of Experiment 3C. 

 DL model FEWS-Rhine 
Input variables Optimal combination from SQ1 tp, t2m, pev 
Meteorology Dataset Training mode: X1/X2: ERA5 

Forecast mode: X1: ERA5, X2: SEAS5 
Historical mode: n/a 
Forecast mode: ENS extended 

Training period [ 1979-10-01, 2017-09-30 ] n/a 
Forecasted events From July to November in 2018 
Evaluation Confusion matrix, recall, precision 

 

This experiment aims to compare the performance of both models in forecasting drought 
events specifically in the year 2018. The results of DL model from Experiment 3B will be used. 
The results of FEWS-Rhine forecasted with ENS extended (i.e., forecast line fews_hbv_ens_ext) 
are used for comparison. Note that the initialization times of the two models are not exactly 
the same, and only the initialization times of FEWS-Rhine which are close to that of the DL 
model are chosen for comparison.  

To assess the performance, the model results are postprocessed into the drought or non-
drought class using the river discharge criteria outlined in Table 1-1. For probabilistic forecasts, 
a threshold of 0.5 is applied to the drought occurrence probabilities. If the drought occurrence 
probability is equal or greater than 0.5, the result is classified as drought. If the drought 
occurrence probability is less than 0.5, the result is classified as non-drought. Subsequently, a 
confusion matrix is used to assess the performance of the modeled binary classification 
(drought and non-drought) in comparison to the actual classification based on observed 
discharges. This matrix categorizes the results into four categories: true positives (TP), false 
negatives (FN), false positives (FP), and true negatives (TN). From the confusion matrix, recall 
and precision values are derived. Recall, also referred to as hit rate or true positive rate, is 
calculated as TP/(TP+FN). Precision, also known as positive predictive value, is calculated as 
TP/(TP+FP).  
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5 Results and discussions 
In this chapter, the results are presented and discussed in three sections: section 5.1 
quantifies the impact of spatial resolution, input and target variables, and loss functions, 
section 5.2 compares the performance of different DL model architectures, section 5.3 
compares the DL model with physically-based models. Each section addresses a sub-research 
question, first presenting the results and findings, followed by a discussion. 

5.1 Quantifying the impact of spatial resolution, input and target 
variables, and loss functions (SQ1) 

5.1.1 Experiment 1A: spatial resolution 

This section presents the results for the experiment to investigate spatial resolutions, which 
is referred to as Experiment 1A. 

The results of Experiment 1A, evaluating the model performance using Mean Absolute Error 
(MAE) and Mean Absolute Percentage Error (MAPE), are shown in Figure 5-1 and Figure 5-2. 
Note that the results presented here are only those of Model 3, while the results of other 
model architectures can be found in Appendix D. The spatial resolution experiment where the 
spatially distributed variables are processed as mean values across the entire Rhine basin, is 
referred to as basin mean approach. The spatial resolution experiment where the spatially 
distributed variables are processed as mean values over the eight subbasins upstream of 
Lobith as depicted in Figure 3-1, is referred to as subbasin mean approach. 

 

Figure 5-1 MAE and MAPE of Experiment 1A results from basin mean approach with various input 
variables (Model 3). Basin mean approach refers to the spatial resolution experiment where the spatially 

distributed variables are processed as mean values across the entire Rhine basin. 
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Figure 5-2 MAE and MAPE of Experiment 1A results from subbasin mean approach with various input 
variables (Model 3). Subbasin mean approach refers to the spatial resolution experiment where the 
spatially distributed variables are processed as mean values over the eight subbasins upstream of 

Lobith. 

Considering the basin mean approach (Figure 5-1), when only general meteorology forcing 
parameters (tp: total precipitation, t2m: 2 meter temperature, pev: potential evaporation) are 
used, or when combined with snow information (sf: snowfall, sd: snow depth), or with lake 
level information (wl: water level), the average MAE for forecasting 46 steps ranges from 
around 150 to 180 m3/s. The MAE exhibits a gradual decrease as the lead time (LT) increases. 
However, when historical discharges at Lobith (Q_his) are included, the average MAE for 46 
steps drops to approximately 60-150 m3/s. Interestingly, the MAE increases as the lead time 
increases from 1 to 16 days, ranging from around 60 m3/s to 150 m3/s. Beyond 16 days, the 
MAE stabilizes, showing minimal variation. Similar trends are observed in the MAPE results. 
Therefore, the addition of historical discharge significantly enhances model performance 
compared to using only meteorology forcing variables, whereas the inclusion of snow or lake 
level information does not yield significant improvements. 

In the case of subbasin mean approach (Figure 5-2), when solely general meteorology forcing 
variables are utilized, the MAE decreases from approximately 150 m3/s to 110 m3/s as the lead 
time increases. However, when snow information is added, the MAE increases to a range of 
150-200 m3/s, gradually decreasing along the forecast horizon. Similarly, the inclusion of lake 
water level information results in an MAE range of 125-200 m3/s, also decreasing along the 
forecast horizon. Conversely, when historical discharge (Q_his) is added as an input variable, 
the MAE decreases to a range of 60-110 m3/s, and is increasing as the lead time increases. The 
MAPE results exhibit a similar pattern. Therefore, similar to the basin mean results, 
incorporating historical discharge improves model performance. 

When comparing averaging over the whole basin versus for each subbasin, the performance 
generally improves across all experiments, except when adding snow information. For the 
models using only meteorology forcing variables, the MAE decreases by approximately 25 
m3/s for all lead times. In models incorporating Q_his, the MAE decreases by approximately 
40 m3/s for lead times beyond 16 days.  

Consequently, for Model 3, employing subbasin mean approach generally enhances the 
results, albeit with varying degrees of improvement depending on the input variables. The 
results for other model architectures are presented in Appendix D, which also demonstrate 
improved performance when utilizing subbasin mean approach along with meteorology 
forcing and Q_his. 



32 
 

5.1.2 Experiment 1B: input and target variables 

This section presents the results for Experiment 1B which aims to investigate the effects of 
different combinations of target and input variables on model performance. 

Experiment 1B is conducted following Experiment 1A. The spatial resolution of subbasin mean 
approach is selected for this experiment. The MAE and MAPE results of Experiment 1B are 
illustrated in Figure 5-3 and Figure 5-4. 

 

Figure 5-3 MAE and MAPE of Experiment 1B results from training the model on the time-differenced 
data (delta_Q) with various input variables (Model 3). 

 

Figure 5-4 MAE and MAPE of Experiment 1B results from training the model on discharge (Q) directly 
with various input variables (Model 3). Note that Figure 5-4 is the same as Figure 5-2, included again in 

this section for comparison purposes. 

Comparing the model performance when using time-differenced data (delta_Q) as the target 
variable versus discharge (Q) as the target variable, employing delta_Q as the target 
significantly enhances model performance, particularly for short lead times (1-6 days), 
regardless of the input variables considered. The MAEs all start around 25 m3/s for LT=1 and 
increase to 110 m3/s for LT=21. Beyond LT=21, the MAE continues to increase, albeit at 
different rates for different input variables. For the experiment that only use meteo as input 
variables, the MAE increases to a level that is higher than the model trained on Q. However, 
for delta_Q as the target variable, incorporating historical discharge and lake level information 
have the performances comparable to that of trained on Q. 

Examining the performance of different input variables, including Q_his as an input variable 
yields better results, regardless of the target variable used (Q_his or delta_Q). Figure 5-5 
consolidates the results of experiments involving Q_his. Training on delta_Q significantly 
improves the performance for the first 16 days, especially the initial 6 days, which is crucial 
for operational forecasting as it ensures the forecast starts from an accurate state. For lead 
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times beyond 6 days, the performance of the model trained on delta_Q is comparable to the 
model trained on Q. It should be noted that the model trained on delta_Q, after obtaining the 
predicted values of delta_Q, during the data post-processing phase, the delta_Q needs to be 
added to the discharge from the previous day, which introduces error propagation along the 
forecast horizon. Hence, the MAE increases more rapidly as the lead time increases compared 
to the model trained on Q. 

 

Figure 5-5 MAE and MAPE of Experiment 1B results on different targets variables (delta_Q and Q) 
when including historical discharge at Lobith (Q_his) as an input variable. 

Consequently, in Model 3, the best performance is obtained by using delta_Q as the target 
variable and including tp, t2m, pev and Q_his as input variables. Similar results are observed 
in Model 1 and Model 2, as shown in Appendix D. 

5.1.3 Experiment 1C: loss weight 

This section presents the results for Experiment 1C which explores the influence of loss 
weights on model performance. 

Based on experiments A and B, the spatial resolution of subbasin mean approach, along with 
the target variable delta_Q and the input variables tp, t2m, pev, and Q_his, are chosen for 
Experiment 1C. Notably, for Model 4, the target variable remains as Q. The MAE and MAPE 
results of Experiment 1C for different model architectures are shown in Figure 5-6. The 
outcomes vary across the model architectures. 

 

a) Model 1 
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b) Model 2 

 

c) Model 3 

 

d) Model 4 

Figure 5-6 MAE and MAPE of Experiment 1C results on different types of loss weights for a) Model 1, b) 
Model 2, c) Model 3, and d) Model 4. 

In the case of Model 1, there is low sensitivity to changes in loss weights for short lead times 
(1 to 11 days) but noticeable sensitivity for longer lead times (11 to 46 days). Allocating less 
weight to shorter lead times and more weight to longer lead times (type 1) does not yield 
improved performance for longer lead times. This may be attributed to error propagation 
along the forecast horizon when training on delta_Q. If the forecasts for shorter lead times 
perform poorly, the errors propagate to longer lead times. On the other hand, giving more 
weight to shorter lead times but less weight to longer lead times (type 2) worsens the 
performance for longer lead times compared to type 0. However, assigning more weight to 
both short and long lead times while reducing weight for middle lead times (type 3) improves 
the performance for longer lead times compared to type 0. Overall, type 3 generates better 
forecast results. 
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For Model 2, the forecast performance across different LTs varies a bit for different loss weight 
types. Loss weight of type 3 exhibits overall better forecast results.  

For Model 3, the model performance across different forecast lead times shows relatively low 
sensitivity and no clear pattern to changes in loss weights. Only an increasing loss weight (type 
1) demonstrates a decrease in performance for lead times between 6 and 26 days compared 
to other types. 

For Model 4, the forecast performance varies for different loss weight types, particularly for 
type 1 and type 2. Increasing weights (type 1) outperform decreasing weights (type 2). This 
discrepancy can be attributed to Model 4 being trained on Q, where the performance for 
different lead times shows similarity with a gradual increase in MAE from 80 to 125 m3/s along 
the forecast horizon. By allocating more weight to longer lead times, where relatively higher 
errors are expected, the model is penalized more severely if it performs poorly at longer lead 
times. Consequently, the model learns to improve its performance in those segments. 
Therefore, the strategy of penalizing errors in longer lead times leads to an overall 
improvement in model performance as Model 4 is trained on all 46 steps together. Overall, 
type 1 generates better forecast results. 

5.1.4 Discussion of results for SQ1 

Regarding the spatial resolution, Experiment 1A clearly indicates that using subbasin mean 
approach for meteorology forcing significantly improves the model performance. This aligns 
with expectations since the discharge at Lobith originates from different subbasins in different 
seasons, and a subbasin spatial resolution allows the model to capture the information from 
various subbasins at different times. In contrast, using a basin mean approach would obscure 
this crucial information. This finding is consistent with previous studies (Khakbaz et al., 2012; 
Shah et al., 1996; Troutman, 1983) which have shown that considering the spatial variabilities 
of meteorological forcing, particularly precipitation, has a significant impact on the hydrologic 
response of basins. 

Concerning the input variables, the results from Experiment 1A and 1B demonstrate that 
incorporating historical discharge at Lobith enhances the overall forecast skill. This 
improvement can be attributed to the model's ability to learn from past states and utilize that 
information to enhance the forecast performance, particularly for short LTs. This finding aligns 
with operational forecast approaches that rely on autoregressive or linear models, which 
employ historical discharge data as input for short-term forecasts due to the relatively high 
autocorrelation present. For longer LTs beyond 20 days, the autoregression approach 
becomes less effective as the autocorrelation drops below 0.5 (see Figure 5-7). 
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Figure 5-7 Autocorrelation of discharge at Lobith with different lags based on different 10-year periods. 
(Data source: Rijkswaterstaat) 

The addition of snow information does not provide significant added value to the model 
performance. This may be because the inputs already include highly correlated variables such 
as total precipitation and air temperature, which capture the dynamics related to snow. 
Introducing snow data can lead to a degradation in deep learning model performance due to 
the high correlation among the inputs. Also, previous studies (e.g., Kratzert et al., 2018) have 
shown that DL models can already capture snow dynamics and its influence on discharge using 
precipitation and temperature inputs without explicit snow data. 

The water level at Lake Constance (wl) exhibits varying performance when different target 
variables and model architectures are used. However, due to time constraints, this research 
does not delve into the details of wl. It is recommended to explore the impact and 
contribution of it in future studies. 

For the target variables, Experiment 1B shows that training the model on delta_Q as the target 
variable enhances the forecast performance, particularly for short lead times (1-6 days), 
regardless of the input variables used. This finding aligns with expert knowledge suggesting 
that DL models excel at capturing value changes rather than precise value estimation. 
However, the improvement provided by training on delta_Q diminishes for longer lead times 
due to error propagation along the forecast horizon. 

In Experiment 1B, it has been found that optimal performance is obtained when using delta_Q 
as the target variable, along with tp, t2m, pev, and Q_his as input variables. This finding 
specifically applies to the Rhine River at Lobith, where long-term continuously measured 
discharges are available. However, for Predictions in Ungauged Basins (PUB) where observed 
discharges are lacking, only general meteorology forcing (e.g., tp, t2m, pev) may be accessible. 
Figure 5-8 summarizes the results of experiments on different targets variables using only the 
three meteorology parameters as inputs from Experiment 1B. The figure shows that for short 
LT forecasts up to 21 days, utilizing delta_Q as the target with just the meteorology 
parameters produces quite nice forecasts, with MAE ranging from 25 m3/s to 110 m3/s. For 
longer LT forecasts beyond 21 days, the performance improves when using Q as the target 
variable instead of delta_Q. Therefore, based on these findings, it is feasible to carry out 
forecasts for ungauged basins through transfer learning, using trained models from gauged 
basins with only meteorology parameters as inputs. 
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Figure 5-8 MAE and MAPE of Experiment 1B results on different targets variables (delta_Q and Q) 
when only general meteorology forcing parameters (tp, t2m, pev) are used as input variables. (Model 3) 

Regarding the loss function, the impact of loss weights on model performance varies across 
different model architectures. Model 1, Model 2 and Model 4 exhibit different performance 
patterns across LTs with varying loss weights, while Model 3 shows relatively low sensitivity 
and no clear pattern to changes in loss weights. This discrepancy might be attributed to the 
already strong and stable performance of Model 3. And as a result, altering the loss weights 
for different lead times has minimal influence on the results. 

5.2 Comparing different model architectures (SQ2) 

The experiments in this section utilize the combinations of spatial resolution, input and target 
variables, and loss weights identified in section 5.1. Note that Model 3 shows relatively low 
sensitivity and no clear pattern to changes in loss weights. For SQ2 experiments, loss weight 
of type 2 is selected for Model 3. To provide a clear overview of these combinations, Table 5-1 
presents a summary of the various configurations employed for each model architecture. 

Table 5-1 The combinations of spatial resolution, input and target variables, and loss weights for 
different model architectures employed in the experiments in this section. 

Model architecture Spatial resolution Input variables Target variable Loss weight 
Model 1 Subbasin mean tp, t2m, pev, Q_his delta_Q type 3 
Model 2 Subbasin mean tp, t2m, pev, Q_his delta_Q type 3 
Model 3 Subbasin mean tp, t2m, pev, Q_his delta_Q type 2 
Model 4 Subbasin mean tp, t2m, pev, Q_his Q type 1 

5.2.1 Experiment 2A: cross-validation 

This section presents cross-validation results for obtaining a robust model performance 
estimate. 

The cross-validation process in this study consists of five iterations where each iteration 
involves using 70% of the total available time series data for training the model. After the five 
iterations, five trained models are obtained. Additionally, a sixth model is developed as a 
benchmark which is trained using all the available training data without any cross-validation 
splitting. The performance of the models is assessed using several metrics including MAE, 
MAPE, AE (Absolute Error), and APE (Absolute Percentage Error). In this section, an overview 
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of the performance for Model 1 and Model 3 is provided, while the complete results for Model 
2 and Model 4 can be found in Appendix E. 

For Model 1, Figure 5-9 indicates that the model performances of different iterations are 
relatively consistent for LT ranging from 1 to 21 days, despite being trained on different data 
splits. However, beyond 21 days, the performances of the iterations start to diverge. Notably, 
the iteration trained on the latest data splits (purple line) demonstrates better performance 
compared to other iterations and the benchmark. The box plots of AE (Figure 5-10) show that 
the median values for all iterations are below 150 m3/s, while the upper quantiles are within 
250 m3/s. As the lead time increases, the uncertainties also increase, and after 21 days, the 
uncertainties of different iterations vary across different ranges. Thus, the cross-validation 
results indicate that Model 1 exhibits stable and robust performance for LTs between 1 and 
21 days, but its stability decreases for LTs beyond 21 days. 

 

Figure 5-9 MAE and MAPE of cross-validation results for Model 1. Iteration 1 to 5 represent the five 
models trained on different cross-validation time series data splits. Benchmark represent the model 

trained using all the available training data without any cross-validation splitting. 
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Figure 5-10 Absolute error (AE) of cross-validation results for Model 1. Iteration 1 to 5 represent the five 
models trained on different cross-validation time series data splits. Benchmark represent the model 

trained using all the available training data without any cross-validation splitting. 

For Model 3, Figure 5-11 reveals that the performances of different iterations are similar for 
the initial 6 days. However, after 6 days, the performances start to differ, although the 
maximum difference in MAE between iterations remains around 25 m3/s for all LTs. In contrast 
to Model 1, the iteration trained on the latest data splits (purple line) does not consistently 
achieve the best performance. The box plots of AE (Figure 5-12) show that the median values 
for all iterations are below 100 m3/s, while the upper quantiles are within 200 m3/s. 
Additionally, the maximum values for all LTs are lower than 450 m3/s. The uncertainties among 
different iterations for all LTs are relatively consistent, and after 6 days, the uncertainty ranges 
for different LTs remain similar without significant increases along the forecast horizon. 
Consequently, the cross-validation results suggest that Model 3 demonstrates relatively stable 
and robust performance across the entire forecast horizon. Similarly, Model 2 and Model 4 
(Appendix E) also exhibit consistent performance throughout the forecast horizon.  
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Figure 5-11 MAE and MAPE of cross-validation results for Model 3. Iteration 1 to 5 represent the five 
models trained on different cross-validation time series data splits. Benchmark represent the model 

trained using all the available training data without any cross-validation splitting. 

 

Figure 5-12 Absolute error (AE) of cross-validation results for Model 3. Iteration 1 to 5 represent the five 
models trained on different cross-validation time series data splits. Benchmark represent the model 

trained using all the available training data without any cross-validation splitting. 
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5.2.2 Experiment 2B: comparative analysis 

Based on the cross-validation experiments, all four model architectures exhibit varying 
degrees of stability and robustness. Therefore, all models are selected for retraining using the 
entire available training data, followed by evaluation on the testing data. The evaluation is 
based on AE and APE metrics for different LTs, with the AE results presented in this section 
and the APE results provided in Appendix E. 

Figure 5-13 illustrates that the median AE values for all LTs in each model architecture are 
approximately within 100 m3/s. However, the uncertainties differ when examining the various 
LTs. For Model 1, the upper quantile of AE increases from 40 to 250 m3/s as the forecast LT 
increases. The maximum AE value also experiences a rapid increase with longer LTs, exceeding 
450 m3/s after 26 days. In the case of Model 2, the upper quantile increases at a slower rate 
compared to Model 1, ranging from 40 to 200 m3/s along the forecast horizon. The maximum 
AE values also increase but remain mostly below 450 m3/s. For Model 3, the upper quantile 
increases from approximately 40 to 140 m3/s at LT=6, after which it stabilizes. Similarly, the 
maximum AE values become relatively stable after 6 days, not exceeding 400 m3/s. In the case 
of Model 4, the upper quantile gradually increases from 100 to 150 m3/s along the forecast 
horizon, while the maximum AE values exhibit slow growth, not surpassing 350 m3/s. 

 

Figure 5-13 AE results of different model architectures. 

To compare the performance of the model architectures, box plots are selected out from 
Figure 5-13 for several LTs and presented in Figure 5-14. For LT=1, Model 1, Model 2, and 
Model 3 demonstrate comparable performance, outperforming Model 4. At LT=5 and LT=10, 
the performance of all four models is similar. However, for LT=15 and LT=20, Model 2 and 
Model 4 perform slightly better than Model 1 and Model 3. Furthermore, for LTs beyond 20, 
Model 3 and Model 4 exhibit similar and superior performance compared to Model 1 and 
Model 2. 
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Figure 5-14 AE results of different model architectures for several LTs. 

These comparative results are further depicted in the CDF plots shown in Figure 5-15. Model 
1 and Model 2 perform better at shorter LTs (i.e., LT 1 to 20) compared to Model 4, but 
perform worse than Model 4 at longer LTs (i.e., LT 20 to 46). Model 3 demonstrates good 
performance across both short and long LTs. 

 

Figure 5-15 CDF of AE results of different model architectures. Several LTs are highlighted in colors. 
The grey lines are the results for other LTs. 
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5.2.3 Discussion of the results for SQ2 

To address the second sub-research question (SQ2), which focuses on evaluating the 
effectiveness of different model architectures and comparing their performances, cross-
validation and comparative analysis were conducted. 

The cross-validation results reveal that Model 1 exhibits stable and robust performance for 
LTs ranging from 1 to 21 days, but its performance becomes less stable for LTs beyond 21 days. 
In contrast, Models 2, 3, and 4 demonstrate consistent and robust performance across the 
entire forecast horizon. 

The discrepancy in Model 1's stability can be attributed to the fact that, in Model 1, the first 
LSTM does not share the learned past states with the second LSTM. Only the last output is 
concatenated with forecast forcing to generate the 46-step forecast. In hydrological terms, 
the forecast model (second LSTM) lacks knowledge of the hydrological system storages. While 
short-term forecasts can benefit from autoregression using past discharge due to relatively 
high autocorrelation, this approach becomes ineffective for longer LTs when the 
autocorrelation drops below 0.5 beyond 20 days (see Figure 5-7). Consequently, despite 
incorporating forecasted meteorology forcing, the model lacks information on system 
storages to leverage the new forcing information.  

In Model 2, 3, and 4, on the other hand, the states learned from historical observations are 
transferred to future forecasting steps. This allows the models to start with correct states and 
utilize historical discharge information through autoregression for short LTs, as well as process 
forecasted meteorology forcing based on system storage information for longer LTs. Hence, 
the "transfer states" is a crucial step in the model architecture.  

Comparing Model 2 and Model 3, their performances are similar for short LTs (1 to 20). 
However, for longer LTs (20 to 46), Model 3 outperforms Model 2. This result can be attributed 
to the "history representation" in Model 3, where the final hidden state is not only used as 
the initial state for LSTM-2 but is also concatenated with input X2 at each time step in LSTM-
2. This architectural difference enables the forecast model (LSTM-2) to retain and utilize the 
initial state obtained from LSTM-1 for more steps, thereby enhancing performance for longer 
LTs. 

In the case of Model 4, its performances are consistently stable across all LTs compared to the 
other three models. This can be attributed to the inclusion of observed true values (Y) or 
predicted values (Ŷ) from the previous R days as inputs for each forecast step in Model 4. By 
leveraging temporal dependencies and historical patterns of streamflow, Model 4 enhances 
its forecasting capability. However, it should be noted that Model 4 requires a longer training 
time, more than six times that of the other model architectures. 

The cross-validation and comparative analysis are based on the model architectures together 
with the hyperparameters used in this study. However, it should be noted that the number of 
trainable parameters varies among the models (see Table 5-2). Model 1 has the fewest 
trainable parameters, while Model 3 has the highest number. It is possible that Model 3 
outperforms the other models due to its larger parameter count. Therefore, to ensure a fair 
comparison of these model architectures, it is necessary to conduct extensive 
hyperparameter tuning for each model and compare the performances considering the 
number of trainable parameters. 
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Considering both model performance and training time, Model 3 is considered for operational 
use in this study. It exhibits stable and robust performance across the forecast horizon, with 
a slight advantage over Model 2 for longer LTs. 

Table 5-2 Training time and number of trainable parameters for each model architecture. The training 
time is from Experiment 2B where the models are trained on all available training data. All the trainings 

are done on Google Colab with GPU A100. 

Model architecture Training time for 30 epochs [s] Number of trainable parameters 
Model 1 36 184238 
Model 2 52 444590 
Model 3 53 526638 
Model 4 342 259969 

5.3 Comparing the DL model with physically-based models (SQ3) 

5.3.1 Experiment 3A: DL model vs Wflow-Rhine with ERA5 

The forecast results of the DL model and the simulation results of Wflow-Rhine are plotted in 
Figure 5-16 for different years. The DL model forecast is initialized daily from 2017-06-28 to 
2019-08-16, and all the forecast results are plotted together. It should be noted that the graph 
includes the continuous plotting of the forecast results of the last few days of each year, which 
extend into the next year. 
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Figure 5-16 Forecast results of the DL model and simulation results of Wflow-Rhine for Experiment 3A. 
The blue line represents the true observation. The orange line represents the simulation results of 

Wflow-Rhine with ERA5. The red-yellow-green gradient line represents the forecast results of the DL 
model (Model 3) with ERA5, where the forecast is initialized daily. Note that the gradient colors 

represent different LTs, with red indicating shorter LTs and green indicating longer LTs. 

From the time series plot, it can be seen that the DL model can effectively forecast both low 
flow in the dry season and peaks in the wet season, demonstrating a notable performance 
compared to the wflow simulation. Moreover, the forecasts of shorter LTs align more closely 
with the observed values, while deviations become more apparent as the LT increases. 

To evaluate the results, both MAE and MAPE with standard deviation are calculated for each 
LT and averaged over the entire time series within the dry season, as shown in Figure 5-17. 
The MAE of the DL model forecast ranges from approximately 40 to 150 m3/s for all LTs, which 
is smaller than the MAE of the wflow simulation. Furthermore, the uncertainty associated with 
the wflow simulation is greater than that of the DL model forecast. The standard deviation of 
the wflow simulation is approximately 200 m3/s, whereas the DL model forecast exhibits a 
standard deviation ranging between 50 to 130 m3/s across different LTs. Notably, the majority 
of the MAE+std values for the DL model forecast remain below the MAE values of the wflow 
simulation. 
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Figure 5-17 Comparison of MAE and MAPE with standard deviation (std) for forecast results of the DL 
model and simulation results of Wflow-Rhine in Experiment 3A. Blue lines represent the MAE/MAPE 

with std for DL model forecast. The orange line represents the MAE/MAPE and the orange fill 
represents the std of wflow simulation, assuming the same for all LTs. 

5.3.2 Experiment 3B: DL model vs Wflow-Rhine with SEAS5 

The forecasts in this experiment are initialized monthly from 2017-10-01 to 2020-05-01. In 
total, there are 32 forecast results, with 14 of them initialized in dry season from April to 
September. The example presented in Figure 5-18 demonstrates the forecast results of the DL 
model and Wflow-Rhine with SEAS5 initialized on 2018-08-01 and 2018-09-01. 

 

Figure 5-18 Forecast results of DL model and Wflow-Rhine with SEAS5 initialized on 2018-08-01 and 
2018-09-01. 
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Regarding the forecasts initialized on 2018-08-01, the DL model exhibits a strong performance 
in predicting this streamflow drought event. The forecast begins with an accurate initial state, 
resulting in well-predicted discharge values for the first 6 days compared to the observed data. 
Furthermore, the median values of the DL model forecasts closely align with the observed 
values throughout the entire forecast horizon. Additionally, 29 out of 46 observations falls 
within the 33-66% band of the DL model forecasts, and all 46 observations falls within the 10-
90% band. In contrast, the Wflow-Rhine model does not perform as well as the DL model. The 
initial state is not corrected using near real time observations, leading to a deviation from the 
true value in the forecast of the first few days. As the LT increases, the Wflow-Rhine model 
tends to underestimate the discharge, thereby overestimating the severity of the drought 
conditions. Specifically, for LT 1 to 21, the observed values fall outside the 10-90% band of the 
Wflow-Rhine forecasts. 

For the forecasts initialized on 2018-09-01, the DL model again starts with an accurate state, 
with slight deviations occurring in LT 2-6. However, it successfully captures a small bump in 
LT=6. After 11 days, the DL model tends to overestimate the discharge, resulting in an 
underestimation of the drought conditions. Nevertheless, the low flow observations still fall 
within the 10-90% band of the DL model forecasts. In contrast, the Wflow-Rhine model 
deviates significantly from the initial state, and in LT=12, it generates a bump that does not 
align with the observed data. Neither the DL model nor the Wflow-Rhine model perform well 
for LT beyond 16 days, as the forecasted discharge exhibits a different trend compared to the 
observed data. One possible explanation for this discrepancy is the quality of the forecast 
meteorology data from SEAS5. To explore this explanation, observed meteorology data from 
ERA5 is used to carry out the forecast initialized on 2018-09-01. The result is shown in Figure 
5-19. It can be seen that the DL model demonstrates a similar trend in the forecasted 
discharge as the observed discharge. 

 

Figure 5-19 Forecast results of DL model with ERA5 initialized on 2018-09-01. 

To evaluate the forecast results during the dry season, Continuous Ranked Probability Score 
(CRPS) and Continuous Ranked Probability Skill Score (CRPSS) are utilized. Figure 5-20 presents 
the CRPS of the DL model forecast results and the Wflow-Rhine forecast results in box plots. 
From the box plots, it can be seen that, in general, the DL model performs better than the 
Wflow-Rhine model in this comparative experiment, particularly for LT ranging from 1 to 11 
days and the longer LTs. The DL model consistently exhibits lower CRPS values compared to 
the wflow model, indicating higher forecast accuracy. 
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Figure 5-20 CRPS of the DL model forecast results and the wflow forecast results. 

To facilitate a more straightforward comparison, the CRPSS of the DL model is computed 
relative to the Wflow-Rhine forecast results, as shown in Figure 5-21. The median values of all 
LTs are above zero, indicating that the DL model exhibits skill in forecasting during the dry 
season, with improved performance over the Wflow-Rhine model.  

 

Figure 5-21 CRPSS of the DL model forecasts compared to wflow model forecasts. The dashed line 
indicates the CRPSS value of zero. 

Given the focus of this study on forecasting streamflow drought, it is of great interest to assess 
how the models perform for low discharge events. Therefore, median CRPS and CRPSS are 
calculated for different discharge levels (bins), as depicted in Figure 5-22 and Figure 5-23. It 
should be noted that the bins are generated based on observed discharge, rather than 
forecasted discharge, and only discharges below 2700 m3/s are plotted. Also, for each 
combination of bin and LT, only the cells with two or more samples are colored, while the 
rests are left blank. The forecasts in this experiment are initialized monthly from 2017-10-01 
to 2020-05-01. The number of samples for each combination of bin and LT is shown in Figure 
5-24. 
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Figure 5-22 Median CRPS of the DL model forecast results and the wflow forecast results for different 
discharge levels. Colors are proportional to the CRPS value. Blank means there are less than 2 samples 

for that cell. 

 

Figure 5-23 Median CRPSS of the DL model forecasts compared to wflow model forecasts for different 
discharge levels. Colors represent different value range. Blue represents positive value, i.e., the DL 

model forecast outperforms the wflow forecast, and red is the opposite. Blank means there are less than 
2 samples for that cell. 

 

Figure 5-24 Number of samples for each combination of discharge observation (Qobs) bin and lead time 
of Experiment 3B: DL model vs Wflow-Rhine with SEAS5. Blank means there are less than 2 samples 

for that cell. 

Figure 5-23 reveals that for discharge between 950 and 2200 m3/s, most cells with LT from 1 
to 11 days have median CRPSS values above 0.5, and most cells with LT beyond 11 days have 
values between 0 and 0.5. For discharge between 700 and 950 m3/s, the median CRPSS values 
are above 0.5 for LTs from 1 to 16 days, but drop below 0 for LTs beyond 20 days. For discharge 
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between 2200 and 2700 m3/s, the values are quite stable as above 0 for LT from 1 to 11 days, 
but varies for LT beyond 11 days.  

Therefore, in this experiment, the DL model demonstrates forecast skill over Wflow-Rhine for 
short LTs (1-11 days) across all discharge levels. It also exhibits skill for discharge between 950 
and 2200 m3/s for all LTs. However, for discharge between 700 and 950 m3/s with LTs beyond 
20 days, Wflow-Rhine shows skill over the DL model. It should be noted that the sample size 
for this experiment is relatively small. For instance, for most cells with discharges lower than 
1200 m3/s, there are fewer than five samples available for analysis (Figure 5-24). In order to 
obtain a more robust and comprehensive analysis, longer forecast terms are needed. 

5.3.3 Experiment 3C: DL model vs FEWS-Rhine 

Experiment 3C aims to evaluate the performance of the DL model in forecasting drought 
events compared to FEWS-Rhine, specifically focusing on the year 2018. The DL model results 
from Experiment 3B are compared with the forecast results of FEWS-Rhine using the ENS 
extended forecast line (fews_hbv_ens_ext). The forecasted streamflow drought events at 
Lobith are defined based on the river discharge criteria outlined in Table 1-1. The forecast 
results of both models are presented in Appendix F.  

Regarding the DL model forecasts, it successfully predicts the onset of the drought event in 
July, approximately around July 15th. This drought event continues until September. In the 
first two days of September, there is a slight increase in discharge, reaching above 1000 m3/s. 
However, the forecasted discharge remains around 1000 m3/s until the end of September, 
while the actual discharge falls back below 1000 m3/s. Starting in October, the forecasted 
discharge aligns closely with the observed values, indicating a streamflow drought throughout 
the entire month. This drought event extends until early December, and the DL model 
accurately forecasts its end. Overall, the DL model correctly predicts the timing of both the 
start and end of the drought event. One discrepancy is observed in September when the 
forecasted discharge slightly increases, temporarily breaking the continuity of this five-month 
drought event. 

In contrast, the FEWS-Rhine forecasts underestimate the discharge, resulting in an 
overestimation of the severity of drought conditions throughout the event. Additionally, 
FEWS-Rhine fails to accurately forecast the timing of both the start and end of the drought 
event. This inconsistency could be attributed to the fact that the forecast line 
fews_hbv_ens_ext of FEWS-Rhine does not undergo bias-correction using near real-time 
observations, leading to incorrect initial states. Moreover, the current operational system is 
not specifically designed for long-term and drought forecasting. It is initialized twice a week, 
but for this comparison, only the initialization closest to that of the DL models was chosen. 
This utilization does not fully leverage the twice-weekly forecasting capability of FEWS-Rhine. 

The confusion matrix of DL model forecast results is shown in Table 5-3. The recall and 
precision values can be found in Table 5-4. For LT from 1 to 30 days, the DL model consistently 
achieves a recall value of one, indicating accurate prediction of drought events. However, for 
LTs from 31 to 40 days, only the recall value for the initialization on 2018-10-01 reaches one, 
while the recall values for other initializations are below 0.5 as the DL model wrongly predicts 
the drought as non-droughts (Type II errors) in these cases. On the other hand, the precision 
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values are generally high, with most of them reaching one. This indicates that the DL model 
has a low rate of false positives (FP). 

Table 5-3 Confusion matrix of DL model forecast results for different initialization times and lead time 
(LT) bins. 

Initialization 
time 

LT 1 – 10 
(10 days) 

LT 11 – 20 
(10 days) 

LT 21 – 30 
(10 days) 

LT 31 – 40 
(10 days) 

LT 41 – 46 
(6 days) 

TP FN FP TN TP FN FP TN TP FN FP TN TP FN FP TN TP FN FP TN 
2018-07-01 0 0 3 7 6 0 3 1 10 0 0 0 1 9 0 0 0 6 0 0 
2018-08-01 10 0 0 0 10 0 0 0 10 0 0 0 2 3 0 5 0 5 0 1 
2018-09-01 3 1 0 6 4 6 0 0 0 9 0 1 0 10 0 0 0 6 0 0 
2018-10-01 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 5 1 0 0 
2018-11-01 10 0 0 0 10 0 0 0 10 0 0 0 1 2 0 7 6 0 0 0 

 

Table 5-4 Recall and precision values derived from confusion matrix of DL model forecast results for 
different initialization times and lead time (LT) bins. 

Initialization 
time 

LT 1 – 10 
(10 days) 

LT 11 – 20 
(10 days) 

LT 21 – 30 
(10 days) 

LT 31 – 40 
(10 days) 

LT 41 – 46 
(6 days) 

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision 
2018-07-01 - 0 1 0.67 1 1 0.1 1 0 - 
2018-08-01 1 1 1 1 1 1 0.4 1 0 - 
2018-09-01 0.75 1 0.4 1 0 - 0 - 0 - 
2018-10-01 1 1 1 1 1 1 1 1 0.83 1 
2018-11-01 1 1 1 1 1 1 0.33 1 1 1 
 

The confusion matrix of FEWS-Rhine forecast results is shown in Table 5-5. The recall and 
precision values can be found in Table 5-6. The recall values for all initializations and LTs equal 
one, indicating that FEWS-Rhine successfully forecasts all drought events. However, the 
precision values are not uniformly one. In comparison to the precision values of the DL model, 
FEWS-Rhine exhibits more Type I errors (false positives: FP), which suggests an overestimation 
of drought conditions. This finding is consistent with the time series plot in Appendix F, which 
indicates that FEWS-Rhine underestimates the discharge, leading to an overestimation of 
drought severity throughout the event. 

Table 5-5 Confusion matrix of FEWS-Rhine forecast results for different initialization times and lead time 
(LT) bins. Note that the forecast results are missing after 2018-12-14, so for LT 41-46 of initialization 

2018-11-01, results are only available for 3 days. 

Initialization 
time 

LT 1 – 10 
(10 days) 

LT 11 – 20 
(10 days) 

LT 21 – 30 
(10 days) 

LT 31 – 40 
(10 days) 

LT 41 – 46 
(6 days) 

TP FN FP TN TP FN FP TN TP FN FP TN TP FN FP TN TP FN FP TN 
2018-07-02 0 0 10 0 6 0 4 0 10 0 0 0 10 0 0 0 6 0 0 0 
2018-08-02 10 0 0 0 10 0 0 0 10 0 0 0 5 0 5 0 5 0 1 0 
2018-09-03 4 0 6 0 10 0 0 0 9 0 1 0 10 0 0 0 6 0 0 0 
2018-10-01 10 0 0 0 10 0 0 0 10 0 0 0 10 0 0 0 6 0 0 0 
2018-11-01 10 0 0 0 10 0 0 0 10 0 0 0 4 0 6 0 0 0 3 1 

 



52 
 

Table 5-6 Recall and precision values derived from confusion matrix of FEWS-Rhine forecast results for 
different initialization times and lead time (LT) bins. 

Initialization 
time 

LT 1 – 10 
(10 days) 

LT 11 – 20 
(10 days) 

LT 21 – 30 
(10 days) 

LT 31 – 40 
(10 days) 

LT 41 – 46 
(6 days) 

Recall Precision Recall Precision Recall Precision Recall Precision Recall Precision 
2018-07-01 - 0 1 0.6 1 1 1 1 1 1 
2018-08-01 1 1 1 1 1 1 1 0.5 1 0.83 
2018-09-01 1 0.4 1 1 1 0.9 1 1 1 1 
2018-10-01 1 1 1 1 1 1 1 1 1 1 
2018-11-01 1 1 1 1 1 1 1 0.4 - 0 

5.3.4 Discussion of the results for SQ3 

To address the third sub-research question (SQ3), three comparisons between the DL model 
and physically-based models, i.e., Wflow-Rhine and FEWS-Rhine, were designed and executed 
based on the availability of forecast forcings and existing results from physically-based models. 

In Experiment 3A, the DL model demonstrates a notable performance compared to the wflow 
simulation. However, it is important to note that the DL model incorporates historical 
discharges as additional input to forecast 46 steps, whereas the wflow simulation only utilizes 
meteorology forcing to forecast streamflow one step ahead. This inclusion of historical 
discharge data improves the DL model's forecast skill. Although this comparison may not be 
entirely fair due to the different inputs, it highlights the DL model's ability to forecast longer 
lead times effectively. As the lead time increases, the influence of historical discharges 
diminishes. Even for lead times up to 46 days, the DL model exhibits notable forecast skill 
compared to the benchmark provided by the wflow simulation. 

In Experiment 3B, it is important to acknowledge that the DL model may not have been 
compared to the best operational setting of the wflow model. The wflow results used in this 
comparison were not corrected using near real-time observations, which means that the 
wflow model does not start from the correct initial state. This discrepancy could have 
influenced the performance across the entire forecast horizon. If the wflow results were 
corrected for bias, it would provide a stronger basis for comparing the DL model's 
performance. Despite this limitation, the DL model still demonstrates skill for short LTs (1-11 
days) across all discharge levels, and skill for discharge between 950 and 2200 m3/s for all LTs. 

Another crucial point to discuss is the choice of data sources in this experiment. In the training 
mode, ERA5 is used for both X1 (input for LSTM-1) and X2 (input for LSTM-2), while in the 
forecast mode, ERA5 is used for X1 along with SEAS5. SEAS5 data is not used for training due 
to the limited number of samples available. While this setup leaves the forecast mode 
vulnerable to biases in SEAS5, it is hypothesized that ERA5 and SEAS5 share some statistical 
characteristics since they are both generated using the atmospheric model ECMWF Integrated 
Forecast System (IFS), which might help mitigate the issue to some extent. Additionally, using 
SEAS5 in the forecast mode allows for testing the robustness of the DL model when utilizing a 
different dataset from the training phase. To further test this hypothesis, EOBS is used instead 
of ERA5 to conduct the same experiment for Experiment 3B. It should be noted that from past 
experiences, the data quality of EOBS has been found to be higher than ERA5. However, the 
results, presented in Appendix F, indicate a deterioration in the DL model's performance 
compared to the experiment with ERA5. Therefore, it is crucial to use the same or similar data 
sources for both the training and forecast phases.  
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Furthermore, there are methods available to further mitigate the influence of bias in SEAS5 
during the forecast mode. For example, after training the DL model with ERA5, LSTM-2 can be 
fine-tuned using a two-year SEAS5 dataset. This approach allows for a better utilization of the 
limited forecast data. 

In Experiment 3C, the DL model accurately predicts drought events for LTs up to 30 days, and 
has generally high precision values, i.e., low rate of false positives. FEWS-Rhine successfully 
forecasts drought events across all LTs, but exhibits more Type I errors (false positives) due to 
an underestimation of discharge. Despite using different input datasets for the DL model and 
FEWS-Rhine, the DL model exhibits skill along the forecast horizon. It correctly predicts the 
timing and trend of past drought events, indicating its potential in capturing streamflow 
patterns. However, for a fair comparison between the two models, it would be beneficial to 
have an ENS extended dataset available during dry seasons as input. This would provide a 
more comprehensive assessment of their performances. 

Furthermore, in both Experiment 3B and Experiment 3C, the DL model is trained solely on 
data from 1979 to 2016, and this trained model is then used for all forecasts. However, for 
operational use, it is preferable to train the model using as much data as possible prior to 
initialization. Different training strategies could impact the forecast skill of the DL model, and 
it is hypothesized that utilizing more training data can improve its performance in the forecast 
mode. Although this study does not explore this aspect, it presents an opportunity for future 
improvements.  
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6 Limitations and recommendations 
This study aims to explore the potential of the LSTM deep learning approach for operational 
streamflow drought forecasting for the Rhine River at Lobith with a lead time of up to 46 days. 
Based on the results and discussions, several limitations of this study are identified, along with 
recommendations for improvement and future research. 

Regarding the input data, the study utilizes three meteorological parameters – total 
precipitation (tp), 2 meter temperature (t2m), and potential evaporation (pev) – to describe 
the meteorological conditions over time. However, the selection of these parameters is based 
on hydrological knowledge and physically-based models without exploring their detailed 
influences on the DL models. Therefore, it is suggested to conduct a sensitivity analysis to 
assess how these three parameters impact the model results. Additionally, as potential 
evaporation exhibits a high correlation with air temperature, and high correlation among 
inputs could potentially degrade the performance of DL models. To address this, it is 
recommended to explore the use of incoming shortwave radiation as an alternative to 
potential evaporation.  

Moreover, the study uses a 270-day length of historical discharge (Q_his) as input, aligning it 
with the sequence length of other meteorological parameters. However, the contribution of 
Q_his as inputs to the forecast results and the rationale for choosing a 270-day length instead 
of other lengths have not been explored. Further investigation is necessary to understand the 
processes captured in Q_his data that may not be in meteorological parameters, and the 
effect of varying Q_his lengths on model performance as it can help identify and prevent input 
redundancy. 

Furthermore, the water level at Lake Constance (wl) exhibits different performance when 
different target variables and model architectures are used. It is recommended to explore the 
impact and contribution of wl in future studies, as it integrates the operation of reservoirs into 
DL models and could help to understand how human interactions impact hydrological 
processes during droughts. 

In addition to the variables utilized in this study, other valuable information can be 
incorporated into the DL models as input. For instance, integrating discharge data from 
upstream stations with a specified look-back window may enhance the model performance, 
considering the high correlation observed between the discharge at Lobith and the discharges 
from upstream stations (International Commission for the Protection of the Rhine, 2018). 
Furthermore, including static subbasin attributes such as area, mean elevation, land cover, 
drainage density and sand fraction as inputs might also improve the model performance 
(Kratzert et al., 2019). 

Regarding the choice of loss function, the study uses the mean squared error (MSE), which is 
commonly employed in the DL models. However, it is recommended to explore alternative 
objective functions that are suitable for time series forecasting of non-stationary signals and 
multiple future steps prediction. One promising alternative is the DILATE function developed 
by Le Guen & Thome (2019). The DILATE function aims to accurately predict sudden changes 
and incorporates terms that facilitate precise shape and temporal change detection. This loss 
function would be beneficial for predicting the timing, specifically the start and end, of 
drought events in this study. 
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In terms of the model architectures, for all the experiments conducted for Model 4, the target 
variable of Q is used, as the architecture of Model 4 cannot be easily modified to model 
delta_Q. However, if it were possible to train Model 4 on delta_Q, it is anticipated that the 
model would yield improved performance, particularly for short lead times. 

In terms of model training, in this study, the training datasets span from 1979 to 2016, while 
the testing datasets cover the period from 2017 to 2020. The selection of these periods is 
based on data availability and the need to generate drought events in 2018 for model 
performance evaluation. However, it should be noted that the training data has limited 
inclusion of severe drought events. DL models have the potential to perform better at 
predicting extreme events if they are exposed to such events during the training phase. 
Therefore, it is recommended to include a broader range of data, particularly encompassing 
extreme drought events such as the drought in 1976, to enhance the model performance in 
predicting extreme events during the inference phase. 

To better interpret the DL model, examining the cell states of LSTM can help determine 
whether the model effectively captures hydrological knowledge. Specifically, investigating 
whether the model learns the patterns that indicate snow-dominated discharge during the 
dry season and rain-dominated discharge during the wet season would provide valuable 
insights. 

To generalize the model’s applicability to other locations, it is recommended to conduct tests 
in catchments of varying sizes. The study conducted by Nevo et al. (2022) on operational flood 
forecasting has shown that LSTM-based models perform better in large river systems, showing 
a positive correlation between model performance and watershed area. Following a similar 
approach, exploring different catchment characteristics can provide valuable insights into the 
model's effectiveness across diverse hydrological settings. Additionally, it is worth exploring 
the potential for forecasting ungauged basins through transfer learning, utilizing trained 
models from large samples of gauged basins with only meteorology parameters as inputs. 

It is acknowledged that anthropogenic interactions can significantly influence hydrological 
processes during drought events. Although the study attempted to consider the operation of 
reservoirs by incorporating Lake Constance water level information, this addition did not 
improve the model performance significantly. Nevertheless, there is a need for further 
research to explore and integrate anthropogenic interactions into the DL model. By doing so, 
the impact of human activities such as construction of reservoirs, abstractions from surface 
water or groundwater and water diversion on the hydrological processes during drought can 
be better modeled and understood. 
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7 Conclusion 
This research focuses on exploring the potential of the LSTM deep learning approach for 
operational streamflow drought forecasting for the Rhine River at Lobith, with a lead time (LT) 
of up to 46 days. The research objectives are to investigate optimal spatial resolution, input 
and target variables, and loss functions, develop suitable model architectures for operational 
frameworks, and compare the performance of LSTM-based models with physically-based 
models in forecasting streamflow drought. Three sub-research questions (SQ) have been 
formulated to align with the specific research objectives. The answer for each SQ is 
summarized below. 

SQ1: What combinations of spatial resolution, input and target variables, and loss functions 
can be used to optimize the performance of LSTM-based models for drought forecasting? 

The study found that using subbasin mean approach for meteorological forcing proves 
beneficial, enabling the model to capture information from various subbasins at different 
times. Incorporating historical discharge at Lobith improves the overall forecast skill. However, 
the addition of snow and lake level information do not provide significant added value. 
Additionally, training the model on time-differenced data as the target variable greatly 
improves forecast performance, particularly for short lead times. As for loss functions, Model 
1, Model 2 and Model 4 exhibit different performance patterns with varying loss weights, 
while Model 3 shows relatively low sensitivity and no clear pattern to changes in loss weights. 

SQ2: What LSTM-based model architectures are suitable for handling the various data 
sources available in an operational framework and how do they compare in performance? 

To handle the various data sources available in an operational framework, two LSTMs in 
parallel or cascade are used, with one LSTM processing historical observation data and 
another LSTM processing forecast data. The cross-validation experiments demonstrate that 
Model 1 exhibits stable and robust performance for lead times up to around 20 days but 
becomes less stable beyond that threshold. In contrast, Models 2, 3, and 4 consistently 
demonstrate robust performance across the entire forecast horizon due to the inclusion of 
"transfer states" in their architectures, which allows the transfer of learned states from 
historical observations to future forecasting steps. Model 3, which employes "history 
representation", further enhances performance for longer lead times by utilizing the initial 
state obtained from the first LSTM for more steps. 

SQ3: How does the performance of the LSTM-based model compared to physically-based 
models for drought forecasting? 

Comparisons between the LSTM-based model (Model 3) and physically-based models in 
forecasting streamflow drought reveal that: 1) When using observed meteorology forcing 
from ERA5, the DL model demonstrates a notable performance compared to Wflow-Rhine 
simulation using the same forcing data. 2) When utilizing SEAS5 for forecasting, the DL model 
demonstrates skill over Wflow-Rhine in predicting discharge levels during the dry season up 
to 10 days ahead, as well as for discharges between 950 and 2200 m3/s across the entire 
forecast horizon. However, for discharges between 700 and 950 m3/s with longer LTs beyond 
20 days, Wflow-Rhine shows skill over the DL model. 3) While FEWS-Rhine successfully 
forecasts drought events in 2018 throughout the forecast horizon, it tends to produce more 
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Type I errors (false positives) possibly due to the absence of state updates, leading to an 
underestimation of discharge. The DL model, forecasting with SEAS5, accurately predicts 
drought events in 2018 for LTs up to 30 days and generally has higher precision values. Despite 
using different forcing datasets, the DL model can predict the timing and trend of past drought 
events, indicating its potential in capturing streamflow patterns. 

Overall, this study contributes to operational water management in the Netherlands by 
employing the LSTM deep learning approach in an operational framework for drought 
forecasting. These models leverage both historical observation data and forecasted 
meteorology forcing data, resulting in a skillful performance for streamflow drought forecasts. 
Future research could explore additional improvements to model performance, investigate 
the applicability of LSTM-based models in other river basins, and further validate the results 
in real operational settings. The findings of this study provide valuable insights for water 
managers and contribute to advancing the field of streamflow drought forecasting using DL 
models. 
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A Time terms 
In operational forecasting, various time terms are used to specify different aspects of the 
forecast. To facilitate understanding, it is essential to introduce the relevant terms. Figure A-
1 provides an illustration of these terms and notations in the context of this study which 
focuses on forecasting up to 46 days ahead. 

• Validity time (d), which refers to the specific date and time associated with a 
particular streamflow state. It represents the point in time for which the forecast is 
intended. 

• Forecast initialization time (t), which indicates the validity time of a forecast’s initial 
inputs. It represents the starting point from which the forecast is generated. 

• Forecast horizon (T), which represents the total number of steps in a forecast. It 
provides an indication of the length or duration of the forecast. 

• Forecast lead time (LT), which represents the elapsed time in the forecast. It indicates 
the time difference between the forecast initialization time and the validity time of 
the forecast. 

 

Figure A-1 Illustration of relevant time terms and notations in the context of this study forecasting up to 
46 days ahead. 
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B DL model hyperparameters and settings 
Table B-1 Model 1 hyperparameters and settings. 

Hyperparameters and settings Value 
Optimizer Adam 
Loss MSE 
Batch size 256 
Epochs 30 
Sequence length LSTM-1 :  270 days 

LSTM-2 :  46 days 
Learning rate and scheduling Epoch < 10 :  1e-3 

10 ≤ epoch < 20 :  5e-4 
20 ≤ epoch :  1e-4 

Layers sizes LSTM-1 :  64 hidden units; 0.25 dropout 
LSTM-2 :  64 hidden units; 0.20 dropout 
Dense :  46 hidden units 

 

Table B-2 Model 2 hyperparameters and settings. 

Hyperparameters and settings Value 
Optimizer Adam 
Loss MSE 
Batch size 256 
Epochs 30 
Sequence length LSTM-1 :  270 days 

LSTM-2 :  46 days 
Learning rate and scheduling Epoch < 10 :  1e-3 

10 ≤ epoch < 20 :  5e-4 
20 ≤ epoch :  1e-4 

Layers sizes LSTM-1 :  128 hidden units 
FC :  128 hidden units 
LSTM-2 :  128 hidden units; 0.25 dropout 
Dense :  46 hidden units 

 

Table B-3 Model 3 hyperparameters and settings. 

Hyperparameters and settings Value 
Optimizer Adam 
Loss MSE 
Batch size 256 
Epochs 30 
Sequence length LSTM-1 :  270 days 

LSTM-2 :  46 days 
Learning rate and scheduling Epoch < 10 :  1e-3 

10 ≤ epoch < 20 :  5e-4 
20 ≤ epoch :  1e-4 

Layers sizes LSTM-1 :  128 hidden units 
FC :  128 hidden units 
Dense-2 :  128 hidden units 
LSTM-2 :  128 hidden units; 0.25 dropout 
Dense-1 :  46 hidden units 
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Table B-4 Model 4 hyperparameters and settings. 

Hyperparameters and settings Value 
Optimizer Adam 
Loss MSE 
Batch size 256 
Epochs 30 
Sequence length LSTM-1 :  270 days 

LSTM-2 :  46 days 
Learning rate and scheduling Epoch < 10 :  1e-3 

10 ≤ epoch < 20 :  5e-4 
20 ≤ epoch :  1e-4 

Layers sizes LSTM-1 :  128 hidden units 
FC :  128 hidden units 
LSTM :  128 hidden units 
Dense-2 :  128 hidden units 
Dense :  1 hidden units 
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C Cross-validation method 
An illustration and details of the cross-validation method used in this study are shown below. 

 

Figure C-1 Illustration of cross validation method “sliding window with gaps” used in this study. 

The cross-validation process in this study consists of five iterations, where each iteration 
involves using 70% (around 25 years) of the total available time series data for training the 
model. Specifically, the 25-year data is divided into three segments: 21 years for training, a 1-
year gap, and 3 years for validation. After the five iterations, five models are obtained. To 
provide a fair evaluation of their performance, the remaining 3 years of data (which has not 
been used in any of the iterations) are used as final testing data for each of the five models. 
Additionally, a sixth model is developed as a benchmark. This model is trained using all the 
available training data, without any cross-validation splitting, and tested also using testing 
data. 
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D Quantifying the impact of spatial resolution, 
input and target variables, and loss functions 

D.1 Experiment 1A: spatial resolution 

a) Model 1 
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b) Model 2 

 

 

c) Model 4 

 

 

Figure D-1 MAE and MAPE of Experiment 1A results from basin mean approach and subbasin mean 
approach with various input variables for a) Model 1, b) Model 2, c) Model 4. Basin mean approach 
refers to the spatial resolution experiment where the spatially distributed variables are processed as 

mean values across the entire Rhine basin, while subbasin mean approach refers to the spatial 
resolution experiment where the spatially distributed variables are processed as mean values over the 

eight subbasins upstream of Lobith. 
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D.2 Experiment 1B: input and target variables 

a) Model 1 

 

 

b) Model 2 

 

 

Figure D-2 MAE and MAPE of Experiment 1B results from training the model on different targets, i.e., 
the time-differenced data (delta_Q) or discharge (Q), with various input variables, for a) Model 1 and b) 

Model 2.  
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E Comparing different model architectures 

E.1 Experiment 2A: cross-validation 

a) Model 1 
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b) Model 2 
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c) Model 3 
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d) Model 4 
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Figure E-1. Cross-validation results for a) Model 1, b) Model2, c) Model 3, and d) Model 4. Iteration 1 to 
5 represent the five models trained on different cross-validation time series data splits. Benchmark 

represent the model trained using all the available training data without any cross-validation splitting. 
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E.2 Experiment 2B: comparative analysis 

 

Figure E-2 APE results of different model architectures. 

 

Figure E-3 APE results of different model architectures for several LTs. 
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Figure E-4 CDF of APE results of different model architectures. Several LTs are highlighted in colors. 
The grey lines are the results for other LTs. 
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F Comparing the DL model with physically-based 
models 

  

Figure F-1 CRPS of the DL model forecast results, and CRPSS of the results compared to wflow model 
forecasts. EOBS is used for both X1 (input for LSTM-1) and X2 (input for LSTM-2) in training mode, and 

used for X1 together with SEAS5 for X2 in the forecast mode. 
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Figure F-2 DL model forecast results for the drought event in 2018 with SEAS5. 
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Figure F-3 FEWS-Rhine forecast results for the drought event in 2018 with ENS extended. 

 

 


