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Summary

With governing equations, we can predict how the dynamics of a system evolve
over time. Studies have shown that it is possible to reverse this process and obtain
governing equations from data provided by the system. These studies have demon-
strated promising results on synthetic data with symbolic regression. However, in
experimental settings, the results are often disappointing because noise corrupts
the data. Further complications are that symbolic regression often discovers multi-
ple possible equations and that numerically calculating the derivative amplifies the
noise. Therefore, the aim of this project is threefold. Firstly, the aim is to make
symbolic regression more robust to noise. Secondly, the aim is to determine a single
equation from a list of possible equations found with symbolic regression. Thirdly,
the aim is to numerically calculate derivatives of data in a way that minimises the
amplification of noise.

It was observed that in the field of machine learning, there exist statistical ap-
proaches to regression that can accurately capture a system’s dynamics, even in
the presence of noise. It was investigated how these methods can be used, together
with symbolic regression, to increase the noise robustness. We then studied how
these machine learning models can be used to numerically calculate derivates. It
was further investigated how optimisation processes can be used to choose optimal
hyperparameters of Symbolic regression methods and thus single out an equation.
In order to explore the bounds, we investigated multiple types of equations, differ-
ent types and amounts of noise, different regression methods, different symbolic
regressors and different optimisation methods.

It was found that Gaussian processes are able to predict a smoothened version
of noisy data that often are closer to the noise-free signal than the noisy signal.
This smoothened predicted data provides a good basis for numerical differentia-
tion. Since Gaussian processes provide smooth predictions, there is little amplifi-
cation of error caused by sudden changes in data due to noise. It was also found
that equations can be distinguished from each other through their coefficient of
determination (R?) if the predictions are extrapolated far away enough from the
training data. The hyperparameters can then be optimised to find the best scoring
equation.

We showed that, with these methods, the governing equations can be discovered
with significantly higher amounts of noise. The strategy’s full potential is demon-
strated with the combination of Gaussian process regression and SINDy but the
strategy has also been shown to be succesful with different combinations of noise-
reduction tools and symbolic regressors. The increased robustness to noise makes
symbolic regression more feasible in experimental settings.
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Introduction

he central challenge in finding equations or natural laws from data is widely

applicable in many fields of science and engineering. In the age of comput-
ers, a paradigm shift emerges in finding equations from physical phenomena with
data-driven methods. Advances in machine learning allow for accurately capturing
a system’s dynamics, even in the presence of noise. However, these methods pro-
vide little to no insight in the physics of the system and often do not extrapolate
well. Recently methods have been proposed to find equations from data. Once
the equation of a system is found, the equation can be used to gain further un-
derstanding of the system and the equation can be used to extrapolate. These
symbolic regressors show good potential for noiseless synthetic data but are often
lacking in experimental settings. In this work, advances in machine learning tech-
niques and symbolic regression are combined to create a white box model that is
robust to noise.

A method that successfully discovers governing equations from data could accel-
erate research in many fields because these algorithms usually run in the order of
hours or even minutes. In contrast, scientists can take years to discover governing
equations through traditional research. A computer can go through larger amounts
of data and discover structures that would be impossible to see without these meth-
ods. This could generate new insights in new and existing phenomena.

This thesis is divided in three parts. Chapter 2 and 3 form part 1. In chapter 2 a re-
view of the current methods of regression and symbolic regression is presented.
Additionally, a knowledge gap is identified. Relevant modelling techniques are
discussed. In chapter 3 the research question, research objectives and research
methodology are presented. In part II, a paper is presented that investigates how
data-driven techniques can be used to improve symbolic regression. More specifi-
cally, it is investigated how Gaussian processes aid in reducing the effect of noise
on symbolic regression, how the derivatives of a dynamical system can be robustly
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4 1. Introduction

and numerically calculated and how machine learning tools can be used to get
consistent results in symbolic regression. In the last part, part III, the results are
discussed and conclusions are drawn. Furthermore, ideas for further research are
discussed in section 5.2.



Literature review

For millennia scientists have observed phenomena and tried to understand why
certain events and processes happen in a given way. Traditionally the equations
to describe these events and processes were found through a thorough understand-
ing of the physics and rigorous research. However, a paradigm shift is emerging
from recent advances in machine learning and computing power that enable the use
of large datasets to find equations governing a system from observations. With the
combination of curiosity, imagination and recognising patterns humans have driven
innovation throughout the ages. Nevertheless, there are countless examples of
computers finding new patterns that have led to new human understanding.

In the field of system identification, lots of advances have been made to estimate
parameters and even the form of the equations of a system. An example is the
NARMAX model, which was proposed in [1] and [2]. The NARMAX model can
represent a wide range of nonlinear functions by creating a general form:

y(k) =F [y(k = 1),y(k —2), ..,y (k = n,),utk —d),u(k —d — 1), ..., u(k —d — n,,)
e(k—1),e(k—2),..,e(k—n,)] +e(k)
(2.1)

F() is a nonlinear function, where y(k), u(k) and e(k) represent the output, input
and noise respectively. The parameters n,, n, and n, represent the maximum lag
and d represents a delay. Often these methods require some knowledge of the
system beforehand to make the right assumptions and they do not always give
more insight into the physics governing the systems. NARMAX is often used for
control in (partly) unknown systems.

Along with NARMAX, there exist many system identification techniques in the fre-
guency domain [3]. The frequency domain can even be useful for denoising data,
for example, by applying a Butterworth low-pass filter and filtering the noise at
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6 2. Literature review

higher frequencies. Since more literature exists on time series regression, this pa-
per will focuss on time domain methods for a general algorithm. However, it should
be kept in mind that some specific problems might be more easily identified in the
frequency domain.

Many time series regression methods are black-box identification techniques, which
provide no symbolic formulas but do provide excellent fittings. An example is the
use of splines. Splines divide the data into bins and find either a linear or polynomial
fitting per bin. It then imposes boundary conditions to ensure smoothness. Natural
splines are linear outside of the defined region. This means natural splines do not
perform well outside of the defined region for non-linear functions.

Another example of black-box models for regression is neural networks. Neural
networks are shown to be able to uniformly approximate any continuous function
of n real variables in the unit hypercube [4]. They are therefore good universal ap-
proximators. Many forms of neural networks exist, such as feedforward, recurrent,
convolutional, wavelet, Bayesian and fuzzy neural networks. The mentioned forms
of neural networks can be used for regression.

The distribution of a fully-connected neural network with a single hidden layer,
which has an i.i.d. prior over parameters, converges to a Gaussian Process in the
limit of infinite layer width [5]. Gaussian process regression provides an excellent
fitting to a data set, given that the data set is small (<10,000 samples). A problem
with larger data sets is that Gaussian process prediction typically scales as 0(n?).
For large data sets storing the Gram matrix and solving the associated linear sys-
tems are prohibitive on modern workstations [6].

Recently, advances have been made in symbolic regression [7-9]. These methods
provide us with a way of finding the equations governing a system or a natural law
and therefore provide us with more insight into the physics. There are, however,
still some major problems with these methods. They do not always converge to the
right form, are too computationally expensive or do not work in an experimental
setting. Noise impairs the ability of these algorithms to find accurate results.

In this section an overview is given of regression and symbolic regression meth-
ods, a knowledge gap and current problems are identified, and a proposed way to
improve the status quo is given. To answer if the current methods of finding gov-
erning equations from experimental data of a system can be improved, this section
will look at whether we can improve current methods of symbolic regression, look
at other system identification techniques to compare to the status quo and to see
if elements of these techniques can be incorporated to the symbolic regression
techniques.
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2.1. Noisy data

Noise plays an important role in figuring out the right equations as it can cause the
methods to find the wrong solution. This happens because various equations can
be found that seem to fit the data well. However, many equations are actually over-
fitting the data and do not perform well outside the given dataset. Noisy measure-
ments are especially prone to overfitting. Overfitting occurs when too many terms
are included and the fitting has low bias and high variance. Conversely, a model
can also be underfitted, meaning the trend of the data is not captured correctly.
High-dimensional data requires many more samples to prevent underfitting.

In figure 2.1 it is shown how data can be fitted in three ways. The figure shows

how achieving a higher accuracy with too many terms can result in overfitting and
too little terms can result in underfitting.

Values = Values

Values e

.
o »

Time Time

Underfitted Good Fit/Robust Overfitted

Figure 2.1: An example of overfitting, Reprinted from medium.com, by A. Bhande,
2018, https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-
machine-learning-and-how-to-deal-with-it-6803a989c76

2.2, Regression models and noise reduction

A large number of regression methods provide a good fit to the data but are not well
suited for estimating the form of the governing equation. However, these regres-
sion models are still relevant as they can be used as a preprocessor. The reason for
this is twofold. Firstly, it is hypothesised that symbolic regressors become less prone
to overfitting with noisy data if the data is smoothened through one of these regres-
sion models. Secondly, as explained in appendix A.2, for higher-order differential
equations one still needs access to the derivatives. If these cannot be obtained
through experiments, these need to be numerically calculated. Since numerical
differentiation can be very prone to noise it also benefits from a smoothening pre-
processor. It is therefore proposed to first preprocess the data with one of these
regression models. This combination of smoothening and symbolic regression is
identified as a research gap.




8 2. Literature review

2.2.1. Common regression models
There exist several regression models. A few common ones are listed below:

¢ Ordinary least-squares regression
e LASSO regression

¢ Ridge regression

e Elastic-net regression

e Linear regression

e Polynomial regression

e Splines

Ordinary least-squares forms the basis for many of these models. LASSO regression,
ridge regression and elastic-net regression add a penalty term to the least-squares
problem. In lasso regression or L1 regularization, the objective is to solve equation
2.2 [10]. This penalises the sum of all absolute values of the weights. In ridge
regression or L2 regularization, the penalty term is the sum of the squares of the
weights times the hyperparameter A. Elastic-net regression is a combination of
both. Without the penalty terms least-squares regression often overfits a problem
by adding large and numerous weights. Lasso promotes more parsimonious mod-
els than ridge regression as more weights are driven to 0 and thus creates more
sparsity. LASSO regression is therefore used more for problems where it is unclear
if all parameters are important.

N p
. 2 =
min ; (yi — Bo —xTB)" } subject to ]Zl|3j| <t 2.2)

Linear regression and polynomial regression fit an equation to the data. Splines
combine linear and polynomial regression and apply it to bins. Splines can also be
rational. In splines, smoothness is often ensured by setting boundary conditions
between the bins. Natural splines are linear outside of the defined region. These
three methods are parametric. Linear and polynomial regression already assume
the data follows a specific equation and splines do not generalise well outside the
defined region. Non-parametric methods such as neural networks do not assume
a specific form of the equation.

2.2.2. Neural networks

Neural networks can be trained to accurately describe the dynamics of a system
given only the positional data [11]. Even when features for machine learning are
automatically synthesised, neural networks outperform expertly designed traditional
statistical models in terms of prediction [12]. The most common form of a neural
network is a feedforward neural network. This is often used for simple regression
problems. Besides feedforward neural networks there are other forms for regression
problems, such as:
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| Name | Definition
Gaussian K(r) = e~ €N’
Multiquadric k() = /1 + (er)?
N . 1
Inverse Multiquadric | k(r) = NorTend
C° Matérn k(r) = e~
C? Matérn k(r) =e " - (1 +er)
C* Matérn k(r) = e~ - (3 + 3er + (er)?)

Table 2.1: Some common radial basis functions [15].

o Convolutional neural networks
» Wavelet neural networks

» Bayesian neural networks

o Fuzzy neural networks

¢ Residual neural networks

Bayesian neural networks attempt to bring neural networks to a statistical frame-
work, which yields more parsimonious models and allows to quantify model un-
certainty. This is done by adding a distribution over the weights and/or the out-
put. Overfitting is avoided through appropriate priors, which strongly penalise en-
gineered features from deeper layers. This can be done because the architecture
of the network is not prespecified but instead optimises the number of layers, the
number of features within a layer and the activation functions [13].

Radial basis function networks (RBFN) are common black-box function operators.
Training is faster in radial basis function networks than multi-layer perceptrons
(MLP). Radial basis function networks are neural networks that use radial basis
functions (RBF) as activation functions. A common radial basis function is the Gaus-
sian:

_ ( ||vi—cl-||2>
k(v) =exp| ————— (2.3)

However, there exist many more radial basis functions, as shown in table 2.1, or
the more recently proposed computationally efficient radial basis function (SQ-RBF),
which speeds up training time by about 8% compared to a gaussian radial basis
function [14]:

xZ
1-= :xl=1
k(x) = % 1< x| <2 (2.4)
0 dx| =2




10 2. Literature review

Wavelet neural networks (WNN) are similar to RBFN but use different activation
functions. An example of a feedforward WNN is shown in figure 2.2. There are
many variants for the mother wavelet ¥ but equation 2.5, known as the Mexican
Hat Function, is shown to work satisfactorily in various applications [16]

¥ (ny) = (1-)e (25)

X, — Wy
(x)=g, (xsw,)=n!] +Zu4 . nu/[ ]+Zu{”-,\;
w i=1

l]/

w [ x,—w)
¥, (x)= ]_[y/[ w0 ) ]

“{:A]I

421 12] .
J A

. e
wi® | WY Wi =/ Y T w? w?
1 2 3 i m

w‘llwl = (“fi‘u\' “ﬂlnl) 1 ‘ ‘ ‘ l ‘

X % % T

N1 I BT R ) KU (9 ) )|
Wi ( Ve Wiew ) Woni *("1.-1,”»“1_1w,)

Figure 2.2: A feedforward wavelet neural network, Reprinted from "Wavelet neural
networks: A practical guide”, by A. K. Alexandridis et al., 2013, Elsevier, Volume 42,
Pages 1-27, Copyright 2013 Elsevier Ltd.

WNN performs better in approximating periodic functions and the sharp spike in a
piecewise function, whereas RBFN has a higher accuracy for exponential functions
[17].

2.2.3. Gaussian Processes

Unlike many regression models, Gaussian process regression does not attempt to
learn every parameter in a function. Instead it creates a distribution over a function
where it takes a Bayesian approach that is non-parametric. Many samples are taken
from a high-dimensional multivariate Gaussian distribution and then it finds the
correlation between the samples through kernel functions that determine a measure
of closeness. Subsequently, the average of the many samples is taken, which acts
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as the prediction line, with a confidence interval. An example of the result is shown
in Figure B.1. On the left, it can be seen that the confidence interval is 0 on training
points with no noise and quite large where there are no training points. As can
be seen on the right, increasing the number of training points result in a far more
accurate fitting. A Gaussian process is defined as follows:

fx) ~ GP(m(x), K(x,x')) (2.6)

An example of a kernel function is shown in equation B.2, where each element in
kernel matrix K is defined as shown.

SOV )2
k(xxj) = o}e=2E *i™% (2.7)
With Gaussian processes we are interested in the mean and the covariance, which,

for the given data y(zero-mean), are calculated at M unseen inputs as shown in
equations B.3 and B.4 [18].

-1
u,=Kyy Ky +0ily) 'y (2.8)

-1
z. = KM - KA/N (KN + U%IN) KNM (2.9)

In equation B.2, o and [ are hyperparameters, which change the predictive quality
and uncertainty. The best values for these hyperparameters, which are grouped in
6, are usually found through an optimisation process of the log marginal likelihood

[6]
1 _
logZ(6) = -5 [yT (Ky + 02ly) ! y+ Nlog(2m) +log|Ky +02ly|]  (2.10)

Gaussian Process Regression Gaussian Process Regression

»»»»» ground truth: fix) = xsin(3x) ~--- ground truth: fix) = xsin(3x)
15{ @ training points 15{ @ training points

X testing points X testing points

—— GPR prediction

B 95% confidence interval

—— GPR prediction
B 95% confidence interval

fix)
o

fix)
o

Figure 2.3: An example of Gaussian Processes, Reprinted from imechanica.org, by
M.A. Bessa, 2020, https://imechanica.org/node/23957
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2.2.4. Choice of smoothener

Gaussian processes are the preferred smoothener, as they are well understood,
intuitive and adaptive. Furthermore, its stochastic nature allows for uncertainty
quantification. Compared to the described common regression models, it provides
better accuracy. In comparison to neural networks, it is faster, more intuitive, less
of a black-box and often more accurate. However, it works best with less than
10,000 samples because Gaussian process prediction typically scales as 0 (n?). For
larger data sets storing the Gram matrix and solving the associated linear systems
are prohibitive on modern workstations [6]. This has been addressed with sparse
Gaussian processes [19-21]. A weighted updating scheme for sparse online Gaus-
sian Processes could be used to enable a trade-off during optimization between
overall predictive accuracy and a specific focus on better-performing regions of the
parameter space [22]. This is useful to address the issue that traditional sparse
Gaussian processes perform poorly if the sparse set selection does not preserve
resolution in promising areas, such as local optima, to preserve accuracy elsewhere
[22].
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2.3. Symbolic regression

Three ways of tackling symbolic regression are: SINDy [7, 23, 24], genetic pro-
gramming [8, 9] and AI Feynman [25]. These methods try to discover a symbolic
relationship from the provided data.

2.3.1. SINDy

The SINDy (Sparse Identification of Nonlinear Dynamics) algorithm was proposed
ax(t)

in ref. [7]. Here it is described how governing equations of the form — =1fx(®)

can be found from data. In the scripts from ref [7], the following structure is
followed:

1. Generate data

2. Compute derivative

3. Build a library of nonlinear time series

4. Sparse regression: sequential least-squares
5. Integrate using identified system

6. Visualise results

Here the library of nonlinear time series can be described as follows:

I | | |
oX)=[1 X XP XPs ... sinX) cos(X) - (2.11)
|

Where XPn denotes polynomial nonlinearities in the state x. For example, XP2
is:

xf(t)  x (B xp (&) - x5 () - xh(ty)
XP2 = x3 Etz) X1 (tz):xz (t2) x5 Etz) X5 gtz) (2.12)
x% (tm) X1 (tm) X2 (tm) x% (tm) xrzl (tm)

The equation that SINDy discovers is then represented in the form:

X = 0(X)E + nZ (2.13)

Where 1Z represents the noise and where = determines what terms are active in
0.

[1]

=0(X)"'X (2.14)
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The sparse regression is done through sequential least-squares. Here, the values
for = are found. If we rewrite equation 2.13 to 2.14 and ignore the noise, we can
use it as an initial guess for =. If only a constant and linear terms are added to the
library, this is the same as linear regression.

Due to the noise many small terms will remain. In order to obtain a more parsi-
monious model, a sparsification knob is introduced. This sparsification knob is a
threshold that will set all values of = below the threshold to zero. Equation 2.14
will then be repeated with the bigger terms until convergence is reached. As an
example, the schematic of the SINDy algorithm is shown on the Lorenz equations
in figure 2.4.

L True Lo System i g s, lzyzalayzzy® P L b 1 TRLL FTEY X3
[ 0] [ 0] [ 0]
o0 o [-9.9996] [27.9980] [ 0]
'y [ 9.9998] [-0.9997] [ 0]
L 'z r 0] I 0] [-2.6665]
' txx! [ 01 I 0] [ 0]
‘xy' L 01 [ 0] [ 1.0000]
= "xz' [ 0] [-0.9999] [ 0]
. ‘yy' L 0] [ 0] [ 0]
® ‘yz' L 01 [ LI 0]
yezzz' [ [ 0] I 0]
22222 [ 01 [ 01 0]
Sparse Coefficients of Dynamics

m

III. Identified System
& = O(x")&
O(x")é

Ty zz =6

y =

i

m gt ] 2.
]
o

Mt

IL Sparse Regression to Solve for Active Terms in the Dynamics

Figure 2.4: Schematic of the SINDy algorithm on the Lorenz equations, Reprinted
from "Discovering governing equations from data by sparse identification of non-
linear dynamical systems”, by S. L. Brunton et al., 2016, PNAS, Volume 113, Pages
3932-3937

The library of nonlinear time series is predefined. In the original library, only polyno-
mials and trigonometric polynomials were considered. This library can be extended
with more combinations but this greatly increases its size. The algorithm is also
less accurate if more combinations are added. For example, if we apply the SINDy
algorithm to a single pendulum, with a small amount of added noise, it can find the
correct form of the equation and the coefficients with a slight error.
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0,,(t=0)=3.1590

8 ‘ !
n _01

Mg 000 | 91 identified |
— 6 [
©
o
= Al

4 _j

3 L 1 L L

0 10 20 30 40 50

Figure 2.5: The SINDy algorithm correctly predicts the angle of a pendulum

The equation to discover is:

0=w (2.15)

@ = —9.81sin(0) — 0.5w (2.16)

SINDy discovered the following equation:

6 = 1.0000w (2.17)

@ = —9.8151sin() — 0.4983w (2.18)

However if we allow the algorithm to build a bigger library by adding combinations
between the polynomials and trigonometric function up to order 2 (e.g. w * sin(6)
or sin?(0)) it overfits and produces an incorrect result while retaining high accuracy.
Here it finds:
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0,(t=0)=3.1590

8 T T
_01
I I oo 91 identified

3 L L L 1
0 10 20 30 40 50

time (s)

Figure 2.6: The SINDy algorithm almost predicts the angle of a pendulum correctly.
The found equations are overfitted.

with:

6 = 102.5688 —44.87086 +0.9999w +4.098962 — 40.0247sin(6) — 13.4495c0s(8)
+ 4.715605sin(0) + 4.93290c0s(0) — 1.1973sin(8)cos(9) (2.19)

® = 89.4183 —39.02610 — 0.50100 + 3.559602 — 44.5361sin(0) — 11.4062c0s(8)
+ 4.10270sin(0) + 4.24430cos(0) — 1.0008sin(0)cos(w) (2.20)

We see that the algorithm is very susceptible to the library that is user-defined.
There is no library that is suited for all formulas, as that would mean building an
infinitely large library to ensure the needed combination is included in the library.
However, even if this were possible, the algorithm would most likely overfit the
problem, as we have seen with the single pendulum. The SINDy algorithm is there-
fore only recommended if the user has at least some knowledge of what kind of
equation it is trying to find. For example, the SINDy algorithm would work well if
you know that a polynomial describes the system. On the contrary, SINDy would

x2/3xsin(x)

be less convenient if you're trying to find an equation like , as you would

need to input the exact equation in the library.

2.3.2. Genetic programming
A more general algorithm is Genetic programming. Here many random functions
are composed and through an evolutionary algorithm, it proposes a function. As
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an example, the toolbox gplearn is described [26]. Representing the formula in
the form of a tree makes it easier to make sensible adaptations. In figure 2.7
such a representation is shown. At first, many random structures and values are
generated to create many formulas. These formulas compete against each other
in a tournament. In order to determine which formula performs best, its fitness
is evaluated. The fitness is evaluated through an error metric that needs to be
optimised, e.g., the mean absolute error.

./,, .\\.

( Add J

( Sub ) . 0.500
.‘\ et - /.‘I

y Y y \
| Mul I Mul
< / . H/'J
X0 | | X0 | | 3.000 | [ X1 |

Figure 2.7: Representation of formula: X,*X,—3.000X1+0.500 in genetic program-
ming. Here "add”, “sub” and ""mul” represent the operaters: addition, substraction
and multiplication. “X0” and "X1"” represent the variables of the equation.

Once the first generation of formulas is evaluated a new generation needs to be
formed. There are four ways to create new formulas for the new generation. The
first one is Crossover. Crossover mixes the formulas from the last generation by
taking the winner of a tournament and selecting a random subtree to be replaced
by a random subtree of a second tournament.
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Figure 2.8: Example of crossover. Crossover mixes the formulas from
the last generation by taking the winner of a tournament and selecting a
random subtree to be replaced by a random subtree of a second tour-
nament.  Reprinted from gplearn, by T. Stephens, 2019, retrieved from
https://gplearn.readthedocs.io/en/stable/intro.html

The second mutation method is subtree mutation. Subtree mutation mixes the for-
mulas from the last generation by taking the winner of a tournament and selecting
a random subtree to be replaced by a randomly generated subtree.

3 /f.\.
Cav) + >
C{g G5 G () (e

Figure 2.9: Example of subtree mutation.  Subtree mutation mixes the
formulas from the last generation by taking the winner of a tournament
and selecting a random subtree to be replaced by a randomly generated
subtree.  Reprinted from gplearn, by T. Stephens, 2019, retrieved from
https://gplearn.readthedocs.io/en/stable/intro.html

The third mutation method is hoist mutation. Hoist mutation fights bloat (a function
with a large length) by removing a part of a random subtree of the winner of a
tournament. This causes more parsimonious solutions. Bloat can also be controlled
by penalising larger programs while evaluating the fitness of a function.
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Figure 2.10: Example of hoist mutation. Hoist mutation fights bloat (a func-
tion with a large length) by removing a part of a random subtree of the winner
of a tournament. Reprinted from gplearn, by T. Stephens, 2019, retrieved from
https://gplearn.readthedocs.io/en/stable/intro.html

The fourth mutation, point mutation replaces a node of the winner of a tournament.
This node is replaced with a node of the same arity if it is an operator or another
constant if it is a constant.

2025,

Figure 2.11: Example of point mutation. Point mutation, replaces a node of the
winner of a tournament. Reprinted from gplearn, by T. Stephens, 2019, retrieved
from https://gplearn.readthedocs.io/en/stable/intro.html

The algorithm terminates once either a set number of generations have evolved or
once the stopping criteria are met.

2.3.3. Al Feynman

AI Feynman is a symbolic regression toolbox that relies on simplifying a dataset into
smaller sub-problems. These sub-problems can then be solved using simple tech-
niques, such as polynomial regression or a brute force search. The approach uses
neural networks to identify simplifying properties in a dataset. Examples of simpli-
fying properties are symmetry and separability. Symmetry checks if two variables
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can be replaced with a single variable, i.e. can function f(x, y) with two variables x
and y be replaced with another function g(z)? Here variable z is a combination of
variables x and y, e.g. z = y — x. Separability checks if a function can be described
as a sum or product of two other functions, with the variables separated, i.e. can
a function f(x,y) be replaced with the product or sum of two different functions

g(x) and h(x) like in g(x) * h(y) or g(x) + h(y)?

The whole process is shown in figure 2.12. Dimensional analysis uses the units
of the variables to simplify the equation by requiring the units of the two sides of
an equation to match. The dataset is then reduced to a smaller one with fewer
variables by replacing the variables with dimensionless ones. This step can also
be skipped if no units are available. Then a neural network is trained to test for
symmetry and separability. The neural network then simplifies the dataset through
symmetry, separability and by equating the variables. Afterwards transformations
are tried with the following functions: square root, raise to the power of 2, log,
exp, inverse, sin, cos, tan, arcsin, arccos, and arctan. After each step the algo-
rithm checks if the equation can be found with a polynomial fit or a brute force
search.

2.3.4. Eliminating the need for the derivatives

One limitation for current methods of symbolic regression is that for a differential
equation you would need the positions and its derivatives. By numerically calculat-
ing the derivatives, the error is increased so it would make sense to try to eliminate
the need for the derivatives. The need for the derivatives can be eliminated if neu-
ral networks are used to fit data [11]. Based on the same idea, it is described in
appendix A.1, how the need for the derivatives can be eliminated in symbolic re-
gression as well. The SINDy algorithm, however, would need structural adaptations
to do this. For genetic programming, this fits easier in the framework provided. In
genetic programming, numerous random functions are tried and it outputs a vector
of the derivatives. This vector is then compared to the derivatives acquired through
differentiation. Instead, one can integrate the outputted vector of the derivatives
and compare it to the input of the algorithm to see if the vector is satisfactory
instead.
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Figure 2.12: The discovery process of AI Feynman. Reprinted from "AI Feynman:
A physics-inspired method for symbolic regression”, by S.M. Udrescu et al., 2020,
Science Advances, Volume 6 number 16
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A difference is that in SINDy the derivatives are needed for the least-squares prob-
lem and it outputs a matrix E that describes the function you want to find. In order
to eliminate the need for a derivative SINDy needs to be changed. One can do this,
for example, by changing the output to derivatives and obtaining £ through ran-
domness. You then optimise the values for this matrix until you get values that are
satisfactory according to a least-squares algorithm. These derivatives could also be
integrated to compare to the positions in a least-squares problem.

2.3.5. Pareto frontier

In order to get a unique solution one could observe the Pareto frontier. An example
of a Pareto frontier is shown in figure D.5. Here, at the corners of the front ling,
you cannot improve the predictive ability or decrease the number of nodes. One
should then manually examine which formula is the correct one or use one of the
validation techniques for variant and invariant equations.
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Figure 2.13: Example of the Pareto frontier for a double pendulum, Reprinted from
"Distilling Free-Form Natural Laws from Experimental Data”, by M. Schmidt et al.,
2009, Science, Volume 324 Issue 5923, Pages 81-85, Copyright American Associa-
tion for the Advancement of Science

2.3.6. Validation of variant and invariant equations

In figures 2.14 and 2.15 methods are shown to validate variant and invariant equa-
tions respectively [8, 9]. Validation is important in case you are not able to identify
the correct equation out of multiple proposed ones. The idea described in figure
2.14 is to find test data where the predictions of the found equations disagree with
each other. New iterations of equations are then trained on the new test data. If
this equation agrees with one of the earlier equations it is validated.
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Figure 2.14: Validation for variant equations, Reprinted from "Automated reverse
engineering of nonlinear dynamical systems”, by J. Bongard et al., 2007, PNAS,
Volume 104, no. 24, Pages 9943-9948

Validation is tougher for invariant equation because infinitely many invariant equa-
tions can be found from data that are correct over the entire range of data. For
in2 2
example x; + 0.543 — x, or M 2 are both invariant but meaning-
less for physical systems. Furthermore there eX|st infinitely more solutions with a
very small error, such as W + 4.32. In order to tackle this, the procedure from
figure 2.15 is proposed [8]. Here the partial derivatives that are calculated from the
data are compared to the symbolic partial derivative of the candidate functions. If

these are satisfactory it is validated and otherwise, it loops to make new candidate
functions.
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Research question, objectives
and research methodology

3.1. Research objectives and questions

The amount of studies that pursue exact symbolic regression is still at an early stage.
Often times the aim is to pursue a good quality fit but the discovered equations have
no physical basis and are not necessarily the governing equation of the system.
The few studies that do pursue finding the equations with a physical basis have
promising results with synthetic data with little to no noise but often have insufficient
capabilities to handle experimental data. The aim of this research is to bridge the
gap of capabilities on clean data and noisy data.

There are many non-symbolic regression methods that provide a good fit even when
the data is noisy. One method that seems particularly suited for this, is Gaussian
process regression. Gaussian processes’ universal approximating and smoothening
capabilities make it an effective tool for noise-reduction in data. The combination
of symbolic regression and the smoothening abilities of Gaussian processes have
not been explored in research so far.

In this research it is therefore proposed to split the symbolic regression process
into a two-step process. The first part will focus on transforming the properties of
the data to the properties of the clean synthetic data that are used in the studies
for which current symbolic regression methods have promising results. The second
step is actually doing the symbolic regression.

In summary, the objective of this research is to explore the effectiveness of using
Gaussian processes as a noise-reduction tool, in combination with symbolic regres-
sion.

In order to reach this objective, the following main research questions are formu-

25
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lated:

* How can Gaussian processes be used to minimise the effects of noise in sym-
bolic regression?

e How can the derivatives of a dynamical system be robustly and numerically
calculated?

* How can machine learning tools be used to get consistent results in symbolic
regression?

3.2. Research methodology

In this research, we studied how machine learning techniques can be combined
with symbolic regression to overcome each other’s shortcomings. The idea is to
find governing equations, in situations where only samples of the dynamical be-
haviour of a system are available, without needing prior knowledge of the system.
In order to provide a general framework, a numerical package is developed to au-
tomatically create and preprocess noisy dynamical data in a consistent manner.
Here, two approaches are investigated. The first approach is for a case where both
the positions and its derivatives can be measured. The second approach is for a
case were only the positions can be measured. In order to get the most out of
the noise-reduction step, the effect of different kernels in Gaussian processes are
investigated. Furthermore, we studied how symbolic regressors can be optimised
to find consistent results, without being too dependent on an arbitrary choice of
hyperparameters. The dynamical test systems exhibit different behaviour, such as
being forced or autonomous and having different periodicity or chaos. One such
system, the duffing oscillator, can exhibit different periodicity and even chaos. We
investigate if for each case the same equation can be found. The test systems are
subjected to different levels of noise to get an indication of the maximum allowable
noise and sensitivity for different dynamical systems. We finally test if the obtained
relations still retain all dynamical properties.
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Abstract—The advent of machine learning and the availability
of big data brought a novel approach for researchers to discover
fundamental laws of motion. Computers allow to quickly find
underlying physical laws from experimental data, without having
in-depth knowledge of the system. Applications are widespread
among numerous fields such as physics, chemistry, engineering,
biology, climate science and finance. However, the problem is
that often experimental data are polluted with noise. This causes
symbolic regressors to capture the noise but not the underlying
physics. In this work, we leverage the noise reduction properties
of non-parametric machine learning, to improve symbolic regres-
sion methods. This combination allows for numerically robust
differentiation and significantly increases the noise tolerance
of common symbolic regressors. A new strategy is exemplified
by combining Gaussian processes and the symbolic regression
toolbox SINDy for finding governing equations from data. The
method balances the quality of the fit and parsimony to avoid
overfitting. The method is tested on well-known dynamical
systems with varying properties. These will include the Duffing
oscillator, as an example of a forced system, the Van der Pol
oscillator, as an example of an autonomous system and the Lorenz
attractor as an example of a chaotic system.

Index Terms—Symbolic regression, Gaussian process regres-
sion, numerically robust differentiation, Machine learning, opti-
mization, dynamical systems

I. INTRODUCTION

In the field of system identification, many advances have
been made to discover mathematical models from data
[1]. In recent years, the role of computers in finding these
models, instead of researchers based on their understanding of
physics, has been increasing. A powerful data-driven method
for creating interpretive models is symbolic regression.

Unfortunately, the field of symbolic regression is not very
extensive. An extra challenge is that not all of these studies
are interested in finding an equation with a physical basis
but rather just an equation that provides a good fit, for
example in forecasting the stock market [2]. Recently studies
have been carried out with the aim of finding the governing
equation of a system [3, 4, 5, 6, 7]. However, these studies
still provide limited usability as experimental data are often
polluted with noise and therefore much more challenging to
work with than the relatively clean synthetic data provided in
the studies. In order to make these algorithms more useful for
experimental data, it is important to make them more robust

Delft University of Technology
2628 CD Delft, The Netherlands
f.alijani @tudelft.nl

Delft University of Technology
2628 CD Delft, The Netherlands
M.A Bessa@tudelft.nl

to noise. Furthermore, these algorithms can discover multiple
equations depending on the hyperparameters. This makes it
hard to select a single equation as the governing one.

The advent of machine learning allows for new approaches.
These approaches rely on self-learning algorithms that can
accurately capture the dynamics of a system. These include:
Neural networks [12, 13], recurrent neural networks [14],
radial basis functions [8], the Nonlinear AutoRegressive
Moving Average with eXogenous input (NARMAX) model
[9, 10, 11], and Gaussian Processes [15, 16, 17, 18, 19].
These techniques can be tuned to be more robust to noise
than symbolic regression methods and can be used for
interpolation, finding patterns and extracting dynamical
properties. However, no physical understanding of the
system is gained and often these methods score poorly on
extrapolated data. Instead, it would be better to know the
governing equations of the system.

Consider the situation where a researcher wants to discover
what equations govern the Lorenz attractor. If the researcher
attempts to achieve this using common symbolic regressors,
he or she will find multiple equations depending on the
hyperparameters of the symbolic regressor. If the data are
relatively noise-free, the governing equation might be on that
list. In practice, the data obtained by the researcher contains
too much noise, so multiple equations are discovered that
seem to have a good fit for interpolation but fail to extrapolate
well. In these cases the governing equation was not found.
The researcher needs a more noise-robust algorithm that is
able to find the equation.

Therefore the objective of this research is to investigate if
symbolic regression can be made more robust to noise by
adding a noise reduction step before it is attempted to find
an equation. This is done by combining the accurate fitting
techniques of machine learning with the interpretability of
symbolic regression.

II. SYMBOLICAI

In this work, a new hybrid symbolic regression and machine
learning method is proposed, namely SymbolicAl. The idea is



to split the process in three steps. The first step is to use
machine learning techniques for noise reduction. In this work
Gaussian processes are used to exemplify the potential of
this method but other techniques, such as Artifical Neural
Network (ANN) regression or splines can be used. These
regression methods are able to predict new smoothened data
but provide no interpretability. Here a distinction is made
between a scenario where the derivatives are available and a
scenario where no derivatives are available. In the latter case,
Gaussian processes can be used to minimise the accumulation
of error in numerically differentiated data as well. In the
second step, we use the data predicted by the Gaussian process
for a symbolic regressor. Here the SINDy algorithm [3, 20] is
chosen to find equations from data. However, other symbolic
regressors, such as genetic programming [4, 5] or AI Feynman
[6], could be used for this step as well. Depending on the
hyperparameters of the SINDy algorithm, multiple equations
can be found. In the third step, a new algorithm is proposed
that balances equation length with the performance of the fit
on extrapolated data. This provides a consistent manner of
selecting an equation from multiple ones.

III. GAUSSIAN PROCESSES

Gaussian process regression is a strong regression tool
that can be used to transform data unsuitable for symbolic
regression into data with more preferable qualities. It is a
Bayesian approach for non-parametric regression, where many
samples are taken from a high-dimensional multivariate Gaus-
sian distribution. A Gaussian process is defined as follows:

f(x) ~ GP(m(x), K(x,x')) (1)

This equation describes that a function f(x) is sampled
on the basis of data x, from a Gaussian process distribution
GP with mean m(x) and covariance K (x,x’). Subsequently,
the average and variance of many samples are taken, which
acts as the prediction line, with a confidence interval. A more
exhaustive review of Gaussian processes can be found in
appendix B.

The way the covariance matrix is calculated is defined
through its kernel function. The performance of Gaussian
processes depends heavily on the choice of the kernel.
Finding the right kernel is a non-trivial task, as often the
adequacy of the choice relies on the experience of the
researcher. In appendix B.1.1 rules of thumb for constructing
a good fitting kernel are described, to aid in this process.
The search for the right kernel can also be automated. This
process is described in appendix B.1.2. This can be helpful
when one is not able to find a good fitting kernel through
intuition but has the downside of being computationally costly.

There are several advantages in using Gaussian processes
over other regression methods. In subsection III-A it is de-
scribed how a common problem in parametric regression is
tackled, namely that the form of the fit needs to be known.

Another problem with other regression methods, such as neural
networks, is that a large number of points is required to get a
good fit. In subsection III-B it is described how this problem
can be tackled with Gaussian processes and how Gaussian
processes still work if the data are not equally distributed
over time. In subsections III-C and III-D it is described how
Gaussian processes are effective even in the presence of noise
and how Gaussian processes provide a confidence interval
to show the reliability of the fit. This addresses two other
common problems in regression, namely that noise causes the
regression method to be prone to errors and that the user has
no indication of how reliable the fit is. Lastly, in subsection
III-E it is described how Gaussian processes provide a noise-
robust way of obtaining a signal’s derivative.

A. non-parametric regression

There are many ways to fit a line through points. Many
methods require the researcher to look at the data and assume
the form of the line. If the form is not known, one can switch
to non-parametric regression. This can take on many forms and
thus there is no need to guess the form. Gaussian processes
are a form of non-parametric regression.

B. Addressing irregularly sampled, scarcity and sparsity in
data

Gaussian processes can also be useful in combatting irregu-
larly sampled data. Often for symbolic regression, there needs
to be a regular time interval between the data points. Gaussian
processes do not need this and can thus be used to construct
a regression model. Once a model is established, the model
can be used to predict data points with a constant distance in
time. These data points can then in turn be used for symbolic
regression. A similar approach can be taken if there are too
little data points for a symbolic regressor to work. Gaussian
processes are known to be effective regressors, even if there
are relatively few data points. Once a model is constructed, it
is possible to generate more data points from the distribution
to use for the symbolic regressor.

C. Addressing noise and overfitting

Gaussian processes often smoothen a dataset as it returns
the mean of a distribution of functions. This makes it effective
in finding long-term trends, periodicity, variations of different
amplitudes and helps prevent overfitting. White noise has the
property of varying with a very small timescale and having no
accumulating trend. To detect this, one could equip a squared
exponential kernel with an infinitely small width to account for
these local variations. Through modularity of a kernel function,
it is possible to construct a kernel that accounts for all the
variations of a function and adding a white noise kernel (A
squared exponential with a width of near-zero) to account for
the noise. This way Gaussian processes can effectively reduce
the noise on a dataset. This approach becomes harder for
non-white noise, as there is another trend that emerges from
the noise as well. Often it becomes very tough to distinguish
between the trend from the noise and the trend from the signal.
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D. Providing uncertainty estimates

Due to the fact that Gaussian processes provide a distribu-
tion over a function, it is equivalent to generating many sample
functions from it. These sample functions could then be used
to calculate a mean function and the variance for a confidence
interval. These can be calculated using the following formulas:
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For given data y (zero-mean), the mean gtps and variance
3 are calculated at M unseen points. These are calculated
Ky Kuw
Ky Ky
the training points. The variance of the noise is given by
o,. The confidence interval gives an idea of how accurate
the prediction is and thus it provides the researcher with
uncertainty estimates.

with the kernel matrix K = , where N denote

E. Access to the derivatives

Once a function is smoothened its numerical differentiation
can be more robustly performed. If the chosen kernel is
differentiable, the derivative of a Gaussian process is another
Gaussian process. From this differentiated Gaussian process
a new mean and variance can be obtained. This process is
elaborated in appendix C. This can be very useful if one
cannot measure the derivatives directly. In many cases, one
only has access to noisy positions. In order to find a governing
differential equation, access to its derivatives needs to be avail-
able as well. However, with common numerical differentiators
the noise is greatly amplified. Gaussian processes provide a
smooth basis to differentiate from. The derivative can then
be found by either differentiating the Gaussian process or by
using another numerical differentiator with data predicted by
the Gaussian process.

IV. SYMBOLIC REGRESSION

In order to find symbolic relations between data, the SINDy
algorithm [20] is considered. The fundamentals of SINDy are

described in section 2.3.1. For this method, it is important
to have an idea of what terms make up the equation. A
library of these proposed terms can be constructed, which is,
together with the data, the input. The algorithm then finds
a combination of candidate functions that best describe the
data. It punishes larger equations in its scoring as a prevention
method for overfitting. However, the regularisation parameters
that control this are not optimised. With different values for
the hyperparameters, many different equations can be found.
In order to automatically find good hyperparameters the
following optimisation process is proposed in the SymbolicAl
toolbox:

The data are split into training, validation and test data,
as shown in figure 1. The training data are used to generate
equations with SINDy and the validation data are used to
choose an equation. Data between the training data and
validation data are skipped because the predictive abilities of
wrong equations usually become worse the further away from
the training data is extrapolated, which makes it easier to
single out the correct equation. The obtained equation is then
tested through rolling cross-validation, to give an estimate of
its accuracy.

Using the coefficient of determination and the length of the
equation, a Pareto frontier can be created. An example of a
Pareto frontier is shown in figure 3. In order to decide between
the equations, L1-regularization can be used. This is shown in
equation 4, where A is the regularisation parameter. It was
found that often only equations with the correct terms score
high. However, sometimes equations that add small extra terms
that fit the noise, score a little bit higher. In order to prevent
these extra near-zero terms, it is recommended to keep A = 0.1
and thus punish longer equations.

score = R? — X x length )
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Fig. 3: Pareto frontier, each dot represents an equation obtained
with SINDy. The simplicity is defined as m where
each operation and variable in an equation is a node.

V. METHOD

Experimental data may contain excessive amounts of noise
that make it unsuitable for direct symbolic regression. In

order to emulate this, data are generated from well known
examples, where the amount of noise is controlled. The data
are generated by integrating initial conditions according to
a known equation over a specified time span. This provides
clean data, which can be used as a reference versus noisy
data. To emulate experimental data, noise is added to the
clean data. In order to compare the noise removal abilities
of the algorithm, the amount of noise should be added in
a consistent manner. To do this, the clean data are first
standardised to be zero-mean and have a variance of 1. Then
noise is added that is also zero-mean and with a consistent
variance for all equations.

There are two scenarios for finding governing equations
from data that will be examined next. The first is for noisy
data, with access to the derivatives and in the second only
the positions are available.

Scenario 1: noisy data with access to the derivatives
To reduce the amount of noise, the aim is to predict new
smoothened data from a Gaussian process model. In many
cases, it is useful to standardise data before performing Gaus-
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Fig. 4: Process approach 2

sian process regression for the following reasons:

o In the regression process it is assumed that the output
is zero-mean. Standardising the data beforehand justifies
this assumption.

o Scaled data are more suitable for hyperparameter estima-
tion of the kernel function.

e as can be seen in equations 2 and 3, the kernel matrix
needs to be inverted. This can be an ill-conditioned matrix
if the data are not scaled properly.

The data are split into training and test data to obtain an
idea of how accurate the regression was. The predicted data
are then used to find an equation using the process described
in section IV. The whole process is shown in figure 2.

Scenario 2: noisy data without access to the derivatives
In this scenario, only the noisy positions are available. Now
the Gaussian process is used to fit only the standardised
positions. The velocities and accelerations are then obtained
by taking the derivative of the Gaussian process. The predicted
data can then be used to find an equation using the process
described in section IV. The whole process is shown in figure
4.

In order to provide a generalised framework, SymbolicAl
includes tools to do all the preprocessing and regression con-

sistently, including an automated kernel search. A description
of the package can be found in appendix B.2.

VI. TEST PROBLEMS

In order to test the algorithms, multiple well-studied
problems have been chosen from the field of nonlinear
dynamics. Three examples will be shown here and other
examples can be found in appendix E.2. The field of nonlinear
dynamics provides challenging equations for smootheners.
The data tends to oscillate quickly, making it hard to
distinguish from noise and hard to fit with a smooth line.

For each of the examples, data are generated from the
provided equations and initial conditions.

Van der Pol oscillator

The Van der Pol oscillator is an example of an autonomous
nonlinear dynamical system. The system converges into a
limit cycle and exhibits period 1 motion. The system can be
described by the following equation:

F—p(l—2®)i+2=0 (5)
The data are generated with p = 2.5, which is
dimensionless. The Van der Pol oscillator is a non-
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conservative oscillator with nonlinear damping.

Duffing oscillator
The Duffing oscillator is an example of a forced nonlinear
dynamical system that can exhibit very different dynamical
behaviour. The duffing equation is described by:
# 4 2ud + kx4 az® = F cos(wt) (6)
Here z is the displacement, x the damping coefficient,
k the spring constant, o the nonlinear stiffness, F the
amplitude of the periodic driving force and w the angular
frequency of the periodic driving force. The data are
generated with the following parameters: p = 0.25s7%,
« 1s2m=2, k = —1s72, w = lrads™! and initial
conditions z(0) 0.09m and #(0) Oms~!. Given
different values for the forcing parameter F', the equation
exhibits a period-doubling route to chaos. The system will
have a period 1 solution (one dominant frequency) for
F = 0.325ms™2 and below. For ' = 0.348ms~2 and
F = 0.349ms~? it has period 2 motion, for F' = 0.357 ms 2
period 4, for F' = 0.358 ms~2 period 8 and for ' = 0.4 ms™?2
chaotic oscillations. It is tested if the same equation can be
found for all these conditions.

Lorenz attractor
The Lorenz attractor is a system of nonlinear dynamical
equations that exhibit chaotic solutions for certain parameter
values and initial conditions. The equation is used to model
lasers [21], dynamos [22], electric circuits [23] and chemical
reactions [24]. The system can be described by the following
equations:

% —o(y - 2)
ﬁzw(ﬂ%)*y (@)
T =zy— Bz

Here the constants are o = 10, p = 28 and 3 = 8/3, which
are dimensionless.

VII. RESULTS

A. Examples with derivative information

In this scenario, noise is added to all data available.
This means that for the Van der Pol oscillator and Duffing
oscillator, noise is added to the positions, velocities and
accelerations. In the case of the Lorenz attractor, the noise is
added to positions and velocities. It was found that in every
function tested, doing Gaussian process regression beforehand
improves the obtained equation. If there was little noise, the
coefficients would be more accurate. If there was more noise,
it could still find the correct terms of the equation, whereas
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this would not be possible if no Gaussian process regression
was done beforehand. In figure 5 the result is shown for a Van
der Pol oscillator with 150% added noise. It can be seen that
Gaussian processes can greatly reduce the error due to noise.
Sindy and the hyperparameter optimisation then correctly
find the equation. For the Gaussian process regression 9000
points were used. Increasing the number of points used for
Gaussian process regression increases the noise reduction
capabilities but the computation also scales with O(n?), with
regard to the number of points.

The results for all test cases are shown in table I. Here
2000 points are used for the Gaussian process regression. With
the Gaussian process model, 60,000 points are then predicted
in the same time-interval. The result is compared to doing
symbolic regression without first regressing with Gaussian
processes. In order to compare the increased robustness to
noise, the same amount of points (60,000) are used for the
symbolic regression without Gaussian processes.

B. Examples without derivative information

In this scenario, a situation is simulated where no derivative
information is available. Here Gaussian process regression
is applied to the positional data. The derivatives are then
numerically calculated from the smoothened positions.

In order to compare the effectiveness of using the derivative
of a Gaussian process, the result is compared to common
other differentiators. The other differentiators have been
tested for two cases. In the first case, the methods work with
raw data from the noisy signal and in the second case, the
methods work with data predicted by a Gaussian process.
In case the kernel is not differentiable, we cannot take the
derivative of the Gaussian process but we can still get a

robust approximation of the derivative by using another
differentiation method with positional data predicted by the
Gaussian process. In figure 6, the approximations of the
second derivative of the Duffing oscillator with 10% added
noise, relative to the magnitude of the clean signal, are
compared. It can be seen that using data predicted by a
Gaussian process works best. If more noise is added, it can
be seen that taking the derivative of the Gaussian process
is the most robust, but using finite difference provides a
quick and robust alternative, given that data predicted by
a Gaussian process are used. Using data predicted from
Gaussian processes sharply improves the accuracy of all
methods except for the trend filtered one. Since the trend
filter also filters the data, extra information of the signal
might get lost, which explains the slightly lower score for the
trend filtered prediction from the Gaussian process data.

The results for all test cases are shown in table II. Here 2000
points are used for the Gaussian process regression. With the
Gaussian process model, 60,000 points are then predicted in
the same time-interval. The test cases are tested with 5% and
10% added noise, relative to the magnitude of the signal.

C. Discovering equations from chaos

In order to test the robustness to chaos, the Duffing oscillator
with a forcing F = 0.4ms™2 is evaluated at different time-
spans. This exposes the algorithm to completely different
behaviour that is governed by the same equation. It was found
that it is possible to find the same equation in each interval.
However, larger time-spans were required than for non-chaotic
data of the Duffing oscillator. It is postulated that this is
due to a larger pool of candidate functions. A downside of
a wider time-span is that with the same amount of points the
Gaussian process regression will perform worse. If more points



TABLE I: Results for all test problems with derivative information, with different amounts of noise. The result is compared
to an approach were no Gaussian processes regression(GPR) is used. Percentages are relative to the magnitude of the clean
signal. R%,_ . is the R? compared to the true system and RZ pp, is the R? compared to the smoothened system.
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are added, the computation time rises with O(n®), which
becomes costly. A more computationally efficient solution is
to train multiple Gaussian processes on different time-spans
and then combine the data before the symbolic regression
step. For example, if a timespan between 2000s and 3000s is
needed, one can train a Gaussian process between 2000s and
2100s, 2500s-2600s and 2900s-3000s, with 2000 datapoints
for each interval. The trained Gaussian processes can then
predict more datapoints within their respective intervals. This
can be inputted as three trajectories in the SINDy algorithm.
This way governing equations can be more robustly discovered
from chaotic systems.

D. Generality of the strategy

The strategy of first using a noise reduction method and
then a symbolic regressor is not limited to Gaussian process
regression and SINDy. In order to demonstrate the generality

of the strategy, the combination of splines and Al Feynman
was also tested. Spline regression is a regression method that,
like Gaussian processes, smoothen data. In a similar way,
splines can be used to reduce the noise in data by predicting
new smoothened data. The predicted data is then used as
input for AI Feynman, another symbolic regressor. The effect
of combining splines and AI Feynman is consistent with the
results for the combination of Gaussian processes and SINDy.
It was found that by adding a noise reduction step with splines,
equations could be found with higher amounts of added noise
than with AI Feynman alone.

VIII. DISCUSSION

A common critique of symbolic regressors is the
discrepancy between results on clean synthetic data and
experimental data. In this work, an effort has been made
to reduce this discrepancy by looking at the challenges in



TABLE II: Results for all test problems without derivative information, with different amounts of noise. Percentages are relative
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experimental data. With the proposed method, more noise can
be handled, the points do not need to be equally distributed,
and more points can be predicted if too few points are
measured. The proposed hyperparameter optimisation makes
it possible to choose an equation from many possible ones
that SINDy provides.

We have demonstrated that for numerically calculating
the derivatives, Gaussian processes significantly improve
the accuracy. For other numerical differentiators, the score
improves drastically if the data provided is predicted by a
Gaussian process. This way derivatives can be more robustly
calculated and this thus makes the overall process much more
robust to noise.

The discovered equations can be used to gain further
understanding of the researched system and can be used to
build descriptive models. In this work, the examples are taken
from the field of dynamics but the algorithm can be applied
to many more fields where models are needed, such as
ecology, finance, geoscience, engineering, chemistry, biology
and physics.

In case of failure, the algorithm often still leaves us with
useful information about the true equation. Even though the
form does not exactly match the form of the true equation any
more. It is often still similar, where either small extra terms
are added to overfit to the noise or the equation underfits by
leaving out one of the correct terms.

The algorithm works well for white noise but the approach
is still lacking for other types of noise. A problem with
coloured noise is that Gausian processes have a hard time

differentiating between trends in the signal and trends in the
noise. In practise the regressed signal will include the trend
from the noise, which causes the algorithm to find wrong
equations. Furthermore the algorithm is likely to underfit if
the required equation is long. This happens because longer
equations are punished due to regularisation. Another problem
with longer equations are the complex terms. The algorithm
will work much better if the researcher has an idea of what
terms make up the equation. If the search space is too large,
the results will become worse. If the equation has complex
terms, the researcher would need to know this beforehand.
Otherwise, the equation cannot be found.

Machine learning techniques provide novel approaches
towards research. Together with the availability of bigger
datasets, we believe these techniques will only become more
relevant in the years to come. Although these techniques
require less knowledge of the physics to find new equations,
we believe that these techniques, if used correctly, will only
facilitate researchers with grasping and tackling more complex
problems than they would without these techniques.
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Conclusions and
recommendations

The objective of this work is to make symbolic regression more noise-robust, to ro-
bustly numerically calculate the derivatives and to choose the best equation from a
list of equations provided by a symbolic regressor. To this end, different regressors
for noise reduction, symbolic regressors and machine learning methods have been
employed. This section reports the main conclusions of these methods. Further-
more, recommendations for further research are given.

5.1. Conclusions

The general strategy to first reduce the noise, makes symbolic regression more
robust to noise. Multiple methods have been tried with the aim of noise reduction.
It was concluded that Gaussian process regression was the most robust to high
amounts of added noise and that there are additional benefits, such as being able
to provide uncertainty bounds and work with irregularly sampled, scarce and sparse
data. Other methods such as neural networks and splines can also be used as noise-
reduction methods but were found to be less effective.

Gaussian processes increase the noise-robustness for numerically calculating the
derivatives. For other numerical differentiators, the accuracy also improves if the
data provided is predicted by a Gaussian process. This way it becomes possible to
discover differential equations, even if only positional data is available.

The strategy is less effective against coloured noise. The described regression
methods have trouble differentiating trends in the signal from trends in the noise.
This makes the noise-reduction step less beneficial than for white noise.

For the symbolic regression SINDy provided the most consistent results and has
a small noise tolerance on its own. As genetic programming relies on randomised
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candidate functions, it was less consistent. AI Feynman’s noise robustness is heavily
dependent on the function to be discovered, which makes it less useful for com-
parison. Overall SINDy has the highest noise tolerance but SINDy also needs more
understanding of the system than the other symbolic regressors, which have a truly
independent structure search.

It was concluded that by skipping data between the training and validation data,
together with L1-regularisation, it is possible to choose an equation from a list of
possible equations found by a symbolic regressor.

5.2. Recommendations

It is recommended to use SymbolicAI on experimental data. This way new equa-
tions can be discovered from data. In order to improve SymbolicAl the following
recommendations are presented:

Further research is needed to see if a neural network can be constructed that has
better noise-reduction properties than Gaussian processes. Bayesian neural net-
works allow for uncertainty estimation and averaging over samples could have a
similar smoothing effect as Gaussian processes. Since Neural networks can more
easily handle more datapoints than Gaussian processes it could reduce the noise
more than Gaussian processes for cases where large amounts of data are avail-
able. Special care has to be taken to prevent overfitting. For this, different types
of regularisation methods can be examined.

Neural networks and Gaussian processes can also be combined in deep Gaussian
processes. This is a neural network, where each neuron is a Gaussian process.
Limits in computing power restrict the size of deep Gaussian processes and make
it a slow process. However, deep Gaussian processes may provide better results
for noise reduction than Gaussian processes or Neural networks alone. Especially,
with the increasing strength of computers, this technique may become much more
relevant.

The uncertainty bounds provided by Gaussian processes can also be passed on
to the symbolic regressor to provide uncertainty estimates of the found equation.
This can be done by testing how many standard deviations away from the mean
the same equation can be discovered.

In SINDy, the library of candidate functions is user-defined. In order to make the
algorithm less dependent on the understanding of the systems, a search of the
candidate functions can be designed. One implementation could be to find the
terms using genetic programming. For example, if genetic programming finds terms
like 0.5x3, cos(x) and 2x?, all polynomial terms up to order 3 and trigonometric
terms can make up the SINDy library.

The approach for AI Feynman is to identify simplifying properties in a dataset and to
exploit these properties to create simplified sub-problems that can be solved using
simple techniques like a polynomial fit. A combination of AI Feynman’s simplifica-
tion process and stronger tools, such as SINDy, to solve the sub-problems might
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increase the strength of both methods and could allow the researcher to find more
complicated equation than with SINDy alone.

Coloured noise

To reduce coloured noise, one can create multiple trajectories on the same timespan
and use SymbolicAl to find an equation for each trajectory. These equations can
be compared and the shared terms of the equation are kept. It is postulated that
the extra non-shared terms describe the trend from the coloured noise. However,
this assumes modularity of terms that describe the trend from the signal and terms
that describe the trend from the noise. Therefore extra care should be taken to pre-
vent underfitting, where a smaller amount of terms are found that simultaneously
describe the noise and the signal and are thus not modular.

One could also use Gaussian processes for each trajectory and then take the aver-
age of all these Gaussian processes. This should reduce the extra trend from the
coloured noise. The equations can then be discovered with the averaged predicted
data.

Another possibility is to try to learn the trend of noise directly through Gaussian pro-
cess regression. Here a kernel can be constructed that learns the signal separately
from the noise, in a similar way as a white noise kernel learns white noise.

One can also look at the frequency domain and apply a filter. This, however, requires
knowledge of the equation and the researcher should be able to identify the signal
from a plot of the Fourier transform of the data.

Another possibility is to modulate the amplitude of the data in the frequency domain
to be more constant. One can do this by first finding the trend in the Fourier
transform of the data (e.g. 1/f) and then modulating the amplitude to a constant
trend. This way the noise will become closer to white noise and the signal becomes
scaled. The noise can then be reduced with Gaussian process regression and the
signal can be unscaled.

It is also possible to force a repeating pattern if the researcher knows there should
be a certain periodicity in the data. This way the extra trend caused by coloured
noise can be identified.







References

[1]1 I. J. LEONTARITIS and S. A. BILLINGS, Input-output paramet-
ric models for non-linear systems part i: deterministic  non-
linear systems, International Journal of Control 41, 303 (1985),
https://doi.org/10.1080/0020718508961129 .

[2] I. J. LEONTARITIS and S. A. BILLINGS, Input-output parametric models for
non-linear systems part ii: stochastic non-linear systems, International Journal
of Control 41, 329 (1985), https://doi.org/10.1080/0020718508961130 .

[3] S. Billings, Nonlinear system identification: Narmax methods in the time, fre-
quency, and spatio-temporal domains, Nonlinear System Identification: NAR-
MAX Methods in the Time, Frequency, and Spatio-Temporal Domains (2013),
10.1002/9781118535561.

[4] G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathe-
matics of Control, Signals and Systems 2, 303 (1989).

[5] G. E. Hinton and R. M. Neal, Bayesian learning for neural networks, (1995).

[6] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learn-
ing (Adaptive Computation and Machine Learning) (The MIT Press, 2005).

[7]1 S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing
equations from data by sparse identification of nonlinear dynamical sys-
tems, Proceedings of the National Academy of Sciences 113, 3932 (2016),
https://www.pnas.org/content/113/15/3932.full.pdf .

[8] M. Schmidt  and H. Lipson, Distilling  free-form  natural
laws  from  experimental data, Science 324, 81 (2009),
https://science.sciencemag.org/content/324/5923/81.full.pdf .

[9] J. Bongard and H. Lipson, Automated reverse engineering of nonlinear dy-
namical systems, Proceedings of the National Academy of Sciences 104, 9943
(2007), https://www.pnas.org/content/104/24/9943.full.pdf .

[10] R. Tibshirani, Regression shrinkage and selection via the lasso, JOURNAL OF
THE ROYAL STATISTICAL SOCIETY, SERIES B 58, 267 (1994).

[11] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Multistep neural net-
works for data-driven discovery of nonlinear dynamical systems, (2018),
arXiv:1801.01236 [math.DS] .

47


http://dx.doi.org/10.1080/0020718508961129
http://arxiv.org/abs/https://doi.org/10.1080/0020718508961129
http://dx.doi.org/10.1080/0020718508961130
http://dx.doi.org/10.1080/0020718508961130
http://arxiv.org/abs/https://doi.org/10.1080/0020718508961130
http://dx.doi.org/10.1002/9781118535561
http://dx.doi.org/10.1002/9781118535561
http://dx.doi.org/10.1002/9781118535561
http://dx.doi.org/10.1073/pnas.1517384113
http://arxiv.org/abs/https://www.pnas.org/content/113/15/3932.full.pdf
http://dx.doi.org/ 10.1126/science.1165893
http://arxiv.org/abs/https://science.sciencemag.org/content/324/5923/81.full.pdf
http://dx.doi.org/ 10.1073/pnas.0609476104
http://dx.doi.org/ 10.1073/pnas.0609476104
http://arxiv.org/abs/https://www.pnas.org/content/104/24/9943.full.pdf
http://arxiv.org/abs/1801.01236

48 References

[12] J. Kanter and K. Veeramachaneni, Deep feature synthesis: Towards automat-
ing data science endeavors, (2015) pp. 1-10.

[13] A. Hubin, G. Storvik, and F. Frommlet, Deep bayesian regression models.
(2018).

[14] A. Wuraola and N. Patel, Computationally efficient radial basis function, in Neu-
ral Information Processing, edited by L. Cheng, A. C. S. Leung, and S. Ozawa
(Springer International Publishing, Cham, 2018) pp. 103-112.

[15] M. Mongillo, Choosing basis functions and shape parameters for radial
basis function methods, SIAM Undergraduate Research Online 4 (2011),
10.1137/115010840.

[16] A. K. Alexandridis and A. D. Zapranis, Wavelet neural networks: A practical
guide, Neural Networks 42, 1 (2013).

[17] Z. Zainuddin and P. Ong, Function approximation using artificial neural net-
works, WSEAS Transactions on Mathematics 7 (2008).

[18] E. Gilboa, Y. Saatci, and J. P. Cunningham, Scaling multidimensional inference
for structured gaussian processes, IEEE Transactions on Pattern Analysis and
Machine Intelligence 37, 424—436 (2015).

[19] A. J. Smola and P. L. Bartlett, Sparse greedy gaussian process regression, in
Advances in Neural Information Processing Systems 13, edited by T. K. Leen,
T. G. Dietterich, and V. Tresp (MIT Press, 2001) pp. 619-625.

[20] C. K. I. Williams and M. Seeger, Using the nystrém method to speed up kernel
machines, in Advances in Neural Information Processing Systems 13, edited
by T. K. Leen, T. G. Dietterich, and V. Tresp (MIT Press, 2001) pp. 682—688.

[21] L. Csatd and M. Opper, Sparse on-line gaussian processes, Neural Computation
14, 641 (2002), https://doi.org/10.1162/089976602317250933 .

[22] M. Mclntire, D. Ratner, and S. Ermon, Sparse gaussian processes for bayesian
optimization, in UAI (2016).

[23]1 S. H. Rudy, S. L. Brunton, J. L. Proctor and J. N.
Kutz, Data-driven discovery  of  partial  differential  equa-
tions, Science  Advances 3 (2017), 10.1126/sciadv.1602614,
https://advances.sciencemag.org/content/3/4/e1602614.full.pdf .

[24] N. M. Mangan, S. L. Brunton, J. L. Proctor, and J. N. Kutz, Inferring biological
networks by sparse identification of nonlinear dynamics, IEEE Transactions on
Molecular, Biological and Multi-Scale Communications 2, 52-63 (2016).

[25] S.-M. Udrescu and M. Tegmark, Ai feynman: A physics-inspired method for
symbolic regression, Science Advances 6 (2020), 10.1126/sciadv.aay2631,
https://advances.sciencemag.org/content/6/16/eaay2631.full.pdf .


http://dx.doi.org/10.1137/11S010840
http://dx.doi.org/10.1137/11S010840
http://dx.doi.org/ https://doi.org/10.1016/j.neunet.2013.01.008
http://dx.doi.org/ 10.1109/tpami.2013.192
http://dx.doi.org/ 10.1109/tpami.2013.192
http://papers.nips.cc/paper/1880-sparse-greedy-gaussian-process-regression.pdf
http://papers.nips.cc/paper/1866-using-the-nystrom-method-to-speed-up-kernel-machines.pdf
http://dx.doi.org/10.1162/089976602317250933
http://dx.doi.org/10.1162/089976602317250933
http://arxiv.org/abs/https://doi.org/10.1162/089976602317250933
http://dx.doi.org/10.1126/sciadv.1602614
http://arxiv.org/abs/https://advances.sciencemag.org/content/3/4/e1602614.full.pdf
http://dx.doi.org/ 10.1109/tmbmc.2016.2633265
http://dx.doi.org/ 10.1109/tmbmc.2016.2633265
http://dx.doi.org/ 10.1126/sciadv.aay2631
http://arxiv.org/abs/https://advances.sciencemag.org/content/6/16/eaay2631.full.pdf

References 49

[26] T. Stephens, gplearn’s documentation, (2019).

[27] A. BelA, C. Pascual, D. MA, T. BelA, and C. Neipp, Exact solution for the
nonlinear pendulum, Revista Brasileira de Ensino de FAsica 29, 645 (2007).

[28] D. Duvenaud, Automatic model construction with gaussian processes, (2014),
10.17863/CAM.14087.

[29] A. McHutchon, Differentiating gaussian processes, (2013).



https://gplearn.readthedocs.io/en/stable/index.html
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1806-11172007000400024&nrm=iso
http://dx.doi.org/10.17863/CAM.14087
http://dx.doi.org/10.17863/CAM.14087




51

IV

appendices






A

Appendix literature review

53
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A.1. Appendix - The need for the derivatives

One limitation for current methods of symbolic regression is that for a differential
equation you would need the positions and its derivatives. By humerically calculat-
ing the derivatives, the error is increased so it would make sense to try to eliminate
the need for the derivatives. In [11] is a proposal to use neural networks to cre-
ate a fitting over data. In this paper, there is no need to know the second-order
derivatives in a second-order differential equation and no need to know the first-
order derivatives in a first-order differential equation. This is because use is made
of multi-step time-stepping schemes. If we try to implement this in symbolic re-
gression as well, an example algorithm can be created, like shown below. Please
note that this algorithm is specifically for a second order differential equation. This
algorithm is more robust, as numerical integration is more robust than numerical
differentiation.

1. Collect experimental data from experiments (e.g. pendulum time series) or
from other sources

2. Either collect the first derivative or numerically calculate the first derivative

3. Divide the data into training data and test data (this time the data does not
need to be labelled)

4, Estimate the formula
(a) Try a random formula

(b) Numerically integrate the found output with multi-step time-stepping
schemes

(c) Compare the result from the previous step to the positions in a cost
function (e.g. mean absolute error)

(d) If convergence criteria are met stop here, otherwise try again with a new
formula that is adapted from earlier iterations.

5. Use test data for validation and estimating the accuracy
6. Numerically integrate output to obtain new data

It is not possible to eliminate the need for the first-order derivatives in a second-
order differential equation. This is shown in Appendix A.2.

A.2, Appendix - Derivative investigation

Here, there will be looked at the possibility to eliminate the need for the first-
order derivatives in a second-order differential equation. In order to examine this,
the simple pendulum is taken as an example. The equation for the second-order
derivative A.1 is dependent on both the first-order derivative and the position.

6 = —g/Lsin(0) — ab (A.1)
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Since the exact solution requires both, the first-order derivative is part of the in-
put. It can therefore not be excluded from the algorithm. Instead, the idea
is to find an additional formula relating the first-order derivative to the position,
6 = £(6,t,6,,wy). This can be done analytically by considering the total energy in
the system. This results in equation A.2:

g - Jng(L —L+*cos(6y)) + mLzéo2 —2mg(L — Lcos(0)) — 2h(t)

" (A.2)
where h(t) is the energy loss due to friction:
1

h(t) = —mgh — Emv2 + E, (A.3)

In an effort to examine if the energy loss can be approximated the loss is plotted
as shown in figure A.1. From the figure, it can be concluded that the formula
needed would be very complicated. The assumption was made that trying to find
this formula with symbolic regression would induce more error than numerically
calculating the derivatives.
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Figure A.1: Energy loss due to friction in a simple pendulum

One could also try to find the solution of the differential equation and try to find
6(t, 0y, 6,) directly. In Beléndez et al., 2007 [27] this was done for a simple pen-
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dulum without friction. The equation found was:

6 6
K (sin2 70) — wpt; sin® ?0]} (A.4)

0
6(t) = 2arcsin {sin 7osn

with sn(u;m) as the Jacobi elliptic function and:

dz

1
Kom) = -L JA=22 1 =mz?)

(A.5)

Here again the complexity of the formulas would make it more advantageous to
numerically calculate the derivatives. It can, therefore, be concluded that it is more
advantageous to either measure or numerically calculate the first-order derivatives
in a general algorithm for finding a second-order differential equation.



Preprocessing

B.1l. Appendix - Gaussian processes regression

Unlike many regression models, Gaussian process regression does not attempt to
learn every parameter in a function. Instead it creates a distribution over a function
where it takes a Bayesian approach that is non-parametric. Using probabilistic
inference has many advantages over non-probabilistic methods. It is an effective
approach to prevent overfitting and the samples give an insight in the possible
structures in the data.

With Gaussian processes many samples are taken from a high-dimensional mul-
tivariate Gaussian distribution. The covariance of the distribution is conditioned
through the “closeness” of the provided datapoints. The closeness is determined
through kernel functions that take the distance between two points to determine
the correlation. Subsequently, the average of the many samples is taken, which
acts as the prediction line, with a confidence interval. An example of the result is
shown in Figure B.1. On the left, it can be seen that the confidence interval is 0
on training points with no noise and quite large where there are no training points.
As can be seen on the right, increasing the number of training points result in a far
more accurate fitting. A Gaussian process is defined as follows:

f) ~ GPm(x), K(x,x)) (B.1)

An example of a kernel function is shown in equation B.2, where each element in
kernel matrix K is defined as shown.

L (xi—x7)?
k(xx;) = ofe=2 Y (B.2)

Since Gaussian process processes provide a distribution over functions we can take
a function as a sample. in figure B.2 an example can be seen where we draw 10
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2 Gaussian Process Regression 2 Gaussian Process Regression
----- ground truth: fix) = xsin(3x) +=+=+ ground truth: f(x) = xsin(3x)
15 @ training points 15 @ training points
X testing points X testing points
10— GPR prediction 0] — GPR prediction

W 95% confidence interval mm 95% confidence interval

Figure B.1: An example of Gaussian Processes, Reprinted from imechanica.org, by
M.A. Bessa, 2020, https://imechanica.org/node/23957

samples from the distribution. In practice, the mean and the covariance of these
samples are more interesting. The mean will provide the predicted values and the
covariance gives an uncertainty estimate. For given data y (zero-mean), the mean
and covariance are calculated at M unseen inputs as shown in equations B.3 and
B.4 [18].

31 —— Mean )
X Data
Confidence

-2 0 2 4 6 8 10 12

Figure B.2: Samples drawn from a Gaussian Process, as well as the confidence
interval and mean
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-1
K, = Kyn (KN + GrleN) y (B.3)

-1
2. = KM - KA/N (KN + O'TZIIN) KNM (B.4)

In equation B.2, o and [ are hyperparameters, which change the predictive quality
and uncertainty. The best values for these hyperparameters, which are grouped in
0, are usually found through an optimisation process of the log marginal likelihood
B.5 [6]. This has to be solved iteratively and is often done with Limited-memory
BFGS (L-BFGS), a quasi newton optimization method. This process sometimes
needs to be restarted with different starting points to find the global minimum,
as sometimes it can get stuck in local minimum. An example with two local minima
is shown in figure B.3.

1 _
logZ(8) = -3 [yT (Ky + 021y) 1y + Nlog(2m) +log|Ky + oly]] (B.5)
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Figure B.3: Hyperparameters of kernel plotted against log marginal likelihood
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B.1.1. Kernel engineering

The use of the correct kernel is central in Gaussian process regression. With the
wrong kernel, the fit will be wrong as well. There exists no kernel that is correct
for all problems. Through the use of kernel functions different datasets can be
fitted in a different way. Kernel engineering is often seen as very intuitive and the
effectiveness dependent on the experience of the engineer. However, there are
certain rules of thumb. In figure B.4 different kernels are shown. In the graphs
x represents the difference between two points and on the y-axis the correspond-
ing value for the element of the covariance matrix K(x,x')) is shown. The RBF
(Squared-exponential) kernel is shown in equation B.2. It is important to note that
many more kernels exist but these are very common.
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Figure B.4: Different kernel functions
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In figure B.5 the use cases of four kernels are shown. These kernels are often
used and provide good intuition. These kernels can also be combined through
either multiplication or summation to achieve different effects, as shown in figure
B.6.

ANSS s

Squared- local Periodic repeating
exp (SE) variation (PER) structure

| ML

Linear linear Rational- multi-scale
(LIN) functions quadratic(RQ) variation

Figure B.5: Use case of different kernels, Reprinted from Duvenaud, David. (2014).
Automatic model construction with Gaussian processes.
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Figure B.6: Use case of combination of different kernels, Reprinted from Duvenaud,
David. (2014). Automatic model construction with Gaussian processes.

As can be seen on the bottom row of image B.6, it is also possible to create com-
binations for higher dimensional regression. Through multiplication it is possible to
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get similar properties in higher dimensions. This can be seen in figure B.7. It also
possible to build an appropriate kernel for higher dimensional regression though
summation, the effect of this is shown in figure B.8.
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SE, (21, 7)) SEa (w2, 7) SE1 X SEy GP(0,SE, x SEy)

Figure B.7: Multiplication of kernels to achieve a kernel that is dependant on both
dimensions, Reprinted from Duvenaud, David. (2014). Automatic model construc-
tion with Gaussian processes.
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Figure B.8: Summation of kernels to achieve a kernel that is dependant on both di-
mensions, Reprinted from Duvenaud, David. (2014). Automatic model construction
with Gaussian processes.

Many more combinations are possible and better combinations for a specific prob-
lem can be found through intuition or an automated kernel search, although an
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automated kernel search has the downside of being computationally very costly.
There are many more topics to explore in kernel engineering, such as changepoint
kernels and expressing symmetries and invariances. For this and more information
on kernel engineering one is encouraged to read ref [28].

B.1.2. Automated kernel search

The search for the right kernel can also be automated. This is helpful for the cases
where one is not sure which kernel best fits the problem. In this case, a list of
base kernels can be constructed from which an algorithm can find the best base
kernel and construct, through multiplication and summation, an optimized kernel.
The first step is to find the best fitting base kernel. The next step is to see if there
exists a multiplication or summation with one of the base kernels that improve the
fit. Then the algorithm checks if the first element can be replaced. By using the
replacement step, the expression is allowed to evolve. This prevents the expression
from being stuck in locally optimal solutions. For example, in a case where in the
first iteration the data was fitted with an RBF kernel and after the 2nd iteration, a
periodic kernel was added to explain some periodic oscillations. The found kernel
is now as follows:

K = RBF + PER (B.6)

It might turn out that if the periodic kernel explains the oscillations in your data,
the global trend could be better explained with a linear kernel rather than a RBF
kernel. With the replacement step, the found kernel is now:

K = LIN + PER (B.7)

This process then continues until no further improvements are found.

B.2. Python Package

In order to provide a generalized framework a package was created, which contains
various useful utilities. The aim is to generate noisy data from a variety of functions
and denoise it using either Gaussian processes or Neural networks. The regression
types will be evaluated and the best data can be chosen. The imported package
contains two classes: In the cell below we import a file with two custom classes
and one custom function: Here’s a summary of the tools provided:

takeSamples class:
What: Returns an instance with data based on your provided function
Methods:

1. __Init _(func,name,dims,order,timeParams=[0,0.01,1],params=None,
feature_names=None, initialConditions=None,fromtlszero=False):
sets parameters, calls sample method or sample2 method depending on the
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10.

input func. func should be either a python function or list with values. If no
initialConditions are given and funcis a python function, they will be random-
ized between 0 and 1.

. sample(self): A function that provides values for the position, velocity and

acceleration vs time, given the function func. Values are obtained through
integration. If no function parameters are given, it will use the default pa-
rameters from the provided function func. If no time parameters are given, it
will integrate from 0 to 1 with time steps of 0.01.

. sample2(self): A function sets values for the position, velocity and accelera-

tion vs time, given the values provided in func.

. dataframe(self): A function that puts the values in a pandas dataframe.

. addNoise(self,noise,X_data=None,y_data=None,X_train=None,y_train=None,

X_test=None,y_test=None,type_noise="white,decay=20:

A function that adds noise to the values. If the noise is white values from a
normal distribution with mean 0 and variance noise will be added to the data.
If the noise is non-white the noise will added will be drawn from a distribution
with an exponential decay decay in the fourier domain.

. plotFunction(self,t=None,X=None,name=None, plot3d=True,savelmages=False):

A plot function of the values. Produces the following plots:
(a) if plot3d=True: A 3d plot where useful. For example, a phase space plot
(b) Positions vs time
(c) if order=1: Velocities vs time

(d) if order=2: Accelerations vs time Saves the images in a folder images if
savelmages=True.

. split(self testset_ratio=0.25,seed=1987): A function that splits the data into

a training and test set.

. scaling(self): A function that scales the data to be 0 mean and with a variance

of 1.

. inverse_scaling(self,pred=None,regressed=True,plotting=True,

X=True,y=True,savelmages=False): A function that unscales the data based
on the scaling from the scaling method. With pred it is possible to unscale
predicted data pred.

GPregression(self,t=None,x=None,k=None,inp_dim=1,restarts=4,var=1,
name="Insert variable name here if x is not a string”, printing=True,
singleRegression=False,savelmages=False,plotting=True):

A function that performs gaussian process regression. The kernel can be
specified with k. The default kernel is an RBF kernel.
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11.

12.

NNregression(self,grid_search=0,X_train=None,y_train=None,X_test=None,
y_test=None,input_dimensions=1,neurons1=10,neurons2=10, neurons3=10,
neurons4=10, activation="relu,optimizer="adam,printing=True):

A function that performs neural network regression. Performs a gridsearch if
grid_search=1.

score(self,y_test=None,y_test_pred=None,printing=True): A function that cal-
culates the R2-score, mean absolute error and mean square error.

Automate function

Since the process up until regression is similar for different functions the process
can be automated with this function. The automate function generates data on
the basis of func and puts it in a pandas dataframe. Based on the arguments, the
data will be also be scaled to be 0 mean and have a variance of 1, splitted into
training and test data, plotted and saved to a folder images and have noise added

to it.

Parameters:

1.

i > W N

© © N D

10.
11.
12.

13.

func: Function you want to analyse. Accepts either a list of lists, where each
nested list are values of a function parameter or a python function, where
after the values will be generated through integration.

dims: Number of dimensions, should be an integer.
order: Order of differential equation, 0 if it isn't a differential equation.
plotname=systems: Name you want to appear on plots, should be a string.

timeParams=[0,0.1,10]: Time parameters you want your data to be between,
list of start time, time step size and end time in that order

testset_ratio=0.25: Ratio of data that will be used for the test data
noise=None = Amount of noise to add to the data
plotting=False: Whether you want to plot the data

params=None: In case you don't want to use the default parameters of func-
tion func

savelmages=False: saves the images in a folder named images
feature_names=None: names of variables for plots

type_noise="white”. The type of noise to be added. If the noise is white values
from a normal distribution with mean 0 and variance noise will be added to
the data. If the noise is non-white the noise will added will be drawn from a
distribution with an exponential decay decay in the fourier domain.

decay=20: Controls the decay of non white noise in the fourier domain
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14. initialConditions=None: The initial conditions for integration. If no initial-
Conditions are given and func is a python function, they will be randomized
between 0 and 1.

15. fromtlsZero=False: Controls wether integration starts from time = 0

16. scaling=True: Controls if the data is scaled to be 0 mean with a variance of 1
before regression

17. splitting=True: Controls if the data is splitted in train and test data
FindKern class:

What: greedy search for the best kernel combination on the basis of spec-
ified base kernels

Relevant methods:
1. __init__(self, k_base, X, Y): Initializes parameters

2. initial_model(self, noise = 1e-6, noise_fixed = False, printing = True): Finds
the best kernel of the specified base kernels

3. greedy_brute_opt(self, iterations=3, plotting=True, printing_basic=True,
Xnew=None,x=None, y=None, with_replacement=False, scatter_on=True):
Performs a greedy search for the best combination of kernels.

Other methods in the FindKern class are called on internally in the the relevant
methods and should not called on externally.

Relevant arguments:

1. k_base: A list of GPy kernels. These will be building blocks for the to be found
kernel.

2. X: Variable for which to predict values, often time will be used here.
3. Y: Variables to predict.

4. Iterations: Determines the amount of restarts for the optimization of the
hyperparameters.

5. with_replacement: Determines whether the greedy search will only extend
the found kernel or if it should also check if found terms can be replaced with
other kernels from the kernel base.

6. noise: The variance of the noise you think is present

7. noise_fixed: If you are certain the variance of the noise is a certain value it
can fixed in the search.

8. printing: Prints intermediate results

9. plotting: Plots the prediction with the found kernel







Numerically robust
differentiation

C.1. Differentiating Gaussian processes

It can be challenging to numerically differentiate noisy data. If no extra precautions
are taken, the noise can get greatly amplified. The equation for the derivative is
shown in equation C.1. Suppose a discretised version of this equation, as shown
in equation C.2, is used, where At is the time-step. In a noisy situation, the signal
f(x) can be decomposed to the superposition of the clean signal g(x) and the noise
n(x). This is shown in figure C.1. The equation for the discrete differentiation then
becomes equation C.3. It can be seen in figure C.1 that the noise has very sharp
transitions compared to the clean signal. If the noisy signal is then differentiated,
the error due to noise is then greatly amplified. This effect is shown in equation
C.2.

£(x) = }E}% w}z‘f@‘) (C.1)
F00 = f(x+AAtz—f(x) (C2)
F10x) = g&+ A —g(x)  nx+AH —n() (C3)

At At
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Figure C.1: Superposition of noisy signal
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Figure C.2: Comparison of taking the derivative of noisy and clean data with finite
difference

Instead, it is proposed use Gaussian processes to first fit the noisy signal, with the
aim to reduce the error of the noise and to create a smoother signal. Then the
derivative of the Gaussian process is taken to obtain the derivatives of the signal.
A review of Gaussian processes and kernels is given in appendix B. To take the
derivative of the a Gaussian process, A Gaussian process is first defined as:

fx) ~ GP(m(x), K(x,x")) (C4)

Where we can use equations C.5 and C.6 to predict the positions and the uncer-
tainty. Here M denotes test points and N denotes training points.

-1
U, = Kyn (KN + UTZIIN) y (C.5)

-1
Y. = KM - KA/N (KN + O-TZLIN) KNM (C.6)
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If a Gaussian process is differentiable, the derivative of a Gaussian process is a
also a Gaussian process [29]. The derivative of a Gaussian process is then defined
as:

f'x) ~ g7 (—m(X) K(X X)) (C7)

The mean and covariance of the differentiated Gaussian process are given by
equations C.8 and C.9 respectively [29]. Here (© represents an element-wise
product, u and X are the mean and covariance of the original Gaussian process,
a=KX,X) ly, X, =[x, — xq, ., X, — xN]T and A, Cyx, Cyii @and Cypoi are depen-
dent on the kernel.

af. - N
E [a,]: ] = 5A + 17+ AT (@ O k(X1 A+ E)) (C.8)
Cr [A72XOT (k (X, x.) © @), A7 X (k (X, 2.) © @)
) v ) ~() 0) ) (C9)
= A7A7'a] (x(l)xU)T O G — XD, — xOOTc) 4 ¢ ,{xk) o
For a squared exponential kernel, its derivative is given by:
0k (x1,x5) 3
# = A1 (g —x5) k (x4, %3) (C.10)

where A is given by equation C.11 and [; are the characteristic length-scales for
each dimension.

2 0 0
A=| o~ (C.11)
0 0 1

The kernel moments needed to calculate the covariance of the derivative are then
given by equations C.12 [29]

-1/2

Cire (W, x1,%2, %) = [2EA7T + 1| 7 k (01/2,22/2, 0/ 2Dk ((x1 + x3) /2,1, A/2 + £)

- |EA'1 + I|_1 kQuxy, A+ 2k (1, x5, A+ X)
(C.12)

X1 Xz

2 2 Z)K(M!Z (xl +x2)/2 A/Z) —K([,l,z xl!A)k(,u:be A)

(C.13)

kak (:u!xlle'Z) = k<
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X1 X5 A

- -1
kaxk ()ulxll XZIZ) =k (7! 7! E) k (ﬂ; Z, (xl + xZ) /2' A/Z) [(ZZA_l + I)

(BA7T Gy +25) + 1) (BA7Y oy +x) + 1) (2ZA7T+1) 7 + 5 + A/2)"1A/2

—k (W, x, 2,0 k (U, x5, Z, A)T
(C.14)

The derivative of the Gaussian process can be used as a numerically robust differ-
entiator.



Implementation of
data-driven techniques

D.1. Data-driven validation

If one wants to use symbolic regression tools in an experimental setting, it is still
challenging to find out if the found equation is actually the correct one. It becomes
even more challenging if multiple equations are found and a single equation has to
be chosen. Since the correct equation is not known, one has to revert to data-driven
techniques for validation. Standard techniques for measuring the effectiveness of
a fit include calculating the coefficient of determination (R?) on unseen data. The
coefficient of determination is a standardised measure that compares what percent-
age of the predicted data’s variation can be explained by the variation of the true
data, given the same input. This provides a measure of the quality of a fit. The
question left is to determine what part of the data should be reserved for testing
purposes. For a comparison between cross-validation and rolling cross-validation,
the following scenario is considered, where two Gaussian processes follow identical
training procedures. In figure D.1 an example is shown of time series data and a fit
subjected to cross-validation. It can be seen that the error is low because the mean
and the true signal are very close on the part where there is no data. Howeuver,
in the case of rolling cross-validation seen in D.2, it can be seen that true signal
deviated significantly from the mean of the fit. This effect occurs in time-series
data because information from the future leaks to the test data. In the case of
comparing equations, these large deviations in score become very useful. Govern-
ing equations will generalise better than over-fitting equations that only produce
good scores within the training time interval. Therefore rolling cross validation was
chosen.
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Figure D.1: Gaussian process subjected to cross-validation show future leakage
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Figure D.2: Gaussian process subjected to rolling cross-validation
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The most basic implementation of rolling cross-validation is shown in figure D.3.
However, this is still not sufficient because at this point, the solution is non-unigue.
The SINDy algorithm doesn’t output a single equation but multiple equations de-
pending on the regularisation parameters. The SINDy algorithm proposes to write
an equation in the form of equation D.1. In this equation @ is library of candidate
functions and £ are the parameters of these candidate functions. The noise is mod-
elled as n. In the SINDy algorithm the equation is then rewritten in a sequentially
thresholded least squares formulation with L2-regularisation. This is shown in equa-
tion D.2. Here «a is the first regularisation parameter. This minimisation process is
repeated with all the terms that have a parameter value above a threshold 7. This
is the second regularisation parameter. On the basis of these two regularisation
parameters multiple equations can be found on the same training set. Therefore a
more complex scheme is needed to single out an equation and test its score with
rolling cross-validation.

X=0X)E+n (D.1)
agg_mir]l |2 -0~ X]|| + allE|? (D.2)

. Training
data
. Test data

O Skipped
\ dala J ﬁ

Figure D.3: Rolling cross-validation

lterations

In figure D.4 a more extensive method is proposed. Here validation data is added
to single out the governing equation, as it tunes the regularization parameters.
Data is skipped between the training and validation data because it was found
that for symbolic regression is takes a bit longer before the found equations start
diverging, as compared to other regression types. With the validation data a Pareto
frontier can be created. An example of a Pareto frontier is shown in figure D.5.
At the corners of the front line, one cannot improve the predictive ability without
sacrificing the simplicity (1/number of nodes). In order to choose between the
equations on the Pareto frontier L1-regularization is used. This is done according
to equation D.3. Here R? is the coefficient of determination of the equation on
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validation data, 1 is the regularisation parameter and length is the length of the
equation. Depending on the value of A any equation on the Pareto frontier can be
found. As a heuristic, it is found that 1 = 0.01 yields good results. This value yiels
good results because in general the equation with the highest R? is the closest to
the true equation. However, sometimes small extra terms are added that fit the
noise and thus slightly improves the R%. A regularisation parameter of 1 = 0.01
is often just enough to prevent these small extra terms from being added. Once
an equation is chosen, the average of the test scores can be taken to provide an
uncertainty estimate.

score = R?> — 1 x length (D.3)
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Figure D.4: Proposed training procedure

& = 0.927z — 0.509z + 0.180%% — 0.8182> — 0.168z4> + 0.331 cos(t), R* = 0.9991
& = 0.944x — 0.5122 — 0.8292> 4 0.333 cos(t), R? = 0.9988

1.0~
& = 0.893z — 0.795¢°, R? = 0.912
0.8
i = —0.253z%, R? = 0.636
N 0.6
e
0.4
0.2
00 ,—:'I'BZ—O,RZZO

025 050 075 1.00
Simplicity (1/number of nodes)

Figure D.5: Example of the Pareto frontier for a Duffing oscillator



Additional results

E.1l. Found equations with low R? scores

In case of failure the algorithm often still leaves us with useful information about
the true equation. In addition to the Van der Pol oscillator, a similar effect also
occurs for the Lorenz attractor and all the cases of the Duffing oscillator.

Consider the Lorenz attractor shown in figure E.1. The clean version is shown in
figure E.2 and is described by equation E.1. The version in figure E.1 is scaled
to have a variance of 1 and has noise with a variance of 1 added to it. After the
Gaussian process regression, the mean absolute error is reduced by 78% compared
to the clean version. The result is shown in figure E.3.

The Gaussian process model is then used to predict 60.000 point in the same times-
pan, which is used as an input for SINDy. The combination of SINDy and the
described algorithm in section D.1, finds equations E.2 and figure E.4.

In an experimental setting, it would be hard to know whether the equation is correct,
even though the form of the equation is the same. The R? is 0.86, which could also
occur with an equation with the wrong terms. In this case we know the equation
contains the correct terms because we can compare it to the true equation. In an
experimental setting this is not possible but it shows that even though the R? is
quite a bit off from 1, it can still contain the correct terms.

x = 10y —10x
y = 28x—y—xz (E.1)
Z = xy—2.667z
x = 7.350y—7.095x
y = 20451x+1.121y — 0.829xz (E.2)
X = —49441+ 0.896xy — 2.115z
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Lorenz attractor derivatives (1 noise)
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Figure E.1: Scaled Lorenz attractor with added noise
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Figure E.2: Clean Lorenz attractor
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Figure E.3: Lorenz attractor after Gaussian process regression
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Figure E.4: Lorenz attractor after SINDy

E.2. Additional systems

The algorithm can be extended to many more systems. In this section a coupled
spring-mass system, the Lotka-Volterra model and a double pendulum are taken as
additional examples.

E.2.1. Coupled spring-mass system

Here a coupled spring mass system is evaluated where two masses and two springs
are connected in series as shown in figure E.5. The data provided for the algorithm
has added noise with the same variance as the signal. The positions of the masses
are shown in figure E.6, where x; and y; describe the position of the first mass,and
x, and y, describe the position of the second mass. The clean version of the system
can be described by equations E.3 and is shown in figure E.7. The system after
Gaussian process regression is shown in figure E.8. The found equations are shown
in equations E.4 and the R? score is 0.95. Due to the simplicity of the equations
and the restricted search, the algorithm can find the correct equations in situations
with a high amount of noise.

L1
| Z2
|
Figure E.5: Coupled spring-mass  system, reprinted from
scipy documentation,2018, retrieved from https://scipy-

cookbook.readthedocs.io/items/CoupledSpringMassSystem.html
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Figure E.6: Noisy coupled spring-mass system
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Figure E.7: Clean coupled spring-mass system
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Figure E.8: Coupled spring-mass system after Gaussian process regression
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E.2.2. Double pendulum
The equations used to model the outer part of a double pendulum are shown in
equations E.5. The algorithm was not able to find these equations because the

search was deemed trivial if terms like % are added to the SINDy library

as a whole. This would require too much knowledge of what the equation should
look like beforehand. It was found that the Gaussian process step still works well.
The system is shown in figure E.9, where thetal represents the angle of the first
part of the pendulum and theta2 represents the angle of the second part of the
pendulum. The clean version is shown in figure E.10. The system after Gaussian
process regression is shown in figure E.11. The Gaussian process is able to reduce
the mean absolute error compared to the clean system by 92% and it can be seen
that the system after regression is very similar to the clean system.

.2 . _ .o . _ . sin(x—2y))
0.5x%sin(2x — 2y) + 2.0y*sin(x — y) + 24.525sin(x) + 4.905—(605(9.5_31))2 2

—1.0i2sin(x — y) — 0.5y2sin(2x — 2y) + 2.4525sin(y) — 7.3575% -

(E.5)
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Figure E.9: Noisy movement of the outer part of a double pendulum
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Double pendulum
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Figure E.10: Clean movement of the outer part of a double pendulum

Double pendulum with 1 noise, unscaled after regression

theta2

Figure E.11: Movement of the outer part of a double pendulum after Gaussian
process regression






Codes used

All codes canbefoundon https://github.com/bessagroup/SymbolicAl.
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