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On Social Involvement in Mingling Scenarios:
Detecting Associates of F-formations in Still

Images
Lu Zhang and Hayley Hung

Abstract—In this paper, we carry out an extensive study of social involvement in free standing conversing groups (the so-called
F-formations) from static images. By introducing a novel feature representation, we show that the standard features which have been
used to represent full membership in an F-formation cannot be applied to the detection of so-called associates of F-formations due to
their sparser nature. We also enrich state-of-the-art F-formation modelling by learning a frustum of attention that accounts for the
spatial context. That is, F-formation configurations vary with respect to the arrangement of furniture and the non-uniform crowdedness
in the space during mingling scenarios. Moroever, the majority of prior works have considered the labelling of conversing groups as an
objective task, requiring only a single annotator. However, we show that by embracing the subjectivity of social involvement, we not
only generate a richer model of the social interactions in a scene but can use the detected associates to improve initial estimates of the
full members of an F-formation. We carry out extensive experimental validation of our proposed approach by collecting a novel set of
multi-annotator labels of involvement on two publicly available datasets; The Idiap Poster Data and SALSA data set. Moreover, we
show that parameters learned from the Idiap Poster Data can be transferred to the SALSA data, showing the power of our proposed
representation in generalising over new unseen data from a different environment.

Index Terms—F-formations Detection, Human Behaviour Analysis, Social Group Detection

F

1 INTRODUCTION

IN recent years, the analysis of mingling scenarios has
received growing attention [2], [8], [9], [15], [18]. With the

recent advances in social signal processing [26], many poten-
tial applications of artificially intelligent perceptive systems
are within reach. For example, potential applications include
enabling robots to approach a group and offer assistance in
a socially intelligent manner [23], or social surveillance [6],
image interpretation or retreival [19].

Visual scene interpretation addresses the problem of
bridging the semantic gap [19], which defines the disconnect
between information that can be extracted from the pixels
in an image and how a human might interpret its contents.
Traditionally, this gap has been attributed to the mapping
of imagery data to objective interpretations such as the la-
belling of objects or activities in a scene. However, in recent
years, scene analysis has started to consider more complex
and subjective concepts such as safety [14] or ambiance [16].
Similarly, in the area of social surveillance [6], researchers
have been trying to ascribe social meaning to social scenes.

Unlike conventional scene analysis, social surveillance
bridges a more complex semantic gap that associates ob-
servable behavioural cues to social phenomena. We call this
the social semantic gap. Since social phenomena are extremely
complex and sometimes difficult to define, to bridge the gap
in an informed manner, we exploit findings from social psy-
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chology to help inform how visually observed behaviours
could be linked to social phenomena. Moreover, the inherent
subjectivity in the perceptions of observed social behaviour
provides an complexity to scene understanding. It brings
new research challenges in understanding how to learn from
and generate realistic models in the presence of differing but
equally valid interpretations of the same visual data.

Given the great advances already in person tracking
and orientation detection, in this paper, we focus on how
to use their output as behavioural input for bridging the
social semantic gap. Specifically, we approach the problem of
detecting associates of conversing groups (or the so-called F-
formation). F-formations are defined in psychology theory
as a spatial organization of people gathered for conversation
where each member has an equal ability to sense all other
members [11]. These so-called associates of F-formations are
defined by psychologists as people who are attached to an
F-formation but do not have the same status as full members
(see Figure 1 (a)). A more detailed definition is provided in
the following section.

The majority of state-of-the-art methods for F-formation
detection [5], [9], [17], [24], [25] have tended to make three
simplifying assumptions. First, each individual is assumed
to have a binary membership to an F-formation and to our
knowledge, no work has considered refining and enriching
this model to label individuals who are partially involved in
it. Bazzani et al. [3] proposed a solution that accounted for
differing levels of group membership using a hierarchical
tracking method. However, this was based purely on the
distance between participants and could not distinguish
involvement levels at a more subtle level.

In this paper, we show that the physical position of
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people can confuse the detection of full members of an F-
formation as associates can stand in positions that are often
mistaken for the behaviour of full members. Second, global
parameters for the frustrum of attention of each person have
been used for the entire visual scene. However, psychology
theory has cited the relaxation of the geometric model of
an F-formation when considering the spatial constraints of
a room and the furniture in it [11]. Finally, aside from Hung
et al. [9], we believe that no other works have seriously
addressed the inherently subjective nature of F-formation
detection. Our experiments show that by considering the
inherent subjectivity of the task, we are better able to model
the social scene. That is, by performing associate detection
and using these detections to correct for errors in the initial
F-formation detection, we can also significantly improve
performance on the F-formation detection task.

This paper makes the following contributions; First,
we address the novel task of detecting associates of F-
formations and propose a novel feature representation that
copes with learning from sparse training data. We also
show that the state-of-the-art model for full members of
F-formations [24] are not appropriate for the modelling of
associate behaviour. Second, we model the spatial context
of a scene for better F-formation and associate detection
by learning a location-dependent frustum of attention of
individuals in the scene. Moreover, we address the problem
of learning the relative weighting between proximity and
orientation given the spatial context of furniture. Third,
we contribute new multi-annotator labels on the publicly
available Idiap Poster Dataset [9] for modeling associates.
Finally, we carry out a deep evaluation and analysis of
associates to investigate the complexity of this task.

An earlier version of this paper appeared in [29]. Com-
pared to that work, this study contains (1) a substantial
number of additional explanations and analysis, (2) various
additional experiments to analyze and understand the re-
sults of the proposed method, and (3) a new multi-annotator
labelling of the SALSA data, which we further validate our
method on.

The outline of the remainder of this paper is as follows.
We provide definitions of our study in Section 2, discuss
related work in Section 3, and introduce the datasets used in
this paper in Section 4. Section 5 described our new method
of social involvement analysis on conversational groups. We
present the results of our experiments in Section 6. Section 7
concludes the paper.

2 DEFINITIONS

2.1 F-formations and their Associates
The psychologist Kendon [11] defined a single conversing
group as an F-formation; as a spatial and orientational orga-
nization of individuals where each member has equal access
to all other members of the group. An F-formation usually
consists of three parts, see Figure 1 (a). The o-space is a
convex empty space surrounded by the F-formation mem-
bers, in which every participant orientates themselves in-
wards, and no external people are allowed. The participants
themselves stand in the p-space, which is a narrow strip
surrounding the o-space, while the area beyond is called the
r-space. Its definition has made it a popular detection task as

it relates well to finding maximal cliques in edge-weighted
graphs [9], [24], [25]. In practice, a geometric model of a
conversing group should be adapted when considering the
spatial constraints of a room and the furniture in it [11].
For instance, people talking in front of a laptop may stand
closer and look at the same direction (see Figure 1(c)), which
maintains an F-formation although their o-space could be
violated.

Unlike full members of F-formations, Kendon [11] de-
fines associates to be people who are attached to an F-
formation but who are not fully involved in the conversa-
tion. Associates can be people who try to join an F-formation
but are not fully accepted by the group, or can leave an
F-formation abruptly without disturbing the conversation.
We name these out-group and in-group associates respec-
tively as the former tends to stand in the r-space while
the latter tends to stand in the p-space. Another example
of an associate could be someone who is waiting for a full
member (e.g. their spouse) to leave the F-formation and is
not interested in engaging in the conversation [11].

While F-formations can easily be modelled by either
maximal cliques [9], [24], [25] or a joint centre-of-focus
in the o-space [5], associate behaviours are not so clearly
linked to a single set of social cues. Therefore, the associate
detection problem requires us to bridge a wider gap and
the nature of the problem and how to solve it cannot be so
easily translated into a single set of geometric constraints.
From the perspective of semantic labelling of a scene, we
must also consider that distinguishing full members of
F-formations from associates and also singletons is quite
important conceptually. Singletons have no social influence
on the groups around them. Full F-formation members have
the most potential to influence other members of the groups.
Meanwhile, associates have the least potential to influence
full members but could be influenced by them. Crucially,
in-group associates could be mistaken for full F-formation
members and out-group associates for singletons.

2.2 Frustum of Attention

The frustum of attention [24] (or transactional segment, as
defined by Kendon [11]) can be considered as a cone-like
region extending from the body that represents the spatial
and angular extent at which someone is able to see, hear, and
potentially touch something or someone else. It represents a
three-dimensional space around the human body in which
most of our senses and actions are able to be deployed for
social interaction. Prior studies have shown that head pose
[20], [21], [24], body pose [9], gaze [10], [21], and proximity
[9] often provide reliable features for F-formation modeling.

Recent state-of-the-art approaches have tended to use
sampling methods to approximate the frustum of attention
where the parameters are set carefully by grid search on the
entire dataset and the same global model for the frustum
of attention is used [5], [17], [24]. There are two main
drawbacks of this approach. First, the parameters are likely
to over-fit on a certain dataset due to the same data being
used for training and testing. Second, the variation in F-
formation shape caused by the furniture arrangement and
non-uniform densities in the crowding of the scene cannot
be captured. For example, people can tend to crowd more
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Fig. 1. Illustrations of F-formations. (a) The F-formation spaces, gray people stand in the p-space. Red arrows indicate body orientation. Orange
people are associates of the F-formation. (b) and (c) example snapshots: F-formations members, associates, and singletons are circled in red,
yellow, and blue respectively according to one of our annotators. These example screenshots are taken from the Idiap poster Data.

Fig. 2. Flow diagram showing the stages of F-formation and associate detection.

densely around the area of a bar area even if they are not
trying to order drinks or lean on it.

3 RELATED WORK

Exploiting the frustum of attention is very important for
detecting F-formations, studies have showed that head pose
[20], [21], [24], body pose [8], gaze [10], [21], and proximity
[9] often provide reliable patterns. In [27], F-formations are
detected by estimating people’s position and lower body
orientation using only their head position and orientation
from a single camera. The modularity cut algorithm [12]
was proposed to identify F-formations from automatically
extracted trajectories by [28]. To our knowledge, in terms
of the treatment of hierarchy in groups, the work of [28] is
quite close to ours as they proposed to used eigendecompo-
sition to find centrality in a large mingling group of people.
Unfortunately, the data they used was staged but showed
participants with high centrality to be those who mingled
with more different people.

A Hough voting strategy was proposed in [5], which
estimates the locations of o-spaces by density estimation.
The size of F-formation was taken into account using a mul-
tiscale Hough voting strategy in [17]. In [9], [24], detecting
F-formations is considered as a clustering problem, where
each person is defined as a node in the graph, and each
edge is the ”closeness” between a pair of people. The goal
is to find a dominant set [13] in the graph and the edges
of the graph are computed based on body orientation and
proximity. In [24], the temporal information is added in the
dominant set based approach. A density-based approach
was proposed in [7] where the final purpose of the task
was to dynamically select camera angles for automated
event recording. In [22], temporal patterns of activities were
subsequently analyzed. In this paper, we follow the dom-
inant set framework because it gives reliably good results
in general [24] and enables a systematic explanation of
the learned model so we can interpret better the social
phenomena at play in the experimental data. In contrast to
the growing numbers of works on F-formation detection, to
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our knowledge, no one has attempted to detect associates
before.

4 DATA

4.1 Idiap Poster Data
We used the publicly available Idiap Poster Data [9]1, which
consists of 3 hours of aerial video of over 50 people during
a scientific poster session and coffee break. In this poster
session, posters are put around the perimeter of the scene,
two small round tables are located in the middle and bottom
of the image, a drinks table is located in the bottom right
of the image, two entrances are located at the far left and
top right of the scene. A screen shot is shown in the left
of Figure 7. In total, 82 images including 1700 instances of
people were annotated by 24 paid annotators, where each
image was annotated by 3 annotators. No consecutively
selected images contained the same set of formations. We
used the positions and body orientation provided separately
by Hung et al. [9]. We augmented this data by adding
annotations of associates of the F-formations.

We analyzed the annotations2 to see whether there was
full agreement between the annotators about all members
of an F-formation and associates. 211 instances of asso-
ciates were annotated. 84 associates were identified with
majority agreement (39.8%) and 34 for full agreement (16%).
We computed the F1 score considering one annotation as
ground truth and one other annotation as detection for each
set of data annotated by the same 3 annotators. The mean
and standard deviation of the F1 score are 44% and 13%
respectively, which shows that associates are not as straight
forward to label compared to F-formations (94.74% mean
average F-measure when computing the agreement for F-
formations from the data). We consider all the annotated
associates can have different levels of involvement with
respect to their associated F-formation. To have a intuitive
feeling of agreement among 3 annotators, we also compute
the traditional kappa statistic. The average Kappa of 3 pairs
of annotators (AB,AC, and BC) is 0.42. The computation is
simply based on checking if two annotators agree on an
individual sample to be an associate or not. We can see that
the agreement on average is not high, which also shows
the complexity of annotating the associates together with
F-formation due to the subjectiveness.

To explore the relative angle and orientation relationship
between different types of associates of F-formations, we
computed histograms of both the distance to, and the rel-
ative orientation differences between, an associate and his
closest F-formation member as shown in the top and bottom
of Figure 7(b) on p. 10 respectively. The relative orientation
of associates to their closest F-formation member has a peak
in probability mass at 0, and π/3 while there is only a single
peak in the lower histogram. This shows that associates
tend to stand similarly closely to their nearest F-formation
member.

The double peak seen in the relative orientation suggests
that the idea of two types of associates may be true. Those

1. https://www.idiap.ch/dataset/idiap-poster-data
2. The annotations generated by this paper are available to research

institutions subject to an End User License Agreement by contacting
h.hung@tudelft.nl.

who stand in the p-space of an F-formation but appear less
involved in the conversation (in-group associates) could be
representative of the peak at the first bin where there is
almost no difference in orientation while those that stand
in the r-space, facing towards the F-formation (out-group
associates) could be formed from the remainder of the
samples populating the histogram. To show this definitively,
we would need to have a accurate model of the o-, p-,and r-
space. Unfortunately, the spatial layout of the room means
that the circular formation will be distorted. It is left for
further research to define robust models of these spaces
with respect to proximity, orientation, and differences in
annotator agreement.

4.2 SALSA dataset

We also used the SALSA dataset [2]3 to test the robustness of
our method, which consists of two parts (poster session and
coffee break). Each part lasts for approximately half an hour
was recorded by four side view cameras pointed towards
the area of interest as shown in Figure 3. In this paper we
only use the data during the poster session since people
are mingling more between different groups whilst in the
coffee break most people surround a table just waiting for
drinks. This enables more different group formations and
also examples of associates to appear and be evaluated on.
18 people participated during the poster session. In the room
was 4 poster boards arranged around the perimeter of the
scene and one table where refreshments could be taken.
The dataset has an existing set of annotations of people’s
location on the ground plane, body/head orientation, and
F-formations based on automated detections.

We re-annotated the data for F-formation and associates
with 3 annotators because 1) the annotation provided by the
dataset contains only 1 annotation for each F-formation, 2)
there are no annotations of associates, and 3) the F-formation
annotations provided by the data set were labelled based on
automated detections and not real locations.

Similar to the Idiap Poster Data, the positions of all the
people in the scene were pre-labelled so that the annotators
could concentrate on identifying the F- formations. Software
was written to allow easy labelling of the data. Three anno-
tators from different international cultures (American, Chi-
nese, and Dutch) and professional backgrounds volunteered
to label the data and were remunerated for their efforts
with a gift voucher. The annotators were asked to label
the same data so that variability in the labelling could be
taken into account during evaluation. The annotators were
asked to label F-formations and their associates after an
initial training phase where definitions were given to them
for each type of person. Annotators were given an initial
training phase with appropriate definitions for F-formations
and their associates before they started labelling the images.
Asking for explicit labels for associates ensured that annota-
tors would consciously decide how involved they thought
each person was in the corresponding F-formation. A snap-
shot is shown in Figure 4, where the pre-labelled positions of
every persons head are indicated by a yellow box. On screen
instructions help the annotators to singletons, identify the F-

3. http://tev.fbk.eu/salsa
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Fig. 3. Screenshots of four cameras of SALSA dataset.

formations and label its corresponding associates, which are
subsequently highlighted with a corresponding colour code.

The three annotators given pre-selected image frames
during the poster session approximately every 2-3 minutes,
resulting in 13 images and 234 individual instances of
people to be labelled. Using our new annotations, and like
the Idiap Poster Data, we studied the annotator agreement.
We analyzed the annotations to see whether there was full
agreement between the annotators about all members of an
F-formation and any corresponding associates. The number
of full agreement F-formations was 192, and 214 when the
union of labelled full members was used. 37 instances of
associates were annotated, where 20 were identified with
majority agreement (54.1%) and 14 with full agreement
(37.8%). We computed the F1 score considering one annota-
tion as ground truth and another annotation as a detection
for each set of data annotated by the same 3 annotators.
The mean and standard deviation of the F1 score was 67.4%
and 5.6% respectively. We can attribute the higher annotator
agreement to the more constrained scenario - with just 18
people, and the fact that we studied the poster session and
not a mixture of poster and mingling behaviour like for the
Idiap Poster Data, it is logical that we would see a higher
annotator agreement on the associates in this case.

5 METHODOLOGY

We detect an associate by modeling its social prior with
its associated conversational group (F-formation) based on
non-verbal cues where a set of scale (group size) and orien-
tation invariant features are used to train the social prior.
The flowchart of the methodology is shown in Figure 2.
Given the position and body orientation on the group plane
of a set of people, a group detector is first applied to
find the conversational groups location (F-formation will
be used in the following sections to indicate conversational
groups); social prior features are extracted next from every
individual; trained classifiers will be used to determine
the involvement of a certain person to a F-formation, for
instance, F-formation members, associates, or singletons.
The modules are described in the following subsections
separately.

5.1 Modeling the F-formation as a Dominant set
Building on prior work [9], [24], we exploit the dominant
set framework. In an image, people can be represented as a
graphG = (V,E,A), where the nodes V are people,E is the
set of connections between people, and A = {aij} , i, j ∈ V
is an affinity function which defines the ”closeness” between

each pair of people. Given a subset S of the set of of nodes
in the graph, the average weighted degree of a node i ∈ S
with respect to set S is kS(i) = 1

|S|
∑
j∈S,j 6=i aij . The relative

affinity between node j /∈ S and i is φS(i, j) = aij − kS(i),
and the weight of each i with respect to a set S is defined as

wS(i) =


1 |S|=1∑

j∈R
φR(j, i)wR(j) otherwise , (1)

which measures the overall relative affinity between i and
the rest of the nodes in S and where R = S\{i}. As
described in [13], the relationship between internal and
external nodes of a dominant set S are conditioned on

wS(i) > 0, ∀i ∈ S (2)
wS∪{i}(i) < 0, ∀i /∈ S. (3)

Detecting a dominant set is identical to solving the following
standard quadratic programme

max
x

xTAx, s.t. x ∈ ∆, (4)

where the standard simplex

∆ =

{
x ∈ R|V | :

∑
i∈V

xi = 1, xi ≥ 0, i = 1, · · · , |V |
}
.

(5)
This optimization problem can be solved with a method

from evolutionary game theory, called replicator dynamics.
The first-order replicator can be represented as

xi = xi
(Ax)i
xTAx

. (6)

Once x converges, one set of F-formation members are
detected. Assuming we have |V | independent strategies, the
pay-off of strategy i play against strategy j is aij . In time t,
the probability of picking up strategy i is xi. The average
pay-off of strategy i at time t is (Ax(t))i and the average
pay-off of all the strategies at time t is x(t)TAx(t). The main
idea is that over time, bad strategies will die off and stable
strategies will last. If we consider people in our application
as strategies, the selected people in the end are the optimal
solution of a dominant set. That is, after the game converges,
the indexes of non-zero xi identify the members of the F-
formation.

This strategy only identifies one F-formation at a time. To
identify all of them in the graph, a peel strategy is used. This
means that once all non-zero elements of x are identified,
nodes associated with these elements are removed from the
graph and the optimization procedure is repeated in the re-
mainder of the graph. This peeling method is repeated until
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Fig. 4. Example snapshot of the annotation graphical user interface where one F-formation has been annotated for. Labelled F-formation full
members, associates, and singletons are indicated by red, green and white boxes respectively. The blue lines (top right frame) between the red
boxes indicate which F-formation the full members belong to.

the minimum distance of pairwise F-formation members is
larger than the maximum distance of detected pairwise F-
formation members for a given image. Similar to [9] this
enables a stopping criterion that is sensitive to the global
context of the scene where the number of clusters to be
found does not need to be determined beforehand. For more
details, see [9], [13].

5.2 Social involvement features
As described in Section 1 associates have a complex be-
haviour that is strongly related to the F-formation that they
are associated with. They can exist in either the p-space or r-
space. Moreover, unlike the maximal clique constraint of full
members of F-formations, associates should be mathemati-
cally defined with respect to the spatial arrangement of a
candidate set of full members of an F-formation. Searching
the space of all possible solutions for an associate and F-
formation is NP. Fortunately, in practice, associates tend to
be scatted sparsely enough amongst the F-formations in a
scene so that the maximal clique assumption for a single F-
formation is not severely disrupted by their presence. There-
fore in the first instance, using any existing F-formation
detection method to reduce the space of possible hypothesis
associate and F-formation pairs is reasonable.

Despite this simplification, another challenge still re-
mains. Due to its sparsity, it is unlikely that a sufficient set
of examples exist to account for all possible spatial configu-
rations of an associate and F-formation. Therefore, applying
similar features that were used to define full members will
lead to a representation that is too sparse to learn from.
To make sufficiently descriptive features, we hypothesise
therefore that they must be both invariant to the rotation

of the associate relative to the group, and also insensitive to
the size of the group.

To better understand associates and avoid incorrect F-
formation detection in the earlier step (e.g., detecting as-
sociates as full F-formation members), every individual in
the data is considered as an associate candidate, so an
associate candidate could be an F-formation member, an
associate, or a singleton in reality. Three sets of social prior
features f = [fp, fo, fs], centered at the associate candidate,
are extracted to represent the geometric relationship of an
associate candidate and its associated F-formation, where
the features are based on proximity, body orientation, and
group size, respectively. The closest F-formation C to a cer-
tain associate candidate pa is considered as the associated
F-formation of this associate candidate, and pk indicates the
location of the kth F-formation member in C.

Each set of social prior feature f is a 12-bin histogram,
which is defined based on the angle of the vector between
F-formation member pk and an associate candidate ∠(pk −
pa), so that every bin covers an angle of π/6. We define the
mth bin of the three sets of features as

fpm =
1

Zd · |Cm|
∑
k∈Cm

‖pk − pa‖ , (7)

fom =
1

Zo · |Cm|
∑
k∈Cm

(∠pk − ∠pa) , (8)

fsm =
1

Zs
|Cm| , (9)

where the set of F-formation members located in this bin
is Cm. We use fpm to represent the average distance be-
tween F-formation members in Cm and pa, fom to represent
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Fig. 5. Frustum of attention modeling with body orientation and proximity. (a) Calculation of relative orientation and proximity, (b) frustum of attention
map with different parameters. The smaller the σ2 is, the narrower of frustum attention of a person is.

the average relative body orientation between F-formation
members in Cm and pa, and fsm to represent the relative
person density in Cm. The features are normalized by Zd,
Zo, and Zs, where Zd is the maximum proximity between
associated F-formation members and associate candidate,
Zo = 2π, and Zs is the maximum F-formation size. The
middle image in Figure 2 shows examples of the scale or
orientation invariant feature representations of an associate
and a singleton, which encode people’s relative location,
orientation and group size.

Associatess detection is challenging because they are
likely to be detected as full F-formation members compare
to singletons who are usually far away from an F-formation.
We use a one-vs-the rest strategy to train an associates
detector. In our experiment, we used 211 instances of anno-
tated associates, 235 full-agreement singletons and 450 full-
agreement F-formations as training data. In the experiment,
we compare a set of classifiers; Parzen, RBF SVM, Random
Forests, and AdaBoost, with 10 fold cross validation. The
Parzen classifier gave the best performance on our dataset,
therefore, we have chosen to use this classifier for the
remainder of the experiments in this paper.

5.3 Training the affinity matrix
To detect F-formations in a complex environment, we need
to model the variation of the density of geometric vari-
ations of potential F-formations in the space. To capture
this variation, the affinity matrix A is key. In this paper,
we only consider the proximity and body orientation. The
”closeness” between people i and j is defined as

aij = e
−
d2ij

σ21
−
θ2ij

σ22 , (10)

where dij is the Euclidean distance between two people, θij
is the sum of difference between each body orientation and
the angle of the vector between two people (see Figure 5),
and σ1 and σ2 are the parameters to be learned. As the
values of σ1 and σ2 decrease, a person is likely to stand
closer and angle more directly towards the others in the F-
formation (see Figure 7 (a)). Likewise, as σ1 and σ2 increase,
members of an F-formation will tend to stand further apart
and orientate themselves less directly towards others (see
Figure 7 (a)). The objective function is defined as

` =
N∑
n=1

1−

∣∣∣C{n} ∩ Ĉ{n}∣∣∣∣∣∣C{n} ∪ Ĉ{n}∣∣∣ (11)

where n is the index of an F-formation in an image, N is the
total number of annotated F-formations, and C{n} and Ĉ{n}

are the nth detected set of F-formation members and its
corresponding annotation respectively. During training, we
consider a detection C and an annotation Ĉ to match with
each other if |C ∩ Ĉ||C ∪ Ĉ| ≥

2
3 . Considering that the shape of the

F-formation can be influenced by the furniture arrangement,
we learn parameters σ1 and σ2 as a function of a person’s
location p. We only update the parameters once per person
when the detection goes wrong in a passive-aggressive way
[4].

σs(p) = σs(p)− gs(C)∆σs, s ∈ {1, 2}. (12)

Here, ∆σs is the basic step size, which is set to a small value
(∆σs = 0.1 in our experiment). An adaptive parameter g
helps to adapt to different F-formation geometric variations.
Given F-formation C, the adaptive parameter g is defined
as

g1(C) =y
‖
∑
i,j∈Ĉ{n} d̂ij −

∑
i,j∈C{n} dij‖∑

i,j∈Ĉ{n} d̂ij
, (13)

g2(C) =y
‖
∑
i,j∈Ĉ{n} θ̂ij −

∑
i,j∈C{n} θij‖∑

i,j∈Ĉ{n} θ̂ij
, (14)

where y ∈ {−1, 1}, y = 1 indicates a false negative F-
formation member in C, while y = −1 indicates a false
positive member. Here d̂ and σ̂ are the manually annotated
proximity and frustum of attention. In each iteration, we
update each person’s location in the F-formation.

6 EXPERIMENTAL RESULTS

We performed three sets of experiments to evaluate the
performance of our system; F-formation detection, asso-
ciates detection, and improved F-formation detection using
the feedback of associates detection. We did the experi-
ments on two datasets (Idiap Poster and SALSA), which to
our, knowledge, are currently the largest publicly available
datasets with multi-person annotations. In this section, we
first describe the experiment on the Idiap Poster Data in
section 6.1– 6.3, then we study the feature representation
in section 6.4, finally, the study using the SALSA dataset
where we trained parameters on the Idiap Poster Data are
provided in section 6.5.
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6.1 Experiment Setup

In the experiment, we initialized σ1 = 40, σ2 = 30 for train-
ing, whose basic update step sizes were set to ∆σ1 = 0.1
and ∆σ2 = π/720 respectively. The number of iterations
of training for detecting F-formation and associates were
both set to 300. Considering that the training samples in
each precise location were not distributed densely over the
images , we divided the images into blocks of 45 × 45
pixels where all people located in the same block shared
the same learned parameters. We trained using each of the
3 annotations separately, applying 10 fold cross validation
for each. Finally, the position and body orientations used
to train our models came from the annotations of the Idiap
poster data provided by Hung et al. [9].

For evaluation, we consider a group as correctly esti-
mated if at least (T · |C|) of their members are detected,
where |C| is the cardinality of the labeled group C, and
T ∈ [0, 1] is an arbitrary threshold; in [5], the scoring
threshold T = 2/3, corresponds to finding at least two
thirds of the members of a group. Here we also consider
T = 1, to mean that a group is correctly detected only
if all members are labeled correctly. From these metrics
we calculate the precision, recall and F1 measures in each
frame, averaging them over all the frames and the three
sets of annotations. Associates are evaluated by calculating
precision, recall and F1 score in the same way, where only
the harder T = 1 criterion for success is used. Here, a
baseline detector global-F is added, which only uses the
initialized training value σ1 = 40, σ2 = 30 for detecting
F-formation. We also compared the performance of our
spatially-aware F-formation detector (Spatial-F) with state-
of-the-art DSFF [9], HFF [5], ACCVKL [24], and ACCVJS
[24].

Since we are the first to approach the task of detecting
associates, we create three baseline detectors to compare
with our proposed associate detector (social-A). Each base-
line result was generated using the annotated data and
not detections. First, SA labels all people who are not in
an F-formation (mostly singletons) as associates. Second,
RA labels people as associates of an F-formation if their
distance to it is less than or equal to the average distance
between pairwise members of F-formations according to the
entire labeled data. Third, ADA is set based on the average
disagreement between annotators where for each pair, we
treated one annotation as a detected result to compute
performance against another annotation. We also compared
performances with different feature combinations (p: prox-
imity features, o: orientation features, and s : group size
features). The associates detector global-A extracts features
based on global-F F-formation detection.

Finally, we analysed how associate detection can help
improve F-formation detection. As the F-formation detector
has problems mostly with in-group associates, we used the
detected associates to clean up false positives in a detected
F-formation. The performance of Spatial-F and global-F was
evaluated with the T = 1 hard criterion using F-formations
annotated with full agreement.

TABLE 1
F-formation detection results with soft (T = 2/3) and hard (T = 1)

criteria for deciding on whether an F-formation is correctly detected.

Method T=2/3 T=1
Prec. Rec. F1 Prec. Rec. F1

DSFF [9] 0.93 0.92 0.92 0.81 0.81 0.81
HFF [5] 0.93 0.96 0.94 0.81 0.84 0.83

ACCVKL [24] 0.90 0.94 0.92 - - -
ACCVJS [24] 0.92 0.96 0.94 - - -

global-F 0.87 0.92 0.89 0.72 0.76 0.74
spatial-F 0.91 0.98 0.94 0.91 0.98 0.94

6.2 F-formation Detection Results

Two examples of the learned values for σ1 and σ2 with
respect to the spatial context, are shown in Figure 7 (a).
People in the top F-formation standing side-by-side tend
to have a large σ2, while people in the bottom F-formation
standing face-to-face tend to have a small σ2. An over all
learned σ1 and σ2 over the image plain is shown in Figure 6,
where the range of learned values are σ1 ∈ [2802, 3600]
and σ2 ∈ [ 2π5 ,

35π
36 ]. We can see there are a few dark blocks

from the learned σ1 map, Which means that the distance
between people plays a more important role for detecting
F-formation in the empty area (a round and small circular
F-formation is easily formed); similarly, the learned σ2 map
tells us that orientation is more important for detecting
F-formations on the sides (in front of posters, a flat F-
formation often appears). In addition, we can see that the
maps are a bit sparse due to the sparsity of our training data
in the space. Therefore, the parameter at a certain location
might not be learned due to a lack of data in such an area.

From Table 1, for T = 2/3, our detector (spatial-F) shows
competitive performance to the state-of-art. This is because
tuning a global value of σ can already produce a good ap-
proximation of the clean F-formation shape, particularly as
the soft detection threshold already considers partially de-
tected members of an F-formation to be sufficient, enabling
a softening of the need for strongly circular formations.
However, when considering the harsher criterion T = 1,
our detector (spatial-F) significantly out-performs the state-
of-the-art, even with a cross-validated comparison. We can
also see that the spatial-F detector performs equally good
with both criteria (T = 2/3 or 1), which shows the accuracy
of our detector is very high.

6.3 Results of Detecting Associates of F-formations

Table 2 shows that our proposed associate detector (social-
A) significantly outperforms the three baselines (SA, RA
and ADA), which means there are indeed certain patterns
of associate behaviour that differs from the behaviour of
singletons. We can also see from the performance ADA that
it is also difficult for people to agree on who associates
are. It also shows that social-A (p+o) with only proximity
and orientation features can almost achieve the performance
when using all the features (social-A (p+o+s)). Interestingly,
global-A shows features extracted with a less accurate F-
formation detector can still obtain a similar performance
with social-A where a more accurate F-formation detector
spatial-F was used. This can be explained as our feature
represents prototype-like F-formation structures, which can
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Fig. 6. learned values of σ1 (left) and σ2 (right) spatially on the image plain.

TABLE 2
Associate detection results. SA: labels all singletons as associates,

RA: labels people close to F-formation as associates, UA:
performance based on annotator disagreement, global-A: use global-F

detector to extract features, and social-A: our proposed detector
(details in Sec. 6.1).

Method Prec. Rec. F1
SA 0.06 1.00 0.11
RA 0.11 0.84 0.19

ADA 0.44 0.44 0.44
global-A(p+o+s) 0.89 0.59 0.71

social-A(p) 0.87 0.58 0.69
social-A(o) 0.91 0.55 0.69
social-A(s) 0.78 0.53 0.63

social-A(p+o) 0.89 0.57 0.70
social-A(p+s) 0.85 0.56 0.67
social-A(o+s) 0.91 0.56 0.69

social-A(p+o+s) 0.89 0.59 0.71

TABLE 3
F-formation detection with associate detection feedback, results are

evaluated only on F-formations annotated with full-agreement.
FB-global-F and FB-spatial-F are detectors with associate detection

feedback (details in Sec. 6.1).

Method Prec. Rec. F1
global-F 0.75 0.94 0.83

FB-global-F 0.82 0.94 0.88
spatial-F 0.76 1.00 0.86

FB-spatial-F 0.84 1.00 0.91

tolerate certain errors on less perfect F-formation detections.

To understand more about associates, some examples
of them are shown in Figure 8. The red dots indicate the
members’ positions in an F-formation, the small red lines
indicate everyone’s orientation, the yellow dots indicate the
correctly detected associates, the blue dots are correctly
detected singletons, and the green dots show associates
that were missed by the detector. From left to right, the
first two images show that our detector can successfully
detect associates who are in the r-space (See Figure 1(a))
trying to join an F-formation but who are not accepted
by its members. The third and fourth images show that
our detector can detect associates who are still in the F-
formation p-space but not fully involved in the group. This
conforms our analysis of the orientation and proximity of
associates in Section 4 Figure 7(b).

As described in Section 4, we now explore the relative

angle and orientation relationship between different types
of associates of F-formations. To do this, we computed
the histograms of both relative orientation differences be-
tween an associate and also distance to closest their near-
est F-formation member as shown in the top and bottom
parts of Figure 7(b) respectively. The relative orientation
of associates to their closest F-formation member has a
large peak in probability mass at 0, and π/3 while there
is only a single peak in the bottom histogram, showing
that associates tended to stand similarly closely to their
nearest F-formation member. The double peak seen in the
relative orientation aligns with the idea of associates who
are standing in the p-space of an F-formation but appear less
involved in the conversation (in-group associates) and those
that stand in the r-space, facing towards the F-formation
(out-group associates). Based on our detection results, we
use a threshold π/6 to see roughly how good our detector
is for detecting in/out group associates. We calculated the
number of correct detected associates, the in/out group ratio
is 1:1.44, compared to ground truth with the same threshold
1:1.41, the results shows that our social involvement features
can represent both in and out group associates very well.

To further explain the success and failure cases with
respect to the trained parameter values, the learned frustum
of attention maps of two associates and one failure case are
shown in Figure 9. We can see that people in F-formations
stand in the higher attention area of other full members; as-
sociates tend to cover F-formation members in their higher
attention area but are not themselves in the higher attention
area of all members of the F-formation; singletons are not
in anyone’s higher attention area, and do not tend to have
people standing in their higher attention areas.

We simulated tracking drifts on the manual labels of
position and body orientation to compare the robustness
of our method spatial-F with global-F on noisy test data.
Figure 8 (b) shows that our detector spatial-F in general
performs better than the detector with global parameters
global-F, however, our detector can tolerate less noise by
looking at the decay rate because our learned parameters
are sensitive to the location changing. As a person width
is approximately 20 pixels in the image, the performance
of our method starts to drop faster when the deviation
of Gaussian noise is around half person width. It means
our method should perform well using a reasonably robust
visual tracker.

From Table 3, we can see that using the feedback of the
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Fig. 7. (a): learned frustum of attention in two cases. (b): histograms of both relative orientation differences between an associate and also distance
to closest nearest F-formation member.

Fig. 8. (a): example associate detection results: Red dots - members of an F-formation; red lines - body orientation; yellow dots - correctly detected
associates; blue dots - correctly detected singletons; and green dots - missed associate detections. (b): F1 score of F-formation detectors spatial-F
and global-F and associates detectors social-A and global-A with noisy test data.

Fig. 9. Learned frustra of attention of three scenes. See caption of Figure 8 for legend of dots and lines in images. Associated frustra of attention
are shown on right of each image.

detected associates, false positive F-formation members are
removed, so that the precisions are improved significantly.

6.4 Full and Associate Member Feature Analysis
To highlight the novelty of our proposed associate repre-
sentation further, we also provide analysis to show how we
match the proposed feature representations to the two prob-
lems: F-formation and associates detection. Full members
of the F-formations are represented by a single expression
(Eqn. 10). This allows us to jointly learn the angle and
length of the view frustum. Rather than using the same

formulation to represent associates, we identified that a dif-
ferent rotation, position, and size invariant representation of
associates was needed (Eqn. 7- 9) due to their sparse nature.
This duality is a subtle but important point which is best
demonstrated in the F1 scores in the table below where we
show how the performance changes if we use the features
designed for associates on full member detection or vice
versa. We see clearly that full-members are better learned
from the dense representation of Eqn. 10 while associates
are better learned from the sparse representations of Eqn. 7-
9. Our results show that matching the right representation
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TABLE 4
Feature representation comparison with F1 measure.

Eqn. 10: Eqn. 7- 9:
tight representation sparse representation

F-formation detection
(tight problem) 0.94 0.65

Associate detection
(sparse problem) 0.31 0.71

TABLE 5
F-formation and associates detection result on SALSA data.

Method Prec. Rec. F1
global-F [T = 2/3] 0.82 0.93 0.87

global-F [T = 1] 0.56 0.64 0.60
FB-global-F [T = 2/3] 0.83 0.93 0.87

associate detection 0.63 0.67 0.64

to the right problem performs much better demonstrating
further the very different nature of the associate problem
compared to the traditional F-formation full-member detec-
tion problem.

6.5 Demonstrating a Generalised Model of Associates
on the SALSA Dataset

As described in Section 4, the number of both annotated F-
formations and associates in the SALSA dataset are much
less than those annotated in the Idiap Poster Data ( 37
annotated associates in the SALSA dataset vs. 211 in the
Idiap Poster Data). To avoid overfitting on such a small
dataset, we used the trained associate detectors from the
Idiap Poster Data to test the generalisation on the unseen
SALSA data. Since the room arrangements are different for
these two datasets, we did not use the location prior trained
using the Idiap Poster Data, but a set of fixed parameters
σ1 = 40, σ2 = 30 across the entire scene. The F-measure
of the F-formation detection, associates detection, and F-
formation detection with feedback from associates detection
on this data are shown in Table 5.

Note that since the F-formations and corresponding as-
sociates were re-annotated with multiple new annotators,
it is not meaningful to compare the performance of our
method with that reported by Alameda-Pineda et al. [2]
since their ground truth is essentially different. However,
given the higher annotator agreement and less complex set-
up compared to the Idiap Poster Data, we would expect
to see comparable F-formation detection results as we ob-
served with the Idiap Poster Data. As with the earlier setup
of the experiments on the Idiap Poster Data, we evaluated
the F-formation detections with full-agreement annotations,
and the union of all labelled associates.

The results shows that with global-F detector, we can
still achieve reasonable F-formation detection accuracy with
T = 2/3, however, with a more strict criterion T = 1,
detecting without learning the spacial prior shows much
less accuracy given most of the F-formations have a side-
by-side pattern. As a result, in this case, we see no further
improvement of the full-member detection when exploiting
the associate detection as feedback. Applying our learned
associates model from the Idiap-poster data to the SALSA
data, we still captured the associates with an F-measure of

0.64. This demonstrates that the we have learned a relatively
general model of associates that can be learned from one
scene and applied to another.

7 CONCLUSION AND DISCUSSION

In this paper, we addressed the task of automatically detect-
ing social involvement in conversing groups. Specifically,
we studied the detection of associates of F-formations, vali-
dating on two publicly available data sets of natural human
behaviour. We introduced a novel full multi-annotator set of
annotations for associates of F-formations for the publicly
available SALSA data set, and two methods for detecting
them. Using our model, we were also able to discover
patterns in proximity and orientation in the behaviours of
associates that enable significant improvement over baseline
methods with a detection rate of 71% F-measure. In terms
of F-formation detection, We proposed a spatial-context-
aware F-formation detector, which models people’s frustum
of attention in a principled way while considering the
influence of the social and spatial context. The method is in
general more adaptive to different datasets so for example,
different frustum of attention parameters can be learned
from scenarios with a non-uniform density of crowding.
Our proposed method showed competitive performance ,
even when training the model parameters on less data.

Experiments on the more complex Idiap Poster Data
showed that by cleaning the detected in-group associates
before re-performing F-formation detection, we were able
to significantly improve F-formation detection in all cases
where there was full-agreement amongst annotators on
full-members of each F-formation. Surprisingly, althougth
learning a spatial-context specific frustrum of attention led
to better F-formation detection, when using the output of
this models to detect associates, the performance for asso-
ciate detection was not better than when F-formations were
detected with a spatial-context free frustrum parameters.
Moreover, we show that a significantly different represen-
tation of associates must be learned compared to those of
full members of F-formations.

Finally, our experiments with the SALSA data set show
that our method is able to learn a generaliseable represen-
tation of associates that can be applied on a completely
different data set.

In terms of future work, while this paper provided the
ground work to understand the nature of the associate
detection problem better, the next step would be to use
automated detections. This leads to quite a number of issues
caused by error propagation with respect to false detections,
missed detections, or difficulties in disambiguating the pix-
els of one person from another. One approach [5] used to
mitigate this problem is to only allow annotators to provide
labels for people (heads) who are automatically detected.
However, then there is clearly the possibility of bias due to
people, possibly associates being missed completely during
the detection phase and thus never annotated for. Some
works have also performed automated analysis with some
form of association of the detections to the ground truth.
However, the precise rules of association are not stated
or discussed [2]. One way to mitigate the problems is to
process only frames in which all participants are visible [2].
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However, this still does not help in handling situations of
varying occlusion.

Another shortcoming is that this work is based on static
observations. Many real life applications will have access
to video. It is also highly likely that the perception of
involvement might change as a result of observing the
interaction dynamics of a conversation. Going back to the
above discussion about automated detection of the posi-
tion and orientation, over time, people must be tracked
and therefore associated between frames. If there is heavy
occlusion, deciding decisions need to be made about how
to associate tracks together and to the same person in an
F-formation over time is still an unaddressed challenge.

Finally, as discussed in [1], often with fully automated
methods, the head pose is used as a proxy for body ori-
entation since it tends to be less occluded. In an ideal
case, to estimate the F-formation itself, the body orienta-
tion is more descriminative. On the other hand, the head
pose should indicate the dynamics of the conversational
structure, which could serve to indicate the conversational
involvement better. Therefore, in moving forward with more
dynamic analyses, one should be mindful of the role that
both head and body can play.

In summary, to our knowledge, this constitutes the first
attempt on the challenging problem of automatically esti-
mating conversational involvement levels in visual scenes
of mingling. We hope this spurs further work to investigate
some of the issues discussed above so we can move smart
surveillance systems to become more socially intelligent.
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