
Efficient and effective feature discovery for CART decision tree model

Andreas Benedict Conrad Bien
Supervisor(s): Andra Lonescu, Rihan Hai

EEMCS, Delft University of Technology, The Netherlands
22-6-2022

A Dissertation Submitted to EEMCS faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering



Abstract

A common challenge in feature discovery and fea-
ture selection is the trade-off between effectiveness
and efficiency. The paper proposes a solution that
is efficient and effective at ranking features for fea-
ture discovery. This paper aims to improve feature
discovery techniques, by estimating the overall util-
ity of features, through ranking them by their char-
acteristics, such as the correlation coefficient, gini
impurity, information gain, etc. The approach to es-
timate the overall utility is done by calculating the
likelihoods of a feature being selected with a wrap-
per feature selection technique, given their rank-
ing with respect to their characteristics. The like-
lihoods of the rankings are recorded and combined
to estimate the overall utility of a feature which is
used to rank all the features by their utility.

1 Introduction
In machine learning, there is a need to select features from
datasets in order to overcome the risk of overfitting vs un-
derfitting; if we select too many features we risk overfitting
(where the model finds patterns in randomness) and if we
select too few pictures we risk underfitting (where the model
has too little information to accurately classify).

The problem that feature selection and discovery meth-
ods are facing today, is due to a trade-off between efficiency
and effectiveness. The trade-off can be seen in the different
types methods used to select features: filter methods, wrapper
methods, embedded methods. Filter methods are very effi-
cient at finding suitable features, however not very effective
at finding optimal subsets of features. Wrapper methods on
the other hand are robust and effective at finding the optimal
features, however they are prone to overfitting and have a
high time complexity. Finally there exist embedded methods
which are a combination of both, which are more effective
than filter methods, but also less efficient, and the inverse is
true when compared to wrapper methods.

It is this trade-off between efficiency and effectiveness
that the research question is trying to solve: To train a deci-
sion tree model (CART), how to make the feature discovery
process efficient and effective?

This trade-off becomes even more critical, when per-
forming feature augmentation with relational data.
The total set of possible features to consider in a relational
data is much larger (scales badly with exhaustive feature
selection approaches), and there is a computational cost
that must be considered when deciding on joining tables[to
join or not to join]. A unique sort of heuristic based on
the characteristics of the features, that estimates the utility
of joining tables, could be a useful tool to improve feature
augmentation algorithms. For example the need to decide
whether the computational investment of joining two tables
is worth the utility it provides.

The paper consists of 7 sections where the following 6
sections respectively discuss related work, the methodology
behind deriving the heuristic data, a section about the
heuristic function that goes into depth on how the heuristic
function is calculated as well as problems and solutions to
those problems, the evaluation which explains the experiment
as well as displaying results with analysis, a discussion about
responsible research, and finally the concluding thoughts
discussing the results and future work.

2 Related work
2.1 Feature discovery
Andra et al focuses on finding join paths to improve machine
learning model performance with a two step process: enumer-
ating join paths, and ranking join paths.[8] The article from J.
Liu et al Focuses on automatic data acquisition, introducing a
system AutoDaTa which automatically searches for training
data.[1]

R. C. Fernandez et al tackles the problem of data discov-
ery, introducing a system named AURUM. The system is re-
sponsible for building, maintaining and querying an enter-
prise knowledge graph (EKG), which is a representation of
relationships between datasets.[2]

N. Chepurko et al builds off of AURA with their feature
discovery tool they developed named ARDA which stands
for automatic relational data augmentation. ARDA is a
tool that combines heuristics with data discovery tools (like
AURA) in order to discover new features relevant to the target
variable.[4]

Jiabin Liu et al introduces a reinforcement learning frame-
work AutoFeature which augments features. The frame-
work focuses on an exploration-exploitation strategy which
exploits frequently selected tables and explores occasionally
selected tables.[5]

2.2 Feature selection
A. Blum and P. Langley go into depth with embedded, filter,
and wrapper feature selection techniques.[6]

R. Kohavi and G. H. John discusse wrapper feature selec-
tion techniques such as the exhaustive feature selection algo-
rithm (or FOCUS as the article describes it).[7]

3 Methodology
In order to automatically and efficiently discover features
(when performing augmentation in a relational database),
a heuristic could be developed, where the inputs are the
features’ characteristics, and the output is a metric on the
utility of each feature. An example of such a function is the
gini impurity index, where the inputs are the probabilities
of the samples belonging to a class, and the output is the
impurity of such a feature.

The focus is to investigate how the characteristics of a
feature can be used to predict the likelihood of such a feature
being chosen for the final set of features, which are fed to the
CART decision tree model.



The likelihoods given by the characteristics of a feature
being part of the optimal subset of features will serve as a
heuristic to determine the utility of a feature which translates
into the utility of joining tables in a relational dataset. The
intuition behind using likelihoods is to have an unbiased
general metric to judge all the characteristics by objectively,
providing a sort of normalization tool to achieve a notionally
common scale for all the different utilities. Analogy: Imagine
a person who has many different bank accounts with wealth
in many different assets (stocks, currencies, bonds, etc),
calculating the person’s total wealth requires converting
all their assets to a single metric (like the USD). The same
way a feature’s utility can be seen through many different
characteristics (correlation coefficient, information gain, gini
impurity, etc), those utilities need to be translated into a
common metric: the likelihood of being in the optimal subset
of features. This serves as a baseline to compute the total
utility of a feature.

In order to find these likelihoods, the first step is to se-
lect a set of features from the dataset using the most objective
and optimal result-yielding feature selection methods. For
this I plan on using the exhaustive feature selection method,
as it is unbiased, robust, and theoretically should give the
optimal set of features. If the feature size is too large to
feasibly perform exhaustive feature selection, then I will first
reduce the feature size with other feature selection methods.

Once we obtain the theoretically optimal set of fea-
tures, the next step is to analyse the selected features, by
calculating the probability of a feature being selected, given
their feature characteristics.

For example, if 3 features from a set of 10 features are
selected, where 4 out of the 10 features selected are categor-
ical, and all 3 selected features categorical, then the prior
probability is 3/10, the posterior probability P(feature is
selected — feature is categorical) = ¾, and the likelihood is
2.5.

The final step is to perform the previous two steps for
as many datasets as possible, and record the likelihoods in
an array for all considered characteristics. With this array
we can calculate the average likelihoods of for each quartile
(which will be used for the heuristic function).

3.1 Making characteristics meaningful
A heuristic must be calculated on the characteristics of
the data. With some characteristics, can be calculated in
a more meaningful way. This was done with the correla-
tion coefficient and gini coefficient, which is discussed below.

Correlation coefficient
: The correlation coefficient might show that 2 features are
both highly correlated with a target, this can be misleading. If
both features are also very highly correlated with each other,
then maybe one feature should be dropped. To combat this,
the features are ranked on the correlation of the data that the

model incorrectly labels trained on higher ranked features.
For example: Feature A is the highest target correlation, so
we fit the model with A. We run the model on all the data and
filter out all the rows the model incorrectly labeled. Feature
D has the highest correlation when only considering the in-
correctly labeled features, so we rank D 2nd and fit the model
with A and D. This process continues until the model fits all
features. If rows are left and only few features are left, then
the remaining features are concatenated to the end of ranking.

Gini Impurity
: The same can be said for the gini impurity, two features
might have low impurities when considering them alone, but
also a low decrease in impurity when considering both. To
combat this, the impurity is found by going through the tree
structure of the fully trained tree with all features, ranking
them by depth first then impurity and then removing any re-
peats. Since the tree automatically splits the rows into rele-
vant subsets at each branch, with gini impurity as it’s splitter.

3.2 Improving heuristic precision
One foreseeable drawback is the precision of the heuristic.
The datasets used to calculate the likelihoods only contain
max 20 features, as the exhaustive feature selection method
is computationally expensive. Out of those features even
less are selected. This means that the calculated likelihoods
are closer to discrete values rather than continuous values.
For example a dataset with 16 features where the possible
amount of features selected range from 2-16 there are only 15
possible prior probabilities (2/16,3/16,etc). Furthermore, the
posterior probabilities for each quartile only have 5 possible
values (0/4,1/4,2/4, 3/4, 4/4), this means that there are only
75 possible values theoretically speaking, realistically speak-
ing there are far fewer possible values. In order combat this
problem of imprecision, there is a need to consider as many
datasets as possible. This need was fulfilled by connecting
to the kaggle api, and automatically downloads 2000 datasets
and filtering out all the relevant datasets to consider.

3.3 Creating and Applying heuristic
Once the data is collected it needs to be transformed into a
heuristic function that should score different features in dif-
ferent tables. The only requirement for the function is that
when the features are ranked by their scores obtained from
the function, the ranking should be accurate. Since the heuris-
tic is based on likelihoods, a good way to score them is by
estimating the actual (or posterior) probability that the fea-
ture will be selected. If we were to assume that the likeli-
hoods given by the characteristics of the data are independent
(which would be a wrong assumption) the formula would be
p (l1 + l2 + l3) − p2 (l1 · l2 + l1 · l3 + l2 · l3)+p3 · l1 · l2 · l3
where p is the prior probability that must be estimated and li
are the different likelihoods a feature gets selected . In this pa-
per we will not assume that the likelihoods are independent,
however, due to the difficulty of calculating the independence
of the different likelihoods, we will assume that using the for-
mula stated above will still suffice for an accurate ranking.
Meaning if a different heuristic function were to score the
features with accurate probabilities, the ranking would be the



similar for both heuristic functions.
Finally, the heuristic function should continuous to allow for
more precice scoring. For example if two features that both
score in the top quartile for each metric, but one consistently
ranks higher than the other, the discrete function would give
both features an equal score, whereas the continouos func-
tion would give the first respective feature a more favourable
score. To make the heuristic function continous a line of best
fit is calculated for each metric.

3.4 Evaluating heuristic

To evaluate the heuristic, experiments on relational datasets
are done. The relational datasets contain a base table which
contains the target feature. Then 3 experiments will be done
using the CART decision tree model. The first is a baseline
experiment, where we test the accuracy of the of the model
when considering all features in the base table. The second is
a dummy experiment where all tables are joined and accuracy
with and without feature selection is tested. The final exper-
iment is to test the heuristic, where we analyze the accuracy
of features selected using the heuristic.

3.5 Heuristic

Data to develop heuristic

In the 4 figures above, are the likelihoods produced for
each quartile (25%) in the ranking of each characteristic.
The ranking was ordered in such a way for each character-
istic, that theoretically quartile 1 should have the highest
likelihoods and quartile 4 the lowest likelihoods. These
figures were produced using over 100 datasets. The red line
in the graphs indicates the line of best fit for the quartiles,
in the form of an exponential function (aebx, we solve
for a and b to find the best fit line, and x is the percentile
[0.125,0.375,0.625,0.875] for each quartile). This best fit
line will be used to calculate the theoretical likelihoods of
more precise percentiles. For example if a feature ranks in
the top 19th percentile, the value 0.19 is plugged in for x in
f(x) = aebx where a and b are the coefficients determined
by the best line fit.

Analysis of heuristic data
As seen in figure 2, the fisher score quartiles seem to be
dominated by noise, which means would be a bad indicator
if used in the heuristic. The first quartile which is supposed
to perform best has the worst score, and all quartile values
do not vary much from each other, the values range from
likelihoods of 0.48 to 0.63, which is about a 0.15 range.
Using this data for the heuristic will most certainly only
introduce noise into the system. As a result, the methods
in the code for evaluating the heuristics have an option to
not include the fisher score. Furthermore, the fisher score
will not be included in the heuristic. The counterproductive
results obtained from the fisher score quartiles might be due
to the algorithm overfitting and causing imprecision in the
obtained data.



A major drawback of this method is the high imprecision in
the results. In order to quantify this imprecision, the volatil-
ity of every quartile for each metric (correlation, fisher score,
gini impurity, information gain) was calculated and is shown
above. The plots below show the uncertainty of each quartile
when taking when taking the amount of values into consider-
ation; in other words it shows the volatility of the mean value
for each quartile. The equation used is where n is the amount
of values and v is the standard deviation of a single value is

and std(
∑

vi
n ) =

√
(vol(v)∗n)

n



3.6 Experiment results

Below are the experiments with their results and analysis.
The recursive feature selection (RFE) algorithm was used in
the parts of the experiments where feature selection was used.
It was chosen as it is an embedded method, meaning it is less
biased than filter and wrapper methods towards certain char-
acteristics, which provides for a more objective comparison
between

Experiment baseline

This is where we test the accuracy of the of the
model when considering all features in the base table.

Baseline Accuracy
Dataset name With feature se-

lection
Without feature
selection

football 0.62 0.63
kidney-disease 0.98 0.99
steel-plate-fault 0.74 0.73
titanic 0.52 0.53

Experiment dummy

Here all tables are joined and the accuracy
with and without feature selection is tested.

Dummy Accuracy
Dataset name With feature se-

lection
Without feature
selection

football 0.78 0.76
kidney-disease 0.99 0.98
steel-plate-fault 1.0 1.0
titanic 0.80 0.82

Experiment heuristic

In this experiment the heuristic is put to the test. The heuristic
ranks all the tables on utility. The base table joined with the
K-best individual features in other tables, then the recursive
feature elimination algorithm is used to find the optimal sub-
set of the K-best features. Finally the accuracy is recorded.
If the heuristic is good then the results of the dummy experi-
ment with feature selection should be similar or worse when
compared to the results of the K-best features selected by the
heuristic for small values of K.

football dataset

Here the heuristic is able to achieve similar accuracies com-
pared to the dummy experiment, already by only considering
4 features. The average accuracy remains more or less
constant. The heuristic, however outperforms the baseline
accuracies by a significant amount. This example makes
a great case in favor of the heuristic. steel-plate-fault dataset



In this dataset the heuristic function performs the worst com-
pared to the other datasets, however it still performs better
than the baseline. This might be due there being many
features with good characteristics (high correlation, low gini
impurity, etc). With many well performing features so it be-
comes increasingly more difficult to rank them accordingly.
This is because the heuristic function is strictly based on the
feature’s rank in each metric, if all feature’s perform well
on a metric (say correlation coefficient), some features will
still be forced into a low rank. While the heuristic did not
perform as well as the dummy experiment, it does show a
positive learning curve; in future work the heuristic could
also detect learning curves in order to determine whether it
should keep joining more tables or stop.
kidney-disease dataset

The results in the kidney dataset are not very informa-
tive, as every experiment has accuracies above 0.975. The
only thing that can be said is that the heuristic also performed
well, so it does not make a case against. the heuristic. titanic
dataset

For the titanic dataset the heuristic actually outperforms all
experiment results, with the accuracy decreasing as more
features are considered. This is likely due to the RFE
algorithm slightly overfitting with larger values of K.

4 Responsible Research
The research required collecting large amounts of data, by au-
tomating the process of acquiring datasets from Kaggle. In-
vestigating any potential biases and whether all the stakehold-
ers of the datasets consented with the dataset being shared
was infeasible. As a result there is a non-zero chance some
datasets were used without the permission of their stakehold-
ers as well as potential biases existing in the datasets. More-
over, the experiment is completely reproducable, however,
there is no guarrantee that the same datasets used will be
available in the future and due to some purposeful random-
ness in the code such as the train-test split the results are likely
to have in slight but insignificant differences.

5 Conclusion
In conclusion, the heuristic performs well compared to the
other accuracies of the experiment. However, as seen in the
steel-plate-fault dataset, the heuristic is not guarranteed to
score optimally with when the dataset contains many features
with similar characteristics, as it scores based on rankings,
which are less meaningful when the utilities of the features
do not differ much. Furthermore, the data used to develop
the heuristic is very imprecise, however the large amount of
datasets considered compensates for the imprecision. That
being said, the likelihoods based on the fisher score did not
perform well, possibly due to the high imprecision of this
method of obtaining a heuristic.



5.1 Future work
Combining with other heuristics
This heuristic is not meant to be a silver bullet for automatic
feature discovery, but rather another tool to use in combina-
tion with other feature discovery tools. As mentioned in the
paragraph above, the heuristic performs less optimally when
the features do not differ much in their characteristics. Fur-
ther research might include combining the heuristic devel-
oped in the paper with a heuristic that focuses less on ranking
the features through metrics and focuses more on the metrics
themselves.

Discovering dependence between likelihoods
Another area of research to consider, could be the dependence
between the likelihoods of the metric. For example research-
ing the correlation between the rankings of the different met-
rics, and possibly collecting data on the conditional likeli-
hoods of the combined metrics as well. For example: what
is the average likelihood of being selected of all the features
in the first quartile of in the correlation ranking and second
quartile in the gini-coefficient ranking. Some of this research
would require magnitudes of more datasets to be considered,
but it might provide valuable insight on how to combine the
different utilities shown in characteristics.

Using machine learning to improve the heuristic
Finally, the data collected to create the heuristic could be fed
to some machine learning algorithms, that can predict the util-
ity of a feature given it’s characteristics. Where the input
would be the characteristics and the output would be likeli-
hood of being selected.

A Some further guidelines that go without
saying (right?)

• Read the manual for the Research Project. (See e.g. the
instructions on the maximum length: less is more!)

A.1 Reference use
References
[1] J. Liu, F. Zhu, C. Chai, Y. Luo, and N. Tang. Au-

tomatic data acquisition for deep learning. PVLDB,
14(12):2739–2742, 2021

[2] R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Mad-
den, and M. Stonebraker. Aurum: A data discovery sys-
tem. In ICDE, pages 1001–1012, 2018. [18] R. C. Fer-
nandez, E. M

[3] N. Chep- urko, R. Marcus, E. Zgraggen, R. C. Fernan-
dez, T. Kraska, and D. R. Karger. ARDA: automatic rela-
tional data augmen- tation for machine learning. VLDB,
13(9):1373–1387, 2020.

[4] N. Chep- urko, R. Marcus, E. Zgraggen, R. C. Fernan-
dez, T. Kraska, and D. R. Karger. ARDA: automatic rela-
tional data augmen- tation for machine learning. VLDB,
13(9):1373–1387, 2020.

[5] Liu, J., Luo, Y., Luo, Y., Feng, J., amp; Tang, N. (2022).
(rep.). Feature Augmentation with Reinforcement Learn-
ing. Tsinghua: Tsinghua University.

[6] A. Blum and P. Langley. Selection of relevant features
and ex- amples in machine learning. Artif. Intell., 97(1-
2):245–271, 1997.

[7] R. Kohavi and G. H. John. Wrappers for feature subset
selection. Ar- tif. Intell., 97(1-2):273–324, 1997.

[8] Lonescu, A., Hai, R., Fragkoulis, M., amp; Katsifodimos,
A. (2022). (tech.). Join Path-Based Data Augmentation
for Decision Trees. Delft, South-Holland: Tu Delft.


	Introduction
	Related work
	Feature discovery
	Feature selection

	Methodology
	Making characteristics meaningful
	Correlation coefficient
	Gini Impurity

	Improving heuristic precision
	Creating and Applying heuristic
	Evaluating heuristic
	Heuristic
	Data to develop heuristic
	Analysis of heuristic data

	Experiment results
	Experiment baseline
	Experiment dummy
	Experiment heuristic


	Responsible Research
	Conclusion
	Future work
	Combining with other heuristics
	Discovering dependence between likelihoods
	Using machine learning to improve the heuristic


	Some further guidelines that go without saying (right?)
	Reference use


