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Abstract
In recent years, unstable quay walls are a problem in The Netherlands. 100-year-old quay walls in cities
like Amsterdam are collapsing and endanger people and property. The government needs to renovate
unstable quay walls quickly. With 600 kilometre of quay wall in Amsterdam alone, this is a great chal-
lenge. Currently, unstable walls are found by deformation monitoring using tacheometry, which takes
too much time for large scale monitoring. To increase both speed and coverage, a photogrammetric
deformation analysis is proposed. In multiple epochs, at months interval, a series of images of the
quay wall is made from a boat. In these images, feature points are identified and matched, where part
of the feature points are matched across multiple epochs. All feature point observations are put in a
multi-epoch least squares adjustment. This adjustment integrates both feature point observations of
individual epochs and point deformations between multiple epochs. Using photogrammetry in combi-
nation with such a deformation adjustment has not been done previously, but has great advantages.
The least squares adjustment allows to take the stochastic nature of the observations into account. This
enables proper error propagation, such that not only quay wall stability can be assessed, but also the
corresponding error budget. Results show that using two epochs 300 multi-epoch feature points can
be found per square meter quay wall. With these points, sub-centimetre deformation can be estimated.
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1
Introduction

1.1. Collapsing quay walls
In recent years in the Netherlands a problem has arisen. Old quay walls along the canals in the old
cities are becoming unstable. This can result in the quay walls collapsing. This recently happened at
the Grimburgwal in Amsterdam, where 20 meters of quay wall suddenly collapsed into the canal [25].

Figure 1.1: Collapsed Grimburgwal, Amsterdam [25].

In reaction to the dangers of collapsing quay walls (and bridges), the city of Amsterdam has made
plans to renovate the quay walls. However, there are 600 kilometers of quay wall in Amsterdam alone,
of which 200 kilometers are already prioritized for renovation. The time estimated to renovate the 200
kilometers of priority quay wall is 20 years at a minimum [10]. And this problem is not specific to Ams-
terdam. Utrecht, The Hague and other Dutch cities also have many kilometers of quay wall with similar
dangers.

The city of Amsterdam has made a plan of what to do with the quay walls [10]. A main point in this
plan is to guarantee safety by identifying unstable quay walls and taking precautions. For example by
limiting traffic near the quay walls. The deformation is used as an indicator of instability. Deformation
monitoring requires much measuring, so much that the city of Amsterdam started a competition for
quay wall monitoring innovations [30].
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2 1. Introduction

1.2. Monitoring
Currently this monitoring is done by surveyors with tacheometry. They measure the quay wall at differ-
ent times (epochs) with a couple of months in between. The exact length of the interval is dependent
on the expected stability of the wall. The quay wall is measured in on the same set points in every
epoch. At these set points on the wall prisms can be installed to make the tacheometric measure-
ments more accurate. When properly used, the tacheometers deliver measurements at millimeter
precision [32] [12]. This makes it good for these high precision deformation measurements. However,
with a tacheometer not many points are measured on the quay wall, as every point has to be man-
ually measured from multiple positions, which is time consuming. Also, these measured points must
be consistent between epochs to get deformation so, there is always risk of losing measurement points.

The use of photogrammetry to monitor the quay walls can solve these problems. Photogrammetry
has the potential of making the monitoring of the quay walls more cost and time efficient and more
robust with many measurement points on the walls. However, photogrammetric measuring of the quay
walls also brings some potential problems. Is it possible to match features in images from different
epochs and is it possible to reach high enough accuracy to be able to detect small deformation? These
problems have to be explored to assess the extend to which photogrammetric measurements of a quay
wall can be used in deformation analysis.

Also, the currently used tacheometric deformation analysis only performs adjustment on the measure-
ments in a single epoch and then the deformation is found by simply calculating the differences in coor-
dinates. This method is flawed as the uncertainty in the measurements, also known as the stochastic
characteristics of the measurements, are only taken into account for the single epoch calculations and
they are ignored when calculating the deformation. Integrating multiple epochs and the deformation
between the epochs in the adjustment allows to use the stochastic characteristics directly in the de-
formation estimation. This direct use of stochastic measurements for the deformations in turn allows
to use statistical testing on the deformation parameters. As the photogrammetric equations are non
linear equations the least squares adjustment does require a linearisation.

1.3. Main research question and subquestions
The main research question of this MSc thesis is:
To what extend is it possible to do stochastic least-squares adjustment based deformation anal-
ysis on a quay wall using photogrammetry?

Answering this question will lead to subquestions such as:

• What are the requirements from organisations involved?
• What is the data acquisition workflow for photogrammetric deformation analysis?
• How to form observations from the photogrammetric measurements?
• How to build the non-linear stochastic least-squares adjustment for deformation analysis?
• How to test the adjustment to find the best hypothesis?
• What quality of deformation is possible? Is this quality good enough?



2
Monitoring of Quay walls and

Photogrammetry

In this chapter findings of a literature research are presented. The research is done in three fields
important to this thesis. Research findings in these fields are in turn presented, starting with deformation
of quay walls. Then follows the basics of photogrammetry, and finally deformation analysis.

2.1. Quay wall Deformation
2.1.1. Failure mechanisms
To make hypotheses of the deformation that may be found in quay walls, the deformation and failing
mechanisms of quay walls are researched. There are multiple types of quay wall. Roubos et al. [27]
distinguishes four types.

1. Steel founded gravity wall

2. Pile founded gravity wall

3. Pile founded L-wall

4. Steel or concrete sheet pile wall

The brick quay walls at risk of collapse are type 2, a pile founded gravity wall. The foundation piles
of these quay walls are wooden and the quay wall are brickwork and they are old, with many walls
exceeding 100 years. Roubos et al. [27] defines eight failure mechanisms relevant to pile founded quay
walls. These failure mechanisms are defined by Roubos et al. [27] and they are both geotechnical and
structural. The failure mechanisms are listed below in Table 2.1 and shown in Figure 2.1.

1 Exceeding vertical pile compression capacity.
2 Exceeding vertical pile tension capacity.
3 Exceeding horizontal pile loading capacity.
4 Exceeding general stability.
5 Structural failure quay wall.
6 Structural failure of foundation piles.
7 Foundation pile failure from displacement.
8 Erosion by underground water flow.

Table 2.1: List of Quay wall failure mechanisms as defined by Roubos et al. [27].

3



4 2. Monitoring of Quay walls and Photogrammetry

Figure 2.1: Failure mechanisms of a pile founded quay wall as defined by Roubos et al. [27], visualized where the number
corresponds to the failure mechanis in Table 2.1.

An interesting case of collapsing quay wall is the collapse of the Grimburgwal on September first 2020.
This collapse is investigated and a rapid assessment is already published [17]. The collapse of the
Grimburgwal is suspected to be caused by failure of the wooden foundation piles from horizontal de-
formation, which would be a combination of failure mechanisms 3 and 6 in Figure 2.1. It is found that
boats turning at this part of the Grimburgwal creates in a deep canal bed at the quay wall, which was
unstable and lead to the horizontal deformation of the quay wall [17]. At the Grimburgwal, there was
no sign of deterioration of the wooden piles, however there is suspected pile deterioration in these old
quay walls. This is due to a changing water level making the wooden piles dry at times, which could
result in the wood rotting.

Korff et al. [17] states that one indicator of coming failure is the horizontal deformation of the quay
wall. Pictures of the Grimburgwal from February 2020, seven months before collapse, showed this
deformation at street level. Where the horizontal deformation was big enough to create gaps in the
streetwork. In addition to deformation, there was damage on the Grimburgwall, which could also be a
indication of coming failure.

All failure mechanisms are detectable by a deformation, however it is not possible to determine the
type of failure from the deformation alone [33]. All deformations shown are either vertical or hori-
zontally perpendicular to the quay wall. There is no indicated deformation parallel to the quay wall.
However, stresses on the quay wall are not homogeneous along the whole quay wall, so there must
be change in deformation along the quay wall. Also a failing pile will create a local deformation, which
is not homogeneous along the quay wall. At stress locations, where a load on the quay wall is present,
and at pile failing locations, the deformation is probably biggest and moving away along the quay wall
from that point the deformation probably reduces.
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2.2. Photogrammetry
Photogrammetry is the science of obtaining information from images. In present times it is often taken
to be a method to extract three dimensional coordinates from multiple two dimensional images. Pho-
togrammetric calculations are based on establishing the geometric relation between the 3D coordinate
and the images capturing that coordinate.

2.2.1. Camera
Photogrammetry starts with the camera. In the simplest form a camera is a dark room with a small
hole. This is also known as a camera obscura, where the hole is called the the optical center. Light
reflects from objects in front of the hole. This light goes through the hole and lands on the wall opposite
of the hole. This simple camera is called a pinhole camera and it gives a good view of the geometry
of a picture. This basic idea of a camera is already hundreds of years old as can be seen from the
Figure 2.2, which is a drawing from Ayscough [2] from 1752.

Figure 2.2: Camera obscura as drawn by Ayscough [2], where light passes through a small hole in a dark room projecting an
image on the wall opposite the hole.

The light reflected from a object can only move in a straight line through the optical center. This results
in a projection of the object on the opposite wall. The opposite wall is the negative image plane and the
projection on this plane is mirrored and upside-down. To make it easier to understand the geometries,
the positive image plane can also be used. The positive image plane is a imaginary image plane at
the same distance from the optical center as the negative image plane, but the positive image plane
is between the object and the optical center, which makes for a virtual projection that is not mirrored
nor upside-down. This is why in most figures the positive image plane is drawn. The distance from the
image plane to the hole is called the focal distance or camera constant.

2.2.2. Collinearity condition
The fact that light goes in a straight line is the principle on which the photogrammetry is build. The
straight line makes it that an object point, the optical center and the projection of that object point are
on the same line. In photogrammetry this is called the collinearity condition. It leads to geometrical
equations that mathematically link the 3D object point coordinate to the 2D image coordinate of the
projection of that same object point. These equations are called the collinearity equations and can be
seen in Equation 2.1 and Equation 2.2. The collinearity geometry is shown in Figure 2.3. Here, optical
center 𝐶 (𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶), object point 𝐴 (𝑋𝐴, 𝑌𝐴, 𝑍𝐴) and the projection of point 𝐴(𝑥𝑎 , 𝑦𝑎) on the positive image
plane are all on one line.

𝑥𝑎 = 𝑥𝑂 − 𝑓
𝑟11(𝑋𝐴 − 𝑋𝐶) + 𝑟12(𝑌𝐴 − 𝑌𝐶) + 𝑟13(𝑍𝐴 − 𝑍𝐶)
𝑟31(𝑋𝐴 − 𝑋𝐶) + 𝑟32(𝑌𝐴 − 𝑌𝐶) + 𝑟33(𝑍𝐴 − 𝑍𝐶)

(2.1)
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𝑦𝑎 = 𝑦𝑂 − 𝑓
𝑟21(𝑋𝐴 − 𝑋𝐶) + 𝑟22(𝑌𝐴 − 𝑌𝐶) + 𝑟23(𝑍𝐴 − 𝑍𝐶)
𝑟31(𝑋𝐴 − 𝑋𝐶) + 𝑟32(𝑌𝐴 − 𝑌𝐶) + 𝑟33(𝑍𝐴 − 𝑍𝐶)

(2.2)

where:

𝑥𝑎 , 𝑦𝑎 = image coordinates of image point
𝑥0, 𝑦0 = image coordinates of principal point
𝑋𝐴, 𝑌𝐴, 𝑍𝐴 = terrain coordinates of terrain point
𝑋𝐶 , 𝑌𝐶 , 𝑍𝐶 = coordinates of optical center
𝑟𝑖𝑖 = elements of the rotation matrix from the orientation of the camera

𝑥

𝑦

𝑧

image plane

(𝑋𝑐 , 𝑌𝑐 , 𝑍𝑐)

(𝑥𝑎 , 𝑦𝑎)

(𝑋𝐴, 𝑌𝐴, 𝑍𝐴)

(𝑥0, 𝑦0)

𝑓

Figure 2.3: Visual representation of the collinearity condition. Point 𝐴 with coordinates (𝑋𝐴, 𝑌𝐴, 𝑍𝐴) is captured by camera 𝐶 with
optical center coordinates (𝑋𝐶, 𝑌𝐶, 𝑍𝐶). The line between the optical center of camera 𝐶 and point 𝐴 crosses the image plane at
point 𝑎 with image coordinates (𝑥𝑎, 𝑦𝑎). This results Point 𝐴, Optical center 𝐶 and image point 𝑎 being collinear, meaning they
are on one line. The position and orientation of the image plane is determined by the focal distance 𝑓, the principal point with
coordinates (𝑥0, 𝑦0) and the orientation of the camera which is the orientation of the line optical center to the image plane center.

There are two coordinate systems present in the collinearity equations, the image coordinate system
and the real world (terrain) coordinate system. The image coordinate system, denoted by the lower-
case 𝑥 and 𝑦, is a 2D coordinate system on the image plane with the origin in the center of the image
plane. The terrain coordinate system, denoted by the upper-case 𝑋, 𝑌 and 𝑍, is a 3D terrain coordinate
system. This can be any cartesian system or local system.

In Figure 2.3 the line from optical center 𝐶 to terrain point 𝐴 intersects the image plane (and thus image
coordinate system) at image point 𝑎. From the position and orientation of the image coordinate system
in the terrain coordinate system the position of this image point 𝑎 can be calculated. That calculation
is done with the collinearity equations.

2.2.3. Extrinsics and Intrinsics
Every image coordinate system is located in the terrain coordinate system and can be placed by the
position, orientation, focal length and principal point of the camera to which the image coordinate sys-
tem belongs.

The position (optical center) and orientation of the camera are together known as the exterior pa-
rameters or extrinsics. The orientation of the camera is often described in the form of a 3-by-3 rotation
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matrix, however it can also be described by Euler angles or a quaternion.

The focal length and principal point are known as the interior parameters or intrinsics of the camera.
The principal point is the offset between the origin of the image coordinate system and the perpendic-
ular point from optical center to image plane. Ideally the principal point is (0,0), however cameras are
not perfect. The focal length is the distance between image plane and optical center. This depends
on the lens of the camera. Most modern lenses are able to change the focal distance, this makes the
camera zoom in or out. In photogrammetry the focal distance should be stable, because otherwise the
internal geometry changes.

When calibrating the camera these intrinsics can be calculated along with the lens distortion param-
eters. Modern cameras, contrary to the pinhole camera, have lenses which bring some distortion to
the projection by bending the light. This distortion is modelled and can also be viewed as part of the
intrinsics. In the calibration procedure a controlled environment is captured by a camera. Where object
points are can be very accurately found in the images. For example, chess board square corners or
round barcodes, which can be accurately pinpointed by computer vision algorithms. Then photogram-
metry is used on the image set and because the objects in the images are controlled and accurate, the
intrinsics can be accurately estimated.

Brown distortion lens model
A common lens distortion model comes from Brown [5] [11]. This model can be used with only radial
lens distortion or with an extension to include tangential lens distortion. This tangential distortion is also
known as lens decentering. In Figure 2.4 a schematic overview of the effect of the distortion types on
the ideally rectangular image plane is shown.

(a) Radial lens distortion (b) decentering lens distortion

Figure 2.4: Schematic representation of the radial and decentering lens distortion effect on image plane [35]. Light blue is the
ideal image plane without distortions and pink is the distorted image plane. For both purely radial and purely decentered distortion
two examples are shown.

Radial distortion is modelled using Equation 2.3.

𝑑𝑟 = 𝐴1𝑟3 + 𝐴2𝑟5 + 𝐴3𝑟7 + ... (2.3)

where:

Δ𝑟 = Radial lens distortion
𝐴𝑖 = Radial distortion constants
𝑟 = Radial distance to the principal point
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Using Equations 2.4 and 2.5, the Equation 2.3 can be rewritten to get the distortion on the image in x
and y direction.

𝛿𝑥𝑟 =
𝑥
𝑟 𝑑𝑟 (2.4)

𝛿𝑦𝑟 =
𝑦
𝑟 𝑑𝑟 (2.5)

where:

𝛿𝑥𝑟 = radial distortion in x direction
𝛿𝑦𝑟 = radial distortion in y direction
𝑥 = x-coordinate
𝑦 = y-coordinate
𝑟 = Radial distance
𝑑𝑟 = Radial distortion model

The Tangential distortion is modelled using Equation 2.6 and Equation 2.7.

𝛿𝑥𝑡 = 𝑃1(𝑟2 + 2𝑥2) + 2𝑃2𝑥𝑦 (2.6)
𝛿𝑦𝑡 = 𝑃2(𝑟2 + 2𝑦2) + 2𝑃1𝑥𝑦 (2.7)

where:

𝛿𝑥𝑡 = tangential distortion in x direction
𝛿𝑦𝑡 = tangential distortion in y direction
𝑃𝑖 = Tangential distortion Constants
𝑥 = x-coordinate
𝑦 = y-coordinate
𝑟 = Radial distance

Combining the radial distortion model and the tangential distortion gives the total distortion as seen in
Equation 2.8 and Equation 2.9.

Δ𝑥 = 𝛿𝑥𝑟 + 𝛿𝑥𝑡 = 𝑃1(𝑟2 + 2𝑥2) + 2𝑃2𝑥𝑦 + 𝑥 ∗ (𝐴1𝑟2 + 𝐴2𝑟4 + 𝐴3𝑟6 + ...) (2.8)
Δ𝑦 = 𝛿𝑦𝑟 + 𝛿𝑦𝑡 = 𝑃2(𝑟2 + 2𝑦2) + 2𝑃1𝑥𝑦 + 𝑦 ∗ (𝐴1𝑟2 + 𝐴2𝑟4 + 𝐴3𝑟6 + ...) (2.9)

Δ𝑥 = distortion in x direction
Δ𝑦 = distortion in y direction
𝛿𝑥𝑡 = tangential distortion in x direction
𝛿𝑦𝑡 = tangential distortion in y direction
𝛿𝑥𝑟 = radial distortion in x direction
𝛿𝑦𝑟 = radial distortion in y direction
𝑃𝑖 = Tangential distortion Constants
𝐴𝑖 = Radial distortion Constants
𝑥 = x-coordinate
𝑦 = y-coordinate
𝑟 = Radial distance

2.2.4. Forward Intersection
The goal of photogrammetry is often retrieval of the 3D position of object points from an image set.
Forward intersection is the calculation of a 3D terrain point using its projection in images. For this cal-
culation the collinearity condition is used. It is a geometrical problem, which can be seen in Figure 2.5.
For both cameras the projected object point and optical center define a line in 3D space. For each line
of a camera the collinearity condition tells us the 3D object point is on that line. With one line and thus
one image the 3D position of the object point cannot be estimated as there is no way to tell where on
the line the 3D object is. With two images and thus two non-parallel lines this can be done, because



2.2. Photogrammetry 9

for both these lines it is known that the 3D point is on there the only place where this would be true for
both lines is the intersection point. So this intersection point is the 3D object point position.

This problem can also be put as a system of collinearity equations. Trying to calculate a 3D posi-
tion from a single image results in an under-determined system, because from an image point there
are two known variables (image coordinate x and y) and the 3D position has three unknowns (terrain
coordinate X,Y and Z). As said above, this can be solved by using more pictures with observations of
the same object point. Then more collinearity equations can be made, which increases the amount
of known variables while not changing the amount of unknown variables. With two images, both with
an observation of the object point, four equations can be formed, which is enough to solve for the 3D
terrain point.

𝑥
𝑦

𝑧
Camera Center 2

Camera Center 1

𝑋𝑡
𝑌𝑡

𝑍𝑡

Figure 2.5: Visual representation of the geometry of the forward intersection. Camera 1 and 2 capture point 𝑡 on their imageplanes
a line can be drawn from the camera center through the image point. On this line, the red arrow in the figure, the point must be
located in 3D space. As the point 𝑡 must be on both lines, it can be deduced that the 3D position of point 𝑡 is on the intersection
of the lines.

2.2.5. Backward Intersection
In subsection 2.2.4, the forward intersection estimation uses the assumption that the camera’s exterior
parameters are known. This can be true, in aerial photogrammetry position and orientation of the
camera are often known (approximately) by INS- and GNSS-systems aboard the plane. However, for
many cases of photogrammetry the exterior parameters are not known. With backward intersection,
also known as resection, the camera exterior parameters can be calculated using known terrain points.
The camera exterior parameters are six independent variables. Three for position 𝑋, 𝑌, 𝑍 and three
for rotation yaw, pitch, roll. As said before, rotation can be described in different forms. This does not
change the amount of independent variables. With six variables that need to be calculated there would
be a need for three terrain points as every terrain point gives two collinearity equations. However, there
is an ambiguity to the solution of the backward intersection. This ambiguity comes from the geometric
possibility to capture the three points in the same positions with a rotated camera on the other side of
the plane through the three points. To solve this ambiguity an extra terrain point is needed. So, in total
with four known terrain points in an image the camera exterior parameters can be calculated.

2.2.6. Network Adjustment
Forward and Backward intersection can be expanded using network adjustment methods like Bundle-
Block adjustment, where big overdetermined systems are made with many cameras and many object
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points. This makes it possible to optimize the calculations and improve the results. As the collinearity
equations 2.1 & 2.2 are not linear equations, there is a linearisation of the equations needed in the
adjustment.

2.2.7. Object point detection
In all these photogrammetric operations the image points of a terrain point are known to be of the same
terrain point in many images. This matching is can be done manually. Look for the terrain point in
the images and select where they are. This takes a lot of time and manual labor, so there is need to
automate picking object points and matching them between multiple images. There are several algo-
rithms for image feature detection/description and feature matching. The algorithms explained below,
SIFT, SURF and ORB are commonly used ones. They are also integrated in OpenCV modules for
most coding languages [23].

Using photogrammetry with images taken at different times does add an extra requirement that feature
points must be detectable in different conditions, as the conditions can be different between image
acquisitions. Environments change and factors like illumination and camera settings are different. The
algorithm used for deformation analysis should be able to operate despite these condition changes.

SIFT
SIFT, short for Scale Invariant Feature Transform, is developed by Lowe [19]. SIFT was a big step
in finding and describing distinctive features in images. A big advantage to SIFT is the invariance to
scale, rotation and translation. Also, there is partial invariance to illumination and affine projection [20].
This is the reason that SIFT is often used. The invariances combined with the distinctive well-described
features makes it suitable for photogrammetry. SIFT works in four steps [20]:

1. Scale space extrema detection
2. Keypoint localization
3. Orientation assignment
4. Keypoint Descriptor

First, in the Scale space extrema detection the image is searched for potential features invariant to
scale and orientation. This is done by using a difference-of-Gaussian function (DoG) [20]. DoG is an
approximation of the Laplacian of Gaussian (LoG). The LoG and DoG are both using Gaussian blurred
images and downscaling to make a scale invariant feature detection. However, the LoG uses second
order derivatives (Laplacian) and the DoG uses a simple subtraction. As a result the DoG is a faster
process, however there is a slight loss in precision [9]. Second, in Keypoint localization, the potential
features are fitted to a model to determine location and scale. The keypoints are also evaluated on
stability [20]. Third, in Orientation assignment, each keypoint is assigned an orientation based on lo-
cal image gradients. This is added to the location/scale model of the feature. Future operations on
these keypoints can use the orientation/location/scale model to make the features invariant to these
transformations [20]. Finally, in Keypoint Descriptor, a description of each keypoint is formed to make
a feature. The description uses local image gradients at an selected scale, which makes it resilient to
shape distortion and change in illumination [20].

Matching the features between images is the next challenge. SIFT creates many features in an image
which can all be linked to features from other images. This is simply done by picking the closest point in
an Euclidean space in which the features are positioned according to their feature description vectors
[20]. The problem with this approach is that there will be many features, which do not occur in any
other image, however it will be assigned to the closest feature resulting in many incorrect matches [20].
This can be solved with a maximum distance threshold to matching.

SURF
An alternative to the SIFT algorithm is the SURF (speed up robust feature) algorithm. Bay et al. [4]
propose SURF as algorithm based on similar properties as SIFT, but with lower complexity and better
accuracy. The similar properties can also be seen by similar steps in the processing. The difference
between SIFT and SURF is mainly in the first step of SIFT. Where SIFT uses the Gaussian blurring
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to find potential features, SURF uses the Fast-Hessian Detector based on the Hessian matrix, which
is faster in computation than SIFT’s Difference-of-Gaussian. The reason for the speed improvement
is the use of integral images and box filters [4]. Another difference with SIFT is the descriptor. SURF
uses a distribution of Haar-wavelet responses near the feature point as descriptor [4].

ORB
ORB is a newer image feature detection and matching algorithm. It should be two orders of magni-
tude faster than SIFT according to the developers Rublee et al. [28]. ORB has a different approach to
SIFT and SURF for both detection and description of features/keypoints. ORB uses the oriented FAST
(oFAST) keypoint detector and rotated-aware BRIEF (rBRIEF) descriptor [28].

FAST [26], a quick corner detection algorithm, is the bases of oFAST. oFAST has some additional
processing steps, compared to FAST, to make its functionality in ORB possible [28]. A Harris corner
filter [13] is added to reject features on edges. And then FAST plus Harris corner filter is used on mul-
tiple scaled versions of the image to account for scaling [16]. FAST does not include an orientation to
the feature, which is needed. So, the intensity centroid (IC) technique of Ke and Sukthankar [15] is
used to retrieve a orientation.

Then the features are described by rBRIEF. rBRIEF has some additions to the BRIEF [6] keypoint
descriptor. In BRIEF 𝑛 binary intensity tests on smoothed images are used to describe a keypoint in a
bit string. BRIEF provides good invariance to lighting, blur and perspective distortion, but is sensitive
to in-plane rotation [28]. This rotation sensitivity is solved by steering the BRIEF descriptor using the
rotation retrieved in oFAST. Finally, because of the steering of BRIEF and the correlation between bi-
nary tests, a greedy search algorithm is used to find the best tests to use in the descriptor. This final
descriptor is the rBRIEF, which can be used for image matching by Nearest Neighbour like SIFT and
SURF.

2.2.8. Other Feature Matching algorithms
There are also feature matching algorithms in development or recently developed that use deep learn-
ing and neural networks. For example, Super Glue [29], which uses a graph neural network. Accord-
ing to Chen et al. [7] the deep learning methods will improve image feature matching. However, they
also mention that there is a disadvantage. Deep learning creates black box operations without proper
checks. For the development of the photogrammetric quay wall deformation analysis, it is important to
have a clear view of the process and its intermediate steps, this is difficult with black box operations.
That is why these methods are not chosen to be used.

2.3. Deformation
To measure deformation, measurements in multiple epochs have to be done followed by a time-series
analysis used to estimate changes through time, which is the deformation. Velsink [34] proposes a
deformation analysis, which resolves three common flaws of other deformation estimations. Firstly, it
takes into account the stochastic nature of measurements. Secondly, deformations are mathematically
build in the hypotheses and their quality can be statistically tested and evaluated using the observations
directly. Finally, statistical analysis of the adjustment used in the deformation analysis can be used to
find the best deformation hypothesis.

Velsink [34] both discusses a geodetic observation-based and a coordinate-based analysis. The ob-
servation based analysis is better, because there are no intermediate steps where errors can be in-
troduced. Examples of such errors are in calculations of intermediate coordinates and conversion of
geodetic datums. In the method of Velsink [34], calculations are directly related to the observations
and the stochastic nature of the observations can be directly used. The application of this deformation
analysis methodology to photogrammetry is not mentioned by Velsink [34].

2.3.1. Adjustment
The first step in the deformation analysis is the adjustment of the observations. The adjustment model
is shown in Equation 2.10 as a matrix equation.
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(
𝑦
𝑆
𝑧𝑑
𝑧𝑔
) = (

𝐴𝑆 0
𝑍𝑑 𝑍∇
𝑍𝑔 0

)(
𝑥𝑆
𝑥𝑑
𝑥𝑛
∇
) + (

𝑒𝑆
0
0
) (2.10)

where:

𝑦
𝑆
= stochastic observation, 𝑆 indicates epoch number

𝑧𝑑 = nonstochastic observation, constraint linking points between epoch
𝑧𝑔 = nonstochastic observation, constraint determining datum
𝐴𝑠 = observation design matrix
𝑍𝑑 = epoch linking constraint matrix
𝑍𝑔 = datum constraint matrix
𝑍∇ = deformation matrix
𝑥𝑆 = paramete from observations equations of 𝑦

𝑆
, 𝑆 indicates epoch number

𝑥𝑑 = deformation parameters
𝑥𝑛 = transformation parameters
∇ = deformation model parameters
𝑒𝑆 = measurement noise of stochastic observations

And

𝐷{𝑦} = 𝜎2𝑄𝑦 = 𝜎2 (
𝑄𝑦𝑆 0 0
0 0 0
0 0 0

) (2.11)

where:

𝜎2 = variance of 𝑦
𝑆

𝑄𝑦𝑆 = observation covariance matrix

Velsink [34] distinguishes three types of observations. The first type of observation is the stochastic
observation denoted by 𝑦

𝑆
. For photogrammetric applications, these are the observations of the object

points in the images. The other two observation types are constraints, which are enforced as non-
stochastic observations. Nonstochastic observations 𝑧𝑑 set the link between points of different epochs
and their movement (deformation) between epochs. Nonstochastic observations 𝑧𝑔 set the geodetic
datum. These observations make a reference needed to fix the position and orientation of the system
in 3D space.

Equation 2.10 can be rewritten to Equation 2.12. Here, Matrix 𝐶 describes the deformation hypoth-
esis.

𝑦 = 𝐴′𝑥𝑠 + 𝐶∇ + 𝑒 = (𝐴′ 𝐶) (𝑥𝑠∇) + 𝑒 (2.12)

where:

𝑦 = (𝑦𝑠 𝑧𝑑 𝑧𝑔)
𝑇

𝐴′ = (𝐴𝑠 𝑍𝑑 𝑍𝑔)
𝑇

𝐶 = (0 𝑍∇ 0)𝑇

𝑥𝑠 = (𝑥𝑐 𝑥𝑑 𝑥𝑛)
𝑇

Transformation in adjustment
In the deformation analysis of Velsink [34] the change in shape of the system is the deformation. Mean-
ing a change in relative distances between points in the system. To do this, coordinate transformation
needs to be inherent in the deformation adjustment. Velsink [34] proposes to put every measurement
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in the reference system of the first epoch. This transformation between reference systems is done in
steps of 1 epoch, so for epoch 𝑛 to epoch 1, 𝑛 − 1 transformations are needed. This means a set
transformation parameters are needed for every epoch after the initial epoch 1. It also means there are
no transformation parameters linking every epoch to every other. This prevents the amount of transfor-
mation parameters to increase exponentially with every epoch. And this method preserves the ability
for a point in epoch 2 and a point in epoch 5 to be compared as they will both be in the coordinate
system of epoch 1. In Equation 2.13 the symbolic equation of a single transformation is shown and in
Equation 2.14 the symbolic equation of a transformations from epoch 𝑛 to 1.

𝑥𝑛−1 = 𝑇𝑛,𝑛−1(𝑥𝑛 , 𝑓𝑛,𝑛−1) (2.13)

𝑥1 = 𝑇2,1(⋯ (𝑇𝑛−2,𝑛−1(𝑇𝑛,𝑛−1(𝑥𝑛 , 𝑓𝑛,𝑛−1), 𝑓𝑛−1,𝑛−2),⋯𝑓2,1) (2.14)

Where:

𝑥𝑛 = Parameters of measured point in epoch 𝑛
𝑓𝑛,𝑚 = Parameters of transformation from epoch 𝑛 to 𝑚
𝑇𝑛,𝑚 = Transformation function from epoch 𝑛 to 𝑚

Velsink [34] proposes that a general affine transformation equation can be used, as seen in Equa-
tion 2.15. The amount of parameters needed for a single general affine transformation is twelve. Affine
transformation is a transformation in five aspects, namely translation, rotation, scaling, shearing and re-
flection. These aspects are visualized in 2D in Figure 2.6. The translation is captured in the translation
vector and the other three aspects are captured in the matrix 𝑅.

Figure 2.6: The five aspects of a affine transformation in 2D. Translation is a change in absolute position. Rotation is a change
in orientation about the origin. Scale is a uniform change in size. Shear is a change in position proportional to the initial position.
Reflection is a mirroring operation.[22]

Velsink [34] also states that other types of transformation can be achieved by putting constraints on
this general affine transformation. For example, similarity transformation by constraining shearing or
congruence transformation by constraining the shearing and scaling. These constraints will effectively
decrease the amount of unknowns of the transformation from 12 to 6 unknowns for similarity and 7
unknowns for congruence, because constraints will act as observations and increase the degrees of
freedom.

[
0
0
0
] = − [

𝑋𝑡𝑜
𝑌𝑡𝑜
𝑍𝑡𝑜
] + 𝑅 ∗ [

𝑋𝑓𝑟𝑜𝑚
𝑌𝑓𝑟𝑜𝑚
𝑍𝑓𝑟𝑜𝑚

] + [
𝑇𝑋
𝑇𝑌
𝑇𝑍
] (2.15)

where:

𝑅 = [
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

] (2.16)
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Deformation in adjustment
The deformation equations in the deformation analysis will be between the transformed coordinate
parameters in the adjustment. The deformation can be described by any equation with any amount
of parameters. For example, the deformation equation can be a simple constant or a function of time
and/or position.

2.3.2. Null hypothesis
After adjustment, the deformation hypothesis used in the adjustment can be tested. In deformation
analysis, the null hypothesis is often the absence of deformation. This simplifies Equation 2.12 to
Equation 2.17. The null hypothesis must be tested. For testing, Velsink [34] uses the Overall Model
Test (OMT).

𝑦 = 𝐴′𝑥𝑠 + 𝑒 (2.17)

Overall Model test (Fisher-Test)
In the Overall Model Test (OMT), the null hypothesis 𝐻0 is tested against the alternative hypothesis 𝐻𝑎,
where 𝐻𝑎 does not give any restrictions to the observations. This makes the OMT a general test of the
null hypothesis, where only the residuals and covariance matrix need to be used [31].

𝐹𝑞=𝑚−𝑛,∞ =
𝑇𝑞
𝜎2 =

1
𝜎2 �̂�

𝑇𝑄−1𝑦 �̂� (2.18)

Where:

𝐹𝑞=𝑚−𝑛,∞ = F distribution with dimensions 𝑞 and ∞
𝑇𝑞 = OMT value of dimension 𝑞
�̂� = least-squares residuals
𝑄𝑦 = observation covariance matrix
𝜎 = square root of covariance factor

The OMT can reject the null hypothesis based on a critical value. The critical value is a boundary
determined by the significance level, which is the probability for acceptance of a hypothesis. Setting a
bad significance level can lead to a higher probability of wrongful rejection of hypothesis (Type-I error)
or wrongful acceptance of a hypothesis (Type-II error) [14]. The significance level can be determined
by the non-centrality parameter. This is known as the B-method [3, chapter 3]. In this way, tests of
different dimension can have the same power 𝛾 and same non-centrality parameter 𝜆0 by changing the
level of significance 𝛼. The non-centrality parameter is symbolically defined as:

𝜆0 = 𝜆(𝛾, 𝛼, 𝑞) (2.19)

where:

𝛾 = power of the test (or probability of rejecting a false null hypothesis)
𝛼 = significance level
𝑞 = dimension of the test

It should be noted that the Overal Model Test does not give insights to the reason for rejection. Teu-
nissen et al. [31] indicates that rejection could be from errors in observations, bad covariance matrix or
an inappropriate null hypothesis. To get more insight other tests are needed.

W-test
The w-test is performed on a single observation of an adjustment. In the w-test the residual of the ob-
servation is evaluated against the stochastic distribution expected of that observation. The likeliness
of that observation being correct is then returned from the w-test as a value. Like the Overall Model
test (OMT), the test value of the w-test needs a critical value to be compared to. This critical value is
determined by a set significance level. This significance level is the probability boundary, where an
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observation is accepted. Meaning if a significance level of, say, 0.01% is used then if the observation
is more likely than 0.01% the observation is accepted. The w-test is good for detecting blunders in the
observations, however when dealing with many observations a problem occurs. At a 0.01% signifi-
cance level with an adjustment of a million observations, a thousand observations should be rejected,
which are not blunders just unlikely observations. In many adjustment application, as tacheometry and
spirit-levelling, these amounts of observations are never reached, however in the photogrammetric
adjustments millions of observations are easily reached.

2.3.3. Alternative hypotheses
If the null hypothesis is rejected, alternative hypotheses have to be made to find the deformation.
Making alternative hypotheses is difficult as it requires assumptions of the deformation. Alternative
hypotheses can bemade using knowledge of the situation, physical mechanics causing the deformation
or data-snooping.
One or more alternative hypotheses are tested using the Overall Model Test. With the multiple different
alternative hypotheses, multiple tests have to be done. Every hypothesis can lead to a different amount
of parameters in the adjustment. This changes the degrees of freedom. With a different degree of
freedom, the critical value 𝑘𝛼 of the test also changes, as the critical value is calculated using the
dimension, power and non-centrality parameter of the test. Test statistics with different critical values
can not be directly compared. To still be able to compare the Overall Model Tests the B-method of
testing is used. In the B-method of testing, the test ratio, defined in Equation 2.20 [8] is used. This test
ratio is comparable between test of different dimensions. In the B-method a standard power must be
set and a reference non-centrality parameter must be calculated to make the critical value calculation
solely a function of the dimension of the test.

𝑇𝑅 =
𝑇𝑞
𝑘𝛼

(2.20)

where:

𝑇𝑅 = test ratio
𝑇𝑞 = test statistic of dimension 𝑞
𝑘𝛼 = critical value

If this test ratio is bigger than 1 the hypothesis is rejected, as the test statistic is bigger than the critical
value. For the test ratios that are below 1 the hypotheses can be accepted and the hypothesis with the
smallest test ratio is assumed to be the best.

2.3.4. Application
The deformation analysis of Velsink [34] is gives a tested deformation estimation. Using photogram-
metry in combination with this deformation analysis should be possible as the deformation analysis is
build on a nonspecific general observation, which can be retrieved in photogrammetry. However, this
analysis has not yet been applied using photogrammetry and difficulties will be possible. Can the ad-
justment be run in a reasonable time frame as there are much more observation using photogrammetry
than for example levelling and tacheometry? Also, in the many observations there may be blunders.
Is it possible to do the analysis when there are blunders in the observation, or can the blunders be
worked around? Is the precision of the image point observations good enough to make the statistical
tests significant at the millimetre level? Will the system reliably converge in the non-linear adjustment?
Some adaptation may be needed to make the deformation analysis work reliably using photogrammetry
these will be discussed in chapter 3.





3
Methodology

In this chapter, the methods are described to do photogrammetric measurements of a quay wall and
process thesemeasurements frommultiple epochs to perform a deformation analysis. Starting from the
acquisition of the measurements of the quay wall. Here, the aspects of the camera and measurement
setup are discussed and the measuring process itself both for camera calibration and quay wall defor-
mation. Then, the post-processing is discussed starting briefly with the feature detection processing.
Followed by the single epoch adjustment where all approximate values are found for final non-linear
multi-epoch deformation adjustment, which will be discussed last.

3.1. Acquisition
The photogrammetric measurements themselves may be simple pictures, but to use photogrammetry
as an accurate measurment tool there are many aspects to take into account. These aspects, both
general photogrammetry measurement aspects and quay wall specific aspects, are discussed in the
following sections.

3.1.1. Camera specifications
The measurements can be made with normal digital camera with an objective lens costing a few hun-
dred euros. This is a lens with a fixed focal length. Also, for photogrammetric application it is desirable
to have a stable focal length and a stable lens distortion. As said in subsection 2.2.3 the intrinsics of
an image contain the principal point, focal distance and lens distortion. These are calculated in the
camera calibration procedure, which is explained in subsection 3.1.4. The calibration values are only
valid for the lens used in the calibration. If the lens is not stable and changes, the calibration values are
not valid any more. This means having a stable fixed focal length and a stable distortion is favourable
as the estimated calibration is better applicable. Also, it is desirable to not have too much distortion to
correct for with the intrinsics. This rules out using lenses such as a fish-eye for more field of view.

It is important to have a sharp image. Blurring in the images causes problems when trying to find
features and match them between picture. Pinpointing the feature positions in blurry images is also
less accurate and more inconsistent. This is especially important when using photogrammetry as an
accurate measurement tool, where the aim is to get millimetre precision. Settings on the camera can
help to get a sharp image. However, it is most convenient to keep the settings equal throughout the
whole photo acquisition to make sure the calibration is also valid for all the measurements. First, a
short shutter speed is good preventing motion blur. When the sensor is only exposed a short time the
effect of camera shake and movement are minimized. Also, the aperture should be set to have good
focus on all the objects in the image. The narrower the aperture of the camera is, the more the depth of
field in the image. A bigger depth of field means objects at longer distance are sharp. However, a short
exposure time and narrow aperture makes the image darker, so taking picture on bright conditions is
advised. However, bright conditions can result in sharp dark shadows, which should be avoided. With
the ISO (light sensitivity) setting the image can be made brighter, but a too high ISO introduces noise in
the image. Shooting picture in RAW format is good as lighting can be adjusted after taking the picture.

17
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3.1.2. Measurement Geometry
The size of a pixel in the terrain is an important specification to know. The feature detection precision
is dependent on the size of pixels, which has a projected size in the scene. The projected size of a
pixel in the scene is dependent on the distance between camera and photographed object, the focal
length, and the size of a pixel on the sensor. This means that with closer objects, the projected pixel
size is smaller. In aerial photogrammetry, the Ground Sampling Distance (GSD) is used to quantify this
projected pixel size. The GSD is the length of a pixel projected on the ground. This can be adopted
for Quay wall photogrammetry where instead of the ground the quay wall is used, creating the Wall
Sampling Distance (WSD). This WSD can only be calculated for the images taken perpendicular to
the quay wall as the WSD would not be constant in other image orientations. This is not a problem
as the WSD is only used to get an indication of the size of an pixel in the 3D world. A small WSD is
optimal to be able to have much detail and be able to precisely find features on the quay wall. To reach
a small WSD the distance to the quay wall must be small, however this could give complications with
overlap between images. The resolution and field of view have to be considered to make sure overlap
is still enough for the photogrammetric process. With a higher resolution the distance to the wall can
be increased as there are more pixels in a image. The distance increase leads to more overlap and
need for less pictures. The field of view of a camera also makes that there is more overlap, but also
makes it that the WSD increases as every pixel needs to cover more area.

This overlap can be calculated from the geometry of the pictures. A visual representation of the ge-
ometry is shown in Figure 3.1. First, the single image view of the quay wall can be calculated, using
(mathematical) similarity between the triangle in the camera (using camera center and the sensor) and
in front of the camera (using the camera center and the quay wall).

𝑑𝑣𝑖𝑒𝑤 = 𝑑𝑠𝑒𝑛𝑠𝑜𝑟 ∗
𝑑𝑤𝑎𝑙𝑙
𝑓 (3.1)

where:

𝑑𝑣𝑖𝑒𝑤 = single image view range on wall
𝑑𝑠𝑒𝑛𝑠𝑜𝑟 = sensor width
𝑑𝑤𝑎𝑙𝑙 = distance between camera and wall
𝑓 = focal length

Using the single image view, range and inter image distance, which represents the spacing between
images, the overlapping area can be calculated.

𝑑𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑑𝑣𝑖𝑒𝑤 − 𝑑𝑖𝑛𝑡𝑒𝑟 (3.2)

where:

𝑑𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = overlap between images
𝑑𝑣𝑖𝑒𝑤 = single image view range on wall
𝑑𝑖𝑛𝑡𝑒𝑟 = image seperation

Combining Equation 3.1 and Equation 3.2, gives the equation for overlapping distance from the camera
specific focal length and sensor width and distance to the quay wall.

𝑑𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 𝑑𝑠𝑒𝑛𝑠𝑜𝑟 ∗
𝑑𝑤𝑎𝑙𝑙
𝑓 − 𝑑𝑖𝑛𝑡𝑒𝑟 (3.3)
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Figure 3.1: Schematic overview of the measurement geometry of a two images taken perpendicular to a quay wall. This figure
both shows the image overlap geometry between images and theWall Sampling Distance (WSD) geometry, which is the projected
size of a single pixel on the quay wall.

The formula for the wall sampling distance (WSD) is similar to Equation 3.1, but instead of the entire
sensor, a single pixel is taken to get the projected view of the pixel instead of the whole image.

𝑊𝑆𝐷 = 𝑑𝑝𝑖𝑥𝑒𝑙 ∗
𝑑𝑤𝑎𝑙𝑙
𝑓 (3.4)

where:

𝑊𝑆𝐷 =Wall Sampling Distance, projected size of a pixel on the quay wall
𝑑𝑝𝑖𝑥𝑒𝑙 = pixel width
𝑑𝑤𝑎𝑙𝑙 = distance between camera and wall
𝑓 = focal length

3.1.3. Measuring a quay wall
Tacheometric measurements are needed to retrieve coordinates of the reference points for the pho-
togrammetry. This can be in any coordinate system, as there will be a coordinate transformation in
the deformation analysis. This integrated transformation places every epochs measurements in the
coordinate system of the first epoch. For use in photogrammetry, these tacheometric measurements
must be made of points also captured by the photogrammetry, however the photogrammetric points are
retrieved from image feature detection in processing and so are unknown during the measurements. To
solve this, reference plates are made with markers, which are easily recognisable by computer vision.
In this way there are marker points in the images that are known to be detected. Such a reference plate
is shown in Figure 3.2.
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Figure 3.2: A reference plate for the photogrammetric measurements. The reference plate has four round barcode markers,
which have a numbering and can be pinpointed using computer vision. Also there are three orange prisms present, which are
very accurately and reliably measurable by tacheometer.

Computer vision can not only pinpoint the marker position in an image, the identification number of the
marker can also be read. The four markers of every reference plate are used by the photogrammetric
processing to place all images and points in 3D space using a region growing-like process, which is
described in section 3.3.

There are four markers on the reference plate and three prisms. Tacheometers are able to measure the
markers directly, however the prisms make the tacheometric measurements more accurate and con-
sistent and they are measurable at sharper angles. The prisms are better for the laser distance sensor,
due to the great reflectivity of the prisms and the prisms reflect well even at sharper angles. Additionally
with tilting prisms the angles can be even sharper when the prism is tilted towards the tacheometer.
Being able to do sharper measuring angles allows for less positions from which the tacheometry has
to measure. Having less tacheometer positions results in a great decrease in needed time to mea-
sure, as every tacheometer position needs not only to measure points for photogrammetry but also
needs reference measurements to place the tacheometer itself and this takes time. Using prisms for
the tacheometry means the markers need to be linked to the prisms. This is done using separate mea-
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surements of the relative offset between prisms and markers from a tacheometer at close range. With
these offset measurements the translation between prisms and markers is made.

The reference plates are placed on the quay wall with 50 meters between subsequent plates. After
all reference plates are placed the images can be taken. The images are made from a boat moving
parallel along the quay wall at a five meter distance from the wall, as seen in Figure 3.4. The whole
quay wall can be captured in one run along the wall. About 100 pictures are taken every 50 meters,
which gives much overlap. There are however multiple runs done along the quay wall, where in the
different runs different orientations of the camera are used. As having multiple orientations improves
the measurement geometry and the overlap between the images. While the imaging of the quay wall
is being carried out, a surveyor measures in the markers/reference plate prisms using the tacheometer
from the other side of the canal.

(a) Straight (b) Upside-down

(c) Angled left (d) Angled right

(e) High and angled down (f) Farther away

Figure 3.3: Images with the different image orientations used to improve measurement geometry
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Figure 3.4: Picture of the process of imaging the the quay wall. The boat is sailing parallel to the quay wall at approximately 5
meter distance.

3.1.4. Camera Calibration
The camera intrinsics are retrieved by a camera calibration procedure. In this procedure, an adjustment
is done using a set of images picturing accurately identifiable markers, where the aim is too calculate
the camera interior parameters. These interior parameters include the focal distance, pricipal point and
the lens distortion model. In this procedure it is important to have observations well distributed over the
image as the calculated interior parameters need to be accurate over the whole image. For lens distor-
tion the Brown’s radial distortion model with decentering [5] is used as described in subsection 2.2.3.
The lens distortion formulas in Equation 2.8 and Equation 2.9 cannot be used directly for two reasons.
Firstly, The Brown model assumes that the principal point is in the image center, at image coordinate
(0, 0). In practice the principal point has an offset from the image center. The Brown model can be
adapted with three substitutions to work with a principal point offset.

𝑑𝑥 = 𝑥 − 𝑥𝑝 (3.5)
𝑑𝑦 = 𝑦 − 𝑦𝑝 (3.6)

𝑑𝑟 = √𝑑𝑥2 + 𝑑𝑦2 (3.7)

The second change to the Brown model is to make lens distortion balanced by setting a radius around
the principal point where the radial distortion polynomial crosses zero [18]. This radius 𝑟0 is called zero
crossing and it is often taken to be in the range of 23 to the maximum image radius [21]. The balanced
lens model equation is made by subtracting the value of the polynomial at 𝑟0 from the polynomial. The
polynomial evaluated can be seen as an extra 𝐴0 element of the radial distortion (Equation 2.3).

𝐴0 = 𝐴1𝑟30 + 𝐴2𝑟50 + 𝐴3𝑟70 + ... (3.8)

Δ𝑟 = −𝐴0 + 𝐴1𝑟3 + 𝐴2𝑟5 + 𝐴3𝑟7 + ...
Δ𝑟 = 𝐴1𝑟3 − 𝐴1𝑟3 + 𝐴2𝑟5𝐴2𝑟50 + 𝐴3𝑟7 − 𝐴3𝑟70 + ...
Δ𝑟 = 𝐴1(𝑟3 − 𝑟30 ) + 𝐴2(𝑟5 − 𝑟50 ) + 𝐴3(𝑟7 − 𝑟70 ) + ...

(3.9)
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These two additions to the Brown model are applied to Equation 2.8 and Equation 2.9 and the radial
lens distortion parameters after 𝐴3 are not taken into account as these will be negligibly small. The final
lens model, can be seen in Equation 3.10 and Equation 3.11.

Δ𝑥 = 𝛿𝑥𝑟 + 𝛿𝑥𝑡 = 𝑃1(𝑑𝑟2 + 2𝑑𝑥2) + 2𝑃2𝑑𝑥𝑑𝑦 + 𝑑𝑥 ∗ (𝐴1(𝑑𝑟2 − 𝑟20 ) + 𝐴2(𝑑𝑟4 − 𝑟40 ) + 𝐴3(𝑑𝑟6 − 𝑟60 ))
(3.10)

Δ𝑦 = 𝛿𝑦𝑟 + 𝛿𝑦𝑡 = 𝑃2(𝑑𝑟2 + 2𝑑𝑦2) + 2𝑃1𝑑𝑥𝑑𝑦 + 𝑑𝑦 ∗ (𝐴1(𝑑𝑟2 − 𝑟20 ) + 𝐴2(𝑑𝑟4 − 𝑟40 ) + 𝐴3(𝑑𝑟6 − 𝑟60 ))
(3.11)

3.2. Feature Detection
For feature point detection a SIFT algorithm is applied to the image set. After features in the images
have been found and described. Feature points will be matched between overlapping images. Finding
the overlapping images before matching the points results in less errors where features between non-
overlapping images will be matched.

SIFT finds many feature points in the images, however the spreading of feature points over an im-
age is not controlled by SIFT. SIFT gives the feature points of which it has the most confidence. This
can result in areas in the image with very many points, while other areas in the image have no points.
When points are very close to each other they are not uncorrelated, however in the adjustment they
are assumed to be uncorrelated. This results in a misrepresentation in weights, which can result in
incorrect statistics of the adjustment.

To combat the clusters of feature points in images, a new point thinning procedure is developed. In
the thinning process, two aspects need to be taken into account. Firstly, points that SIFT recognises
and matches in many images are very good for the adjustment model, so it is not desirable to remove
these. Secondly, there should be points well distributed over the entire image for every image. If ev-
ery image only uses a certain part of the image the adjustment would become very vulnerable to lens
errors/inconsistencies in those parts. These aspect are taken into account by the following thinning
procedure.

Firstly, the feature points are ordered from best to worst using the amount of images a feature occurs
in as metric. A good point is well recognisable by the feature detector and thus present and matched in
multiple pictures. The more picture occurrences a feature has, the better a features is. Then a iterative
process over the points starts, from the best point to the worst. For every point it is evaluated if adding
the point to the images adds extra information. A point adds information if it is located in a part of the
image where no features are added yet. The image parts of made by splitting the image multiple times
in width and height.

3.3. Single epoch adjustment
As the collinearity equations are non-linear, the least-squares problem uses linearised version of these
equations in a non-linear least-squares adjustment. This means an initial approximate value for every
parameter is needed as the non-linear least-squares is an iteratively improving estimation. In aerial
photogrammetry, the initial parameter values can be retrieved from approximate measurements from
GNSS and INS on the plane and from ground control points. For quay wall photogrammetry there are
no approximate values available to use as initial values. There is no GNSS or INS linked to the cam-
era. The initial approximate exterior parameters of the images have to be calculated using the images
themselves.

The approximate values are calculated by a region growing-like algorithm using forwards and back-
wards intersection, which is developed for this research. Where, as described in subsection 2.2.4,
forwards intersection gets 3D terrain point coordinates from multiple images and, as described in sub-
section 2.2.5, backwards intersection gets exterior parameters of an image using multiple points in the
image. In the next section, the algorithm for getting approximate values for a single epoch adjustment
is discussed first. In subsection 2.2.5, the backwards intersection calculation is described in more de-
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tail. Forwards intersection is not discussed in detail as the forward intersection algorithm used was
available from the resources of Geodelta.

3.3.1. Single Epoch Adjustment with perfect data
The algorithm starts with at least four points, which have known coordinates and are identified in at
least two separate images. These are the first images to be placed using backwards intersection.
Commonly, the backward intersection is also an iterative calculation. However, this would require initial
values, which are not present. So, a closed-form backwards intersection method is used. This closed-
form backwards intersection can calculate the exterior parameters of an image using four known points.
A more detailed view of the closed-form backwards intersection calculation is discussed in Appendix A.

There have to be at least two images that are positioned in the first backwards intersections using
the initial four points. The points (found by SIFT) which are in at least 2 placed images are selected.
Forward intersection can be used on these images and their common points to place those points in
3D and so extend the amount of known points. With the expansion of the known points it may be
possible to place more images with backward intersection. And with more images more points can be
placed with forward intersection. This cycle continues alternating forward intersection to expand the
known points and backwards to expand the known images. When all images and points are found. The
point positions and image positions/orientations can be used as initial values for the non-linear Least
Squares adjustment. Below (algorithm 1), a pseudocode overview of this process is shown.

Algorithm 1: Single Epoch Adjustment with perfect data
Input: Known 3D reference points & imagepoint observations for every image
Output: Image exterior parameters & 3D point coordinates

1 Find all images which have at least 4 known points;
2 Position those images by backward intersection;
3 if Amount of images placed < 2 then
4 Error: Can not continue;
5 else
6 Find all points which are present in at least 2 images;
7 Position those points by forward intersection;
8 while There are images which have at least 4 known points do
9 Position the image with most known points by backward intersection;

10 Find all points which are present in at least 2 images;
11 Position those points by forward intersection;
12 Non-linear Least Squares adjustment using Bundle;

3.3.2. Single Epoch Adjustment with imperfect data
There is one problem in algorithm 1. It assumes that the data is perfect. SIFT must perfectly find and
pinpoint features and the features must be perfectly matched between images. In reality this is not the
case. SIFT gives incorrect matches between images and also they are not perfectly pinpointed in the
images. The images themselves also have geometric errors, for example, from light refraction. These
errors make for a need to add robustness measures to the algorithm. This is done at multiple places
in the algorithm.

The first robustness measure proposed to the newly developed single epoch adjustment is a point
filter using the residuals from the forward intersection. The forward intersection algorithm uses a small
least-squares adjustment in which residuals can be calculated. If these residuals are above a certain
threshold the point is likely incorrectly placed, and thus the point is not kept. This does give an extra
condition that the point has to be present in at least three known images, instead of two. This condition
is already satisfied during the SIFT feature detection, as requiring a certain amount of feature occur-
rences is a good filter for SIFT features.

The second robustness measure proposed is a RANSAC approach to improve backward intersec-
tion. The backward intersection uses 4 points, however there may be many more known points in
the image. Most likely some of the known points are incorrect. By doing the backwards intersection
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many times using different sets of 4 known points many possible image exterior parameter sets can be
determined. Then the best image position/orientation is chosen. The choice is based on the smallest
projection error of the fourth point.

The third robustness measure is an intermediate non-linear least-squares adjustment. In every iter-
ation after the forward intersection a non-linear least-squares adjustment is done using already found
images and points. If this adjustment is successful, an Overall Model Test (OMT) is done. If this OMT is
smaller than its critical value the newly placed image and points are approved. If the OMT is above the
critical value, a w-test is used to filter out the bad observations corresponding to the incorrect points. If
the OMT gets below the critical value after the w-test filtering, the newly placed image and points are
approved. If the adjustment is not successful, then the newly placed image and points are rejected.
Rejected images are first temporarily skipped. If later in the process they still can not be, placed they
are permanently skipped and will not be placed. Below a pseudocode overview of the algorithm can
be seen.
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Algorithm 2: Single Epoch Adjustment with imperfect data
Input: Known reference points & imagepoint observations for every image
Output: Image exterior parameters & 3D point coordinates

1 Find all images which have at least 4 known points;
2 Position those images 1000-times by backward intersection using random

4 known points;
3 Choose image position with smallest projection error; // Backward

intersection robustness measure
4 if Amount of images placed < 2 then
5 Error: Can not continue;
6 else
7 Find all points which are present in at least 2 images;
8 Position those points by forward intersection;
9 for point in placed points do
10 if residual < threshold then // Forward intersection robustness measure
11 Accept point;
12 else
13 Reject point;
14 end
15 end
16 Perform Non-linear Least Squares adjustment using all known images

and points; // Intermediate adjustment robustness measure
17 if Adjustment successful then
18 if OMT < critical value then
19 accept images and points placed;
20 else
21 while OMT > critical value do
22 Filter points using w-test;
23 end
24 end
25 else
26 Error: Can not continue;
27 end
28 while There are images which have at least 4 known points do
29 Position the image with most known points 1000-times by backward

intersection using random 4 known points;
30 Choose image position with smallest projection error; // Backward

intersection robustness measure
31 Select the image position with the smallest projection error;
32 Find all points which are present in at least 2 images;
33 Position those points by forward intersection;
34 for point in placed points do // Forward intersection robustness measure
35 if residual < threshold then
36 Accept point;
37 else
38 Reject point;
39 end
40 end
41 Non-linear Least Squares adjustment; // Intermediate adjustment

robustness measure
42 if Adjustment successful then
43 if OMT < critical value then
44 accept images and points placed;
45 else
46 while OMT < critical value do
47 Filter points using w-test;
48 end
49 end
50 else
51 Image and points rejected;
52 end
53 end
54 end
55 Perform Non-linear Least Squares adjustment using all known images and

points;
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3.4. Deformation
The Photogrammetric Deformation analysis workflow is based on the general deformation analysis
from Velsink [34]. In section 2.3 this method is discussed in general in this section it will be discussed
in connection to quay wall photogrammetry.

3.4.1. Single epoch adjustment to multi epoch deformation adjustment
The single epoch adjustment is done to extract the approximate values to make the non-linear defor-
mation adjustment possible. For the deformation adjustment it is important to have points, which are
identified in multiple epochs. The single epoch adjustment does not take into account this condition.
This is solved with a new run of SIFT feature matching using the images of all epochs, which are placed
in the single epoch adjustment. In this multi epoch SIFT matching points are found in the images with
the condition that they are identified in multiple epochs. All image positions and orientations are now
known from the single epoch adjustment and this can be used in the SIFT matching procedure to more
quickly estimate which images overlap and thus where feature points can bematched. The newly found
multi-epoch points for deformation also need approximate values in every epoch they are in, because
all the image positions and orientations are already known there is no need for a region growing pro-
cess like single epoch adjustment, because every new point can be immediately placed using forward
intersection. In short, to prepare for multi epoch deformation adjustment extra SIFT points are found
and placed, which are identified in multiple epochs and thus can be used to calculate the deformation.

3.4.2. Deformation Adjustment
Observation vector 𝑦
The 𝑦 observation vector is formed. In this vector all observation values are stored. A observation is
a value with a certain uncertainty, which is the stochastic nature of the observation. This uncertainty
is defined in the 𝐷(𝑦) covariance matrix, using the variances of the observations on the diagonal and
covariances between the observations on the non-diagonal positions.

𝑦 = [𝑎1, 𝑏2, … , 𝑏𝑝, 𝑓, 𝑑]
𝑇

(3.12)

where:

𝑎1 = image point observation values vector for epoch 1
𝑏2 = image point observation values vector for epoch 2 approximately transformed to 𝑎’s reference

system
𝑏𝑝 = image point observation values vector for epoch 𝑝 approximately transformed to 𝑎’s reference

system
𝑓 = transformation constraint observation vector = #»0
𝑑 = deformation constraint observation vector = #»0

The observation vector is split in three groups. First the image observations (𝑎1, 𝑏2 and 𝑏𝑝), which
link the image extrinsics, image intrisics to the terrain point by the collinearity equations as seen in
Equation 2.1 and Equation 2.2.

The second group are the transformation constraints, which are the zero observations. They link points
𝑃𝐴,𝑛 in epoch 𝑛 to their transformed point 𝑃𝐴,𝑛−1 in epoch 𝑛 − 1 using a transformation equation with
parameters 𝑓𝑛,𝑛−1.

0 = 𝑇(𝑃𝐴,𝑛 , 𝑃𝐴,𝑛−1𝑓𝑛,𝑛−1) (3.13)

The third group are the deformation constraints, which are zero observations. They link points 𝑃𝐴,1
to points 𝑃𝐵,1 by a deformation equation with parameters ∇. 𝑃𝐴,1 and 𝑃𝐵,1 are they same point mea-
sured at different epochs, but transformed to the coordinate system of the first epoch.

0 = 𝐷(𝑃𝐴,𝑛 , 𝑃𝐵,𝑛 , ∇) (3.14)
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Parameter vector 𝑥
The parameter vector 𝑥 is formed from the parameters in all the observation equations. These are all
the 3D terrain point coordinates and their transformed versions, all the exposure station extrinsics and
intrinsics, the transformation parameters and the deformation parameters. They are all put in the 𝑥
parameter vector.

𝑥 = [𝑐, 𝑓, ∇]𝑇 (3.15)

where:

𝑐 = linearised observation equation (collinearity) parameter vector
𝑓 = transformation parameter vector
∇ = deformation parameter vector

Design matrix A
Due to the non-linear nature of the observation/constraint equations, linearisation is needed to make the
design matrix A. Linearisation of the observation equation means that the observations and parameters
in the least-squares adjustment will be adjustments to the observations and parameters of the previous
iteration. This means instead of 𝑦 and 𝑥, the least-squares adjustment uses observation adjustments
Δ𝑦 and parameter adjustments Δ𝑥.

Δ𝑦 = [Δ𝑎1, Δ𝑏2, … , Δ𝑏𝑝, Δ𝑧𝑓 , Δ𝑧𝑑]
𝑇

(3.16)

where:

Δ𝑎1 = adjustment of observation values vector epoch 1
Δ𝑏2 = adjustment of observation values vector epoch 2
Δ𝑏𝑝 = adjustment of observation values vector epoch p
Δ𝑧𝑓 = adjustment of transformation constraint observations = 0
Δ𝑧𝑑 = adjustment of deformation constraint observations = 0

Δ𝑥 = [Δ𝑐, Δ𝑓, Δ∇] (3.17)

where:

Δ𝑐 = adjustment of linearised observation equation (collinearity) parameters
Δ𝑓 = adjustment of transformation parameters
Δ∇ = adjustment of deformation parameters

The 𝐴 matrix is built from the linearised observation equations linking observations and parameters. A
schematic overview of the 𝐴 matrix of a two epoch deformation adjustment can be seen in Figure 3.5.

𝑋𝑌𝑍𝜔𝜙𝜅1 𝑋𝑌𝑍𝜔𝜙𝜅2 𝑓2,1 ∇𝑋𝑌𝑍1,1 𝑋𝑌𝑍2,2 𝑋𝑌𝑍2,1

𝑥𝑦2

𝑥𝑦1

0

0

𝐴1

0

0

0

𝐴2

0

0

𝑇2

0

0

𝐷 𝐷 𝐷0 0 0

Figure 3.5: Schemetic overview of the structure of a deformation adjustment design matrix using measurements from 2 epochs.
Parts 𝐴𝑛 contain the linearisation of the image point observation equation (collinearity equations), which links the observations
𝑥𝑦𝑛 to the image parameters 𝑋𝑌𝑍𝜔𝜑𝜅𝑛 and point parameters 𝑋𝑌𝑍𝑛,𝑛, where 𝑛 is the epoch. parts 𝑇𝑛 contain the linearisation
the transformation equation, which links the point parameters 𝑋𝑌𝑍𝑛,𝑛 to the point parameters 𝑋𝑌𝑍𝑛,𝑛−1 using the transformation
parameters 𝑓𝑛,𝑛−1, where n is the epoch. Parts 𝐷 contain the linearisation of the deformation equations, which links point
parameters 𝑋𝑌𝑍𝑛,1 to point parameters 𝑋𝑌𝑍𝑚,1 using the deformation parameters ∇, where 𝑛 and𝑚 are different epochs.
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All the way on the left are the observations 𝑥𝑦𝑛 for both epochs and the 0 observations for the transfor-
mation and deformation constraints. On the top there are the parameters with the image extrinsics and
intrinsics 𝑋𝑌𝑍𝜔𝜑𝜅𝑛, the terrainpoints 𝑋𝑌𝑍𝑛,𝑛 the translated terrainpoint 𝑋𝑌𝑍𝑛,𝑛−1, the transformation
parameters 𝑓𝑛,𝑛−1 and the deformation parameters ∇. In the 𝐴𝑛 parts of the 𝐴 matrix the single epoch
adjustments are done. In the 𝑇𝑛 part of the matrix the points from epoch 2 are transformed to the co-
ordinate system epoch 1. In the 𝐷 parts of the matrix the deformation between points in epoch 1 and
transformed point from epoch 2 is added.

3.4.3. Adjustment
First, the Δ𝑦 vector is determined by subtracting the calculated observation values from the 𝑦 observa-
tion vector. The calculated observation values use the last iteration’s parameters or the initial approx-
imate parameters in the first iteration. Using the linearised observation equations the 𝐴 design matrix
is formed.

The Δ�̂� parameter adjustment is then calculated using the least-squares formula:

Δ�̂� = (𝐴𝑇𝑄−1𝑦 𝐴)−1𝐴𝑇𝑄−1𝑦 Δ𝑦 (3.18)

The parameter adjustment Δ�̂� is then added to the last iteration’s parameters 𝑥 to make new adjusted
parameters �̂�. The improvement from the iteration is calculated. If that improvement is smaller than a
certain threshold the adjustment is complete and the iterating stops.

3.5. Deformation Adjustment program
Geodelta has a program called Bundle, which can perform adjustments for a photogrammetric system
of equations. Bundle is limited to single-epoch adjustments and so for estimating the deformation this
program has to be extended. This extension includes integrating an epoch number to every obser-
vation/parameter and many additional observation and parameter types. The initial state of Bundle
included the following observation types:

• Imagepoint, an imagepoint actually consist of two observation an imagepoint x-observation and
y-observation. These observation are the image coordinates of the projection of a terrain point on
the image. The observation equation is deducted from the collinearity equations. The parameters
in this observation equation are:

1. Image extrinsics, which consists of six parameters. Three parameters for the position of the
image 𝑋𝑐, 𝑌𝑐, 𝑍𝑐 and three parameters for the orientation of the image 𝜔𝑐, 𝜙𝑐, 𝜅𝑐

2. Image intrinsics, which consists of at least 3 parameters. These three parameters are the
focal distance of the camera used and it’s principle point x and y coordinates. Additionally
when a lens distortion model is used more parameters have to be added. For example in
the Brown radial lens distortion model two or three parameters are added.

3. Terrain point position, the 3D position of the terrain point.

• Distance constraint, a distance constraint consists of an observation of a distance between two
terrain points. The observation equation of the constraint is the euclidean distance between the
two terrain points. The only six parameters in this equation are then the 3D positions of both
terrain points.

• Observed coordinate, an observed coordinate consist of three observations. The three obser-
vation are the X, Y and Z coordinates of a terrain point. The observation equations are simple
the observed terrain point coordinate value is equal to the parameter coordinate value of that
terrain point. This means every observation equation has one parameter, the parameter is the
observation.

Bundle is also able to do the different adjustment phases to fullfill the procedure described by Polman
and Salzmann [24]. In this procedure first a phase one adjustment, also known as free network ad-
justment, is done and then a phase two adjustment, also known as adjustment to control points. In the
free network adjustment only observations are used. The position, orientation and scale of the system
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is determined by the S-basis (Schrankingsbasis in Dutch). The S-basis consists of a minimal amount
of constraints to set this position, orientation and scale. The minimal amount of constraints is 7 as the
scale (1 parameter), 3D positions (3 parameters) and 3D orientation (3 parameters) need to be set.
The free-network adjustment is used to statistically test the observations, for example by means of
overall model test (F-test) or w-test. With this adjustment bad observations can be filtered out. In the
second phase adjustment with control points is done. Additionally to the observations, known control
points are added to the adjustment system. These control points are given a a priori standard deviation
just like the observations. With enough control points to reach 7 parameters the system is fixed in
space and the S-basis is not needed. This means that the coordinate system of the adjustment result
is determined by the control point coordinate system. To make the Bundle program able to handle a
multi-epoch deformation measurements additions to the program are made. The observation types
added are:

• Transformation constraints, a transformation constraint also consists of three non-stochastic zero
observations. One observation for every axis in the 3D space. The observation equation is the
Affine transformation (rewritten to be equal to zero). The Affine transformation has six parameters.
Three parameters are the translation and three parameters are the rotation.

• Deformation constraints, a deformation constraint consists of a non-stochastic zero observations.
The observation equation is the relation between a terrainpoint in two different different epochs.
There are at least six parameters in this equation. These six parameters consist of three pa-
rameters for both terrain points. More parameters are possible as it depends on the deformation
model (function) used. For example, if the deformation model a an nth degree polynomial, there
will be n more parameters. Or if the deformation model is a constant value, 1 parameter will be
added.

3.5.1. Affine Transformation Observations & Parameters
In Equation 2.3.1, the transformation as intended by Velsink [34] for deformation adjustment is de-
scribed. In this research a transformation embedded in the adjustment as Velsink [34] proposes.
However, instead of using the general affine transformation with constraints to make a congruence
transformation, a different transformation is used to remove the need for the constraints as they are
built into the matrix. This is done by using a rotation matrix 𝑅(𝜔, 𝜑, 𝜅). This rotation matrix uses the
three euler angles to determine the entire nine element matrix. The rotation matrix can be seen in
Equation 3.19 and the total transformation formula with this rotation matrix in Equation 3.20.

The total transformation uses 6 parameters to transform a point to another coordinate system. Linking
a pair 3D points between coordinate systems gives 3 observations (X,Y,Z). Meaning with at least two
pairs of points linked coordinate transformation can be calculated assuming that the points are known.

𝑅(𝜔, 𝜑, 𝜅) = [
𝑐𝑜𝑠𝜅 ∗ 𝑐𝑜𝑠𝜑 𝑐𝑜𝑠𝜅 ∗ 𝑠𝑖𝑛𝜑 ∗ 𝑠𝑖𝑛𝜔 − 𝑠𝑖𝑛𝜅 ∗ 𝑐𝑜𝑠𝜔 𝑐𝑜𝑠𝜅 ∗ 𝑠𝑖𝑛𝜑 ∗ 𝑐𝑜𝑠𝜔 + 𝑠𝑖𝑛𝜅 ∗ 𝑠𝑖𝑛𝜔
𝑠𝑖𝑛𝜅 ∗ 𝑐𝑜𝑠𝜑 𝑠𝑖𝑛𝜅 ∗ 𝑠𝑖𝑛𝜑𝑠𝑖𝑛𝜔 + 𝑐𝑜𝑠𝜅 ∗ 𝑐𝑜𝑠𝜔 𝑖𝑛𝜅 ∗ 𝑠𝑖𝑛𝜑 ∗ 𝑐𝑜𝑠𝜔 − 𝑐𝑜𝑠𝜅 ∗ 𝑠𝑖𝑛𝜔
−𝑠𝑖𝑛𝜑 𝑐𝑜𝑠𝜑 ∗ 𝑠𝑖𝑛𝜔 𝑐𝑜𝑠𝜑 ∗ 𝑐𝑜𝑠𝜔

]

(3.19)

[
0
0
0
] = − [

𝑋𝑡𝑜
𝑌𝑡𝑜
𝑍𝑡𝑜
] + 𝑅(𝜔, 𝜑, 𝜅) ∗ [

𝑋𝑓𝑟𝑜𝑚
𝑌𝑓𝑟𝑜𝑚
𝑍𝑓𝑟𝑜𝑚

] + [
𝑇𝑋
𝑇𝑌
𝑇𝑍
] (3.20)

3.5.2. Deformation Observations & Parameters
The deformation equation are equations, where two points of different epochs, but in the same coor-
dinate system are linked. Which deformation equations are used is the deformation hypothesis. The
null hypothesis in a deformation adjustment should be the absence of deformation. This leads to the
most simple deformation equation, which is ”no deformation”. This means a point is stable and thus its
coordinates are the same. This will result in the following vector equation.

[
𝑋𝐴1
𝑌𝐴1
𝑍𝐴1

] = [
𝑋𝐴2
𝑌𝐴2
𝑍𝐴2

] (3.21)
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However, in the deformation adjustment the deformation observation are non-stochastic zero obser-
vations so the equation is rewritten to have a zero vector on 1 side. This is also done for all following
deformation equations.

[
0
0
0
] = − [

𝑋𝐴1
𝑌𝐴1
𝑍𝐴1

] + [
𝑋𝐴2
𝑌𝐴2
𝑍𝐴2

] (3.22)

If there is deformation and the null hypothesis of ”no deformation” is rejected, then alternative deforma-
tion hypothesis are needed. These alternative deformation hypothesis use any deformation equation.
A basic example of such an deformation equation is a unique constant value deformation between
epochs. Where for every coordinate a unique value is added to represent the deformation. The vector
equation can be seen below.

[
0
0
0
] = − [

𝑋𝐴1
𝑌𝐴1
𝑍𝐴1

] + [
𝑋𝐴2
𝑌𝐴2
𝑍𝐴2

] + [
𝑑𝑋1−2
𝑑𝑌1−2
𝑑𝑍1−2

] (3.23)





4
Results

In this chapter the results of two tests will be discussed. The first is a wooden mock quay wall test.
This test evaluates the deformation estimation accuracy and precision as the deformation applied to the
mock quay wall is approximately known and some deformation points are measured by a tacheometer.
This means there are deformations to compare to the photogrammetric deformation estimation. The
second test is the measurement of the Schinkelkade in Amsterdam. In this test a real quay wall is
measured 4 times with a month interval between the measurements. It is not known if this wall will
deform between measurements. However it is expected that this quay wall will not move. This test
evaluates the deformation analysis process with real quay wall data and find if application is possible
in practice.

4.1. Wooden mock quay wall test

Figure 4.1: Mock quay wall test setup. The two wooden boards represent a quay wall. The boards are moved and tilted by which
a deformation is simulated.

In this test, the quay wall consists of two wooden walls with barcodes on them. The walls are moved to
simulate a deformed quay wall. The test setup using the mock quay wall is shown in figure Figure 4.1.
With this test setup multiple deformations are tested. An overview of the different tests is shown in

33
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Table 4.1. The deformations are always applied to the right wall, the left wall is not deformed in any test
as control. This means the left wall should always show a 0 mm deformation in all results. There are
a few control points needed in every epoch to fix that epoch in 3D space. The same six barcodes are
used for every epoch. These barcodes are located on the outer frame on the mock quay wall. In every
test, the X-direction is horizontally parallel to the wall, the Y-direction is horizontally perpendicular to
the wall and the Z-direction is vertical.

Test Deformation type Deformation X Deformation Y Deformation Z
1 Tilt No deformation Tilted 3 mm No deformation
2 Tilt No deformation Tilted 5 mm No deformation
3 Tilt No deformation Tilted 58 mm No deformation
4 Tilt No deformation Tilted 84 mm No deformation
5 Tilt Tilted 14 mm Tilted 84 mm Tilted 15 mm
6 Translation Translated -32 mm Translated 24 mm Translated 15 mm
7 Translation Translated -32 mm Tilted 24 mm No deformation
8 Tilt/Translation Unknown Unknown Unknown

Table 4.1: Overview of the simulated deformation tests using a wooden mock quay wall. The deformation of the wall in every
test is stated for the three principal directions, namely horizontal along the wall (X), horizontal perpendicular to the wall (Y) and
vertical (Z). This stated deformation is the deformation in the right wall, as the left wall is never deformed as control.

As an extra comparison, the barcodes in the corner of the right wall are alsomeasured using a tacheome-
ter. For every epoch an adjustment is done using the tacheometric measurements. The difference of
the adjusted 3D coordinates of the corner barcodes between epochs is retrieved to get the tacheomet-
ric deformation estimation. The photogrammetry also uses the barcodes as deformation points. This
means there is a deformation estimation of the same point using the photogrammetry and tacheometry,
which is used to compare the deformation estimations.

4.1.1. Estimated Deformation
To estimate the deformation, the hypothesis is used that all the barcodes on both the left and right
wall are deforming with a unique value in X, Y and Z direction. The smaller barcodes on the frame
are assumed stable in the hypothesis. The coordinate system used in all epochs is the same. This
means that the rotational and translational transformation parameters are 0. The coordinate transfor-
mation between epochs will be estimated in the deformation adjustment, so these are expected to be 0.

During adjustment a problem occurs where the iterations were only slightly converging and the adjust-
ment never reached the threshold to stop iterating. When the rotation parameters of the transformation
are fixed to be zero the adjustment does converge. The deformation results with fixed rotations are the
similar as with estimated rotations. The deformation of the points only differs in the order of 0.001 mm.
This means this convergence problem only has effect on the transformation estimation. For the fur-
ther deformation evaluation of the tests, it is chosen to fix the rotations. Otherwise, the non-stochastic
transformation observations heavily influence the Overall Model test.

Tilting tests
The first five tests were focussed on tilting the right wall. An overview of the expected and estimated
deformations of these tilting test is given in Table 4.2. Figure 4.2 only contains Y-deformations of the
right wall as the left wall was not deforming on purpose. In this left wall only submillimeter deformation
were found in every test. As the expectation is no deformation in the left wall a submillimeter deforma-
tion is a good result.

The estimated deformations of the right wall are similar to the expected applied deformations, as defor-
mation in the order of millimeters were found with good accuracy. When tilting the wall the deformation
should linearly change. The tilting Y-deformation should linearly increase from bottom to the top of the
wall, as the top off the wall is moved forwards or backwards. In tests 1, 2, 3, 4 and 5, there is a tilted
deformation in the Y direction, where this linear trend is visible as seen in Figure 4.2. Even the small
deformations from test 1 and 2 are accurate. An additional tilt in the X direction is tested in tests 4
and 5. Here, the X-deformations are accurate to what is expected. In tests 1, 2 and 3, there is also a
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small deformation in X (submillimeter for test 1 and 2 and max 3 millimeter for test 3) even though no
deformation is expected. However, these are small deformations and they are due to the imprecision of
moving the wall, which becomes worse the more the wall is moved. This means the tests where the wall
is moved multiple centimetres in Y direction (3,4,5) the other directions will also de deformed by some
millimeters. Lastly, an additional tilt in the Z direction is tested in test 5. Here, the Z-deformation is also
accurate to what is expected. In the other tests where no Z-deformation is expected only small defor-
mations are found. This small deformation is caused by the tilting of the plane, because tilting a plane
in the Y-direction, also results in the points on the plane slightly moving down. Overall, the five tilting
tests show that the estimated deformations are within a few millimeters to the expected deformations,
where the small differences are attributed to uncertainty in measurement and expectation.

Test Row
Expected X
Deformation

in mm

Estimated X
Deformation

in mm

Expected Y
Deformation

in mm

Estimated Y
Deformation

in mm

Expected Z
Deformation

in mm

Estimated Z
Deformation

in mm
1 Bottom 0 0.01 0 0.21 0 -0.04
1 Top 0 -0.33 3 3.27 0 0.13
2 Bottom 0 0.01 0 -0.06 0 0.04
2 Top 0 0.39 5 5.22 0 0.17
3 Bottom 0 0.10 0 3.41 0 1.04
3 Top 0 2.95 58 58.83 0 3.72
4 Bottom -1 -0.79 33 29.50 0 1.32
4 Top 2 2.05 84 85.07 0 3.84
5 Bottom 4 1.55 33 24.83 0 2.85
5 Top 14 14.70 84 83.94 15 14.30

Table 4.2: Overview of estimated vs. expected deformation in the tilted plane deformation tests. The range of deformations
expected and estimated is shown for every test in X, Y and Z direction.

(a) Y-Deformation of test 1 (b) Y-Deformation of test 2 (c) Y-Deformation of test 3

(d) Y-Deformation of test 4 (e) Y-Deformation of test 5

Figure 4.2: 2D front view of the wooden mock quay wall, where the deformation points on the wall are coloured to the size of
their deformation in a Y direction. These tests were done with tilted plane deformation. The description of the deformations for
every test are found in Table 4.1. The deformations in X and Z direction are visualized for these tests in Figure B.1

Translation tests
Tests 6 and 7 were focussed on a translation of the wall. Instead of the linearly changing deformations
in the tilting tests, these translation tests should give a deformation that is equal for every point on
the wall. An overview of the results of the translational tests is given in Table 4.3 and in Figure 4.3
the deformations of the tests are shown. Figure 4.3 only shows the right wall as the left wall was not
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deforming on purpose.

For test 6 and 7 the right wall was mainly translated. A translational Z-deformation should be present
in test 6. In test 6 the expected deformation in Z is found accurately. For test 7 there is a discrepancy
between the expected and estimated deformation. The expected deformation is 0, however there is
a linearly increasing deformation from 0 to -5 mm. This looks similar to the tilted deformations of test
5. This is a mistake in the logging of the test setup. The Z-deformation was achieved by removing 5
mm wooden planks from under the wall. In test 7, 3 wooden planks should have remained on both
sides of the wall this would give no Z deformation as the wall in image set 1 also had 3 planks un-
derneath. However, 4 planks were underneath one side of the wall making it 5 mm higher than the
other side. This created the linearly changing Z-deformation as seen in the estimated Z-deformation.
The estimated Y-deformation is accurate to the expected deformation in both test 6 and 7. Overall, the
two translational tests show that the estimated deformations are similar to the expected deformations,
where the small differences are be attributed to uncertainty in measurement and expectation.

Test Row
Expected X
Deformation

in mm

Estimated X
Deformation

in mm

Expected Y
Deformation

in mm

Estimated Y
Deformation

in mm

Expected Z
Deformation

in mm

Estimated Z
Deformation

in mm
6 Bottom -32 -33.38 24 22.49 15 11.48
6 Top -32 -31.72 24 26.06 15 12.93
7 Bottom -32 -34.63 -2 -2.24 0 -0.01
7 Top -32 -34.25 22 20.87 0 5.80

Table 4.3: Overview of estimated deformation and expected deformation in the translated plane deformation tests. The range of
deformations expected and estimated is shown for every test in X, Y and Z direction.

(a) Deformations of test 6

(b) Deformations of test 7

Figure 4.3: 2D front view of the wooden mock quay wall, where the deformation points on the wall are coloured to the size
of their deformation in a X, Y or Z direction. These tests were done with translated plane deformation. The description of the
deformations for every test are found in Table 4.1.

Tacheometry Comparison
Barcodes in the corners of the right wall are also measured by tacheometer and a deformation is re-
trieved from these measurements. For every epoch the tacheometric measurements were put in an
adjustment and the differences between the adjusted 3D coordinates of the barcodes is taken as de-
formation. This is also how the quay wall deformation monitoring is done currently in Amsterdam. In



4.1. Wooden mock quay wall test 37

Figure 4.4 three plots are shown with the estimated deformations from tacheometry vs. photogramme-
try. The exact numbers used in these plots can be found in Table B.1, where the estimated deformations
using tacheometry and photogrammetry and the difference between those deformation are listed. In
this comparison test 9 is also used. This test was not mentioned in the previous sections as the defor-
mation in this test was not logged, so it was not possible to make an expectation. The deformation in
test 9 was measured using tacheometry and photogrammetry, so it is included in this comparison.

Both the deformation estimations have an uncertainty. The Tacheometer has a precision of about
0.5 millimeter. The tacheometric measurements are done in close-range (< 10 meter), however the
barcodes are not ideal for a tacheometer to measure. The photogrammetric measurements are as-
sumed to have a precision of one pixel. Using Equation 3.4 with a distance of 5 meters to the wall and
a pixelsize of 0.0039 millimeter, the size of this precision on the wall is estimated. This results in an
expected photogrammetric precision of 0.8 millimeter on the wall.

The difference in deformation estimations between photogrammetry and tacheometry is small. For
the X- and Z-deformations the difference is less than 0.5 millimeter. The difference between the Y-
deformation is only slightly bigger with a maximum of 0.8 millimeter. These small differences are within
the precision of the measurements, which are 0.5 millimeter and 0.8 millimeter for tacheometry and
photogrammetry respectively. This means in this test the photogrammetric deformation are as good as
the tacheometric measurements. As tacheometry is the currently used method of deformation monitor-
ing this is a good indication that photogrammetric deformation monitoring is a capable alternative. The
slighlty bigger difference in Y-deformation could be a result of themeasurement geometry of photogram-
metric measurements. Images are only taken from the front of the wall, which makes the precision in
the Y-direction worse. This effect is also seen on the real quay wall, as discussed in subsection 4.2.2.
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(a) The estimated X-deformations (Y-axis) in the barcodes at the corners of the mock wall for every test (indicated by test number and corner
description on the X-axis) from tacheometry and photogrammetry with error bars, which indicate the expected precision of the estimations, which
is 0.5 mm for tacheometry and 0.8 mm for photogrammetry.

(b) The estimated Y-deformations (Y-axis) in the barcodes at the corners of the mock wall for every test (indicated by test number and corner
description on the X-axis) from tacheometry and photogrammetry with error bars, which indicate the expected precision of the estimations, which
is 0.5 mm for tacheometry and 0.8 mm for photogrammetry.

(c) The estimated Z-deformations (Y-axis) in the barcodes at the corners of the mock wall for every test (indicated by test number and corner
description on the X-axis) from tacheometry and photogrammetry with error bars, which indicate the expected precision of the estimations, which
is 0.5 mm for tacheometry and 0.8 mm for photogrammetry.

Figure 4.4: Plot for comparison between the tacheometric and photogrammetric estimated deformations in X, Y and Z directions.
The tacheometry show a very similar estimated deformation in all measurement points where the difference between tacheometry
and photogrammetry is within the precision of both techniques.
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4.2. Amsterdam Schinkelkade test
Multi-epoch test measurements are made at the Schinkelkade in Amsterdam for the development of
the photogrammetric deformation analysis of quay walls. This test is done by Geodelta in collaboration
with Bouwrisk. In this test photogrammetry and tacheometry are used.

4.2.1. Measurements
In Table 4.4 an overview of the Schinkelkade measurements is shown along with the epoch number
they are assigned. In the timespan of this research it was possible measure and process 4 epochs.

Epoch Date Nr. of images Orientations
1 5-3-3021 1085 straight (5 meter), left, right, upside-down, high
2 19-4-2021 1184 straight (5 meter), left, right, upside-down, high
3 11-6-2021 1080 straight (5 meter), left, right, upside-down, high, straight (10 meter)
4 9-7-2021 811 straight (5 meter), left, right, upside-down, high, straight (10 meter)

Table 4.4: Overview of the Schinkelkade meausrements with date of measurement and assigned epoch number.

Theworkflow of this test is separated in two parts, the workflow of the tacheometric deformationmonitor-
ing and the workflow of the photogrammetric deformation monitoring. For the tacheometry, surveyors
perform the usual monitoring procedure. One surveyor places prisms on set points on the quay wall
at approximately 10 meters interval. These set points are on top of the wall and at the bottom and top
of the front face of the wall. Some of these bottom points make it necessary to use a boat to place
the prisms. The other surveyor operates the total station on the other side of the canal to measure in
the prisms. Every prism needs to be measured from different positions and every position of the total
station needs to be referenced from known reference points placed on the surrounding buildings.

The workflow of the photogrammetric monitoring starts with placing the reference plates. The spacing
between the reference plates is set at approximately 50 meters. After the reference plates are placed
additional markers are placed in some of the set points for the tacheometry prisms on the quay wall.
These additional markers are not necessary for the photogrammetric deformation analysis, however it
is useful to have common points between the tacheometry and photogrammetry and these additional
markers are measurable by both methods. The additional markers are, like the markers on the refer-
ence plates, detectable and identifiable by computer vision.

The reference plate barcodes and additional markers are measured in by the tacheometer. As men-
tioned in subsection 3.1.3, prisms are used to reach a better accuracy. In the first epoch smaller static
prisms were used on the reference plate instead of the tilting prisms seen in Figure 3.2, which were
used from epoch 2 on. The prisms of epoch 1 were less accurate and not reliably measurable from
sharp angles, which lead to the need for more tacheometer positions, which then leads to time needed
to measure the quay wall.

In the measurements of epoch 1 and 2, multiple runs at five meter along the quay wall are done with
different camera orientations, as explained in subsection 3.1.3. The orientation used were straight,
angled left, angled right, upside-down and from above. For the third and fourth epoch an extra run was
done at ten meters from the quay wall with a straight camera orientation. This ten meter run made the
single epoch adjustment, where the approximate image and point positions are estimated, much eas-
ier. The extra images made for much extra overlap between images also between image not directly
next to each other. This made it possible for the process to skip a hard-to-place image without the
algorithm getting stuck.

4.2.2. Single epoch adjustment Schinkelkade
To eventually do the deformation adjustment, first the approximate values of all parameters (points
positions and image orientations/positions) need to be estimated and a single epoch adjustment is per-
formed. The single epoch adjustment is done following the method described in section 3.3. From the
single epoch adjustment a point cloud is extracted containing the adjusted terrain points. Also, the a
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posteriori standard deviation of these points are retrieved from the adjustment and added to the point
cloud. The a posteriori standard deviation is seen as the precision in the coordinates.

This precision is estimated for X,Y and Z direction for every point in the adjustment, where X is the
horizontal direction along the quay wall, Y is the horizontal direction into the quay wall and Z is the
vertical direction. The point cloud with point precisions is visualized for the single-epoch adjustment
of epoch 3 in Figure 4.5, 4.6 and 4.7. These figures show that the standard deivation of the points on
the quay wall are mostly below 1 millimeter for X- and Z-direction and mostly below 1.5 millimeter of
Y-direction. As images can only be taken from the front on the quay wall the depth in Y-direction is
harder to estimate. This is similar to GNSS, which has a worse height estimation due to measurement
geometry, because measurements can only be taken from above.

The millimeter precision of single epoch adjustment points is a good indication that the deformations
estimated in the multi epoch adjustments will be good enough to assess deformations of 15 mm, as
required. The precision of the points on the buildings behind the quay wall are much worse, mostly
more than 2.5 mm standard deviation. This is the reason why there are no deformations estimated
using these points in the next processing step.

Figure 4.5: Point cloud with points of epoch 3. The points are coloured to the a posteriori standard deviation in X direction, which
is the direction horizontal along the quay wall.

Figure 4.6: Point cloud with points of epoch 3. The points are coloured to the a posteriori standard deviation in Y direction, which
is the direction perpendicular to the quay wall.
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Figure 4.7: Point cloud with points of epoch 3. The points are coloured to the a posteriori standard deviation in Z direction, which
is the direction vertical along the quay wall.

4.2.3. Deformation adjustment
First, a deformation analysis between epoch 1 and 3 is done from one reference plate to the next ref-
erence plate in parts. This means the quay wall is split in parts of approximately 50 meters. This is
done to increase the speed of the total process. Also, it makes it easier to detect where potential errors
occur. For a more in depth analysis of the adjustment the first part of the Schinkelkade quay wall is
chosen, as this part has the highest quay wall and so more points on the wall, which make the statistics
more reliable.

In Table 4.5, a summary of the size of the system is shown. There are 118 344 terrain points in epoch
1 and 3 combined. The points present in both epochs are the deformation points, i.e. the points where
an deformation is estimated. When selecting the deformation points, an additional condition is set that
a deformation point must be a point on the quay wall. This is done as the deformation in the points on
the houses is not of importance and they are not accurate as the precision in these points is worse, as
mentioned in subsection 4.2.2.

Number of ”no deformation” ”with deformation”
hypothesis hypothesis

Images 374 374
Points 118 344 118 344
Control Points 16 16
Image points 794 299 794 299
Observations 1 680 191 1 680 191
Parameters 406 795 448 885
Degrees of Freedom 1 231 306 1 273 402

Table 4.5: Size of the adjustments with ”no deformation” hypothesis and ”with deformation” hypothesis.

Hypotheses and testing
The deformation adjustment in the analysis has two parts. First the adjustment uses the null hypothe-
sis, only if the null hypothesis is rejected then alternative hypotheses will be used. For the deformation
analysis the null hypothesis states, there is no deformation in the quay wall. This hypothesis is enforced
in the adjustment through the non-stochastic deformation observations. The ”no deformation” equation
of a point is seen in Equation 3.22. After the adjustment the Overall Model test (OMT) is calculated to
test if the null hypothesis is valid. The ”no deformation” hypothesis gives a OMT of 0.173 with a critical
value of 1.004. This OMT is accepted and thus ”no deformation” is valid. Technically this means that
the conclusion of this deformation analysis is that the quay wall is not deforming. However, for evalu-
ation purposes of the deformation analysis, an alternative hypothesis with deformation is also used.
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The alternative ”with deformation” hypothesis assumes that the quay wall is deforming. The defor-
mation model is the most simple possible, namely every deformation point individually deforms with no
relation to the other points. The ”with deformation” equation of a point is seen in Equation 3.23. This
adjustment is done and the OMT is calculated to be 0.156 with a critical value of 1.004. This OMT is
also accepted and thus this ”with deformation” hypothesis is valid.

For evaluation purposes, the ”with deformation” alternative hypothesis is compared to the ”no defor-
mation” null hypothesis. In practice only alternative hypothesis should be compared to each other ,
however the analysis currently only integrates one altnerative hypothesis and so no comparison would
be possible. The (unrounded) critical values of the adjustment with and without deformation is different
as the dimension of the test is different. The dimension of the OMT is equal to the degrees of freedom
and, as seen in Table 4.5, the ”with deformation” hypothesis gives more parameters, namely 42 090
extra deformation parameters. These parameters are the X, Y and Z deformations for 14 030 deforma-
tion points on the part of the quay wall. The test ratio’s of the ”no deformation” and ”with deformation”
adjustments are 0.172 and 0.155, respectively. This means that the ”with deformation” hypothesis is
slightly better than the ”no deformation” hypothesis. This is however due to a bias in the test ratio com-
parison. Even though the differences in critical values due to different degrees of freedom are taken
into account by the test ratio, there still is bias to hypotheses, which are more loose. This means there
are parameters in the adjustment with less strict observations. The ”with deformation” hypothesis has
loose deformation parameters as each deformation parameter is dependent on a single deformation
observation.

Deformation estimation
From the ”with deformation” adjustment, the deformation estimates are retrieved. These deformations
are plotted in 3D space at the position of the deformation point in the first epoch. For reference a dense
point cloud is added. This is shown in Figure 4.8, 4.9 and 4.10. The deformation points are coloured
according to the deformation in a certain direction.

From the deformation adjustment the following deformation are retrieved. An estimated X-direction
deformations are between -2 mm and 1 mm. An estimated Y-direction deformations are between -1
mm and 1 mm. An estimated Z-direction deformations are between -3 mm and 0 mm. It should be
noted that these deformation retrieved from points that are between reference plates and thus control
points. Deformation points not between control points are not as accurate. These point are extrapolated
while points between reference plates are interpolated, which is more reliable. Overall, the deforma-
tions estimated between the control points in all direction are small enough to assume the quay wall is
stable.

Figure 4.8: Point cloud with deformation points. The deformation points are coloured to the deformation in X direction, which is
the direction horizontal along the quay wall. The position of the reference plates with control are indicated with an arrow.
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Figure 4.9: Point cloud with deformation points. The deformation points are coloured to the deformation in Y direction, which is
the direction perpendicular to the quay wall. The position of the reference plates with control are indicated with an arrow.

Figure 4.10: Point cloud with deformation points. The deformation points are coloured to the deformation in Z direction, which is
the direction vertical along the quay wall. The position of the reference plates with control are indicated with an arrow.

Observation residuals and W-test

From the adjustment, the final observation residuals are retrieved. The residuals of the image point
observations are the difference between the adjusted observation and the original observation. Every
image point observation has a x- and y-component. The image point residuals are plotted in two
histograms, one for x-residual and one the y-residual. Over these histograms a fitted normal distribution
of the residuals is plotted. The expectation of the residuals is a normal distribution as this is also chosen
as stochastic distribution for the image point observations. The means of these fitted distributions are
−2.92 × 10−8 mm and −1.51 × 10−8 mm for x and y residuals, respectively. This is close to zero,
which means the observations are accurate. The standard deviation is 0.0017 mm for both x and y
residuals. The expected standard deviation, which is also given as the a priori standard deviation
of the observations, is 1 pixel, which is equal to 0.0039 mm on the camera used. This means that
with 0.0017 mm the standard deviation of the fitted distribution over the residuals shows that a better
precision is reached than expected.
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Figure 4.11: Histograms of image point observation residuals in x and y after adjustment

The adjustment residuals are also used to perform the individual observation w-tests. However, these
calculations require the inverse of the matrix 𝐴𝑇𝐴. As described in Equation 3.4.2, the matrix 𝐴 has as
many columns as parameter in the adjustment and as many rows as observations in the adjustment.
With millions of observations and hundred thousands of parameters the 𝐴𝑇𝐴-matrix is large and cal-
culating the inverse is a computational intensive process. Processing a 50 meter part of the quay wall
already requires 4 hours to take the inverse. This is the reason why these w-tests are calculated with
thinned observations. The thinning is done using the algorithm explained in section 3.2.

It should be noted that these big inverses are not necessary for the deformation estimation and hypoth-
esis evaluation by the Overall Model Test. Only the individual observation w-test calculations require
this much time and so this computation size problem is not important.

The advantage of the w-test compared to looking at the residuals is that all the observations that are
evaluated can be compared even when they have a different stochastic distribution. The w-test is set
to reject an observation if the chance of that observation is less than 0.1 percent. In the deformation
analysis millions of observations are made, which means there is an expectation to have rejected ob-
servation, as explained in Equation 2.3.2. This is shown in the histograms in Figure 4.12. By far the
most w-test values are below the critical value of 3.29. This critical value is derived from the 0.1 per-
cent chance of a observation being an outlier. The frequency of w-test values quickly decreases with a
higher w-test value, which shows that the observation are good relative to their stochastic nature. With
more than 100 000 observations in this histogram it is expected to have a hundred rejected observation
and this is also the case. This does really not harm the deformation analysis as there will be thousands
of deformation points on the quay wall and a few possible outliers will not change the ability to see a
trend of a deforming wall.

Of course, there could be real blunders among the observations, which is why it is good to have a
option to check these observations. Photogrammetry gives as a good way to check observations. Ev-
ery image point observation comes from a point on an image. These are visually verifiable by plotting
on the image, if it is needed. For example, if a suspected blunder appears to be in the water when
looking at the observation in the image, it is verified that this observation in a blunder. An example of
observations plotted in the image is shown in Figure 4.13.
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(a) Histogram of the w-test values of all observations (b) Histogram of w-test values above critical value of 3.29

Figure 4.12: Histogram of observation w-test values. In figure a, it is shown that most w-test values are mainly at zero and the
frequency of observations with an bigger w-test is quickly declining. In figure b only observations with a w-test value bigger than
the critical value of 3.29 are shown. Here it is visible that there are not many observations with w-test value above the critical
value compared to the thousands of observations in figure a with a w-test value below the critical value.

An advantage of the w-test for deformation adjustment is it does not only test the many image point
observations, but also the transformation and deformation observations. If these observations are re-
jected, then there is a good reason to check if there are not any mistakes in the adjustment. These
transformation and deformation observation rejections can come from incorrect deformation hypothesis
or mismatched points.

Figure 4.13: Part of an image used in the deformation analysis with some observations plotted in the image. Observation
positions are presented as coloured dots with a name in the image. The name is used so an observation of the same point
is identifiable in multiple images. Sift observations are the red dots and barcode observations are the green dots. The image
has been turned to grayscale to make the coloured dots and labels more visible. The image has more more observations than
shown, however plotting all observations will impede the clarity

4.2.4. 250 meter wall deformation
Whenmore than 50 meters of quay wall are used in the deformation analysis, the individual observation
testing will take too much time to compute, as the design matrix of the adjustment becomes too big
to invert. This means individual observation testing will not be done for these quay wall deformation
adjustments.
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It is found that measurements of epoch 1 and 2 gives problems. Epoch 1 has difficulties in the last
50 meters of the quay wall and epoch 2 has difficulties in the first 50 meters of the quay wall. In both
these difficult parts, the single epoch adjustment of their respective epochs is not connecting the control
reference plates well enough to make a reliable adjustment. This seemed to be solved in epoch 3 and
4 where an extra set of images from 10 meter to the quay wall was used. This extra set of images
obtained at a greater distance is improving the overlap between pictures and this makes the single
epoch adjustment easier. The focus will be on the epochs 3 and 4 for the larger deformation analysis.

In Figure 4.14 and 4.15 the deformation estimations between epoch 3 and 4 are visualized. The
Schinkelkade is not expected to move so the deformation should be around 0, however it is not certain
that the quay wall will not move.

The estimated deformations in X direction show a deformation of -2 to 2 mm. This deformation is
mainly caused by a waving trend in the deformation along the quay wall. This could be a systematic
error or actual deformation. Most probable is a systematic error as it is seen that at every reference
plate the deformation is approximately zero, while at the reference plates the errors in the estimation
should be smallest. Also, the wave pattern seems consistent over the whole wall. This systematic
error is suspected to come from an imperfect calibration. An imperfect calibration can be caused by
an improper calibration measurement, in which case better care should be taken when calibrating, or
an incorrect calibration model, which does not model the lens distortion well enough, in which case a
different calibration model or different camera should be used.

The most important deformation direction for quay wall stability is the Y-direction into the quay wall.
The estimated deformations in Y direction show a deformation of -1 to 3 mm. There is a part of the wall
indicated by the gray box in Figure 4.14, where there may be a small deformation in the Y -direction.
The estimated deformations in Z direction show a deformation of -1 to 1 mm. There are no notable
features in this deformation direction, the wall is very stable in Z-direction

Overall the deformations show that the quay wall, which is not expected to be deforming, is barely
moving with maximum deformations of -2 to 3 mm. With this range estimated deformation it will be
possible to reliably detect deformation on a a quay wall, which is deforming 15 mm or more.
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Figure 4.14: Plot of the deformations in X, Y and Z direction along the quay wall. The plot Y-axis is the size of the deformation in
a certain direction and the X-axis are the position of the deformation points along the quay wall. Horizontal black line is the zero
deformation line and the + markers indicate locations of the reference plates with the control points. A gap in the plot means no
points are deformation points are present.
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(a) Estimated X-deformation between epoch 3 and 4

(b) Estimated Y-deformation between epoch 3 and 4

(c) Estimated Z-deformation between epoch 3 and 4

Figure 4.15: Estimated deformation between epoch 3 and 4. Deformation points are coloured to the deformation size in X-, Y-
or Z-direction with a dense point cloud for visualization purposes of 250 meters of quay wall at Schinkelkade in Amsterdam.
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Discussion

In this chapter, the results presented in chapter 4 will be discussed and interpreted to reach answers
to the research question asked in section 1.3. Starting by discussing the quality of the deformation
estimation retrieved from photogrammetry. Followed by a discussion on the improvements in time
cost and coverage of the deformation analysis. Then, additional advantages of the photogrammetry
are discussed. Lastly, the difficulties which were encountered in the tests and difficulties which are
expected when other quay walls are measured, are discussed.

5.1. Photogrammetric estimation quality
The main question to answer from the results is whether the quality of the deformation estimation is
good enough to make photogrammetric deformation analysis a viable alternative to the tacheometric
deformation analysis currently used. The results of the mock quay wall show that in near optimal con-
ditions the photogrammetric deformation estimations are just as good as the tacheometric deformation
estimation. The difference between the methods is sub-millimeter, which is within the precision of the
tacheometry. This means the method of photogrammetric deformation analysis works.

A real quay wall does not have these optimal conditions, however even in a real quay wall test the
photogrammetric deformation analysis shows very good results. From the estimated a posteriori stan-
dard deviation of a single epoch adjustment of the Schinkelkade, it is found that points on the wall
reach a precision of 1.5 millimeter and below. Going further in the deformation analysis it is found that
a hypothesis of no deformation is accepted and a conclusion can be made that the Schinkelkade is
not significantly deforming. When an alternative deformation hypothesis is used to retrieve a defor-
mation estimation, it is found that the Schinkelkade deformation estimation is maximum 3 millimeters.
The Schinkelkade is assumed to be not deforming, so the result has a maximum error of 3 millimeters
means that a 15 millimeter deformation is reliably detectable. This means the photogrammetric defor-
mation analysis quality is good enough to be an quay wall monitoring alternative.

The deformation quality could be even better as proved in the mock wall test, where the difference
between tacheometry and photogrammetry are within the standard deviation of the measurements.
One difference between the mock wall and the real quay wall is the precision of the image point ob-
servations. The barcode detection at the mock wall is more precise than the SIFT feature detection
at the Schinkelkade. This means the real quay wall with the SIFT observations has a higher a priori
standard deviation. This influences the strength of the adjustment and the quality of statistical testing.
There are two options to make the observations more precise: either use a different feature detection
and matching algorithm or improve the observations achieved with SIFT.

Due to the time constraint only SIFT, SURF and ORB were investigated in the research for this thesis.
Both SURF and ORB are feature detection algorithms similar to SIFT. SURF and ORB were mainly
developed to improve the speed over SIFT. A real precision improvement will not come from SURF or
ORB. SIFT, SURF and ORB are already older algorithm, more recently deep learning feature detec-
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tors/matchers are developed. With these new algorithms an improvement in precision is possible.

The other way to improve precision is to improve the SIFT result. This is achieved by using a least-
squares adjustment matching of the features in the images using the SIFT features as a approximation
to improve. The least-squares matching makes an adjustment the feature point to be more precise,
which will directly improve observation precision. It is expected that using least-squares will improve
the standard deviation of the observations to at best 1/10 pixel, where SIFT has a standard deviation of
1 to 1/2 pixels.

Another improvement to the overall quality is made by having the reference plates with the control
points closer together. The precision of the deformation estimations gets better when closer to the
control points. For the Schinkelkade, it was chosen to put a reference plate with control points every 50
meters of quay wall. This 50 meter was a guess to what was needed to reach the required estimation
quality. The required quality is reached with the 50 meter interval. However, a shorter interval could im-
prove the deformation estimation significantly. The disadvantage of having the reference plates closer
together is that more reference plates are required for the same length of quay wall and these reference
plates have to be measured by tacheometer and that is time consuming. This would be a consideration
the surveyor has to make.

5.2. Measurement & Computation time
The photogrammetric deformation estimation quality is as required, but this is not enough, there should
also be a significant time improvement over the tacheometric deformation monitoring to be able to mea-
sure quay walls at a large scale. Photogrammetry is definitely a quicker measurement of the quay wall,
where in the Schinkelkade test the photogrammetric method takes about a third of the time to measure
the same length of quay wall compared to the tacheometric method. There are also still ways to further
improve measurement speed, for example by using a multi-camera system that takes pictures at mul-
tiple orientations at once. In this way it would not be necessary to do multiple runs of making images
along the quay wall, in a single run all images in different orientations can be made.

In processing, the photogrammetric method is slower than the tacheometric method. The photogram-
metric deformation measurements need more processing to retrieve the final deformation estimations.
The current tacheometric monitoring only requires an adjustment of every epoch after which the defor-
mations are retrieved by simply calculating the difference between coordinates. The photogrammetric
deformation analysis presented in this research needs multiple steps of processing including image
feature detection and matching, single-epoch adjustment and a multi-epoch deformation adjustment
from which the deformation estimations are retrieved. Especially the image feature matching is a time
consuming process when many images are used. Also, the method of retrieving deformation from a
deformation adjustment, as described in this research, is slower than simply subtracting coordinates.
Photogrammetric deformation estimation can also be retrieved using the simply coordinate subtrac-
tion. And in the same way the tacheometric deformation estimation can also be retrieved using a
deformation adjustment. The reason the deformation adjustment is used is that it gives advantages,
namely different deformation equations can be integrated, stochastic observations are directly used in
the deformation estimation and statistical testing is possible to test the quality of the adjustment and
deformation hypothesis. This is a more time consuming process, but it will not impede the ability of
the photogrammetry to be faster than tacheometry as the processing is automated and does not take
manual work. The processing only requires the images and control points coordinates as input.

Furthermore, there are still improvements possible to the photogrammetric processing. For example,
using image overlap estimations to only match features in images that overlap. Also, all processing
is currently run on the central processing unit of the computer, however many of the processing steps
can utilize the graphics processing unit to make the processing faster.

5.3. Coverage of deformation results
Next to the time cost, another big improvement of photogrammetric deformation analysis, compared to
tacheometric deformation analysis, is the amount of deformation points on the quay wall. Where the
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tacheometry retrieves a deformation point ever 5 to 10 meters, the photogrammetry retrieves a defor-
mation estimation at approximately 300 points/m2 of quay wall. This massive measurement density
improvement gives us possibilities to improve the presentation and interpretation of the deformation.

Currently, the tacheometric deformation estimations are presented in 2D plots with a separate plot
for the deformation in every direction. An example of such a plot with the deformation in Y direction is
shown in Figure 5.1. Figure 5.1 is essentially the same plot as the Y deformation plot in Figure 4.14.
These plots are good for visualising deformations even if the scale of those deformations are small.
However, this visualization removes the advantage of the photogrammetric deformation analysis that
deformations over the whole wall are measured. This visualization squeezes the entire height of the
wall to a line. This means that if the top of the wall is deforming differently from the bottom of the wall
this would not be seen in this plot even though it is detectable from the photogrammetric deformation
analysis. To be able to see the deformation over the whole wall a 3D point cloud is used, as seen in
Figure 4.15. In this 3D view the deformation points are coloured to the deformation size in a certain
direction. It is harder to see small deformation differences over the whole, but the deformation point
distribution is nicely preserved and deformation trends over the whole wall are visible.

Figure 5.1: An Example of the currently used deformation visualization asmade by the surveyor. It shows deformation estimations
in Y-direction from 6 epochs retrieved from tacheometric deformation analsyis. The X-axis represents deformation points in order
along the quay wall and the Y-axis the deformation size in Y-direction. Five epochs are measured and their deformation relative to
the first epoch is presented. Two deformation thresholds are also shown in this figure. A signal threshold at 4 mm and boundary
threshold at 5 mm. If there are deformations bigger than these thresholds they will be indicated in the deformation report.

5.4. Examining the deformation results

Another limitation in the current presentation of the deformation is a the ability to check the measure-
ments and inspect possible deformations. When a tacheometric deformation analysis shows that there
is a deformation, there is no possibility to further inspect this. The deformation estimation value is the
only output the tacheometry gives. In this aspect the photogrammetric deformation analysis is also
able to improve the deformation analysis presentation and subsequently the interpretation. The defor-
mation points from photogrammetry can be projected into the images. In this way it is made visible
where exactly on the wall the deformation occurs and additionally a visual inspection of that quay wall
is immediately possible. If a deformation is found, it can be located in the images and it is possible to
see if there are cracks or other indications of deformations. It is even possible to go through the images
of multiple epochs and see cracks forming around suspected deformations. An example of projected
deformation points in an image is shown in Figure 5.2.
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Figure 5.2: Deformation point visualization where the deformation points are projected onto the images used in the deformation
analsyis. In this image the deformation points are coloured to the deformation size in Y direction (into the quay wall).

5.5. Further possibilities with deformation results
As a by-product of the photogrammetric deformation analysis, a 3D point cloud of the wall is made.
This point cloud can be used for a 3D visualizations, as is done in Figure 4.15. It is also possible to
use this point cloud to make a 3D model of the quay wall, using for example a triangulation between
the points to make a 3D mesh of the wall. This 3D mesh model of the quay wall can then be used
to do finite-element analysis on the quay wall. This makes it possible to do more extensive modelling
of failure of the quay wall and improve the understanding of the cause and effect of different failure
mechanisms.

5.6. Application of the deformation analysis
The Schinkelkade quay wall is a fairly standard brick city quay wall. The Schinkelkade is representative
for many kilometers of quay wall in not only Amsterdam, but also other cities such as Utrecht and The
Hague. However, the Schinkelkade will not be representative for every quay wall. This means results
of this research could not be representative for those different quay walls. And some of the choices
made in measurement and processing could be incorrect for other quay walls.

The only problem encountered during the Schinkelkade measurements is obstruction of the view. If the
quay wall is not visible no deformation points are found. This problem occurs when boats or vegetation
are in front of the quay wall as the wall will not be visible then. Removal of obstruction is the only way
to solve this problem. For boats this would require some preparation before measurements to notify
boat owners to not moor to the quay wall. With houseboats this will be difficult as they can not easily
move. The vegetation is not a big problem in winter as there is not much vegetation to block the view.
In the other seasons the vegetation is an obstruction. Problematic vegetation should be moved out of
the way or removed. Of course, it is also possible to accept that in that epoch a part of the quay wall
does not have points. The deformation analysis will still work for the rest of the quay wall if the images
at the obstruction have enough common points to make the system connected between subsequent
reference plates.

A possible problem that could occur with other quay walls is a lack of texture on the quay wall. The
feature point detection needs characterisable features in the images to work. For the photogrammetric
deformation analysis the required amount of features is enough features to link all images together.
With less features the adjustment will be weaker, however this can be compensated by moving the
reference plates closer together. For the Schinkelkade, a 50 meter interval between reference plates
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was enough to reach good deformation estimation quality. In general, brick quay walls and basalt quay
walls (Figure 5.3a) will have enough features, but untextured concrete quay walls (Figure 5.3b) or sheet
pile walls will not have enough reliably identifiable features. This can be solved by adding textures to
these quay wall. For example, putting paint sprinkles on the will which will make for great identifiable
features.

(a) Basalt quay wall, which has a good texture for finding features. (b) Concrete quay wall, which has a bad texture for finding features.

Figure 5.3: Quay walls from different materials.

The features found have to be matched between the epochs. To make this possible features need to
be similar in the epochs. This means the quay wall should look the same throughout the measure-
ments. For example, when a quay wall is completely painted between epochs, the matching between
the pre-painted features and post painted features will be hard. And the amount of deformation points
will be heavily reduced.

The photogrammetric deformation analysis is only tested on quay walls, however the only assump-
tion made specific to a quay wall is that only points of the quay wall are taken as deformation points.
This means that the deformation analysis is possible on any object as long as you can take pictures
with detectable features and there are reference points in the images. As this is untested it is unclear
what the quality of the estimated deformation will.

5.7. Deformation outliers
In a closer look upon the deformation points, it is seen that there are outliers with much higher defor-
mations than the deformation points around it. Using the photogrammetric advantage of being able to
inspect the observations plotted in the image, like shown in Figure 4.13, it is found that these outliers
can be contributed to incorrect feature matches. An example of this can be seen in Figure 5.4, here
3 image observation of a feature are shown. These three observations include a correct match, an
incorrect match with a close feature and a vastly incorrect match.

(a) Feature ”277585” in image ”2638” in epoch
4, correct feature.

(b) Feature ”277585” in image ”0929” in epoch
3, incorrectly positioned feature.

(c) Feature ”277585” in image ”2118” in epoch
4, incorrectly matched feature.

Figure 5.4: Example of errors in feature matching. Three matches of feature ”277585” is are shown, where one is correct and
the other two are incorrect.
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This mismatching problem is currently not detectable by the w-test, because every deformation
parameter only has one observation. In the future, this can be solved by using more complex deforma-
tion equations which use more deformation observations per deformation parameter. However, these
matching blunders do not seem to be a problem as there are much more correctly matched points
around the blunders so they are easily distinguished. As is shown in Figure 5.2: there are points on
the quay wall with a incorrect high deformation, however around those points are many more correct
points with low deformation. Extra strict feature matching could also reduce the outliers, however this
would remove many good points, which could be harmful to the deformation adjustment. The easiest
way to remove the outliers is through the visualization. Instead of showing every deformation point, the
deformation in the quay wall is interpolated and the interpolated deformation is shown. For example
by rasterizing the quay wall and calculating the mean or meadian deformation in every cell.

5.8. Rotation estimation problem
During the wooden mock wall test, described in subsection 4.1.1, it is found that when rotation of the
coordinate transformation is estimated in the adjustment, the convergence of the system is slow. A
possible cause of this convergence problem is that all observed points are close to being in a plane.
This is a bad geometry for estimating the rotations. A possible solution to this handling the adjustment
differently, for example using the B-model in the adjustment. This problem did not hinder the tests,
as the deformation estimation is not affected by this and it was possible to put the references in the
same coordinate system for every epoch. It would be better if convergence is good when estimating
the rotations, because it would not mess up the statistical testing of the transformation observations
and parameters.
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Conclusion

Failure of quay walls is a big problem in cities as Amsterdam. To solve this problem a lot of renovation
is needed. To minimize dangerous situations, prioritization of the most unstable quay walls is needed.
Quay wall failure is found to be often predictable by deformations in the wall. Currently, quay wall
deformationmeasurements are only done by tacheometry, however this method is too slow for the scale
of the problem. A innovative deformation monitoring method is needed. What are the requirements
from the organisations involved?

• A 15 mm deforming quay wall must be reliably detected.
• Measurements must be faster than the current tacheometric method.

Photogrammetric deformation analysis is proposed in this research as a solution. What quality of
deformation is possible?

• A similar deformation precision (0.5 mm) to tacheometry in optimal conditions is possible.
• A deformation precision of 3 mm on a quay wall is possible in practice.
• A measurement time 3 times quicker than by tacheometer

Is this quality good enough? This quality fulfils the requirements set for the new deformation method.
The photogrammetric deformation analysis is capable of retrieving precise deformation estimations of a
quay wall with a fast measurement time. Additional benefits of using the photogrammetric deformation
analysis over tacheometry are:

• A higher measurement point density on the quay wall.
• Statistically tested results.
• 3D deformation visualization.
• Ability to perform visual inspection.

What is the data acquisition work flow of the photogrammetric deformation analysis and how to form
observations from the photogrammetric measurements? First, reference plates are placed on the quay
wall and measured in by tacheometer. Images are taken of the whole quay from a boat at different ori-
entation to the quay wall. In the images of the quay wall, observations are retrieved of points visible in
multiple images, using a computer vision feature point detection and matching algorithm. Using these
image points and the reference plate points, the images and points are placed in 3D space and ad-
justed using bundle block adjustment. Then, this imaging is repeated with some months interval. With
multiple measurements of the same quay wall, deformation analysis process can begin.

How to build the non-linear least squares adjustment for deformation analysis? Deformation points
(points present in multiple epochs) are found using feature matching. The deformation analysis is done
using a non-linear adjustment based on Velsink [34], which integrates the measurements of all epochs
and estimations of coordinate transformations between epochs and deformations between epochs.
This makes the deformation analysis independent of the coordinate system and the deformation is di-
rectly retrieved from the observations, which means the stochastic nature of the observation is taken
into account. The coordinate transformation and deformation are added to the adjustment by non-
stochastic observations. Coordinate transformation uses a similarity transformation as observation
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equation and the deformation equation is defined by the deformation hypothesis. From this adjustment
the deformation estimations are retrieved.

How to test the adjustment to find the best hypothesis? After multiple deformation adjustments us-
ing different deformation hypothesis are performed, the results are tested by an Overall Model Test.
The Overall Model Test of all adjustments are compared to each other using the test ratio and the best
deformation adjustment is chosen. From this deformation adjustment the deformation estimation for
every deformation point is retrieved.

Finally, to what extend is it possible to do stochastic least-squares adjustment based deformation
analysis on a quay wall using photogrammetry? The photogrammetric deformation analysis is a ca-
pable deformation monitoring method to be used as an faster alternative to tacheometric deformation
monitoring. The precision is high enough to reliably detect unstable quay walls and additional advan-
tages of photogrammetry and multi-epoch deformation adjustment, such as the deformation in 3D over
the whole quay wall, statistically tested results and possibility for visual inspection, improve upon the
tacheometric deformation method. The photogrammetric deformation analysis cannot be used when
the quay walls are visually obstructed or textureless. On such quay walls the tacheometry will still
be needed. However, excluding these quay walls there are still many kilometers of quay wall where
photogrammetric deformation analysis can be used.

6.1. Recommendations
For future work on the photogrammetric deformation analysis, it would be most useful to expand the
possible deformation hypotheses. In this thesis two hypotheses developed and they were not using
any temporal and spatial relations between points, which could make the adjustment better. Also, the
feature detection and matching algorithms have a big influence on the total process. There are many
more modern alternative algorithms, which could be exploited for this photogrammetric deformation
analysis. For example, the SuperGlue algorithm [29], which uses a neural network to match image
features. Finally, the photogrammetric deformation analysis is developed and tested for application on a
quay wall. However, the method of this research should also be applicable to other deforming systems.
It would be interesting for future work to investigate this method on different deforming systems.



A
Closed form backwards intersection

In this appendix, a new closed-form backwards intersection algorithm is explained. The goal of the
backward intersection is to determine the exterior parameters (position and orientation) of an image
from the observations of known points in the image. It is partially based on a method proposed by Zeng
and Wang [36] with a trilateration (3D position determined from three distances to known points) based
on Askari and Barekat [1]. As input there are 4 known points denoted by 𝐴, 𝐵, 𝐶 and 𝐷. All known
points have known terrain coordinates 𝑋𝑘, 𝑌𝑘, 𝑍𝑘 and known image coordinates 𝑥𝑘 and 𝑦𝑘, where 𝑘 is 𝐴,
𝐵, 𝐶 or 𝐷. Also the focal distance 𝑓 of the image is known. In the first part of the backward intersection
point 𝐷 will not be used. Point 𝐷 is used later to reduce the possible answers to one.

A.1. Radii from geometry
The first step is to calculate the distances between the camera 𝑇 position and three of the known points
(𝐴, 𝐵 and 𝐶) in the image. This is a geometric problem where using the distances between points in 3D
and distances between points in the image are used. It also involves solving a quartic equation. The
complete derivation of the quartic equation can be found in Zeng and Wang [36]. A quartic equation
has four roots. Of those four roots only the roots without an imaginary part are used. From every real
root 𝑛 a set of radii is calculated. This is the distance between camera 𝑇 and the three known points 𝐴,
𝐵 and 𝐶 denoted as 𝑅𝐴, 𝑅𝐵 and 𝑅𝐶. These radius equations are defined by Zeng and Wang [36]. For
𝑅𝐵 there are 4 ways to calculate it. However there is only one right answer, which is the answer that
results from 2 of the equations.

𝑅𝐴 =
𝐷𝐶𝐴

√𝑛 − 𝑄𝐶𝐴 ∗ 𝑛 + 1
(A.1)

𝑅𝐶 = 𝑛 ∗ 𝑅𝐴 (A.2)

𝑅𝐵(1) =
𝑄𝐴𝐵 ∗ 𝑅1 +√𝑄2𝐴𝐵 ∗ 𝑅21 − 4 ∗ 𝑅21 − 𝐷2𝐴𝐵

2 (A.3)

𝑅𝐵(2) =
𝑄𝐴𝐵 ∗ 𝑅1 −√𝑄2𝐴𝐵 ∗ 𝑅21 − 4 ∗ 𝑅21 − 𝐷2𝐴𝐵

2 (A.4)

𝑅𝐵(3) =
𝑄𝐵𝐶 ∗ 𝑅3 +√𝑄2𝐵𝐶 ∗ 𝑅23 − 4 ∗ 𝑅23 − 𝐷2𝐵𝐶

2 (A.5)

𝑅𝐵(4) =
𝑄𝐵𝐶 ∗ 𝑅3 −√𝑄2𝐵𝐶 ∗ 𝑅23 − 4 ∗ 𝑅23 − 𝐷2𝐵𝐶

2 (A.6)
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where:

𝐷𝐴𝐵 = √(𝑋𝐴 − 𝑋2𝐵) + (𝑌𝐴 − 𝑌2𝐵 ) + (𝑍𝐴 − 𝑍2𝐵) (A.7)

𝐷𝐵𝐶 = √(𝑋𝐵 − 𝑋2𝐶) + (𝑌𝐵 − 𝑌2𝐶 ) + (𝑍𝐵 − 𝑍2𝐶) (A.8)

𝐷𝐶𝐴 = √(𝑋𝐶 − 𝑋2𝐴) + (𝑌𝐶 − 𝑌2𝐴 ) + (𝑍𝐶 − 𝑍2𝐴) (A.9)

𝑄𝐴𝐵 =
(2𝑥𝑎𝑥𝑏 + 2𝑦𝑎𝑦𝑏 + 2𝑓2)/𝑓2

√(𝑥2𝑎 + 𝑦2𝑎 + 𝑓2)(𝑥2𝑏 + 𝑦2𝑏 + 𝑓2)/𝑓2
(A.10)

𝑄𝐵𝐶 =
(2𝑥𝑏𝑥𝑐 + 2𝑦𝑏𝑦𝑐 + 2𝑓2)/𝑓2

√(𝑥2𝑏 + 𝑦2𝑏 + 𝑓2)(𝑥2𝑐 + 𝑦2𝑐 + 𝑓2)/𝑓2
(A.11)

𝑄𝐶𝐴 =
(2𝑥𝑐𝑥𝑎 + 2𝑦𝑐𝑦𝑎 + 2𝑓2)/𝑓2

√(𝑥2𝑐 + 𝑦2𝑐 + 𝑓2)(𝑥2𝑎 + 𝑦2𝑎 + 𝑓2)/𝑓2
(A.12)

As there are maximum four roots, there are possibly four sets of radii 𝑅𝐴, 𝑅𝐵 and 𝑅𝐶. The next part of
the closed-resection should be done with all radii-sets. Later, possible solutions will be eliminated.

A.2. Position by trilateration
From the radii-set the position of the camera is calculated using trilateration. Trilateration is the calcu-
lation of a position from distances to known points. Trilateration is the principle on which, for example,
GPS position is determined using the distances to known satellite positions. The trilateration algorithm
used is based on Askari and Barekat [1]. This algorithm solves general trilateration by translation and
rotation to a non-general situation where trilateration is easier to solve. This is the situation where the
three points (𝑃1, 𝑃2 and 𝑃3) in the trilateration are in the form of Equation A.13:

𝑃1 = [
0
0
0
] , 𝑃2 = [

𝑥2
0
0
] , 𝑃3 = [

𝑥3
𝑦3
0
] (A.13)

To get the known points 𝐴, 𝐵 and 𝐶, they have to be made in the form of Equation A.13. First they
are put in vectors and these vectors are translated by −𝐴 too center the points on point 𝐴 and put #»𝐴 in
the form of 𝑃1 of Equation A.13.

𝐴 = [
𝑋𝐴
𝑌𝐴
𝑍𝐴
] − [

𝑋𝐴
𝑌𝐴
𝑍𝐴
] = [

0
0
0
] , 𝐵 = [

𝑋𝐵
𝑌𝐵
𝑍𝐵
] − [

𝑋𝐴
𝑌𝐴
𝑍𝐴
] = [

𝑋𝐵 − 𝑋𝐴
𝑌𝐵 − 𝑌𝐴
𝑍𝐵 − 𝑍𝐴

] , 𝐶 = [
𝑋𝐶
𝑌𝐶
𝑍𝐶
] − [

𝑋𝐴
𝑌𝐴
𝑍𝐴
] = [

𝑋𝐶 − 𝑋𝐴
𝑌𝐶 − 𝑌𝐴
𝑍𝐶 − 𝑍𝐴

] (A.14)

Then, the xy-plane needs to coincide with the plane through points 𝐴, 𝐵 and 𝐶, denoted by plane 𝐴𝐵𝐶.
This means the perpendicular vector 𝑁 to the plane 𝐴𝐵𝐶 needs to coincides with the z-axis.

The rotations are determined from the vector 𝑁 perpendicular to plane 𝐴𝐵𝐶. As #»𝐴 is a zero vec-
tor, the calculation of 𝑁 is simply the cross-product between #»𝐵 and #»𝐶 . Only direction of 𝑁 is needed,
so 𝑁 is normalized.

�̂� =
#»𝐵 × #»𝐶
|𝑁| (A.15)

Given �̂�, the rotations to make it coincide with the z-axis are calculated. There are two rotations
necessary. Rotations are used in the form of rotation matrices where an angle is the input. However,
from the geometry of the situation, cos𝜃 and sin𝜃 can be calculated directly from �̂�. There is no need
to calculate the angle itself. These cos𝜃 and sin𝜃 calculation are found in Askari and Barekat [1]. This
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gives rotation matrix 𝑅𝑍(𝜃) defined in Equation A.16, which is a rotation around the z-axis rotating the
�̂� onto the xz-plane.

𝑅𝑍(𝜃) = [
cos𝜃 sin𝜃 0
− sin𝜃 cos𝜃 0
0 0 1

] (A.16)

After �̂� is rotated onto the xz-plane with 𝑅𝑍(𝜃), the rotation 𝑅𝑌(𝜓), defined in Equation A.17, is used to
rotate �̂� onto the z-axis. As with 𝑅𝑍(𝜃) the cos𝜓 and sin𝜓 are calculated using geometry from �̂� [1].

𝑅𝑌(𝜓) = [
cos𝜓 0 − sin𝜓
0 1 0

sin𝜓 0 cos𝜓
] (A.17)

Rotations 𝑅𝑍(𝜃)and 𝑅𝑌(𝜓) are applied on the coordinate vectors. The order of rotating is important as
we later need to reverse the rotations.

#    »𝐴𝑥𝑦 = (𝑅𝑍(𝜃) ∗
#»𝐴) ∗ 𝑅𝑦(𝜓) (A.18)

#    »𝐵𝑥𝑦 = (𝑅𝑍(𝜃) ∗
#»𝐵) ∗ 𝑅𝑦(𝜓) (A.19)

#    »𝐶𝑥𝑦 = (𝑅𝑍(𝜃) ∗
#»𝐶) ∗ 𝑅𝑦(𝜓) (A.20)

With these rotation the z value of vectors #    »𝐴𝑥𝑦,
#    »𝐵𝑥𝑦 and #    »𝐶𝑥𝑦 are set to zero. Now, to put the y value

of #    »𝐵𝑥𝑦 to zero an additional rotation is needed. This is done with a rotation around the z-axis, using
rotation matrix 𝑅𝑍(𝜙), which rotates the vector

#    »𝐵𝑥𝑦 to coincide with the x-axis. The cos𝜙 and sin𝜙 are
calculated using geometry from #    »𝐵𝑥𝑦 [1].

𝑅𝑍(𝜙) = [
cos𝜙 sin𝜙 0
− sin𝜙 cos𝜙 0
0 0 1

] (A.21)

Applying the rotation to #    »𝐴𝑥𝑦,
#    »𝐵𝑥𝑦 and

#    »𝐶𝑥𝑦.
# »𝐴𝑥 = 𝑅𝑍 ∗

#    »𝐴𝑥𝑦
# »𝐵𝑥 = 𝑅𝑍 ∗

#    »𝐵𝑥𝑦
# »𝐶𝑥 = 𝑅𝑍 ∗

#    »𝐶𝑥𝑦

With the rotation, # »𝐴𝑥,
# »𝐵𝑥 and

# »𝐶𝑥 are written in the form.

# »𝐴𝑥 = [
0
0
0
] , # »𝐵𝑥 = [

𝑥2
0
0
] , # »𝐶𝑥 = [

𝑥3
𝑦3
0
] (A.22)

This allows us to do a simpler trilateration calculation, where the coordinates of camera in the translated
and rotated system 𝑇′𝑋, 𝑇′𝑌 and 𝑇′𝑍 are calculated.

𝑇′𝑋 =
𝑅21 − 𝑅22 + 𝑥22

2𝑥2
(A.23)

𝑇′𝑌 =
𝑅21 − 𝑅23 + 𝑥23 + 𝑦23 −

𝑥3(𝑅21−𝑅22+𝑥22)
𝑥2

2𝑦3
(A.24)

For 𝑇′𝑧 there are 2 possible answers, because three overlapping spheres have 2 intersection points in
3D space. These intersection points are mirrored with respect to the plane through the center of the
three spheres. Because of the translation and rotations, the centres of the spheres are on the xy-plane,
which means the 𝑇′𝑧 can have a positive or negative sign.

𝑇′+𝑍 = √𝑅21 − 𝑇′𝑥
2 − 𝑇′𝑦2 (A.25)
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𝑇′−𝑍 = −√𝑅21 − 𝑇′𝑥
2 − 𝑇′𝑦2 (A.26)

This leaves the results.

𝑇′+ = [
𝑇′𝑋
𝑇′𝑌
𝑇′+𝑍

] , 𝑇′− = [
𝑇′𝑋
𝑇′𝑌
𝑇′−𝑍

] (A.27)

The 𝑇′+ and 𝑇′− are in the rotated and translated coordinate system made to do this simpler trilateration.
To put the results back in the original coordinate system of the terrain points the rotation and translation
operations are reversed. The following operations were executed, a translation by − #»𝐴 , a rotation by
𝑅𝑍(𝜃), a rotation by 𝑅𝑌(𝜓) and a rotation by 𝑅𝑍(𝜙). In Equation A.28, A.29 and A.30 these operations
can be seen as a single equation applied to #»𝐴 , #»𝐵 and #»𝐶 .

# »𝐴𝑥 = 𝑅𝑍(𝜙) ∗ (𝑅𝑦(𝜓) ∗ (𝑅𝑍(𝜃) ∗ (
#»𝐴 − #»𝐴))) (A.28)

# »𝐵𝑥 = 𝑅𝑍(𝜙) ∗ (𝑅𝑦(𝜓) ∗ (𝑅𝑍(𝜃) ∗ (
#»𝐵 − #»𝐴))) (A.29)

# »𝐶𝑥 = 𝑅𝑍(𝜙) ∗ (𝑅𝑦(𝜓) ∗ (𝑅𝑍(𝜃) ∗ (
#»𝐶 − #»𝐴))) (A.30)

For the reverse calculation of the results, the order is reversed and the translation is multiplied by -1
and the rotation matrices are inverted. In Equation A.31 and A.32 these reversed operations can be
seen as a single equation applied to # »𝑇+ and

# »𝑇−.
# »𝑇+ = 𝑅𝑍(𝜃)−1 ∗ (𝑅𝑦(𝜓)−1 ∗ (𝑅𝑍(𝜙−1 ∗

# »𝑇′+)) +
#»𝐴 (A.31)

# »𝑇− = 𝑅𝑍(𝜃)−1 ∗ (𝑅𝑦(𝜓)−1 ∗ (𝑅𝑍(𝜙−1 ∗
# »𝑇′−)) +

#»𝐴 (A.32)

Notice that trilateration is done for every radii set and the result of the trilateration gives two answers.
This makes that there are between 2 and 8 positions possible from the backward intersection calcula-
tions till now.

A.3. Orientation by bisection plane intersection
At this point the camera position 𝑇 is known. The orientation has to be estimated to get the total exterior
parameter set of the camera. The orientation is estimated using two of the known points and the camera
position. In this orientation estimated a rotation axis and rotation angle is estimated in the form of a
quaternion, 𝑄.

𝑄 =
⎡
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑

⎤
⎥
⎥
⎦

(A.33)

The points 𝐴 and 𝐵 are chosen to be used to estimate the orientation. The vector from camera to
the points in the terrain is estimated and normalized as angles between vectors is the only interest the
normalization makes sure there is no scaling from the length of the vectors.

̂𝐴𝑡 =
#»𝐴 − #»𝑇
|𝐴𝑡|

, �̂�𝑡 =
#»𝐵 − #»𝑇
|𝐴𝑡|

(A.34)

Also the vector from camera to the point on the image is estimated and normalized. This vector is
determined by the image point positions of the points (𝑥𝐴, 𝑦𝐴, 𝑥𝐵 and 𝑦𝐵) and focal length 𝑓 of the
camera.

̂𝑎𝑡 =
[𝑥𝐴 𝑦𝐴 𝑓]𝑇

|𝑎𝑡|
, ̂𝑏𝑡 =

[𝑥𝐵 𝑦𝐵 𝑓]𝑇

|𝑏𝑡|
(A.35)

The orientation of the camera is equal to the rotation which rotates ̂𝑎𝑡 onto ̂𝐴𝑡 and ̂𝑏𝑡 onto �̂�𝑡. First, the
rotation axis 𝑔 is found. The rotation axis is the vector of the intersection line between 2 planes. These
planes are made from the bisection vectors between ̂𝑎𝑡, ̂𝐴𝑡 and ̂𝑏𝑡, �̂�𝑡 and the vector perpendicular to
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̂𝑎𝑡, ̂𝐴𝑡 and ̂𝑏𝑡, �̂�𝑡. The bisector vectors are named 𝐴𝑏𝑠 and 𝐵𝑏𝑠, the perpendicular vectors are named
𝐴𝑝 and 𝐵𝑝.

𝐴𝑏𝑠 = | ̂𝑎𝑡| ∗ ̂𝐴𝑡 + | ̂𝐴𝑡| ∗ ̂𝑎𝑡 , 𝐵𝑏𝑠 = | ̂𝑏𝑡| ∗ �̂�𝑡 + |�̂�𝑡| ∗ ̂𝑏𝑡 (A.36)

𝐴𝑝 = ̂𝑎𝑡 × ̂𝐴𝑡 , 𝐵𝑝 = ̂𝑏𝑡 × �̂�𝑡 (A.37)

To get 𝑔, the intersection between the planes formed by 𝐴𝑝, 𝐴𝑏𝑠 and 𝐵𝑝, 𝐵𝑏𝑠 are estimated.

𝑔 = (𝐴𝑝 × 𝐴𝑏𝑠) × (𝐵𝑝 × 𝐵𝑏𝑠 = [
𝑔𝑋
𝑔𝑌
𝑔𝑍
] (A.38)

The rotation around this rotation axis is also estimated.

cos 𝛾 =
(𝑔 × ̂𝐴𝑡) ⋅ (𝑔 × ̂𝑎𝑓)
|(𝑔 × ̂𝐴𝑡)| ∗ |(𝑔 × ̂𝑎𝑓)|

(A.39)

From the rotation axis and rotation angle the orientation of the camera is estimated in the form of a
quaternion.

𝑄𝑇 =
⎡
⎢
⎢
⎣

𝑎
𝑏
𝑐
𝑑

⎤
⎥
⎥
⎦
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

√1+cos𝛾
2

𝑔𝑌 ∗ √
1−𝑎2

𝑔2𝑋+𝑔2𝑌+𝑔2𝑍

𝑔𝑋 ∗ √
1−𝑎2

𝑔2𝑋+𝑔2𝑌+𝑔2𝑍

𝑔𝑍 ∗ √
1−𝑎2

𝑔2𝑋+𝑔2𝑌+𝑔2𝑍

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(A.40)

In other photogrammetric estimations the orientation of the camera is expected as a rotation matrix so
an additional step is taken to make this translation.

𝑅 = [
𝑑2 + 𝑎2 − 𝑏2 − 𝑐2 2(𝑎𝑏 + 𝑐𝑑) 2(𝑎𝑐 − 𝑏𝑑)
2(𝑎𝑏 − 𝑐𝑑) 𝑑2 − 𝑎2 + 𝑏2 − 𝑐2 2(𝑏𝑐 + 𝑎𝑑)
2(𝑎𝑐 + 𝑏𝑑) 2(𝑏𝑐 − 𝑎𝑑) 𝑑2 − 𝑎2 − 𝑏2 + 𝑐2

] (A.41)

As a result for every camera position, a orientation is estimated.

A.4. Answer selection by point projection
As a result from the previous steps, there are 2, 4, 6 or 8 possible exterior parameter sets for the
camera. In this last step of the closed form resection, the right answer is found. This is done by using
the projection error of the fourth known point 𝐷. The image coordinates (𝑥𝐷, 𝑦𝐷) of a known point 𝐷
can be calculated with the collinearity equations.

𝑥𝑑 = −𝑓
𝑅11(𝑋𝐷 − 𝑋𝑇) + 𝑅12(𝑌𝐷 − 𝑌𝑇) + 𝑅13(𝑍𝐷 − 𝑍𝑇)
𝑅31(𝑋𝐷 − 𝑋𝑇) + 𝑅32(𝑌𝐷 − 𝑌𝑇) + 𝑅33(𝑍𝐷 − 𝑍𝐿)

(A.42)

𝑦𝑑 = −𝑓
𝑅21(𝑋𝐷 − 𝑋𝑇) + 𝑅22(𝑌𝐷 − 𝑌𝑇) + 𝑅23(𝑍𝐷 − 𝑍𝑇)
𝑅31(𝑋𝐷 − 𝑋𝑇) + 𝑅32(𝑌𝐷 − 𝑌𝑇) + 𝑅33(𝑍𝐷 − 𝑍𝑇)

(A.43)

The terrain coordinates of 𝐷 are known and there are multiple possible exterior parameters of the
camera. For every possible camera exterior parameter set the image coordinates (𝑥𝑑, 𝑦𝑑) of point 𝐷
on the image are estimated. As the actual image coordinates of point 𝐷 are also known (𝑥𝐷, 𝑦𝐷) the
error 𝜖 between estimated and actual image coordinates can be retrieved.

𝜖 = | [𝑥𝑑𝑦𝑑] − [
𝑥𝐷
𝑦𝐷] | (A.44)

This error is zero for the correct set of exterior parameters if the known points are perfectly accurate. In
practice, the exterior parameters are not perfectly accurate as there is measurement error in the known
point coordinates and image point coordinates. So as a quality check the exterior parameters, which
give the smallest projection error is chosen as result.





B
Mock quay wall test results

In this appendix, the deformation plots of the mock quay wall test are shown for every test in section B.1.
Only the right wall is shown as the left wall is not deformed as control. Also the table with differences
between the tacheometry and photogrammetry is displayed in section B.2 from this table Figure 4.4 is
derived. In this table the exact differences between tacheometry and photogrammetry are shown.
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B.1. Mock quay wall deformation plots

(a) Deformations of test 1

(b) Deformations of test 2

(c) Deformations of test 3

(d) Deformations of test 4

(e) Deformations of test 5

Figure B.1: 2D front view of the wooden mock quay wall, where the deformation points on the wall are coloured to the size of
their deformation in a X, Y or Z direction for tests 1 to 5. The description of the deformations for every test are found in Table 4.1.
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(a) Deformations of test 6

(b) Deformations of test 7

(c) Deformations of test 8

Figure B.2: 2D front view of the wooden mock quay wall, where the deformation points on the wall are coloured to the size of
their deformation in a X, Y or Z direction for tests 6, 7 and 8. These tests were done with tilted plane deformation. The description
of the deformations for every test are found in Table 4.1.
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B.2. Tacheometry vs. Photogrammetry

X-Deformation (mm) Y-Deformation (mm) Z-Deformation (mm)
Test Barcode Tacheo. Photo. Diff. Tacheo. Photo. Diff. Tacheo. Photo. Diff.
1 Top Left 0.5 0.3 0.2 3.6 3.3 0.3 0.1 0.2 -0.1
1 Top Right 0.6 0.3 0.3 3.3 2.9 0.4 -0.1 0.1 -0.2
1 Bottom Left 0.3 0.0 0.3 0.9 0.4 0.5 -0.1 0.1 -0.2
1 Bottom Right 0.3 0.0 0.3 0.5 0.2 0.3 -0.2 0.0 -0.2
2 Top Left 0.5 0.4 0.1 6 5.2 0.8 0.1 0.2 -0.1
2 Top Right 0.4 0.3 0.1 4.8 4.6 0.2 -0.1 0.1 -0.2
2 Bottom Left 0.3 0.0 0.3 0.9 0.3 0.6 -0.1 0.1 -0.2
2 Bottom Right 0.3 -0.1 0.4 0.5 0.1 0.4 -0.1 0.1 -0.2
3 Top Left 3 2.9 0.1 58.8 58.5 0.3 3.2 3.2 0.0
3 Top Right 2.7 3.0 -0.3 58.6 58.8 -0.2 3.7 3.7 0.0
3 Bottom Left 0.2 0.1 0.1 3.7 3.6 0.1 1 1.0 0.0
3 Bottom Right 0 0.2 -0.2 3.7 4.0 -0.3 1.4 1.3 0.1
4 Top Left 2.2 2.0 0.2 84.6 84.2 0.4 3.2 3.3 -0.1
4 Top Right 2.2 2.0 0.2 85 85.1 -0.1 3.7 3.8 -0.1
4 Bottom Left -0.6 -0.8 0.2 30.2 29.7 0.5 1.1 1.2 -0.1
4 Bottom Right -0.6 -0.7 0.1 30.4 30.5 -0.1 1.5 1.5 0.0
5 Top Left 14.2 14.3 -0.1 78.1 78.2 -0.1 14.2 14.3 -0.1
5 Top Right 14.5 14.7 -0.2 83.6 83.9 -0.3 5.1 5.3 -0.2
5 Bottom Left 1.7 1.6 0.1 23.9 24.0 -0.1 11.9 12.0 -0.1
5 Bottom Right 1.9 2.0 -0.1 28.8 29.5 -0.7 2.8 2.8 0.0
6 Top Left -31.7 -31.9 0.2 24.1 23.5 0.6 12.8 12.9 -0.1
6 Top Right -32.1 -31.7 -0.4 25.1 25.9 -0.8 11.3 11.5 -0.2
6 Bottom Left -33.2 -33.4 0.2 22.7 22.5 0.2 12.7 12.8 -0.1
6 Bottom Right -33.1 -33.1 0.0 26 26.1 -0.1 11.3 11.5 -0.2
7 Top Left -34.3 -34.4 0.1 -2.2 -2.2 0.0 5.7 5.8 -0.1
7 Top Right -34.3 -34.3 0.0 -0.2 -0.2 0.0 4.3 4.4 -0.1
7 Bottom Left -34.4 -34.6 0.2 18.3 18.0 0.3 5.6 5.7 -0.1
7 Bottom Right -34.4 -34.4 0.0 20.5 20.9 -0.4 4.4 4.4 0.0
8 Top Left -7.2 -7.3 0.1 88.9 88.8 0.1 15.6 15.7 -0.1
8 Top Right -0.7 -0.8 0.1 155.8 156.2 -0.4 16 16.2 -0.2
8 Bottom Left -14.7 -14.7 0.0 35.2 35.6 -0.4 13.7 13.7 0.0
8 Bottom Right -8.3 -8.5 0.2 102 102.4 -0.4 13.9 13.9 0.0

Table B.1: Comparison between the tacheometric and photogrammetric deformation estimation of the same barcodes. These
barcodes were located in the top right, top left, bottom right and bottom left corners of the right mock quay wall. The tacheometric
(Tacheo) and photogrammetric (Photo) estimated deformations in X, Y and Z direction are listed in the table together with the
difference between the estimated deformations (Diff).
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