

Delft University of Technology

Safe Distributed Control of Multi-Robot Systems With Communication Delays

Ballotta, Luca; Talak, Rajat

DOI
10.1109/TVT.2025.3546857
Publication date
2025
Document Version
Final published version
Published in
IEEE Transactions on Vehicular Technology

Citation (APA)
Ballotta, L., & Talak, R. (2025). Safe Distributed Control of Multi-Robot Systems With Communication
Delays. IEEE Transactions on Vehicular Technology, 74(7), 10137-10150.
https://doi.org/10.1109/TVT.2025.3546857

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/TVT.2025.3546857
https://doi.org/10.1109/TVT.2025.3546857

Green Open Access added to TU Delft Institutional Repository
as part of the Taverne amendment.

More information about this copyright law amendment
can be found at https://www.openaccess.nl.

Otherwise as indicated in the copyright section:
the publisher is the copyright holder of this work and the

author uses the Dutch legislation to make this work public.

https://repository.tudelft.nl/
https://www.openaccess.nl/en

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 7, JULY 2025 10137

Safe Distributed Control of Multi-Robot Systems
With Communication Delays

Luca Ballotta and Rajat Talak , Member, IEEE

Abstract—Safe operation of multi-robot systems is critical, espe-
cially in communication-degraded environments such as underwa-
ter for seabed mapping, underground caves for navigation, and
in extraterrestrial missions for assembly and construction. We
address safety of networked autonomous systems where the infor-
mation exchanged between robots incurs communication delays.
We formalize a notion of distributed control barrier function for
multi-robot systems, a safety certificate amenable to a distributed
implementation, which provides formal ground to using graph
neural networks to learn safe distributed controllers. Further,
we observe that learning a distributed controller ignoring delays
can severely degrade safety. We finally propose a predictor-based
framework to train a safe distributed controller under communi-
cation delays, where the current state of nearby robots is predicted
from received data and age-of-information. Numerical experiments
on multi-robot collision avoidance show that our predictor-based
approach can significantly improve the safety of a learned dis-
tributed controller under communication delays.

Index Terms—Communication delays, distributed control barr-
ier function, graph neural network, multi-robot system, safety.

I. INTRODUCTION

MOBILE autonomous robot networked systems are in-
creasingly being conceived to aid humans in oceanbed

mapping, underground subterranean navigation, search-and-
rescue missions, and space exploration [1], [2], [3], [4], [5]. Safe
and coordinated operation of multi-robot systems is critical to
their successful deployment. However, operation environments
often induce severe communication outages that make infor-
mation exchange between robots imperfect and delayed [2],
[6], [7]. Moreover, the safety requirements of such networked
autonomous system depend on of all robots, and not just one
(e.g., robots need to avoid collisions with each other or move
in a formation, without breaking connectivity). Therefore, there
is a need to address the question of safety in conjunction with
imperfect information-exchange between robots in a networked
autonomous system.

Received 16 May 2024; revised 20 November 2024; accepted 25 February
2025. Date of publication 3 March 2025; date of current version 18 July 2025.
This work was supported in part by ARL DCIST CRA under Grant W911NF-17-
2-0181 and in part by CARIPARO Foundation Visiting Programme “HiPeR.”
The review of this article was coordinated by Prof. Jin Ye. (Corresponding
author: Luca Ballotta.)

Luca Ballotta is with the Delft Center for Systems and Control,
Delft University of Technology, 2628 CD Delft, The Netherlands (e-mail:
l.ballotta@tudelft.nl).

Rajat Talak is with the Laboratory for Information and Decision Systems,
Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
talak@mit.edu).

A video abstract is available at https://youtu.be/Hcu1Ri32Spk.
Digital Object Identifier 10.1109/TVT.2025.3546857

Fig. 1. We propose a control strategy that keeps an autonomous multi-robot
system safe via inter-robot communication. In this example, the controllers πi

safe

and πj
safe of drones i and j use data sent by the other drone to avoid collisions

while reaching the goals.

Fig. 2. Safe control via wireless communication is crucially affected by
transmission delays. We propose a predictor that uses delayed measurement
xj(t− δ) to compute the estimate x̂j(t) that is used by the controller πi

safe of
robot i for safe real-time operation.

A recent trend has seen control barrier functions (CBFs)
as a promising tool that ensures safety of control actions by
design [8]. While centralized CBF-based control theoretically
ensures safety, its use is impractical for networked autonomous
systems where decentralized (no communication) or distributed
(inter-robot communication) control is preferred. Previous work
has addressed decentralized and distributed safe control with
handcrafted CBFs [9], which show promising results towards
network scalability. However, computing a valid CBF for multi-
robot and networked systems may be computationally hard, and

0018-9545 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-6521-7142
https://orcid.org/0000-0002-6132-395X
mailto:l.ballotta@tudelft.nl
mailto:talak@mit.edu
https://youtu.be/Hcu1Ri32Spk

10138 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 7, JULY 2025

safety degradation of CBF-based control under communication
delays has received little attention so far.

Contribution: We first propose a formal framework for CBF-
based safe distributed control. We give a tailored definition of
safe set for networked autonomous systems in Section III and
formally characterize a distributed control barrier function that
guarantees safety under local communication in Section IV-A.
This theoretically justifies a distributed mechanism for safety
certification and a safe distributed controller (Fig. 1). Our
framework extends and complements previous work [10] that
provides a pairwise decoupling condition on the CBF for a safe
decentralized controller with backup control.

Secondly, we present a learning-based approach that builds on
our formal results and leverages graph neural networks (GNNs)
in Section IV-B. We consider a distributed controller where each
robot computes its own control inputs based on data received
from neighbors. This allows for flexible controllers that can
scale to larger robot teams and require less computation and
communication than distributed optimization.

Our final contribution in Section V is a novel predictor-based
safe distributed control framework under communication delays.
We consider delays that affect information exchange between
robots, differently from previous work on CBF that addresses
actuation delays [11] or tackles this issue via heuristics [7].
Indeed, communication delays are more challenging because the
receiving robot must estimate the states of other robots without
knowing their past inputs, while input delays can be compen-
sated through the robot’s dynamics. We propose a prediction-
based framework that is agnostic to the safety task to handle
delays. In it, a predictor implemented at each robot predicts the
current states of nearby robots given previous state information
received from them and the associated Age-of-Information [12],
which captures staleness of received data (Fig. 2). We show
that a simple alternating strategy, which alternatively learns a
predictor model (given controller) and a controller model (given
predictor), works.

Our experiments in Section VI show that the GNN-based
controller can safely navigate a team of mobile robots to avoid
collisions under perfect communication, and that the predictor-
based controller significantly improves safety in the realistic
case when transmissions incur communication delays.

To the best of our knowledge, this is the first work that
formalizes a general distributed control barrier function suited
to safe control based on inter-agent communication. Also, it is
the first that proposes a general CBF-based control architecture
to tackle communication delays between agents.

A. Related Work

Certified Control: Recent years have seen a surge in attention
towards control certificates, especially control barrier functions
(CBF) to meet hard constraints in the state space, often inter-
preted as safety. Control Barrier Functions were introduced in [8]
inspired by barrier functions in optimization. Follow-up work
extended them to uncertain dynamic environments [13], [14],
online adaptation [15], and observer-controller co-design [16],
to make a few examples. Decentralized collision avoidance via
CBF was studied in [9], [10] without communication between

robots. Previously, a similar effort was made in [17] for leader-
follower distributed control where ad-hoc barrier functions were
proposed for several control objectives. Other relevant works
are [18], where a resilient algorithm was proposed to tame adver-
sarial agents, and [19], that addresses connectivity maintenance
based on Laplacian eigenvalues.

Learning-based certificates: Besides optimization-based
methods such as SoS, a recent trend to find a CBF is to use
a machine learning model such as a neural network (NN). Ref-
erence [20] proposed BarrierNet, a learning-based tool that tunes
parameters to improve performance while guaranteeing safety.
Paper [21] uses an ad-hoc design to learn Lyapunov functions
with guaranteed positive semi-definiteness. Works [22], [23]
introduced FOSSIL, which validates the learned CBF via Satis-
fiability Modulo Theory (SMT). While this approach is general,
the formal verification is computationally intractable for large
model or state dimension. Works [24], [25] studied learnable
controllers with formal guarantees implicitly provided by the
considered class of closed-loop systems. The authors in [26]
proposed a learning-based approach with formal verification
based on linear approximations of neural networks for stochastic
closed-loop dynamics.

Control with Delays: In distributed control, wireless com-
munication affects feedback information in terms of noise and
delays. These issues were tackled in [27], [28], [29], [30], [31],
to name a few. Delays in optimal control design are challeng-
ing because even fairly realistic models induce nonconvex or
intractable optimization problems. The communication commu-
nity has proposed Age-of-Information [12], with a large body
of works addressing information freshness [32], [33] or control-
oriented metrics [34], [35], [36], [37]. In these works, the design
focuses on scheduling of updates. Also, CBF-related research
has addressed delays. Input delays were counterbalanced in [11],
[13] with a predictor. Delays affecting input, dynamics, and CBF
were addressed in [38], with Control Barrier Functionals for
retarded systems. However, knowledge of the state at the current
time is assumed, whereas realistic communication delays cause
each robot to know only past states of other robots. A heuristic
CBF-based control was proposed in [7] for connectivity main-
tenance and collision avoidance for single integrator dynamics
and all-to-all communication.

Graph Neural Networks for Control: GNNs are general
neural network models that inherently learn distributed archi-
tectures [39], [40], [41]. Early works [42], [43] focused on
applicability of Graph Convolutional Networks to distributed
control. Follow-up research [44] proposed more general models,
paper [45] further broadened the framework including imitation
and transfer learning, and [46] presented a physics-informed
distributed controller for port-Hamiltonian systems. However,
the works above do not address safety based on CBFs and neglect
delays in information exchange.

B. Notation

Normal font, boldface (e.g., x), and calligraphic letters (e.g.,
S) denote scalars, vectors, and sets, respectively. The symbol�
denotes difference between two elements in an Euclidean or

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

BALLOTTA AND TALAK: SAFE DISTRIBUTED CONTROL OF MULTI-ROBOT SYSTEMS WITH COMMUNICATION DELAYS 10139

non-Euclidean space. The symbol � denotes a permutation-
invariant operation over the elements of a finite set.

II. BACKGROUND

This section reviews the main tools used in our framework.

A. Control Barrier Functions

The state of a controlled dynamical system evolves as

ẋ(t) = f(x(t),u(t)), (1)

where x(t) ∈ X denotes the system state at time t, u(t) ∈ U is
the control action at time t, and f is a locally Lipschitz function.
Being us concerned with control design, the control input ut(t)
is computed by a controller π. In the following, when there is
no risk of ambiguity, we occasionally omit the dependence on
time t.

The system is safe whenever the state lies in the safe set
S ⊂ X , i.e., x ∈ S . The safe set is task dependent and describes
safety in the state space. For example, if safety means avoiding
collisions, the set S contains all collision-free configurations.
Under this setting, the goal is to develop a certification mech-
anism that can attest whether the controlled dynamical system,
starting from the safe set, remains in it forever. If this happens
when the state x obeys dynamics (1), we say that S is forward
invariant w.r.t. (1). The set S is typically assumed compact. The
unsafe set is Su .

= X \ S .
Control barrier functions (CBFs) provide an elegant way to

certify whether the controlled dynamical system will remain in
the safe state forever, or not. In this section, we briefly recap the
main results on CBF-based safety guarantees and safe control.
The interested reader is referred to [8] for details.

Assume that the safe set can be described as the superlevel
set of a continuous function h, as follows:

S = {x ∈ X : h(x) ≥ 0}. (2)

Definition 1 (Control Barrier Function [8]): Given a set S
defined above for a continuously differentiable function h :
X → R, the function h is a Control Barrier Function (CBF) for
system (1) onM⊂ X with S ⊆M if there exists an extended
class K-infinity function such that

sup
u∈U

ḣ(x,u) ≥ −α(h(x)) ∀x ∈M. (3)

In this case, the safe control set associated with state x is

US(x) .=
{
u ∈ U : ḣ(x,u) ≥ −α(h(x))

}
. (4)

Theorem 2 (Safe control [8]): If h is a CBF for (1), any
Lipschitz continuous controller π :M→ U s.t. π(x) ∈ US(x)
makes the safe state S forward invariant w.r.t. (1).

Remark 3 (Time derivative of CBF): The time derivative of
the CBF h(x), ḣ(x,u), is given by

ḣ(x,u) = Lfh(x,u) = ∇h(x)�f(x,u) (5)

where Lfh denotes the Lie derivative of h with respect to f .
Remark 4 (CBF with distributed communication): Crucially,

while the CBF h(x) depends on the state x, its time derivative

ḣ(x,u) depends on both statex and control actionu through the
state dynamics (1). In a distributed communication context, if a
unique CBF is used for the whole multi-agent system, this means
that all agents (robots) should instantaneously know the states
of all other agents to compute h(x), and both states and control
actions of all other agents to compute ḣ(x,u). In practice, this
may be an infeasible requirement. In Section IV, we build a
learning-based distributed CBF framework that allows robots to
locally coordinate in order to achieve safety.

Implementing a Safe Controller: Given a CBF h, Theorem 2
offers a way to compute the control input u in (1) so as to keep
the state inside the setS . A common situation is where a nominal
controller πnom is already available and designed to optimize a
task of interest, such as trajectory tracking or goal reaching,
without guaranteeing safety. We denote nominal control inputs
computed by πnom as ū. In this case, one can use the CBF as
a filter to design a new control policy that ensures safety while
being minimally deviant from the nominal controller. This can
be achieved by solving the following optimization problem at
each time t:

ut(t) =min
u∈U
‖u− ū(t)‖2 (6a)

s.t. ḣ(x(t),u)≥ −α(h(x(t))). (6b)

If a nominal controller is not available, one can still use (6) with
ū(t) ≡ 0 to minimize control effort, an approach usually called
point-wise minimum-norm control.

Remark 5 (Convexity): The optimization problem (6) be-
comes much simpler when dynamics (1) are control-affine, i.e.,

ẋ(t) = f(x(t)) + g(x(t))ut(t), (7)

for some locally Lipschitz f and g, and the set U is a polytope.
In this case, problem (6) is a QP and can be efficiently solved.
Moreover, problem (6) remains convex if U is convex.

B. Learning Control Barrier Functions

Because the state-of-the-art techniques to find a CBF h that
meets (2)–(3) rely on Sum-of-Squares programming [8], the
computational complexity becomes intractable for large state
dimension. Recent works have shown that CBFs can be com-
puted via machine learning [23], [25], [26]. In this case, h is
parametrized by a trainable model hθ (e.g., a neural network)
that is trained to meet the conditions that characterize a CBF.
This can be done by minimizing the loss L(θ) defined as

L(θ) .=
∑
x∼S

[ε− hθ(x)]+ +
∑
x∼Su

[ε+ hθ(x)]
+

+
∑
x∼X

[
ε− ḣθ(x,u)− α(hθ(x))

]+
, (8)

where [·]+ .
= max{·, 0} and the summations are computed over

the states sampled during training, while control actions are se-
lected from the setUS(x), e.g., via (6). The slack hyperparameter
ε > 0 softly enforces the CBF conditions on states “close” to
training samples by compactness of S .

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

10140 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 7, JULY 2025

Recent works have also proposed to learn a safety certifi-
cate and a safe controller simultaneously. The controller is
parametrized as a second learning-based model, say πξ, and
the two models are jointly trained with the loss L(θ, ξ) defined
as in (8) but with the control input u replaced by the learned
control πξ(x). To stay “close” to a nominal controller πnom, one
can add the deviation term ‖πξ(x)− ū‖ to the loss L(θ, ξ).

C. Graph Neural Networks

Graph neural networks are machine learning models for
graph-based data. Each node in the graph carries one copy of a
common GNN model, which takes in input data associated with
that node and with its neighbors (node features) plus data shared
from neighbors to the node (edge features).

The most general implementations use so-called neighbor-
hood aggregation or message passing. Given initial node features
f
(0)
i of node i and edge features ei,j from in-neighbor node j

to node i, the features of node i in each layer k = 0, . . . ,K − 1
are iteratively updated as

f
(k+1)
i = γ(k)

(
f
(k)
i ,�j∈Ni

φ(k)
(
f
(k)
i , f

(k)
j , ej,i

))
, (9)

where φ and γ are differentiable functions (usually parame-
terized as MLPs), � is a differentiable, permutation-invariant
aggregation function (e.g., sum or max), and Ni collects in-
neighbors of node i in the message-passing graph. The output
of the GNN for node i is given by features f (K)

i computed in
the last layer.

III. SETUP

In this section, we first describe the system model including
robot dynamics, information exchange between robots, and
safety of the networked multi-robot system in Section III-A.
Then, we state the problem about safe distributed control design
in Section III-B, which is addressed in the rest of the article.

A. System Model

Robot Dynamics: We consider a multi-robot system where
R robots fulfill a control task. We label each robot with index
i ∈ R .

= {1, . . . , R}. The dynamics of robot i are given by

ẋi(t) = f(xi(t),ut(t)), (10)

where xi(t) ∈ X denote the state of the robot and ut(t) ∈ U
the control action, at time t. The state of the robot may include
a physical description such as its position and velocity, among
other things. We use pi ∈ Rn to denote the position of robot
i, with n ∈ {2, 3}. We assume that all robots have the same
dynamics f and that the state and action sets X and U are
identical for all robots. Vectors x ∈ XR and u ∈ UR stack
respectively states and control actions of all robots.

Information Exchange: Robots can communicate through a
wireless channel. Within a distributed control setting, local
information exchange between robots is used to achieve co-
ordination and cooperation by computing control inputs that
suitably take into account the configurations and actions of other
robots. Let Rc be the communication radius. Two robots within

communication range (i.e., ‖pi − pj‖ ≤ Rc) can exchange in-
formation, e.g., their states. We use the symbol Ij(t) to denote
the message transmitted by robot j to robots within range at
time t, and describe it in detail later. Under perfect-information
exchange, a robot instantaneously receives information from
all the other robots within its communication radius (e.g., if
‖pi(t)− pj(t)‖ ≤ Rc, then robot i knows xj(t) at time t).
However, a realistic information-exchange means that robots
can have only delayed information of other robots within com-
munication range, due to interference and wireless channel
fading. We denote all time-epochs when the information was
received by i from j till time t as

Ti←j(t)
.
=

{
t′ ≤ t : robot i receives Ij(t

′)
}

(11)

and the information that has been received by robot i from robot
j till time t by

Ii←j(t)
.
=

{
Ij(t

′) : t′ ∈ Ti←j(t)
}
. (12)

Under perfect-information exchange, the set Ti←j(t) in (11)
corresponds to all times when the robots i and j were within
the communication radius, i.e.,

Ti←j(t) =
{
t′ ≤ t :

∥∥pi(t
′)− pj(t

′)
∥∥ ≤ Rc

}
. (13)

However, under realistic information exchange, not all informa-
tion sent by robot j may be received by robot i and Ii←j(t)
contains only information that has been successfully received.
In particular, if communications experience nonnegligible de-
lays, the set Ii←j(t) will not contain the most recent message
Ij(t) and possibly other messages transmitted before time t.
This crucially affects control strategies based on distributed
information exchange, which must take delays into account
to counterbalance them. Note that, while we use the standard
disk-based communication model [7], [17], we do not assume
any model on communication delays and only assume that the
available information at each robot is given by (11)–(12).

Safety of Networked Autonomous System: We assume that
each robot has a built-in, high-level autonomy that drives its
plans and actions. This autonomy can be abstracted out as es-
sentially implementing a nominal controller πnom that computes
action ūi(t) at time t to fulfill a task of interest (e.g., trajectory
tracking). However, this nominal control is not guaranteed to
be safe with respect to the network of robots (for example, it
may cause two mobile robots to collide with each other). We
handle inter-robot interactions via a feedback controller πsafe

that is in charge of safety and computes corrective control actions
ũi(t) using feedback information received from other robots. A
general characterization is

ũi(t) = πsafe

(
xi,[0,t],ui,[0,t), {Ii←j(t)}j∈R\{i}

)
. (14)

Notation xi,[0,t] (resp., ui,[0,t)) refers to all states (resp., control
inputs) of robot i till time t. The safety-aware control input ap-
plied in (10) is ut(t) = ūi(t) + ũi(t). The feedback controller
πsafe can use previous control actions ui,[0,t) excluding ut(t) at
time t, because this is precisely computed from (14).

We next propose a notion of safety for the networked au-
tonomous system of robots. The system is safe if the state x

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

BALLOTTA AND TALAK: SAFE DISTRIBUTED CONTROL OF MULTI-ROBOT SYSTEMS WITH COMMUNICATION DELAYS 10141

lies in the safe set S ⊂ XR. Importantly, this involves all robots
in the system. We make two assumptions on the structure of
this safety set S for a networked autonomous system, which are
instrumental for the theoretical result developed in Section IV.

Assumption 6 (Safe set): There exists function ψ such that

S =
{
x ∈ XR : �j∈Rψ(xi � xj) ≥ 0 ∀i ∈ R

}
, (15)

where �i∈V is a permutation-invariant operation over set V and
y � z ∈ X is the difference between y, z ∈ X .1

Assumption 7 (Safety threshold): There exists a continu-
ous function ρ : Rn → R such that ρ(pi − pk) ≥ 0 implies
sgn�j∈Rψ(xi � xj) = sgn�j∈R\{k}ψ(xi � xj) ∀k �= i.

Assumption 6 means that safety can be decomposed across
robots. That is, the system is safe if and only if all robots are
individually safe. Moreover, for each robot, safety does not
depend on other robots’ identities but only on their states xj’s.

Assumption 7 states that safety of any robot is independent
from those robots k for which the condition ρ(pi − pk) ≥ 0
holds. This threshold condition has an impact on necessary and
sufficient communication requirements. In fact, if the communi-
cation range between robots allows this condition to hold, then
safe control can be implemented based on local information
exchange, as will be clarified later in Section IV-A.

The notion of safe set given by Assumptions 6 and 7 is general
enough to encompass various safety applications, as exemplified
next.

Example 8 (Collision avoidance): We now show how
model (15) can be used to describe collision avoidance in a team
of mobile robots R. Let dcoll denote the minimal distance two
robots need to maintain to avoid collision. Then, the safe set for
collision avoidance is given by

S =

{
x ∈ XR : min

j∈R\{i}

∥∥pi − pj

∥∥ ≥ dcoll ∀i ∈ R
}
. (16)

This is an instantiation of (15) in Assumption 6 with ψ(xi �
xj)

.
= ‖pi − pj‖ − dcoll and the permutation-invariant opera-

tion minj∈R\{i}. Assumption 7 is satisfied with ρ(pi − pj)
.
=

‖pi − pj‖ − dcoll, meaning that, if any two robots are enough
apart, they do not collide into each other.

B. Problem Statement

We aim to design a safety certification mechanism that attests
whether the networked autonomous system is safe and design
a minimally invasive corrective controller πsafe, assuming a
nominal controller πnom, that ensures that the state x remains
safe.

Problem 1 (Distributed safety certification): Find a dis-
tributed safety certification mechanism that can attest the safety
of the networked autonomous system by using the local infor-
mation at each robot i, i.e., states xi,[0,t], control actions ui,[0,t),
and communicated information {Ii←j(t)}j∈R\{i} at time t.

Problem 2 (Distributed safe controller): Find a distributed
minimally invasive controller πsafe that can ensure safety of

1In general, X need not be Euclidean (e.g., it can be a manifold). If X is
Euclidean, then � reduces to the standard difference between two vectors.

the networked autonomous system when using the nominal
controller πnom by using the local information at each robot i,
i.e., states xi,[0,t], control actions ui,[0,t), and communicated
information {Ii←j(t)}j∈R\{i} at time t.

Remark 9: While works in Section II-A provides ways to
design a safe minimally deviant controller, these solutions are
often either designed ad-hoc or centralized. The latter case
requires global information (the state x(t)) to be known at
a single unit or at each robot. Limited communication range
implies that robots cannot access the full state in real time.
Therefore, we need to design distributed safety mechanism and
controller, while theoretically justifying when this is sufficient.

IV. CERTIFIABLY SAFE DISTRIBUTED CONTROL

In this and the following section, we discuss the design of
a distributed safety certification mechanism and a distributed
controller that navigate the system to remain safe.

In this section, we first describe the design in the perfect
information-exchange case. With instantaneous communication,
we formally characterize when local information exchange be-
tween robots is theoretically sufficient to achieve safety under a
distributed control strategy in Section IV-A. Drawing inspiration
from this theoretical result, we next propose a learning-based
approach based on graph neural networks to design a distributed
controller that implicitly learns to safely coordinate with other
robots in Section IV-B.

A. Theoretical Foundations With Perfect Information
Exchange

We first show that, for a safe setS that satisfies Assumptions 6
and 7, a distributed certificate ensures safety. Such a distributed
control barrier function uses only local information available
at each robot. Let the (safety) neighborhood of robot i be
defined asNi

.
= {j ∈ R \ {i} : ρ(pi − pj) ≤ 0} and define the

augmented vector wi ∈ 2X
R

of robot i with jth element

wij = xi � xj ∀ j ∈ Ni. (17)

Note that wi is defined wheneverNi �= ∅. In words, wi collects
all relative state configurations between robot i and its safety-
relevant neighbors in the set Ni. In fact, by Assumption 7, all
other robots outsideNi are irrelevant for safety of robot i. Vector
wi will be used by the distributed CBF to define a dynamic
condition on the evolution of robots’ states that keeps them safe.
We gather the control inputs of robots in the set Ni ∪ {i} in
the vector uNi

, with jth element u for all j ∈ Ni ∪ {i}. By the
chain rule, for a piece-wise differentiable function h, it holds

ḣ(wi,uNi
) =

∑
j∈Ni

∇wij
h(wi)

�ẇij (18)

where ẇij = f(xi,u)− f(xj ,u) from (17) and (10).
Definition 10 (Distributed CBF): Let M⊂ 2X

R
such that

x ∈ S implies wi ∈M ∀i ∈ R. A function h :M→ R is a
distributed control barrier function for (10), i ∈ R, if h is
continuously differentiable w.r.t. wi for any fixed Ni and there
exists an extended class K function α such that:

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

10142 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 7, JULY 2025

1) h(wi) ≥ 0 if and only if �j∈Ni
ψ(xi � xj) ≥ 0;

2) supuN ḣ(wi,uN) ≥ −α(h(wi)) ∀i ∈ R,wi ∈M.
In this case, the safe control set associated with Ni ∪ {i} is

US (wi)
.
=

{
uN ∈ U|Ni|+1 : ḣ(wi,uN)≥−α(h(wi))

}
. (19)

Theorem 11 (Distributed safety certification): The safe
set (15) is equivalent to

S =
{
x ∈ XR : �j∈Ni

ψ(xi � xj) ≥ 0 ∀i ∈ R
}
. (20)

Moreover, leth be a distributed CBF for (10) for all i ∈ R. Then,
any Lipschitz distributed controller π : 2X

R → U s.t. π(wi) ∈
US(wi) makes set S forward invariant w.r.t. (10).

Proof: See Appendix A. �
In words, Definition 10 means that safety is inherently local.

While the networked autonomous system is safe whenever all
robots are simultaneously safe according to (15), our character-
ization of distributed CBF in Definition 10 and Assumption 7
imply that each robot i is endowed with its individual safety that
depends only on its neighbors. In particular, the time derivative
ḣ(wi,uNi

) in condition (19) depends only on states and actions
of robot i and its neighbors in Ni. This is key to enable safe
distributed control, whereby coordinating with neighbors is
sufficient to formally ensure local safety of each robot and in
turn global safety of the networked system according to Theorem
11. On the other hand, if at least one robot needed global system
knowledge to preserve safety, a distributed control strategy based
on local communication may not work.

Given a distributed CBF h, the constraint (19) can theo-
retically be used within a distributed optimization algorithm
to compute safe control actions u for all robots i. However,
this approach raises two practical issues. On the one hand, the
resulting distributed optimization problem need not be convex,
and convergence is not guaranteed. On the other hand, com-
munication delays may disrupt applicability of this approach
for online operation since several communication rounds and
are typically needed to converge to a feasible solution. These
limitations motivate us to explore a learning-based approach
in the next section, whereby each robot collects information
received from nearby robots but does not further communicate
when computing the control actions.

Remark 12 (Communication and safety): In real applications,
robot i needs to communicate at least with all robots inNi to im-
plement a distributed controller based on Theorem 11. Formally,
this requires ρ(pi − pj) ≤ 0⇒ ‖pi − pj‖ ≤ Rc. In Example 8
this is equivalent to Rc ≥ dcoll, which simply means that robots
must communicate with neighbors (at least) before they collide
to remain safe.

B. Learning a Safe Distributed Controller

Theorem 11 provides formal ground for the design of a
distributed safety certification mechanism and controller. We
identify two main benefits of a learning-based design. Firstly,
it circumvents the need to find a CBF via optimization-based
parametric methods, which can be computationally intractable.
Secondly, it can allow robots to implicitly coordinate their

actions by just processing the received information in Ii←j ,
without resorting to an iterative distributed algorithm.

Assumption 6 and Definition 10 imply that the distributed
CBF is permutation-invariant, meaning that any two neighbors
of robot i can be swapped without changing the value h(wi).
Moreover, recall that we assume all robots share the same
dynamics and state and control sets. Therefore, embedding the
information exchanged between robots into edge features, we
can model the distributed CBF h as a GNN hθ that operates
on the graph G(t) = (R, E(t)), where the directed edge (i, j) ∈
E(t) if Ii←j(t) is nonempty, i.e., if robot i has knowledge of
robot j at time t. Under perfect information exchange, this
corresponds to robots i and j being within communication
range at time t, and hence we set Ii←j(t) = Ij(t) = {xj(t)} if
‖pi(t)− pj(t)‖ ≤ Rc, as this fully describes the current state
of neighbor j, and Ii←j(t) = ∅ otherwise. With this choice, the
edge feature ei,j(t) from node (robot) j to node i in the GNN is
the relative state wij(t), which robot i can compute online after
receiving message Ij(t) from robot j at time t. We model the
corrective controller πsafe as a second graph neural network πξ
operating on graph G(t) that computes corrective actions as

ũi(t) =

{
πξ(wi(t)), Ni �= ∅
0, otherwise.

(21)

In the following, we refer to (21) as (distributed) GNN-based
controller. We jointly train the models hθ and πξ using the
following loss, averaged across all robots inR,

L(θ, ξ) = 1
R

∑
i∈R

(LCBF,i(θ, ξ) + Lcontr,i(ξ)) . (22)

The loss term related to the distributed CBF conditions is

LCBF,i(θ, ξ)
.
= wS

∑
xi∼S

[−hθ(wi) + ε]+

+ wSu
∑

xi∼Su

[hθ(wi) + ε]+

+ wder

∑
xi∼X

[
−ḣθ(wi,uNi

)− α(hθ(wi)) + ε
]+
,

(23)

where uNi
in the argument of the time derivative ḣθ gathers the

control inputs of robots in the neighborhoodNi ∪ {i}, and each
of these is computed as

u = πξ(wj) + ūj ∀j ∈ Ni ∪ {i}, (24)

The loss term that forces minimally invasive corrective control
is

Lcontr,i(ξ)
.
= wcontr

∑
xi∼X

‖πξ(wi)‖ . (25)

For notation simplicity, we write xi ∈ S (resp. xi ∈ Su) in (23)
if robot i is safe (resp. unsafe).2 The coefficients wS , wSu , wder,
and wcontr are training hyperparameters. The first two terms

2The safe set is defined for (the neighborhood of) each robot i according to
Assumption 6 and (20).

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

BALLOTTA AND TALAK: SAFE DISTRIBUTED CONTROL OF MULTI-ROBOT SYSTEMS WITH COMMUNICATION DELAYS 10143

(summations) in (23) correspond to states sampled respectively
from the safe set and the unsafe set, whereas the third term
enforces the dynamic condition of the distributed CBF. While
this is theoretically required only for states in the safe set, we
apply it to all training samples for robustness. During training,
the time derivative ḣθ could be analytically computed by sep-
arately evaluating the gradient ∇wi

hθ(wi) w.r.t. input features
wi and the time derivative ẇi using (10); see (18). Alternatively,
a computationally cheaper way is to numerically approximate
ḣθ by a finite difference, e.g.,

ḣθ(wi(t),uNi
(t)) ≈ hθ(wi(t+ Ts))− hθ(wi(t))

Ts
, (26)

where Ts is a discrete time step and the state xi(t+ Ts) of robot
i is generated from xi(t) through (discretized) dynamics (10)
applying the control actionut(t) computed with the learned con-
troller asut(t) = ūi(t) + πξ(wi(t)). This model-free approach
can also improve robustness to model uncertainty in (10). Details
on the learning architecture used in our experiments are provided
in Appendix B.

Remark 13 (Training samples): Instead of randomly sam-
pling the state space, training samples can be drawn from
simulated state trajectories. This helps to generate especially
unsafe states that could occur during operation (e.g., collisions)
more easily than random samples. Moreover, sampling from
trajectories allows one to approximate the time derivative of the
distributed CBF directly from data, for example using (26).

V. SAFE DISTRIBUTED CONTROL WITH REALISTIC

INFORMATION EXCHANGE

In the realistic information-exchange case, robot i does not
have instantaneous access to neighbors’ states because messages
transmitted by other robots are delayed. This means that the
distributed CBF and controller cannot use the actual value of
wi(t) to compute ut(t). To tackle this, we design a predictor
that estimates wi(t) based on information received till time t.

To counterbalance communication delays, robots need to
transmit more information compared to the perfect information-
exchange case. Considering time-slotted communication with
time index t, robot j sends the following message at time t:

Ij(t) = {xj(t),uj(t− 1), t} , (27)

where ut−1(t− 1) is the latest control input computed before
time t. Note that robot j cannot transmit ut(t) at time t since
this is computed at time t. We let robots transmit previous
control actions with the intuition that this helps the neighbors to
“reconstruct” its trajectory, enhancing prediction quality. For a
message Ij(t′) that has been received by robot i at time t, robot
i constructs the corresponding relative message as

Iij(t, t
′)
.
={xi(t

′)� xj(t
′),ut′−1(t

′−1)� ut′−1(t
′−1), t− t′}

(28)
and the relative dataset at robot i referred to robot j is

Iii←j(t)
.
=

{
Iij(t, t

′) : t′ ∈ Ti←j(t)
}
. (29)

The time lag t− t′ in (28) is the Age-of-Information that rep-
resents staleness of data in Iij(t, t

′). The predictor λ of robot i

maps received data as

λ : Iii←j(t) �−→ ŵij(t), (30)

where the output ŵij(t) is intended to be an estimate of wij(t).
In words, robot i infers the current relative state of robot j by
“projecting” past states and actions to the current time. Note that
this mapping makes sense only if the relative dataset Iii←j(t)
is not empty, that is, if j is considered a neighbor at time t.
To reduce storage requirements and bound the message-passing
graph, robots discard all relative messages with age greater than
a threshold Δmax, so that j is removed from the neighbors of i
when no data with age at most Δmax are received. The output
of the predictor is fed to the distributed CBF and controller in
place of the unknown wij(t). Specifically, the predictor-based
controller computes corrective actions as

ũi(t) =

{
πξ(ŵi(t)), ∃j : Iii←j(t) �= ∅
0, otherwise.

(31)

We refer to (31) as predictor-based (distributed) control.
The overall predictor-controller architecture for realistic-
information exchange is schematized in Fig. 3. The dashed lines
show that the CBF model hθ (blue block) is used in training to
enforce that the learned corrective control actions ũi(t) satisfy
the safety conditions, but it is not deployed during operation.

A. Learning the Predictor

In view of the potentially complex dynamics (10) with the
nonlinear controller πξ, we parametrize the predictor as a neural
network λζ . This also allows us to integrate the predictor learn-
ing into the same training procedure used for the GNN-based
distributed CBF and controller. We train the predictor with the
following loss that penalizes the relative mismatch from the
output ŵij(t) to the current value wij(t):

Lpred(ζ) =
∑

i,j∈R:Iii←j(t) �=∅

‖ŵij(t)�wij(t)‖X
‖wij(t)‖X

. (32)

When training both predictor model and distributed CBF and
controller models in the same training session, we replace all
values computed with perfect information, namelyh(wi(t)) and
πξ(wi(t)), with values computed from predicted information,
namely h(ŵi(t)) and πξ(ŵi(t)), in the loss terms LCBF,i and
Lcontr,i in (22). However, we have experimentally noted that
learning accuracy improves when computing the time derivative
ḣθ of the distributed CBF with actual values of wi(t) rather
than with predicted values ŵi(t). Importantly, this can be done
because the derivative ḣθ is explicitly computed only when
training the distributed CBF modelhθ offline, but it is not needed
during online operation, when only the controllerπξ is deployed.
Moreover, we have experimentally observed that alternatively
training (updating) the predictor and, jointly, CBF and controller
favors learning stability. This happens because the predictor is
trained under a consistent control behavior, while CBF and con-
troller learn corrective actions for given prediction capabilities.
Conversely, jointly training all three models resulted in learning
failure.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

10144 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 7, JULY 2025

Fig. 3. Proposed distributed controller implemented on robot i. Robot i receives information from nearby robots �, j, and k and computes minimally invasive
control actionsut(t). Communication delays δ(t) are compensated by the predictor λζ (red block). The GNN-based controllerπξ (green block) computes corrective
actions ũi(t) to ensure safety.

Under realistic information-exchange, it makes sense to draw
training samples from simulated trajectories rather than ran-
domly from the state set X . In fact, this allows us to train both
predictor and distributed CBF and controller with states and
control actions that are consistent with data received under de-
lays. In contrast, randomly sampling states xi(t) from X would
also require to randomly generate relative messages Iij(t, t

′) that
need not be consistent with feasible trajectories.

B. Heuristic Control to Enhance Performance

Learning-based controllers can hardly learn zero actions
ũi(t), which causes continuous perturbations of the nominal
input ūi(t) if neighbors are present. This means that applying
the learning-based controller may make the robots deviate from
the desired behavior even when no corrective action is required.
This effect may be counteracted by implementing task-specific
adjustments. For example, in the case of point-stabilization or
goal-reaching, robots may switch to the nominal controllers as
soon as they are sufficiently close to the goal. While such ad-hoc
strategies can be implemented with system-specific knowledge,
in this section we explore a task-agnostic strategy that draws
inspiration from the distributed CBF condition. The key intuition
is that the higher the value of the CBF, the “safer” a robot is.
Hence, CBF values may be thresholded to assess if corrective
actions are actually needed. We propose the following switching
control that corrects nominal actions according to the condition
on the distributed CBF dynamics:

ũh
i (t) =

{
0 ḣ(ŵi(t), πξ(ŵi(t))) + αh(ŵi(t)) ≥ ϕε
ũi(t) otherwise.

(33)
The parameter ε in (33) is the same used in training and the
tunable coefficient ϕ ≥ 0 favors safe (large ϕ) or aggressive
behavior (small ϕ). In words, control (33) uses the nominal
input if the next state is deemed safe by the learned CBF
and applies corrective actions otherwise. Crucially, the time
derivative ḣ(ŵi(t),uNi

(t)) cannot be computed in a distributed
fashion during operation. To implement (33) in a distributed way,
robots compute ŵij(t+ 1) with the predictor given available
information Iii←j(t), and locally estimate the time derivative as

ḣ(ŵi(t), πξ(ŵi(t))) ≈
h(ŵi(t+ 1))− h(ŵi(t))

Ts
. (34)

Fig. 4. Snapshot of simulation. Robots (blue) have to reach goals (green)
without colliding. The inner circles around robots marks the closest distance
before collision. The outer circles determine the safe set, namely robots outside
them are tagged safe in training.

Remark 14 (Heuristic control): This control strategy is purely
heuristic and need not retain any safety guarantee of the dis-
tributed CBF-based learned controller. We use (33)–(34) in our
experiments just to compare it to the GNN-based controller, to
test if we can improve performance sacrificing a little safety.

VI. EXPERIMENTS

We test our proposed controller for multi-robot navigation,
where the robots have to reach goals while avoiding collisions.3

A. Experiment Setup

Control task: We implement and study our proposed approach
for a multi-robot system concerned with collision avoidance as
in Example 8. The simulation snapshot in Fig. 4 illustrates the
experimental setup. We simulate mobile robots as 2D balls with
radius 0.05 that move on the planar workspace [0, 3]× [0, 3] ⊂
R2. Each robot (blue circles in Fig. 4) has to reach a pre-specified
goal location (green circles) starting from an initial location,

3The code for training and simulations is available at https://github.com/
lucaballotta/macbf-gnn.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

https://github.com/lucaballotta/macbf-gnn
https://github.com/lucaballotta/macbf-gnn

BALLOTTA AND TALAK: SAFE DISTRIBUTED CONTROL OF MULTI-ROBOT SYSTEMS WITH COMMUNICATION DELAYS 10145

all different across robots. To fulfill this task, each robot is
equipped with a nominal controller πnom that drives it from its
current location to its goal through a straight line to optimize
control effort, which may result in collisions. Two robots collide
if the distance between their centers drops below dcoll = 0.1
(innermost ring around each robot in Fig. 4), whereas we tag safe
robot states when their distance is at least 0.2 (outermost ring).
The communication radius is Rc = 1. The arrows connecting
pairs of robots in Fig. 4 show the edges E of the message passing
graph G used by the distributed GNN-based controller. Several
edges are missing because the snapshot is taken at the beginning
of an episode (t = 0) and few messages Ij(0) have been received
because of communication delays, hence many message datasets
Ii←j are still empty.

Robot dynamics: We consider two dynamical models.
Single integrator: The state of robot i evolves as

ẋi(t) = ut(t) (35)

with xi(t) = pi(t) ∈ R2. Even though this model is simple, it
reliably represents robot motion provided that low-level con-
trollers track the reference velocity fast enough compared to
position tracking [5], [7], [18], [47]. We set a speed limit on
each direction as ‖u‖1 ≤ 0.4.

Dubins car: The state of robot i is a 4-dimensional vector that
stacks respectively positionpi ∈ R2, speed vi ∈ R, and heading
angle ϑi ∈ R. Speed and heading angle are directly actuated.
The dynamics are⎡⎢⎣ṗi(t)

v̇i(t)

ϑ̇i(t)

⎤⎥⎦ =

⎡⎢⎣vi(t) cos(ϑi(t))vi(t) sin(ϑi(t))

ut(t)

⎤⎥⎦ . (36)

Robots are subject to acceleration limit |ui,1| ≤ 10 and angular
speed limit |ui,2| ≤ 100.

At each simulation step, we discretize the dynamics via for-
ward Euler with time step Ts = 0.03.

Communication model: We model communication delays as
Poisson random variables with expectation that is proportional
to the number of neighbors within communication range. For
each robot i, transmitted message Ii(t) incurs δi(t) delay steps,
where

δi(t) ∼ Pois(cdel|Ni(t)|), (37)

Ni(t)
.
= {j ∈ R : ‖pi(t)− pj(t)‖ ≤ Rc} gathers all robots

within communication range at time t, and the coefficient cdel

depends on channel conditions and transmission power. Note
that larger cdel or more neighbors induce longer delays. While
we generate delays according to (37), this model is not used
either to train or to test the models. Moreover, note that delays
are in general asymmetric and vary overtime.

Training: We first train controllers under perfect information
exchange according to Section IV-B, by manually setting to
zero all transmission delays. We then train pairs of predictor
and controller models as discussed in Section V. For the single
integrator model we use two delay coefficients cdel ∈ {0.5, 0.8},
whereas for the Dubins car model we set cdel = 1.5. To generate
training samples, we simulate trajectories of R = 10 robots by

running multiple training episodes. We randomly assign start
and goal locations to all robots at the beginning of each episode.
Training episodes end either when the distance between all
robots and their respective goals is at most 0.02 or if a pre-defined
deadline of 500 simulation steps expires. At each simulation
step, we store all robot states x and received messages Ii←j in
a buffer, from which we periodically draw a batch of training
samples to update the models. The loss used for each update
is the average loss across samples of the batch. To avoid im-
balance in training the CBF, we sample an equal number of
safe and unsafe states or, when this is not possible, we draw
all unsafe states (which are usually fewer than safe states) from
the buffer. We update the models every Δtrain = 512 simulation
steps for ndesc = 10 descent steps (backpropagation), For the
single integrator model, we update predictor or CBF/controller
10 consecutive times before switching to the other model(s).
For the Dubins car model, we first train only the controller
under perfect information exchange, and then train only the
predictor under communication delays. We use an ε-greedy
on-policy scheme, i.e., control actions applied during training
are computed with the trained controller with probability 1− ε
and with only the nominal controller πn with probability ε. We
set a decreasing probability εt = 1/t to favor exploration during
early iterations. In the perfect information-exchange case, we
train CBF and controller models for 500000 simulation steps. In
the realistic information-exchange case we train CBF, controller,
and predictor for a million simulation steps with single integrator
dynamics, taking about 5 hours on an NVIDIA RTX A4000,
while for the Dubins car model we train the predictor for 2.5
million simulation steps. Details about the learning architecture
and neural network models are provided in Appendix B.

B. Results and Discussion

To evaluate safety, we compute the safety rate as the fraction
of safe test episodes:

Srate
.
=

test episodes without collisions
test episodes

. (38)

Index Srate does not account for how many collisions happen
within a single episode, so it considers any episode unsafe even
if a single collision occurs. For all tests, we average results over
100 Monte Carlo runs.

We first address safety under perfect information exchange,
i.e., instantaneous inter-robot communication, and apply our
distributed GNN-based controller (21) jointly trained with
the distributed control barrier function model as discussed in
Section IV-B. We train all models with R = 10 and test how
safety rate varies as we increase the number of robots deployed
during testing. By doing so, we actually increase density of
robots moving in the workspace since the latter has fixed size.
The results are shown in Fig. 5. The learned controller for single
integrator model easily scales to double the robot density without
decreasing its safety rate, which is always 1. The Dubins’ car
model instead causes oscillations of the safety rate due to the
more complex nonlinear behavior. Nonetheless, the safety rate
remains over 80% even when doubling robot density.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

10146 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 7, JULY 2025

Fig. 5. Safety rates with controller (21) in the perfect information-exchange
case.

(a)

(b)

Fig. 6. Safety rates with controller (21) (“GNN controller”) and with predictor-
based controller (31) (“GNN controller + predictor”) in the realistic information-
exchange case. Our proposed control architecture sizably improves safety under
communication delays. (a) Single integrator model. (b) Dubins car model.

We then turn to the realistic information-exchange setting,
where we compare the two distributed control approaches with
and without predictor. Fig. 6 conveys the main message. Aware-
ness of communication delays is crucial to effectively handle
data received by nearby robots during operation. The “GNN con-
troller” is the distributed GNN-based controller (21) trained un-
der perfect-information exchange with no prediction. The “GNN
controller + predictor” is the predictor-based controller (31)
illustrated in Fig. 3 trained under realistic-information exchange,
where the predictor estimates the relative states wij from de-
layed information Iii←j tagged with AoI. The plot shows that
the predictor-based controller sizably increases the safety rate as
opposed to the control (21) that neglects communication delays.
This witnesses that the CBF condition critically depends on
timeliness of information, especially at the boundary between
safe and unsafe regions (i.e., when two robots are about to
collide). To test “GNN controller + predictor” trained under
realistic information-exchange for single integrator dynamics
(Fig. 6(a)), we use the same delay coefficient cdel set in training,
except for the test with delay coefficient cdel = 0.2 where we use

Fig. 7. Average final distance from goal with trained GNN-based controller.

(a) (b)

Fig. 8. Experiments with heuristic control (33) and single integrator model.
(a) Average trajectory length. (b) Safety rate.

the controller trained with cdel = 0.5. Conversely, the predictor
for the Dubins car model is trained under a large coefficient
cdel = 1.5 and we study safety for smaller delays (Fig. 6(b)). The
tests suggest that the controllers generalize to delay distributions
with smaller delay expectations. It is important to remark that
we consider distributed controllers because we directly deploy
the trained GNN-based models πξ.

Goal-Reaching: While the GNN-based controllerπξ provides
a satisfactory safety level, we numerically observe that it hardly
outputs zero corrective actions ũi(t). This causes the robots to
settle off their respective goal locations. Fig. 7 shows the average
robot-to-goal distance after the episode deadline expires under
single-integrator model both with perfect information-exchange
(solid line) and realistic information-exchange (marks). Vi-
sual inspection reveals that robots settle close to goals with
a steady-state error. The latter increases with communication
delays, meaning that the robots apply stronger corrections to
compensate for more outdated data. The dashed blue line shows
the target distance below which the goal is reached. For context,
robots are simulated as circles with radius 0.05 as shown by the
red dotted line.

We explore how the heuristic switching controller (33) de-
scribed in Section V-B can counteract this effect. Recall that this
heuristics may not retain any safety guarantee of the GNN-based
distributed controllerπξ. For this experiment, we deploy the con-
troller trained with delay coefficient cdel = 0.5 in all tests and set
ϕ = {0.8, 1, 1.1} in (33) to test with cdel = {0.2, 0.5, 0.8}, re-
spectively, to reflect the different delay distributions. Using (33),
the robots almost always reach their respective goals before
the deadline. The average trajectory length (number of steps)
from start to goal using controller (33) are shown in Fig. 8(a).
The trajectory lengths increase with delays, as expected because

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

BALLOTTA AND TALAK: SAFE DISTRIBUTED CONTROL OF MULTI-ROBOT SYSTEMS WITH COMMUNICATION DELAYS 10147

(a) (b) (c)

Fig. 9. Safety rate when increasing robot density in test (R = 10 in training). (a) Coefficient cdel = 0.2. (b) Coefficient cdel = 0.5. (c) Coefficient cdel = 0.8.

(a) (b) (c)

Fig. 10. Average trajectory length with heuristic control (33) when increasing robot density in test (R = 10 in training). (a) Coefficient cdel = 0.2. (b) Coefficient
cdel = 0.5. (c) Coefficient cdel = 0.8.

robots need to act more cautiously. On the other hand, Fig. 8(b)
shows that the safety rates are lower than those obtained with
the trained controller and shown in Fig. 5. This is because the
heuristic control (33) sacrifices safety to achieve better goal-
reaching performance. In particular, the predictor introduces
extra uncertainty when estimating the CBF derivative in (33),
which causes safety degradation especially with long delays.

To get a sense of the performance loss due to communication
delays, the dashed line in Fig. 8(a) shows the average trajectory
length obtained under perfect-information exchange and by
computing the CBF derivative in (33) in a centralized fashion.4

This case is however impractical either under communication
delays or if the robots do not know each other’s goals (which
here are sufficient to compute nominal control inputs), and we
show it just for comparison as upper bound for performance.

Scalability for realistic information-exchange: Differently
from the perfect-information exchange, for which we study scal-
ability in Fig. 5, increasing the number of robots can negatively
affect scalability in the presence of communication delays. In
fact, by increasing density of robots in the workspace, model (37)
generally produces longer delays because robots communicate
with more neighbors. This means that increasing the number
of robots also causes a distribution shift from delays observed
during training.

Fig. 9 shows the safety rates obtained in test under single
integrator model when increasing the robot density (i.e., number
of robots with fixed workspace) from training settings. We
show safety rates with both the GNN-based controller (21)
(label “GNN controller”) and the heuristic controller (33) (la-
bel “Heuristic”). For “GNN controller”, we deploy the models
trained with delay coefficient cdel = 0.5 in the tests with cdel =

4The delay coefficients on the x-axis are irrelevant for this plot since instan-
taneous communication is implemented.

0.2 and with cdel = 0.5, while we deploy the models trained
with cdel = 0.8 in the test with cdel = 0.8. For “Heuristic”, we
use only the models trained with cdel = 0.5. While the controller
is able to generalize till double the robot density experienced in
training when tested with cdel = 0.2, a safety degradation can
be observed with the other two delay coefficients as the system
is made more cluttered. This is not surprising because, while
acceptable safety levels are maintained for (slightly) denser
scenarios, the controller cannot generalize to arbitrarily longer
delays. Moreover, we see that “Heuristic” provides smaller
safety rates because it lacks statistical guarantees and pushes
on performance. Therefore, this study suggests that a careful
assessment of communication delays is crucial to train the
predictor-controller models in an effective manner.

We also study how performance changes as robot density
increases. Fig. 10 shows the average lengths of trajectories run
by robots to reach their goals under the heuristic control (33),
analogously to the black circles in Fig. 8(a). More cluttered
environments force robots to navigate longer paths to reach their
goals, which agrees with intuition.

VII. LIMITATIONS AND FUTURE RESEARCH

While our theoretical results and methodology are quite gen-
eral, we have demonstrated it only for the task of collision
avoidance under single integrator and Dubins car dynamic mod-
els. Showing applicability of our methodology to other tasks
and dynamics is an important research avenue to be explored
in future work. In particular, we have identified the prediction
as a serious bottleneck for safety under realistic information-
exchange for more complicated dynamics, which urges more
research to apply the proposed framework to real-world applica-
tions. This could involve a different predictor architecture or em-
bedding prediction uncertainty, such as via Gaussian Processes

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

10148 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 7, JULY 2025

or Stochastic Barrier Functions [26]. Alternatively, a different
predictor-controller interplay may be thought so as to enhance
prediction capabilities via a tighter coordination of control ac-
tions. Another point that the present work does not address
is formal verification of the leaned distributed CBF, which is
crucial for deployment in safety-critical applications. Finally,
the promising results with the predictor-based framework open
a research avenue to controlling general delay systems, and
could be integrated with actuation delays in either model- or
learning-based fashion.

VIII. CONCLUSION

We have proposed distributed control barrier functions for
networked autonomous systems and studied a learning-based
approach based on GNN models to jointly learn a distributed
CBF and a safe distributed controller. We have empirically
shown that communication delays can disrupt safety certification
if not accounted for, and that a predictor-based approach where
a predictor model is alternatively trained with the CBF and con-
troller in the presence of delays can restore safety. In particular,
using AoI of exchanged information has proven useful to handle
delays. This allows for a simple, yet principled, approach to
solve other control problems with delays, which are typically a
challenge in controller design.

APPENDIX A
PROOF OF THEOREM 11

Characterization (20) follows directly from Assumptions 6
and 7 and the definition ofNi. In view of Definition 10 and As-
sumption 7, if all control inputs are such that uNi

∈ US(wi) ∀i
and as long as no neighborhood change, then h is differentiable
and S is forward invariant by Theorem 2. We need to prove that
the S is forward invariant when neighborhoods change. Assume
ρ(pi − pj) > 0 (i.e., j /∈ Ni) at time t and ρ(pi − pj) ≤ 0 (i.e.,
j ∈ Ni) at time t+ ε for some ε > 0. Because ρ and p are
continuous, there exists ε1 ∈ (0, ε) such that ρ(pi − pj) = 0 at
time t+ ε1. Thus, j ∈ Ni at time t+ ε1 and, by Assumption 7, if
h(wi) ≥ 0 at time t anduNi

∈ US(wi) for every t′ ∈ [t, t+ ε1),
then h(wi) ≥ 0 at time t+ ε1. Hence, the set Ni ∪ {i} with
j ∈ Ni complies with x ∈ S at time t+ ε1 and condition (19)
applied to this new neighborhood ensures h(wi) ≥ 0 for t′ ≥
t+ ε1.

APPENDIX B
LEARNING ARCHITECTURE USED FOR EXPERIMENTS

Predictor: The predictor λζ estimates current states differ-
ences ŵij(t) between robots i and j, which are fed to the dis-
tributed CBF model hθ and distributed controller model πξ. To
leverage data streams received from neighbors, we parametrize
the predictor as a recurrent neural network to learn correlations
across message sequences in Iii←j(t). We use PyTorch LSTM
with four layers, hidden size 256, and dropout probability 0.1.
Also, we discard all messages with AoI greater than Δmax = 5
steps for the single integrator model and Δmax = 10 steps for
the Dubins Car model.

CBF and Controller: We design hθ and πξ as compositions of
one GNN layer followed by an MLP. In the perfect information-
exchange setting, when current relative state information wi(t)
is readily available, we set

hθ(wi(t)) = mh

(
f
(K)
i (t)

)
(39)

πξ(wi(t)) = mπ

(
f
(K)
i (t), ūi(t)

)
, (40)

where we set K = 1 and the GNN model Γ extracts features at
time t as (cf: (9))

f
(k+1)
i (t) = γ

(
f
(k)
i (t),�j∈R:Ii←j(t) �=∅φ (wij(t))

)
f
(K)
i (t) = Γ (wi(t)) . (41)

The modelsmh andmπ are MLPs that map the extracted features
to CBF values and corrective control inputs, respectively. Under
realistic information-exchange, the relative states wij(t) are
replaced by their estimated values ŵij(t) computed by the
predictor. We also feed the reference signal ūi(t) to the con-
troller module mπ to enhance performance. Because we embed
within the (estimated) relative stateswi(t) into the edge features
between nodes, we set the initial robot features f (0)

i (t) simply
as vector of one’s for all robots.5

In our implementation of the GNN model Γ, we parametrize
both φ and γ in (41) as MLPs with two hidden layers, each
with 2048 nodes, and ReLu activation functions. We use an
attention-type aggregation function � because, intuitively, not
all neighbors carry the same importance to safety – closer neigh-
bors have more chance of colliding than far-away ones. Specif-
ically, we use AttentionalAggregation [48] whereby
the relevance of each neighbor is parametrized via an MLP
(that we implement with two hidden layers with 128 nodes
each and ReLu activation), followed by softmax weighing of
the neighbors’ scores. Finally, we parametrize the MLPs mh

and mπ in (40)–(39) with three hidden layers respectively with
512, 128, and 32 nodes, all with ReLu activation except for the
tanh output activation ofmh that bounds the CBF values within
the interval [0,1].

Given a batch with S samples, each learning iteration updates
the predictor model with the batch loss

LS
pred(ζ) =

1
S

S∑
s=1

Lpred(ζ;x
s, Is) (42)

and the distributed CBF and controller models are jointly trained
with the batch loss

LS(θ, ξ) =
1
S

S∑
s=1

L(θ, ξ;xs, Is), (43)

where Lpred and L are respectively defined in (32) and (22),
and the sth sample is given by the pair (xs, Is) that contains
respectively the state of the system and received data Ii←j of
all robots i for all neighbors j. In the loss term related to the

5While robot-specific information might be included in f
(0)
i (t), exploring

this design option is out of scope of the present contribution.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

BALLOTTA AND TALAK: SAFE DISTRIBUTED CONTROL OF MULTI-ROBOT SYSTEMS WITH COMMUNICATION DELAYS 10149

TABLE I
PARAMETERS AND HYPERPARAMETERS USED WITH SINGLE INTEGRATOR

MODEL

TABLE II
PARAMETERS AND HYPERPARAMETERS USED WITH DUBINS CAR MODEL

distributed CBF (23), we set a linear classK functionα(x) = αx
with slope α > 0. Moreover, we numerically approximate the
CBF derivative (that we use only in training) in (23) via (26).
Parameters and learning hyperparameters used for training are
reported in Tables I and II. Again, when training together
predictor model and distributed CBF and distributed controller
models, we replace exact values of wij(t) with their predicted
values ŵij(t) when computing the distributed CFB hθ(ŵi(t))
and the control input πξ(ŵi(t)), but we use the ground truth
(i.e., actual values of wi(t) and of wi(t+ Ts)) to compute the
time derivative of the distributed CBF via (26).

REFERENCES

[1] J. Hu, P. Bhowmick, and A. Lanzon, “Group coordinated control
of networked mobile robots with applications to object transporta-
tion,” IEEE Trans. Veh. Technol., vol. 70, no. 8, pp. 8269–8274,
Aug. 2021.

[2] S. Li, S. Zhang, G. He, and T. Jiang, “Discrete-time flocking control in
multi-robot systems with random link failures,” IEEE Trans. Veh. Technol.,
vol. 73, no. 9, pp. 12290–12304, Sep. 2024.

[3] X. Zhou, W. Wang, T. Wang, Y. Lei, and F. Zhong, “Bayesian reinforcement
learning for multi-robot decentralized patrolling in uncertain environ-
ments,” IEEE Trans. Veh. Technol., vol. 68, no. 12, pp. 11691–11703,
Dec. 2019.

[4] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based
multi-robot autonomous exploration in unknown environments via deep
reinforcement learning,” IEEE Trans. Veh. Technol., vol. 69, no. 12,
pp. 14413–14423, Dec. 2020.

[5] D. Lee, A. Franchi, H. I. Son, C. Ha, H. H. Bülthoff, and P. R. Giordano,
“Semiautonomous haptic teleoperation control architecture of multiple
unmanned aerial vehicles,” IEEE/ASME Trans. Mechatron., vol. 18, no. 4,
pp. 1334–1345, Aug. 2013.

[6] M. Pezzutto, M. Farina, R. Carli, and L. Schenato, “Remote MPC for track-
ing over lossy networks,” IEEE Control Syst. Lett., vol. 6, pp. 1040–1045,
2022.

[7] B. Capelli, H. Fouad, G. Beltrame, and L. Sabattini, “Decentral-
ized connectivity maintenance with time delays using control bar-
rier functions,” in Proc. IEEE Int. Conf. Robot. Automat., 2021,
pp. 1586–1592.

[8] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs for safety critical systems,” IEEE Trans. Autom.
Control, vol. 62, no. 8, pp. 3861–3876, Aug. 2017.

[9] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for
collisions-free multirobot systems,” IEEE Trans. Robot., vol. 33, no. 3,
pp. 661–674, Jun. 2017.

[10] Y. Chen, A. Singletary, and A. D. Ames, “Guaranteed obstacle avoid-
ance for multi-robot operations with limited actuation: A control barrier
function approach,” IEEE Control Syst. Lett., vol. 5, no. 1, pp. 127–132,
Jan. 2021.

[11] M. Jankovic, “Control barrier functions for constrained control of linear
systems with input delay,” in Proc. IEEE Annu. Amer. Control Conf., 2018,
pp. 3316–3321.

[12] Y. Sun, I. Kadota, R. Talak, and E. Modiano, “Age of information: A new
metric for information freshness,” Synth. Lectures Commun. Networks,
vol. 12, no. 2, pp. 1–224, 2019.

[13] T. G. Molnar, A. K. Kiss, A. D. Ames, and G. Orosz, “Safety-critical
control with input delay in dynamic environment,” IEEE Trans. Control
Syst. Technol., vol. 31, no. 4, pp. 1507–1520, Jul. 2023.

[14] V. Hamdipoor, N. Meskin, and C. G. Cassandras, “Safe control synthesis
using environmentally robust control barrier functions,” Eur. J. Control,
vol. 74, 2023, Art. no. 100840.

[15] J. Breeden and D. Panagou, “Predictive control barrier functions for online
safety critical control,” in Proc. IEEE 61st Conf. Decis. Control, 2022,
pp. 924–931.

[16] D. R. Agrawal and D. Panagou, “Safe and robust observer-controller
synthesis using control barrier functions,” IEEE Control Syst. Lett., vol. 7,
pp. 127–132, 2023.

[17] D. Panagou, D. M. Stipanović, and P. G. Voulgaris, “Distributed coor-
dination control for multi-robot networks using Lyapunov-like barrier
functions,” IEEE Trans. Autom. Control, vol. 61, no. 3, pp. 617–632,
Mar. 2016.

[18] M. Cavorsi, B. Capelli, L. Sabattini, and S. Gil, “Multi-robot adversarial
resilience using control barrier functions,” in Proc. Robot., Sci. Syst., 2022,
vol. 18, pp. 797–815.

[19] P. Ong, B. Capelli, L. Sabattini, and J. Cortés, “Nonsmooth control
barrier function design of continuous constraints for network connectivity
maintenance,” Automatica, vol. 156, 2023, Art. no. 111209.

[20] W. Xiao et al., “BarrierNet: Differentiable control barrier functions for
learning of safe robot control,” IEEE Trans. Robot., vol. 39, no. 3,
pp. 2289–2307, Jun. 2023.

[21] N. Gaby, F. Zhang, and X. Ye, “Lyapunov-net: A deep neural network
architecture for Lyapunov function approximation,” in Proc. IEEE 61st
Conf. Decis. Control, 2022, pp. 2091–2096.

[22] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Formal synthesis
of Lyapunov neural networks,” IEEE Control Syst. Lett., vol. 5, no. 3,
pp. 773–778, Jul. 2021.

[23] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo, “FOSSIL:
A software tool for the formal synthesis of Lyapunov functions and barrier
certificates using neural networks,” in Proc. 24th Int. Conf. Hybrid Syst.,
Computation Control, 2021, pp. 1–11.

[24] M. Zakwan, M. d’Angelo, and G. Ferrari-Trecate, “Universal approxima-
tion property of Hamiltonian deep neural networks,” IEEE Control Syst.
Lett., vol. 7, pp. 2689–2694, 2023.

[25] L. Furieri, C. L. Galimberti, and G. Ferrari-Trecate, “Neural system level
synthesis: Learning over all stabilizing policies for nonlinear systems,” in
Proc. IEEE 61st Conf. Decis. Control, 2022, pp. 2765–2770.

[26] F. B. Mathiesen, S. C. Calvert, and L. Laurenti, “Safety certification for
stochastic systems via neural barrier functions,” IEEE Control Syst. Lett.,
vol. 7, pp. 973–978, 2023.

[27] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and
S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE Trans.
Autom. Control, vol. 49, no. 9, pp. 1453–1464, Sep. 2004.

[28] U. Münz, A. Papachristodoulou, and F. Allgöwer, “Delay robustness in
consensus problems,” Automatica, vol. 46, no. 8, pp. 1252–1265, 2010.

[29] N. Matni, “Communication delay co-design in H2-Distributed control
using atomic norm minimization,” IEEE Trans. Control Netw. Syst., vol. 4,
no. 2, pp. 267–278, Jun. 2017.

[30] M. A. Gomez, A. V. Egorov, S. Mondié, and W. Michiels, “Optimization
of theH2 norm for single-delay systems, with application to control design
and model approximation,” IEEE Trans. Autom. Control, vol. 64, no. 2,
pp. 804–811, Feb. 2019.

[31] F. Branz, R. Antonello, M. Pezzutto, S. Vitturi, F. Tramarin, and L. Schen-
ato, “Drive-by-Wi-Fi: Model-based control over wireless at 1 kHz,” IEEE
Trans. Control Syst. Technol., vol. 30, no. 3, pp. 1078–1089, May 2022.

[32] V. Tripathi, R. Talak, and E. Modiano, “Age optimal information gathering
and dissemination on graphs,” IEEE Trans. Mobile Comput., vol. 22, no. 1,
pp. 54–68, Jan. 2023.

[33] R. Talak, S. Karaman, and E. Modiano, “Optimizing information freshness
in wireless networks under general interference constraints,” IEEE/ACM
Trans. Netw., vol. 28, no. 1, pp. 15–28, Feb. 2020.

[34] V. Tripathi and E. Modiano, “A whittle index approach to minimizing
functions of age of information,” in Proc. 57th Annu. Allerton Conf.
Commun., Control, Comput., 2019, pp. 1160–1167.

[35] O. Ayan, M. Vilgelm, M. Klügel, S. Hirche, and W. Kellerer, “Age-of-
information vs. value-of-information scheduling for cellular networked
control systems,” in Proc. 10th ACM/IEEE Int. Conf. Cyber-Phys. Syst.,
2019, pp. 109–117.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

10150 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 74, NO. 7, JULY 2025

[36] M. Klügel, M. H. Mamduhi, S. Hirche, and W. Kellerer, “AoI-penalty
minimization for networked control systems with packet loss,” in Proc.
IEEE Conf. Comput. Commun. Workshops, 2019, pp. 189–196.

[37] J. P. Champati, M. H. Mamduhi, K. H. Johansson, and J. Gross, “Per-
formance characterization using AoI in a single-loop networked con-
trol system,” in Proc. IEEE Conf. Comput. Commun. Workshops, 2019,
pp. 197–203.

[38] A. K. Kiss, T. G. Molnar, A. D. Ames, and G. Orosz, “Control barrier
functionals: Safety-critical control for time delay systems,” Int. J. Robust
Nonlinear Control, vol. 33, no. 12, pp. 7282–7309, 2023.

[39] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Proc. Int. Conf. Learn. Representations, 2016.
[Online]. Available: https://openreview.net/forum?id=SJU4ayYgl

[40] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
“Graph attention networks,” in Proc. Int. Conf. Learn. Representations,
2018. [Online]. Available: https://openreview.net/forum?id=rJXMpikCZ

[41] S. Brody, U. Alon, and E. Yahav, “How attentive are graph attention
networks?,” in Proc. Int. Conf. Learn. Representations, 2021. [Online].
Available: https://openreview.net/forum?id=F72ximsx7C1

[42] A. Khan, E. Tolstaya, A. Ribeiro, and V. Kumar, “Graph policy gradi-
ents for large scale robot control,” in Proc. Conf. Robot Learn., 2020,
pp. 823–834.

[43] Q. Li, F. Gama, A. Ribeiro, and A. Prorok, “Graph neural networks for
decentralized multi-robot path planning,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2020, pp. 11785–11792.

[44] R. Kortvelesy and A. Prorok, “ModGNN: Expert policy approximation in
multi-agent systems with a modular graph neural network architecture,”
in Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 9161–9167.

[45] F. Gama, Q. Li, E. Tolstaya, A. Prorok, and A. Ribeiro, “Synthesizing de-
centralized controllers with graph neural networks and imitation learning,”
IEEE Trans. Signal Process., vol. 70, pp. 1932–1946, 2022.

[46] E. Sebastián, T. Duong, N. Atanasov, E. Montijano, and C. Sagüés,
“LEMURS: Learning distributed multi-robot interactions,” in Proc. IEEE
Int. Conf. Robot. Automat., 2023, pp. 7713–7719.

[47] E. Rossi et al., “Coordinated multi-robot trajectory tracking control over
sampled communication,” Automatica, vol. 151, 2023, Art. no. 110941.

[48] Y. Li, C. Gu, T. Dullien, O. Vinyals, and P. Kohli, “Graph matching
networks for learning the similarity of graph structured objects,” in Proc.
36th Int. Conf. Mach. Learn., 2019, pp. 3835–3845.

Luca Ballotta received the master’s degree in au-
tomation engineering and the Ph.D. degree in infor-
mation engineering from the University of Padova,
Padua, Italy, in 2019 and 2023, respectively. In 2020
and 2022, he was a Visiting Student with the Mas-
sachusetts Institute of Technology, Cambridge, MA,
USA. He is currently a Postdoctoral Researcher with
the Delft Center for Systems and Control, Delft Uni-
versity of Technology, Delft, the Netherlands. His
research interests include multi-agent systems and
networked control under delays, resilient distributed

control and distributed learning, safe control, and control under sparsity con-
straints. He was the recipient of the Young Author Prize at the 2020 IFAC World
Congress and also the Finalist of the 2024 EECI Ph.D. Award.

Rajat Talak (Member, IEEE) received the B.Tech.
degree from the Department of Electronics and Com-
munication Engineering, National Institute of Tech-
nology Karnataka, Mangalore, India, in 2010, the
Master of Science degree from the Department of
Electrical Communication Engineering, Indian Insti-
tute of Science, Bengaluru, India, in 2013, and the
Ph.D. degree from the Laboratory of Information and
Decision Systems, Massachusetts Institute of Tech-
nology (MIT), Cambridge, MA, USA, in 2020. He
was a Postdoctoral Associate with the Department of

Aeronautics and Astronautics, MIT. He is currently a Research Scientist with
the Department of Aeronautics and Astronautics, MIT. His research interests
include robot perception, optimization and learning, autonomous systems, and
communication networks. He was the recipient of the Best Paper Award at the
ACM MobiHoc 2018 and the Gold medal for his master’s thesis.

Authorized licensed use limited to: TU Delft Library. Downloaded on July 25,2025 at 13:14:39 UTC from IEEE Xplore. Restrictions apply.

https://openreview.net/forum{?}id$=$SJU4ayYgl
https://openreview.net/forum{?}id$=$rJXMpikCZ
https://openreview.net/forum{?}id$=$F72ximsx7C1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

