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Abstract: This paper proposes a distributed model-based methodology for the detection and
isolation of sensor faults in marine fuel engines. The proposed method considers a Mean Value
First Principle model and a wide selection of heterogeneous sensors for monitoring the engine
components. The detection of faults is realised based on residuals generated using nonlinear
Differential Algebraic estimators combined with adaptive thresholds. The isolation of faults is,
then, realised in two levels; local sensor fault detection and isolation agents are designed to
monitor specific sensor sets and aim to detect faults in these sets; and a global decision logic is
designed to isolate multiple sensor faults that may be propagated between the local monitoring
agents. Finally, simulation results are used to illustrate the application of this method and its
efficiency.
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1. INTRODUCTION

Nowadays, the maritime industry is responsible for the
transport of 90% of global cargo and the lives of more than
a million seafarers and passengers worldwide. Ensuring
their safety should be one of the priorities in the mar-
itime field. However, recent statistics from the European
Maritime Safety Agency (2020) suggest that 22% of the
total ship casualties in 2019 was caused by the loss of
propulsion, a situation which leaves the vessel ungoverned
in the uncertain sea environment. Thus, the monitoring of
marine engines is safety-critical [Aslam et al. (2020)].

Most literature has focused only on diagnosing fuel en-
gines’ process faults while sensors were mostly believed
to report reliable information. However, sensor faults also
occur and should be taken into consideration [Wu et al.
(2006)]. Securing sensors’ health should be treated as im-
portant as that of the engine itself since the decisions made
after diagnosing a fault may differ in the case of a sensor
fault and in that of a process fault [MACSEA (2012)].
A wrong decision during voyage could affect the lives
onboard the vessel, the transported cargo and possibly the
environment. In addition, due to the larger size of engines,
limited operator access as well as the highly uncertain sea
environment, the consequences of a bad decision regarding
faults can be greater in a marine system than a land-based
system [Wang et al. (2017)]. On top of that, the occurrence
of multiple sensor faults has become a significant problem
to tackle, due to the large number of sensors distributed
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in marine systems such as marine fuel engines [Jones and
Li (2000)]. Although more realistic, this problem has not
yet received much attention in the relevant literature.

In the area of sensor fault diagnosis for marine fuel engines
there has already been some research activity. Mesbahi
in his work [Mesbahi (2001)] applies an Artificial Neural
Network (ANN) technique to validate the coherence of
sensor measurements, isolate faulty sensors and recover
the lost information from healthy measurements for a 6-
cylinder engine. However, only single faults are considered
and a massive amount of data is needed for training
purposes in order to include both healthy and faulty
conditions. Hu et al. (2018) on the other hand, perform
temperature sensor fault detection for a selective catalyst
reduction (SCR) system built upon a Diesel Engine using
a suitable temperature model and an Extended Kalman
Filter (EKF). Nonetheless, the authors choose an arbitrary
threshold to perform fault detection, which may lead to
missed detection of sensor faults or false alarms if it is
not well selected. Finally, in [Wohlthan et al. (2021)], a
model-based sensor fault diagnosis method is proposed for
engine test beds using a multi-stage geometric analysis of
the extracted residuals. However, this method considers
static models and single sensor fault occurence.

The objective of this work is to design a model-based
technique to detect and isolate the occurrence of faults
affecting multiple sensors of marine fuel engines. As the
system is very complex and consists of highly intercon-
nected subsystems, a distributed monitoring approach is
proposed. In particular, local Sensor Fault Detection and
Isolation (SFDI) agents are designed (see Section 4), where
each agent uses information from a specific sensor set
and captures the occurrence of faults in these sensor sets.
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The detection of faults is realised by comparing a set of
residuals to the designed adaptive thresholds while the
isolation of sensor faults relies on a combinatorial decision
logic [Reppa et al. (2016)]. The computation of residuals
and adaptive thresholds is based on a Mean Value First
Principle (MVFP) model (see Section 3) which can more
accurately describe the actual engine. This model incorpo-
rates both differential and algebraic equations (DAE) (see
Section 2).

From the application point of view, the main contribution
of this research work is the development of a distributed
SFDI architecture that manages to isolate multiple sensor
faults in marine fuel engines. The use of adaptive thresh-
olds allows to reduce the conservativeness in decision mak-
ing, excluding false alarms. Moreover, the MVFP model
provides a greater generalization ability of the results for
different engines, since it can be easily reconfigured in
its parameters and can also be expanded to host more
subsystems and sensors. Compared to the state-of-the-
art in distributed model-based fault diagnosis literature
where mostly systems described by ordinary differential
equations (ODE) are considered [Reppa et al. (2016);
Boem et al. (2017); Keliris et al. (2015)], this work focuses
on systems described by nonlinear DAE. The design of
algebraic residuals and adaptive thresholds is a challenging
task that affects the detectability of sensor faults.

2. PROBLEM FORMULATION

Marine fuel engines are complex systems incorporating
components characterised by heterogeneous dynamics and
inherent interconnections. In Fig. 1 a representation of
a marine fuel engine is shown, where the different parts
are grouped in four distinct subsystems and a total of ten
sensors are deployed for condition monitoring. This work

Fig. 1. Schematic representation of a typical marine fuel
engine

aims to diagnose faults affecting more than one sensors in
the marine fuel engine system.

Given the heterogeneous dynamics and interconnections
of the subsystems in marine fuel engines, the proposed
fault diagnosis method is developed considering a class of

N nonlinear DAE-based interconnected systems Σ(I), I =
1, · · · , N described by [Vemuri et al. (2001)]:

Σ(I) :





ẋ(I)(t) =A(I)x(I)(t) + γ(I)(x(I)(t), z(I)(t), u(I)(t))+

h(I)(x(I)(t), z(I)(t), χ(I)(t), u(I)(t)) + η
(I)
x (t),

0 = ξ(I)(x(I)(t), z(I)(t), χ(I)(t), u(I)(t)) + η
(I)
z (t)

(1a)

(1b)

where x(I) ∈ RnI−rI is the state variable vector, z(I) ∈ RrI

is the algebraic variable vector, χ(I) ∈ RkI are the inter-
connection variables from the neighbouring subsystems,
u(I) ∈ RlI is the control input vector, γ(I) : RnI−rI×RlI �→
RnI−rI represents the known nonlinear system dynamics,
h(I) : RnI−rI × RrI × RkI × RlI �→ RnI−rI represents the
known interconnection dynamics with the neighbouring

subsystems, η
(I)
x ∈ RnI−rI , η

(I)
z ∈ RrI represent the system

disturbances, ξ(I) : RnI ×RkI ×RlI �→ RnI−rI is a smooth
vector field.The term A(I)x(I) represents the linear part of
the system’s Σ(I) dynamics, whereA(I) ∈ R(nI−rI)×(nI−rI)

is assumed known.

Each system incorporates a set of sensors S(I) =⋃nI

j=1 S(I){j} described as:

S(I) :

{
y(I)x (t) = x(I)(t) + d(I)x (t) + f (I)

x (t)

y(I)z (t) = z(I)(t) + d(I)z (t) + f (I)
z (t)

(2)

where y
(I)
x ∈ RnI−rI denotes the sensor values corre-

sponding to state variables, y
(I)
z ∈ RrI denotes the sen-

sor values corresponding to algebraic variables, d
(I)
x ∈

RnI−rI , d
(I)
z ∈ RrI are the measurement noise vectors

and f
(I)
x ∈ RnI−rI , f

(I)
z ∈ RrI are sensor fault vectors.

Each fault vector is given by f (I)(t) = [f
(I)
x (t) f

(I)
z (t)]� =

[f
(I)
1 (t), · · · , f (I)

nI (t)]�, where f
(I)
j (t), j ∈ {1, · · · , nI} de-

notes the sensor fault of the j-th sensor.

The objective of this paper is to design a methodology for
the detection and isolation of multiple, permanent abrupt
offset sensor faults for nonlinear DAE interconnected sub-
systems described by (1) and (2), subject to the following
assumptions:
Assumption 1: The system disturbance and the measure-
ment noise of each sensor are unknown but uniformly

bounded, meaning:
∣∣∣η(I)xj

∣∣∣ � η
(I)
xj ,

∣∣∣η(I)zj

∣∣∣ � η
(I)
zj ,

∣∣∣d(I)j

∣∣∣ �

d
(I)

j , ∀j ∈ 1, · · · , nI where η
(I)
xj , η

(I)
zj , d

(I)

j are known.

Assumption 2: The nonlinear vector fields γ(I), h(I) are
locally Lipschitz in x ∈ X , z ∈ Z for all u ∈ U and t � 0
with Lipschitz constants λγI

, λhI
respectively

3. FUEL ENGINE STATE-SPACE MODELLING

In order to describe the operation of the fuel engine, the
physical MVFP model shown in [Geertsma et al. (2017)]
is used. As shown in Fig. 1, the MVFP system model is
decomposed in four nonlinear DAE interconnected subsys-
tems, formulated using the general formulation shown in
(1), (2). For simplicity purposes, the time dependence may
hereby be omitted.

3.1 Fuel Pump (Σ(1))

Subsystem 1 is expressed as:

Σ(1) : ẋ(1) = − 1

τX
x(1) +

x
(1)
nom

τX
u(1) (3)
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The detection of faults is realised by comparing a set of
residuals to the designed adaptive thresholds while the
isolation of sensor faults relies on a combinatorial decision
logic [Reppa et al. (2016)]. The computation of residuals
and adaptive thresholds is based on a Mean Value First
Principle (MVFP) model (see Section 3) which can more
accurately describe the actual engine. This model incorpo-
rates both differential and algebraic equations (DAE) (see
Section 2).

From the application point of view, the main contribution
of this research work is the development of a distributed
SFDI architecture that manages to isolate multiple sensor
faults in marine fuel engines. The use of adaptive thresh-
olds allows to reduce the conservativeness in decision mak-
ing, excluding false alarms. Moreover, the MVFP model
provides a greater generalization ability of the results for
different engines, since it can be easily reconfigured in
its parameters and can also be expanded to host more
subsystems and sensors. Compared to the state-of-the-
art in distributed model-based fault diagnosis literature
where mostly systems described by ordinary differential
equations (ODE) are considered [Reppa et al. (2016);
Boem et al. (2017); Keliris et al. (2015)], this work focuses
on systems described by nonlinear DAE. The design of
algebraic residuals and adaptive thresholds is a challenging
task that affects the detectability of sensor faults.

2. PROBLEM FORMULATION

Marine fuel engines are complex systems incorporating
components characterised by heterogeneous dynamics and
inherent interconnections. In Fig. 1 a representation of
a marine fuel engine is shown, where the different parts
are grouped in four distinct subsystems and a total of ten
sensors are deployed for condition monitoring. This work

Fig. 1. Schematic representation of a typical marine fuel
engine

aims to diagnose faults affecting more than one sensors in
the marine fuel engine system.

Given the heterogeneous dynamics and interconnections
of the subsystems in marine fuel engines, the proposed
fault diagnosis method is developed considering a class of

N nonlinear DAE-based interconnected systems Σ(I), I =
1, · · · , N described by [Vemuri et al. (2001)]:

Σ(I) :





ẋ(I)(t) =A(I)x(I)(t) + γ(I)(x(I)(t), z(I)(t), u(I)(t))+

h(I)(x(I)(t), z(I)(t), χ(I)(t), u(I)(t)) + η
(I)
x (t),

0 = ξ(I)(x(I)(t), z(I)(t), χ(I)(t), u(I)(t)) + η
(I)
z (t)

(1a)

(1b)

where x(I) ∈ RnI−rI is the state variable vector, z(I) ∈ RrI

is the algebraic variable vector, χ(I) ∈ RkI are the inter-
connection variables from the neighbouring subsystems,
u(I) ∈ RlI is the control input vector, γ(I) : RnI−rI×RlI �→
RnI−rI represents the known nonlinear system dynamics,
h(I) : RnI−rI × RrI × RkI × RlI �→ RnI−rI represents the
known interconnection dynamics with the neighbouring

subsystems, η
(I)
x ∈ RnI−rI , η

(I)
z ∈ RrI represent the system

disturbances, ξ(I) : RnI ×RkI ×RlI �→ RnI−rI is a smooth
vector field.The term A(I)x(I) represents the linear part of
the system’s Σ(I) dynamics, whereA(I) ∈ R(nI−rI)×(nI−rI)

is assumed known.

Each system incorporates a set of sensors S(I) =⋃nI

j=1 S(I){j} described as:

S(I) :

{
y(I)x (t) = x(I)(t) + d(I)x (t) + f (I)

x (t)

y(I)z (t) = z(I)(t) + d(I)z (t) + f (I)
z (t)

(2)

where y
(I)
x ∈ RnI−rI denotes the sensor values corre-

sponding to state variables, y
(I)
z ∈ RrI denotes the sen-

sor values corresponding to algebraic variables, d
(I)
x ∈

RnI−rI , d
(I)
z ∈ RrI are the measurement noise vectors

and f
(I)
x ∈ RnI−rI , f

(I)
z ∈ RrI are sensor fault vectors.

Each fault vector is given by f (I)(t) = [f
(I)
x (t) f

(I)
z (t)]� =

[f
(I)
1 (t), · · · , f (I)

nI (t)]�, where f
(I)
j (t), j ∈ {1, · · · , nI} de-

notes the sensor fault of the j-th sensor.

The objective of this paper is to design a methodology for
the detection and isolation of multiple, permanent abrupt
offset sensor faults for nonlinear DAE interconnected sub-
systems described by (1) and (2), subject to the following
assumptions:
Assumption 1: The system disturbance and the measure-
ment noise of each sensor are unknown but uniformly

bounded, meaning:
∣∣∣η(I)xj

∣∣∣ � η
(I)
xj ,

∣∣∣η(I)zj

∣∣∣ � η
(I)
zj ,

∣∣∣d(I)j

∣∣∣ �

d
(I)

j , ∀j ∈ 1, · · · , nI where η
(I)
xj , η

(I)
zj , d

(I)

j are known.

Assumption 2: The nonlinear vector fields γ(I), h(I) are
locally Lipschitz in x ∈ X , z ∈ Z for all u ∈ U and t � 0
with Lipschitz constants λγI

, λhI
respectively

3. FUEL ENGINE STATE-SPACE MODELLING

In order to describe the operation of the fuel engine, the
physical MVFP model shown in [Geertsma et al. (2017)]
is used. As shown in Fig. 1, the MVFP system model is
decomposed in four nonlinear DAE interconnected subsys-
tems, formulated using the general formulation shown in
(1), (2). For simplicity purposes, the time dependence may
hereby be omitted.

3.1 Fuel Pump (Σ(1))

Subsystem 1 is expressed as:

Σ(1) : ẋ(1) = − 1

τX
x(1) +

x
(1)
nom

τX
u(1) (3)

where x(1)(t) ∈ R is the amount of fuel injected per

cylinder per engine cycle in kg, x
(1)
nom ∈ R signifies the

same quantity under nominal conditions calculated as:

x(1)
nom =

SFCnomPnom
fe ke

iennom
fe

(4)

, u(t) ∈ R is the fuel injection setting in % and nnom
fe , τX =

1
4nnom

fe
, SFCnom, Pnom

fe , ie, ke are defined in [Geertsma

et al. (2017)]. The output of the fuel injection sensor
y(1) ∈ R is described by:

S(1) : y(1) = x(1)(t) + d(1) + f (1) (5)

3.2 Thermomechanical process (Σ(2))

This subsystem has 3 algebraic variables, namely the

pressure (z
(2)
1 ) in Pa and the temperature (z

(2)
2 ) in K inside

the engine’s cylinders and the engine’s shaft torque (z
(2)
3 )

in Nm. The mathematical representation of the system is:

Σ(2) : 0 =




z
(2)
1 − ξ

(2)
z1 (x(1), z

(2)
3 , x(4), z

(4)
1 )

z
(2)
2 − ξ

(2)
z2 (x(1), z

(2)
3 , x(4), z

(4)
1 )

z
(2)
3 − ξ

(2)
z3 (x(1), z

(2)
3 , x(4), z

(4)
1 )


 (6)

where the functions ξ
(2)
z1 , ξ

(2)
z2 , ξ

(2)
z3 ∈ R can be modelled us-

ing the Seilinger thermodynamic cycle as follows[Geertsma
et al. (2017)]:

ξ
(2)
z1

=x
(4)

r
κa
c


1 +

1
cv,a

(
Xcv

ηhLRa
v1

z
(4)
1

x(4)
x(1)

)

z
(4)
1

(t)r
(κa−1)
c


 ·




reorc

1 +
(1−Xcv−Xct)

ηhLRa
v1

z
(4)
1

x(4)
x(1)

z
(4)
1

(t)r
(κa−1)
c +

Xcv
ηhLRa

v1

z
(4)
1

x(4)
x(1)

cv,a


cp,a




−nexp

·

e

−
(nexp−1)Xct

ηhL
v1

r
(1−κa)
c

x(4)
x(1)

1+

Xcv
ηhLRa

v1

r
(1−κa)
c

x(4)
x(1)

cv,a
+

(1−Xcv−Xct)
ηhLRa

v1

r
(1−κa)
c

x(4)
x(1)

cp,a

(7)

ξ
(2)
z2

=


1 +

ηhLRa
v1

r
(1−κa)
c

x(4)
x(1)

(
cp,aXcv + cv,a(1 − Xcv − Xct)

)
cv,acp,a


 ·




reorc(z
(4)
1

r
(κa−1)
c )(nexp−1)

1 +
(1−Xcv−Xct)

ηhLRa
v1

z
(4)
1

x(4)
x(1)

z
(4)
1

(t)r
(κa−1)
c +

Xcv
ηhLRa

v1

z
(4)
1

x(4)
x(1)

cv,a


cp,a




1−nexp

·

e

(nexp−1)Xct
ηhL
v1

r
(1−κa)
c

x(4)
x(1)

1+

Xcv
ηhLRa

v1

r
(1−κa)
c

x(4)
x(1)

cv,a
+

(1−Xcv−Xct)
ηhLRa

v1

r
(1−κa)
c

x(4)
x(1)

cp,a

(8)

ξ
(2)
z3

=
v1iex

(4)

2πke

(
r
(κa−1)
c − 1

κa − 1
+

(1 − Xcv − Xct)

cp,a

ηhL

v1

Ra

x(4)
x
(1)

−
r
(κa−1)
c +

ηhLRa

v1x(4)
x(1)(cp,aXcv+cv,a(1−Xcv−Xct))

cv,acp,a

nexp − 1

+
XctηhLRax

(1)

x(4)v1
+

ξ
(2)
z2

z
(4)
1

(nexp − 1)

)
− Q

nom
loss

(
1 + Q

grad
loss

·
nnom
fe

− nfe

nnom
fe

)

(9)

where nfe =

√
2π
c z

(2)
3 , Xcv = Xnom

cv + Xgrad
cv

nfe−nnom
fe

nnom
fe

,

Xct = Xnom
ct

x(1)

x
(1)
nom

, c is a constant, η is the thermal

efficiency incorporating both the combustion and heat
release processes and Xnom

cv , Xgrad
cv , Xnom

ct , hL, Ra, v1,

rc, κa, reo, nexp, cp,a, cv,a, Qnom
loss , Qgrad

loss are defined in
[Geertsma et al. (2017)]. The output values of the pressure,
temperature and torque sensors y(2) ∈ R3 are described
by:

S(2) : y(2) = z(2) + d(2) + f (2) (10)

3.3 Exhaust Gas Path (Σ(3))

This subsystem has 1 state-variable, the exhaust receiver
pressure (x(3)) in Pa and 2 algebraic variables, the temper-

ature before (z
(3)
1 ) and after (z

(3)
2 ) the turbine in K. This

subsystem is represented as follows in state-space:

Σ(3) :

{
ẋ(3) = −

1

τpd
x(3) + h(3)(x(3), z(3), χ(3))

0 = ξ(3)(x(3), z(3), χ(3))
(11)

where χ(3) = [x(1), z(2), x(4), z(4)]� are the interconnection
variables. The interconnection dynamics are described by

h(3)(x(3), z(3), χ(3)) =

1

τpd

√√√√√
p2ex +

z
(3)
1 (n2

fe

(
ψ1

x(4)

z
(4)
1

+ ie
ke

x(1)

)2

a2ZAeff

(12)

where ψ1 = ψ1(x(3), x(4), z(4), nfe) =

√
Rgiev1ssl(x

(3),x(4),z(4),nfe)

Rake
.

The algebraic part is expressed as

ξ
(3)

(x
(3)

, z
(3)

, χ
(3)

)) =


 z

(3)
1 −

ψ2Tsl + ψ̃3z
(2)
2

ψ2 + ψ3

z
(3)
2 − ψ4z

(3)
1


 (13)

where

ψ2 =

cpav1ssl(x
(3), x(4), z(4), z(2))x

(4)

z
(4)
1

Ra

(14)

ψ3 = cpg

(
x(1) +

v1

Ra

x(4)

z
(4)
1

)
(15)

ψ̃3 = ψ3(t)

(
1

nbld
+

nbld − 1

nbld
τpd

h(3)

z
(2)
1

)
(16)

ψ4 = 1 + ηtur(x
(4)) (Πtur − 1) (17)

Πtur = Πtur(x
(3)) =

(
pex

x(3)

)(
κg−1

κg
)

(18)

ηtur(x
(4)) = atur + bturx

(4) + ctur(x
(4))2 (19)

and τpd
, pex, aZ , Aeff , Rg, nbld, κg cpg, Tsl, atur, btur, ctur

ssl are defined in [Geertsma et al. (2017)]. The related set
of sensors is expressed as:

S(3) : y(3) =
[
x(3) z(3)

]�
+ d(3) + f (3) (20)
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3.4 Air Path (Σ(4))

This subsystem has 1 state-variable, the charge air pres-
sure after the compressor (x(4)) in Pa and 2 algebraic

variables, the temperatures before (z
(4)
1 ) and after (z

(4)
2 )

the intercooler in K. This subsystem is represented as
follows in state-space:

Σ(4) :

{
ẋ(4) = −

1

τTC
x(4) + h(4)(x(4), z(4), χ(4))

0 = ξ(4)(x(4), z(4), χ(4))
(21)

where χ(4) = [x(1), z(2), x(3), z(3)]� are the interconnection
variables. The interconnection dynamics are expressed as:

h(4) =
pamb

τTC

(
1 + χgδfηTC(x(4))rTC(z(3))(1−Πtur)

)(κa−1
κa

)

(22)

where

δf = 1 +
x(1)(

1 + v1
Ra

ssl
x(4)

z
(4)
1

)
(23a)

ηTC(x(4)) = aη + bηx
(4) + cη(x

(4))2 (23b)

rTC(z(3)) =
z
(3)
1

Tamb

(23c)

The algebraic part is described by

ξ(4)(x(4), z(4), χ(4))) =

[
z
(4)
1 − ξ

(4)
z1

z
(4)
2 − ξ

(4)
z2 (x(3), z(3))

]
(24)

where

ξ
(4)
z1 = Tc − εinl(Tinl − Tc) (25a)

ξ
(4)
z2 = Tamb + χgηtur(δf (t) + ηcom)x(3)

(
z
(3)
2 − z

(3)
1

)
(25b)

and τTC , χg, pamb, Tamb, aη, bη, cη, ηcom, Tc, εinl, Tinl are
defined in [Geertsma et al. (2017)]. The sensor set of this
system is given by:

S(4) : y(4) =
[
x(4) z(4)

]�
+ d(4) + f (4) (26)

4. DISTRIBUTED SENSOR FAULT DETECTION
AND ISOLATION

Due to the large scale of marine fuel engines as well as
their inherent system complexity, a distributed monitoring
approach is proposed. As shown in Fig. 2, for each one of
the fuel engine’s subsystems Σ(I), I = 1, · · · , N (N=4), a
monitoring agent M(I) is designed consisting of NI mod-
ules M(I,q), q = 1, · · · , NI (N1 = 1, N2 = N3 = N4 = 3).
Each module monitors a specific sensor subset S(I,q) ⊆
S(I) in the designated subsystem. Every S(I,q) contains
sensors measuring either state or algebraic variables.

Remark 1: The distributed scheme in Fig.2 is based
on previous works [e.g. Reppa et al. (2016)]. However,
the monitoring agents M(I), I = {1, 2, 3, 4} have been
designed considering the DAE nature of the fuel engine
system. In more detail, nonlinear algebraic residuals with
corresponding adaptive bounds were proposed.

4.1 Residual generation

The residual vector ε
(I,q)
y ∈ RnI is defined by:

ε(I,q)y =

[
y(I,q)x − x̂(I,q)

−ξ(I)(y(I,q)x , y(I,q)z , y(I)χ , u(I))

]
=

[
ε(I,q)yx

ε(I,q)yz

]
(27)

where x̂(I,q) is the estimation of x(I) defined as:

Fig. 2. Distributed SFDI scheme application using a
MVFP Fuel Engine model

˙̂x(I,q)(t) =A(I)x̂(I,q)(t) + γ(I)(x̂(I,q)(t), y
(I,q)
z (t), u(I)(t))

+ h(I)(x̂(I,q)(t), y
(I,q)
z (t), y

(I)
χ (t), u(I)(t))

+ L(I,q)(y
(I,q)
x (t)− x̂(I,q)(t)),

(28)

The matrix L(I,q) ∈ R(nI−rI)×(nI−rI) is chosen such that
the matrix A

(I,q)
L = A(I) − L(I,q) is Hurwitz.

Subtracting (1) from (28) and using (2) yields:

ε̇
(I,q)
x =A

(I,q)
L ε

(I,q)
x + γ̃(I,q) + h̃(I,q) + η

(I)
x − L(I,q)d

(I,q)
x (29)

where ε
(I,q)
x = x(I) − x̂(I,q) is the

state estimation error, γ̃(I,q) �
γ(I)(x(I)(t), z(I)(t), u(I)(t)) − γ(I)(x̂(I,q)(t), y

(I,q)
z (t),

u(I)(t)) and h̃(I,q) = h(I)(x(I)(t), z(I)(t), χ(I)(t), u(I)(t))

−h(I)(x̂(I,q)(t), y
(I,q)
z (t), y

(I)
χ (t), u(I)(t)). The residual

ε
(I,q)
yx can then also be expressed as ε

(I,q)
yx = ε

(I,q)
x + d

(I,q)
x

Adding (1b) to the expression of ε
(I,q)
yz in (27) yields:

ε
(I,q)
yz (t) =ξ(I)(x(I), z(I), χ(I), u(I)) + η

(I)
z

− ξ(I)(y
(I,q)
x , y

(I,q)
z , y

(I)
χ , u(I))

(30)

4.2 Adaptive thresholds’ computation

The thresholds are designed to bound the respective resid-

uals ε
(I,q)
yx and ε

(I,q)
yz under healthy sensor conditions. This

translates to the following requirements for the adaptive
threshold(s) of the j-th component of the residual vector:∣∣∣ε(I,q)yxj

(t)
∣∣∣ ≤ ε̄(I,q)yxj

(t), j = 1, · · · , nI − rI (31)

ε(I,q)yzj
(t) ∈ [ε(I,q)yzj

(t), ε̄(I,q)yzj
(t)], j = 1, · · · , rI (32)

Adaptive thresholds in (31),(32) are designed considering
the Assumptions 1 and 2. This design causes no false
alarms. Under the Assumptions 1-2 and after some math-
ematical manipulations of (29) the adaptive threshold can
be computed as [Reppa et al. (2016)]:

ε̄
(I,q)
yxj

(t) = E(I,q)(t) + ρ(I,q)ΛI

∫ t

0

E(I,q)(τ)e−ξ(I,q)(t−τ) dτ + d̄
(I,q)
xj

(33)
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3.4 Air Path (Σ(4))

This subsystem has 1 state-variable, the charge air pres-
sure after the compressor (x(4)) in Pa and 2 algebraic

variables, the temperatures before (z
(4)
1 ) and after (z

(4)
2 )

the intercooler in K. This subsystem is represented as
follows in state-space:

Σ(4) :

{
ẋ(4) = −

1

τTC
x(4) + h(4)(x(4), z(4), χ(4))

0 = ξ(4)(x(4), z(4), χ(4))
(21)

where χ(4) = [x(1), z(2), x(3), z(3)]� are the interconnection
variables. The interconnection dynamics are expressed as:

h(4) =
pamb

τTC

(
1 + χgδfηTC(x(4))rTC(z(3))(1−Πtur)

)(κa−1
κa

)

(22)

where

δf = 1 +
x(1)(

1 + v1
Ra

ssl
x(4)

z
(4)
1

)
(23a)

ηTC(x(4)) = aη + bηx
(4) + cη(x

(4))2 (23b)

rTC(z(3)) =
z
(3)
1

Tamb

(23c)

The algebraic part is described by

ξ(4)(x(4), z(4), χ(4))) =

[
z
(4)
1 − ξ

(4)
z1

z
(4)
2 − ξ

(4)
z2 (x(3), z(3))

]
(24)

where

ξ
(4)
z1 = Tc − εinl(Tinl − Tc) (25a)

ξ
(4)
z2 = Tamb + χgηtur(δf (t) + ηcom)x(3)

(
z
(3)
2 − z

(3)
1

)
(25b)

and τTC , χg, pamb, Tamb, aη, bη, cη, ηcom, Tc, εinl, Tinl are
defined in [Geertsma et al. (2017)]. The sensor set of this
system is given by:

S(4) : y(4) =
[
x(4) z(4)

]�
+ d(4) + f (4) (26)

4. DISTRIBUTED SENSOR FAULT DETECTION
AND ISOLATION

Due to the large scale of marine fuel engines as well as
their inherent system complexity, a distributed monitoring
approach is proposed. As shown in Fig. 2, for each one of
the fuel engine’s subsystems Σ(I), I = 1, · · · , N (N=4), a
monitoring agent M(I) is designed consisting of NI mod-
ules M(I,q), q = 1, · · · , NI (N1 = 1, N2 = N3 = N4 = 3).
Each module monitors a specific sensor subset S(I,q) ⊆
S(I) in the designated subsystem. Every S(I,q) contains
sensors measuring either state or algebraic variables.

Remark 1: The distributed scheme in Fig.2 is based
on previous works [e.g. Reppa et al. (2016)]. However,
the monitoring agents M(I), I = {1, 2, 3, 4} have been
designed considering the DAE nature of the fuel engine
system. In more detail, nonlinear algebraic residuals with
corresponding adaptive bounds were proposed.

4.1 Residual generation

The residual vector ε
(I,q)
y ∈ RnI is defined by:

ε(I,q)y =

[
y(I,q)x − x̂(I,q)

−ξ(I)(y(I,q)x , y(I,q)z , y(I)χ , u(I))

]
=

[
ε(I,q)yx

ε(I,q)yz

]
(27)

where x̂(I,q) is the estimation of x(I) defined as:

Fig. 2. Distributed SFDI scheme application using a
MVFP Fuel Engine model

˙̂x(I,q)(t) =A(I)x̂(I,q)(t) + γ(I)(x̂(I,q)(t), y
(I,q)
z (t), u(I)(t))

+ h(I)(x̂(I,q)(t), y
(I,q)
z (t), y

(I)
χ (t), u(I)(t))

+ L(I,q)(y
(I,q)
x (t)− x̂(I,q)(t)),

(28)

The matrix L(I,q) ∈ R(nI−rI)×(nI−rI) is chosen such that
the matrix A

(I,q)
L = A(I) − L(I,q) is Hurwitz.

Subtracting (1) from (28) and using (2) yields:

ε̇
(I,q)
x =A

(I,q)
L ε

(I,q)
x + γ̃(I,q) + h̃(I,q) + η

(I)
x − L(I,q)d

(I,q)
x (29)

where ε
(I,q)
x = x(I) − x̂(I,q) is the

state estimation error, γ̃(I,q) �
γ(I)(x(I)(t), z(I)(t), u(I)(t)) − γ(I)(x̂(I,q)(t), y

(I,q)
z (t),

u(I)(t)) and h̃(I,q) = h(I)(x(I)(t), z(I)(t), χ(I)(t), u(I)(t))

−h(I)(x̂(I,q)(t), y
(I,q)
z (t), y

(I)
χ (t), u(I)(t)). The residual

ε
(I,q)
yx can then also be expressed as ε

(I,q)
yx = ε

(I,q)
x + d

(I,q)
x

Adding (1b) to the expression of ε
(I,q)
yz in (27) yields:

ε
(I,q)
yz (t) =ξ(I)(x(I), z(I), χ(I), u(I)) + η

(I)
z

− ξ(I)(y
(I,q)
x , y

(I,q)
z , y

(I)
χ , u(I))

(30)

4.2 Adaptive thresholds’ computation

The thresholds are designed to bound the respective resid-

uals ε
(I,q)
yx and ε

(I,q)
yz under healthy sensor conditions. This

translates to the following requirements for the adaptive
threshold(s) of the j-th component of the residual vector:∣∣∣ε(I,q)yxj

(t)
∣∣∣ ≤ ε̄(I,q)yxj

(t), j = 1, · · · , nI − rI (31)

ε(I,q)yzj
(t) ∈ [ε(I,q)yzj

(t), ε̄(I,q)yzj
(t)], j = 1, · · · , rI (32)

Adaptive thresholds in (31),(32) are designed considering
the Assumptions 1 and 2. This design causes no false
alarms. Under the Assumptions 1-2 and after some math-
ematical manipulations of (29) the adaptive threshold can
be computed as [Reppa et al. (2016)]:

ε̄
(I,q)
yxj

(t) = E(I,q)(t) + ρ(I,q)ΛI

∫ t

0

E(I,q)(τ)e−ξ(I,q)(t−τ) dτ + d̄
(I,q)
xj

(33)

E(I,q)(t) =ρ(I,q)e−ξ(I,q)tx̄(I,q) +
ρ
(I,q)
d

d̄
(I,q)
x

ξ
(I,q)
d

(1− e−ξ
(I,q)

d
t)

+
ρ(I,q)λhI

d̄
(I)
χ

ξ(I,q)
(1− e−ξ(I,q)t)

(34)

where ΛI = λhI
+ λγI

, ρ(I,q), ξ(I,q), ρ
(I,q)
d , ξ

(I,q)
d are pos-

itive constants such that
∣∣∣eA(I,q)

L
t
∣∣∣ � ρ(I,q)e−ξ(I,q)t and∣∣∣eA(I,q)

L
tL(I,q)

∣∣∣ � ρ
(I,q)
d e−ξ

(I,q)

d
t. For the algebraic thresh-

olds, inclusion functions can be used to calculate the
thresholds [Jaulin and Walter (1993)]. Given that [x(I)] =

y
(I,q)
x + [d

(I,q)
x ] ([x

(I)
j ] = [y

(I,q)
xj − d̄

(I,q)
xj , y

(I,q)
xj + d̄

(I,q)
xj ] =

y
(I,q)
xj +[d

(I,q)
xj ], j = 1, · · · , nI −rI), [z

(I)] = y
(I,q)
z +[d

(I,q)
z ],

[χ(I)] = y
(I)
χ + [d

(I)
χ ],[u(I)] = [u(I), ū(I)] it can be deduced

that:

ξ
(I)
j (x(I), z(I), χ(I), u(I)) ∈ [ξ(I)

j
, ξ̄

(I)
j ] (35)

where [ξ(I)
j

, ξ̄
(I)
j ] = ξ

(I)
j (y

(I,q)
x +[d

(I,q)
x ], y

(I,q)
z +[d

(I,q)
z ], y

(I)
χ +

[d
(I)
χ ], [u(I)]). Then, according to (30) and Assumption 1:


ε(I,q)yzj

=ξ(I)
j

− ξ
(I)
j (y(I,q)x , y(I,q)z , y(I)χ , u(I))

ε̄(I,q)yzj
=ξ̄

(I)
j − ξ

(I)
j (y(I,q)x , y(I,q)z , y(I)χ , u(I))

(36)

Remark 2: The conservativeness of the design of the
adaptive algebraic thresholds using interval analysis in
(36) depends on the nonlinearity of the system

4.3 Multiple sensor Fault Decision Logic

This section describes the multiple sensor fault decision
logic. As shown in Fig. 2, isolation occurs in two steps; the
local and global decision logic [Reppa et al. (2016)].

Local decision Logic The presence of faults in S(I,q) is
detected by the modulesM(I,q) based on a set of analytical
redudancy relations (ARRs). The j-th ARR is defined as:

E(I,q)
j :

∣∣∣ε(I,q)yxj
(t)

∣∣∣− ε̄(I,q)yxj
(t) � 0, j = 1, · · · , nI − rI (37)

for the monitoring modules using the residual expression

ε
(I,q)
yx defined in (27) and the threshold expression of (33).
Otherwise, the j-th ARR is defined as follows:

E(I,q)
j : ε(I,q)yzj

(t) ∈ [ε(I,q)yzj
(t), ε̄(I,q)yzj

(t)], j = 1, · · · , rI (38)

The set of ARRs based on which the module decides on
the presence of local sensor faults is defined as E(I,q) =⋃

j∈J (I,q) E(I,q)
j , where J (I,q) is an index set.

The first time instant that (37) or (38) is invalid for
at least one j ∈ J (I,q) signifies the time instant of

fault detection T
(I,q)
Dj

by the local SFDI module M(I,q),

defined as T
(I,q)
Dj

= min{t :
∣∣∣ε(I,q)yxj

(t)
∣∣∣ − ε̄

(I,q)
yxj

(t) > 0} or

T
(I,q)
Dj

= min{t : ε(I,q)yzj
(t) /∈ [ε

(I,q)
yzj

(t), ε̄
(I,q)
yzj

(t)]} accordingly.

Until this instant, the local sensing subsystem S(I,q) is
considered non-faulty meaning that either no fault exists
or that faults exist but remain undetected.

The output of M(I,q) is denoted by D(I,q) and in the case
of permanent sensor faults, it can be defined as:

D(I,q)(t) =

{
0 , t < T

(I,q)
D

1 , t � T
(I,q)
D

(39)

with T
(I,q)
D = min{T (I,q)

Dj
: j ∈ J (I,q)}.

Thus, a binary decision vector D(I) = [D(I,1), · · · , D(I,NI)]
can be obtained for the monitoring agent M(I) and com-
pared to the columns of a binary fault signature matrix
F (I), consisting of NI rows and NCI

+ 2 columns where
NCI

= 2nI −1. The design of this matrix will be described
in the simulation results section for the easiness of the
analysis. While D(I)(t) = 0NI

, the diagnosis set D(I)
s is

empty. In addition, if D(I,q) = F
(I)
qi ∀q ∈ 1, · · · , NI , then

the observed pattern D(I)(t) is said to be consistent with

the theoretical pattern F
(I)
i and the diagnosis set is defined

as D(I)
s (t) = {F (I)

ci : i ∈ I(I)
D (t)} where I(I)

D (t) is the consis-

tency index set defined as I(I)
D (t) = {i : F (I)

i = D(I)(t), i ∈
{1, · · · , NCI

}}. The agent M(I), I ∈ {1, · · · , N} also pro-
vides a decision on the propagation of sensor faults from

the interconnected subsystems, denoted as D
(I)
χ (t) with

D(I)
χ (t) =

{
0 , if f

(I)
χ /∈ D(I)

s (t) and f
(I)
p /∈ D(I)

s (t)

1 , otherwise

(40)

where f
(I)
p ∈ Rn∗

I , n∗
I � nI , collectively amounts for the

sensor faults that are propagated from the agent M(I)

to its neighbouring agents due to the exchange of sensor

information and f
(I)
χ corresponds to the sensor faults

propagated to the agent from the neighbouring agents.

Global Decision Logic The global decision logic serves
to isolate sensor faults propagated through the inter-
connections between the monitoring agents. As shown
in Fig.2, a global agent G collects the decisions on the
propagation of sensor faults from the N local agents

Dχ(t) = [D
(1)
χ (t), · · · , D(N)

χ (t)] and compares them with
the columns of a global binary sensor fault signature ma-
trix Fχ consisting of N rows and NC = 2p − 1 columns

(p �
∑N

I=1{pI}, pI is the length of f
(I)
χ ). If Dχ(t) is

consistent with the k-th column of Fχ (Fχ
k ), the diagnosis

set of propagated sensor faults is defined as Dχ
s (t) = {Fχ

ck :
k ∈ Iχ(t)}, where Iχ(t) is an index set defined as Iχ(t) =
{k : Fχ

Ik = D
(I)
χ (t), k ∈ {1, · · · , NC}, ∀I ∈ {1, · · · , N}}.

The set Dχ
s (t) is then used to update the non-empty local

diagnosis set D(I)
s (t) of M(I) by excluding the occurrence

of f
(I)
χ and its combinations, if f

(I)
χ /∈ Dχ

s (t). Thus,
the global diagnosis set can be expressed as DG

s (t) =

Dχ
s

⋂N
I=1

D(I)
s �=∅

D(I)
s

5. SIMULATION RESULTS

In this section, we apply the Distributed SFDI architecture
described in Section 4 in the case of a Diesel Engine
using data from Geertsma et al. (2017) and the state-
space modelling of the different interconnected subsystems
shown in Section 3. It is assumed that the measurements
of each sensor of the engine are corrupted by uniformly
distributed noise equal to 3% of the amplitude of the
noiseless measurements of the sensor.

The 10 sensors of the system are divided in the follow-
ing sensor sets: S(1,1) = {S(1){1}}, S(2,1) = {S(2){1}},
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Fig. 3. Simulation results of the Distributed SFDI methodology for the specified fault scenario (red line: decision logic,
blue line: residual, green and orange lines: adaptive thresholds)

Table 1. Part of the Sensor Fault signature
matrix of M(3) (*:0 or 1)

f
(3)
1 f

(3)
2 f

(3)
3 f

(1)
1 f

(2)
1 f

(2)
2 f

(2)
3 f

(4)
1 f

(4)
2

E(3,1) 1 1 0 * 0 0 * * *

E(3,2) * * 0 * * * * * *

E(3,3) * * * 0 0 0 0 0 0

Table 2. Part of the Sensor Fault signature
matrix of M(4) (*:0 or 1)

f
(4)
1 f

(4)
2 f

(4)
3 f

(1)
1 f

(2)
3 f

(3)
1 f

(3)
2

E(4,1) 1 1 0 * * * *

E(4,2) 0 * 0 0 0 0 0

E(4,3) * * * * * * *

Table 3. Part of the Global sensor fault signa-
ture matrix (*:0 or 1)

f
(1)
1 f

(2)
1 f

(2)
2 f

(2)
3 f

(3)
1 f

(3)
2 f

(3)
3 f

(4)
1 f

(4)
2 f

(4)
3

E(1) 1 0 0 0 0 0 0 0 0 0

E(2) * 1 1 1 0 0 0 * * 0

E(3) * * * * 1 1 1 * * 0

E(4) * 0 0 * * * 0 1 1 1

S(2,2) = {S(2){2}}, S(2,3) = {S(2){2},S(2){3}}, S(3,1) =
{S(3){1},S(3){2}}, S(3,2) = {S(3){1},S(3){2}}, S(3,3) =
{S(3){1},S(3){2},S(3){3}}, S(4,1) = {S(4){1},S(4){2}},
S(4,2) = {S(4){2}}, S(4,3) = {S(4){2},S(4){3}}. Each of
the modulesM(I,q) is then designed to use the information
from the respective sensors in S(I,q). The modules M(1,1),
M(3,1) and M(4,1) internally use an ARR expression of
the form given in (37) while all the other modules use
an ARR expression of the form given in (38). The index
sets are defined as follows: J (1,1) = {1}, J (2,1) = {1},

J (2,2) = {2}, J (2,3) = {3}, J (3,1) = {1}, J (3,2) = {1},
J (3,3) = {2}, J (4,1) = {1}, J (4,2) = {1}, J (4,3) = {2}.
The design parameters of the various monitoring modules,
introduced in Section 4, are selected as follows: L(1,1) =

1.16, ρ(1,1) = 3, ξ(1,1) = 2, ρ
(1,1)
d = 10, ξ

(1,1)
d = 2,

L(3,1) = 445, ρ(3,1) = 1, ξ(3,1) = 541, ρ
(3,1)
d = 465,

ξ
(3,1)
d = 2, L(4,1) = 319.98, ρ(4,1) = 1, ξ(4,1) = 301,

ρ
(4,1)
d = 320 and ξ

(4,1)
d = 1. The engine is simulated

for 60 sec at its nominal operation point. A permanent
abrupt offset sensor fault is assumed for the pressure sensor
S(3){1} and the temperature sensor S(4){2}. The fault

magnitudes are φ̂
(3)
1 = 5 · 104Pa and φ̂

(4)
2 = 8K and their

times of occurrence at T
(3)
f1 = 10 sec and T

(4)
f2 = 20 sec.

Fig. 3 illustrates the results of the Distributed SFDI
methodology for the considered fault scenario. As can be
seen, the residuals, adaptive thresholds and local decisions
are portrayed for each module of the different monitoring
agents. AgentsM(1),M(2) output zero decision vectors, as
illustrated in Fig.3(a)-(d). The local sensor fault signature
matrices for the monitoring agents M(3),M(4) are given
in Tables 1,2 while Table 3 corresponds to the global
decision matrix. Due to limited space, only the single fault
signatures are provided.

In Table 1 the three first columns represent the single
local sensor fault signatures while the rest of the columns
portray the propagated sensor fault signatures from the
neighbouring subsystems. As for the rows of this matrix,
each of them corresponds to a local module M(3,q) making
use of the set of ARRs E(3,q), q = {1, 2, 3}. A (*) is used
instead of 1 in order to differentiate the sensitivity of the
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different ARRs in case of local and propagated sensor
faults and in case of algebraic and state-based ARRs. A
similar approach is followed for the creation of Table 2.

For t < 10 sec, the diagnosis set is empty (D = {}).
For 10 � t < 20 sec, the agents M(3) and M(4)

produce the decision vectors D(3)(t) = [1 0 0]� and
D(4)(t) = [0 0 0]� respectively, as can be seen in
Fig.3(e)-(j). Thus, using Tables 1- 2, the resulting local

diagnosis sets are D(3)
s (t) = {f (3)

1 , f
(3)
2 , f

(1)
1 , f

(2)
3 , f

(4)
1 , f

(4)
2 ,

{f (2)
1 , f

(I)
j(I)}, {f

(2)
2 , f

(I)
j(I)}, {f

(3)
1 , f

(1)
1 }, {f (3)

1 , f
(2)
3 }, · · · }, I

= 1, 2, 3, 4, j = {1, {}, {1, 2}, {1, 2}} and D(4)
s (t) = {} re-

spectively. The global decision vector is Dχ(t) = [0 0 1 0]�

and when compared to Table 3, results in the diagnosis set

on fault propagation Dχ
s (t) = {f (3)

1 , f
(3)
2 , f

(3)
3 }. Thus, the

global diagnosis set is DG
s (t) = Dχ

s ∩ D(3)
s = {f (3)

1 , f
(3)
2 }.

For 20 � t < 22.1 sec, the monitoring agent M(4)

outputs the decision vector D(4) = [0 1 0]� as
shown in Fig. 3(h)-(j). According to Table 2, the

new local diagnosis set for agent M(4) is D(4)
s = f

(4)
2 ∪

{{}, f (1)
1 , f

(2)
3 , f

(3)
1 , f

(3)
2 , {f (1)

1 , f
(2)
3 }, {f (1)

1 , f
(3)
1 }, {f (1)

1 , f
(3)
2 }

, {f (2)
3 , f

(3)
1 }, {f (2)

3 , f
(3)
2 }, {f (1)

1 , f
(2)
3 , f

(3)
1 }, {f (1)

1 , f
(2)
3 , f

(3)
2 }}.

In addition, D(3)
s remains the same since the

decision vector of the agent M(3) is the same (see
Fig.3(e)-(g)) The minimum local diagnosis set is

Ds(t) = D(3)
s ∩ D(4)

s = D(4)
s . Consulting the global

decision vector Dχ(t) = [0 0 1 1]� and using Table
3, the diagnosis set on fault propagation is Dχ

s =

{f (3)
1 , f

(3)
2 , f

(4)
1 , f

(4)
2 , {f (3)

1 , f
(4)
1 }, {f (3)

1 , f
(4)
2 }, {f (3)

2 , f
(4)
1 },

{f (3)
2 , f

(4)
2 }}. As a result, for 20 � t < 22.1 sec, the global

diagnosis set is DG
s (t) = Dχ

s ∩ Ds = f
(4)
2 ∪ {{}, f (3)

1 , f
(3)
2 }.

For 22.1 � t < 25.3 sec the local decision vectors and
diagnosis sets for all the agents remain the same. The new
decision vector D(3)(t) = [1 1 0]�, does not influence the
diagnosis. As Dχ

s also remains unchanged, the resulting
global diagnosis set DG

s is the same as the previous one.
This is also the case for t � 25.3 sec despite the local
decision vector of M(4) changing to D(4)(t) = [0 1 1]�.

Based on the simulation results, the proposed diagnosis
methodology manages to isolate the actual sensor faults
in S(3){1} and S(4){2}. Faults were isolated in two out of
the four subsystems and in three out of the ten existing
sensors in the system. Moreover, the diagnosis sets always
included the actual sensor fault(s) in the system.

6. CONCLUSION

In this paper, we illustrated a Distributed SFDI method-
ology for use in marine fuel engines. The core of the
diagnosis approach consists of two layers; one based on a
bank of local monitoring agents monitoring specific sensor
sets and a global decision logic layer where decisions on
the propagation of faults between the different subsystems
take place. The goal of the proposed combinatorial decision
logic was the isolation of sensor faults affecting multiple
sensors of the engine using the information exchanged
between its different subsystems. The simulation results
showed the efficiency of the proposed method. Future
work will include the performance analysis of the designed

modules as well as improvements in the design of algebraic
residuals and adaptive thresholds using more advanced
tools (e.g. SIVIA).
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