
Testing the ”Fast Byzantine Consensus” Protocol

Alexandra Cărut, as, u1

Supervisors: Dr. Burcu Külahçıoğlu Özkan1, João Miguel Louro Neto1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 26, 2025

Name of the student: Alexandra Cărut,as, u
Final project course: CSE3000 Research Project
Thesis committee: Dr. Burcu Kulahcioglu Ozkan, João Miguel Louro Neto, Dr. Jérémie Decouchant

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
Byzantine fault-tolerant protocols have been
around for decades, offering the guarantee of
agreement on a correct value even in the presence
of arbitrary failures. These protocols have become
a critical part of achieving consensus in distributed
systems and are widely used nowadays. As such,
we should aim to ensure the correct functioning of
these systems and one essential step to take in this
direction is by finding systematic and automatic
ways to test BFT protocols.
This paper evaluates the performance of ByzzFuzz,
an automatic testing framework designed to find
bugs in the implementation of Byzantine fault-
tolerant protocols through randomized testing. In
that sense, we evaluate ByzzFuzz’s ability to find
bugs in our implementation, compare its method of
injecting network and process faults to a baseline
method that arbitrarily injects faults and compare
the performance in bug detection of small-scope
and any-scope message mutations.
We implemented the ”Fast Byzantine Consensus”
protocol and employed ByzzFuzz to evaluate the
framework’s capability of finding implementation
bugs. We materialized a liveness violation previ-
ously uncovered in a theoretical analysis research.
Keywords: Software testing, Byzantine fault toler-
ance, BFT protocols, Distributed algorithms, Fuzz
testing

1 Introduction
Byzantine fault-tolerant protocols (BFT) were first formally
described in 1982 by Lamport et al. in their seminal work
on the Byzantine Generals Problem [1]. They are a class
of algorithms designed to ensure the reliability and correct-
ness of computing systems, particularly in distributed net-
works where components may fail or act maliciously. These
protocols are named after the Byzantine Generals Problem, a
theoretical scenario that illustrates the challenges of achiev-
ing consensus in a system where some participants might be
unreliable or deceptive.

In a BFT system, multiple nodes (or ’generals’) must agree
on a single course of action (or ’consensus’), even if some
nodes are faulty or compromised. The goal of BFT protocols
is to ensure that the network continues to function correctly
and make agreed-upon decisions despite these failures. This
is crucial in environments like financial systems, cloud infras-
tructures, and blockchain technologies, where reliability and
security are imperative.

The robustness of BFT protocols allows a system to handle
a specific number of faulty nodes without hindering its abil-
ity to reach a correct consensus. These protocols typically
involve complex mechanisms for proposing, validating, and
agreeing on the state of the system through a series of mes-
sages exchanged between nodes. The ability to tolerate faults
not only covers outright failures but also covers any form of
deviation from the protocol, including malicious attacks.

In summary, BFT protocols ensure that correct nodes in a
network will reach a consistent state and agree on the correct
value as long as the number of arbitrary faulty nodes does
not exceed the tolerance threshold, f. Over the years, these
protocols have become essential in achieving consensus in
distributed systems and the backbone of numerous applica-
tions, such as blockchain networks, distributed databases, and
Internet-of-Things (IoT) systems.

Even though Byzantine fault-tolerant protocols are theoret-
ically robust, providing strong guarantees and proofs on the
correctness of the algorithms, translating them to code often
reveals protocol mistakes or implementation errors. Errors
in these protocols could potentially trigger critical situations
affecting systems and people, such as allowing double spend-
ing in a cryptocurrency system, an adversary controlling ad-
ditional nodes to disrupt the system, or overwriting valid data
during resynchronization.

Because of the lack of enough automated and systematic
ways to test Byzantine fault-tolerant protocols, violations in
these protocols often go undetected and are only discovered
years after their initial publication. This would be the case
for the two failures discovered through theoretical analysis
by Abraham et al. [2]: the liveness violation performed on
the Fast Byzantine Consensus protocol [3] and the safety
violation of the Zyzzyva protocol [4], 11 and 10 years re-
spectively after their theoretical papers have been published.
Three years after Abraham et al.’s paper was published, Bano
et al. introduced Twins [5], an automated testing framework
that could manually reproduce the bugs discussed in the the-
oretical analysis. Although Twins can materialize these bugs
and it is shown that this is the case in the paper, there are
no implementations or artifacts of the tool automatically re-
producing these bugs. This highlights the critical importance
of finding reliable, automated ways to test Byzantine fault-
tolerant protocols to help identify potential issues. Addition-
ally, other bugs have been revealed through theoretical anal-
ysis for Tendermint [6], PBFT [7], and Ripple [8], but not
found yet through automated testing methods. Only Byzz-
Fuzz [9] recently automatically uncovered a bug in the XRP
Ledger consensus protocol of Ripple. This further motivates
the demand for automated testing methods of BFT protocols.

The objective of this research is to address the need to
develop automated, systematic ways to test Byzantine fault-
tolerant protocols. More specifically, we evaluate the effi-
ciency of the new testing framework developed by Winter
et. al, ByzzFuzz [9], in finding bugs in our implementa-
tion of the Fast Byzantine Consensus protocol. ByzzFuzz
is designed to automatically detect errors in BFT algorithms
by injecting process and network faults during randomized
test executions. The method uses fault-bounded and round-
bounded testing for injecting faults during the execution and
small-scope, structure-aware message mutations. Using this
method, ByzzFuzz has previously effectively uncovered im-
plementation bugs in consensus protocols.

We devised the following three research questions (RQ) to
help us achieve this objective:

RQ1. Can ByzzFuzz find any bugs in the implementa-
tion of the Fast Byzantine Consensus protocol?

1



RQ2. How does the bug detection performance of ByzzFuzz
compare to a baseline testing method that arbitrarily injects
network and process faults?
RQ3. How do small-scope and any-scope message mutations
of ByzzFuzz compare in their performance of bug detection
for the selected protocol?

We implemented the Fast Byzantine Consensus protocol,
”the first protocol that reaches asynchronous Byzantine con-
sensus in two communication steps in the common case” [3],
and employed the ByzzFuzz framework to test it.

Using ByzzFuzz, we uncovered both agreement and live-
ness violations in the implementation of our protocol, whose
root cause stands in our adaptation of the protocol, not in
the original protocol specifications. We then compared Byz-
zFuzz’s fault-injection methods to a baseline testing method
that arbitrarily injects process and network faults. Lastly, to
evaluate ByzzFuzz’s novel idea of introducing small-scope
mutations, we assessed how small-scope mutations and any-
scope mutations compare while testing the protocol.

The rest of the paper has the following structure: Sec-
tion 2 details the methodology employed in this research to
evaluate the ByzzFuzz testing framework. Section 3 dives
into existing state-of-the-art solutions for testing Byzantine
fault-tolerant protocols. In Section 4 we explore our ap-
proach in implementing the Fast Byzantine Consensus pro-
tocol. Section 5 describes the experimental setup used to
uncover potential vulnerabilities in the protocol using Byz-
zFuzz, presents the results, and examines the implications of
our findings. Section 6 addresses the ethical considerations
of our research and the reproducibility of our methods. Sec-
tion 7 discusses the results and their broader impact. Finally,
Section 8 concludes with a summary of our findings and out-
lines directions for future research.

2 Methodology
We address Research Question 1 by testing our implemen-
tation of the Fast Byzantine Consensus protocol using Byzz-
Fuzz.

In a test run, ByzzFuzz introduces a number of process
faults, representing a period during the execution of the pro-
tocol during which a node may act maliciously, and network
faults, when the network is not functioning properly and mes-
sages cannot be delivered as normally.

We conducted tests using various configurations of process
and network faults during the protocol’s execution to ensure
a thorough evaluation of our implementation. This approach
addresses the likelihood of encountering multiple network er-
rors and the presence of malicious actors persistently attempt-
ing to disrupt the protocol across several rounds.

For each test scenario, we predefined the number of pro-
cess and network faults, and executed the protocol multiple
times. We then reported any abrupt termination, either caused
by liveness and agreement violations or halted by error, and
analyzed the root cause of the termination.

In Research Question 2, we compare the performance of
ByzzFuzz to the baseline method that arbitrarily injects net-
work and process faults. We replicated the methodology em-

ployed in RQ1 to test our implementation of the Fast Byzan-
tine Consensus under the arbitrary condition, which ensured
that the comparison was evaluated under fair conditions.

The evaluation criteria we chose to measure how the two
testing methods compare are the number of unique viola-
tions detected by the testing method and the bug detection
rate.

ByzzFuzz employs more sophisticated approaches to iden-
tify bugs and, as such, we expect the baseline testing method
to trigger less faulty scenarios since it lacks the precision in
targeting the specific behaviors and rounds critical to BFT
protocols. In order to confirm that ByzzFuzz’s approach of in-
jecting faults is more efficient than the baseline’s method, we
compared the number of violations detected by each testing
approach. The bug detection rate, defined as the percentage
of scenarios that terminate prematurely out of the total sce-
narios executed, is closely linked to the number of bugs iden-
tified during testing. We expected a higher evaluation score
for ByzzFuzz, given that its methodology is likely to reveal
more bugs by the conclusion of the testing process.

Another possible comparison criterion to assess the perfor-
mance of ByzzFuzz as opposed to the baseline method was
the time to bug detection, which could be defined through
the number of events the protocol executes until it runs into
a bug or physical time. As speed alone does not reflect how
reliable the testing method is at finding bugs in a protocol, we
set this criterion aside.

We reported the results, including which testing method
was more efficient according to the evaluation criteria and
what conclusions we can draw from this.

For Research Question 3 we examine how different types
of message mutations compare. We differentiate between
small-scope mutations and any-scope mutations. Small-
scope mutations involve minor modifications to the existing
content of a message, such as incrementing or decrementing
a number in the message. Conversely, any-scope mutations
allow for more extensive changes. Our objective is to deter-
mine which mutation strategy is more effective at uncovering
defects within the protocol.

To explore this question, we conducted a series of test runs,
first running ByzzFuzz applying only small-scope, and then
only any-scope mutations to protocol messages. We then as-
sessed and compared the efficacy of each mutation type in
identifying bugs, using metrics similar to those employed in
RQ2—specifically, the number of unique bugs detected and
the bug detection rate.

3 Related Work
Recent advancements in Byzantine fault-tolerant protocols
have enhanced the robustness and performance of distributed
systems, notably in blockchain technologies. However, test-
ing the correctness and robustness of BFT protocols still
poses a significant challenge, due to the complexity and non-
determinism aspects of such protocols, which require cutting-
edge solutions to create a robust testing methodology that is
able to catch potential violations in scenarios.

In ”Dissecting Tendermint” [6], Ammoussou-Guenou et al.
deep-dive into the Tendermint protocol, particularly popular

2



for its use for consensus in blockchain systems. With this
paper, vulnerabilities in older versions of Tendermint were
identified through rigorous analysis of the protocol, related to
its safety and liveness properties. While this paper does not
explicitly provide an automated testing framework, it high-
lights the need for more rigorous testing frameworks that are
able to reveal such vulnerabilities.

In a similar manner, Berger and Reiser [7] addressed the
efficiency and correctness of the read operations within BFT
protocols through theoretical analysis. They identified a crit-
ical flaw in the PBFT protocol’s read-only optimization that
could lead to liveness violations.

When it comes to the development of testing algorithms
for Byzantine fault-tolerant protocols, Decouchant et al. [10]
in their paper, ”Liveness Checking of the HotStuff Protocol
Family”, extended the advancement by examining the live-
ness properties of the HotStuff protocol family. The authors
utilized novel methods like temperature and lasso detection to
identify scenarios where the protocol might fail the liveness
property, showing that even well-designed protocols can suf-
fer from subtle bugs that can impact the well-functioning of
the protocols.

Dragoi et al. [11] introduce another novel approach in test-
ing BFT protocols in their tool, Netrix. The authors leverage
a domain-specific language (DSL) to enhance the testing ef-
ficiency for consensus implementation. This framework is
unique as it combines networking infrastructure with DSL
to control network events and guide the test process through
programmer input. Netrix is able to identify inconsistencies
and potential bugs by allowing the manipulation of network
behaviors such as message delays, drops, and order modifica-
tions, which is essential in capturing rare but critical network
faults.

Bano et al. [5] describes Twins, a cutting-edge testing
framework that tests BFT protocols by duplicating nodes to
simulate Byzantine faults. Each twin node in the system
acts autonomously but shares the same identity and creden-
tials with its twin, allowing it to emulate malicious behaviors.
Twins’ ability to replicate node behavior under fault condi-
tions helps in identifying critical vulnerabilities that might
not be evident through other testing methodologies, thus con-
tributing to the advancements in providing more secure and
reliable BFT systems.

Another innovative testing method for consensus imple-
mentations was introduced by Dragoi et al. in their seminal
work, ”Testing consensus implementations using communi-
cation closure” [12]. The author’s approach was capitalizing
on the concept of communication closure, an essential prop-
erty in distributed systems that ensures that all messages that
could influence the outcome of a computation have been com-
municated before progressing to the next step. Their method
systematically leverages this property to enhance the realism
of test scenarios, which are structured to mimic real-world
conditions closely. By ensuring that every possible state tran-
sition is tested, including those that might occur under un-
expected conditions, the approach can uncover bugs in con-
sensus algorithms. This method also stresses the system un-
der edge cases, providing a comprehensive testing suite that
can effectively evaluate the system’s resilience and fault tol-

erance.
LOKI [13], a state-aware fuzzing framework developed by

Ma et al. advances the traditional fuzzing technique by adapt-
ing it to the changing states of blockchain consensus nodes.
Unlike simple fuzzing methods that generate inputs blindly,
LOKI monitors the states of the nodes and adjusts the test in-
puts accordingly, ensuring the tests remain relevant to the pro-
tocol execution. This innovative method of testing makes the
testing framework effective at discovering memory-related
vulnerabilities and logic-related bugs. The state-awareness of
LOKI allows for more targeted testing, which is essential in
complex systems where bugs may not manifest under normal
conditions, but rather in more complex scenarios.

Together, these innovative approaches reflect significant
advancements in the testing and validation of Byzantine Fault
Tolerant systems, each contributing distinct methodologies
and tools that enhance our understanding and capability to
secure distributed consensus protocols.

4 Implementation of the ”Fast Byzantine
Consensus” protocol

In this section, we explore the implementation and adapta-
tion of the Fast Byzantine Consensus protocol, focusing on
its architecture and functionality. The protocol leverages
ByzzBench, a framework developed by the Software Engi-
neering research department of Delft University of Technol-
ogy, to facilitate and benchmark Byzantine fault-tolerant pro-
tocol. Initially implemented as a single-shot consensus proto-
col, we further extended this protocol to accommodate multi-
ple client requests through the introduction of both view and
sequence numbers, enabling a multi-shot consensus process.
This adaptation is essential for handling a series of client re-
quests sequentially, ensuring each is processed before pro-
ceeding to the next. Additionally, we detail methods inte-
grated into ByzzBench to detect liveness and agreement vio-
lations during the protocol’s execution.

4.1 Introducing the ”Fast Byzantine Consensus”
protocol

One contribution of this research project is the implementa-
tion of the Fast Byzantine Consensus protocol. To implement
the protocol, we followed the seminal work outlined by Mar-
tin et al. [3]. The paper provides the protocol architecture, in-
cluding an overview of the messages, the methodologies for
message handling and logic of the protocol operation method.
We implemented the protocol on top of ByzzBench.

The protocol can be implemented in two versions: a
parametrized version and a non-parametrized version. The
parametrized version of the Fast Byzantine Consensus proto-
col allows for adjusting the number of processes based on the
desired resilience to Byzantine failures and the need for fast
consensus. Specifically, the parameterized version enables
choosing different levels of fault tolerance (up to f faults) and
operational speed (guaranteed 2-step operation up to t faults),
by setting the total number of processes to 3f + 2t+ 1.

In contrast, the non-parametrized version of the protocol,
consistently requires 5f + 1 processes to operate. It is de-
signed to always provide 2-step consensus in the common

3



case, irrespective of the number of Byzantine faults (up to f ).
This version prioritizes speed and simplicity in setup, always
aiming for the minimum consensus steps.

In this paper, we focused on implementing and testing the
non-parametrized version.

Particularities of the protocol included the assignment of
roles to the nodes. A node can have one or more roles, pro-
poser, acceptor, or learner, each having its specific respon-
sibilities in achieving consensus during the protocol execu-
tion. We represented this as a list in our code, as outlined in
line 2 in Algorithm 1.

In the common case, the protocol starts with a request from
the client, which the leader processes. The leader then sends
a proposed value to all acceptors in the network. If the accep-
tors have not previously committed to a value, they accept the
new proposal and forward their acceptance to learners in the
second step. Learners process the accepted values received
from the acceptors and learn a value. Once they learn the
value, they send the reply back to the client.

We implemented the handling of the messages as outlined
in the paper. To have a way for the nodes to compute thresh-
olds that some actions might require (for example, a learner
learns a value once a quorum of acceptors accepted the same
value), we introduced variables that hold the number of pro-
posers, acceptors, learners and Byzantine nodes, as showed
in line 3 under Algorithm 1.

The protocol poses as a single-shot consensus protocol,
meaning that its functionality revolves around achieving con-
sensus for one client request. This protocol does not differen-
tiate between the view number and the sequence number, but
rather uses only one variable, proposal number. The proposal
number represents the leader at that moment and an acceptor
will accept one proposal for a proposal number.

4.2 Adapting to multi-shot consensus protocol
As we were interested in how the protocol would work while
handling multiple client requests, we extended the original
protocol to handle multiple client requests. We introduce in
the protocol the difference between a view number that is the
equivalent of the proposal number as explained above, and
a sequence number. To integrate the functionality of the se-
quence number in the protocol, we added a sequence number
to all consensus-related messages and, whenever we check
for the view number, we also check for the sequence number.
The leader keeps track of the client requests and, if it receives
a new request while there’s another request being processed,
we queue it until the current request is complete.

Figure 1 shows how the common case of the protocol ex-
ecutes with multiple client requests. The first client request
will execute in 4 rounds of communication. The client sends
the request to the proposers, the leader sends the PROPOSE
message to acceptors, acceptors check the proposal and if
they accept it, they send the ACCEPT message to the learners
who, once they learn the value, they commit that value and
send a reply back to the client. During this time, the client
can send a new request to the leader. The leader will only
start processing this new request once it has received confir-
mation that all learners have learned the value. That means
that it will wait for all LEARN messages from the learners.

After it receives the confirmation, it can progress to the next
proposal.

Figure 1: Common case execution with multiple requests

Lastly, lines 6-15 Algorithm in 1 are methods that handle
all possible incoming messages received by the node, depend-
ing on the roles the replica has.

Algorithm 1 Pseudocode for FastByzantineReplica Class

1: Class FastByzantineReplica implements LeaderBased-
ProtocolReplica

2: roles←− (list of roles attributed to the node)
3: int p, a, l, f (the number of proposers, acceptors, learners

and faulty replicas in the system)
4: int proposalNumber
5: int sequenceNumber
6: handleProposeMessage : (sender, message)
7: handleAcceptMessage : (sender, message)
8: handleSatisfiedMessage : (sender, message)
9: handlePullMessage : (sender, message)

10: handleLearnMessage : (sender, message)
11: handleSuspectMessage : (sender, message)
12: handleQueryMessage : (sender, message)
13: handleReplyMessage : (sender, message)
14: handleViewChange : (sender, message)
15: handleNewViewChangeMessage : (sender, message)

4.3 Detecting Liveness and Agreement Violations
In our experimental setup, ByzzBench has the role of iden-
tifying Agreement and Liveness violations during the exe-
cution of the protocol. To automate the detection of these
issues, ByzzBench employs specific algorithms, detailed in
Algorithms 2 and 3, which define the conditions under which
each type of violation is identified.

For Liveness violations, ByzzBench examines the state of
message processing within each node. The condition for a
Liveness Violation is that the protocol must never enter a state
where all nodes are without any pending messages.

On the other hand, the Agreement predicate is designed
to ensure all nodes commit the same values, which is cru-
cial for the correct execution of consensus protocols. This
check involves comparing the commit logs of all nodes; any
discrepancy in these logs triggers an Agreement Violation.
Such discrepancies could signify issues in state management
or message handling, which could lead to incorrect or incon-
sistent outcomes across the distributed system.

4



By integrating these checks into the execution of our pro-
tocol scenarios, ByzzBench provides a robust mechanism for
early detection of fundamental issues that could undermine
the protocol’s effectiveness and reliability.

Algorithm 2 Pseudocode for LivenessPredicate Class

1: Class LivenessPredicate implements ScenarioPredicate
2:
3: procedure TEST
4: hasNoQueuedEvents← getTransport() .getEventsIn-

State(”QUEUED”) .isEmpty()
5: return ¬hasNoQueuedEvents
6: end procedure

Algorithm 3 Pseudocode for AgreementPredicate Class

1: Class AgreementPredicate implements ScenarioPredi-
cate

2:
3: procedure TEST
4: replicas← Collect instances of Replica from execu-

tor
5: commonPrefixLength←Max length of commit logs

from replicas
6: for i = 0 to commonPrefixLength - 1 do
7: distinctIthEntries← Collect distinct entries at in-

dex i from each replica’s commit log
8: if size of distinctIthEntries > 1 then
9: return false

10: end if
11: end for
12: return true
13: end procedure

5 Experimental Setup and Results
This section outlines the experimental framework and find-
ings from testing our implementation of the Fast Byzantine
Consensus protocol using the ByzzFuzz framework. We ini-
tially focus on a non-parametrized version of the protocol,
employing ByzzFuzz to explore the robustness of the proto-
col against various types and intensities of faults, and evaluate
the framework’s efficiency in uncovering bugs in BFT proto-
cols.

Further experimentation involved running the protocol in
its parametrized form using ByzzBench, specifically target-
ing known vulnerabilities as described in theoretical analy-
ses. This involved materializing a specific fault scenario that
prevents consensus from being achieved.

5.1 Testing the non-parametrized version with
ByzzFuzz

The first step in testing our BFT protocol implementation is
to set up the testing environment in ByzzBench. This setup
will be used for both testing methodologies (ByzzFuzz and
baseline) and is comprised of the following parameters:

• number of scenarios each test run executes for.
• minimum events, which checks if N events have been

scheduled during a scenario and terminates the execu-
tion if the threshold has been reached. This builds on
the heuristic that most bugs can be reproduced with a
small number of events from the starting state.

• minimum rounds, which checks if N rounds have
elapsed and terminates the execution.

• sampling frequency, which verifies every N scheduled
events if protocol execution should terminate.

Table 1 provides a detailed overview of the parameter con-
figurations. These settings were selected based on prelimi-
nary trials that suggested an optimal balance between the dis-
covery of critical issues and computational expense.

Parameter Value
Number of scenarios 3000
Minimum events 500
Minimum rounds 5
Sampling frequency 50

Table 1: Experiments Configuration

RQ1. We employed ByzzFuzz and tested our implementa-
tion of the ”Fast Byzantine Consensus” protocol in the non-
parametrized version with the experimental setup as shown in
Table 1.

ByzzFuzz introduces the concept of network faults by in-
jecting network partitions during a randomly selected mes-
sage round, resulting in the dropping of all messages from
different network partitions for that specific round of com-
munication. In the case of process faults, the ByzzFuzz al-
gorithm mutates the messages sent from a randomly chosen
node to a subset of replicas within the network during a ran-
dom message round. This mutation involves selecting a ran-
dom small-scope alteration from Table 4.

Table 2 shows the results we collected after testing our im-
plementation of the protocol in a network with 6 nodes, vary-
ing the number of process = [0,2] and network = [0,2] faults
injected among r = 10 rounds of execution.

Table 2: ByzzFuzz and baseline execution results

Faults injected Terminated By
Process Network L D Max Actions Errors

0 0 0 0 3000 0
1 0 3 17 2980 0
2 0 8 22 2970 0
0 1 139 0 2861 0
0 2 203 0 2797 0
1 1 137 7 2856 0

baseline baseline 4 0 2996 0

Testing the implementation of our protocol using Byzz-
Fuzz with p = 1 or 2 process faults led to the discovery of
disagreement violations. By analyzing the faulty scenarios,

5



we traced back the cause to implementation omissions in our
adaptation of the protocol for multi-shot operations, not flaws
in the protocol’s original design.

ByzzFuzz uses small-scope mutations to introduce small
deviations in the original message content, which in our
case can mistakenly lead the replicas to restart prematurely.
This arises from an oversimplification in our implementa-
tion. Specifically, when a replica receives a consensus-related
message (such as PROPOSE, ACCEPT, or LEARN) that in-
cludes a sequence number one higher than its current number,
the replica immediately jumps to this next sequence num-
ber and restarts. In the scenarios that end in disagreement,
ByzzFuzz introduces small-scope mutations in the sequence
number of these messages and replicas prematurely advance,
which causes some nodes to fail committing to one of the
proposals like they should have, resulting in discrepancies be-
tween the commit logs of different replicas.

In Figure 2 we give an example of how such disagreement
violations manifest. We omitted messages that are exchanged
normally and don’t affect the execution. Node F, who is an
acceptor in the network, receives the first PROPOSE mes-
sage with a sequence number higher by one than its initial se-
quence number. It incorrectly restarts and moves to the next
sequence number, but as a learner, it learns and commits the
value regardless. In the second proposal, since it does not
move to the next sequence number because the new PRO-
POSE message contains the same sequence number as the
replica, it skips committing, as it has already committed. In
the third proposal, it commits as normal. In the end, learners
C, D, and E in the diagram will have committed three times,
while F two times, causing a discrepancy in the commit log.

Figure 2: Example of disagreement bug

ByzzFuzz efficiently uncovers this oversimplification in
our implementations, as we need more robust handling of se-
quence numbers and message processing within the protocol
to prevent premature restarts and ensure consistency across
all replicas’ logs.

The liveness violations that manifest under process faults
p = [0, 2] in Table 2 also stem from an oversimplified ap-
proach to transitioning between proposal rounds. These vio-
lations occur when the proposer does not advance to the next
sequence number as expected. This is triggered when the pro-
poser receives a mutated message with the sequence number
higher by two, instead of one. Due to this unexpected se-
quence number, the proposer does not progress, leading to
several issues that block the replica from progressing: not
enough acceptors accept the proposed value, insufficient pro-
posers suspect the current leader, and consequently, the pro-
posed value fails to achieve consensus. This stagnation pre-
vents the leader from advancing the process, ultimately caus-

ing the protocol to become stuck without making further
progress.

The liveness violations that were reported while injecting
n = [0,2] network faults using ByzzFuzz are ”potential live-
ness issues”, meaning they occur under network faults that
violate the protocol assumptions. In the current implementa-
tion of ByzzBench, dropped messages are not buffered and
returned back to the network. This implementation violates
the protocol assumption which states that messages that are
sent infinitely many times will eventually be delivered. Since
some of the messages necessary to progress to the next round
in our oversimplified implementation of the multi-shot con-
sensus are dropped, replicas remain stuck in the previous pro-
posal, making it impossible for the leader to make progress or
for the leader election to take place.

For p = 1 and n = 1, the protocol runs into the same
root causes that trigger the liveness and agreement violations
when running with just process faults or network faults.

After running the experiments, we conclude that ByzzFuzz
can uncover bugs in our implementation of the protocol. By
exploiting small-scope mutations or introducing network par-
titions, ByzzFuzz triggered agreement and liveness violations
that can legitimately arise during a faulty execution. These
terminations are not caused by a mistake in the original pro-
tocol, but due to oversimplifications introduced by us in at-
tempting to adapt this protocol to a multi-shot version.

RQ2. To answer this research question, we ran the base-
line testing method that arbitrarily injects network and pro-
cess faults during the execution of the protocol using the same
experimental configuration as in table 1. The result of running
the baseline testing on our implementation of the protocol is
found in Table 2.

In Table 3, we present a comparative analysis of the faulty
scenarios identified using ByzzFuzz versus those detected us-
ing the baseline testing algorithm. For comparison, we use
the two evaluation metrics: (1) the number of scenarios that
concluded with a termination condition, and (2) the detection
rate, the proportion of faulty scenarios relative to the total
number of scenarios executed, here fixed at 3000.

Table 3: ByzzFuzz and arbitrary fault injection comparison

Faults No. of Violations Detection rate
p = 1, n = 0 20 0.67%
p = 2, n = 0 30 1.00%
p = 0, n = 1 139 4.63%
p = 0, n = 2 203 6.77%
p = 1, n = 1 133 4.75%

baseline 4 0.13%

The liveness violations discovered by the baseline testing
have the same root cause as the liveness violations discovered
by ByzzFuzz in RQ1, the leader’s inability to progress to the
next round when it has not received enough answers from the
learners. We did not observe any new liveness terminations
triggered by the baseline method.

However, the baseline testing algorithm was unable to
uncover agreement violations, confirming that ByzzFuzz’s

6



method of introducing round-based small-scope mutations is
more efficient at uncovering protocol bugs in our implemen-
tation of the ”Fast Byzantine Consensus” protocol.

RQ3. To evaluate how small-scope mutations and any-
scope mutations compare while testing our implementation
of the protocol, we ran the ByzzFuzz framework again for
1000 scenarios under p = [1, 2] process faults injected in r =
10 rounds.

Table 4 presents the possible small-scope message mu-
tations that ByzzFuzz can apply to the messages of ”Fast
Byzantine Consensus” protocol. In the message content, v
represents the value sent in the message, p represents the
proposal number (i.e. view number) and s represents the se-
quence number. For any-scope mutations, we apply the mod-
ifications to the same part of the message, but instead of ap-
plying small deviations to the message content, we replace
the content with an arbitrary value.

Table 4: Small-scope message mutations

Message Mutations

⟨PROPOSE, (v, p, s), pc⟩ ⟨PROPOSE, (v, p, s+1), pc⟩
⟨PROPOSE, (v, p, s−1), pc⟩
⟨PROPOSE, (v′, p, s), pc⟩

⟨ACCEPT, (v, p, s)⟩ ⟨ACCEPT, (v, p, s+1)⟩
⟨ACCEPT, (v, p, s−1)⟩
⟨ACCEPT, (v, p+1, s)⟩

⟨SATISFIED, (v, p, s)⟩ ⟨SATISFIED, (v, p+1, s)⟩
⟨SATISFIED, (v, p−1, s)⟩

⟨LEARN, (v, p, s)⟩ ⟨LEARN, (v, p, s+1)⟩
⟨LEARN, (v, p, s−1)⟩

⟨PULL, (v, p, s)⟩ ⟨PULL, (v, p, s+1)⟩
⟨PULL, (v, p, s−1)⟩

⟨QUERY, (v, p, s)⟩ ⟨QUERY, (v, p+1, s)⟩
⟨QUERY, (v, p−1, s)⟩

⟨REPLY, (v, p)⟩ ⟨REPLY, (v, p+1)⟩
⟨REPLY, (v, p−1)⟩

⟨VIEW-CHANGE, (p)⟩ ⟨VIEW-CHANGE, (p+1)⟩
⟨VIEW-CHANGE, (p−1)⟩

In Table 5 we describe the results obtained when running
ByzzFuzz using only small-scope mutations and any-scope
mutations against p = [1, 2] process faults.

Table 5: Small-scope and any-scope comparison

p L A Detection rate
small-scope 1 1 7 0.8%
small-scope 2 3 8 1.1%
any-scope 1 5 0 0.5%
any-scope 2 5 0 0.5%

In our evaluation, the agreement violations discovered
when running ByzzFuzz with small-scope mutations can not
be uncovered by any-scope mutations. As explained in the re-
sults of RQ1, the disagreement in the replica’s commit logs is

caused by the oversimplification of our implementation, sce-
nario which can be revealed only through small-scope muta-
tions.

Testing with any-scope mutations reveals liveness viola-
tions in our implementation, which occur due to messages
received with random sequence or view numbers that block
the leader from progressing. This is the same root cause as
with the liveness violations in small-scope testing. No new
liveness violations were identified with any-scope mutations
that did not also occur with small-scope mutations.

While testing our implementation of the ”Fast Byzantine
Consensus” protocol, small-scope mutations proved to be
more efficient than any-scope mutations at uncovering flaws
and potential faulty scenarios.

5.2 Running the parametrized version with
ByzzBench

Abraham et. al uncovered in the theoretical analysis ”Revis-
iting fast practical byzantine fault tolerance” a scenario under
which the Fast Byzantine Consensus protocol is not able to
progress and achieve consensus under the parametrized sce-
nario [2]. We implemented the required non-parametrized
set-up to run the protocol and materialized the bug manually
in ByzzBench.

Figure 3 shows the communication steps that take place in
order to achieve this state. We followed the protocol commu-
nication steps as explained in the theoretical analysis and ma-
terialized this scenario, confirming that the protocol achieves
the same final state as in the protocol paper.

In the current implementation of ByzzBench and Byzz-
Fuzz, even though ByzzFuzz is capable of generating the nec-
essary faults to accurately replicate this specific scenario, the
liveness algorithm employed by ByzzBench does not success-
fully identify this faulty execution. The cause for this is that
the protocol continuously elects new leaders in an endless
loop in the attempt to reach consensus. This endless cycle
leads to new messages being constantly queued without res-
olution. Algorithm 2 in ByzzBench then fails to recognize
the impossibility of reaching termination under these circum-
stances. Recognizing this limitation, we plan to address this
in future updates of ByzzBench.

Figure 3: Materialized bug

7



6 Responsible Research
As part of our responsibility as researchers, we ensured that
every aspect of the research process, including the implemen-
tation details of the protocol, the adaptations made to handle
multiple client requests, and the testing environment setup, is
thoroughly documented.

We detailed the metrics and criteria used for evaluating the
protocol’s performance and the effectiveness of the testing
framework. This clarity helps other researchers understand
and replicate our evaluation methods to verify findings or ex-
plore further.

Given the comprehensive overview provided of both the
methodology and experimental procedures, we have taken the
necessary steps to ensure that our research is reproducible.
This detailed documentation supports the validity of our find-
ings and enables other researchers to replicate and validate
our results effectively.

In the future, we plan to publish and make the code pub-
licly accessible, ensuring that the broader research commu-
nity can utilize, evaluate, and build upon our work. This
commitment to openness is intended to foster collaboration
and accelerate innovation in the field. By sharing the code,
we aim to enable the community to further replicate our find-
ings, propose enhancements, and integrate new functional-
ities, thus enriching the collective knowledge base and ad-
vancing the state of the art in testing Byzantine fault-tolerant
protocols.

Another highly important component of our research is the
commitment to responsible disclosure. In our study, we found
that the original protocol did not contain any inherent flaws,
thus negating the need for disclosure. However, had we iden-
tified any significant issues, the proper course of action would
have involved privately contacting the protocol’s authors to
inform them of the findings. This would allow them the op-
portunity to address and rectify any errors before public dis-
semination, ensuring a responsible approach to enhancing the
security and reliability of the protocol.

7 Discussion
Our research focused on implementing the Fast Byzantine
Consensus protocol, adapting it to handle multiple client re-
quests and conducting extensive testing experiments to rigor-
ously evaluate and compare different testing approaches.

The experimental outcomes demonstrated ByzzFuzz’s ef-
ficiency in testing our implementation of the Fast Byzan-
tine Consensus protocol. The implementation of round-based
injection and small-scope mutations in the ByzzFuzz algo-
rithm effectively uncovered flaws caused by our simplified
approach at adapting this single-shot consensus protocol to
multi-shot.

Our findings indicate that ByzzFuzz is proficient in de-
tecting both agreement and liveness violations, which are es-
sential for analyzing the reliability and security of Byzantine
fault-tolerant systems. The framework’s capability to effec-
tively identify these violations under different fault scenarios
showcases its potential as a robust tool for testing BFT proto-
cols.

Comparing the performance of ByzzFuzz with the base-
line testing method revealed that ByzzFuzz is more effec-
tive in detecting complex bugs. While both testing meth-
ods were capable of identifying liveness violations, ByzzFuzz
was uniquely successful in uncovering the disagreement bug,
which the baseline method did not detect. This indicates that
ByzzFuzz’s testing methodology is better at exploring faulty
behaviors in the implementation of our protocol than the more
generalized approach of the baseline method.

Lastly, through comparative analysis of the results obtained
when running ByzzFuzz using only small-scope mutations
versus only any-scope mutations, we found that only small-
scope mutations uncovered scenarios that could end in dis-
agreement, rendering them more efficient.

In the future, we want to improve our implementation of
the Fast Byzantine Consensus protocol, particularly focus-
ing on increasing its resilience during multi-shot executions.
Our current simplified approach, while effective, lacks the
complexity needed to robustly manage simultaneous multi-
ple states. We plan to develop a more sophisticated mech-
anism that allows replicas to handle multiple states concur-
rently. This will involve designing a system where repli-
cas can progress to subsequent rounds only after achieving a
higher level of certainty regarding the correctness and safety
of moving to the next proposal. By integrating this enhanced
capability, we aim to significantly improve the protocol’s ef-
ficiency and reliability in multiple client requests.

Another point of improvement would be to enhance
ByzzBench’s liveness detection system, which would add the
necessary functionality to detect the faulty scenario in Abra-
ham’s et. al paper [2].

8 Conclusions
Our primary research objective was to assess the effective-
ness of ByzzFuzz as a testing tool for Byzantine fault-tolerant
protocols. We addressed this objective by answering the three
research questions, which evaluated ByzzFuzz’s ability to un-
cover bugs in our protocol implementation, compared its bug
detection efficacy to a baseline method, and analyzed the
performance of small-scope versus any-scope message mu-
tations in bug identification.

In our study, we found that ByzzFuzz proved to be a highly
effective tool for identifying bugs in Byzantine fault-tolerant
protocols. Our results indicated that ByzzFuzz outperformed
the baseline method in detecting bugs. Furthermore, the
small-scope message mutations were particularly effective,
uncovering a broader range of bugs compared to any-scope
mutations. This suggests that ByzzFuzz’s approach to testing
and message mutation significantly enhances the robustness
of protocol testing.

Lastly, using ByzzBench, we manually materialized the
bug found in Abraham et al.’s paper, ”Revisiting fast practical
byzantine fault tolerance” [2].

The findings from this study highlight the importance of
specialized testing frameworks like ByzzFuzz in the devel-
opment of Byzantine Fault Tolerant protocols. By identify-
ing critical vulnerabilities that could compromise consensus,
ByzzFuzz helps in refining the protocol to withstand real-

8



world adversarial conditions.

References
[1] L. Lamport, R. Shostak, and M. Pease, “The byzantine

generals problem,” ACM Trans. Program. Lang. Syst.,
vol. 4, no. 3, p. 382–401, Jul. 1982. [Online]. Available:
https://doi.org/10.1145/357172.357176

[2] I. Abraham, G. Golan-Gueta, D. Malkhi, L. Alvisi,
R. Kotla, and J.-P. Martin, “Revisiting fast practical
byzantine fault tolerance,” ArXiv, vol. abs/1712.01367,
2017. [Online]. Available: https://api.semanticscholar.
org/CorpusID:7902429

[3] J.-P. Martin and L. Alvisi, “Fast byzantine consensus,”
IEEE Transactions on Dependable and Secure Comput-
ing, vol. 3, no. 3, pp. 202–215, 2006.

[4] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong, “Zyzzyva: Speculative byzantine fault
tolerance,” ACM Trans. Comput. Syst., vol. 27, no. 4,
Jan. 2010. [Online]. Available: https://doi.org/10.1145/
1658357.1658358

[5] S. Bano, A. Sonnino, A. Chursin, D. Perelman, Z. Li,
A. Ching, and D. Malkhi, “Twins: Bft systems made
robust,” in International Conference on Principles
of Distributed Systems, 2020. [Online]. Available:
https://api.semanticscholar.org/CorpusID:237235563

[6] Y. Amoussou-Guenou, A. Del Pozzo, M. Potop-
Butucaru, and S. Tucci-Piergiovanni, “Dissecting ten-
dermint,” in Networked Systems, M. F. Atig and A. A.
Schwarzmann, Eds. Cham: Springer International
Publishing, 2019, pp. 166–182.

[7] C. Berger, H. P. Reiser, and A. Bessani, “Making reads
in bft state machine replication fast, linearizable, and
live,” in 2021 40th International Symposium on Reliable
Distributed Systems (SRDS), 2021, pp. 1–12.

[8] I. Amores-Sesar, C. Cachin, and J. Mićić, “Security
Analysis of Ripple Consensus,” in 24th Interna-
tional Conference on Principles of Distributed Systems
(OPODIS 2020), ser. Leibniz International Proceed-
ings in Informatics (LIPIcs), Q. Bramas, R. Oshman,
and P. Romano, Eds., vol. 184. Dagstuhl, Ger-
many: Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2021, pp. 10:1–10:16. [Online]. Avail-
able: https://drops.dagstuhl.de/entities/document/10.
4230/LIPIcs.OPODIS.2020.10

[9] L. Winter, F. Buse, D. Graaf, K. Gleissenthall, and
B. Kulahcioglu Ozkan, “Randomized testing of byzan-
tine fault tolerant algorithms,” Proceedings of the ACM
on Programming Languages, vol. 7, pp. 757–788, 04
2023.

[10] J. Decouchant, B. K. Ozkan, and Y. Zhou, “Liveness
checking of the hotstuff protocol family,” in 2023 IEEE
28th Pacific Rim International Symposium on Depend-
able Computing (PRDC), 2023, pp. 168–179.

[11] C. Dragoi, S. Nagendra, and M. Srivas, “A do-
main specific language for testing distributed protocol

implementations,” in Networked Systems: 12th Inter-
national Conference, NETYS 2024, Rabat, Morocco,
May 29–31, 2024, Proceedings. Berlin, Heidelberg:
Springer-Verlag, 2024, p. 100–117. [Online]. Available:
https://doi.org/10.1007/978-3-031-67321-4 6

[12] C. Drăgoi, C. Enea, B. K. Ozkan, R. Majumdar, and
F. Niksic, “Testing consensus implementations using
communication closure,” Proc. ACM Program. Lang.,
vol. 4, no. OOPSLA, Nov. 2020. [Online]. Available:
https://doi.org/10.1145/3428278

[13] F. Ma, Y. Chen, M. Ren, Y. Zhou, Y. Jiang, T. Chen,
and H. Li, “Loki: State-aware fuzzing framework for
the implementation of blockchain consensus protocols,”
01 2023.

9

https://doi.org/10.1145/357172.357176
https://api.semanticscholar.org/CorpusID:7902429
https://api.semanticscholar.org/CorpusID:7902429
https://doi.org/10.1145/1658357.1658358
https://doi.org/10.1145/1658357.1658358
https://api.semanticscholar.org/CorpusID:237235563
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.10
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.10
https://doi.org/10.1007/978-3-031-67321-4_6
https://doi.org/10.1145/3428278

	Introduction
	Methodology
	Related Work
	Implementation of the "Fast Byzantine Consensus" protocol
	Introducing the "Fast Byzantine Consensus" protocol
	Adapting to multi-shot consensus protocol
	Detecting Liveness and Agreement Violations

	Experimental Setup and Results
	Testing the non-parametrized version with ByzzFuzz
	Running the parametrized version with ByzzBench

	Responsible Research
	Discussion
	Conclusions

