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Abstract
Logging is a common practice in software develop-
ment that assists developers with the maintenance
of software. Logging a system optimally is a chal-
lenging task, thus Li et al. have proposed a state-of-
the-art log recommendation model. However, no
further attempts exist to improve the model or re-
produce their results using different training data.
In this research, a model was developed using the
methods of Li et al. to evaluate its performance
when trained on a specific dataset. Some aspects of
the model such as feature filtering were studied. It
was concluded that the methods of Li et al. are re-
producible and can produce a model that performs
well with various training data. The study on fea-
ture filtering revealed that not filtering features re-
sults in an increase of all tested metrics.

1 Introduction
Logging is a procedure often used by software developers.
Logging is applied to generate records of important runtime
information. These records help in post-mortem analysis, de-
bugging and maintenance [7, 9, 16]. These studies empha-
size that while logging is important, it is a challenging task to
log a system in a way that only necessary information is re-
vealed and a performance overhead is not formed. To reduce
the complexity of this task, Li et al. have proposed a state-
of-the-art model for log recommendations at the block level.
However, no further studies exist that confirm the results on
different training data or try to improve the results by explor-
ing a more progressive method of fusing syntactic (e.g. block
type) and semantic (e.g. variable names) features or make
improvements to the deep learning model [9]. These further
studies should be carried out to advance log-recommenders
and spread awareness about them in the scientific community.

In this research, I aim to answer this question: what is the
performance of a log recommendation model developed
following the methods of Li et al., using CloudStack ® [13]
source code as training data? I plan to begin the research
by creating a dataset and developing the model. Part of the
research is allocated for fine-tuning the model. To conclude
the research, I will evaluate the performance of this model
and compare the results to those of Li et al.

Paper organisation Section 2 provides an overview of
the log recommendation literature. Section 3 describes the
methodology of this research. Section 4 will show the adjust-
ments made to the original model. Section 5 describes the
details of the evaluation setup and reports the results. Sec-
tion 6 reflects the ethical aspects of the research and discusses
the reproducibility of the methods. Section 7 answers the re-
search question and reflects what has been concluded. Fi-
nally, section 8 discusses possible improvements.

2 Background
Several studies are expressing the importance of logging
through surveys. In a survey conducted by Fu et al. 96% of
surveyed developers strongly agreed “that logging statements
are important in system development and maintenance” [5].
The survey of software developers conducted by Lal et al. re-
veals that developers who deal with logging find it difficult
to choose the location and the level of a log [1]. Moreover,
many developers expressed that a logging predictor can be
helpful. Additionally, Fu et al. claim that the importance of
logging comes from the variety of functions it can perform.
Some examples are anomaly detection, error debugging, per-
formance diagnosis, workload modelling etc. These claims
provide motivation to automate the log placement problem.

Multiple contributions to automate the log placement prob-
lem exist. Two notable works in this area show achievements
in log recommendations based on code vocabulary. In 2015
Zhu et al. have proposed a recommendation model for catch
blocks and if blocks with return statements. In 2018 Li et al.
have proposed log recommendations using topic modelling.
The calculated topics represented the context and the func-
tionality of the method. Using the topics they learned that
a small number of topics (for instance network communica-
tion) are likely to be logged. The common advantage of rec-
ommenders based on code vocabulary is their independence
of programming language since they base predictions on fea-
tures that are universal (e.g. variable names, types); however,
the recommendations provided by these models are some-
what rough because they are either at method level or limited
to predetermined locations (e.g. catch blocks). For instance,
a recommender like this would not be useful in a code base
that has significantly long methods [7, 16]. A solution to this
could be the state-of-the-art model proposed in 2020 by Li et
al. The model was made for finer log recommendations at the
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block level. Their approach involves syntactic and semantic
feature extraction, word embedding and a Recurrent Neural
Network layer. Since there are no further attempts to improve
this approach I have selected to replicate this methodology
and confirm the results on new training data. It is also worth
noting that there are studies on log severity [8]; however, the
scope of this project will not involve log severity and treat all
logs at the same level.

3 Methodology
Since the outcome of this research is an evaluation of a log
recommendation model, implementing the model is a funda-
mental task. The recommendation model should be trained on
a well-known open-source repository to capture the rules that
developers use when choosing logging locations. The devel-
opment of the model was divided into two sizable parts: the
dataset creation and the deep learning model. Both of these
parts will be discussed in detail below.
Note: in the following sections, I report on how I imple-
mented a conceptual model described by Li et. al. I do not
take any credit for designing the model.

3.1 Dataset Creation
File extraction
The first step in creating a dataset was extracting the Java
source files from the repository. The files were extracted us-
ing Java NIO API [6]. After extracting the types of the files
were determined by the patterns in their paths. ”Test”, ”/test”,
”test/”, ”mock/” or ”/mock” in the path meant the file is a
test file, ”/docs/”, ”/examples/”, ”/sample” or ”sample/” in
the path meant the file is a documentation file, ”build/” in the
path meant the file is a build file, finally, files containing none
of these patterns were labelled as production files. To create
a dataset, only production files were used with the assump-
tion that test, documentation and build files contain unusual
logging practices that should not be mixed with conventional,
production logging practices.

Labelling
To extract labels and features the Javaparser library [15] was
used. First, an abstract syntax tree (AST) was built for each
Java file. Then each AST was traversed to find all meth-
ods (the model is suggesting at the block level and that is
always inside a method). For each method, the AST was
further traversed to identify the blocks. As established in
the manual logging study done by Li et. al, there are four
types of blocks (try-catch, branching, looping and method
declaration) where developers might consider inserting log-
ging statements. These blocks were identified by finding their
according nodes.

When a block is identified it is first labelled as logged
or non-logged. To label a block, all expression state-
ments containing a method call were checked using the
isLogStatement(String line) method from the code
metric calculator CK [3]. The method works by matching
keywords related to logging (e.g. info, warn, debug) in a line
of code. It is important to note that when labelling a block
only statements directly inside the block were used, all state-
ments inside nested blocks were discarded.

Feature extraction
The feature of a block is a sequence of tokens that represents
the structure of the block. Each token is a simple class name
of a node in the AST and the correct order is maintained by
traversing the AST in a breadth-first manner. The sequences
also contain the tokens from the beginning of the method to
the beginning of the block. This is done because often the de-
cision to log inside a block can be determined by code before
it. Finally, some filtering is done. All tokens associated with
log statements are removed to avoid biases in machine learn-
ing. Also, nodes for names, parameters, types and modifiers
are removed since they do not provide any structural infor-
mation. Lastly, all tokens of nested blocks are removed since
the code inside nested child blocks should not influence the
decision of whether to log the block at hand.

Figure 1 is a visual example of labelling and feature ex-
traction scope. Block 1 is labelled as non-logged since there
is no log statement inside it (the log statement in line 6 does
not belong to Block 1). Block 2 is labelled as logged because
of the log statement in line 6. Block 3 is labelled as non-
logged because there is no log statement in it. In addition,
the feature scope for each block is indicated. When building
token sequences for these blocks only the lines in the feature
scope were used to extract structural tokens.

3.2 Word embedding
Since only integer values can be input into a neural network,
the tokens (strings) needed to be embedded. A popular ap-
proach is to add a trainable embedding layer to the deep learn-
ing model and train it on the token sequences on the go; How-
ever, I decided to isolate the training of the word embedding
model. The advantage of isolating the word embedding layer
is that after training it, the training states of the model can
be discarded keeping just the vectors and their keys in the
model object. This allows to save a much smaller and faster
object that can be memory mapped “for lightning fast loading
and sharing the vectors in RAM between processes” (Radim
Řehůřek, 2021) [12]. Thus, in the deep learning part of the
model, a keyed vector object is loaded and the vector-matrix
is passed into an untrainable embedding layer. This decreases
the training time of the deep learning model and allows ef-
fortless switching between a variety of different pre-trained
embedding models.

For the embedding technique, Skip-gram was chosen over
others like One-hot encoding because of two advantages.
Firstly, similar words have vectors that are close together
and secondly, the Skip-gram vectors capture the context of
a word [11]. An assumption was made that these characteris-
tics will benefit the performance of the deep learning model.
In table 1 an example of word similarity is provided. It is
visible that the embedding of the method declaration token is
similar to tokens for variable declaration and block statement
which usually appear after a method is declared. It can also be
seen that a return statement embedding is similar to a throw
statement and assert statement embeddings which usually ap-
pear at the end of a method before a return statement. It is
reasonable that the empty word is most similar to the return
statement since it was used to pad the features of the shorter
methods.



Figure 1: Example of a method extracted from the repository. The red boxes indicate identified branching blocks. The label and feature scope
for each branching block is shown.

Word Similarity
’BooleanLiteralExpr’ 0.3267

’MarkerAnnotationExpr’ 0.2549
’ThisExpr’ 0.2217

’SuperExpr’ 0.2023
’NameExpr’ 0.1609

’VariableDeclarationExpr’ 0.1520
’VariableDeclarator’ 0.1519

’NullLiteralExpr’ 0.1408
’MethodCallExpr’ 0.1300

’BlockStmt’ 0.1163

(a) ‘MethodDeclaration‘

Word Similarity
” 0.4120

’ThrowStmt’ 0.3190
’JavadocComment’ 0.2875
’FieldDeclaration’ 0.2781

’AssertStmt’ 0.2769
’InstanceOfExpr’ 0.2588

’NormalAnnotationExpr’ 0.2434
’InitializerDeclaration’ 0.2225

’EnclosedExpr’ 0.2221
’BlockComment’ 0.2197

(b) ‘ReturnStmt‘

Table 1: Top 10 most similar words to words ‘MethodDeclaration‘
and ‘ReturnStmt‘ returned by the Word2Vec model

3.3 Deep learning
The visualisation of the deep learning model can be seen in
figure 2. When viewing the dimensions keep in mind that
a “None” value means that the model can accept input with
any size at that dimension. The embedding layer converts
integers to integer vectors. Note that the layer is not trainable
but only uses the weights that are loaded from a pre-trained
word embedding model. The size of the vector depends on the
loaded model. The recurrent layer was chosen because of its
ability to handle sequential input. Specifically, the long-short
term memory unit was included as the recurrent layer because
of its memory cell that enables maintaining information in
memory for longer periods [4]. Two dropout layers with a
rate of 0.2 were introduced to reduce overfitting [14]. The
dense layer is used to convert the output of size 100 (number
of internal recurrent states) to a binary prediction.



Figure 2: Neural network model

4 Adjustments to the model
Some adjustments, either based on experiments or assump-
tions, were performed to the original model to increase the
performance.

4.1 Feature type
Li et al. extracted three types of features: syntactic, semantic
and fused. They concluded that a model trained on syntac-
tic features achieves the best results and encouraged future
studies to employ a more sophisticated way of fusing syntac-
tic and semantic features. The research done for this study
provided no hope in improving feature fusing. Therefore it
was decided that this study will use only syntactic features to
achieve the best performance.

4.2 Feature filtering
Li et al. performed filtering on the syntactic features where
they removed all nodes that do not provide structural informa-
tion [9]. To test how that affects performance first the model
was trained on the dataset created as described in subsection
3.1. Meaning the feature sequences had tokens for names, pa-
rameters, types and modifiers removed. After that, the model
was trained on the dataset without any tokens removed. Each
model was trained for five epochs then the average accuracy,
precision and recall were calculated. The results can be seen
in Table 2. The metrics are not defined yet so please refer to
subsection 5.1 for their definitions.

Filtering No filtering
Accuracy 0.9373 0.9511
Precision 0.5461 0.5665

Recall 0.2784 0.3049

Table 2: Comparison of metrics (5 epoch average) when trained on
filtered features v. unfiltered features

The model trained on the unfiltered dataset performed
slightly better. The most notable increase was to recall. In
the end, the filtering was removed with hopes for better per-
formance at the cost of a higher training time.

Note: some of the increase in performance could have been
caused by the stochastic nature of the model.

4.3 Limiting the block length
Another adjustment made to the model was limiting the
length of sequence tokens. Namely all sequences that have
more than 150 tokens were removed. As can be seen from
the appendix section A that means that only a trivial amount
of uncommonly large sequences was removed. The result was
a great reduction in training time and a small decline in per-
formance metrics.

5 Experimental setup and results
This section will provide details on the metrics chosen, the
experimental setup and the results obtained.



5.1 Metrics
The main evaluation metric chosen for this model was F-
Measure (FM). It was chosen for its ability to reveal the
model’s capability of predicting the minority class. This ad-
vantage is important since the model tries to predict a class in
a very imbalanced dataset (only 9% of blocks are logged) [2].

To calculate the FM first a confusion matrix must be made
that enumerates true positives (TP), false negatives (FN),
false positives (FP) and true negatives (TN) [10]. The au-
thors of this review further inform that to calculate FM first
the Precision and Recall metrics need to be calculated.

Precision (p) “Precision is used to measure the positive pat-
terns that are correctly predicted from the total predicted pat-
terns in a positive class.” [10] In the context of logging it mea-
sures the correctly predicted logs from the sum of correctly
and incorrectly predicted logs.

TP

TP + FP

Recall (r) “Recall is used to measure the fraction of positive
patterns that are correctly classified.” [10] In the context of
logging it measures the number of correctly identified logged
blocks from the sum of correctly identified logged blocks and
correctly identified non-logged blocks.

TP

TP + TN

F-Measure (FM) “This metric represents the harmonic
mean between recall and precision values.” [10] This review
indicates that FM is a metric that combines both precision and
recall.

2 ∗ p ∗ r
p+ r

5.2 Setup
To set up for the experiment, all the development in sec-
tion 3 was completed. Then the model was trained on the
dataset created from CloudStack®source code. The model
was trained on 80% of the dataset. The remaining 20%
were used for validation. After each epoch of training the
F-Measure, precision and recall metrics were calculated us-
ing the validation set to record how the model changes over
time.

If one wishes to reproduce the results please refer to the
documentation in https://github.com/luidas/log-placement.
The discussion on reproducibility in section 6.2 may also be
relevant.

5.3 Results
The results of the experiment can be seen in figure 3. The
model was trained for 15 epochs because that’s the highest
number of epochs with which the training time is reasonable.
At epoch 0 the precision and recall are 0. At that epoch, F-
Measure was represented as 0 for simplicity although it would
be more accurate to not represent it as a number. Taking this
into account, the F-Measure of epoch 0 was ignored when
interpreting the graph.

Figure 3: FM, Precision and Recall over 15 epochs

F-measure peaks at epoch 9 with a value of 0.57 (with a
precision of 0.73 and recall of 0.47). The average FM value
between epochs 1 and 14 is 0.53, while the precision has an
average of 0.72 and recall of 0.42. The model also shows
potential for learning with a 13% increase in FM between
epochs 1 and 14. Another possible evidence of learning is
that the sum of differences between every two neighbouring
FM values is positive.

6 Responsible Research
This section will reflect on the ethical aspects of the research
and discuss the reproducibility of the methods.

6.1 Ethical aspects
The most important ethical issue of this research is the harm
that the misuse of this recommendation model can bring.

https://github.com/luidas/log-placement


More precisely, if the future user of this model does not
acknowledge its limitations (s)he may overly rely on the
model’s recommendations and use it in improper situations.
Thus a future user needs to acknowledge all the limitations
that generally stem from the training data used. It is impor-
tant to understand that the model cannot perceive code. Its
only purpose is to identify the structure of a block and try to
mimic what CloudStack developers would do in a block of
a similar structure. The legitimacy of the recommendations
relies on the fact that CloudStack is widely used in the in-
dustry. Another limitation is that the model can only handle
recommendations for the Java programming language.

Another ethical issue may arise from the fact that the model
and the data extraction process was built on many high-level
interfaces. Meaning that if an open-source tool existed for a
needed task it was used instead of building a new tool. This
considerably saves time but raises some concerns. The main
concern is that the internal workings of these open-source
tools were not studied but rather treated as a black box. That
is because the hidden processes are very complex, and prov-
ing their correctness may require immense efforts. This raises
a threat to the correctness of the model itself.

6.2 Reproducibility
One way to reproduce the results of this study would be
to replicate the implementation described in section 3. To
increase reproducibility, the methodology was described as
clearly and thoroughly as possible (without exceeding sensi-
ble length). However, replicating the methodology might be
a complex task for a person with limited experience in ma-
chine learning or computer science. What is more similar
results are not guaranteed due to the stochastic nature of AI
algorithms. For instance, small changes in feature extraction,
hyperparameters or structure of the neural network can cause
different results.

With these concerns in mind, it was decided that the exper-
iments will be most reproducible if the code was accessible
online. Thus a public repository (URL in section 5.2) was
created containing the dataset and the code of the deep learn-
ing model. The results can be replicated by running a few
commands and documentation is included.

The final measure to achieve reproducibility was applying
a clever dependency management approach. To do that, a
Dockerfile was included in the repository, which specifies
exactly what software and packages should be installed for
the project to run. Instead of struggling with dependencies,
all the user needs to do is use the Docker software to build
an image using the Dockerfile. The built image contains a
base image and all the necessary dependencies for the project
installed.

7 Conclusion and Discussion
Research question: what is the performance of a log rec-
ommendation model developed following the methods of Li
et al., using CloudStack ® [13] source code as training data?

Answer: over 15 epochs the model achieved a peak FM
score of 0.57 and an average of 0.53.

Comparing the results with those of Li et al., it can be con-
cluded that the model developed in this study achieved similar
performance. The model of Li et al. trained on syntactic fea-
tures (averaged over all repositories they studied) achieved an
FM score of 0.55.

It can be concluded that the developed model can correctly
recommend logging locations. It can also be concluded that
the methodology of Li et al. is reproducible and an accept-
able performance can be achieved with other training data.
Also, the effects of feature filtering were studied and it was
concluded that no filtering yields better performance.

One specific aspect of the results may be of interest. While
the FM score of both models is similar, the precision and re-
call metrics differ significantly. While the model developed in
this study had an average precision of 0.72 and recall of 0.42,
the model developed by Li et al. had an average precision of
50.6 and recall of 61.8. This contrast was possibly caused by
some small alterations made to the data extraction and deep
learning processes when reproducing the methodology.

8 Future Work
The model could not be fully studied due to limited comput-
ing resources. Future studies could investigate more demand-
ing configurations of the model like training the model for
more than 15 epochs, using a larger neural network, not lim-
iting the length of a block, using bigger word vectors.

Also, the problem of log severity was not tackled in this
research. Future studies could explore using structure token
sequences for multiple class predictions that represent differ-
ent log levels (e.g. debug, warn).

Furthermore, future studies could examine if the model
trained on the CloudStack dataset performs well when pre-
dicting log locations in other codebases.
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A Sequence length histogram
The histogram is represented in figure 4.
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