GRADUATIONSTUDIO

2018-2019

Sustainable Facade Refurbishment of Existing Tall Buildings in UAE using Plug & Play approach

P5 PRESENTATION

intervention methodology framework background

RECORD OF EXISTING TALL BUILDINGS

Size of global curtain wall industry as on 2009 in USD

intervention methodology framework background

RECORD OF EXISTING TALL BUILDINGS

Peak demands per location of global curtain wall industry as on 2009

intervention methodology framework background

CURTAIN WALL REGIONAL DEMAND

Stick Curtain Wall System

Unitised Curtain Wall System

Plug&Play ?

intervention methodology framework background

CURTAIN WALL TYPES

background

introduction

CURTAIN WALL CONSTRUCTION

MATERIAL QUANTITY

background

introduction

CAUSE OF FAILURES

introduction

CURTAIN WALL ESL VS BUILDING ESL

Con – Construction Re – Replacement

EXPENSIVE

intervention methodology framework

TYPICAL CURTAIN WALL ESL

FAÇADE REPLACEMENT

introduction

FAÇADE REPLACEMENT OVERTIME

EFFECTS OF REFURBISHMENT

introduction

How to sustainably refurbish facades of existing tall building

Problem

- all materials reach ESL
- façade reaches buildings ESL
- reduce Material Wastage
- reduces energy consumption
- contribute in production

intervention methodology

background introduction

RESEARCH QUESTION

How to sustainably refurbish facades of existing tall building

problem

by creating a plug & play façade system which has integrated functionality

design assignment

- allows disassembly
- integrated technology

intervention methodology

background introduction

RESEARCH QUESTION

How to sustainably refurbish facades of existing tall building

-- problem

by creating a plug & play façade system which has integrated functionality

design assignment

as part of value engineering

assessment

- reduction •••••• material wastage + energy consumption
- production ····· energy production

intervention methodology

introduction

framework
background

RESEARCH QUESTION

intervention methodology

framework

background introduction

intervention methodology

framework

background introduction

intervention methodology

framework

background introduction

DESIGN OVERVIEW

intervention

methodology

framework background introduction **METHODOLOGY**

intervention

methodology framework background introduction

INTERVENTION LOCATION

REL. HUMIDITY

60% 5 - 100 %

intervention

methodology framework background introduction

INTERVENTION LOCATION

intervention

methodology framework background introduction

LOCATION - PAST & PRESENT

Construction Status

Base Data Middle East, All Companies, 150m+, 1885-2018

Building Function

intervention

methodology framework background introduction

INTERVENTION LOCATION - RECORD OF EXISTING TALL BUILDINGS

intervention

methodology framework background introduction

SELECTED CASE - ADDRESS HOTEL DUBAI

intervention

methodology framework background introduction

SELECTED CASE - CONTEXT

10 years age of the building

28,000 m² façade surface area

2800 m² floor surface area

7500-9000 number of façade panels

intervention

methodology framework background introduction

SELECTED CASE - DATA

SELECTED CASE - CONTEXT

AIM FOR SUSTAINABLE REFURBISHMENT

DESIGN FOR DISASSEMBLY

DESIGN FOR DISASSEMBLY

DESIGN FOR DISASSEMBLY

DESIGN FOR DISASSEMBLY

framework

literature summary mppf

sustainable façade refurbishment

AIM FOR SUSTAINABLE REFURBISHMENT

- Modularity, Exchangeability
- · Large Series Prefabrication
- · Alternative Business Models/ Leasing

- Photovoltaics
- Power Storage
- · District Solutions
- · In front of Existing Facade
- Fast Assembly
- · Media Paths in Facade
- Wall Insulation
- Window Improvement
- Reduction of Infiltration
- Low Costs (LCC or Invest) Heat Power from RES from RES Persistent/ Aesthetic usage +Comfort Passive Active Demand Demand Ecological Reduction Reduction Benefits
 - · Solarthermal/ Hybrid Modules
 - Solar Air Heater
 - Electrical Heating/ Cooling
 - Manifold Surfaces
 - Increased User Comfort
 - · Adaptions by User possible
 - Ventilation with Heat Recovery
 - Sun Shading
 - Demand-Led Automation

- · Low Primary Energy Demand
- Principles of the Circular Economy
- · Energetic Amortisation (Embodied Energy)

literature summary

sustainable façade refurbishment framework

sustainable façade - INTRODUCTION TO PLUG & PLAY

ENERGY PERFORMANCE INDEX

250-500 kWh/m² energy consumption of studied tall buildings in the region

172 kWh/m²
energy consumption for cooling of studied tall buildings in the region

90 kWh/m² energy consumption requirement for nZEB in the region

literature summary

framework

mppf sustainable façade refurbishment

LITERATURE – ENERGY PERFORMANCE

SHADING POTENTIAL

6% SAVINGS

11% SAVINGS

literature summary

mppf refurbishment framework

Sources: Al-sallal, K. A. (2016) EmiratesGBC. (2017) Shanks, Kirk; Nezamifar, E. (2013)

1. Improve Façade Quality

4. Align Shading to provide BIPV

2. Provide Shading

5. Design for **Disassembly**

3. Sufficient **Daylight Inside**

6. Design for **Accessibility**

concept design energy performance assessment economic assessment life cycle assessment

design development OOOOO

DESIGN GUIDELINES

150 years
ESL of tall buildings

0.5 years

regular façade maintenance period

30 years

regular curtain wall

concept design energy performance assessment economic assessment

LCA BOUNDARY CONDITIONS

life cycle assessment

MATERIALS OVERVIEW

life cycle assessment

LCA EVALUATION VS MAINTENANCE SCHEDULE

life cycle assessment

PROPOSED LIFE CYCLE

life cycle assessment

PROPOSED LC VS MAINTENANCE SCHEDULE

life cycle assessment

PROPOSED LC VS MAINTENANCE SCHEDULE

PROPOSED LC VS MAINTENANCE SCHEDULE

life cycle assessment

PROPOSED LC VS MAINTENANCE SCHEDULE

life cycle assessment

PROPOSED LC VS MAINTENANCE SCHEDULE

19,500 tons for old system of façade refurbishment

Aluminium 6060

Glass Mineral Wool

EPDM

Insulated Glazing Unit Silicon

Stainless Steel

Neoprene

ACP

concept design energy performance assessment economic assessment

life cycle assessment

LCA MATERIAL COMPARISON

design development

16,200 tons for proposed system of façade refurbishment

3,300 tons
amount of material which can be saved

concept design energy performance -

TRANSPORTATION

assessment

economic

assessment

ECONOMIC ASSESSMENT BOUNDARY CONDITIONS

life cycle assessment design development

Cost of New Facade VS Refurbishment

concept design energy performance assessment

economic

assessment

ECONOMIC ASSESSMENT

life cycle assessment design development

Sources: Market Survey Turner & Townsend. (2016).

Where,

H: Execution hour (h),

L: Labor cost(€/h),

E: Equipment cost(€),

S: Cost of sorting process (€/kg),

T: Cost of transportation (€/kgkm),

Ki: Travel distances (km)

W: Weight of materials (kg)

P/**D**_i: Cost of recycling or disposal process(€/kg)

(1)P_{alu} Aluminum recycling, (2)P_{gl}: Glass recycling,

(3) P_{pla}: Plastic incineration and (4)D_{re}: Residue landfill

R_k: Revenue from material or energy recovery

(1) R_{sc} : Aluminium Scrap(ε /kg), (2) R_{pro} : Secondary Aluminum profile(ε / kg), (3) R_{gi} : Secondary glazing unit(ε / kg), (4)Re: Electricity (ε / kg) = (ε /kWh)*(kWh/kg)

concept design energy performance assessment

economic

assessment

ECONOMIC ASSESSMENT

life cycle assessment
design development

4 workers

1 hr/m²

2,300 kms

4 workers

0.5 hr/

0.5 hr/m² 2,300 kms

4 workers

5 hr/m²

2,300 kms

concept design energy performance assessment

economic

assessment

ECONOMIC ASSESSMENT - EXISTING FACADE

life cycle assessment design development

concept design energy performance assessment

economic

assessment

ECONOMIC ASSESSMENT – EXISTING FACADE

life cycle assessment design development

MAINTENENCE

economic

assessment

concept design

energy performance assessment

GENERAL

LABOR

PROPOSED ECONOMIC BOUNDARY CONDITIONS

life cycle assessment design development

2 workers
.5 hr/m²

2 workers
.5 hr/m²

concept design energy performance assessment

economic

assessment

ECONOMIC ASSESSMENT - PROPOSED FACADE

life cycle assessment design development

concept design energy performance assessment

economic

assessment

ECONOMIC ASSESSMENT – SUMMARY OF RESULTS

life cycle assessment
design development

concept design

energy performance assessment

economic assessment life cycle assessment design development **EXISTING BUILDING - BOUNDARY CONDITIONS**

concept design

energy performance assessment economic assessment life cycle assessment design development

CONCEPT DESIGN - STAGE 1 - IMPROVE U-VALUE

concept design

energy performance assessment

economic assessment life cycle assessment **design development**

ENERGY ANALYSIS – U VALUE CALCULATION

Existing Facade

Proposed PnP Facade

concept design

energy performance assessment

economic assessment life cycle assessment design development

$$U_{cw} = \sum \frac{A_g^* U_g + A_p^* U_p + A_f^* U_f + A_m^* U_m + A_p^* U_p + A_f^* U_f + I_{f,g}^* \Psi_{f,g} + I_{m,g}^* \Psi_{m,g} + I_{f,g}^* \Psi_{f,g} + I_p^* \Psi_p + I_{m,f}^* \Psi_{m,f} + I_{f,f}^* \Psi_{f,f}}{A_{CW}}$$

U-Value Comparison

concept design

energy performance assessment

economic assessment life cycle assessment design development

ENERGY ANALYSIS – U VALUE CALCULATION

energy performance assessment economic assessment life cycle assessment design development

CONCEPT DESIGN – STAGE 2 – PROVIDE SHADING

Existing Façade Base Case

Proposed Façade with Shading

concept design

energy performance assessment

economic assessment life cycle assessment design development

ENERGY ANALYSIS – SHADING ANALYSIS

53rd Floor Base Case

concept design

energy performance assessment

economic assessment life cycle assessment design development

ENERGY ANALYSIS – SHADING ANALYSIS

Proposed Façade with Shading

-2.5 -3.5 -4.0 -5.0 -6.5 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 General Lighting (kW) Computer + Equip (kW) 0.02 0.02 0.02 0.14 0.14 0.02 0.02 0.02 0.08 0.21 0.27 Solar Gains Exterior Windows (kW) 0.00 0.00 0.08 0.97 0.84 0.39 0.51 0.66 0.39 0.00 0.00 Zone Sensible Cooling (kW) -2.59 -2.43 -2.45 -4.34 -4.57 -4.09 -4.46 -4.67 -4.14 -3.14 -3.42 Sensible Cooling (kW) -3.53 -3.31 -3.34 -5.46 -4.57 -4.09 -4.46 -4.67 -4.14 -3.14 -3.72

concept design

energy performance assessment

SOUTH

economic assessment life cycle assessment design development

Existing Façade Base Case

-4.12 -3.90 -3.93 -6.21 -4.79 -4.28 -4.67 -4.87 -4.32 -3.32 -4.03

ENERGY ANALYSIS – SHADING ANALYSIS

Total Cooling (kW)

Total Latent Load (kW)

Base Case Proposed Case

240 kWh/m² energy consumption of existing case study

210 kWh/m² energy consumption for cooling of existing case study

190 kWh/m²
energy consumption of
existing case study with proposed
modifications

160 kWh/m²
energy consumption for cooling
of existing case study with proposed
modifications

concept design

energy performance assessment

economic assessment life cycle assessment design development **ENERGY ANALYSIS – SHADING ANALYSIS**

289 energy so

28% energy savings by reduction

455,000 €/ yr amount utility expenses saved by reduction per year
هیئة کهرباء ومیاه دبی

concept design

energy performance assessment

economic assessment life cycle assessment design development

ENERGY ANALYSIS – SHADING ANALYSIS

energy performance assessment economic assessment life cycle assessment design development

CONCEPT DESIGN – STAGE 3 – ADJUST LOUVERS AND TILT ANGLES

NO HORIZONTAL LOUVERS

1 - HORIZONTAL LOUVER

2 - HORIZONTAL LOUVER

3 - HORIZONTAL LOUVER

energy performance assessment

economic assessment life cycle assessment design development **DESIGN REQUIREMENTS - INDOOR ILLUMINATION**

SOUTH EAST WEST

2 nos
ideal number of panels for
All orientations

500 - 1000 lux average indoor illumination levels

concept design

energy performance assessment

economic assessment life cycle assessment design development

DESIGN REQUIREMENTS - INDOOR ILLUMINATION

SOUTH EAST WEST

2 nos
ideal number of panels for
All orientations

500 - 1000 lux average indoor illumination levels

concept design

energy performance assessment

economic assessment life cycle assessment design development

DESIGN REQUIREMENTS - INDOOR ILLUMINATION

energy performance assessment

economic assessment life cycle assessment design development

DESIGN REQUIREMENTS - SHADING TILT ANGLE

energy performance assessment economic assessment life cycle assessment design development

CONCEPT DESIGN - STAGE 4 - ACCESSIBILITY & DISASSEMBLY

energy performance assessment economic assessment life cycle assessment design development

CONCEPT DESIGN – ACCESSIBILITY & MAINTENENCE

FAÇADE OVERVIEW

OPERBLE PANEL

DISASSEMBLY

concept design

energy performance assessment economic assessment life cycle assessment design development

CONCEPT DESIGN – ACCESSIBILITY & MAINTENENCE

energy performance assessment economic assessment life cycle assessment design development

CONCEPT DESIGN – ACCESSIBILITY & MAINTENENCE

energy performance assessment economic assessment life cycle assessment design development

CONCEPT DESIGN - STAGE 5 - SOLAR PANEL INTERGRATION

energy performance assessment

economic assessment life cycle assessment **design development**

concept design

energy performance assessment

economic assessment life cycle assessment **design development**

Energy Expenses for Existing Condition

Energy Expenses for Proposed Condition

concept design

energy performance assessment

economic assessment life cycle assessment design development

Effect of a ventilation air gap behind the PV panels in a BIPV roof

Air gap of 60mm

Design of the upper part of the BIPV Shading

concept design

energy performance assessment

economic assessment life cycle assessment design development

energy performance assessment economic assessment life cycle assessment design development

CONCEPT DESIGN – DESIGN DEVELOPMENT

assembly and maintenance technical drawings design proposal

design proposal design

technical drawings design proposal **design**

technical drawings design proposal **design**

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal design

assembly and maintenance

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal design

assembly and maintenance

technical drawings design proposal design

technical drawings design proposal **design**

assembly and maintenance

technical drawings design proposal design

technical drawings design proposal design

technical drawings design proposal **design**

OUTSIDE

assembly and maintenance

technical drawings design proposal **design**

OUTSIDE

INSIDE

assembly and maintenance

technical drawings design proposal design

technical drawings design proposal **design** **CONSTRUCTION - DISASSEMBLY**

INSIDE

assembly and maintenance

technical drawings design proposal design

technical drawings design proposal design

assembly and maintenance

technical drawings design proposal design

assembly and maintenance

technical drawings design proposal design

assembly and maintenance technical drawings design proposal

ELEVATION & SECTION

technical drawings

design proposal **design**

DESIGN DOCUMENTATION

technical drawings

design proposal **design**

DESIGN DOCUMENTATION

SUSTAINABLY USE THE RESOURSES **MAINTENANCE** COMFORT ENSURE EASE OF CLEANING & MAINTENENCE **ENSURE QUALITY THERMAL AND** FROM BOTH ECONOMIC AND ACCESS PERSPECTIVE VISUAL COMFORT THROUGH DESIGN **IDENTIFY DESIGN ENERGY PERFORMANCE** IMPROVE THE PERFORMANCE OF THE BUILDING SOLVE **SAFETY** THROUGH PASSIVE DESIGN STRATEGIES ENSURE LOW RISK WORK ENVIRONMENT TO CONSTRUCTION WORKERS RECYCLABILITY **CUSTOMIZATION** ENSURE THE DESIGN IS CAPABLE OF ENSURE THE DESIGN ACCOMODATES OPPORTUNITIES TO CHANGE ELEMENTS WHEN REQUIRED CUSTOMISTION BASED ON USER REQUIREMENTS EASE IN ASSEMBLY AND DISASSEMBLY INTERGRATE DESIGN FOF DISASSEMBLY TO MAXIMIZE USE OF LIFE CYCLE POTENTIAL OF THE MATERIALS

ENVIRONMENTAL IMPACT

REDUCE RISK TO THE ENVIRONMENT AND

evaluation

sustainability evaluation

sustainability SUSTAINABILITY EVALUATION

DESIGN OPTIONS

conclusion

30 years regular curtain wall

maintained regularly

construction workers

3 ENERGY

no energy production

3 million kWh/year approximate amount of energy produced by PV

360,000 €/yr approximate amount of utility expenses produced by PV

existing façade is the base case for reduction

455,000 €/yr approximate amount of utility expenses saved by reduction

CONCLUSION

