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Abstract—The accelerated digitalisation of society along with
technological evolution have extended the geographical span of
cyber-physical systems. Two main threats have made the reliable
and real-time control of these systems challenging: (i) uncertainty
in the communication infrastructure induced by scale, and
heterogeneity of the environment and devices; and (ii) targeted
attacks maliciously worsening the impact of the above-mentioned
communication uncertainties, disrupting the correctness of real-
time applications.

This paper addresses those challenges by showing how to build
distributed protocols that provide both real-time with practical
performance, and scalability in the presence of network faults and
attacks, in probabilistic synchronous environments. We provide
a suite of real-time Byzantine protocols, which we prove correct,
starting from a reliable broadcast protocol, called PISTIS, up
to atomic broadcast and consensus. This suite simplifies the
construction of powerful distributed and decentralized monitor-
ing and control applications, including state-machine replication.
Extensive empirical simulations showcase PISTIS’s robustness,
latency, and scalability. For example, PISTIS can withstand
message loss (and delay) rates up to 50% in systems with 49
nodes and provides bounded delivery latencies in the order of a
few milliseconds.

Index Terms—real-time distributed systems, probabilistic
losses, consensus, atomic broadcast, Byzantine resilience, intru-
sion tolerance.

I. INTRODUCTION

The accelerated digitalisation of society has significantly
shifted the way that physical infrastructures—including large
continuous process plants, manufacturing shop-floors, power
grid installations, and even ecosystems of connected cars—
are operated nowadays. Technological evolution has made
it possible to orchestrate a higher and finer degree of au-
tomation, through the proliferation of multiple sensing, com-
puting, and communication devices that monitor and control
such infrastructures. These monitoring and control devices
are distributed by nature of the geographical separation of
the physical processes they are concerned with. The overall
systems, i.e., the physical infrastructures with their monitoring
and control apparatus, are generally known as cyber-physical
systems (CPS) [1]. However, transposing the monitoring and
control functionality normally available in classical, real-time
(i.e., adhering to given time bounds) and embedded systems,
to the distributed CPS scenarios mentioned above, is a very
challenging task, due to two main reasons.

First, the scale of the systems as well as the heterogeneity
of devices (sensors, actuators and gateways), induce uncer-
tainty in the communication infrastructure interconnecting
them, itself often diverse too, e.g., Bluetooth, Wireless IEEE

*Work partly performed while these authors were with the University of
Luxembourg.

802.11, or Fiber [2-5]. These communication uncertainties
become evident [3-5], namely in the form of link faults
and message delays, which hamper the necessary reliability
and synchronism needed to realize real-time operations, be it
when fetching monitoring data or when pushing decisions to
controllers.

Second, security vulnerabilities of many integrated devices,
as well as the criticality of the managed physical structures,
increase the likelihood of targeted attacks [6, 7]. Such attacks
can aim to inflict inconsistencies across system components or
to disrupt the timeliness and correctness of real-time applica-
tions. The consequences of such attacks can range from loss
of availability to severe physical damage [8].

This paper addresses the challenges above, which render
traditional approaches for building real-time communications,
ineffective in wide-scale, uncertain, and vulnerable settings.
We investigate, in particular, how to build large-scale dis-
tributed protocols that can provide real-time communication
guarantees and can tolerate network faults and attacks, in prob-
abilistic synchronous environments. These protocols simplify
the construction of powerful distributed monitoring and con-
trol applications, including state-machine replication for fault
tolerance. To our knowledge, literature, with the exception
of [9, 10], has targeted achieving either real-time guarantees or
Byzantine-resilience with network uncertainties, but not both.

To bridge this gap, we present a protocol suite of real-
time Byzantine protocols, providing several message delivery
semantics, from reliable broadcast (PISTIS'), through consen-
sus (PISTIS-CS), to atomic broadcast (PISTIS-AT). PISTIS is
capable of: (i) delivering real-time practical performance (i.e.,
correct nodes provide guarantees within given time bounds)
in the presence of aggressive faults and attacks (i.e., one third
of the nodes being Byzantine, and high message loss rates);
and (ii) scaling with increasing system size.

The main idea underlying PISTIS is an event-triggered sig-
nature based approach to constantly monitor the network con-
nectivity among processes. Connectivity is measured thanks to
the broadcast messages: processes embed signed monitoring
information within the messages of the broadcast protocol
and exclude themselves from the protocol when they are a
threat to timeliness. Hence, PISTIS does not modularly build
on membership/failure detector oracles (like in traditional
distributed computing) but rather directly incorporates such
functionalities within. In fact, modularity in this sense was
proven to be impossible for algorithms implementing PISTIS-
like guarantees [10]. In order to mask network uncertainties

'PISTIS was a Greek goddess who represented the personified spirit
(daimona) of trust, honesty and good faith.
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in a scalable manner, PISTIS uses a temporal and spatial
gossip-style message diffusion with fast signature verification
schemes.

We empirically show that PISTIS is robust. For example
PISTIS can tolerate message loss rates of up to 40%, 50%,
60%, and 70% in systems with 25, 49, 73, and 300 nodes
respectively: PISTIS has a negligible probability of being
unavailable under such losses. We also show that PISTIS can
meet the strict timing constraints of a large class of typical
CPS applications, mainly in Supervisory Control And Data
Acquisition (SCADA) and Internet of Things (IoT) areas, e.g.,
(1) fast automatic interactions (< 20ms) for systems with up
to 200 nodes, (2) power systems and substation automation ap-
plications (< 100ms) for systems with up to 1000 nodes, and
(3) slow speed auto-control functions (< 500ms), continuous
control applications (< 1s) as well as operator commands of
SCADA applications (< 2s) for systems with 1000 nodes or
more. Such SCADA and IoT applications could include up to
hundreds of devices where reliable and timely communication
is required.

By using PISTIS as the baseline real-time Byzantine reliable
broadcast protocol, we prove that (and show how) higher-level
real-time Byzantine resilient abstractions can be modularly
implemented, namely, consensus and atomic broadcast. In-
terestingly, we prove that this can be realized with negligible
effort: (1) we exhibit classes of algorithms which are amenable
to real-time operations by re-using existing synchronous algo-
rithms from the literature; and (2) we rely on PISTIS, which
addresses and tolerates the most relevant problems posed by
the communication environment, including the impossibility
of modularly handling membership/failure detection [10].

In short, our contributions are:

o The PISTIS protocol suite, which is to the best of our
knowledge the first generic and modular protocol suite
that provides message delivery guarantees for protocols
ranging from Byzantine reliable broadcast to Byzantine
atomic broadcast. PISTIS itself is an event-triggered
real-time Byzantine reliable broadcast algorithm that
has higher scalability and faster message delivery than
conventional time-triggered real-time algorithms, in the
presence of randomized and unbounded network disrup-
tions. Building on top of PISTIS, we present classes of
algorithms, PISTIS-CS and PISTIS-AT, that implement
real-time Byzantine consensus and atomic broadcast, re-
spectively.

o Correctness proofs of the PISTIS protocol suite. We
provide the main proof results in this paper (exhaustive
proofs are deferred to Appx. B).

« Extensive empirical simulations using Omnet++ [11] that
showcase PISTIS’s robustness, latency, and scalability.

Roadmap. The rest of the paper is organized as follows.
Sec. II discusses related work. Sec. III details our system
model. Sec. IV recalls the properties of a real-time Byzantine
reliable broadcast, and presents our algorithm, PISTIS, in
details. Sec. V shows and proves how real-time Byzantine
atomic broadcast and consensus can be realized on top of PIS-
TIS’s guarantees using classes of existing algorithms. Sec. VI

evaluates the performance and reliability of PISTIS. Finally,
Sec. VII concludes the paper. For space limitations, proofs and
additional material are deferred to Appendices.

II. RELATED WORK

Reliable broadcast is a standard abstraction to ensure that
the (correct) nodes of a distributed system agree on the
delivery of messages even in the presence of faulty nodes.
Byzantine reliable broadcast in particular guarantees that (cor-
rect) nodes agree even in the presence of arbitrary faults. It
is a key building block of reliable distributed systems such as
Byzantine Fault-Tolerant State Machine Replication protocols,
which are nowadays primarily used in blockchain systems.
Pioneered by the work of Dolev [12] and Bracha [13], many
protocols have been proposed since then that are intended
to work in various environments. The focus of our paper is
on novel Byzantine broadcast primitives and protocols that
achieve timeliness guarantees.

This paper has evolved from, and improved over, a research
line paved by [9, 10, 14] on timing aspects of reliable
broadcast and Byzantine algorithms. Besides these works, the
literature on broadcast primitives, to the best of our knowledge,
either does not take into account timeliness and maliciousness
or addresses them separately.

Cristian et al. [9] assumed that all correct processes remain
synchronously connected, regardless of process and network
failures. This strong network assumption is too optimistic, both
in terms of scale and timing behaviour, which in practice
leads to poor performance (latency of approximately 2.4
seconds with 25 processes—see Table I in Sec. VI-E for more
details). Moreover, Cristian et al.’s system model does not
allow processes that malfunction (e.g., by violating timing
assumptions) to know that they are treated as faulty by the
model. Our algorithm, in comparison, provides latencies in
the range of few milliseconds and our model makes processes
aware of their untimeliness.

Verissimo et al. [14] addressed the timeliness problem by
weak-fail-silence: despite the capability of the transmission
medium to deliver messages reliably and in real-time, the
protocol should not be agnostic of potential timing or omission
faults (even if sporadic). The bounded omissions assumption
(pre-defined maximum number of omissions) of [ 14] could not
be taken as is, if we were to tolerate higher and more uncertain
faults (as we consider in this paper): it could easily lead to
system unavailability in faulty periods. Hence we operate with
much higher uncertainty levels (faults and attacks).

Kozhaya et al. [10] devised a Byzantine-resilient algorithm
that provides an upper bound on the delivery latency of
messages. This algorithm is time-triggered and relies on an
all-to-all communication that limits the algorithm’s scalability.
Our work improves over [10] on several points: (i) we reduce
the delivery latency (few milliseconds as shown in Fig. 7 and
Fig. 8 compared to a few hundred as shown in [10, Fig. 8]—
see also Table I for a comparison of worst case latencies)
by adopting an event-triggered approach instead of a round-
based one; (ii)) we improve the system’s scalability (at least
5 times less bandwidth consumption) by adopting a gossip-
based dissemination instead of an all-to-all communication;
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and (iii) we show how real-time broadcast primitives can be
modularly used to build real-time Byzantine-resilient high-
level abstractions like consensus and atomic broadcast.

Guerraoui et al. [15] designed a scalable reliable broadcast
abstraction that can also be used in a probabilistic setting
where each of its properties can be violated with low probabil-
ity. They achieve a scalable solution by relying on stochastic
samples instead of quorums, where samples can be much
smaller than quorums. As opposed to this work, our goal is to
design a deterministic abstraction where the property are never
violated: the real-time Byzantine-resilient reliable broadcast
primitive discussed in Sec.IV is deterministic because late
processes become passive, and therefore count as being faulty.

In [16, 17], the authors present a Byzantine fault-tolerant
SCADA system that relies on the Prime [18, 19] Byzantine
Fault Tolerant State Machine Replication [20, 21] (BFT-SMR)
protocol protocol to ensure both safety and latency guarantees.
As opposed to PISTIS, Prime relies on an asynchronous
primary-based BFT-SMR. As opposed to Prime, PISTIS-CS
and PISTIS-AT algorithms are designed modularly from a
timely reliable broadcast primitive; and PISTIS allows slow
connections between any processes in a probabilistic syn-
chronous environment, while Prime relies on the existence of
a “stable” timely set of processes.

III. SYSTEM AND THREAT MODEL
A. System Model

Processes. We consider a distributed system consisting of a
set II = {po,p1,...,on—-1} of N > 1 processes. We assume
that processes are uniquely identifiable and can use digital
signatures to verify the authenticity of messages and enforce
their integrity. We denote by o;(v) the signature of value v
by process p;. We often write o;, when the payload is clear
from the context. Processes are synchronous, i.e., the delay for
performing a local step has a fixed known bound (note that
this does not apply to faulty processes—see below).

Clocks. Processes have access to local clocks with a
bounded and negligible rate drift to real time. These clocks
do not need to be synchronized.

Communication. Every pair of processes is connected by
two logical uni-directional links, e.g., p; and p; are connected
by links /;; and [;;. Links can abstract a physical bus or a ded-
icated network link. We assume a probabilistic synchronous
communication model. This means that in any transmission
attempt to send a message over on link l;; (with ¢ # j) at
some time ¢, there is a probability P,;(t) that the message
reaches its destination and within a maximum delay d (known
to the processes). d is the upper time bound on non-lossy
message delivery and €; < 1 — P;;(t) < e3 < 1 where ¢; and
€2 are small strictly positive values. Such violations exist in
networks, as arguably all communication is prone to unpre-
dictable disturbances, e.g., bandwidth limitation, bad channel
quality, interference, collisions, and stack overflows [4]. Our
probabilistic synchronous communication has been shown to
be weaker, in some sense [22], than partial synchrony [23]. We
further discuss and compare our model to existing traditional

ones in Appx. A. We do not model correlated losses explicitly,
as previous works like [10] have shown that such bursts can
be mitigated and we leave it up to the applications to define
how to deal with late messages (i.e., violating the d delay
assumption).

B. Threat Model

Processes. We assume that some processes can exhibit arbi-
trary, a.k.a. Byzantine, behavior. Byzantine nodes can abstract
processes that have been compromised by attackers, or are
executing the algorithm incorrectly, e.g., as a result of some
fault (software or hardware). A Byzantine process can behave
arbitrarily, e.g., it may crash, fail to send or receive messages,
delay messages, send arbitrary messages, etc.

We assume that at most f = L%J processes can be
Byzantine. This formula was proved to be an upper bound
for solving many forms of agreement in a variety of models
such as in non-synchronous models [24, 25].

We allow nodes to become passive in case they fail to
execute in a timely fashion. As explained in Sec. IV-C, passive
nodes stop executing key events to guarantee timeliness. A
process that exhibits a Byzantine behavior or that enters the
passive mode (see Sec. IV-C) is termed faulty. Otherwise,
the process is said to be correct. Note that passive nodes are
considered faulty (at least) during the time they are passive,
but are not counted against the f Byzantine faults. Therefore,
more than f nodes could be faulty in a system over the full
lifespan of a system (up to f nodes could be Byzantine, and
up to N processes could be momentarily passive).

Clocks. The bounded and negligible rate drift assumption in
Sec. III-A has to hold only on a per protocol execution basis,
easily met by current technology (such as techniques relying
on GPS [26] or trusted components [27]). Hence the clock of
a correct process always behaves as described in Sec. III-A.

Communication. We assume that Byzantine processes or
network adversaries cannot modify the content of messages
sent on a link connecting correct processes (implemented by
authentication through unforgeable signatures [28]).

IV. REAL-TIME BYZANTINE RELIABLE BROADCAST

We now present our solution to guarantee that correct nodes
reliably deliver broadcast messages in a timely fashion, despite
Byzantine nodes, and communication disruptions. Sec. IV-A
recalls the properties of the real-time Byzantine-resilient re-
liable broadcast (RTBRB) primitive [10]. Then, Sec. IV-B
presents a high-level overview of the PISTIS event-triggered
algorithm, which implements the RTBRB primitive, while
Sec. IV-C provides a detailed presentation of PISTIS. Finally,
Sec. IV-E explains how passive nodes can recover and become
active again to ensure the liveness of the system.

A. Real-time Byzantine Reliable Broadcast Abstraction

Definition 1 (RTBRB). The real-time Byzantine reliable
broadcast (RTBRB) primitive guarantees the following proper-
ties [10], assuming every message is uniquely identified (e.g.,
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using the pair of a sequence number and a process id—the
broadcaster’s id).> In this abstraction, a process broadcasts
a message by invoking RTBRB—broadcast(). Similarly, a
process delivers a message by invoking RTBRB—-deliver().

e RTBRB-Validity: If a correct process p broadcasts m,
then some correct process eventually delivers m.

o RTBRB-No duplication: No correct process delivers
message m more than once.

o RTBRB-Integrity: If some correct process delivers a
message m with sender p; and process p; is correct, then
m was previously broadcast by p;.

o RTBRB-Agreement: If some correct process delivers m,
then every correct process eventually delivers m.

o RTBRB-Timeliness: There exists a known Ay such that if
a correct process broadcasts m at real-time t, no correct
process delivers m after real time t + Ag.

It is important to note that the above abstraction does not
enforce ordering on the delivery of messages sent. We elabo-
rate more on that and how to achieve order in Sec. V. Note
also that in a system consisting of correct and faulty nodes,
these properties ensure that correct nodes deliver broadcast
messages within a bounded delay, while no such guarantee is
(and can be) provided about faulty nodes.

B. Overview of PISTIS

This section presents a high-level description of PISTIS.
For simplicity, we assume the total number of processes to be
N = 3f + 1, in which case a Byzantine quorum has a size
of 2f + 1. PISTIS guarantees RTBRB properties determinis-
tically despite the probabilistic lossy network. However, this
comes at the price of PISTIS triggering an entire system fail-
safe (shutdown) and a reinitialization of system state when
violating RTBRB-Timeliness is inevitable. We show later in
Sec. VI that the probability of PISTIS causing such system
fail-safe (and hence violating an RTBRB property if fail-safe
was not triggered) is negligible.

System Awareness. Given that broadcasts can be invoked
at unknown times, there might exist a correct process in
IT\ {p;} that is unaware of p;’s broadcast for an unbounded
amount of time after it was issued, since all links can lose
an unbounded number of messages. The occurrence of such
scenarios may hinder the system’s ability of delivering real-
time guarantees. To this end, we require that every process p;
constantly exchanges messages with the rest of the system.
This regular message exchange aims at capturing how well p;
is connected to other processes, and hence to what extent p;
is up-to-date with what is going on in the system (and to what
extent the system knows about p;’s state). We achieve this
constant periodic message exchange via a function, which we
call proof-of-connectivity.® It requires each process to diffuse
heartbeats to the rest of the system in overlapping rounds: a

2RTBRB’s properties are equivalent to the ones of the Byzantine reliable
broadcast abstraction defined in [29, Module 3.12, p.117], excluding Timeli-
ness.

3Periodic message exchange (heartbeats) has been used to discover the
network state in many monitoring algorithms [30, 31]

]
[ PoCz | |
T

PO do

p1 & \ \ . ‘
p2 l ‘ ': “.
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Figure 1. Example of a proof-of-connectivity run, where X = 2f + 1, and
where 2 repetitions allow covering all nodes

new round is started every d time units, and each round is of a
fixed duration T, where d < T. (Sec. VI shows that T = 8d is a
reasonably good value, while Sec. IV-D highlights the need for
overlapping rounds.) A round consists in repeatedly (every d
units of time) diffusing a signed heartbeat message to X other
processes. X stands for the number of processes to which a
process sends a message in a communication step. The value
of X is fixed at deployment time (i.e., does not change over the
execution of a system) and can range between 0 and N —1. It is
used to avoid network congestions by enforcing that processes
selectively send their messages to an arbitrary subset of the
system. Each round consists then in repeatedly sending Wﬂ
times a message, each time to X other nodes. Note that even
though the value of X is fixed, in any given round the set of X
processes to which the message is sent in every repetition can
change such that the union of processes to which the message
is sent in all {g] repetitions in that round covers all processes
in the system. This is possible when N < X x [Z], which we
always guarantee in practice. Heartbeat messages are uniquely
identified by sequence numbers, which are incremented prior
to each round. On receipt of a heartbeat message, a correct
process appends its own signature to it as well as all other
seen signatures relative to that heartbeat; and sends it to X
other processes. At the end of each round, if a process does
not receive at least 2f 4 1 signatures (including its own) on
its own heartbeat, it enters the passive mode.

Fig. 1 provides an example of a run of the proof-of-
connectivity protocol, depicted as a message sequence di-
agram, in a system composed of 4 processes. This figure
depicts part of the three first rounds of proof-of-connectivity
initiated by py (we only show the messages sent by pg to avoid
cluttering the picture), namely PoCj in blue, PoC'; in orange,
and PoCy in purple. In addition, in that case, each proof of
connectivity round is of length T = 6d. Therefore, the blue
PoC heartbeats are sent 6 times between dy and ds, the
orange PoC'; heartbeats are sent 6 times between d; and dg,
and the purple PoCs heartbeats are sent 6 times between ds
and dy. If by the end of PoC, py has not received 2 f replies
to its heartbeats, it will become passive.

Diffusing Broadcasts. PISTIS relies on two types of
messages (Echo and Deliver messages) to ensure that
broadcast values are delivered in a timely fashion. Processes
exchange Echo messages either to start broadcasting new
values, or in response to received Echo messages. Echo
messages help processes gather a valid quorum (a Byzantine
write quorum [32] of size 2f + 1) of signatures on a single
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Figure 2. Example of a PISTIS run where X = 2f + 1, and where 2

repetitions allow covering all nodes

value v relative to a broadcast instance. A broadcast instance
is identified by the id of the process broadcasting v and
a sequence number. Echo messages help prevent system
inconsistencies when malicious nodes send different values
with the same sequence number (same broadcast instance)
to different recipients. However, additional messages, namely
Deliver messages, are needed to help achieve delivery
within a bounded time after the broadcast.

When a process p; receives a value v through an Echo
message, it appends its signature to the message as well as
all other signatures it has received relative to v; and sends it
to X other processes. In addition, when p; receives a value
for the first time, it triggers a local timer of duration T.
Upon receiving a value signed by more than 2f processes,
a process delivers that value. However, a process that does
not receive more than 2f signatures on time (i.e., before the
timer expires) enters the passive mode. In case multiple values
are heard relative to a single process and sequence number
(equivocation), then the first heard value is the one to be
echoed. Note that processes continue executing the proof-
of-connectivity function during the echo and deliver phases
however by piggybacking heartbeats to echo/deliver messages.

As opposed to Echo messages that are diffused (i.e., re-
transmitted temporally and sporadically) for a duration T,
Deliver messages are diffused for 2T. This is needed to
ensure that if some correct processes start diffusing a message
between some time ¢ and ¢ + T, possibly at different times,
then there must be a T-long period of time where all of them
are diffusing the message (see Lemma 4 in Appx. B for more
details). Given a large enough collection of such processes
(f + 1 correct processes), this allows other processes to learn
about delivered values in a timely fashion.

Fig. 2 provides an example of a run of PISTIS, depicted as
a message sequence diagram. The system is composed of 4
processes. This figure depicts part of the echo (in blue) and
deliver (in orange) phases of one broadcast initiated by pg (for
the purpose of this illustration, only the messages sent by pg
are shown). The purple “broadcast” and “deliver” tags indicate
the times at which pg initiated its broadcast, and delivered
it. In this example, the echo phase is initially meant to last
for a duration of T = 6d. However, it happens here that pg
received 2f echo messages for its broadcast by 3d + k, where
0 < k < d, which is why d3 is shorter than the other intervals.
Therefore, py stops its echo phase and starts its deliver phase
at 3d + k. As mentioned above, the deliver phase lasts for 2T.
If py has not received 2f deliver messages in return by the
end of that deliver phase, then it becomes passive.

Algorithm 1 proof-of-connectivity(T) @ process p;

. seq = [0]™; // stores smallest valid sequence number per process.
. sq = 05 // local sequence number.
: Rup = [0]™; // stores signatures on last Hi-\ heartbeats of processes.

1:
2
3
4:
5: upon event initialization()V check-connectivity() do
6: trigger Timeout(msg, T);

7 Execute h—-diffuse((pi,sq),{o:i});

8 Rup|pi]-add({pi, sq); {oi}); sleep(d); sq++;

9: if sq — seq[p;] > f%] then seq[p;]++;

10: end if

11: trigger check-connectivity();
12:

13: upon event Expired-Timer({p;,sq’), timeout) do
14: if |Ryp(pi]-getsig(sq’)| < 2f then
15: // gets signatures on message with sequence number sq’

16: Initiate passive mode;

17: else Ryp[pi].remove(sq’); / remove entry with seq. num. sq’
18: end if

19:

20: upon event receive HB ((p;, sq’), ) do
21: if (sq’ > seq([p;]) then

22: Ruglp;]-setsig(sq’, Ruplp;l.getsig(sq’) UL U {o;});
23: if j # i A sq’ # seq[p;] then

24: Execute h-diffuse((p;,sq’), Rup(p;].getsig(sq’)):
25: end if

26: end 1f

27: if sq’ > (seq[pj] + [%] A j # i then

28: seqlp;] = s¢' — [41;

29: Ruslpj]- remove(sq "), Vsq" < seq[pjl;

30: end if

31:

32: Function h-diffuse(msg, X))
33 for (int i =0;i < [5]; i++) do

34: send HB (msg, ) to X other processes;
35: sleep(d);

36: end for

37:

C. Detailed Presentation of PISTIS

We now discuss PISTIS (Algorithm 2) in more details.
Note that all functions presented in Algorithms 1 and 2 are
non-blocking PISTIS’s proof of correctness can be found in
Appx. B.

Process states. Processes can become passive under cer-
tain scenarios by calling “Initiate passive mode”. A passive
node stops broadcasting and delivering messages to guarantee
timeliness but otherwise keeps on replying to messages to help
other processes. Processes that were behaving correctly thus
far, are considered faulty when they initiate a passive mode
and can notify the application above of this fact. Later in this
section, we show how processes in the passive mode can come
back to normal operation by calling “Initiate active mode”.

Ensuring sufficient connectivity. In PISTIS every process
executes the proof-of-connectivity Algorithm 1. Namely, a
process p; forms a heartbeat HB ({(p;, sq),{c;}), where sq
is p;’s current heartbeat sequence number and o; is p;’s
signature on (p;, sq). Process p; also stores (in array Ryp)
for every process (including itself) all signatures it receives
on heartbeats with a valid sequence number. A valid heartbeat
sequence number for some process p; is a sequence number
> seq[p;|. Heartbeats with lower sequence numbers are simply
ignored. To avoid receiving heartbeats from older rounds,
we update seg[p;] every time a heartbeat with a sequence
number over seq[p;] + [5] is receiver (lines 27-28). After

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 01,2021 at 08:46:36 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3056718, IEEE

Transactions on Parallel and Distributed Systems

Algorithm 2 PISTIS @ process p;

: Execute proof-of-connectivity(T);

1

2:

3: upon event RTBRB-broadcast(p;, sq,v) do

4: Execute proof-of-connectivity in piggyback mode;
5: Initialize R ccpo (pi, $q,v) = {04 };

6: Execute b-diffuse({pi, sq,v), T,echo);

7
8
9

: upon event receive Echo ((p;, sq,v), %) do
if igRecho(pjv sq, ) then

10: Initialize R .cpo(pj, sq,v) = {o;} US;

11: Execute proof-of-connectivity in piggyback mode;

12: if IRecho(pjv 5q,v)| < 2f then

13: Execute b-diffuse((p;, sq,v), T,echo);

14: else Execute deliver-msqg(pj, sq,v, Recho(Pj, 59, 7));
15: end if

16: else if IR ccr0(pj, sq,v) then

17: Recho(pij(lvv) :Rec}zo(pj75QyU) U

18: if |Recho(pj,5q,v)| > 2f (for the first time) then

19: Execute deliver-msg(pj, sq, v, Recho (P, 50, V));
20: end if

21: else if IR ccpo (P, sq,v" # v) then

22: // p;j has lied about message with sq

23: if |X| > 2f then

24: remove R cpo(pj, 5¢,v");

25: Recho (pj7 5¢,v) = %;

26: Execute deliver-msg(pj, sq,v, 2);

27: end if

28: end if

29:

30: upon event receive Deliver ((p;, sq,v,X),¥’) do
31: if ﬁRdeliver (pjy sq,v) then

32: Rccho (pj’ sq, U) = Recho(pj7 sq, U) Uy
33: Execute deliver-msg(pj, sq,v,X);

34: end if

35: Rdcli'uc'r(pjv sq,v) = Rdcli'uc'r(pj7 Sq,'l)) u 2,;
36:

37: upon event Expired-Timer(msg, timeout, mode) do
38: if EIRmodc(mSQ) A |Rmodc(m39)‘ < 2f then

39: switch mode do

40: case echo

41: if no lie is discovered on msg then
42: Initiate passive mode;

43: end if

44: case deliver

45: Initiate passive mode;

46: end if

47:

48: Function b-diffuse(msg, timeout, mode)

49: trigger Timeout(msg, timeout, mode);

50: for (inti=0;¢< [”’"%fl"“t]; i++) do

51: % = Rimode(msg);

52: switch mode do

53: case echo

54: send Echo (msg,X) to X random processes;
55: case deliver

56: send Deliver (msg,X) to X random processes;
57: sleep (d);

58: end for

59:

60: Function deliver-msg,, (pj,sq,v,3)
61: if z]Rdeliver (pj, sq, U) then

62: Execute proof-of-connectivity in piggyback mode;
63: trigger RTBRB-deliver(pj, sq,v);

64: Initialize R jejiver (), 5q,v) = {03 };

65: Stop sending any Echo ()

66: end if

67: Execute b-diffuse((p;, sq,v, %), 2T, deliver);
68:
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forming its heartbeat, p; sets a timeout of duration T, and
sends this heartbeat to X > f random processes (%] times
(lines 32-36). Process p; increments its heartbeat sequence
number and repeats this whole procedure every d < T. Upon
incrementing its heartbeat sequence number, p; updates its own
valid heartbeat sequence numbers (lines 9-10).

A process p; receiving HB ({p;, sq’), X) ignores this heart-
beat if sq’ is smaller than the smallest valid heartbeat sequence
number known for p;. Otherwise, p; updates p;’s valid heart-
beat sequence numbers (lines 27-30) and the list of all seen
signatures on these valid heartbeats (line 22). Then, p; diffuses
the heartbeat with the updated list of seen signatures to X
random processes (line 24).

When a timer expires, p; checks Ryp[p;] for the number
of accumulated signatures on its corresponding heartbeat. If
that number is < 2f, p; enters the passive mode; otherwise it
removes the corresponding entry from R g5 [p;] (lines 13-19).

Broadcasting a message. A process p; that wishes to
broadcast a value v, calls RTBRB-broadcast(p;, sq,v)
from Algorithm 2 (lines 3-7), where sq is a sequence num-
ber that uniquely identifies this broadcast instance. Given
such an event, p; produces a signature o; for the payload
(pi, $q,v). It then triggers a timeout of duration T and sends
an Echo ((p;, s¢,v),{0;}) message [Z] times to X other
random processes. Proof-of-connectivity information from p;
is now piggybacked on these messages, as on all other Echo
and Deliver messages.

Sending and Receiving Echoes. When p; receives an
Echo ((p;, s¢,v),Y), p; reacts differently depending on
whether it is not already echoing for this instance (lines 8—15),
already echoing v (lines 16-20), or already echoing a different
value (lines 21-27). In all three cases, p; starts delivering a
message (and stops sending echoes) as soon as at least 2f + 1
distinct signatures have been collected for that message.

Sending and Receiving Deliver Messages. When
pi receives Deliver ((p;,sq,v,%),%X') for the first
time (lines 60-67), it delivers (p;,sq,v,%), and
sends Deliver ((p;,sq,v, ), Raetiver(Pj, S¢,v)) using
b-diffuse(). In case that deliver message is not the first
one received (lines 30-35), p; aggregates all seen signatures
for (p;,sq,v) in Raeuver (Pj, 5¢,v) (all functions that use
R detiver (Dj, $¢,v) now use the new updated value).

Process Passive Mode. When a timeout set by process p;
with parameters (msg, timeout, mode) expires, p; enters the
passive mode if the set R.,,,4. has less than 2f + 1 distinct
signatures, for mode = deliver. For mode = echo, p;
enters passive mode if in addition to R .4, not having 2 f+1
signatures, p; did not discover a lie for that broadcast instance.

Remark 1. Any message of the form Echo ((p;, sq,v),%1)
or Deliver ((p;, sq,v,X2),%3) is termed invalid if: (1) ¥,
contains an incorrect signature, and similarly for Yo and Y3,
or (2) ¥y does not contain a signature from p;, and similarly
for ¥o; or (3) X9 has less than 2f + 1 signatures. Invalid
messages are simply discarded.
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Remark 2. We assume that processes sign payloads of
the form (p;,sq,v,E) for echo messages and of the form
(pi, 89, v, D) for deliver messages. We use the E and D tags to
distinguish echo and deliver payloads, thereby ensuring that
an attacker cannot use echo signatures as deliver signatures.
Note that echo signatures are sent as part of deliver messages
as a proof that a quorum of processes echoed a certain value.

D. PISTIS’ properties

As mentioned at the beginning of this section, PISTIS is
correct in the sense that it satisfies all five properties of the
RTBRB primitive presented in Sec. IV-A:

Theorem 1 (Correctness of PISTIS). Under the model pre-
sented in Sec. IIl, the PISTIS algorithm presented in Fig. 2
implements the RTBRB primitive.

A proof of this theorem can be found in Appx. B. Let us
point out here that the Ay bound of the RTBRB-Timeliness
property turns out to be 3T.

Let us also highlight the crux of this proof here.

atmost T 2T
---------------- DS R &
. t echo deliver
pi
\ bcast(m) \ deliver(m)
2f+1 nodes T
;! <

H deliver
i

5

A
[\ :
IR

proof-of-connectivity

3]

As illustrated above, a correct node p; that broadcasts a
message m a time ¢ is guaranteed to start delivering m by
tq =t + T. In addition thanks to the 2T delivery period, we
are also guaranteed that a collection, called B, of 2 f+1 nodes,
will only deliver m for a T-long period that starts before ¢4+T.
PISTIS’s proof-of-connectivity (PoC) mechanism then ensures
that any other correct node p; will execute a PoC round during
which a correct node r € B delivers m to p;, piggybacked to
a heartbeat, thereby guaranteeing that p; delivers m timely.
In particular, overlapping PoC rounds allow for all correct
nodes to have a PoC round that coincide with that T-long
period (called D here), during which the correct nodes in B
deliver m, thereby allowing all correct nodes to deliver m. If
PoC rounds were consecutive and not overlapping, a correct
node could miss the deliver message (piggybacked with PoC
messages) sent during D if it were to receive PoC messages for
a round (i.e., sequence number) s sent before D, and for round
541 sent after D, thereby staying active while not delivering.

E. Byzantine-Resilient Recovery

If process p; detects that it is executing under bad network
conditions, it enters the passive mode and signals the upper
application. As a result, p; stops broadcasting and delivering
broadcast messages (by not executing line 3 and line 63)
to avoid violating RTBRB-Timelines. However, p; continues

participating in the dissemination of the broadcast and proof-
of-connectivity messages to avoid having too many nodes not
collecting enough messages and hence becoming passive.

Once the network conditions are acceptable again, p; can
recover and resume delivering broadcast messages. More
precisely, a process p; that enters passive mode at time ¢
can operate normally again if the interval [t,¢ 4+ Ag] is free
of any passive mode initiations. This Ay duration ensures
that the messages delivered by a recovered process p; do
not violate any RTBRB properties. After a delay Ag, nodes
will resume their full participation in the protocol, and either
deliver messages or stay on hold.

Note that in case of multiple broadcast instances, passive
nodes that become active again should learn the latest sequence
number of broadcasts for other nodes. Otherwise Byzantine
nodes can exploit this to hinder the liveness of the system.

Remark 3. Given that processes can now shift between
passive and active modes, we specify our notion of correct
processes as follows. A system run is modeled by a trace of
events happening during that run. An event has a timestamp
and a node associated with it. Moreover, an event can either
be a correct event or a Byzantine event. Given an algorithm A,
a process p is deemed correct w.rt. A and a trace T, if:
(1) it follows its specification from ey, the first correct A-
related event (i.e., an event of algorithm A) happening in T,
to es, the last correct A-related event happening in 7; (2) p’s
events between ey and ey must all be correct; (3) p must
also have followed its specification since it last started; and
(4) p must never have lost its keys (so that no other node can
impersonate p when p follows its specification). The results
presented below also hold for this definition of correctness,
because correct processes are required to be active through
the entire broadcast instance.

This recovery mechanism improves the overall resilience of
the system. Indeed, having all processes in passive mode can
occur if 2f 4+ 1 nodes are passive, which is now harder to
achieve if nodes can recover sufficiently fast enough.

V. BEYOND A RELIABLE BROADCAST

Unlike liveness in asynchronous reliable broadcast, the
RTBRB-Timeliness property (a safety property) introduces a
scent of physical ordering. This ordering is due to the fact
that timeliness stipulates, for each execution, a termination
event to occur “at or before” some Ay on the time-line. This
said, the reader may wonder to what extent does the real-time
Byzantine-resilient reliable broadcast (of Sec. IV-A) help in
establishing total order?

The answer to this question lies in examining what happens
to multiple broadcasts issued by the same or by different
nodes. When multiple broadcasts interleave, e.g., when they
are issued within a period shorter than Ay (the upper time
bound on delivering a message), messages might be deliv-
ered to different processes in different orders. The timeliness
property of the real-time Byzantine-resilient reliable broadcast
only ensures that a message m that is broadcast at time ¢ is
delivered at any time in [t, ¢+ Ag]. Thus, to ensure total order
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on all system events, e.g., for implementing State Machine
Replication, additional abstractions need to be built on top of
the real-time Byzantine-resilient reliable broadcast primitive
that we have developed so far.

In this section, we investigate how to modularly obtain
such an order on system events while still preserving real-
time and Byzantine-resilience. We define two build blocks
that build on top of RTBRB, namely the RTBC real-time
Byzantine consensus abstraction (Def. 2)—a fundamental
building block for state machine replication, atomic broadcast
and leader election [29]; and the RTBAB real-time atomic
broadcast abstraction (Def. 4)—to establish total order on
system events. We then provide characterizations of classes of
algorithms that implement these abstractions: Thm. 2 provides
a characterization of the PISTIS-CS class of algorithms that
implement RTBC, while Thm. 3 provides a characterization
of the PISTIS-AT class of algorithms that implement RTBAB.
Finally, we provided examples of algorithms that belong to
these classes (see Examples 1 and 2).

We start with the following assumption that constrains the
ways processes can communicate.

Assumption 1. Correct processes access the network only
via the RTBRB primitive, namely using the two operations:
RTBRB-broadcast() and RTBRB-deliver().

From Assumption 1, a correct process p; that receives a
message from an operation other than RTBRB-deliver()
simply ignores that message by dropping it.

A. Real-Time Byzantine Consensus

Roughly speaking, solving the Byzantine consensus problem
requires the agreement of distributed processes on a given
value, even though some of the processes may fail arbitrarily.
Byzantine consensus was first identified by Pease et al. [33],
and formalized as the interactive consistency problem. An
algorithm achieves interactive consistency if it allows the
non-faulty processes to come to a consistent view of the
initial values of all the processes, including the faulty ones.
Once interactive consistency has been reached, the non-faulty
processes can reach consensus by applying a deterministic
averaging or filtering function on the values of their view.
We apply the following assumption to reach consensus.

Assumption 2. Once interactive consistency terminates, every
correct process scans the obtained vector and decides on the
value that appears at least 2f + 1 times. If no such value
exists, then the process decides 1, a distinguished element
that indicates that no value has been decided.

Definition 2 (RTBC). The real-time Byzantine consensus
(RTBC) abstraction is expressed by the following properties:*

o RTBC-Validity: If all correct processes propose the same
value v, then any correct process that decides, decides v.
Otherwise, a correct process may only decide a value that
was proposed by some correct process or L.

4The properties of RTBC are the same as the ones of the traditional (strong)
Byzantine consensus defined in [23] (see also [29, Module 5.11, p.246]),
excluding the Timeliness property.

e RTBC-Agreement: No two correct processes decide dif-
ferently.

o RTBC-Termination: Correct processes eventually decide.

o RTBC-Timeliness: If a correct process p; proposes a
value to consensus at time 1, then no correct process
decides after t + Ac.

In RTBC a process p; can propose a value v to consensus
by invoking RTBC-propose(p;, inst,v), where inst is a
sequence number that uniquely identifies a RTBC instance.
Similarly, a process p; decides on a value v by invoking
RTBC-decide(p;, inst,v). In addition RTBC-init(inst)
instantiate a new instance of RTBC with id inst, i.e., for
sequence number nst.

Definition 3. An algorithm is said to be bounded if it only
uses a known bounded number of communication rounds.

Theorem 2 (Characterization of the PISTIS-CS class). Let
PISTIS-CS be the class of bounded (Def. 3) algorithms that
implements interactive consistency under Assumptions 1 and 2.
Then, PISTIS-CS algorithms also implement RTBC in our
model (described in Sec. III).

See Appx. C for a proof of this result.

Example 1 (Examples of PISTIS-CS algorithms). Because the
interactive consistency problem has been solved using different
algorithms that satisfy Def. 3, our result applies to various
existing algorithms, such as [33-36].

B. Real-Time Byzantine-Resilient Atomic Broadcast

Definition 4 (RTBAB). A real-time Byzantine-resilient atomic
broadcast (RTBAB) has the same properties as RTBRB (with
a different timeliness bound) plus an additional ordering
property (therefore, we only present the properties that differ
from RTBRB’s):

o RTBAB-Timeliness: There exists a known A, such that
if a correct process broadcasts m at time t, no correct
process delivers m after real time t + A,.

o RTBAB-Total order: Let my and my be any two mes-
sages and suppose that p; and p; are any two correct
processes that deliver mi and mo. If p; delivers my
before my, then p; delivers my before mo.

We now define the class of algorithms (called
RoundBased), through the properties listed below, that
modularly implement RTBAB properties. RoundBased
algorithms make use of a single RTBRB instance and multiple
instances of RTBC. We first constrain a RoundBased
algorithm to start an RTBRB instance within a bounded
amount of time for any broadcast call.

Property 1. If a correct process p; RTBAB-broadcasts a
message m at time t, then it also RTBRB-broadcasts m by
time t + Ag, for some bounded Ag.

We then require a RoundBased algorithm to start (or end
in case this has already been done before) an RTBC instance,
within a bounded amount of time, every time the RTBRB
instance delivers.

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 01,2021 at 08:46:36 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3056718, IEEE

Transactions on Parallel and Distributed Systems

Property 2. If a correct process RTBRB-delivers a message
m at time t, such that m’s broadcaster is also correct, then
it either RTBC-proposes or RTBC-decides m by t + Ap, for
some bounded Ap.

In addition, the next property constrains the values that can
be proposed at each RTBC instance, namely that at most one
non-_L value can be proposed at each instance.

Property 3. Given an RTBC instance inst, there exists a value
v, such that each correct process either RTBC-propose v or
L at inst.

Next, we require a RoundBased algorithm to deliver a
RTBC-decided value within a bounded amount of time (Prop-
erty 4) and to ensure that non-RTBC-decided values are re-
proposed in later RTBC rounds (Property 5).

Property 4. If a correct process RTBC-decides a message m
at time t, then it also RTBAB-delivers m by time t + Ap, for
some bounded Ay.

Property 5. A correct process p; that proposes a value v at a
given time t, using a given RTBC instance inst, and such that
this instance does not decide v, also RTBC-propose v at some
instance inst + k, where 0 < k. Moreover, p; RTBC-proposes
v at the smallest instance between inst+ 1 and inst +k where
m is proposed by some process.

Finally, we require that nodes participate in all successive
RTBC instances in a monotonic fashion.

Property 6. Correct processes RTBC-propose exactly one
value per RTBC instance; propose values in all RTBC in-
stances (i.e., for all instances inst € N); in increasing
order w.rt. the instance numbers of the RTBC instances (i.e.,
if p; proposes values at times t1 and ts using the RTBC
instances inst; and insta, respectively, and t1 < ts, then
inst; < insty); and not in parallel (i.e., if p; proposes a
value at time t using an RTBC instance inst, and that this
RTBC instance has not decided by time t' > t, then p; does
not propose any other value between t and t').

Definition 5. Let RoundBased be the class of round-based
algorithms that satisfy the properties 1, 2, 3, 4, 5, and 6.

Theorem 3 (Characterization of the PISTIS-AT class). Let
PISTIS-AT be the class of RoundBased algorithms that im-
plement the traditional Byzantine total-order broadcast under
Assumption 1. Then, PISTIS-AT algorithms also implement
RTBAB in our system (described in Sec. III).

To prove Theorem 3, it is sufficient to prove that a RTBAB-
broadcasted value m is always RTBAB-delivered within a
bounded amount of time. Because of the round-based property,
m must be RTBRB-proposed and RTBRB-decided within a
bounded amount of time. Consequently there is (within a
bounded amount of time) an RTBC instance where “enough”
correct nodes RTBC-propose m, so that m gets RTBC-decided
upon and RTBAB-delivered within a bounded amount of time.
The proof of Theorem 3 is detailed in Appx. D.

We have introduced bounds for each of the operations
executing in bounded time, namely Ay (Def. 1), A¢ (Def. 2),

Algorithm 3 Example of a PISTIS-AT algorithm @process p;

1: upon event RTBAB-init(rtbab) do

2 unordered = [|™; next = [0]"; seq = 0;

3 delivered = (); busy = False; inst = 0;

4:

5: upon event RTBAB-broadcast(p;,m) do

6 trigger RTBRB-broadcast(p;, seq,m);

7 seq++;

8:

9: upon event RTBRB-deliver(p;, num,m) do

10 if num = newt[p;] then

11: next[p;] = next[p;] + 1;

12: if m ¢ delivered then

13: unordered[p;] = unordered[p;].append({p;,m));
14 end if

15 else {wait(Ay); trigger RTBRB-deliver(pj, num,m); }
16 end if

17

18: upon event Ip; : unordered[p;] # [] A busy = False do
19 busy = True;
20 trigger RTBC-init (inst);
21: // initiate a new real-time Byzantine consensus instance
22: if unordered|leader(inst)] # [| then
23: m = unordered[leader(inst)].head();
24: else {m = 1;}
25: end if
26: trigger RTBC-propose(p;, inst, m);
27:

28: upon event RTBC-decide(p;, inst’, decided) do
29: if inst’ = inst then

30: if decided ¢ delivered A decided # L then

31: delivered = delivered U {decided};

32: trigger RTBAB-deliver(leader(inst), decided);
33: end if

34: unordered[leader(inst)].remove(decided);

35: inst++; busy = False;

36: else {wait(Ay); trigger RTBC-decide(p;, inst’, decided); }
37: end if

39: Function leader(instance) {return(instance mod n);}

Ay (Alg. 3), Ag (Prop. 1), Ap (Prop. 2), Ap (Prop. 4), and A,
(Def. 4). Those bounds are not assumed to be related to each
other. However, the bound for A, we exhibit in Theorem 3’s
proof is a combination of all the other bounds discussed above.

Example 2 (Example of a PISTIS-AT algorithm). Finally, al-
gorithm 3 provides an example of a PISTIS-AT algorithm that
implements RTBAB modularly, which we adapted from [29,
Alg.6.2, p.290] to guarantee timeliness.

VI. EVALUATION AND COMPARISON

In this section, we evaluate PISTIS’s reliability, latency, and
incurred overhead on network bandwidth.

A. PISTIS’s latency vs. related systems’ latency

We begin with a latency comparison between PISTIS and
other related works based on the worst case incurred delay.
We compute worst case delays from the bounds established
for each algorithm (a direct experimental evaluation would not
be fair, since not all previous work [9] consider probabilistic
synchronous networks). Later sections provide an experimental
comparison with RT-ByzCast [10], the system most related
to ours. We elaborate in what follows on the computation
of the worst case delays. First we refine the definition of d
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introduced in Sec. III-A. Let d,, be the maximum network
delay, and d,, be the maximum local processing time, which
includes the cryptographic operations overhead, such that d
can be decomposed as d, + d,,. Christian et al. [9] compute
the worst case delay as 10*(f+2)*(n—1)*d,, where f is the
maximum number of faulty processes, n the total number of
processes, and d,, the network delay. In this work, d,, is equal
to 10. Kozhaya et. al [10] compute the worst-case delay as
3% R xd, where R is the number of consecutive synchronous
communication rounds the same message gets disseminated
(time-triggered re-transmissions). PISTIS’s worst case delay
is proved to be 3 x T. To ensure fairness and consistency with
the latency experiments presented below, we set R = 8 and
T = 8d. However, due to PISTIS’s signature management
(see, for example, the optimizations described in Sec. VI-B),
PISTIS’s worst case delay can be alternatively computed as
(3%8xd,,)+ (2% N xd,). This is in part due to the fact that in
PISTIS nodes avoid re-verifying already verified signatures.

Our results, shown in Table I, show that PISTIS has the
best worst case latencies of all algorithms for d,, = 1ms (as
mentioned above, in the first column d,, = 10, while in the
last two columns d,, is such that 1 < d, < 10, and can be
derived from the numbers provided in the table).

[9] [10] PISTIS

N=25f=38 2,400 ms 26 ms | 25.6 ms

N =50, f =16 8,640 ms 70 ms 27 ms

N =100, f =33 | 34,650 ms | 150 ms | 30 ms
Table 1

WORST CASE LATENCIES

Two main observations can be made: (1) compared to
the other protocols, PISTIS has superior performance due
to the fact that PISTIS is event triggered, utilizes fast sig-
nature schemes, reduces the number of signatures created
and verified, sends fewer messages (which increase individual
message failures) and allows processes for fast detection of
their tardiness; and (2) PISTIS’s expected performance in
practice (see Fig. 7) is significantly better than the worst case
delay bound reported in the table.

B. Implementation Optimizations

We implemented three optimizations to improve the per-
formance of PISTIS (as described in Sec. IV-C). (1) If a
process p; knows that some process p; has already received
2f +1 echo signatures for some message m, p; stops sending
echoes related to m to p;. Every process implements this
optimization by maintaining a list, say £, that contains all the
processes from which it has heard 2 f 41 signatures for a given
message. During a broadcast, a process diffuses a message to
X processes at random among I7 \ L. Processes do the same
for deliver messages. (2) Processes do not verify signatures
that they have already received. (3) Processes skip messages
that only contain signatures that were already received.

C. Implementation Configuration and Settings

We implemented PISTIS in C++ on the Omnet++ 5.4.1 net-
work simulator [11]. In order to accurately measure PISTIS’s

communication overhead, we configure network links to have a
non-limiting 1Gbps throughput, and a communication latency
of either 1ms or Sms. We evaluated PISTIS’s performance
using two signature schemes of similar security guarantees,
and available in the OpenSSL library [37]: RSA-2048 (i.e., 256
bytes long signatures) and ECDSA with prime256v1 curves
(i.e., 71 bytes long signatures). We use broadcast messages of
sizes equal to 1B and 1KB.

We run our simulations for systems with N €
{25,49, 73,300} processes in fully connected networks, and
for several values of X, which is the number of processes
each process forwards a message m to during diffusion. We
consider the probability of losing/omitting a message sent at
any point in time to be i/10, where 0 < ¢ < 9.

D. PISTIS’s Reliability

To assess PISTIS’s reliability, we evaluate the probability
that a correct process enters the passive mode. Such probability
is a crucial measure: a process becoming passive may lead the
system to shutdown and hence to stop delivering messages.
Namely, when N = 3f + 1, a single correct process staying
passive for long-enough can, in the worst case (when f Byzan-
tine processes are not sending messages), leave 2f correct
processes, which would not be enough to gather quorums of
size 2 f+1, leading those 2 f processes to also become passive.

For a given value of NV and p, we invoke a broadcast at
one of the processes and record any non-Byzantine process
that crashed itself during broadcast. We obtain our results
by repeating each experiment 10° times, and we report the
probability that a process crashes itself as:

(num. of experiments with self-crashed processes)/10°

We study the impact of several parameters, including T,
N, X, f, and p, on PISTIS’s reliability, and determine which
values should be used to enforce an intended system reliability.

Fig. 3 shows that the system’s reliability increases with
its size and T’s value for large enough values of T/d. For
example, when T = 8d, a system with 25 (resp. 49) processes
operates with high reliability (i.e., there is a negligible prob-
ability that a process becomes passive) under message loss
rates reaching up to 40% (resp. 50%).

Fig. 4 shows that the actual number of Byzantine processes,
which varies between 0 and f (the maximum number of
tolerable Byzantine nodes), influences the system’s resiliency.
As expected, with fewer processes being Byzantine, higher
message loss rates are tolerated without any process shutdown.

Impact of the diffusion fanout. In the results presented
so far, processes forward each message to X = f + 1 other
random processes. We now study the effect of X by measuring
PISTIS’s reliability when it varies. Fig. 5 shows that increasing
X helps increase the overall system reliability. As expected
increasing the fanout (value of X) reduces the probability of
having a non-Byzantine node becoming passive.

Recovery. Fig. 6 details the probability that no Byzantine
quorum remains active after a broadcast instance when the
message loss probability increases. First, one can observe
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Figure 3. Probability of a correct process becoming passive when T = 6d
or T = 8d, and X = f + 1 (without recovery)
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Figure 6. Probability that no Byzantine quorum remains active in systems
of 49 or 52 processes, when T = 8d, X = 17, and f = 16 processes are

Byzantine.
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Figure 7. Average latency with a 1ms link latency with T = 8d and without
message losses. The dotted lines indicate RT-ByzCast’s values [10].
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Figure 5. Probability of a correct process becoming passive in a system of
49 processes using T = 8d, and where X varies (without recovery)

that the recovery mechanisms improve the resiliency of the
system. For example, with NV = 49, PISTIS can tolerate a
70% message loss rate without system-wide crashes thanks to
the recovery mechanisms, improving over the value of 50%
obtained without recovery. Second, we show that one can
further improve the system’s tolerance to message losses by
overprovisioning the system. By using three more nodes, i.e.,
52 in total, the system can tolerate f = 16 Byzantine nodes
and now tolerate up to 80% of message losses.

E. PISTIS latency and bandwidth consumption
Next, we evaluate PISTIS’s incurred bandwidth and latency.

For these experiments, we average results over 1,000 runs. We
use T = 8d, since our reliability results show it allows a very
large number of message losses to be tolerated. However, we
now run our experiments without any message losses to mea-
sure the worst case bandwidth consumption. We measure both
the protocol latency and bandwidth consumption depending
on the value of X that the processes use. We also compare

Value of X
Figure 8. Average latency with a Sms link latency. The dotted lines indicate

RT-ByzCast’s values [10].

the average latency and bandwidth consumption of PISTIS
with that of RT-ByzCast [10]. Note that RT-ByzCast [10] uses
ECDSA signatures and all-to-all communication (X = N).

Latency. Fig. 7 and 8 detail the latency for a broadcast
message to be delivered by all correct processes in systems
of size 25, 49, and 73 (i.e., where f € {8,16,24}): PISTIS
delivers with latencies within [3ms, 60ms] depending on the
network delay d and signature scheme used RSA vs. ECDSA.
The latency increases when N increases, and decreases when
X increases. We draw the following conclusions: (1) PISTIS
is slower than RT-ByzCast for X < f. For X > f PISTIS
is on a par with RT-ByzCast until some X < 3f (X < 2f
for systems with up to 400 nodes, see Table II) after which
PISTIS is faster; (2) PISTIS’s absolute improvement over RT-

Byzcast becomes more significant with increased link delay;

(3) When delivering latencies on par with or better than RT-

ByzCast, PISTIS can do so with a lower network overhead as

presented next (see Fig. 9 and 10).

1045-9219 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
Authorized licensed use limited to: TU Delft Library. Downloaded on March 01,2021 at 08:46:36 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPDS.2021.3056718, IEEE

Transactions on Parallel and Distributed Systems

?80 —— RSA,N=25
270{ —— RSA,N=49
B3 —— RSA,N=73
5501 e ECN=25
‘gso --e-- EC,N =49
2 40| T ECN=T3
c
S
£
220 et TT
2
€10
o

0

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Value of X

Figure 9. Average bandwidth consumption per node and per communication
link with a Ims link latency without message losses. The dotted lines indicate
RT-ByzCast’s values [10].
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Figure 10. Average bandwidth consumption per node and per communication
link with a Sms link latency without message losses. The dotted lines indicate
RT-ByzCast’s values [10].

Network bandwidth consumption. We now measure PIS-
TIS’s bandwidth overhead per broadcast invocation, using
RSA and ECDSA signatures. Fig. 9 and 10 present the
bandwidth consumption for 1B payloads with 1ms and 5ms
link delay, respectively. One can observe that with X = f 41
and when using ECDSA signatures, PISTIS’s bandwidth con-
sumption is 3.2 times lower than that of RT-ByzCast. We
also observe that when using ECDSA signatures there is a
fanout between 2f + 1 and 3f + 1 such that below this
fanout PISTIS’s average bandwidth consumption is lower than
RT-ByzCast’s, while past that threshold, PISTIS’s average
bandwidth consumption becomes greater than RT-ByzCast’s.
This is partly due to the fact that PISTIS being event-based
sometimes consumes more bandwidth. However, we see in
those figures that PISTIS provides a useful trade-off between
latency and bandwidth consumption. Fig. 11 shows as well
that the bandwidth consumption increases reasonably when
the message payload is increased to 1KB. Besides bandwidth,
Fig. 12 (Appx. E) shows that PISITS also sends less message
than RT-ByzCast.

Scalability with the system size. We also evaluated how
PISTIS’ latency and bandwidth consumption evolve with
larger system sizes, namely up to 1000 nodes for X > f + 1
and a 5ms link latency. Table II summarizes the results
obtained for X = f+ 1, X = 2f +1 and X = N.
Our results show that PISTIS outperforms RT-ByzCast and
provides latencies suitable for (1) fast automatic interactions
(< 20ms) for systems with up to 200 nodes, (2) power
systems and substation automation applications (< 100ms)
for systems with up to 1000 nodes, and (3) slow speed auto-
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Figure 11. Average bandwidth consumption per node and per communication
link with a Ims link latency using either 1B or 1KB messages, without
message losses

N Bdw, | Bdw, | Bdw, | Bdw || Lat, Lat, | Lat, Lat
Xmin Xmid Xmaz [10] X’min Xmid Xmaz [10]
25 0.6 1.2 1.7 1.4 21.1 11.0 | 11.1 | 209
49 1.0 2.2 3.1 2.6 223 | 124 | 12.0 | 22.0
73 1.5 32 4.6 3.9 23.6 | 13.1 | 132 | 23.1
200 | 3.8 8.4 125 | 104 || 31.5 | 20.7 | 19.7 | 293
300 | 5.7 125 | 18.6 | 156 || 41.2 | 31.2 | 274 | 38.0
400 | 7.6 167 | 25.0 | 209 || 59.7 | 43.0 | 32.0 | 41.2
500 | 9.4 20.8 | 31.1 | 26.0 || 85.1 | 63.0 | 40.0 | 51.6
1000| 18.7 | 414 | 622 | 52 296.3 | 213.1| 98.5 | 116.2
Table 1I

PISTIS BANDWIDTH CONSUMPTION (MBPS) AND BROADCAST DURATION
(MS) WITH LARGER SYSTEMS (f = |N/3]), WHERE X i, = f + 1,
Xmid =2f +1AND Xppae = N

control functions (< 500ms), continuous control applications
(< 1s) and operator commands of SCADA applications (< 2s)
for systems with 1000 nodes or more.

VII. CONCLUSION

In this paper, we studied how to build large-scale distributed
protocols that tolerate network faults and attacks while pro-
viding real-time communication. We introduced a suite of
proven correct algorithms, starting from a baseline real-time
Byzantine reliable broadcast algorithm, called PISTIS, all the
way up to real-time Byzantine atomic broadcast and consensus
algorithms. PISTIS is empirically shown to be robust, scalable,
and capable of meeting timing deadlines of real CPS applica-
tions. PISTIS withstands message loss (and delay) rates up to
50% in systems with 49 nodes and provides bounded delivery
latencies in the order of a few milliseconds. PISTIS improves
over the state-of-the-art in scalability and latency through its
event-triggered nature, gossip-based communications, and fast
signature verifications. Our work simplifies the construction of
powerful distributed and decentralized monitoring and control
applications of various CPS domains, including state-machine
replication for fault and intrusion tolerance.
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