TU Delft

Exploring Bandit Algorithms in User-Interactive Systems
Influence of Delay on Contextual Multi-Armed Bandits

Dragos-Cristian Arsene’
Supervisor(s): Julia Olkhovskaya'!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Dragos-Cristian Arsene
Final project course: CSE3000 Research Project
Thesis committee: Julia Olkhovskaya, Ranga Rao Venkatesha Prasad

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Delay is a frequently encountered phenomenon in
Multi-armed bandit problems that affects the accu-
racy of choosing the optimal arm. One example of
this phenomenon is online shopping, where there is
a delay between a user being recommended a prod-
uct and placing the order. This study investigates
the influence of delay in contextual multi-armed
bandit settings, focusing on the performance of the
OTFLinUCB algorithm, an adaptation of the Lin-
UCB algorithm designed to handle delayed feed-
back. The cumulative regret associated with vari-
ous bandit algorithms, including UCB, Exp3, Lin-
UCB, and OTFLinUCB, is examined under dif-
ferent delayed environments. Experiments con-
ducted using artificial data generated to simulate
real-world scenarios reveal that while delay cannot
be entirely mitigated, its impact can be minimized
through the strategic selection of hyperparameters,
particularly the time window size for OTFLinUCB.
The findings indicate that OTFLinUCB’s perfor-
mance is highly dependent on the chosen window
size, which balances the trade-off between estima-
tor accuracy and memory consumption. A method
for determining the optimal window size is pro-
posed by introducing an intermediary distribution-
agnostic term, conversion rate. Empirical evi-
dence suggests that maintaining a conversion rate
of around 70% achieves a balance between mini-
mizing cumulative regret and optimizing memory
usage. As a result, this research contributes to the
understanding of the delays’ effect on bandit algo-
rithms in contextual environments and offers prac-
tical guidelines for tuning OTFLinUCB’s time win-
dow.

1 Introduction

This section provides some background for the subject at
hand in Subsection 1.2 and then goes on to present some rel-
evant work that can be studied to get a broader knowledge of
the subject.

1.1 Background

The Multi-armed bandit(MAB) is a problem in which an
agent is tasked with choosing between different actions(also
called arms) over discrete time steps, each action having
its reward distribution. The objective is for the agent to
maximize the cumulative reward, or minimize the cumula-
tive regret. In other words, it is a decision-making problem
concerned with finding a balance between the exploration-
exploitation trade-off.

It was first formulated in an article published in 1933 in
Biometrika, getting its current name in honour of the One-
armed bandit slot machine. While the problem was first pro-
posed to improve how clinical trials are conducted, recently,
with the advent of the Internet and the need for good rec-
ommendation systems, the problem has seen a resurgence in

published research papers. While there is a theoretical bound
for the optimal regret, no algorithm performs best in all situ-
ations.

MAB is formulated generically to simplify analyzing the
problem from a theoretical angle, but multiple versions exist
to adapt to real-life use cases. In practice, rewards are often
not given instantaneously for actions, introducing a delay in
the feedback that the algorithm receives and processes to im-
prove its arm choice accuracy. This research paper proposes
to answer the main question of how delay affects cumulative
regret in contextual environments. Moreover, it also exam-
ines how the hyper-parameters of these algorithms influence
the exploration-exploitation trade-off and what steps need to
be taken to find a balance between these two factors.

To answer the research questions, this paper will explore
four algorithms: UCB [1], Exp3 [2], LinUCB [3], and OT-
FLinUCB [4]. A more in-depth description of the problem
and the metrics used is given in the Formal Problem Descrip-
tion section. The Methodology section explains how artifi-
cial data is generated and what frameworks are used. The
setup for running the experiments and the results of these ex-
periments are presented in the Experimental Setup and Re-
sults section. Then, the Discussion section interprets these
results and proposes a method for choosing suitable hyper-
parameters for OTFLinUCB. Finally, the Conclusion section
synthesizes all findings, answers the research questions and
discusses possible improvements. The pseudocodes of the
discussed algorithms are also provided in the Appendix sec-
tion.

1.2 Related work

The subject of delay has been studied in numerous settings,
with previous works laying the groundwork for representing
delay in a form that can be better studied and integrated into
existing or novel algorithms. One of the earliest ones is [5],
which compares UCB with other popular algorithms in a set-
ting where rewards are given with a 10, 30, or 60-minute de-
lay. That was not robust enough and does not mimic the true
behaviour of, for example, online recommendation systems.
In recommendation systems, the concept of conversion intro-
duced by [6] and [7] provided a way to analyze how rewards
not being observed at all can be discarded. This conversion
concept was then adapted to Multi-armed bandit problems as
the censored feedback variable, that can be adapted for delay.
This has led to different ways of handling unknown delay,
such as skipping rounds with large delay, [8] or replacing ob-
served rewards with surrogate rewards [9]. Moreover, there
are conflicting findings on whether the impact of delay in-
creases with the time horizon: [10] says it does, while [11]
concludes it does not.

2 Formal problem description

In this section, the Multi-armed Bandit problem is given a
more formal description in Subsection 2.1 and then, in Sub-
section 2.2, explains what metrics will be used to assess the
accuracy of the studied algorithms.

2.1 Problem overview

While the slot machine example given before is intuitive
enough for an introduction to the problem, a more rigorous
formulation has to be done to analyze it properly. One agent
has the choice between K actions. Each action has its reward
distribution and mean reward hidden from the player. The
player chooses an action at each time step and plays for T
discrete time steps, where T is a time horizon not known in
advance.
The problem can be divided into two settings:

* non-contextual setting: actions sample rewards from
probability distributions or functions. Estimating each
action’s mean is enough to choose the best action.

 contextual setting: actions provide a different context
vector with each time step as input for a fixed reward
function. In the scope of this paper, only linear com-
binations are used as a reward function. Estimating the
parameters of the reward function is enough to estimate
each action’s reward

2.2 Metrics used

Two metrics are used: cumulative reward and cumulative
regret. These are not used by the algorithms at runtime but
are calculated by the evaluators responsible for running them
and present a useful tool for comparing the performance of
different algorithms. The cumulative reward at time step ¢
is the sum of all rewards up to that point. The objective of
the player is to maximize reward. More interest presents the
cumulative regret metric, which is preferred over the reward
because it provides a more objective way of comparing
different arm choices.

In non-contextual environments, regret is expressed as:

Ry = 1" — pa, (D

, where p* is the highest true mean reward among all arms
and 14, is the true mean reward of the chosen arm.
In a contextual setting, regret is defined as:

Ry =1} —1q, 2)

, where r} is the highest reward among all arms at time t and
T4, 1S the reward given by the chosen arm at time t.

The cumulative regret up to time 7', denoted as CRyp, is
given by:

T
CRy =Y R 3)
t=1

There are two important observations to make when ana-
lyzing regret:

* Regret measures an algorithm’s accuracy in estimating
the best arm (the arm with the highest true mean in non-
contextual settings, or the highest reward in contextual
settings) at each time step. It quantifies how far the al-
gorithm’s choice is from the optimal choice and provides
a better sense of scale than reward.

* Visualising cumulative regret reveals insights into the
learning process of an algorithm. Analyzing the growth
rate of cumulative regret is an effective way to compare
the accuracy of an algorithm’s estimators at different
time steps. An algorithm that reaches convergence or
near-convergence translates to a good enough accuracy
for its estimators to effectively choose the best arm fre-
quently(still not always because of exploration).

3 Methodology

To simulate a wide range of use cases, the data used for run-
ning the algorithms is artificial and generated so it simulates
real data. As it does not depend on time, it is generated and
stored for later use at the start of a run.

Here is how all variables are sampled:

* @ is the vector containing the parameters of the linear
reward function. It is set at the beginning of a run and
has to be estimated by LinUCB and OTFLinUCB.

¢ delay is given by:

dot = Xo(t), Xa~ D, support(D,) =Ny (4)

* context is given by:

Ca,t = Xa(t)a Xa ~ N(,aay Z)v

5
a3 <1, S=A-T ©

* observed reward is given by:

/ra,t == <Ca,t7 0> + €, €t ~ N(Ov 01) (6)

SMPyBandits [12] is a well-established Python module for
MAB problems. It provides extensive analysis tools and con-
figuration options for arms and allows parallelization, which
helps with averaging a suitable number of repetitions, thus
eliminating statistical anomalies. While UCB and Exp3 were
already implemented in the module mentioned above, the
other two algorithms were implemented from the ground up
and integrated into the existing code base [13].

Each algorithm is run for 50 repetitions and the results are
averaged and plotted. To illustrate the variability and provide
a 95% confidence interval, the mean cumulative regret with
shaded regions representing two standard deviations above
and below the mean is plotted. These results are studied and
compared, focusing on how delay impacts cumulative regret.
This approach provides an effective strategy for tuning the
hyper-parameters of the OTFLinUCB algorithm.

4 Experimental Setup and Results

This section focuses on the setup used to run experiments and
the results used as a reference point for Section 5. It first ex-
plains how the discussed algorithms are adapted for being run
in the same environment in Subsection 4.1, after which Sub-
section 4.2 provides an insight into the hyperparameters that
change the behaviour of said algorithms. Then, Subsection
4.3 explains how the delay is generated and how the algo-
rithms handle it. Finally, plots with different environments
and hyperparameters are provided in Subsection 4.4.

4.1 Discussed algorithms

UCB and Exp3 are designed for non-contextual environ-
ments, LinUCB is the state-of-the-art algorithm for contex-
tual environments, and OTFLinUCB is an adaptation of Lin-
UCB that takes into account delay. These algorithms perform
three operations at each time step: choose an arm, observe
the arm’s reward, and update the estimators based on the ob-
served reward. In the case of delayed feedback, the first and
second steps do not happen concurrently.

Since only OTFLinUCB can handle delay, the evaluator
was modified such that all other discussed algorithms observe
rewards immediately. This is done to assess the effect of de-
lay on cumulative regret and does not exhibit the behaviour of
UCB, Exp3, and LinUCB in a true delayed-feedback setting.
This decision results in two loose bounds that can be used to
assess the effects of delay on cumulative regret:

* Upper bound: UCB and Exp3 cannot estimate the re-
ward function parameters, both exhibiting similarly poor
accuracy when choosing an arm

e Lower bound: LinUCB can estimate the reward function
parameters, while not having to handle the uncertainty
introduced by the delay. As such, it should perform at
least as well as OTFLinUCB

The amplitude of delay and the window size of OT-
FLinUCB influence how close OTFLinUCB gets to either its
lower or upper cumulative regret bound.

4.2 Hyperparameters

Hyperparameters control how the algorithms behave and are
set at the beginning of a run. Here are the most relevant:

e « and ~: exploration parameters that control the
exploration-exploitation trade-off

e m: time window of OTFLinUCB. If a reward is not ob-
served after m time steps, it is ignored

e X\ — regularizer: used in LinUCB and OTFLinUCB,
it prevents overfitting and ensures numerical stability in
the case of matrix inversion

While all hyperparameters can affect an algorithm’s accu-
racy, «, v, and A — regularizer have tried and tested values
suitable for most settings: A\ = 1 and v = « = 0.01. Differ-
ent values were tried for these hyper-parameters, but the de-
fault values always performed better. As such, the paper will
use them from now on. The focus shifts towards the hyper-
parameter that significantly influences cumulative regret and
is environment-dependent, m. One last thing to note is that,
in the original implementation of OTFLinUCB, « is not set
at the beginning of a run, but updated dynamically using the
contexts saved in the time window, as so:

=

t—1

s =2f(t,0) + Y N Aslly, -1 ®)

s=t—m

Regardless of the values provided for A or d, f(¢,d) and
consequently o 5 become excessively large, causing explo-
ration to dominate over exploitation. That results in a signif-
icant increase in cumulative regret, so the constant value of
0.01 was used instead of formulas 7 and 8.

4.3 Delays

As noted by [14], delays often have heavy tails, meaning that
using a small window size may result in too many rewards
being ignored. Furthermore, [15] observes that another com-
plicating factor is the unobserved negative feedback (i.e., the
delay can be infinite, in which case rewards are never ob-
served, but the algorithm cannot determine if this is the case).
This leads to the conclusion that a time window is essential
to prevent an algorithm from storing contexts that will never
convert to a reward. Additionally, the time window should be
large enough to counteract the heavy right tails often found in
the probability distributions of delays in practice.

For each time step and each action, a delay, context, and
reward are simultaneously drawn using equations 4, 5, and 6.
Then, they are added to a buffer that reveals contexts imme-
diately and rewards to OTFLinUCB with delay. This paper
only studies reward-independent delays. According to [16],
reward-dependent delays impact the confidence bounds of al-
gorithms, but this case is outside the scope of this study.

The environment reveals a reward and its associated delay,
but not its associated context, using censored feedback. Cen-
sored feedback improves exploration and accuracy, as noted
by [17]. This approach is implemented in OTFLinUCB us-
ing a window for storing past actions’ contexts, which can
thus link rewards with the context that generated them. A
naive implementation would store all past contexts at each
time step, which is inefficient. Instead, a parameter limits
how far in the past a reward can be observed before being
discarded. A time window of suitable size maintains regret
minimization while improving memory usage.

4.4 Experiments

The following plots show each algorithm’s performance, fo-
cusing on cumulative regret and the effects of various delay
models and window sizes. These visualizations highlight the
effect of outside factors and hyper-parameters on the regret of
OTFLinUCB:

Cumulative regrets, averaged over 50 repetitions. Delay of each arm:

Environment #1
3500 1. PoissonDelay(mean=500)
w=o== UCBWithDelay

Exp3(y:0.01)
LinUCB(a:0.01)
OTFLINUCB(ar: 0.01, m = 500)
2500 amgem OTFLINUCB(ar:0.01, m —250)

2. PoissonDelay(mean=400)

w
1<}
S
IS}

3. PoissonDelay(mean=300)

4. PoissonDelay(mean=600)

/

P

[N
S
S
S

1500

Average regret, +2 standard deviation

=
u 15
o S
3 S

0 2000 4000 6000 8000 10000
Time steps t— 1... T, horizon T— 10000

Figure 1: One OTFLinUCB approaching the higher bound and one
approaching the lower bound

In fig. 1, it can be observed how the OTFLinUCB algo-
rithm with two different time window sizes can have vastly
differing cumulative regrets. While OTFLinUCB(m = 250) is
not able to observe enough rewards to update its estimators
successfully and its accuracy is comparable to that of UCB
and Exp3, OTFLinUCB(m = 500) does so and its accuracy
gets much closer to that of LinUCB.

Cumulative regrets, averaged over 50 repetitions Delay of each arm:
Environment #1
1. PoissonDelay(mean=300)

3500 cg= LinUCB(a:0.01)
OTFLINUCB(a:0.01, m — 250)
3000 OTFLINUCB(a: 0.01, m = 350)

2. PoissonDelay(mean=300)

3. PoissonDelay(mean=300)

4. PoissonDelay(mean=300)
2500

2000

1500

Average regret, |2 standard deviation

=
w o
=3 S
S S

0 2000 4000 6000 8000 10000
Time steps ¢ 1.7, horizon 7' 10000

Figure 2: Poisson delay

Fig. 2 demonstrates how two seemingly similar time win-
dow sizes (250 and 350) lead to significantly different cumu-
lative regrets. Most values are concentrated around the mean
for Poisson delays with a large A. Thus, a time window size
slightly smaller than the mean results in most rewards being
ignored, while one marginally larger than the mean ensures
most rewards are observed.

Cumulative regrets, averaged over 50 repetitions Delay of each arm:
Environment #1
250 1. GeometricDelay(mean=400)

=== |inUCB(a:0.01)
OTFLINUCB(a: 0.01, m = 700)
OTFLINUCB(a: 0.01, m = 300)

2. GeometricDelay(mean=500)

3. GeometricDelay(mean=600)

N
=3
S

4. GeometricDelay(mean=700)

-
1%
o

—
o
S

Average regret, 2 standard deviation

%
=}

0 2000 4000 6000 8000 10000
Time steps (=1...7, horizon T=10000

Figure 3: Geometric delays with lower means

Cumulative regrets, averaged over 50 repetitions Delay of each arm:
Environment #1
350 1. GeometricDelay(mean=2000)

==o= LinUCB(a:0.01)
OTFLIinUCB(a: 0.01, m = 700)
OTFLINUCB(a:0.01, m — 300)

2. GeometricDelay(mean=1500)
3. GeometricDelay(mean=1200)

250 4. GeometricDelay(mean=1700)

Average regret, 12 standard deviation

0 2000 4000 6000 8000 10000
Time steps t = 1... T, horizon T= 10000

Figure 4: Geometric delays with higher means

Figures 3 and 4 reveal how a sudden increase in the mean
of Geometric distributions does not translate to a significant
increase in the cumulative regret. The reason is that Geomet-
ric delays are heavily skewed to the right, so higher means do
not significantly increase the number of ignored rewards.

Cumulative regrets, averaged over 50 repetitions Delay of each arm:
Environment #1
1. UniformDelay(min=0, max=1000
@=g== LinUCB(a:0.01)

OTFLINUCB(a:0.01, m 500) 2. UniformDelay(min=0, max=100C

IS
o
S

3. UniformDelay(min=0, max=100C

c
2
2350
g 4. UniformDelay(min=0, max=1000
o 300
5
2
5250
g
7200
®
@150
o
g
£100
g
z

50

0 2000 4000 6000 8000 10000
Time steps ¢~ 1...7, horizon 7" 10000
Figure 5: Uniform delays
Cumulative regrets, averaged over 50 repetitions. Delay of each arm:
Environment #1
1. GeometricDelay(mean=500)
w=g=s LiNUCB(a:0.01)

- OTFLinUCB((Y 001, m— 500) 2. GeometricDelay(mean=500)
% 200 3. GeometricDelay(mean=500)
g 4. GeometricDelay(mean=500)
°
S 150
2
=
3
3
100
g
o
g
§ 50
g
<

0 2000 4000 6000 8000 10000
Time steps ¢ =1... 7, horizon 7'=10000

Figure 6: Geometric delays

Figures 5 and 6 show how the type of probability distribu-
tion modelling rewards influences cumulative regret. While
both plots show probability distributions with equal means,
the Geometric distribution concentrates more values to the
left, which results in an increased number of observed de-

lays, and thus decreased cumulative regret compared to the
Uniform distribution.

5 Discussion

In this section, a parameter will be introduced in Subsection
5.1 that can then be used to reliably calculate a suitable time
window size, as seen in Subsection 5.2.

5.1 Conversion rate

In Subsection 4.4, it has been shown how the probability dis-
tribution modelling delay and the window size m influence
regret. There are two possible reasons for why cumulative
regret increases when delay is introduced:

* A reward is observed: estimator updates in OTFLinUCB
happen later than in LinUCB, particularly affecting the
arm choice accuracy of earlier time steps(illustrated
by the steep growth rate of cumulative regret of OT-
FLinUCB at the beginning of the round in figures 3, 4, 6,
and 5, regardless of the time window size). This is only
influenced by the underlying probability distribution of
delay.

* A reward is not observed: rewards delayed beyond m
are not considered in OTFLinUCB, leading to estima-
tors being updated less often throughout the round. This
is influenced by the value of m in relation to the proba-
bility distribution of delay. In Figure 4, the gap between
the cumulative regrets of OTFLinUCB algorithms with
different time window sizes widens as the time horizon
increases, which confirms the observation made in [10]
that the impact of delay increases with the time horizon.

A probability distribution modelling delay is predeter-
mined and cannot be altered to enhance the algorithm’s ac-
curacy. The only adjustable parameter is the window size
m. The challenge lies in determining an optimal m that ef-
fectively balances a high conversion rate with low memory
usage. Thus, what can be controlled by the algorithm is the
number of observed rewards relative to the total number of
rewards.

To make the comparison of window size delay distribution-
agnostic, the conversion rate per arm term is introduced:

number of observed rewards for arm a

a = 9
P number of total rewards for arm a ©)

For a big enough time horizon, (9) can also be expressed
as:

pa = Fx, (m) =Pr(X, <m) (10)

where X, represents the delay distribution for an arm a.
Even with an infinite m, greater regret is observed for OT-
FLinUCB than for LinUCB due to delayed estimator updates.
Consequently, LinUCB is not suitable as a baseline for com-
paring different values of m in OTFLinUCB. Instead, a ver-
sion of OTFLinUCB designed to achieve a 100% p, repre-
sents the baseline. Discrete Uniform distributions will model
delay because they are bounded to the right and there is a
linear relation between window size and conversion rate.

Cumulative regrets, averaged over 100 repetitions
Environment #1

w
=3
IS}

=== LinUCB(«a:0.01)
OTFLINUCB(a:0.01, m — 100)
OTFLIiNUCB(«a:0.01, 7 =90)
OTFLIiNUCB(a:0.01, m — 80)

N
a
o

£200 OTFLINUCB(a::0.01, m =10)
H OTFLINUCB(a:: 0.01, m =60)
2150 OTFLINUCB(a:0.01, m — 50)
g OTFLINUCB(a::0.01, 1 =40)
100 —— OTFLINUCB(a:0.01, m —30)
== OTFLINUCB(a:0.01, m =20)

== OTFLINUCB(a:0.01, m — 10)

53
o

=== OTFLINUCB(c:0.01, m—=0)

0 200 400 600 800 1000
Time steps t = 1... T, horizon 7= 1000

Figure 7: Ujp, 100) With corresponding conversion rates from 0% to
100%

Table 1: Conversion rates and their corresponding regret(Part 1)

p 100% 90 % 80% 70 % 60 %
CR | 35.836 36.057 36.29 37.472 43.264

Table 2: Conversion rates and their corresponding regret(Part 2)

p 50% 40% 30% 20% 10%
CR | 45.904 51.06 55.091 66.128 105.59

Figure 7 and tables 1 and 2 show how cumulative regret in-
creases significantly when p, falls below 70%, and the thresh-
old is around 20%-30%. Thus, the optimal m should ensure
no more than 70% of rewards are ignored for any arm.

5.2 Time window size(m)
Using (10), m can be calculated using the quantile function:
m = Q(pa) = Fx, (pa) (1D

With equation 11, m can be calculated for various distribu-
tions and conversion rates:

Table 3: Values of m for different Conversion Rates and Discrete
Distributions (Part 1)

Conversion Rate
Probability Distribution of Delay | 100% | 90% 80% 70% 60%
Poisson(A = 500) 00 529 519 512 506
Poisson(A = 1000) 00 1041 1027 | 1016 | 1008
Geometric(p = 0.002) 00 1151 | 804 602 458
Geometric(p = 0.001) 0 2302 | 1609 | 1204 | 916
NegBin(r = 5,p = 0.01) 00 793 666 584 519
Uniform(0, 1000) 1000 900 800 700 600

Table 4: Values of m for different Conversion Rates and Discrete
Distributions (Part 2)

Conversion Rate

Probability Distribution of Delay | 50% 40% 30% 20% 10%
Poisson(\ = 500) 500 494 488 481 471
Poisson(\ = 1000) 1000 | 992 983 973 960
Geometric(p = 0.002) 347 256 179 112 53
Geometric(p = 0.001) 693 511 357 224 106
NegBin(r = 5,p = 0.01) 462 410 359 305 240
Uniform(0, 1000) 500 400 300 200 100

Tables 3 and 4 show the corresponding time window sizes
for different conversion rates and some example probability
distributions. A conversion rate can result in vastly different
time window sizes, depending on the shape of the probabil-
ity distribution modelling delay. Since these distributions can
differ for each arm, it is necessary to determine a time win-
dow size which ensures all arms’ rewards are observed an
adequate number of times.

Setting the global window size as the maximum of all
arms’ window sizes is a simple method to ensure that none of
the arms have conversion rates lower than 70%. While delays
are independent of rewards, a potentially interesting approach
would be to dynamically adjust the time window size based
on the rewards given by the arms and their delays. Specifi-
cally, an arm that consistently gives low rewards should not
influence the time window size as much as one that gives high
rewards.

6 Responsible Research

This section covers the ethical considerations of this study.
Subsection 6.1 focuses on the exclusive use of synthetic data
to avoid privacy concerns. Subsection 6.2 discusses the need
for algorithm validation in clinical trials to ensure patient
safety. Finally, Subsection 6.3 addresses the importance of
bias mitigation in user-specific content recommendations.

6.1 Data sourcing

This study exclusively employs artificial data generated to
evaluate the OTFLinUCB algorithm. No real-world data, par-
ticularly personal or sensitive information, was utilized at any
stage. Consequently, no risks are associated with privacy in-
fringement or ethical concerns related to data misuse. Syn-
thetic datasets ensure that the findings are generalizable and
that strict adherence to ethical research standards is main-
tained.

6.2 Impact on Clinical Trials

Using OTFLinUCB in clinical trials introduces important eth-
ical considerations. The proposed method of calculating pa-
rameters for this algorithm can directly influence decision-
making in this particular setting, thus influencing patient
well-being. It is essential to thoroughly validate the algo-
rithm’s accuracy to minimize risks and ensure reliable trial
outcomes.

6.3 Bias in Content Recommendation

The algorithms’ use of user-specific data when recommend-
ing content to users can reinforce already-existing biases.
While this paper focuses on a method for calculating an es-
sential hyperparameter of OTFLinUCB in a purely theoreti-
cal setting, it is important to include bias mitigation strategies
when adapting this algorithm for content recommendation.

7 Conclusion

Taking OTFLinUCB as a starting point, this paper studies the
effect of delay on cumulative regret and what strategies can be
employed to minimize this effect. It compares the algorithm

mentioned above with LinUCB, Exp3 and UCB and then fi-
nally reasons how the probability distributions that model de-
lays can be used to estimate an appropriate window size that
balances cumulative regret minimisation with memory usage
minimisation.

Moreover, it introduces the metric p that can be used to
calculate the window size and provides empirical evidence
to support its use. Results presented in this paper suggest
that choosing a conversion rate of 70% does not translate to a
significant increase in cumulative regret compared to a con-
version rate equal to or close to 100%, while also decreasing
memory use. Using the quantile function of the probability
distribution of delay, the window size can be directly calcu-
lated instead of estimated by trial and error.

Future work and considerations

* This paper assumes the probability distributions used to
model delay are accurate. If that assumption is incorrect,
window size calculation is also inaccurate and that can
result in an unexpected increase of cumulative regret. It
would be valuable to see how the uncertainty introduced
by delay distribution estimation can be considered when
calculating the time window size. Using real data could
potentially provide new insights in this regard.

* An implementation decision was made to use a fixed
a for estimating rewards instead of the more compli-
cated formula from the standard implementation of OT-
FLinUCB. Because equation 8 depends on the window
size, it is unclear how this design choice impacts window
size calculation when the original calculation method for
o is used instead of the alternative default value of 0.01.

References

[1] T. Lattimore and C. Szepesvari, “Bandit algorithms,”
in Cambridge University Press, 2020, pp. 102-116.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire, “The nonstochastic multiarmed bandit prob-
lem,” SIAM Journal on Computing, vol. 32, no. 1,
pp. 48-77, 2002. por: 10.1137/S0097539701398375.

[3] W.Chu, L. Li, L. Reyzin, and R. Schapire, “Contextual
bandits with linear payoff functions,” in Proceedings
of the Fourteenth International Conference on Artifi-
cial Intelligence and Statistics, JIMLR Workshop and
Conference Proceedings, 2011, pp. 208-214.

[4] C. Vernade, A. Carpentier, T. Lattimore, G. Zappella,
B. Ermis, and M. Brueckner, “Linear bandits with
stochastic delayed feedback,” in International Confer-
ence on Machine Learning, PMLR, 2020, pp. 9712—
9721.

[5] O. Chapelle and L. Li, “An empirical evaluation of
thompson sampling,” in Advances in Neural Informa-
tion Processing Systems, J. Shawe-Taylor, R. Zemel, P.
Bartlett, F. Pereira, and K. Weinberger, Eds., vol. 24,
Curran Associates, Inc., 2011. [Online]. Available:
https://proceedings.neurips.cc/paper_files/paper/2011/
file/e53a0a2978¢c28872a4505bdb5 1db06dc-Paper.pdf.

https://doi.org/10.1137/S0097539701398375
https://proceedings.neurips.cc/paper_files/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/e53a0a2978c28872a4505bdb51db06dc-Paper.pdf

(6]

(7]

(8]

(9]

[10]

[11]

[12]

X. Shao and L. Li, “Data-driven multi-touch attri-
bution models,” in Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, ser. KDD ’11, San Diego,
California, USA: Association for Computing Machin-
ery, 2011, pp. 258-264, 1SBN: 9781450308137. DOLI:
10.1145/2020408.2020453. [Online]. Available: https:
//doi.org/10.1145/2020408.2020453.

B. Dalessandro, C. Perlich, O. Stitelman, and F.
Provost, “Causally motivated attribution for online ad-
vertising,” in Proceedings of the Sixth International
Workshop on Data Mining for Online Advertising and
Internet Economy, ser. ADKDD ’12, Beijing, China:
Association for Computing Machinery, 2012, 1SBN:
9781450315456. po1: 10.1145/2351356.2351363.
[Online]. Available: https://doi.org/10.1145/2351356.
2351363.

A. Gyorgy and P. Joulani, “Adapting to delays and data
in adversarial multi-armed bandits,” in Proceedings of
the 38th International Conference on Machine Learn-
ing, M. Meila and T. Zhang, Eds., ser. Proceedings of
Machine Learning Research, vol. 139, PMLR, 18-24
Jul 2021, pp. 3988-3997. [Online]. Available: https:
/Iproceedings.mlr.press/v139/gyorgy21a.html.

B. Han and C. Arndt, “Budget allocation as a multi-
agent system of contextual & continuous bandits,”
in Proceedings of the 27th ACM SIGKDD Con-
ference on Knowledge Discovery & Data Mining,
ser. KDD °21, Virtual Event, Singapore: Associa-
tion for Computing Machinery, 2021, pp. 2937-2945,
ISBN: 9781450383325. por: 10 . 1145 / 3447548 .
3467124. [Online]. Available: https://doi.org/10.1145/
3447548.3467124.

B. Howson, C. Pike-Burke, and S. Filippi, “Delayed
feedback in generalised linear bandits revisited,” in
Proceedings of The 26th International Conference on
Artificial Intelligence and Statistics, F. Ruiz, J. Dy,
and J.-W. van de Meent, Eds., ser. Proceedings of Ma-
chine Learning Research, vol. 206, PMLR, 25-27 Apr
2023, pp. 6095-6119. [Online]. Available: https://
proceedings.mlr.press/v206/howson23b.html.

P. Joulani, A. Gyorgy, and C. Szepesvari, “Online
learning under delayed feedback,” in Proceedings of
the 30th International Conference on Machine Learn-
ing, S. Dasgupta and D. McAllester, Eds., ser. Proceed-
ings of Machine Learning Research, vol. 28, Atlanta,
Georgia, USA: PMLR, 17-19 Jun 2013, pp. 1453—
1461. [Online]. Available: https://proceedings . mlr.
press/v28/joulanil3.html.

L. Besson, SMPyBandits: an Open-Source Research
Framework for Single and Multi-Players Multi-Arms
Bandits (MAB) Algorithms in Python, Online at:
GitHub . com / SMPyBandits / SMPyBandits, Code at
https://github.com/SMPyBandits/SMPyBandits/, doc-
umentation at https://smpybandits.github.io/, 2018.
[Online]. Available: https://github.com/SMPyBandits/
SMPyBandits/.

[13]

(14]

[15]

(16]

(17]

A

(H]

D. Arsene, C. M. Boon, M. Herrebout, W. Hu,
and R. Oweczarski, Exploring Bandit Algorithms in
User-Interactive Systems, Online at: GitHub . com /
thatCbean / SMPyBandits / tree / dragos - delayed -
feedback, 2024. [Online]. Available: https://github.
com/thatCbean/SMPyBandits/tree/dragos - delayed -
feedback.

O. Chapelle, “Modeling delayed feedback in display
advertising,” in Proceedings of the 20th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’ 14, New York, New York,
USA: Association for Computing Machinery, 2014,
pp- 1097-1105, 1SBN: 9781450329569. DoI: 10.1145/
2623330.2623634. [Online]. Available: https://doi.org/
10.1145/2623330.2623634.

Z. Wang, C. Carrion, X. Lin, F. Ji, Y. Bao, and W.
Yan, “Adaptive experimentation with delayed binary
feedback,” in Proceedings of the ACM Web Confer-
ence 2022, ser. WWW ’22, ;conf-loc;, jcity, Virtual
Event, Lyonj/city;, jcountry;France;j/country,, j/conf-
loc;: Association for Computing Machinery, 2022,
pp. 2247-2255, 1SBN: 9781450390965. DOI: 10.1145/
3485447.3512097. [Online]. Available: https://doi.org/
10.1145/3485447.3512097.

T. Lancewicki, S. Segal, T. Koren, and Y. Mansour,
“Stochastic multi-armed bandits with unrestricted de-
lay distributions,” in Proceedings of the 38th Interna-
tional Conference on Machine Learning, M. Meila and
T. Zhang, Eds., ser. Proceedings of Machine Learning
Research, vol. 139, PMLR, 18-24 Jul 2021, pp. 5969—
5978. [Online]. Available: https://proceedings. mlr.
press/v139/lancewicki21a.html.

A. Verma, Z. Dai, and B. K. H. Low, “Bayesian opti-
mization under stochastic delayed feedback,” in Pro-
ceedings of the 39th International Conference on Ma-
chine Learning, K. Chaudhuri, S. Jegelka, L. Song, C.
Szepesvari, G. Niu, and S. Sabato, Eds., ser. Proceed-
ings of Machine Learning Research, vol. 162, PMLR,
17-23 Jul 2022, pp. 22 145-22167. [Online]. Avail-
able: https://proceedings.mlr.press/v162/verma22a.
html.

Pseudocode of discussed algorithms

Input £ and §
fortel,...,ndo

Choose action A; = arg max; UCB;(t — 1, 0)
Observe reward X; and update upper confidence bounds

end for

Algorithm 1: UCB

https://doi.org/10.1145/2020408.2020453
https://doi.org/10.1145/2020408.2020453
https://doi.org/10.1145/2020408.2020453
https://doi.org/10.1145/2351356.2351363
https://doi.org/10.1145/2351356.2351363
https://doi.org/10.1145/2351356.2351363
https://proceedings.mlr.press/v139/gyorgy21a.html
https://proceedings.mlr.press/v139/gyorgy21a.html
https://doi.org/10.1145/3447548.3467124
https://doi.org/10.1145/3447548.3467124
https://doi.org/10.1145/3447548.3467124
https://doi.org/10.1145/3447548.3467124
https://proceedings.mlr.press/v206/howson23b.html
https://proceedings.mlr.press/v206/howson23b.html
https://proceedings.mlr.press/v28/joulani13.html
https://proceedings.mlr.press/v28/joulani13.html
GitHub.com/SMPyBandits/SMPyBandits
https://github.com/SMPyBandits/SMPyBandits/
https://github.com/SMPyBandits/SMPyBandits/
GitHub.com/thatCbean/SMPyBandits/tree/dragos-delayed-feedback
GitHub.com/thatCbean/SMPyBandits/tree/dragos-delayed-feedback
GitHub.com/thatCbean/SMPyBandits/tree/dragos-delayed-feedback
https://github.com/thatCbean/SMPyBandits/tree/dragos-delayed-feedback
https://github.com/thatCbean/SMPyBandits/tree/dragos-delayed-feedback
https://github.com/thatCbean/SMPyBandits/tree/dragos-delayed-feedback
https://doi.org/10.1145/2623330.2623634
https://doi.org/10.1145/2623330.2623634
https://doi.org/10.1145/2623330.2623634
https://doi.org/10.1145/2623330.2623634
https://doi.org/10.1145/3485447.3512097
https://doi.org/10.1145/3485447.3512097
https://doi.org/10.1145/3485447.3512097
https://doi.org/10.1145/3485447.3512097
https://proceedings.mlr.press/v139/lancewicki21a.html
https://proceedings.mlr.press/v139/lancewicki21a.html
https://proceedings.mlr.press/v162/verma22a.html
https://proceedings.mlr.press/v162/verma22a.html

Parameters: Real v € (0, 1].
Initialization: w;(1) =1fori=1,... K.
foreacht =1,2,...do
1. Set
pt)=(1-—2D T o1 K.
Zj:l w;(t) K

2. Draw 4, randomly according to the probabilities
pa(t), - pi(t).

3. Receive reward z;, (t) € [0, 1].

4. Forj=1,...,K set

CE]’(t) oo .
)= m® TI=in
0 otherwise,
T (t
w;(t+1) = w;(t) exp (W()) .
K
end for
Algorithm 2: Exp3
Inputs: o € R, K, d € N
A + I {The d-by-d identity matrix}
b+ Od
fort=1,2,3,...,T do
Gt — A1
Observe K features, o1 1,%¢,2,..., T K € R4

fora=1,2,..., K do
Pra & 0 Tro + x;',—aAflxm {Computes upper

confidence bound }
end for
Choose action a; = argmax, p;, With ties broken ar-
bitrarily
Observe payoff r; € {0,1}
A— A+ mt,atfﬂza,
b+bd + Tt,a.Tt 4
end for

Algorithm 3: LinUCB: UCB with Linear Hypotheses

Input: Window parameter m > 0, confidence level § > 0
and A > 0.
fort=2,...,Tdo

Receive action set A;

Compute width of confidence interval:

t—1

ats = 2fs + Z [Asllv, (-1

s=t—m

Compute the least squares estimate é%/[/ using (2)
Compute the optimistic action:

A = arg max <a,9€v> + s 5llallv, (-1

Play A; and receive observations
end for

Algorithm 4: OTFLinUCB

B LLM use

Most of the LLM use in this paper revolved around making
paragraphs more readable and concise. One notable excep-
tion is the use of LLMs for the Responsible Research Sec-
tion, where it was a starting point for the structure of each
paragraph. Prompts such as ”"Write me a paragraph about pri-
vacy concerns when using artificial data”, ”Write me a para-
graph about ethical concerns of using ML in clinical trials”,
or "Write me a paragraph about bias in recommendation sys-
tems” were used, and the results adapted to the subject at
hand. Another notable exception is the abstract, which used a
reworded summary of the paper provided by an LLM. Other
than that, no particular paragraph or original ideas discussed
here can be attributed to LLMs.

	Introduction
	Background
	Related work

	Formal problem description
	Problem overview
	Metrics used

	Methodology
	Experimental Setup and Results
	Discussed algorithms
	Hyperparameters
	Delays
	Experiments

	Discussion
	Conversion rate
	Time window size(m)

	Responsible Research
	Data sourcing
	Impact on Clinical Trials
	Bias in Content Recommendation

	Conclusion
	Pseudocode of discussed algorithms
	LLM use

