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Abstract

In recent years, the offshore wind industry has grown significantly. The wind turbines are
constructed in wind farms, and are serviced with relatively small crew transfer vessels.
These vessels transport repair crews from the mainland to the farms and back within
a day. One of the big challenges is that these transits can cause motion sickness. If
one crew member gets sick, the vessel is legally required to return to the harbour,
without performing the repair. It is of interest to predict motion sickness, since both
a failed repair and a broken windmill that could have been repaired are costly. This
can be done by predicting the motion sickness incidence (MSI), which is an objective
measure for motion sickness. The goal of this thesis is to predict MSI using the wave
conditions measured in or near the wind farms, by means of an analytical and numerical
approach using machine learning. Testing is done on two sites: the Greater Gabbard
wind farm and the Westermost wind farm. The analytical approach relates the recorded
wave spectrum to the motion spectrum of the vessel, but proves infeasible as a stand-
alone method. Gaussian regression, tree ensemble regression and neural networks with
Bayesian regularization and backpropagation are the best performing machine learning
techniques for MSI prediction. We conclude that the methods from this thesis have
sufficient accuracy, by comparing our results with those from Ørsted, whose model is
already successfully deployed.
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1 Introduction

For centuries mankind has sailed the seas and oceans, and for just as long many sailors
have suffered from rough seas. Whilst the ocean poses barely any threat to modern
vessels, motion sickness still causes trouble on smaller vessels. A big reason for this
is that motion sickness can only be partially treated by medicine, and even veteran
sailors are still susceptible to this sickness. Motion sickness has been studied for quite
some time as a result, but currently available medicine is not applicable to workmen as
it makes you drowsy. This is problematic, since they need to perform tasks requiring
concentration, and can result in additional safety risks for sailors, since e.g. they could
lose their footing. Fortunately for those spending longer shifts at sea, people become
immune to the effects of motion sickness over time: motion sickness increases for three
hours, and finally recedes after a day. According to research by Bles [2], this is because
the body is used to only experiencing gravity, which is a constant force. When entering
a ship, the mind still expects constant gravity, but experiences a sinusoidal force at best
and a rather arbitrary force at worst. This causes a mismatch between the motions that
the mind expects and those the body experiences, causing sickness. As the body gets
used to the sea motions over time, the motion sickness diminishes. When a sailor gets
back to shore, another motion mismatch occurs, albeit less severe.

When projecting the problem of motion sickness for small vessels in the current off-
shore industry, we see that this is especially impactful for the offshore wind industry.
Contrary to many other industries, the offshore wind industry does not use big min-
ing platforms reachable by helicopter. Instead, they work with windmills that are only
reachable via small crew transfer vessels or bigger ships with motion compensated gang-
ways. Smaller crew transfer vessels are used for wind farms near the coast, since these
are less expensive to operate. These ships are not only used during construction, but are
also used for maintenance. The latter is especially important, since a wind farm needs
to be serviced for longer periods of time, and a disabled windmill results in a large loss
of revenue: up to several thousands of Euros per day. This means it is pivotal to repair
disabled windmills as soon as possible.

The vessels used for crew transport are fast catamarans that can get the crew to the
offshore work sites in 60 to 90 minutes. For an offshore operation, a crew can travel to
the site, perform the operation, and get back to shore within a day. This short travel
time means that the operator can choose on which days to work, and when a vessel
should not leave the harbour. Whilst it is usually important to perform the offshore
operation as soon is possible, the repair itself is also costly. Therefore it is important to
have some idea of the likelihood of success, and make the decision on whether or nor to
attempt a repair at any given day and time based on that.

Currently, the decision whether or not to perform an offshore mission is based on an
estimation of the mission success rate made by experts. These experts are vital for mak-
ing this decision, due to the unpredictable nature of the sea, and the difference between
workable and totally not workable is usually small. This has some major disadvantages:
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• The number of correct decisions depends heavily on the skill of the expert.

• The expert can be temporarily unavailable, due to e.g. sick leave.

• The expert can leave the company, taking all of his expertise with him.

• After an unsuccessful mission the expert has only his reputation to defend his
decision to perform the mission. This can lead to too little risk being taken.

Especially the expert leaving the company can significantly hamper productivity. Thus
if we can support this decision process with a computer program that can yield compa-
rable results, a major leap in productivity is feasible. Furthermore, anyone who wants
to join the crew can base his decision on the expected sea conditions.1

Most of the prior research done in the field is focused on testing how many volunteers
vomit after being exposed to controlled motions. These results form statistics, and only
make sense when averaging over larger groups of people. Ships, on the other hand,
usually operate with small crews. Motion sickness largely depends on how strong the
stomach of the crew is, and how much they had for breakfast, rather than the actual
motions. Consequently, no attempt to predict the sickness directly is made. Rather, we
introduce an objective criterion called the motion sickness incidence (MSI) , which does
not take the crew into account, but statistically agrees with the likelihood of actually
falling ill.

The goal of this thesis is to build a working prototype that can predict motion
sickness incidence. This prediction is based on the motions experienced during transit
from the harbour to the wind farm, and subject to ship type and the weather forecast.

Efforts to solve this problem are made both analytically, by using machine learning
and, more specifically, via neural networks. We try to answer the following subquestions:

1. How do we get an objective measure for motion sickness?

2. Can we predict motion sickness analytically?

3. How do we decide what a good prediction algorithm is, and what what is a good
MSI prediction scheme?

4. What is machine learning, how does it work, and which specific techniques are
available to solve our problem?

5. What are neural networks, how do they work and how can we apply them to
our MSI prediction?

6. Do the results from any of these approaches predict MSI with sufficient accuracy?

In order to answer these questions, this research is done in accordance with BMO
measurement solutions. BMO is a company that provides vessel performance data to

1Crew selection by the wharf or any other party is legally not allowed at this time.
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companies active in the offshore wind industry. This allows their clients to evaluate
the performance of vessels that they have on contract. In particular, BMO has several
years of vessel performance data available from crew transfer vessels that supply various
wind farms. It is this data that is used to train and test the various models for MSI
prediction in this thesis. The data used in this thesis mostly comes from vessels serving
the Greater Gabbard offshore wind farm, which is owned by SSE. SSE is a large energy
company based in the United Kingdom. Additionally, we use energy density spectra
as well as several other parameters which are provided by the Centre for Environment,
Fisheries and Aquaculture Science (Cefas), also from the United Kingdom. Finally,
model comparisons are made with a model currently being developed by Ørsted, which
is an energy company based in Denmark. Ørsted owns several offshore wind farms, and
already uses their model to improve the uptime of their windmills.

The next section features a more in-depth introduction to motion sickness as well as
the wave energy spectrum, which is an essential tool in understanding both what MSI
is and what the underlying physics of the problem are. We also formally define how
to compute the MSI from a crew transit, and show a more convenient way to compute
this directly from the energy spectrum. Section 3 discusses a case study with additional
motivation for MSI prediction, by showing that there is ample room to improve vessel
utilization. This leads to the formal problem definition in Section 4. In Section 5 an
analytical approach to the problem is given, where we consider the sea behaviour, and
try to compute expected vessels motions. In theory, knowing these motions, one could
compute the MSI perfectly. Unfortunately, the analytical approach does not provide the
motions we would measure at sea, and therefore the remainder of this thesis is focused
on machine learning techniques to solve this problem. The basics of machine learning
are introduced in Section 6. Section 7 introduces dimension reduction techniques called
principle component analysis and independent component analysis, which are used for
identifying the variables relevant for predicting MSI. Some specific regression models
from machine learning that prove useful for MSI predicting are introduced in Section
8, with neural networks explained separately in Section 9. The results from applying
the machine learning algorithms as well as the neural networks are shown in Section
10. This is done by evaluating the errors made by either approach, and seeing how
they relate. Also, we provide a comparison with the data from Ørsted. Ørsted has
prediction data for the Westermost wind park, which is similar to the Greater Gabbard
wind farm. By comparing all of the approaches in Section 11, we conclude that the best
model is an artificial neural network with an algorithm called Bayesian regularization
with backpropagation, and show that the errors made are acceptable for our application.
An overview of all abbreviations and the most important symbols used throughout the
thesis is given in Appendix C.
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2 Preliminaries

This section introduces the concepts that lie at the base of our problem: What is motion
sickness, and what prior research exists for predicting motion sickness? To express
motion sickness as a number, we first introduce the wave energy spectrum. This gives us
a different way of describing motions, which is better at describing statistical properties.
Then we show how MSI is defined as well as how to compute MSI using an energy
spectrum. This last step is crucial, as later on we will attempt to predict the motion
spectrum of a transfer vessel, without knowing the motions themselves.

2.1 Spectral wave information

Whilst on board of vessels, motion sickness appears to be largely affected by vertical
motion, whilst forward and sideways motion have only a minor influence [19]. The
vertical motion of the vessel is naturally related to the sea motions, and sea motions
can be described using one of the most powerful tools in wave analysis: the wave energy
spectrum. The energy spectrum is defined as the amount of energy associated with
different frequencies at which the waves move, and hence describes the strength of a
wave that occurs at a specific frequency. This frequency can be either in the spatial
or temporal domain. It is even possible to combine the two, but here we assume to
be working over the temporal domain. We start with the discrete spectrum, since a
computer can only perform computations on discrete values. It can be interpreted as
follows: If we associate a value of 1.44 to the energy spectrum at f = 0.5Hz for a
1-dimensional signal S, and assume the spectrum is zero everywhere else, then this
corresponds to a wave oscillating between ±1.2 with a period of two seconds. It can be
represented by

η(x) = 1.2 sin(πt− ψ). (2.1)

Here ψ ∈ [0, 2π] represents the phase of the wave. When the spectrum is non-zero for

0 1 2 3 4 5 6 7 8 9 10
time

-2

-1

0

1

2

Figure 2.1: The plot associated with equation 2.1 (ψ = 0).

multiple frequencies, the resulting wave is a superposition of the waves associated the
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individual frequencies, each with their own phase. The resulting waves are usually hard
to interpret. An example is given in Figure 2.2. However, nature seldom uses discrete
spectra, which is why we usually consider those signals continuous. Since we can only
measure the signal discretely, however, we usually sample this continuous spectrum on
a discrete set of frequencies. The result of this procedure is similar to the generalization
from discrete to continuous probability: we describe the continuous spectrum using the
energy spectral density distribution. The main difference for the continuous case is that

0 1 2 3 4 5 6 7 8 9 10
time

-2

-1

0

1

2

3

Figure 2.2: A superposition of 3 waves defined by f = {0.1, 0.4, 0.6}, E = {0.6, 0.4, 0.8}
and ψ = {0.4, 3, 5}.

when we want to retrieve the surface, we need to add another factor ∆ω. Here ω is
the radial frequency, such that ∆ω = 2π∆f with ∆f the sample frequency. Assuming
we have N different frequencies over which we sample, we end up with the following
equation for a wave surface:

η(t) =
N∑
n=1

√
E(ωn)∆ω cos(ωnt+ψn). (2.2)

Since this work does not contain any further need for discrete spectra, no further distinc-
tion between energy spectra or energy density spectrum is made for the remainder of the
work. The energy spectrum can be computed using the fast Fourier transform (FFT).
An example of an energy spectrum for real data is given in Figure 2.3. The reason for
using an energy spectrum rather than a regular spectrum, is that the former represents
the actual energy that is stored inside the wave, and is also the convention in the field.
The FFT is a fast algorithm that performs the discrete Fourier transform given by

F(x)k =
N−1∑
n=0

xnW
nk
N (2.3)

WN = e−2πi/N . (2.4)

Here xn represents signal strength at time n, and Wnk
N the nk’th power of WN . For a 1D

signal, the energy spectrum S(f) or S(ω) is then computed from the (usually complex)

5
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Figure 2.3: Example of an energy spectrum for heave motion.

Fourier transform using constant sampling rate SR via

S(f) :=
2

SR

(
F(x)f/SR

)2
. (2.5)

Here we use the Euclidean norm. To obtain S(ω) recall that ω = 2πf , and f/SR is
the division of the frequency by the sampling rate to obtain some k from Equation
(2.3). In case higher dimensional data is provided, such as wave height in square area,
then the FFT yields the amount of energy associated with different directions as well
as the frequencies they correspond to. The various frequencies are also referred to as
the wave components. Therefore, any such reference concerns the spectral domain.
Finally, the temporal domain can also be included to get 3D spectral data. This is the
extension of the 1D spectrum to also include spatial data. For our purposes, the 3D
spectrum S(ω, θ) is defined as the amount of energy associated with a frequency in a
certain direction/orientation. This orientation can either be absolute, i.e. with respect
to the earth’s north, or it can be relative to the vessels heading. If this is not specified
explicitly, we always refer to the absolute orientation. Note that the name 3D is a
little misleading here, as only two parameters are given. The missing information is the
spectral information in the spatial dimension, which is not given here. However, there
is no need for such spectral information, as it can be easily computed via the dispersion
relation, which relates temporal wave frequency (when fixing space) to the spatial wave
frequency (when fixing time). This implies that the knowing the spectrum with respect
to time allows one to compute the spectrum with respect to space. This dispersion
relation is discussed in detail in the relevant chapters.

2.2 Related work

No related work exists on predicting motion sickness in the offshore industry. There
also is no existing work in literature that provides a mathematical model of the process,
and only few that even mention the problem. However, there exists some prior work
on computing MSI based on the heave motions of a ship, and the two most important
works on this topic are treated below.
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2.3 MSI computation

For our work we are interested in an objective evaluation of the motion sickness inci-
dence. However, as mentioned earlier, most of the prior research is focused on subjective
measures. To distinguish between the two, we refer to the objective measure as motion
sickness incidence (MSI) and to the subjective measure as the vomiting incidence (VI).
The current standard for objective measurement is the ISO 2631/3 standards for whole-
body vibration as presented in [19]. This work is a slightly more sophisticated version
of the work by Griffin in [8].

In order to estimate the VI, Griffin performed several experiments, and he noticed
that problematic motions mostly occur around 1/6 Hz. Thus he proposes to filter out
or dampen motions oscillating at frequencies that are further away from 1/6 Hz. Then
the VI is obtained by computing the root mean squared error (RMSE) and scale it to
reflect recorded vomiting.

The exact computation goes as follows: As input is taken the raw acceleration a
along the Z-axis (vertical), which is a discrete signal of length N . This signal is then
transformed into the spectral domain by means of the FFT, thus obtaining F(a). This
allows us to filter out unwanted frequencies by multiplying each frequency component
F(a)f by w(f), which is given by

w(f) =



f
0.125 for 0.1 ≤ f < 0.125

1 for 0.125 ≤ f < 0.25(
0.25
f

)2
for 0.25 ≤ f ≤ 0.5

0 otherwise.

(2.6)

We can now use the inverse FFT to return the signal a′ = F−1(wF(a)) to the
temporal domain. We now compute the VI as

V I =
K

SR
||a′||2 =

K

SR

(
N∑
i=1

(a′i)
2

) 1
2

. (2.7)

Here, K = 0.33 is a scaling indicating the susceptibility of a group to motion sickness.
Furthermore, Griffin claims that when looking at men or women separately K = 0.25
and K = 0.4 should be taken instead.

This is however contradicted by [19], which states that the difference in susceptibility
between men and woman is at most 5%. Furthermore, they also provide an updated
weighting curve, which is shown in Figure 2.6, and a different constant K = 1/1.4.
Otherwise, the computation is perfectly identical to the work of Griffin. This way we
get the following definition for MSI:

MSI =
1

1.4
√
SR

√√√√ N∑
i=1

(a′i)
2. (2.8)
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Figure 2.4: Weighting curve w as a function of frequency f .

The new weighting curve can be found in Figure 2.4. This curve is described by analytical
formulas, which means that in order to get the coefficients on the desired frequency
interval we can simply sample this distribution. For the formulas themselves I refer the
reader to the original work, where they are explicitly stated [19]. The MSI computed by
this standard forms the definition in the remainder of this work.

2.4 Computing MSI directly from the spectrum

We have thus far found a formula that allows to compute the MSI, should the original
time trace be known. This is, however, not sufficient. Ideally, we want to compute the
MSI without the phase information. This is desirable, since the spectra provided by
wave radars or buoys do not provide such information either, as such information does
not have any statistical meaning. Suppose that the definition of the FFT as in Equation
(2.3) is followed, and that the spectrum is in the form of Equation (2.5). Then the MSI
(ignoring the constant K) is computed as:

MSI2 =
1

SR

N−1∑
j=0

∣∣∣∣∣ 1

N

N−1∑
i=0

wiYiW
ij
N

∣∣∣∣∣
2

. (2.9)

In this definition, we use Yi := F(a)i. It is not immediately clear how to compute
this, but fortunately Parseval’s theorem [14] comes to the rescue:

8



Theorem 1 (Parseval). Let X := F(x) denote the discrete Fourier transform of a signal
x ∈ CN . Then

N−1∑
n=0

|xn|2 =
1

N

N−1∑
k=0

|Xk|2. (2.10)

A proof is provided in Appendix A.1. We apply this theorem using xi (from the
theorem) defined as 1

N

∑N−1
j=0 wjYjW

ij
N . As this equals the inverse Fourier transform of

wY, this implies that

MSI2 =
N−1∑
i=0

∣∣∣∣∣∣ 1

N

N−1∑
j=0

wjYjW
ij
N

∣∣∣∣∣∣
2

(2.11)

=
N−1∑
i=0

∣∣F−1(wY)i
∣∣2 (2.12)

=
1

N

N−1∑
j=0

|wjYj |2 . (2.13)

Here we use that F ◦ F−1 equals the identity operator. Taking roots on both sides of
the Equation, we get

MSI =

√√√√ 1

N

N−1∑
i=0

|wjYj |2. (2.14)

Note that this definition of MSI is not bounded, but in practice MSI values exceeding
even 80% are extremely rare. Yet we have a new problem: If we consider signals with
different lengths, they can not be compared. In particular, it is not possible to relate
the MSI scores computed via the spectrum with those computed using the signal itself
if we do not take the length of the signal into account. Assume the signal spans t hours.
Then we define the normalized wave spectrum as

MSI60 =
MSI√

t
. (2.15)

At this point we have a good understanding of what MSI is, and can therefore for-
mally define the research question of this thesis. However, first we give some further
motivation for the need for MSI prediction, as the lack of literature might suggest that
MSI prediction is not relevant at all. This is done by answering the all-important ques-
tion: Is there anything to gain from MSI prediction?
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3 Preliminary case study

As mentioned in Section 2 there exists little work on MSI prediction, desirable to get
additional motivation as to this topics relevance. We present a case study investigating
the deployment of catamarans by SSE from Lowestoft to the Greater Gabbard offshore
wind farm in the UK to provide show this relevance. This site is also the main focus
for the remainder of the work, and is discussed in more detail in the next section. Two
different sea craft are used for deployment at the Greater Gabbard site:

• Windcat, a smaller catamaran (18 meter)

• Seacat, a larger catamaran (26 meter)

This is an interesting case study, as the Windcats were operational for 54 hours, whilst
the Seacats operated for 104 hours per month on average. Deploying a Seacat is more
costly than deploying a Windcat, which means that we want to deploy the smallest vessel
possible. We anticipate that the Windcats are deployed too conservatively, even though
the Seacats can operate in rougher circumstances than the Windcats. In order to test
this hypothesis, we compare the maximum possible uptime for both vessels. Workability
depends on whether the significant wave height Hs exceeds a certain threshold: 1.50
meter for the Windcats or 1.75 for the Seacats.

The method to perform this test is as follows: first, we compute the cumulative dis-
tribution of the significant wave height over time. This is obtained by first accumulating
the significant wave height as measured by a buoy during the a month. The buoy is
located in close vicinity to the wind farm. For the purpose of getting a good repre-
sentation, only workable hours have been taken into account, i.e. from 9.00 till 17.00.
This way we obtain a discrete density distribution, which is shown in Figure 3.1a. The
thresholds for both vessel types have also been added in this figure. This gives us a first
indication of the possible uptime for the vessels. However, it is not a proper indication
of when the ships can actually perform work: for this we need a consecutive period of
4 hours in which the workability criteria is matched. If the 4-hour period is interrupted
at any point, we consider the entire period unworkable. The reason for rendering the
entire period unworkable is because crew transfers need to be save both when leaving
the vessel and when boarding it, and the crew should be able to leave at any time.
Finding such periods is a windowing problem, and is solved easily. If the longest found
workable period is longer than 4 hours, those values are shown instead. The resulting
distribution is shown in Figure 3.1b. If the entire day is workable, the workable period
is set at 8 hours. The reason we see two peaks is simply because Hs is only recorded
every 90 minutes, thus allowing for a different maximum number of workable hours in
the computation. The results are shown using 30-minute bins.

In addition to this buoy data, there were also 4 measurement units located in the
wind farm itself. They measure the wave height by means of radar. Results vary slightly
per radar, but the results in Figure 3.1 are representative for all of these sources.

These results show that the optimal downtime for the Windcat and Seacat are 26
and 17 % respectively (first bin in Figure 3.1b). This implies that the Seacat should be
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Figure 3.1: Possible uptime of the Windcat and Seacat, which shows that theoretically
the vessels could have an uptime of 80% and 88% for the Windcat or Seacat respectively,
when they would work every feasible hour. When we consider days where there are at
least 4 consecutive workable hours, then we find 65% and 83% days respectively.

deployed 12% more often than the Windcat. As practice shows this to be over 90 %,
there is clearly a lot to be gained. If we assume that optimal deployment is 8 hours per
day on average (in practice this number has shown to be conservative), the total possible
uptime is around 180 hours. Even though we may assume that motion sickness plays a
role even under operational limits, it is reasonable to assume that the difference is too
large. Hence we conclude there to be a solid case for further investigation on automated
decision protocols for deployment of both Windcats as well as Seacats.

These numbers present the total amount of uptime that can be realized. Yet much
of these trips are for preventive maintenance, rather than corrective maintenance. The
latter is when a turbine is broken and does not produce any power until repaired, and
hence is where the real benefit is to be gained. The turbines currently have an uptime of
roughly 95%. So let us analyse the possible gain from an improved scheduling algorithm,
where we are less likely to stay in the harbour even though it was feasible to go out, and
therefore increase the uptime of the turbine. Suppose that a good predictive algorithm
can increase the uptime for a turbine by 0.2 percent point on average. Considering
there currently is around 5% downtime, this likely is conservative estimate. The Greater
Gabbard site produces roughly 1900 GWh annually, which means that a 0.002 increase
amounts to some 3.7 GWh per year. This amount of additional energy is equivalent to
the consumptions of some 1000 UK households, or 1100 households in the Netherlands
[3]. It also results in an additional profit of some e600 000. Thus it is from both an
economical as well as societal perspective interesting to apply MSI prediction if this
achieves even very minor improvements in the overall turbine uptime. As the Greater
Gabbard site forms a little under 10% of the total installed offshore wind capacity in the
UK, full-scale deployment can theoretically increase that by another factor ten.
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It is my hope that this section is proof that MSI prediction has potential for significant
benefit. In the next section we formalize the problem we face in MSI prediction, and
more thoroughly introduce the Greater Gabbard site.
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4 Formal problem definition

We try to predict motion sickness as is defined in Equation (2.8). We have also seen
that reducing the downtime for service vessel can significantly increase the power output
of a wind farm. Hence we introduce the the research question of this thesis: How to
best predict the motion sickness index, having access only to wave forecasts for any
specific vessel using its historical performance in the Greater Gabbard wind field? The
restriction to a specific vessel is important as it is common knowledge that the motion
sickness is dependent on the vessel characteristics. An easy example is the size of the
vessel: large container vessels are only affected by very long waves whilst a rowing boat
feels even the smallest of waves. The reason for focussing on the Greater Gabbard wind
field is that we have four different sources available for aggregating wave data. This
means that it allows for cross-checking the quality of the individual sources (which is
already done by Cefas), and means that there are only few moments on which no data
is available. Since the data from the four sources is more or less identical for most of the
time, this also suggests that the wave conditions are fairly constant, at least throughout
the field. Below the Greater Gabbard wind farm is discussed in detail. We conclude
by showing that the Greater Gabbard site is representative for a large number of other
wind fields, both now and in the foreseeable future.

4.1 Greater Gabbard site

The site used for testing is the Greater Gabbard wind field, which is located roughly 60
km off the English coast. The site is illustrated in Figure 4.1 as the northern patch. The
southern patch is the Galloper wind field, and is also used in MSI prediction for transits
to the Greater Gabbard site. The main reason for this is that vessels travelling to the
Galloper field have to pass the Greater Gabbard site. This means these transits can
also be interpreted as transits to the Greater Gabbard site. To normalize, all transits
are cut off when they reach any of the outer edges of the Greater Gabbard site. The
wave radars that are used to obtain wave spectra for this site are located inside of the
Greater Gabbard field. Additionally, a wave buoy is located 1 km north-east of the
northern-most tip. This buoy is the only source capable of producing 3D spectra.

In terms of crew transfer vessels that operate on these sites, the Windcat and Seacat
are already mentioned in Section 3. Besides these vessels, there are also crew transfer
vessels used from Iceni, Malltraeth and Dalby. These are catamarans of respectively
21, 23 and 23 meters long, which makes them the middle ground between the Windcat
and Seacat. Upon combining all these transits, we get a dataset totalling 2200 unique
transits, although many of these journeys take place on the same days, with only minor
differences in sea state. The techniques used in this thesis are not restricted to the
Greater Gabbard site, however, as there are ample sites with wave buoys nearby. Figure
4.2a shows the various wave buoys that Cefas operates around the United Kingdom,
and a quarter of these buoys also has spectral data available. In Figure 4.2b most of
the wind farms near the United Kingdom and the Netherlands are plotted. As a good
portion of these fields are all located near the coast, they can be served by the same type
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Figure 4.1: A standard transfer from Lowestoft to the Greater Gabbard wind field. The
field is painted in black and the journey from start to end in green to red.

of vessels as the Greater Gabbard site. Furthermore, Greater Gabbard also has a size
that is representative for the fields that are to be build in the next 7 years [11]. These
fields require maintenance for a further twenty years, which means this work should be
applicable for at least 25 years on this application alone.
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(a) Overview of Cefas wave buoys near the United Kingdom. Blue indicates a buoy with
the wind direction while the red arrows indicate buoys in the main wave direction.

(b) Overview of some of the wind fields in the North Sea which are served by crew transfer
vessels, as well as the coastal harbours from which they are served. In theory, the methods
of this work can be applied to all farms near the shore. [7]

Figure 4.2
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5 Theoretical analysis transit

As was explained in Section 2, MSI is computed using the spectral values from the
acceleration motion traces. To do so, we first attempt an analytical approach to the
problem. Recall from the previous section that while no acceleration data about the sea
is known, there is wave data available in the form of heave energy spectra. These spectra
describe the energy distribution of the wave surface. They also have the nice property
of being easily convertible to acceleration spectra, as will be shown later on, assuming
that the vessel in question follows the wave surface. There is one problem, however, as
this acceleration spectrum is only valid if the vessel is not moving. In this Section we
first show how to retrieve the acceleration spectra that an observer following the wave
surface should experience, given that the observer is travelling with a given speed and
direction, under some assumptions. Then we explain how to convert these theoretical
motions to motions that we expect to observe on a ship. Finally, we test the validity of
the assumptions on real data, and conclude that the theoretical approach by itself is not
sufficient to solve the problem.

Throughout this section the notation given in Table 5.1 is used.

Table 5.1: Wave parameter explanation

Parameter Explanation

η Sea surface elevation from the mean water level.
E(ω) Measured energy density as function of ω.
ω Radial temporal frequency given by ω = 2πf , where f is frequency in Hertz.
k Radial spatial frequency given via ω2 = gk tanhhk, where h stands for depth

in meters and g the gravitational constant g = 9.81.
θv Radial vessel heading.
θ0,n Radial wave component direction, centred around main wave direction.
ψn Wave component phase, uniformly distributed in [0, 2π].
accz Vertical acceleration of the vessel.

5.1 Analysis for a simple wave

Recall that the sea surface elevation η can be interpreted as a superposition of sinusoids
with varying amplitudes An, directions θn and phases ψn. To see what is happening,
first consider a simple sinusoid with amplitude A, travelling speed s and wave length L.
This is also referred to as a simple wave. When considering simple waves it is fine to
ignore the phase, as the starting point can be chosen arbitrarily. Let the angle between
the wave and ship be given by θ ∈ [0, 2π], and define the radial wavelength C := L/S.
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Figure 5.1: A sea can be interpreted as a superposition of sinusoids [15].

As the acceleration is the second derivative of position, this equals:

η(t) = A sin(2πt/C) (5.1)

C = L/s; (5.2)

accz(t) = −A(2π/C)2 sin(2πt/C). (5.3)

Now assume the ship itself also moves with speed s′, then this becomes

η(t) = A sin(2πt/C) (5.4)

C = L/(s− cos(θ)s′); (5.5)

accz(t) = −A(2π/C)2 sin(2πt/C). (5.6)

Here the limit s → cos(θ)s′ corresponds to the case that the speed component of the
ship in the wave direction equals the speed of the wave, hence resulting in no further
sinusoid behaviour.

On the North sea, default parameters are L = 150m, s = 13m/s and s′ = 12m/s.
Hence, for θ = 0 we see that accz ≈ 0.36H, while for θ = π/2 we see that accz ≈ 3.3A
and for θ = π we can expect peak accelerations of up to accz ≈ 5.9H.

This model clearly is not representative for the experience to be had at sea, as ships
will usually have a dampening effect. Additionally, a real sea is usually a superposition
of such waves, which results in cancelling terms. How each type of wave affects a ship
exactly depends on the response amplitude operator (RAO), which is unique to each ship.
Mathematically, the RAO is a function that assigns weights per frequency to describe
how much the vessel is affected by a wave with a certain frequency. An example is
plotted in Figure 5.2. In general, the RAO is 1 for small frequencies, then increases near
its critical frequency, after which it quickly drops to zero. The critical frequency is the
frequency where the wavelength equals the vessel length and hence resonance occurs.
However, these operators are generally not known. A theoretical derivation on how to
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Figure 5.2: Example of several response amplitude operators [6].

compute the RAO’s using the ships dimensions falls outside the scope of this thesis, but
is possible. Still, I believe it to be fair to conclude that the ship’s direction relative to
the wave can have a huge impact on the resulting accelerations. Hence this warrants
further exploration.

First, we provide an analytical analysis of the sea surface by introducing a numeric
representation. Then, we introduce a parametrization of the vessel to link the sea surface
to the conditions that the vessels experiences during transit. Next, the practical difficul-
ties and limitations of this process are discussed, and finally, by means of numerical tests
on real-life measurements we show that these limitations in practice imply this approach
not sufficient for MSI prediction.

5.2 Analytical approach

According to [22], we can represent the ocean surface as

η(r, θ, t) =
∑
n

√
E(ωn)(∆ω)n cos(knr cos(θ − θ0,n) + ωnt+ ψn). (5.7)

This means that we interpret the sea surface as a superposition of sinusoids, each cor-
responding to a different frequency, both in terms of spatial and temporal frequency.
The amplitude of each wave component is scaled to match the width of each particular
frequency band. An illustration of a wave surface created using this function is shown
in Figure 5.3.
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Figure 5.3: Sea surface plot

If we want to simulate a ship passing through this sea with constant speed v0 and
direction θ̄, we can simplify Equation (5.7) as follows:

η(r, θ, t) =
∑

nAn cos(knr cos(θ − θ0,n) + ωnt+ ψn)

An =
√
E(ωn)(∆ω)n

r(t) = v0t

θ(t) = θ̄

(5.8)

⇒

{
η(t) =

∑
nAn cos(Bnt+ ωnt+ ψn)

Bn = kn cos(θ̄ − θ0,n)v0.
(5.9)

The step above is valid since θ can be considered constant as we assume the ship not to
change its heading. We can also define the position of the ship at t = 0 to be equal to
r = 0. As the vertical acceleration is the second derivative with respect to time, we can
now explicitly compute its derivative as

accz(t) =
∆2η

∆t2
(t) = −

∑
n

An(Bn + ωn)2 cos(Bnt+ ωnt+ ψn). (5.10)

Thus, the vertical acceleration equals the surface height with each wave component
amplified with a factor

ampn := −(Bn + ωn)2 = −(kn cos(θ̄ − θ0,n)v0 + ωn)2. (5.11)

Keeping in mind the dispersion relation for water ω2 = gk tanhhk for depth h, we can
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further reduce this to

ampn = −(kn cos(θ̄ − θ0,n)v0 +
√
gkn tanhhk)2 (5.12)

≈ −(kn cos(θ̄ − θ0,n)v0 +
√
gkn)2 in deep water (5.13)

= −kn(
√
kn cos(θ̄ − θ0,n)v0 +

√
g)2 (5.14)

= −ω
2
n

g2
(ωn cos(θ̄ − θ0,n)v0 + g)2. (5.15)

The last step is done because ω is more convenient to work with. From this equation
we note that it may be worthwhile to consider the quantity cos(θ̄ − θ0,n)v0ω + g. A
plot of this quantity is given in Figure 5.4. In the upper left (Figure 5.4a) we see the
amplification factor for various angles and omega. To better illustrate what we are seeing
there, there are two more figures focussing on each of these parameters individually. We
can see that this quantity takes values in the range [-20,50], and scales linearly with
frequency. The extreme value only occurs when all the energy of the wave component
is focussed in one specific direction. This does not occur in nature, where spectra tend
to span at least 30 degrees. We can also see in Figure 5.4c that the lines all cross one
another in two points: this is because there the vessel is perpendicular to the waves, and
thus the amplification equals exactly Earth’s gravitational constant, implying that the
amplification there is independent of the vessel speed and heading.

In the computation above, the assumption of deep water was made. When considering
naval charts along the route, I observed that the journey starts in shallow water (several
meters deep), but that the vast majority of the route takes place in water with depths in
the range of 20 to 25 meters, although no exact data is available, as the chart only allows
usage through a web application. Still, using these values we note that tanh(kh) > 0.9
for any k > 0.08 and depth h > 20 meters. This corresponds to ω ≈ 0.27 rad/s or 0.08
Hz. Since 0.08 Hz is well below the range of frequencies that affect motion sickness, we
conclude that the assumption for deep water is justified. However, we use the original
value during computations whenever possible.

5.3 Application of analysis to real data

To get a more realistic idea of the impact of the amplification effects, we can compute
Equation (5.12) for some real data. For this we use 2D spectral data, which allows us
to take the directional spreading into account. A 2D spectral image contains values
S = S(ω), where ω = (ωx, ωy). In order to be useful to us, we first convert this spectrum
into a (ωr, ωθ) domain via a standard polar transformation.

We would like to test the theory developed above in practice, and see if measured
ship accelerations match the anticipated response. Clearly we cannot do this directly,
but we can compute motion sickness scores. Since these scores are based on the amount
of energy that is associated with each frequency, they should be comparable to those
computed based on the spectral data. As was mentioned earlier, we have not yet taken
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Figure 5.4: Plot of the quantity cos(θ̄ − θ0)v0ω + g using v0 = 12 m/s and θ0 = 0.
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Figure 5.5: Contour plot to show the effect of tanh(kh).
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the RAO’s into account. Unfortunately, for all the ships considered in this research these
operators are not known, but in theory they can be computed easily by comparing the
recorded spectrum with the predicted spectrum, assuming the RAO equals the identity
operator. This approach is illustrated in Appendix B. Unfortunately, it turns out that
this approach does not work, but this will become clear. For now, however, we choose
to be oblivious regarding these operators and assume that the RAO equals the identity
operator. This implies we can compute the MSI as

MSI2 =
∑
(r,θ)

(
amp(r, θ)RAO(ωr)w(ωr)

√
E(ωr,θ)∆ωr,θ

)2

. (5.16)

The reason why this is true is because according to (5.10) amp
√
E∆ω are exactly the

spectral components that the ship experiences. Then the RAO is needed to go from sea
accelerations to vessel accelerations.

There is a second benefit to this procedure. If we can use the spectral data from
the radar to predict motion response behaviour on board of these vessels, we can also
use the spectral data to compute MSI scores on days when no ship is actually sailing.
This implies that we can potentially relate weather to MSI scores 24 hours per day. In
turn, this means that we will actually be able to extrapolate beyond the available data,
and potentially even for different ships should their RAO’s be known. Additionally, it
eliminates the issue where only a very limited amount of data is available during very
bad weather events, which is where regression models mostly fail.

The investigation thus far takes into account most effects, but there is still one major
component missing: sea waves never all travel in the same direction. Thus even if we
manage to perfectly know the spectrum, RAO’s and relative angle with the main wave
direction, the predictions will still fall short. In the perfect setup this is solved by using
full 3D spectral images, which include the amount of energy corresponding to each of
the wave directions per frequency. As mentioned in Section 4, we do not have access to
the full 3D spectral images, as those cannot be recorded via wave radars or buoys. We
do, however, know the wave spreading, which is defined as the standard deviation of the
energy away from the main wave direction per wave component. Thus we circumvent
the problem of not having a full 3D spectrum as follows: we generate the 3D energy
distribution from the most popular wave spreading formula as proposed by Mitsuyasu in
[13]. According to Mitsuyasu, the directional spreading follows the density model given
by

D(θ) =

{
A cos2s(θ − θ0) for |θ − θ0| ≤ π/2,
0, otherwise.

(5.17)

for some s ∈ N around main wave direction θ0, and A a scalar to ensure that the integral
over [0, 2π] equals 1. This s is an indicator of how wide the spreading is. For our
purposes, we choose s to be the smallest positive integer such that the integral over the
spreading contains 1 standard deviation:
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ˆ θ0+spread

θ0−spread
D(θ) dθ > 0.68. (5.18)

This assumption is validated as the directional spreading, since the recorded direc-
tional spreading is defined as the standard deviation of wave direction. By consequently
resampling this distribution on the desired grid we get a complete 3D spectrum on the
desired grid. For testing we have used a grid with a bin size of 10 degrees. This size is
somewhat arbitrary, but some quick tests shows that the system is not very sensitive to
the number of bins. During this resampling we take the mean value of the spreading in
the interval multiplied by the spectral value associated with that wave component. This
ensures that integration with respect to θ yields the original 1D spectrum.

5.4 Aggregating various measurements

Up to now we have been computing the impact of speed and heading as a function of
waves represented by a single frequency and heading. However, in practice the sea is a
superposition of such waves. Therefore we need to investigate exactly how to compute
the amplification factor over said superposition. As mentioned before, the very fact
that the vessel is moving, results in a change of the relative frequency in which the
vessel encounters waves. This implies that we have to make a choice on which reference
frame to use for future comparisons of vessel spectra with wave spectra for the wave
buoys. The chosen reference is the vessel, since motion sickness is a result of the vessels
motions rather than the sea state. This does present a problem, however, as the output
frequencies are no longer fixed. This is resolved by resampling the final result on fixed
frequencies.

Aggregating distinct frequencies is usually pretty simple. Given some frequency ω
and corresponding k, the relative frequency is given by

ωrel = |k cos(θ̄ − θ0)v0 + ω|. (5.19)

However, problems arise when we find two distinct ω that correspond to the same
relative frequency but with opposite directions. For example, this corresponds to the
case where we consider two waves travelling at 10 and 20m/s respectively, and the vessel
moving at 15m/s (all in the same direction). This way the vessel experiences one forward
wave at 5m/s and one backward wave. Assuming that the waves in both directions have
amplitude A and B, phase 0 and φ0 respectively at t = 0, we can describe the result as

A sin(ωt) +B sin(φ0 − ωt) = A sin(ωt)−B sin(ωt− φ0) (5.20)

= Im
(
Aeωti −Be(ωt−φ0)i

)
(5.21)

= Im
(
Aeωti −Beφ0ieωti

)
(5.22)

= Im
(

(A−Beφ0i)eωti
)
. (5.23)
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This implies that the result is a sinusoid with frequency ω and an amplitude of

||A−Beφ0i|| =
√

(A−B cos(φ0))2 +B2 sin2(φ0) =
√
A2 +B2 − 2AB cosφ0. (5.24)

Note that the initial choice of phase differential describes the general case, since we
can always reduce to this case via a translation along the time axis. This implies that
depending on the initial phase, the superposition of these wave components can change
drastically, and can vary in amplitude between A − B and A + B. It is also worth
noting that a direct implication of this result is that when B > A, the direction of the
wave component ωrel relative to the ship flips direction around B cos(φ0) = A. In our
example, this occurs exactly when the slow wave has more energy than the fast wave.

Clearly, it is not desirable to have this phase influence the response of the vessel, even
though it may play a significant role. Note, though, that enforcing a constant speed and
heading is impossible. Furthermore, wave conditions can have minor variations over
time. Therefore, I believe it justified to assume a uniform distribution over the various
possible phase angles over the transit period, and then take the mean as the amplitude
of the resulting amplitude:

ampωrel
= E(||A−Beφ0 ||). (5.25)

This is a difficult expression to compute analytically, and is therefore numerically ap-
proximated using 1000 uniformly distributed choices of φ0 for each pair of matching
ω.

Yet we are still not done, since we are never going to find perfectly matching pairs of
ω, as we are using a discrete set of values. To compensate for this effect, we have chosen
to resample the set of frequencies with k cos(θ̄− θ0)v0 + ω < 0 to match the frequencies
where k cos(θ̄ − θ0)v0 + ω ≥ 0. This means that we have a proper representation of the
resulting spectrum.

5.5 Numerical results

Whilst the theory behaves nicely, practice proved otherwise. Results for this procedure
are displayed in Figure 5.7. Contrary to Figure 5.6, the general spectrum obtained via
the procedure above looks like the energy spectrum shown in Figure 5.8. There, the
Cefas raw heave spectrum, the predicted vessel spectrum and the recorded acceleration
spectrum have been plotted for one instance. We can see that the initial energy peak is
translated to a different part of the spectra, and that the higher frequency range contains
significantly more energy than we would expect. Albeit less common, examples to the
contrary also exist: see Figure 5.9. This implies that something is going seriously wrong
in these computations, and may imply that some of the assumptions made earlier do
not hold. Most notably, I believe that the assumption of the vessel following the wave
surface is extremely wrong. Whilst this can partially explain the results, there must be
more problems to the procedure, but this is left for further research. As the analytical
methods do not provide sufficient accuracy, we now resort to machine learning methods
and machine learning. The main advantage of such methods is that they do not require a
theoretical framework, but are still capable of benefiting from the results of this section.
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Figure 5.7: Scatterplot showing predicted MSI versus recorded MSI for all vessels in the
Greater Gabbard site.
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Figure 5.8: Raw heave energy spectrum (left), the expected parametrized acceleration
energy spectrum (middle) and the recorded vessel spectrum for the Dalby Aire, 16 May
2016. These images are representative for the mismatch between predicted and recorded
vessel spectra.

26



0 0.1 0.2 0.3 0.4 0.5
Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

0.6

S
pe

ct
ra

l e
ne

rg
y

0 0.2 0.4 0.6 0.8 1
Frequency (Hz)

0

0.5

1

1.5

2

2.5

3

3.5

S
pe

ct
ra

l e
ne

rg
y

0 0.2 0.4 0.6 0.8 1
Frequency (Hz)

0

5

10

15

20

25

30

S
pe

ct
ra

l e
ne

rg
y

Figure 5.9: Raw heave energy spectrum (left), the expected parametrized acceleration
energy spectrum (middle) and the recorded vessel spectrum for the Dalby Aire, 27 June
2016.
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6 Introduction machine learning

We have tried to compute the MSI using the laws of physics. It is, however, also possible
to predict MSI using machine learning. In layman’s terms, machine learning is the art of
letting the computer create the model for us, such that the machine learning algorithm
functions as the ‘brain’ from Figure 6.1: as a generic input-output solver without a need
for context (given enough data), but which can benefit from context. But how does this
brain work? Despite its name, and whilst machine learning can definitely be a great
asset, it is far from an automated process, and requires a lot of manual assistance. A
more precise description of machine learning is therefore to let the computer find the best
approximation of the (generally unknown) target function using a set of base functions
and optimization criteria specified by the user, based on a series of past measurements.
The simplest example of machine learning is linear regression, where you try to fit the
best line through some data points in a usually high-dimensional space.

Predictors

Machine learner

Response

Figure 6.1: Most simple representation of a black-box machine learner.

Choice of predictors

Restriction to limited set of functions

Dealing with errors in training data

Figure 6.2: Main aspects for machine learning.

Algorithms for machine learning use known data sets with a set of predictors P to
find a function f that best explains an observable O. The latter is also referred to as
the response. The goal for a machine learning algorithm is to estimate our unknown
function f by minimizing an error. While a variety of norms can be used to describe such
an error, the most common criteria is the l2 norm. For a set of predictors x ∈ P ⊂ Rm
and a set of observables y ∈ O ⊂ R corresponding to P , this means we want to optimize
over all functions f : Rm → R such that

E :=

N∑
i=1

ε2i :=

N∑
i=1

(yi − f(xi))
2. (6.1)
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is minimal. Clearly, this set of functions is uncountably infinite, and hence we need
to restrict the set of functions. In practice this is done by assuming that a function
has a certain form with one or several parameters that can be tailored to the relevant
dataset. This is also where the largest difference with regular modelling takes place, as no
assumptions are made regarding the exact form of the function, whilst in modelling one
usually has a physical reasoning to assume a certain type of model. The simplest example
is by finding the best linear approximation of a dataset (P,O) ∈ R × R. Intuitively,
this equals drawing the best line through the dataset. A mathematical derivation of
this procedure is given in Section 8.1. For the remainder of this section, we introduce
the general techniques used in machine learning. In the next section, two additional
techniques often used in data science are explained, which will help us better determine
how to use the machine learning algorithms. Then, in Sections 8 and 9 the specific
models used in this thesis are introduced.

6.1 Discrete vs. continuous data

Learner models are available for fitting both continuous and discrete observables. These
are respectively known as regression learning and classification learning. When applying
the learner to a discrete set of observables, we also assume this set to be finite. Examples
of classification learners are object recognition or decision making, in which the algorithm
returns one out of a finite set of predefined options. On the contrary, regression models
can also be used for interpolation between and extrapolation beyond known data points,
albeit at the cost of accuracy. Especially extrapolation quickly becomes unreliable.
In most cases the choice between the two is pretty easy: the problem itself is either
continuous or discrete.

6.2 Validating models

Once a model is trained, the model needs to be validated. This is needed since a machine
learning model suffers from a number of weaknesses. These weaknesses are illustrated
in Figure 6.3. These images show that the best linear approximation does not always
imply a good model. In the upper-left, a properly trained model shows. However,
the linear approximation is poor when the fitted data is non-linear (upper-right), when
it contains significant outliers (lower-left) or when data is not correlated (lower-right).
These weaknesses can be applied to any prediction model in general. Finally, validation
is necessary to prevent over-fitting. This is especially important when working with
errors in the training data, as a model performing well on the training set might not
work so well in general. An example of over-fitting is given in Figure 6.4. In practice,
we often take the validation step by performing a cross-validation on the available data:
we use 90% of the available data to train the model, and then use the final ten percent
to test the models performance. We repeat this procedure ten times, such that we use
a different set to check each time. This way, we avoid focussing on a single model that
appears to perform much better than its alternatives because there are no outliers its
the test data.
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Figure 6.3: Anscombes illustration of modelling weaknesses [1].

10 15 20 25
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y

training data

overfitted tree learner

Figure 6.4: Example of an over-fitted tree regression model for function y(x) = x with
a single error in the training data at x = 9. Also, it shows that certain models have
difficulty extrapolating the data beyond the last training point, here at x = 20.
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Figure 6.5: Scatter plot showing that the MSI behaves fairly linear for smaller wave
heights, but wavers out when values exceed 1 meter.

6.3 Extreme values

A more interesting case of the non-linear data case occurs when fitting the MSI scores as
a function of Hs. Whilst the data behaves mostly linear for Hs < 1, the MSI scores vary
wildly as Hs increases. As we are most interested in accurate predictions when Hs is
high, we need to make sure that the systems is particularly accurate during such events.
This becomes more problematic as most of the available data is for lower values of Hs.

One way to enforce better behaviour is by defining a cost function in (6.1). If we
want to increase the focus on correctly fitting extreme values we could e.g. scale using
(a constant times) Hs, in which case our optimization problem becomes

min
f
E′ : =

N∑
i=1

ci(yi − f(xi))
2 (6.2)

ci = Hs(xi) (i = 1 . . . N). (6.3)

This cost function can be changed to be application-specific, and there is no optimal
way on how to choose this cost function.

6.4 Feature

Features are the input variables used in the model. It is common practice to first
try fitting with the input parameters that are available. However, these parameters
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are usually insufficient to fully explain the output data. For example, suppose the we
attempt to fit a linear model on a number of samples of the 1-dimensional function
f(x) = x2. Clearly this is doomed to fail. Yet if we were to use a different feature,
by attempting to fit x and x2 to our model instead of just x, we should get a perfect
fit. This process of applying functions to the input data before fitting is called feature
selection, and hence one of the most important steps in machine learning. It is also
where understanding the physics behind the problem can be beneficial, as these may
give an indication for what types of input data transformations to use. This step can
sometimes be automated by the use of smart algorithms. The best examples of such
smart algorithms are found in image processing, specifically facial recognition.

In the next section two methods are introduced, called principle component analysis
and independent component analysis. These are standard methods in data science that
are useful in choosing which predictors to use, as well as choosing features.
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7 Dimensional reduction techniques

There exist two main dimensional reduction techniques for machine learning: princi-
ple component analysis (PCA) and independent component analysis (ICA). PCA is an
analytic tool that is useful to distinguish the most influential parameters in a process,
whilst ICA tries to distinguish independence between various components. The two
methods are closely related, and the results from PCA can even be used in computing
ICA. We introduce both models below and show the advantages and shortcomings of
both methods.

7.1 Principle component analysis

Consider the orbit of the planet Venus as can be observed from Earth. As was discover
by Galileo, Venus revolves around the sun rather than Earth. At the time this was a big
observation, as it overthrowed the model of Ptolemy, which assumed that all celestial
bodies orbit around Earth. The model of Ptolemy was also capable of describing the orbit
of Venus, albeit in a much more complex manner: he added an additional invisible point
which rotated around the Earth, and Venus was assumed to be orbiting that invisible
point. Consequently, the mathematics involved to predict the orbit of Venus were much
harder than those needed by Galileo. This is exactly the type of problem PCA tries to
solve, by trying to simplify the model by reducing the amount of components involved.

Figure 7.1: The Ptolemaic model (everything orbits Earth) and the Copernican model
(everything orbits the sun) are both capable of describing the orbit of other celestial
bodies such as Venus [20].
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Mathematically PCA tries to find the vectors that explain most of the variance within
the data, the so-called principle components. The first principle component indicates the
best explanatory vector, the second the second-best explanatory vector etc. It does this
by performing a change of basis. In the example this would correspond to translating the
origin from Earth to the sun. The various principle components would then correspond
to the new orbits of the various bodies as seen from the sun2. A more detailed description
of PCA in general is available in [18]. Before we can properly explain PCA, however, we
first introduce the covariance matrices on which the analysis is based. Whilst sharing
the name with the covariance matrices mentioned in Section 8, they are not the same,
and hence this definition is used only in this section.

7.2 Covariance matrix

Suppose we have two random variables X,Y with mean µx, µy respectively. Then the
covariance between X and Y is defined as cov(X,Y ) := E[(X−µx)(Y −µy)] = E[XY ]−
µxµy, where E[·] denotes expectation. The last equality holds since the expectation is
linear and E[Xµy] = µyE[X] = µxµy = E[Y µx]. Once again, this definition of covariance
is restricted to this section! Note that if X and Y are independent random variables,
then E[XY ] = E[X]E[Y ], and therefore cov(X,Y ) = 0. If, on the other hand, X and Y
are maximally correlated, it follows that cov(X,Y ) = cov(X,X) = var(X) = σ2x. If X
is normalized, σx = 1, and the covariance becomes a value between 0 and 1 measuring
how much the random variables X and Y are correlated.

Now suppose we have some vector

X =

X1
...
Xm

 ,
where Xi is some random variable with mean µi. We define Σij := cov(Xi, Xj). Then
the covariance matrix of X is given by

Σ = [Σij ] (7.1)

This is, however, not a quantity that we can generally compute: usually the exact
distribution of a random variable is not known. Therefore, assuming x ∼ X and y ∼ Y to
be n-dimensional samples, we compute cov(X,Y ) = 1

n−1xyT. Now we want to generalize
this result to covariance matrices. Suppose that for our vector x we also have n samples
per random variable. Let S be the m × n matrix with the samples for each random
variable along the rows. Then the columns form the recordings of a single measurement.
In our case, an example would be a record of Hs, the wave direction and the recorded
MSI from a single (and the same!) trip. Then we can estimate Σ from S as follows:

Σ =
1

n− 1
SST (7.2)

2Strictly speaking do basis transformations not allow for translations of the origin, but, as we see
later, we do not care about changing constants
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7.3 Derivation PCA

It turns out that the principle components are the eigenvectors of A := SST. Even more
so, the corresponding eigenvalues are 1

n−1 times the variances associated with these
eigenvectors, and thus allow us to find all of the principle components. When we look
at (7.2), we see that A and Σ are closely related, and their eigenvalues only differ by a
factor 1

n−1 whilst sharing the same eigenvectors. Recall that for finding the first principle
component PCA attempts to find the normal vector that maximizes the variance within
the data, i.e. it tries to find

max
x: ||x||=1

||Σx||. (7.3)

This implies we want to find the eigenvector associated with the largest eigenvalue. It
is a standard result from linear algebra that the other principle components are the
eigenvectors corresponding to the eigenvalues of Σ in decreasing order.

In order to conclude that the second principle component is indeed the eigenvector
associated with the second largest eigenvector, note that we can decompose Σ in its
eigenvalue decomposition

Σ =
∑
i

λivivi
T (7.4)

Here we assume λ1 ≥ λ2 ≥ . . . ≥ λn. We can write any vector b =
∑n

i=1 bivi if we
assume vi forms a complete basis. In practice, this is (almost) always the case due to
the presence of noise. In particular we can chose b to be the vector maximizing the
variance. As we work with the restriction that ||b|| = 1 it is now straightforward to see
that if b is orthogonal to v1, then it must be that b = v2.

7.4 Interpretation of PCA

Suppose we have computed the PCA for a dataset, then what does this tell us about the
data? As mentioned before, PCA tries to explain as much of the variance in the input
data as possible. Each of the components show an effect and its relevance in explaining
the variance. The hope is that the physical model that we actually want to describe
corresponds to the principle component(s) with the highest variance, since this signal
best distinguishes itself from uniform random. This also shows that heavily polluted
data can no longer be used in this analysis, as such data shows less variance.

Once we have found each of the principle components and their corresponding vari-
ances, we can apply dimensional reduction. In practice, this is done by simply considering
the components that have low variance, as we assume that these have nothing to do with
the process that we attempt to model, and therefore are considered noise. By taking
the k components with the highest variance, we end up with only k parameters to use
in the model. While this reduces the complexity of the model, a significant downside is
that the model becomes much harder to interpret, as a principle component is nothing
but a weighted sum over the input, and usually does not represent a physical quantity.
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7.5 Restrictions to using PCA

PCA is a very powerful tool, but one needs to be very careful in choosing how to apply
it to the data. Since PCA tries to maximize the variance in its input variables, we need
to normalize the data first. An easy example here would be using the wave direction and
the significant wave height. Since Hs rarely exceeds 2, its variance will be very limited.
On the other hand, it does not even make sense to define a mean for the wave direction,
as the data is circular. Under the assumption that the wave direction is uniformly
distributed we would find a mean of 180 and a standard deviation of a little over 100.
Thus it makes sense to normalize the data, i.e. by subtracting the mean for each of the
variable and then divide by the standard deviation. Note that subtraction of the mean
does not affect the PCA at all.

Another restriction is the assumptions of linearity in the sample data. This also is
why PCA does not work for circular data such as wave direction. Also, if there are
variables in the data that are, say, quadratically related, then the variance found using
PCA is going to be less than one might expect. Considering our belief that the MSI
is not linear, this assumption may later prove not to hold. Still there is a widespread
belief that PCA may still point in the right direction even if the assumption is that
linearity does not hold. Assuming linearity goes hand-in-hand with the assumption that
the principle components are linearly independent. Clearly, that is not always the case,
and hence the principle components found must contain noise to some degree.

7.6 PCA vs. SVD

Very closely related to PCA is the singular value decomposition (SVD, not to be confused
with SVM). The result of using SVD is the same as PCA, except that it uses a different
methodology to compute the eigenvectors of Σ. Whilst being harder to interpret, using
SVD has the advantage of having an algorithm that is faster and numerically more
stable. This last property is important since the covariance of independent components
is expected to quickly drop with the number of computed independent components. A
thorough explanation of SVD is given in the explanation of ICA below.

7.7 Independent component analysis

Thus far we introduced principle component analysis. As mentioned, PCA is mostly used
for dimensional reduction in order to distinguish the strongest correlated signals. The
goal of independent component analysis (ICA), however, is to decompose a multivariate
signal into independent signals. ICA does this in the same setting as PCA, i.e. the signal
under investigation is assumed to be a linear superposition of the underlying signals. The
most common use cases for ICA are the cocktail party problem and image blurring. In
the first case we attempt to separate one conversation from the background, in the other
we attempt to split the actual image from the blurring that is caused by motion. In
both these settings we cannot use PCA, since the noise is one of the vector responsible
for the variance. This is where ICA is useful, since ICA strives for independence of the
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signals rather than the best explanatory vector of noise. Below we first provide some
background, and then provide a derivation for ICA. Finally, the interpretation of ICA
as well as its restrictions are discussed.

7.8 Mathematical assumptions and derivation ICA

Similarly to PCA, ICA tries to find some useful linear transformation A. In PCA, the
goal was to get orthonormal vectors that attempt to maximize the variance. In ICA, the
goal is to find a linear transformation A such that the elements of s = Ax are statistically
independent. The only assumption other than linearity of the individual components is
the independence between the different signals that we try to distinguish. In the case of
the cocktail problem this makes sense, as the conversation is not going to be affected by
the background noise. However, when the process that is being investigated is not well
understood, this may not be the case. If ICA returns an unexpected signal from the data,
then this likely means the signal you are looking for is intertwined with another one.
Mathematically, this assumption is represented as E[sisj ] = E[si]E[sj ] ∀i, j. Another
way to describe this is that Cs = cov(s) = Im×m. Before we can properly explain ICA,
the singular value decomposition (SVD) is introduced. This is a generalization of the
eigenvalue decomposition, and a standard concept from linear algebra.

Theorem 2 (Singular value decomposition). Let A be a real m× n matrix. Then there
exists a singular value decomposition A = UΣV T such that

1. U ∈ Rm×m is an orthogonal matrix.

2. Σ ∈ Rm×n a rectangular diagonal matrix with only non-negative (real) entries
on the diagonal.

3. V ∈ Rn×n an orthogonal matrix.

A proof is provided in Appendix A.2. The singular value decomposition equals the
eigenvalue decomposition if A is normal and positive semi-definite. While the theorem
here is stated for real valued matrices, it also holds over the complex numbers after
replacing orthogonal with unitary. As mentioned earlier, we want to find a linear trans-
formation A such that s = Ax. As these linear transformations are real, A has a singular
value decomposition

A = UΣV T. (7.5)

This implies that for finding s we need to recover A−1 = V Σ−1UT. Note that Cx =
CAs = ACsA

T due to linearity of the expectation. However, since Cs is the identity, we
can further simplify this to

Cx = UΣV TV ΣUT = UΣ2UT. (7.6)
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Alternatively, we can also represent Cx using the eigenvalue distribution since Cx is a
symmetric matrix:

Cx = EDET. (7.7)

Here we use the fact that E can be chosen orthogonally. Hence we can now rewrite (7.5)
as A−1 = V

√
DE, where D and E are known. So the problem of finding an arbitrary

linear transformation A has been reduced to finding a rotation matrix V . While it may
not immediately be obvious here, is that in doing this we have effectively solved PCA to
obtain this factorization. A full explanation on how to find V from this point on goes
beyond the scope of this work, as the solution cannot be found analytically. However, it
involves solving the optimization problem

arg min
V

n∑
i=1

H[(V xw)i], (7.8)

where H[·] is the entropy of a distribution and xw =
√
DEx, using the method of

gradient descent. Informally, the solution of this optimization problem solves V since
the si are independent if and only if their shared mutual information (for which entropy
is a measure) is as small as possible. A more detailed explanation involving this as well
as ICA in general is provided in [17].

7.9 Other properties ICA

As mentioned before, ICA splits the different signals. However, it does not always
succeed in doing so. One of the main reasons for failure is an incorrect estimation of
H[(V xw)i] when using a limited set of data. This can be helped by adding more (diverse)
data, and should therefore not be relevant when working with large datasets. There also
exists a fast ICA algorithm, which converges cubic (usually, worst-case is quadratic, see
[10]) rather than the standard algorithm described here, which converges only linearly.
This means that ICA can be efficiently implemented, and hence be applied to larger
datasets, which is a prerequisite when doing machine learning.

Thus far we have discussed the basics of data science. In the next two sections, we
give some concrete examples of machine learning algorithms.
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8 Regression models

There exist many machine learning algorithms, but most of these algorithms are variants
of five basic regression models: polynomial regression, regression trees, support vector
machines, Gaussian process regression and neural networks. Below, we introduce the
first four algorithm and provide some examples to get an idea of their performance by a
one-dimensional test case. The last algorithm is introduced separately in Section 9, as
it is significantly different from the first four.

8.1 Polynomial regression

Linear regression, and more generally, polynomial regression, are the simplest and most
commonly used forms of regression. They work well when there is a clear relation
between the input and output variables, and polynomial regression models are relatively
easy to understand. Polynomial regression of degree n assumes that the response can be
described by a polynomial of degree n in the predictors. Surprisingly, the algorithm for
polynomial regression of degree n > 1 is the same as that of degree 1 (=linear regression).
This can be seen as follows: suppose that we have predictors x1, . . . ,xm. Then, define
yjk = xkj . for j = 1, . . . ,m and k = 1, . . . , n. Then an optimal solution for polynomial
regression corresponds directly to the optimal solution for linear regression when using
(yjk) as predictors. Thus it is sufficient to consider linear regression. To understand
how linear regression works, a deduction of linear regression using only one predictor is
given below. The general case is slightly more involved, but follows a similar reasoning.
Hence let us assume that m = 1 and f = ax+ b, which means we want to minimize

N∑
i=1

ε2i =

N∑
i=1

(yi − axi − b)2. (8.1)

Here (xi,yi) for i = 1, . . . , N denotes the training data of size N . In order to minimize
Expression (8.1), note that

N∑
i=1

ε2i =
N∑
i=1

(axi + b− yi)
2 (8.2)

=

N∑
i=1

x2
i a

2 + 2(bxi − yixi)a+ (b− yi)
2 (8.3)

=

(
N∑
i=1

x2
i

)
a2 +

(
2

N∑
i=1

(bxi − yixi)

)
a+

N∑
i=1

(b− yi)
2 (8.4)

= Nb2 +

(
2

N∑
i=1

(axi − yi)

)
b+

N∑
i=1

(axi − yi)
2. (8.5)
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Note that the last two expressions are simple quadratic functions in a and b, and are
therefore minimized at

a =
−2
∑N

i=1(bxi − yixi)

2
∑N

i=1 x2
i

(8.6)

=

∑N
i=1(yixi)−Nbx̄∑N

i=1 x2
i

(8.7)

b =
−2
∑N

i=1(axi − yi)

2N
(8.8)

=
1

N

N∑
i=1

yi −
a

N

N∑
i=1

xi (8.9)

= ȳ − ax̄. (8.10)

Here we write x̄ and ȳ to represent the mean of P and O respectively. Substituting
(8.10) in (8.7) yields

a =

∑N
i=1(yixi)−N(ȳ − ax̄)x̄∑N

i=1 x2
i

(8.11)

⇔ a =

∑N
i=1(yixi)−Nȳx̄∑N
i=1 x2

i −Nx̄2
(8.12)

=

∑N
i=1(yi − ȳ)xi∑N
i=1(xi − x̄)xi

(8.13)

=

∑N
i=1(yi − ȳ)(xi − x̄)∑N

i=1(xi − x̄)2
. (8.14)

Here the last step follows as
∑N

i=1(xi− x̄)x̄ = 0 =
∑N

i=1(yi− ȳ)x̄ as a direct consequence
of the definition of x̄ and ȳ.

Now let us consider the case with multiple predictors. If we want to find an optimal
approximation using m predictors, we want to find (a, b) ∈ Rm × R that minimizes

E =

N∑
i=1

(yi − aTxi − b). (8.15)

The solution to the multivariate minimization problem is given by

(a, b) =
(
XTX

)−1
XTY. (8.16)

Here X = (xi, b) ∈ Rm+1×n and Y = (yi) ∈ Rn. Note that in the case of one predictor
this formula simplifies to (8.14).

Whilst linear regression is a very powerful tool, it has some limitations:
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• First and foremost, the model only works on assumption that the data is linear.
This directly means that outliers, with a relatively large error, can significantly
harm the estimate. Also, for processes that are not linear, one typically sees large
errors among the extremes of the dataset.

• While linear regression is capable of handling errors in the observables, it assumes
there to be no errors in the predictors. When using time as a predictor, this
usually holds, but if the predictor is a measurement, or even worse, a forecast,
this assumption this might be far from the truth. There exist variants on linear
regression called robust linear regression that can deal with such errors, but this
comes at the cost of model performance.

8.2 Regression trees

Regression trees are conceptually just a series of if-then statements. In contrast to many
of the other regression methods, its output is not continuous but instead a finite discrete
subset of the observable space. For example, if we want to estimate the selling price for a
house (which is more or less continuous), we can round the selling prices to multiples of
10.000, and then use rules based on variables such as distance to city (> 10km or not) to
best fit the house to a price category. Mathematically, this means that regression trees
transform the continuous problem into a classification problem, where the categories
are subsets of the observable space. Then, the problem is solved using a solver for
classification learning, in this case classification trees. A graphical illustration is given
in Figure 8.2. By design, classification trees usually have no fitting error amongst the
training data. A direct consequence of the non-existence of such a fitting error is that
the model is almost always over-fitted. Furthermore, regression trees are very poor at
prediction for data outside the training range: the model can only predict as much as
the most extreme training point.

A special type of regression tree is the tree ensemble. A tree ensemble is a weighted
superposition of various trees, each of which fits the data using different parameters.
This vastly reduces the over-fitting, whilst maintaining the low fitting error amongst
the training data. However, a significant downside of ensembles is that they are hard
to interpret and rarely describe a physical process. Also, predicting extremes stays
problematic, as the model still cannot extrapolate. Finally, keep in mind that neither
model is continuous.

8.3 Support vector machines

A support vector machine (SVM) is a clustering algorithm that attempts to best split the
data using a higher-dimensional hyperplane. While originally designed as a classification
algorithm, there is an easy adjustment that changes SVM into a regression learner. The
latter is referred to as support vector regression (SVR), but in this work no distinction
is made. SVM is a broadly used algorithm, but it failed to deliver any significant results
for predicting motion sickness, and therefore a detailed analysis is omitted. Still, this
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Figure 8.1: Schematic concept of a regression tree of depth 2 using predictors a, b to
estimate some function f .
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  x122 >= 0.0115889  x16 >= 0.0194995  x64 >= 0.865003  x12 >= 0.0109228  x90 >= 1.31219  x20 >= 0.0275744  x114 >= 0.00467477  x121 >= 0.0498237  x147 >= 0.0326762  x152 >= 0.0197208  x125 >= 0.0862107  x86 >= 1.09283  x86 >= 3.98453  x118 >= 0.0145336  x114 >= 0.0821496  x37 >= 0.67991  x153 >= 0.0384558  x50 >= 2.85821  x154 >= 50.525  x80 >= 4.20287  x6 >= 0.0973283  x110 >= 0.00827308  x129 >= 0.294293  x154 >= 43.9589  x123 >= 0.124237  x38 >= 0.557004  x145 >= 0.0177502  x101 >= 2.74661  x34 >= 4.21928  x125 >= 0.303072  x66 >= 16.1656  x8 >= 0.0922958  x118 >= 0.0591618  x93 >= 46.9881  x115 >= 0.094373  x149 >= 0.0435841  x86 >= 38.1089  x48 >= 8.11099

  x18 >= 0.0130402  x130 >= 0.0361417  x103 >= 8.1931e-05  x100 >= 4.64303  x133 >= 0.023134  x126 >= 0.0601282  x61 >= 1.33276  x114 >= 0.00807299  x27 >= 0.304079  x133 >= 0.15414  x117 >= 0.0432898  x6 >= 0.0117606  x32 >= 0.154571  x23 >= 0.217046   x125 >= 0.0845789  x25 >= 0.238684  x28 >= 1.67953  x24 >= 0.0374616  x43 >= 4.08032  x151 >= 0.0167668  x17 >= 0.1261  x134 >= 0.100892  x137 >= 0.0654995  x43 >= 10.7569   x142 >= 0.0936142  x133 >= 0.320115  x93 >= 25.443

  x68 >= 1.97113  x88 >= 1.79399  x7 >= 0.00172537  x134 >= 0.0699775  x99 >= 2.70163  x116 >= 0.017399  x115 >= 0.0133527  x26 >= 1.2752  x114 >= 0.297533   x19 >= 0.392477   x108 >= 0.00895909  x126 >= 0.139487  x134 >= 0.3874   x76 >= 7.07651  x31 >= 4.49927  x100 >= 25.9766  x52 >= 6.12302  x68 >= 10.4021  x140 >= 0.062887   x65 >= 36.5687  x58 >= 10.4757

  x147 >= 0.0131473  x68 >= 1.13949  x44 >= 0.884165  x55 >= 1.95652  x88 >= 10.3917  x124 >= 0.0583729  x68 >= 2.02451   x13 >= 0.11378  x135 >= 0.039088  x12 >= 0.0087387   x103 >= 0.000450962  x122 >= 0.238407  x135 >= 0.0854126  x106 >= 0.00401766  x50 >= 10.5479  x25 >= 2.56032   x34 >= 3.92195  x37 >= 6.69707

  x19 >= 0.101838  x14 >= 0.0164709  x17 >= 0.031459  x95 >= 2.73068  x6 >= 0.0486279  x121 >= 0.0213756  x16 >= 0.234343   x24 >= 0.298534  x39 >= 2.40598  x80 >= 5.5801  x122 >= 0.223408  x50 >= 1.1964   x24 >= 2.09162  x154 >= 46.9936  x128 >= 0.287426  x14 >= 0.49033

  x93 >= 3.24907  x153 >= 0.0520712  x24 >= 0.046886  x60 >= 1.27101  x110 >= 0.00436702   x99 >= 1.38407   x115 >= 0.0174846  x154 >= 44.5674   x151 >= 0.0214202  x129 >= 0.199367  x47 >= 8.92234

  x90 >= 3.41232  x51 >= 2.38119  x62 >= 1.59702  x36 >= 0.944185   x84 >= 1.90258   x5 >= 0.0517909  x43 >= 0.614628  x90 >= 14.5137

  x64 >= 4.33258  x93 >= 5.83265  x81 >= 7.42153

  x133 >= 0.0566767   x87 >= 6.64056

  x55 >= 4.17787  x59 >= 6.50605

  x124 >= 0.150774  x154 >= 40.5549

  x142 >= 0.0859803  x19 >= 0.522431

  x126 >= 0.107278  x143 >= 0.051223

  x54 >= 2.39461  x61 >= 4.54148

  x68 >= 2.6917

  x104 >= 0.000541753

Figure 8.2: Example of what a realistic regression tree looks like.
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does not immediately disqualify the algorithm even for prediction of motion sickness.
The clue is finding a good transformation which transforms the prediction data into a
hyperspace that is suitable for SVM. The investigation to find such a transformation is
left to the reader.

8.4 Gaussian processes

The final machine learning algorithm is called Gaussian process regression, also known
as kriging. This method aims to give the best linear and unbiased prediction of the
intermediate values. It achieves this by computing a weighted average of the known
function values in the neighbourhood of the point under investigation. The following
analysis is based on [16].

Before looking deeper into the regression itself, we first need to build up a basic
understanding of the relevant mathematics.

Definition 1 (Gaussian process). A Gaussian process (GP) is a collection of random
variables, such that taking a finite subset of such random variables have a joint Gaussian
distribution.

An example of such a process is the height of the water surface as a function of time
(or space), since we assume that the wave height at any point is presumed normally
distributed around the mean water level. Gaussian process regression works on the
principle of starting with a prior distribution over functions, to obtain a new distribution
that has a very small error around known data points, but that has a larger deviation
further away. This corresponds to the case where we know the behaviour of the function
near measurements, but where we face increasing uncertainty the further away we get
from these points.

First, let us assume that we live in a world where the training set X does not contain
any errors, and that therefore the function value f(xi) for xi ∈ X is perfectly known.
Let us also assume a prior of f ≡ 0. Let K(X,X ′) ∈ R|X|×|X′| be the covariance matrix,
which we at this point will treat as a black box that shows how well the different points
from X are correlated with points from a (different) set X ′. In the literature, this matrix
is sometimes also referred to as the covariance kernel. Then we know that for new data
X ′ and f ′ := f(X ′), their joint distribution is given by[

f
f ′

]
∼ N

(
0,

[
K(X,X) K(X,X ′)
K(X ′, X) K(X ′, X ′)

])
. (8.17)

Note that K(X ′, X) and K(X,X ′) need not be square matrices, but K(X,X) and
K(X ′, X ′) are. Up to this point we have not done anything interesting: we merely
acted as if we had a larger training set. However, we can now condition the predicted
mean and errors of the new data X ′ on the older data. This way we effectively change
the prior based on the recorded data. Another way to look at this step is that the initial
assumption of allowing any function with mean zero is now being changed to only allow
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Figure 8.3: Example of Gaussian regression for f(x) = x sin(x), with errors in the
training data. Note that the confidence interval becomes smaller if the training set
agrees well with the prediction line (low variance), and larger if they do not [5].

functions that agree with the observed data from the training set. Mathematically, this
step is given by

f ′|X ′, X, f ∼ N
(
K(X ′, X)K(X,X)−1f,K(X ′, X ′)−K(X ′, X)K(X,X)−1K(X,X ′)

)
.

(8.18)

The actual function values f ′ can now be obtained by sampling the distribution
above. Keep in mind that the distribution above is a vector, and each entry a function
of the test data as well as the training data. This model can be improved to incorporate
noise in the input data. Assuming that this noise is also Gaussian with zero mean and
variance σ2, we can replace K(X,X) with K(X,X) + σ2.

So what about this magical covariance matrix? The covariance function determines
the smoothness of the estimated curve by putting different weights on the various types
of errors. There are several ways to define the covariance function. A stronger covariance
kernel results in curves that are less smooth since they put more emphasis on getting
close to the training data. However, this comes at the cost of a greater risk of over-fitting.
The most common covariance kernel is the squared exponential kernel and is defined as

K(X,X ′)ij :=k(xi,xj |θ) (8.19)

k(xi,xj |θ) :=σ2f exp

(
(xi − xj)

T(xi − xj)

2σ2l

)
, (8.20)

where σl and σf can be computed as

θ1 = log(σl) θ2 = log(σf ). (8.21)
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This is also the kernel that I am using when applying Gaussian regression unless specified
otherwise.

The observant reader may have noticed that we are using two parameters which I
am yet to formally define: θ and σ2. In general there is also a third parameter β, which
is the coefficient vector for the basis functions that describe the initial state if the prior
is not assumed to be zero. The estimation of these parameters is done in such a way
that we maximize the log likelihood on the training data:

β̂, θ̂, σ̂2 = arg max
β,θ,σ

logP (y|X,β, θ, σ). (8.22)

How this is computed exactly falls outside the scope of this work, but is standard included
in any machine learning software package.

Finally, there are several issues regarding the computation worth noting. Firstly, the
process above requires inverting K(X,X). Matrix inversion is generally expensive, and
results in a computational complexity of O(n3) for a training set of size n. Furthermore,
there are significant memory requirements for the scheme above O(n2). For the specifics
on these matters (and much more) we refer to [16].

8.5 Examples machine learning

Let us illustrate all this theory with some examples. Let

f(x) =

{
x for x < 5

5 otherwise
(8.23)

be the function that we want to approximate. Figure 8.4 illustrates how each of the
models performs, when trying to predict f without noise. The linear estimate and SVM
prediction are almost the same, since both try to establish some linear relation if the
predictor is 1-dimensional. We are not trying to predict a linear function, and thus two
models perform relatively poorly. We can see that the ensemble performs significantly
better than the tree predictor. This makes sense, since there are no errors in the input
data, meaning that the model cannot be over-fitted. This example also nicely illustrates
the step pattern resulting from using regression trees. Finally, note that the Gaussian
predictor estimates the function almost perfectly, with the exception being around x = 5,
as a consequence of its assumption that f was smooth. The errors that are included in
the legend are computed by taking the mean squared error (MSE) over the predicted
values for x ∈ [0, 10], by sampling this interval every 0.01.

Now suppose we also allow for noise, by adding a normally distributed error vector
(σ = 0.5) to the function values for the training data. The results are given in Figures
8.5 and 8.6. The latter has been plotted using f = x sin(x) and also features a gap in
the training data.

In the next section we introduce the final machine learning technique, artificial neural
networks. The results from all these techniques are shown and compared in Section 10.
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Ensemble: 0.32269
Gaussian: 0.031967
Linear: 0.7242
SVM: 0.72387

Figure 8.4: Example of how the various machine learning models perform in 1 dimension
without noise. The linear approach and support vector machine result in the same
prediction. Validation errors are provided in the legend.
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Linear: 0.75382
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Figure 8.5: Example of how the various machine learning models perform in 1 dimension
with normally distributed noise. The linear approach and support vector machine result
in the same prediction. Validation errors are provided in the legend.
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Figure 8.6: Example of the weakness of the tree and tree ensemble, using f(x) = x sin(x)
with noise. Note that the ensemble performs worse than the tree since it is over-plotted
near the noise. Also, near the gap in training data both tree model clearly have very
significant errors.
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9 Neural networks

Thus far we have introduced most of the frequently used regression models, as well
as some techniques associated with it. There is one final candidate that is yet to be
discussed, and more precisely, this concerns a class of regression learners: the artificial
neural network (ANN). Similarly to the regression models, ANN’s can be approached as
black box models, but they are far more useful if we understand why these models work.
The idea behind neural networks is that they work similarly to how our brain processes
information: it receives a bunch of inputs from our senses, and from this information
manages to extract useful knowledge about the world around us. The key aspect here
is that in doing so, our brain does not need to have a complete understanding of the
processing underlying its observations, and is capable of doing so using neurons that can
only be on or off. The goal of neural networking is to simulate this process, by creating
artificial neurons that do the same, but in a more efficient manner, since we do not
have trillions of neurons available. In theory, ANN’s should perform really well, as the
universal approximation theorem for ANN’s tells us that the space covered by ANN’s
lies dense in the space of continuous functions Rn → Rm. Practice shows, however,
that neural networks require immense amounts of data to obtain said accuracy. In the
remainder of this section we introduce the basic concept of artificial neural networks,
then we show how to complement this with backpropagation. Finally some concrete
algorithms for ANN’s from literature are discussed.

9.1 The basic concept

As said above, an artificial neural network tries to mimic the way our brain works. It
takes some inputs, and tries to approximate the output we are interested in. The simplest
neural network looks like the diagram below in Figure 9.1, and consists of the inputs,
the input layer, the hidden layer(s), the output layer and finally the output itself.

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 9.1: Basic neural network structure [21].
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X1

X2

X3

1

f(w1X1 + w2X2 + w3X3 + b)w1

w2

w3

b

Y

Figure 9.2: Sketch of the inputs and output of a single neuron, which is connected to
three other neurons Xi and attains value Y . The wi represent the weights on the various
edges, and b the bias (which is not a neuron).

Whilst this diagram only features a single hidden layer, there can be many (say, a
dozen) in general. We distinguish between 4 distinct aspects within this diagram:

1. The input and output layers, in which the predictor and response variables are
represented.

2. The hidden layer, which for now we consider to be a black box.

3. The neurons, which form the basis of each of the layers.

4. The connections between the various layers, which form a complete bipartite graph
between consecutive layers.

The input and output layer are already familiar: these are the same as for any other
machine learning model. However, neurons usually parse their output to a finite interval,
say [0,1], by means of an activation function f . More on this function comes later. This
way we avoid that the network becomes linear. Then we get one, or usually several,
hidden layers, which consist of a number of neurons. Both the number of neurons
per layer and the number of layers can be chosen as input to neural network creation.
The hidden layer usually has no meaningful interpretation, and in general cannot be
interpreted at all (alas the name). Between each two adjacent layers, a complete bipartite
tree is drawn, after which each edge is assigned some weight. This is illustrated in Figure
9.2. Then the value of a single neuron can be computed as a function of the weighted
sum of the neuron values from the previous layer plus some bias. Note that all these
weights and biases are input to the neural network.

The activation function f : R→ R is used to determine what value a neuron attains,
and is used primarily to introduce non-linearity into the model. This is important, as
otherwise we might as well use linear regression. Popular choices for this function are the
Sigmoid function f = (1 + exp(−x))−1, the hyperbolic tangent, or the rectified linear
unit f = xx>0. These result in values in [0, 1], [−1, 1] or positive values respectively.

As the algorithm runs, all of the weights and biases change. How we do this exactly
is called the learning rule, and what rule is used depends on the algorithm. Still, the
general concept is the same: we want to minimize the error between the various outputs
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and the predicted outputs, by means of a cost function. Whilst this is once more subject
to choice, usually the mean squared error is used. Given a training set (X,Y ) of size N ,
this means we want to solve the minimization problem

min
w,b

C(w, b) := min
w,b

N∑
i=1

(ANNw,b(Xi)− Yi)2 . (9.1)

This is not an easy problem to solve. Suppose we have 150 input variables, 10 hidden
layers of 10 neurons and 1 output, then we have 150*10+9*10*10+101=2501 variables
to optimize over (number of edges plus biases). However, when using neural networks for
image recognition this can easily extend to tens of thousands of variables. One way to
solve this problem is by means of gradient descent, but there exist various other solution
methods for this problem. Gradient descent was originally proposed by Cauchy and
assumes that we can find the global solution by searching for a local minimum. This
can be done by looking for the direction of steepest descent, which can be found by
computing the gradient. Then a small step is taken in the direction of this gradient,
after which this procedure is repeated. We stop when the solution stops improving,
i.e. the derivative is very small in all directions. One can think of this procedure as
a ball rolling down a mountain in our hyperplane in the direction where the slope is
steepest, and we stop moving when the slope becomes (almost) horizontal. We assume
that this means we have found a local minimum. This gradient search is repeated several
times, so that we find a multiple local minima. We assume that the best local minimum
that we have find this way either is the global minima, or has a function value very
close to the global minimum, and is returned as the tentative optimal solution. A more
detailed explanation of gradient descent, which in particular focusses on how to choose
the step size, is given in [23]. The main problem left for machine learning is how to
compute the gradient. As we apply a non-linear function at each neuron, an analytical
approach is not feasible. A numerical approach, on the other hand, is also not desirable,
since this requires evaluating the neural net in the direction of each of the variables,
of which we have thousands. This is why we use backpropagation, which avoids this
problem altogether.

9.2 Backpropagation

So really, the algorithm tries to solve some abstract optimization problem in a very
high-dimensional space. It must therefore not come as a surprise that the solution in
the hidden layers cannot be interpreted very easily.
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N11X1

N12X2

N21

N22

N3 Output

Hidden
layer

Input
layer

Output
layer

Figure 9.3: Example neural network with 2 inputs, 1 hidden layer with two neurons, and
1 output.

One way to improve this is called backpropagation or backwards propagation of
errors. For the sake of explanation, suppose we use no activation function, and have
binary inputs and outputs. Now consider the example from Figure 9.3. Suppose that
the initial state is given by Figure 9.4.

0X1

0X2

0

0

0 Output

0.5

0.5

0.5

0.5

0.5

0.8

Hidden
layer

Input
layer

Output
layer

Figure 9.4: Example neural network where the values in the nodes give the respective
biases, and the values along the edges their respective weights.

Now suppose that we have an observation X = (1, 0) with Y = 1 as training element.
If we follow the network, we can use the current network to get a prediction as is shown
in Figure 9.5.
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1X1

0X2

0.5

0.5

0.65 Output

0.5

0.5

0

0

0.25

0.4

Hidden
layer

Input
layer

Output
layer

Figure 9.5: Values of prediction scheme using the training data X = (1, 0). Along the
edges we show the relative contribution of its source node to its recipient. Thus the
network currently predicts the response to be 0.65.

The neural network currently predicts a value of 0.65, and therefore makes an error
of 0.35. Since we want to do better, we consider the weights w31 and w32. If we consider
the impact of each of the weights, we note that changing their weights results in equal
rise of function value, and this occurs with rate 0.175 (as both hidden neurons have
value 0.5, and the output neuron needs to change 0.35). On the other hand, increasing
the bias of the last neuron results in an increase rate of 0.35. Finally, increasing the
values of the hidden neurons results in a change of 0.5 ·0.35 = 0.175 and 0.8 ·0.35 = 0.28
respectively (the weighs of the respective edges). Now we repeat this process for each of
the hidden nodes: we compute the rate at which of changing the values of single weight
or bias changes the final value. For this we need to sum the impact a neuron has when
it affects multiple neurons in the next layer: changing the first impact layer can result
in a change for both of the hidden neurons. In general this sum can take both positive
and negative values. Therefore, this computation is generally done per layer, after which
aggregation can be done immediately. This way we obtain the following state:

+0.23X1

+0.23X2

+0.175

+0.28

+0.35 Output

+0.175

+0.28

0

0

+0.175

+0.175

Hidden
layer

Input
layer

Output
layer

Figure 9.6: Contribution to the backpropagation using the training data X = (1, 0) with
Y = 1. In the nodes we show the relative change in bias, whilst in the edges the relative
change in weight is given.

Note that this leaves us with a rate for each of the parameters. It can be proven [9]
that the rates we end up with, only need to be normalized to get the gradient. However,
in general we have more than one training example, and then the final result is the
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average over all of the gradients that are computed in this way. In practice, this is not
done, as usually the set of training data is extremely large. Then, only a portion of the
data (batch) is used to compute the gradient at that step, and a different batch is used
in each iteration. This improves the training time, without losing a lot of accuracy.

0.23X1

0.23X2

0.175

0.175

0.35 Output

0.675

0.78

0.5

0.5

0.675

0.975

Hidden
layer

Input
layer

Output
layer

Figure 9.7: The new biases and weights for the same network after learning with example
X = (1, 0) and Y = 1 via gradient descent without normalizing and with step size 1.

Now consider the updated network for Figure 9.7. Does this network actually perform
any better? The short answer is no: upon re-evaluating the network for the same training
example we find that the network currently predicts 2.31. The long answer, however, is
that we did not normalize and the step size is too large. This meant that all of these
changes combined were too much, and we should have chosen a (much) smaller step size.
As was mentioned earlier, more details on how to choose the step size are given in [23].

9.3 Specific models

The algorithm for learning an artificial neural network presented thus far has many
different variants. For example, how we distribute the training data over the various
batches is currently not discussed. One can simply divide the set of training data and
then use each of the batches once, or use each one several times. In the latter case, there
is yet more choice, as we can use the various batches in a cyclic manner, or pick one at
random. We can even reshuffle the batches in between iterations.

Let us mention one specific model that stands out when used for MSI prediction,
called Bayesian regularization. Below the general concept of Bayesian regularization is
briefly introduced below, but the specific variant that is used is by Foresee and Hagan
[4]. Bayesian regularization makes use of the Levenberg-Marquardt algorithm, which
is used as a generic least squares solver like gradient descent. Bayesian regularization
furthermore makes use of principles seen in Gaussian regression (Section 8.4). The
Levenberg-Marquardt involves estimating the Hessian of our target function at each
time step, which can be computed via backpropagation similar to how gradient descent
uses the gradient.

Regularization implies that rather than trying to minimizing the network errors
ED, we add an additional penalty EW term for the network. Here EW is defined as
the sum of the squares of the network weights. So the objective function we try to
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minimize over, which was ED, now becomes a minimization problem with objective
function αED + βEW . How to choose these parameters α and β is rather involved, but
it is based on a derivation using Bayes’ rule, and discussed in detail in [12]. α and β
are both updated at each iteration, and therefore the objective function keeps shifting.
The algorithm terminates when the objective function is no longer changing. The final
solution is then computed via one more step of the Levenberg-Marquardt algorithm.
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10 Results

As we saw earlier, the analytical approach did not achieve the desired accuracy. Hence,
we now approach the problem using machine learning and ANN’s. In this section we
present the results from both approaches. To provide a reference frame: a best-fit linear
model, which did not provide sufficient accuracy for MSI prediction, achieves a mean
squared error of approximately 21. Below, we first justify our choice of machine learning
algorithms via some initial testing. Then, we discuss which predictors have been used
precisely, and show the results from extensive testing with the various machine learning
models. At this point we validate our choice of predictors, and show their relevance in
the trained machine learning models. Here we see that not all predictors achieve the
relevance that we expected, and try to give an explanation where possible. To show the
applicability of a model trained on a location to other sites, we test the trained models
on a different (but comparable) site, called the Westermost wind farm. This comparison
illustrates that a model trained on one site can not be immediately be used on another,
and entirely new models must be used instead: by training the models on data from the
Westermost wind farm, the machine learning models achieve the same level of accuracy
as the tests on Greater Gabbard. Then, the same is done for neural networks: we
explain our choice of specific ANN algorithms as well as the other parameters used, and
try to deduce their significance. Contrary to the machine learners, the ANN’s perform
significantly better on the Westermost wind field. We end this section with a comparison
of the results from the theoretical approach with those from machine learning and ANNs,
and conclude that the best predictive model can be trained using a well-configured ANN.

10.1 Model choices machine learning

The models for which the results are elevated below are tree regression, tree ensemble
regression and finally Gaussian regression. The choice to restrict to these models is made
after some preliminary testing with the dataset using support vector machines and linear
regression, see Figure 10.1 and 10.2. Figure 10.1 shows that SVM makes errors on the
training set that are already significantly higher than the alternatives make on their
validation data. In Figure 10.2, the linear model is shown to make errors that are
significantly higher than the alternatives. Combined with the low training errors for
linear regression, we can only conclude that these models are either over-trained or try
to describe a non-linear process using linear functions. Either way, the errors made by
SVM and linear regression are approximately twice as large as those made by the tree
regression and Gaussian regression, and hence no additional time has been invested into
these methods. From now on, we only consider the regression tree, the tree ensemble
and Gaussian regression.

10.2 Predictors

As was mentioned earlier in Section 6, the choice of predictors is very important for
getting good predictions. Below, each of the predictors used for predicting MSI are
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Figure 10.1: Error plot of the Iceni Venture for training data for various models. Errors
are limited to ±25 to keep the plot easier to read, but they may in fact be larger.
Note that especially the regular linear model (yellow) and the SVM model (darker blue)
perform very poorly.
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Figure 10.2: Error plot of the Iceni Venture for validation data for various models. Errors
are limited to ±25 to keep the plot easier to read, but they may in fact be larger. Note
that especially both linear models (yellow and red) perform very poorly (both a regular
as well as a robust linear model are tested).
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Figure 10.3: Correlation between the wave spectrum and MSI.

introduced together with their importance in modelling MSI. For each of these predictors
the correlation between the predictor and the normalized MSI (MSI normalized to a 1-
hour period) is given, and an explanation is given where possible.

10.2.1 Wave spectrum

As the first predictor we use the wave spectrum for heave motion, as is recorded by
the Cefas buoy near the Greater Gabbard wind farm. This is a significant predictor for
motion sickness as experienced by the vessel: in Figure 10.3 we can see that there is
a correlation of almost 60 percent between normalized MSI and the wave spectrum. It
is also immediately clear that it is not sufficient information to accurately predict MSI
using any of these values as individual indicators. An interesting observation is also that
the extremely low frequencies appear to have significant correlation with MSI (> 0.5
for frequencies between 0.01 and 0.04). Whilst this might be an indicator for another
process, no clear reason as to why this peak exists can be given from a purely physical
standpoint.

10.2.2 Significant wave height

The significant wave height Hs is the single most important wave characteristic to de-
scribe the sea state, and also was the single best predictor for MSI using just the linear
model. It should therefore not come as a surprise that Hs is the parameter that has the
strongest correlation with MSI in the set of features that we use, with a correlation of
0.591.
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Figure 10.4: Scatter plot of speed versus MSI.

10.2.3 Speed

Speed is defined as the speed over ground (SOG) and computed by looking at the dif-
ference in GPS coordinates over time. Surprisingly, there exists a (weakly) negative
correlation between the vessel speed and MSI of -0.147. While this may not be a pa-
rameter that is known prior to departure, it is one that we can manipulate, and can in
theory be changed as to minimize the MSI. A scatter plot of vessel speed versus recorded
MSI is given in Figure 10.4. There we see that this correlation is not the result of non-
linearity, but rather of speed not being able to be used as a predictor, since no trend
is distinguishable by inspection. The only plausible explanation for this phenomenon is
that the vessel may be forced to slow down as a result of extreme weather. Under that
assumption, we cannot deduce any statistical information from the dataset regarding
speed, as the data must be skewed. A second explanation may be that if the vessel is go-
ing faster, the assumption of the vessel following the waves is no longer true. This might
mean that the vessel skips over a larger portion of the waves, and therefore experiences
fewer motions in general.

However, the relative speed of the vessel, here defined as the speed differential be-
tween the vessel and the wave corresponding to the wavelength where the most energy
is allocated, is weakly positively correlated (0.084). Still, this is not a result of any
statistical significance.

10.2.4 Predictor wave spectrum

The expected wave spectrum is obtained via the parametrization of the vessel from
the analysis in Section 5. To compute this spectrum we use the speed, relative angle,
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standard deviation for the relative angle and wave spectrum from all of the Cefas buoys
where available. If we have 3-dimensional data available, we use those values instead of
the 1D wave spectra. Where missing, we substitute the relative angle to equal π

2 , i.e.
port side waves. The standard deviation defaults at 0.5, which is roughly equal to the
average standard deviation. If wave spectra are not available, we discard the dataset for
that day entirely. The output is the expected spectrum in the range of [0,1] Hz.

10.2.5 Indicators

Besides all the previous predictors, we also include an indicator parameter that indicates
whether the model was trained using recorded wave directions from the 3D wave radar,
the 1D wave radar, or the default values (in case no directional data is available). This
might specifically benefit tree learning algorithms, as they can easily classify the results
based on this criterion. This way, the indicator serves as an additional layer of accuracy.

10.2.6 Vessel length

The length of the various vessels is also included, as this effects which wavelengths the
vessel is most affected by. It also provides us with an easy way to distinguish between
the various vessels. It has a correlation of -0.14 with MSI, which makes sense: vessels
should be deployed up to their respective operational limits, and (at least in theory)
these limits correspond to the same type of vessel motions. Thus, for both smaller and
larger vessels, the MSI attains low and high values.

10.3 Results machine learning

Using machine learning we obtained results with an MSE of roughly 10 on the global
dataset. The results are oblivious to the vessel type and plotted in figures below, where
training and validation has been performed with the same datasets. We see that the three
prediction methods provide very similar results, and testing this several times shows that
no method ever gets a significant advantage over the others. Moreover, prolonged test-
ing showed that each of these methods outperform the others on selected partitions. To
compare their results, we performed the Kolmogorov-Smirnov goodness-of-fit hypothesis
test, to see if either model performed significantly better. The results used to perform
this comparison are 100 cross-validations, which have been performed on each of the
models. These result in average MSE errors of 11.20, 11.96 and 11.41 for Gaussian
regression, tree regression and the tree ensemble respectively. With these results, we
find that the null-hypothesis that the models result in errors that follow the same dis-
tribution is rejected, as the probability that all errors follow the same distribution is
less than 10−10. This holds for both tree models relative to the Gaussian regression.
Since the mean of Gaussian regression is significantly smaller than its alternatives, we
conclude that Gaussian regression has the best performance of all the machine learning
models. Illustration of the error distribution for all three models are given in Figures
10.5 and 10.6. At this point, however, we still cannot make any claims about the actual
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performance or robustness of these models. Therefore, we now investigate the impact of
each of the individual parameters on the model.
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Figure 10.5: Error histogram on global dataset.
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Figure 10.6: Cumulative error histogram on
global dataset.

10.4 Influence individual parameters

In order to investigate how the final model behaves, we consider the impact of the
individual predictors within their valid range. This is done by training the data on a
dataset, i.e. on the combined input of all vessels serving the Greater Gabbard site. The
results are shown in Figure 10.7. Since we need to keep the remainder of the parameters
constant for this plot, we predict MSI using one instance of the training data, and then
vary one particular parameter. The plotted data here are representative instances of
the behaviour of that parameter for the choice of the training data. Consequently, the
absolute value for the MSI in any of these plots has no significance, but the deviation in
the error does.

When considering Hs, there is only minimal impact on the expected MSI. This might
come as a surprise: this was the single most important predictor beforehand. However,
Hs can be derived from the wave energy spectrum, and therefore be implicitly used in
the model. Also, notice that the indicator for whether or not directional data was used
had absolutely no impact on the expect MSI.

Speed also poses an interesting question. Whilst the correlation analysis showed that
the speed is almost perfectly uncorrelated to MSI, there appears to still be a significant
connection to MSI. This probably implies that this parameter should not be considered
by itself, but rather by applying some transformation, or in combination with one of the
other predictors.

The indicator, which shows whether or not the wave data contains the 3D spectral
data, appears to have no impact at all, as all three models are invariant under the
indicator. Therefore, we could remove this freely.

For considering the effect of the energy spectra for the raw cefas data on MSI, we
have chosen to scale the spectrum by a factor between 0.1 and 2. Whilst the tree learners
vary wildly, the Gaussian predictor does not show any change at all. Although the MSI
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here is limited, and therefore also the net error, it is surprising that the behaviour of the
regression ensemble actually shows a decline with increasing energy spectrum. This is
in sharp contrast to the results from applying the same procedure to the parametrized
energy spectrum, where the Gaussian predictor shows a strong positive trend for almost
all of the energy spectra. The prediction from the other models remain more or less
constant, although we can often notice large fluctuations.

Let us consider the effect of scaling both energy spectra. Now we notice that all three
models follow a positive trend, with the tree models fluctuating around the Gaussian
predictor. This holds until we consider the higher energy spectra, and we attempt
to extrapolate beyond the data by looking at what happens beyond the dataset. A
good example if given in Figure 10.7g. We see that initially the predicted MSI rises as
expected, but after the scaling factor approaches 1, we initially see a drop, likely due
to sparsity in the training set that results in moderate over-fitting, followed by a rise
to roughly its original peak level, and remaining constant afterwards. For the Gaussian
predictor we suspect this behaviour to be a result of the lack of data beyond this point.
Therefore the Gaussian model assumes nothing about this function,. and the most likely
trajectory is a straight line beyond the final training point (since this is the last known
tangible point), as we see in the figure.

Finally, to see how important each of the predictors is, we have removed each of the
parameters to see how well the model performs entirely without them. The results are
given in Table 10.1. Note that the values from relatively small sample sizes, but it is
clear to see that removing the predicted wave spectrum improves the performance for
both the tree regression algorithms, and their performance even supersedes the Gaussian
regression using all predictors. At the same time, removing the predicted wave spectrum
only worsens the prediction from Gaussian regression. The best explanation we can give
for this is that the Gaussian regression is better at using all of the data at the same time,
while tree regression only benefits if it uses predictors with more dense information about
the response variable.

Table 10.1: Average MSE when omitting one of the predictors. The results are obtained
by performing 5 cross-validations, each time with a single predictor removed, and then
compute the mean error.

Omitted predictor Tree regression Gaussian regression Tree ensemble

Predicted vessel spectrum 11.41 12.10 10.79
Raw Cefas spectrum 15.11 12.68 15.05

Hs 11.86 11.24 11.19
Speed 12.12 11.74 11.62

Indicator 11.46 11.22 11.58
Vessel length 11.88 11.60 11.11
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(a) Predictor Hs.
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(b) Predictor speed.
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(c) Impact classifier for directional data.
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(d) Predictor scaled raw Cefas heave energy
spectrum.
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(e) Predictor scaled parameterized acceleration
energy spectrum.
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(f) Predictor scaled both raw and parameter-
ized energy spectrum.
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(g) Predictor scaled both raw and parameter-
ized energy spectrum.

Figure 10.7: The effect of the various parameters for each of the three machine learning
models. Hs, speed and the indicator are in absolute value, whilst the spectra show
expected MSI versus the scaled energy spectra.
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Figure 10.8: First eight principle components found when applying PCA to the predictors
to the Greater Gabbard data.

10.5 Results PCA and ICA

To further investigate the influence of the various parameters, we apply the techniques
from principle and independent component analysis. In Figure 10.8 we see the first
eight principle components found when considering all the predictors. The limitation to
eight components is to keep the figures readable. The first 100 entries correspond to the
predicted vessel spectrum, entry 101-150 to the raw wave spectrum and the final few
to the remaining predictors. The main take-away, however, is that the most influential
process in the data is the predicted vessel spectrum. The wave spectrum itself does
not have any coefficients exceeding 0.1 until the 72’th component. This may seem as
an antithetic result: we have seen regression trees perform better without the predicted
vessel spectrum. However, one explanation is that most of the signal resulting from the
predicted wave spectrum is the result of noise within the data. Still, Gaussian regression
performs better with the predicted wave spectrum, which suggests that at least some
of the signal contains useful information that is not linearly related to any of the other
predictors. In Figure 10.9, the first four principle components of the predictor space
without the predicted wave spectrum are shown. Here a similar result to what we have
seen before is displayed, with the significant wave height (2nd component), the vessel
length (3th component) and the indicator together with wave spectrum, forming the 5th
principle component. We cannot explain the first principle component, which appears
to have a peak at 0.01 Hz (this the same peak found in the 2nd principle component
with all predictors).
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Figure 10.9: First four principle components of the predictor data without the predicted
wave spectrum.

The question now becomes: Can we separate the data into a small number of inde-
pendent signals, one of which might be useful for MSI prediction? The answer turns out
to be no. As can be seen in Figure 10.10, there is no distinguishable signal, but rather
several standalone peaks in the predicted vessel spectrum, and one outlier corresponding
to vessel length. We expect the peaks in the predicted vessel spectrum to be the result
of the averaging procedure in the computation of the predicted vessel spectrum. It is
our belief no big errors are made, but rather the same error is made every time. This
is supported by the observed ripples in Figure 5.9, as well as the observation that the
fourth independent component has several peaks all at the same height. Each of these
peaks is a multiple of 0.05 Hz apart, which corresponds to the observed ripples. Zooming
in further shows that this is also the case for several other components. Removing the
predicted vessel spectrum does not yield any new observations.
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Figure 10.10: The first eight independent components found after performing an ICA
with all the predictors.

10.6 Comparison with a different field

In order to get a better idea of how well the trained model works, we validate the model
on a second wind field. The field is called the Westermost Rough wind field, and is
located some 350 km north-west of the Greater Gabbard wind field. Westermost Rough
is still part of the English channel. Therefore we might expect similar wave behaviour to
the Greater Gabbard test site, which makes it an ideal test case. An illustration of the
route taken by vessels serving this field is given in Figure 10.11. Validation is performed
on two sister ships called the Eden Rose and Ginny Louise, which are catamarans with a
length of 20 meters, which makes these average to the ship models used on the Greater
Gabbard site. For this procedure we use the model that is trained on the various vessels
serving the Greater Gabbard wind field, with no training data on the Westermost Rough
field at all. The results are displayed in Figure 10.12, and show that the performance is
horrible, with MSE over 30.

But what happens if we train on the Westermost site? It turns out to be much better
than the performance seen thus far on the Greater Gabbard, as can be seen in Table
10.2. Whilst only 1 type of vessel serves this field, this cannot explain the performance
differential: Restricting to one vessel type in the Greater Gabbard site does not show
any significant improvements.
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Figure 10.11: Westermost wind field location.
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(a) Eden Rose.
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(b) Ginny Louise.

Figure 10.12: Cumulative error plot for two vessels on the Westermost wind field.

Table 10.2: Performance regression models at the Westermost. Errors are given as mean
squared errors averaged over 100 trainings.

Gaussian Tree Ensemble

All predictors 5.17 7.51 7.77
Without predicted wave spectrum 6.86 7.52 6.77
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10.7 Results neural networks

As mentioned before, there exist a lot of algorithms for machine learning. Preliminary
testing showed, however, that the performance of the neural networks varied wildly.
This variance is two-fold: first some of the methods failed to converge at all. On the
other hand, the performance depends heavily on which data is used for training, even
much more so than is the case for the regression models. Curiously, which algorithm
performed better also seemed to depend on which dataset is used for training: Gaussian
regularization performs well on the Greater Gabbard site. On the other hand, using
gradient descent whilst training on individual data points which are presented cyclically
works better on the Westermost wind field. The best explanation found for this phe-
nomenon is that the networks that may tend to over-fit on the Greater Gabbard site
actually provide better accuracy here, since both vessels are identical and only a limited
amount of data is available. Alternatively, it may be that different methods are better
for learning different specifics for a transit, such as hull (type) or route, and that the
method may therefore change per site and vessel. The first hypothesis can be tested by
using a larger dataset, and see if the methods that work well on the Greater Gabbard
site start performing better. The second hypothesis can be verified by testing on more
sites whilst using different vessel types.

10.7.1 Choice of model

A wide variety of algorithms for neural networks is available. To limit ourselves to
the best candidates, some initial testing was performed with all available algorithms.
The comparison is made by training each network 5 times, and compare the results.
The results from this testing are provided in Table 10.3. From this, we note that the
best performing algorithm is Bayesian regularization with backpropagation. As this is,
however, a rather small sample size, it can very well be that some of the other algorithms
may perform better. However, as training for the Bayesian regularization already takes
a significant amount of time, no other algorithms are considered further.
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Table 10.3: Average mean squared error over the test data for the most common neural
network trainers. Methods that failed to converge have been omitted.

Name algorithm Average error Smallest error

Levenberg-Marquardt backpropagation 14.05 11.30
BFGS quasi-Newton backpropagation 16.57 9.50
Conjugate gradient backpropagation with Fletcher-Reeves updates 12.26 7.37
Conjugate gradient backpropagation with Polak-Ribiére updates 11.95 9.58
Gradient descent backpropagation 512.46 122.15
Gradient descent with adaptive learning rate backpropagation 413.79 20.24
Gradient descent with momentum backpropagation 3562.31 160.17
Grad. desc. with momentum and adaptive learning rate backprop. 740.92 9.71
One-step secant backpropagation 11.49 8.82
Resilient backpropagation 12.01 9.17
Scaled conjugate gradient backpropagation 12.35 9.40
Batch training with weight and bias learning rules 146.51 32.19
Bayesian regularization backpropagation 7.75 5.68
Random order incremental training with learning functions 149.10 25.95
Sequential order incremental training with learning functions 32.31 24.12

10.7.2 Impact number of neurons and predictor choice

As we saw in the results from machine learning, the choice of predictor can have signif-
icant impact. There we noticed that the removal of the predicted wave spectrum could
improve the MSI prediction. Also, the number neurons used is not yet discussed. Thus,
for a varying set of neurons the average MSE prediction error has been computed over
100 trained networks. The error distribution is plotted in Figure 10.13, with the raw
errors in Table 10.4. From this we quickly deduce that the inclusion of a second training
layer is not beneficial at all. Also, omitting the prediction error only reduces the perfor-
mance, although requiring significantly less computing time (not shown here). In terms
of the optimal choice with respect to the number of neurons in the first and only layer,
10 seems to be the optimum, and this number is therefore used as the standard for the
remainder of this work.

Table 10.4: Average errors for the various choices of neurons, after training the Bayesian
regularization model 100 times. The indices 1 or 2 indicate whether the predicted wave
spectrum was present or omitted respectively.

Network size 41 42 [4, 4]1 [4, 4]2 [6, 6]1 61 71 101, 102 151
Average MSE error 9.03 12.16 9.76 9.92 8.80 8.59 8.33 8.06 8.19 8.47

rms MSE error 9.51 13.07 10.47 10.58 9.332 8.97 8.59 8.47 8.47 8.83
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Figure 10.13: Cumulative error plot of the various choices for the number of neurons.
The indices 1 or 2 indicate whether the predicted wave spectrum was present or omitted
respectively.
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10.8 Comparison neural networks Westermost

Like we have done with the machine learning models, the models constructed with the
ANN’s have been subjected to a comparison with the Westermost wind farm. And
similar to the comparison with the machine learning models, the ANN’s trained on the
Greater Gabbard wind farm perform poorly when predicting MSI for the Westermost
site. Also, when training the ANN’s on the Westermost site, a good accuracy was
achieved. But now a strange phenomenon is observed: when training the different types
of neural networks, we get a significantly different picture than the one we got from the
Greater Gabbard site. The results are given in Table 10.5.

Table 10.5: Average mean squared error on the Westermost for the same training meth-
ods used at the Greater Gabbard site.

Name algorithm Average error Smallest error

Levenberg-Marquardt backpropagation 5.00 1.50
BFGS quasi-Newton backpropagation 25.82 6.02
Conjugate gradient backpropagation with Fletcher-Reeves updates 7.06 4.07
Conjugate gradient backpropagation with Polak-Ribiére updates 17.14 2.99
Gradient descent backpropagation 172.34 62.52
Gradient descent with adaptive learning rate backpropagation 12.45 4.73
Gradient descent with momentum backpropagation 299.88 30.48
Grad. desc. with momentum and adaptive learning rate backprop. 10.30 1.90
One-step secant backpropagation 10.81 2.35
Resilient backpropagation 11.15 4.62
Scaled conjugate gradient backpropagation 7.61 4.15
Batch training with weight and bias learning rules 102.26 20.15
Bayesian regularization backpropagation 4.73 2.63
Random order incremental training with learning functions 26.27 12.58
Sequential order incremental training with learning functions 8.67 1.19

10.9 Comparison various models

To give an overview of the relative performance of the best performing methods, we have
given an overview in Figure 10.14 for the Greater Gabbard site and in Figure 10.15 for
the Westermost site.
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Figure 10.14: Cross-validation for the best performing predictors at the Greater Gab-
bard site. The tree ensemble does not use the predicted wave spectrum, the Gaussian
regression and neural network do.
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Figure 10.15: Two cross-validations for the Westermost site. The overall performance
of the neural net is slightly better.
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Figure 10.16: Cumulative error histogram of the prediction made by Ørsted.

10.10 Comparison Ørsted

Ørsted has been kind enough to share their prediction values for the Westermost wind
farm. The data contains two separate predictions, with an MSE of 12.23 and 16.23 for
the two predictions. They do not serve the Greater Gabbard wind field, so no comparison
can be made on that field. A cumulative error histogram from their prediction errors
has been given in Figure 10.16. This shows that the majority of the error is because
they had a single extreme event where the vessel only recorded for 8 minutes due to an
aborted transit. If we omit that day from the data, we find MSE of 7.82 and 12.28.
This is still significantly larger than the cross-validation errors we found earlier for the
Westermost wind farm. Figure 10.17
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Figure 10.17: Comparison with the data provided by Ørsted. The neural net shown for
comparison is the cross-validated neural network using Bayesian regularization backpro-
pogation with optimal settings.
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11 Conclusion and recommendations

Motion sickness is one of the critical factors in serving wind fields. A small increase in
operational efficiency can significantly increase energy output. An objective measure for
motion sickness called the motion sickness incidence was introduced, by relating MSI to
the vessel motion along the vertical axis, and then show its relation to motion spectra. It
is the goal of this thesis to develop a prototype capable of predicting MSI. This prototype
needs to have sufficient accuracy to help wind farm operators better deploy their service
vessels. The base mark for a basic linear regression model is an MSE of about 21, which
is insufficient for prediction.

To do so, we first made an analytical analysis Section 5. We derived the motion
spectrum that a vessel should experience during transit, by relating it to the sea spectrum
measured by wave buoys. Unfortunately, it turns out this approach does not provide the
desired accuracy. Therefore, we deem it impractical as a stand-alone method for MSI
prediction.

The alternatives to the analytical approach that are presented are machine learning
and, in particular, artificial neural networks. Three candidate regression models were
investigated in detail, which showed that the best performing machine learning algo-
rithm is the tree ensemble regression model. It makes an average error of 10.79 on the
Greater Gabbard site, and does so without the predicted motion spectrum from the
analytical derivation. Neural networks, however, perform significantly better than any
of the regression models, with an MSE of 8.07. The best performing method for neural
networks on Greater Gabbard is Bayesian regularization with backpropagation, with the
alternative algorithms performing worse than the three highlighted regression models.
The network chosen contains 1 hidden layer of 10 nodes, after a numerical performance
analysis. Noteworthy is that for ANN’s the inclusion of the predicted wave spectrum
improves performance, regardless of the chosen method or network configuration.

A comparison with the Westermost wind field was made to see the dependency of the
model on the site. This site is of interest, since it is comparable to the Greater Gabbard
site, and for this site Ørsted also made MSI predictions. None of the models trained on
the Greater Gabbard site performed adequately on the Westermost site, which means
that the models trained on one site are not immediately applicable to other sites. We
conclude that this is because the machine learning models also train the journey rather
than just the relation between spectra and MSI. As this route differs per site, we would
expect this to result in a different model for every site. This belief is strengthened by
the observation that we we train the machine learners on the Westermost site, all the
models perform even better than on the Greater Gabbard site. This is either because
the transits are easier to predict, or because the data contains fewer errors. A final
explanation of the difference in performance is that the vessel on this field are deployed
more conservatively, which would result in fewer transits with extreme weather. The
fact that only one vessel type is responsible in the smaller errors cannot be the reason,
since reducing to single vessels at the Greater Gabbard site does not improve model
performance. Neural networks using Bayesian regression once more performed the best
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with an error of 4.62. On the Westermost site there was, however, a far wider variety
of ANN’s with good performance, with the extremes obtained by other models. Thus
we conclude that for the Westermost site a variety of models can be used, but Bayesian
regression is the most consistent. The regression models performed with an average error
of 6.

Regardless of site, the MSE error can be brought down to be below 5 for 90% of the
time. As it also performs better than the model of Ørsted, which has already proven
itself, we can only conclude that the MSI prediction obtained is sufficiently accurate for
deploying crew transfer vessels at both the Greater Gabbard and the Westermost site.

For future work we recommend to test on more sites, in order to reduce the depen-
dency on training a new model for every single site. In general, more (good quality)
data always improves the performance of machine learners, but more sites might make
it possible to identify the hidden variable(s) behind MSI prediction. If such a variable
can be found, an analytical approach similar to the one made in this thesis might be
feasible. This could in turn enable more advanced techniques such as route optimization
with respect to minimizing MSI.

75



References

[1] Francis J Anscombe. “Graphs in statistical analysis”. In: The American Statisti-
cian 27.1 (1973), pp. 17–21.

[2] Willem Bles. “Coriolis effects and motion sickness modelling”. In: Brain research
bulletin 47.5 (1998), pp. 543–549.

[3] Energieverbruik van particuliere huishoudens. url: https://www.cbs.nl/nl-
nl/achtergrond/2018/14/energieverbruik-van-particuliere-huishoudens.

[4] F Dan Foresee and Martin T Hagan. “Gauss-Newton approximation to Bayesian
learning”. In: Neural networks, 1997., international conference on. Vol. 3. IEEE.
1997, pp. 1930–1935.

[5] Gaussian Processes regression: basic introductory example. url: http://scikit-
learn.org/stable/auto_examples/gaussian_process/plot_gpr_noisy_

targets.html.

[6] Giuseppe Giorgi and John V. Ringwood. “Implementation of latching control in a
numerical wave tank with regular waves”. In: Journal of Ocean Engineering and
Marine Energy 2.2 (2016), pp. 211–226. issn: 2198-6452. doi: 10.1007/s40722-
016-0052-8. url: https://doi.org/10.1007/s40722-016-0052-8.

[7] Global offshore wind farm map. url: https://www.4coffshore.com/offshorewind/.

[8] Michael J Griffin. Handbook of human vibration. Academic press, 1990.

[9] How the backpropagation algorithm works. url: http://neuralnetworksanddeeplearning.
com/chap2.html#proof_of_the_four_fundamental_equations_(optional).

[10] Aapo Hyvarinen. “The fixed-point algorithm and maximum likelihood estimation
for independent component analysis”. In: Neural Processing Letters 10.1 (1999),
pp. 1–5.

[11] List of offshore wind farms. url: https://www.4coffshore.com/windfarms/
norfolk-boreas-united-kingdom-uk69.html.

[12] David JC MacKay. “Bayesian interpolation”. In: Neural computation 4.3 (1992),
pp. 415–447.

[13] Hisashi Mitsuyasu et al. “Observations of the directional spectrum of ocean waves
using a cloverleaf buoy”. In: Journal of Physical Oceanography 5.4 (1975), pp. 750–
760.

[14] Marc-Antoine Parseval. “Mémoire sur les séries et sur l’intégration complète d’une
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A Mathematical proofs

Below a selection of the theorems used in this thesis are proven.

A.1 Parseval

Theorem 3 (Parseval). Let X := F(x) denote the discrete Fourier transform of a signal
x ∈ CN . Then

N−1∑
n=0

|xn|2 =
1

N

N−1∑
k=0

|Xk|2 (A.1)

Proof. By definition of X we get

Xk =

N−1∑
n=0

xnW
nk
N (A.2)

Note that X ⊆ CN , and thus |Xk|2 = XkX
∗
k, with X∗k denoting the complex conjugate

of Xk. When we put this into the right-hand side of Eq. (A.1) we get

1

N

N−1∑
k=0

|Xk|2 =
1

N

N−1∑
k=0

∣∣∣∣∣
N−1∑
n=0

xnW
nk
N

∣∣∣∣∣
2

(A.3)

=
1

N

N−1∑
k=0

N−1∑
n=0

xnW
nk
N

N−1∑
m=0

x∗mW
−mk
N (A.4)

=
1

N

N−1∑
n=0

N−1∑
m=0

xnx
∗
m

N−1∑
k=0

W
(n−m)k
N (A.5)

Recall that WN is a complex N ’th root of unity, which means that summing over all
such m gives

N−1∑
k=0

W
(n−m)k
N =

N−1∑
k=0

e2πi(n−m)k/N =
e2πi(n−m) − 1

e2πi(n−m)/N − 1
(A.6)

The last step follows since it is the partial power series of Wn−m
N , which is valid whenever

Wn−m
N 6= 1, or in other words, if n 6= m (since ||WN || = 1). Since it also holds that

n,m ∈ Z, this last expression evaluates to zero. However, if n = m, all terms in this
sum are 1 and we find that this sum equals N . This implies that

N−1∑
k=0

W
(n−m)k
N = N1n=m (A.7)
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and this implies that

1

N

N−1∑
k=0

|Xk|2 =
1

N

N−1∑
n=0

N−1∑
m=0

xnx
∗
mN1n=m (A.8)

=
N−1∑
n=0

xnx
∗
n (A.9)

=
N−1∑
n=0

|xn|2 (A.10)

A.2 Singular value decomposition

Theorem 4 (Singular value decomposition). Let A be a real m× n matrix. Then there
exists a singular value decomposition A = UΣV T such that

1. U ∈ Rm×m is an orthogonal matrix.

2. Σ ∈ Rm×n a rectangular diagonal matrix with only non-negative (real) entries
on the diagonal.

3. V ∈ Rn×n an orthogonal matrix.

Proof. Note that the matrix ATA is real symmetric and therefore has an eigenvalue
decomposition. For each positive eigenvalue λi and corresponding eigenvector vi we
define

qi :=
Avi√
λi

Note that

qTi qj =
1

λi
vTi A

TAvj =
1

λi
vTi λjvj = δij , (A.11)

and hence we can extend (qi) to a orthonormal basis for Rm. This can always be done
since there can be at most min(m,n) non-zero eigenvalues. Define U := [qi] and V := [vi].
Then U and V are orthogonal matrices, as all their columns form an orthonormal basis.
If we now evaluate UTAV we find that

(UTAV )ij = qTi Avj =
√
λjqiqj =

√
λjδij (A.12)

Thus let the Σ be given by Σij :=
√
λjδij . Then Σ = UTAV . Clearly Σ is a rectangular

matrix with only non-negative elements on its diagonal. Since U and V are orthogonal
(and hence invertible), this last equation can now be rewritten in the desired form
A = UΣV T.
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B Spectral processing scheme

AccZ

1D vessel
spectrum

FFT

Cefas 1D
spectraAdding main

wave direction
and heading

Cefas 2D
spectra

Using std to generate expected
3D energy distribution per
frequency componenet ω
around main wave direction3D

spectra

Parameterized
3D spectra

(k cos(θ)v0 − ω)2

per wave component
and per direction.
This also changes

the frequencies!

Parameterized
1D spectra

Projecting to fixed ω
Adding opposing wave components
Summing energy per ω

Elementwise quotient

Transfer
function

Assume that the transfer function T is computed via the scheme above. Then the
MSI can be computed as

MSI = msi(TS), (B.1)
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where TS denotes the element-wise product and

msi = motion sickness function for vessel spectra (known)

S = Parameterized 1D wave spectra computed using cefas buoy

data via the scheme above.
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C Symbols and abbreviations

Variable Full name First defined

MSI Motion sickness incidence 2
FFT Fast Fourier transform 5
SR Sampling rate 6
VI Vomiting incidence 7

RAO Response amplitude operator 17
ICA Independent component analysis 33
PCA Principle component analysis 33
SVD Singular value decomposition 37
SVM Support vector machine 41
MSE Mean squared error 45
ANN Artificial neural network 48

η Sea surface elevation 5
S(f), S(ω) Energy density spectrum 5

f Wave frequency in Hz 5
ω Wave frequency in radians 5
Hs Significant wave height 10
E[·] Expected value from distribution 34
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