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Closed-Form Analysis of Artificial Dielectric
Layers with Non-Periodic Characteristics

Daniele Cavallo1 and Ralph M. van Schelven1

1 Microelectronics Department, Delft University of Technology, Delft, The Netherlands, d.cavallo@tudelft.nl

Abstract—We present a general analysis to describe non-
periodic artificial dielectric layers (ADLs). Closed-form expres-
sions for the equivalent layer impedance are given for generic
plane-wave incidence, assuming that each individual layer can
differ from the others in terms of geometrical parameters. By
dropping the assumption of identical layers, the given formulas
are of more general applicability for flexible designs artificial
dielectric slabs that are not uniform along the stratification.
The analytical expressions account for the interaction between
layers due to higher-order Floquet modes, thus remain valid for
arbitrarily small electrical distance between layers.

Index Terms—Artificial dielectric layers, closed-form solutions,
equivalent circuit.

I. INTRODUCTION

An artificial dielectric (AD) consists of a periodic arrange-
ment of metallic inclusions in a hosting medium to realize
a material with higher effective refractive index [1], [2].
The equivalent electromagnetic parameters of the AD can be
engineered by properly designing the density and the shape
of the metallic objects. Both the size of the metal objects and
the periods of the three dimensional lattice are much smaller
compared to the wavelength. In this way, the metallic scatterers
play the same roles of atoms or molecules in a real dielectric,
by producing a net average polarization field that opposes the
external electric field, giving rise to an effective permittivity
[3].

This work deals with a specific type of anisotropic AD,
where the metallic objects are sub-wavelength planar patches,
as shown in Fig. 1. Such structures are referred to as artificial
dielectric layers (ADLs). Recently, ADLs were exploited to
improve the front-to-back ratio of integrated antennas at mm-
wave frequencies [4], [5]. The main advantage of an ADLs
compared to a real dielectric is the anisotropy, which is a
key property to avoid the excitation of surface waves. Another
application was proposed in [6], [7], where the ADLs were
used in combination with planar connected arrays to achieve
wideband and wide angle scanning phased array designs. The
anisotropy of the ADLs allows enlarging the scan range with
no scan blindness, while performing a wideband impedance
transformation, to widen the impedance matching bandwidth.

For the electromagnetic modeling of ADLs, a number of
numerical solutions proposed for the efficient analysis of
generic multilayer metasurfaces can be used, for example [8]–
[10]. More recently, analytical formulas to describe ADLs
were presented in [11], [12] for aligned layers (Fig. 1(a)) and
generalized in [13] to include a shift between even and odd

Fig. 1. Two-dimensional side view for artificial dielectric slabs with (a)
aligned, (b) shifted and (c) non-periodic layers along z.

layers (Fig. 1(b)). An extension of the method to include the
finite conductivity of the metal was presented in [14]. All
the mentioned works provide a transmission line model to
represent the propagation of a generic plane wave within the
ADLs. In such equivalent circuit, each layer is represented
as an equivalent shunt impedance, which can be expressed
in closed-form as a function of the geometrical parameters
of the ADLs. Compared to other works with similar scope
[16]–[18], the equivalent impedances in [13], [14] include the
reactive coupling between layers due to higher-order Floquet
modes. Given the very small electrical distance between layers
in typical ADL designs, such coupling is very large and must
be taken into account.

The previous works [12]–[14] only contemplated z-periodic
structures, where the layers of patches are all identical, aligned
as in Fig. 1(a) or alternatively shifted to realize a glide
symmetric structure [15] as in Fig. 1(b). In this work, we
propose a technique to generalize the method to deal with
non-periodic structure, as the one depicted in Fig. 1(c). The
structure is still doubly periodic in the x-y plane, but each layer
along the z-axis can have different geometrical parameters,
namely the gaps between patches, the distance and the shift to
the layer above or below. The closed-form expressions given
here can be used to design more complex non-uniform ADLs
that can provide a variation of effective permittivity along the
direction of stratification z.
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Fig. 2. Cross section view of the unit cell of z-aperiodic ADLs, with definition
of the geometrical parameters.

II. z-APERIODIC ARTIFICIAL DIELECTRIC LAYERS

A. Problem Definition and Equivalence Principle

The geometry under consideration is shown in Fig. 2 and
consists of N layers with indexes n ∈ [1, 2, ..., N ]. Each layer
is an array of perfectly conducting square patches, infinitely
thin along z and doubly periodic in the transverse dimensions.
The periods are equal along x and y and given by p. Although
the transverse periods are assumed to be the same for all the
layers, all other geometrical parameters can vary in each layer
and they are function of the index n. The gaps between the
patches in the n-th layer are characterized by width wn both
along x and y. The distance between any pair of contiguous
layers, with indexes n and n + 1, is denoted by dn,n+1 and
can change arbitrarily along the stratification. Also the mutual
shift between adjacent layers sn,n+1 can vary with n and can
be an arbitrary portion of the unit cell.

A plane wave is assumed to propagate in the nega-
tive z-direction within the ADL structure. By applying the
Schelkunoff’s equivalence principle [19], three surfaces Sn+1,
Sn and Sn−1 are defines as in Fig. 3(a) and they are filled
with a perfect electric conductor (Fig. 3(b)) so that two closed
regions are created. Equivalent surface magnetic currents mn

can be defined in correspondence of the gaps in the original
problem. These current densities mn(ρ;wn) are functions of
the position ρ = xx̂+yŷ and depend on the width of the gaps
wn characteristic of the n-th layer.

Due to the image theorem, the magnetic currents radiating
within parallel plate waveguides are equivalent to an infinite
number of current contributions radiating in free space, as
described in Fig. 4. The continuity of the transverse scattered
magnetic field at the n-th layer (assumed to be located at
z = 0) can be expressed as:

Fig. 3. (a) Original problem and (b) equivalent problem with unknown
magnetic current distributions.

Fig. 4. Application of image theorem for (a) Region 1 and (b) Region 2,
defined in Fig. 3.

∑
i even

∞∫
−∞

∞∫
−∞

2mn(ρ
′, wn)g(ρ−ρ′, i dn,n+1)dρ

′−

∑
i odd

∞∫
−∞

∞∫
−∞

2mn+1(ρ
′;wn+1)g(ρ−ρ′, i dn,n+1)dρ

′+

∑
i even

∞∫
−∞

∞∫
−∞

2mn(ρ
′;wn)g(ρ−ρ′, i dn−1,n)dρ′−

∑
i odd

∞∫
−∞

∞∫
−∞

2mn−1(ρ
′;wn−1)g(ρ−ρ′, i dn−1,n)dρ′ = 0 (1)

where i is the index of the spatial infinite sum of current
contributions resulting from the image theorem. The obser-
vation and the source points are ρ and ρ′, respectively, and
g is the free-space dyadic Green’s function, which links the
magnetic field to magnetic sources. Since the structure is not
periodic along z, the current densities on the layers are not
related by either Floquet boundary condition or glide symme-
try conditions. However, we assume here that the magnetic
currents on different layers are approximately related as
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mn+1(ρ;wn+1) ≈mn(ρ− sn,n+1;wn+1)e
−jψn,n+1 (2)

mn−1(ρ;wn−1) ≈mn(ρ− sn−1,n;wn−1)e−jψn−1,n (3)

where sn,n+1 = sn,n+1x̂+sn,n+1ŷ is the vector shift along x
and y and ψn,n+1 is a phase shift describing the propagation
from one layer to the next. The conditions (2) and (3) imply
that the magnetic current densities on different layers have
the same longitudinal distribution along the slots, shifted in
space and with a phase delay, while only the transverse
distribution changes because of the different gap widths wn.
This assumption allows writing (1) only in term of a single
unknown distribution mn. Such condition is sufficient to apply
the same procedure as in [13] to find the equivalent layer
reactance analytically. The method is described in detail in
[11], [12] and consists of expanding the unknown magnetic
current in only four entire domain basis functions, that are
enough to describe the total current distribution for any generic
plane-wave incidence. The basis functions have closed-form
Fourier transform, thus Galerkin projection can be applied in
the spectral domain, leading to a system of 4 linear equations.
The properties of the chosen basis functions allow to further
simplify the problem in a system of only 2 equations, leading
to an analytical solution for the equivalent layer impedance.

B. Equivalent Impedance of a Layer in a Non-Periodic Se-
quence

By following the procedure described in the previous sec-
tion, the equivalent layer impedance is derived. For the internal
layers, i.e. for n ∈ [2, 3, ...N − 1], the layer susceptance can
be written as a Floquet expansion with indexes m:

Bn =
jp

ζ0λ0

∑
m6=0

{Sm(wn)[fm(dn,n+1) + fm(dn−1,n)]+

Sm(wn+1)gm(sn,n+1, dn,n+1)+

Sm(wn−1)gm(sn−1,n, dn−1,n)} (4)

where we introduced the functions

Sm(w) =

∣∣∣sinc
(
πmw
p

)∣∣∣2
|m|

(5)

fm(d) = − cot

(
−2jπ|m|d

p

)
(6)

gm(s, d) = ej2πms/p csc

(
−2jπ|m|d

p

)
. (7)

In the function definition, we omitted the dependence on the
period p, since it is assumed to be fixed and equal for all the
layers. For the first and last layers (n = 1 and n = N ), because
of the absence of one of the adjacent layers, the susceptance
changes as
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Fig. 5. (a) Plane wave incident on a structure of five ADLs with non-identical
layers; (b) Equivalent circuits for TE and TM components.

B1 =
jp

ζ0λ0

∑
m6=0

{Sm(w1)[−j + fm(d1,2)]+

Sm(w2)gm(s1,2, d1,2)} (8)

BN =
jp

ζ0λ0

∑
m6=0

{Sm(wN )[−j + fm(dN−1,N )]+

Sm(wN−1)gm(sN−1,N , dN−1,N )} . (9)

An equivalent transmission line circuit, similar to the one
introduced in [12] and [13], can be used for the ADL with non-
identical layers. The equivalent reactances of the individual
layers are represented in terms of the suceptances as follows:

Zn,TM =
−j
Bn

(10)

and
Zn,TE =

−j

Bn

(
1− sin2(θ)

2

) (11)

for the TM and TE modes, respectively, where θ is the angle
of incidence of an incoming plane wave.

These reactances are placed as shunt impedances along a
z-oriented transmission line, which describes the propagation
of a generic plane wave through the ADL. An example of a
five-layer structure is shown in Fig. 5(a) and its TE and TM
equivalent transmission line circuits in Fig. 5(b).

III. VALIDATION OF THE CLOSED-FORM SOLUTIONS

To validate the provided formulas, some numerical ex-
amples are considered in this section. The reflection and
transmission coefficients are calculated with the analytical
transmission line models and compared with CST simulations
of the same structure, for TE and TM incident plane waves.
All given examples assume an ADL structure consisting of
five layers, with period in x- and y-direction p = 0.0785λ0,
where λ0 is the wavelength in free space at 5GHz. The angle
of incidence of the plane wave is θ = 60◦.

Figure 6 shows the S-parameters of the plane wave, when
the width of the gap between the patches is varied for each
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Fig. 6. Amplitude and phase of the reflection and transmission coefficients of
a plane wave incident on an ADL consisting of five layers. The value of wn

is varying between the layers: w1 = 0.01λ0, w2 = 0.015λ0, w3 = 0.02λ0,
w4 = 0.025λ0 and w5 = 0.03λ0. The other geometrical parameters are
constant: p = 0.0785λ0, d = 0.012λ0. No shift between the layers is present.
λ0 is the wavelength in free space at 5GHz. The angle of incidence θ = 60◦.
(a) TE-incidence. (b) TM-incidence.

layer, while all other parameters are constant. The inter-layer
distance in the z-direction is d = 0.012λ0, and no shift
between the layers is present. The widths of the gaps are
w1 = 0.01λ0, w2 = 0.015λ0, w3 = 0.02λ0, w4 = 0.025λ0
and w5 = 0.03λ0. Figure 7 shows the S-parameters for
the same structure, when the width of the gaps between
the patches is constant, w = 0.01λ0, and the relative shift
between adjacent layers is varying: s1,2 = 0, s2,3 = 0.1p,
s3,4 = 0.3p and s4,5 = 0.4p. Figure 8 refers to varying
values of the distance between adjacent layers: d1,2 = 0.01λ0,
d2,3 = 0.015λ0, d3,4 = 0.02λ0 and d4,5 = 0.025λ0. The width
of the gap between the patches is constant, w = 0.01λ0, and
no relative shift between the layers is present.

In the final example, the three characteristic geometrical
parameters are varied all together. The widths of the gaps are
w1 = 0.01λ0, w2 = 0.015λ0, w3 = 0.02λ0, w4 = 0.025λ0
and w5 = 0.03λ0. The distance between the layers is growing
with the indexes d1,2 = 0.01λ0, d2,3 = 0.015λ0, d3,4 =
0.02λ0 and d4,5 = 0.025λ0. The relative shift between the
layers is decreasing: s1,2 = 0.4p, s2,3 = 0.3p, s3,4 = 0.1p and
s4,5 = 0. The resulting reflection and transmission coefficients
are shown in Fig. 9 for TE- and TM-incidence.

In all presented results a good agreement between the
analytical formulas and CST is observed.

IV. CONCLUSION

We presented analytical formulas for the analysis of non-
periodic ADLs. Closed-form expressions for the equivalent
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Fig. 7. Amplitude and phase of the reflection and transmission coefficients of
a plane wave incident on an ADL consisting of five layers. The shift between
adjacent layers is varying throughout the structure: s1,2 = 0, s2,3 = 0.1p,
s3,4 = 0.3p and s4,5 = 0.4p. The other geometrical parameters are constant:
p = 0.0785λ0, d = 0.012λ0 and w = 0.01λ0. λ0 is the wavelength in free
space at 5GHz. The angle of incidence θ = 60◦. (a) TE-incidence. (b) TM-
incidence.
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Fig. 8. Amplitude and phase of the reflection and transmission coefficients
of a plane wave incident on an ADL consisting of five layers. The distance
in z-direction between adjacent layers is varying throughout the structure:
d1,2 = 0.01λ0, d2,3 = 0.015λ0, d3,4 = 0.02λ0 and d4,5 = 0.025λ0. The
other geometrical parameters are constant: p = 0.0785λ0 and w = 0.01λ0.
No shift between the layers is present. λ0 is the wavelength in free space at
5GHz. The angle of incidence θ = 60◦. (a) TE-incidence. (b) TM-incidence.
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Fig. 9. Amplitude and phase of the reflection and transmission coefficients
of a plane wave incident on an ADL consisting of five layers. The period in
x and y is p = 0.0785λ0. The other geometrical parameters are changing
throughout the structure: w1 = 0.01λ0, w2 = 0.015λ0, w3 = 0.02λ0,
w4 = 0.025λ0 and w5 = 0.03λ0, s1,2 = 0, s2,3 = 0.1p, s3,4 = 0.3p
and s4,5 = 0.4p, and d1,2 = 0.01λ0, d2,3 = 0.015λ0, d3,4 = 0.02λ0 and
d4,5 = 0.025λ0. λ0 is the wavelength in free space at 5GHz. The angle of
incidence θ = 60◦. (a) TE-incidence. (b) TM-incidence.

layer impedance for generic plane wave incidence were de-
rived. The proposed formulas are more general than those
presented in previous works. The individual layers may be
different from each other in terms of geometrical parameters
and the mutual distance and shift between adjacent layers
may vary along the stratification. Results from the analytical
formulas were validated by comparison with a commercial
electromagnetic solver. By dropping the restriction of identical
layers, the expressions can be used to design ADLs that are
not uniform along the vertical dimension. Possible applications
can be tapered impedance transformers to realize wideband
matching slabs or wide angle impedance matching superstrates
for broadband phased arrays.
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