<]
TUDelft

Delft University of Technology

Proactive and Reactive Constraint Programming for Stochastic Project Scheduling with
Maximal Time-Lags

van den Houten, Kim; Planken, Léon; Freydell, Esteban; Tax, David M.J.; de Weerdt, Mathijs

DOI
10.1609/aaai.v39i25.34854

Publication date
2025

Document Version
Final published version

Published in
Proceedings of the AAAI Conference on Artificial Intelligence

Citation (APA)

van den Houten, K., Planken, L., Freydell, E., Tax, D. M. J., & de Weerdt, M. (2025). Proactive and Reactive
Constraint Programming for Stochastic Project Scheduling with Maximal Time-Lags. Proceedings of the
AAAI Conference on Atrtificial Intelligence, 39(25), 26534-26541. https://doi.org/10.1609/aaai.v39i25.34854

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1609/aaai.v39i25.34854
https://doi.org/10.1609/aaai.v39i25.34854

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

Proactive and Reactive Constraint Programming for Stochastic Project
Scheduling with Maximal Time-Lags

Kim van den Houten !, Léon Planken !, Esteban Freydell 2, David M.]J. Tax ', Mathijs de Weerdt '

'Delft University of Technology, Delft, The Netherlands.
2dsm-firmenich, Delft, The Netherlands.
k.c.vandenhouten @tudelft.nl, L.r.planken @tudelft.nl, esteban.freydell @dsm-firmenich.com, d.m.j.tax @tudelft.nl,
m.m.deweerdt @tudelft.nl

Abstract

This study investigates scheduling strategies for the stochastic
resource-constrained project scheduling problem with max-
imal time lags (SRCPSP/max)). Recent advances in Con-
straint Programming (CP) and Temporal Networks have re-
invoked interest in evaluating the advantages and drawbacks
of various proactive and reactive scheduling methods. First,
we present a new, CP-based fully proactive method. Second,
we show how a reactive approach can be constructed using an
online rescheduling procedure. A third contribution is based
on partial order schedules and uses Simple Temporal Net-
works with Uncertainty (STNUs). Our analysis shows that
the STNU-based algorithm performs best in terms of solution
quality, while also showing good relative computation time.

Code —
github.com/kimvandenhouten/AAAI25_SRCPSPmax

Extended version — www.arxiv.org/abs/2409.09107

1 Introduction

In real-world scheduling applications, durations of activ-
ities are often stochastic, for example, due to the inher-
ent stochastic nature of processes in biomanufacturing. At
the same time, hard constraints must be satisfied: e.g. once
fermentation starts, a cooling procedure must start at least
(minimal time lag) 10 and at most (maximal time lag)
30 minutes later. The combination of maximal time lags and
stochastic durations is especially tricky: a delay in duration
can cause a violation of a maximal time lag when a resource
becomes available later than expected. Such constraints are
reflected in the Stochastic Resource-Constrained Project
Scheduling Problem with Time Lags (SRCPSP/max). This
problem has been an important focus of research due to
its practical relevance and the computational challenge it
presents, as finding a feasible solution is NP-hard (Bartusch,
Mohring, and Radermacher 1988).

Broadly speaking, there are two main schools of thought
regarding solution approaches for stochastic scheduling
in the literature: 1) proactive scheduling and 2) reactive
scheduling. The main goal of proactive scheduling is to find
a robust schedule offline, whereas reactive approaches adapt

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

26534

to uncertainties online. Proactive and reactive approaches
can be considered as opposite ends of a spectrum. Both in
practice and literature, it is often observed that methods are
hybrid, such as earlier work on the SRCPSP/max.

Hybrid approaches appear for example in the form of a
partial order schedule (POS), which is a temporally flexible
schedule in which resource feasibility is guaranteed (Poli-
cella et al. 2004). The state-of-the-art POS approach for SR-
CPSP/max is the algorithm BACCHUS (Fu, Varakantham,
and Lau 2016), although the comparison provided by the au-
thors themselves shows that their earlier proactive method
SORU-H (Varakantham, Fu, and Lau 2016) performs bet-
ter. Partial order schedules are often complemented with a
temporal network (Lombardi and Milano 2009), in which
time points (nodes) are modeled together with temporal con-
straints (edges). Recent advances in temporal networks with
uncertainties (Hunsberger and Posenato 2024) pave the way
for improvements in POS approaches for SRCPSP/max.

State-of-the-art methods like BACCHUS and SORU-H
use Mixed Integer Programming (MIP), whereas Con-
straint Programming (CP), especially with interval vari-
ables (Laborie 2015), has become a powerful alternative for
scheduling. This is evidenced by a CP model for resource-
constrained project scheduling provided by Laborie et al.
(2018). Additionally, a recent comparison between solvers
for CP and MIP demonstrated CP Optimizer’s superiority
over CPLEX across a broad set of benchmark scheduling
problems (Naderi, Ruiz, and Roshanaei 2023). These ad-
vances, however, have not yet been explored for SRCPSP/
max, despite potential applications. CP can be used for find-
ing robust proactive schedules or within a reactive approach
with rescheduling during execution, which has been viewed
as too computationally heavy (Van de Vonder, Demeule-
meester, and Herroelen 2007).

A proper benchmarking paper in which a statistical anal-
ysis is performed on the results of the different methods
for SRCPSP/max is lacking. Comparing different stochastic
scheduling techniques for this problem should be done care-
fully. Due to the maximal time lags and stochastic durations,
methods can fail by violating resource or precedence con-
straints. Therefore, not only the solution quality and compu-
tation time but also the feasibility should be taken into ac-
count. Fu, Varakantham, and Lau (2016) even criticize their
own evaluation metric and indicate that future work should

Figure 1: Example project graph (Schutt et al. 2013).

provide a more extensive comparison. We argue that statis-
tical tests dealing with infeasibilities correctly are needed to
compare different methods properly.

This paper proposes new versions of a proactive approach
and a hybrid approach using the latest advances in Con-
straint Programming (Laborie et al. 2018) and Temporal
Networks (Hunsberger and Posenato 2024). A new reactive
approach with complete rescheduling, which has not been
investigated before as far as we know, is included in the com-
parison too. We target the existing research gap due to the
lack of a clear and informative comparison among various
methods, examining aspects such as infeasibility, solution
quality, and computation time (offline and online). In doing
so, this work provides a practical guide for researchers and
industrial schedulers when selecting from various methods
for their specific use cases.

2 The Scheduling Problem

The RCPSP/max problem (Kolisch and Sprecher 1996) is
defined as a set of activities J and a set of resources R,
where each activity j € J has a duration d; and requires
from each resource r € I a certain amount indicated by r,. ;.
A solution to the RCPSP/max is a start-time assignment s;
for each activity, such that the constraints are satisfied: (i)
at any time the number of resources used cannot exceed the
max resource capacity c¢,; and (ii) for some pairs (4, j) of
activities, precedence constraints are defined as minimal or
maximal time lags between the start time of ¢ and the start
time of j. The goal is to minimize the makespan.

We use the following example from Schutt et al. (2013)
of a simple RCPSP/max instance. There are five activities:
a, b, ¢, d, and e, with start times s,, Sp, S¢, Sq, and s.. The
activities have durations of 2, 5, 3, 1, and 2 time units, re-
spectively, and resource requirements of 3, 2, 1, 2, and 2
on a single resource with a capacity of ¢, = 4. The prece-
dence relations are as follows: activity b starts at least 2 time
units after a starts, activity b starts at least 1 time unit be-
fore c starts, activity ¢ cannot start later than 6 time units
after a starts, and activity d starts exactly 3 time units be-
fore e starts. These constraints can be visualized in a project
graph (Figure 1). A feasible solution to this problem is
{$a = 1,8 = 3,8, = 4,84 = 0,8, = 3}, for which the
Gantt chart is visualized in Figure 2.

A special property of RCPSP/max is the following:

Proposition 1. Suppose we are given a problem instance 1
with durations d', resource requirements r', and capac-
ity ¢!, and let s' be a feasible schedule for this instance.

26535

Suppose now that we transform instance 1 into instance 2,
where all parameters stay equal except that one or more of
the activity durations d? are shorter than the durations d*,
soVjeld: d; < d?. Then, s' is also feasible for instance 2.

Proof. Schedule s! is still precedence feasible because the
start times did not change and the precedence constraints are
defined from start to start (they are deterministic). Sched-
ule s! is resource feasible for d'. Since d? is strictly smaller
than d', the resource usage over time can only be smaller
than for instance 1, and thus it will not exceed the capacity,
and schedule s! is also resource feasible for d?. O

This property can be helpful when reusing start times for
a mutated instance, for example, because of stochastic activ-
ity durations. The Stochastic RCPSP/max (SRCPSP/max) is
an extension in which the durations follow a stochastic dis-
tribution (Fu et al. 2012). We define the problem as follows:
the activity durations are independent random variables in-
dicated by d; representing the duration of activity j. We as-
sume that each d; follows a discrete uniform distribution,
d; ~ DiscreteUniform(lb;, ub;) where [b;, ub; denote the
minimum and maximum possible durations for activity j.
Each duration becomes available when an activity finishes.

In general, comparing methods for this problem is not
straightforward as while comparing method A and B, it
could be that only method A obtains a feasible solution.
Looking at double hits (instances solved by both methods)
is a reasonable choice, but neglects that potentially one of
the two methods solved more problem instances than the
other. Earlier work on this stochastic variant introduces the
a-robust makespan (Fu et al. 2012), that is the expected
makespan value for a scheduling strategy for which the prob-
ability that the schedule is feasible is at least 1 — «, as a met-
ric for comparing different methods but also indicated the
limitations of this metric.

3 Background and Related Work

In this section, we discuss existing approaches for SRCPSP/
max. Furthermore, we introduce all concepts that are needed
to understand our scheduling methods that are presented in
Section 4. We introduce proactive techniques based on Sam-
ple Average Approximation in Section 3.1. We explain par-
tial order schedules and temporal networks in Section 3.2.
Finally, Section 3.3 gives an overview of related work on
benchmarking scheduling methods for SRCPSP/max.

3.1 Proactive Scheduling

Proactive scheduling methods aim to find a robust schedule
offline by taking information about the uncertainty into ac-
count (Herroelen and Leus 2002). In this section, we explain
a core technique used in proactive methods: Sample Average
Approximation (SAA). Furthermore, we discuss the state-
of-the-art proactive methods for SRCPSP/max.

Sample Average Approximation A common method for
handling discrete optimization under uncertainty is the Sam-
ple Average Approximation (SAA) approach (Kleywegt,
Shapiro, and Homem-de Mello 2002). Samples are drawn

from stochastic distributions and added as scenarios to a
stochastic programming formulation. The solver then seeks
a solution feasible for all scenarios while optimizing the av-
erage objective. However, adding more samples to the SAA
increases the number of constraints and variables, signifi-
cantly raising the solution time.

SORU and SORU-H The most recent proactive method
on SRCPSP/max is proposed by Varakantham, Fu, and Lau
(2016) and is recognized as the state of the art. The au-
thors present the algorithm SORU, an SAA approach to the
scheduling problem that relies on Mixed Integer Program-
ming (MIP) and aims to minimize the a-robust makespan.
It can be summarized as follows: (i) a selection of samples
is used to set up the SAA; (ii) the model seeks a start time
vector s such that the minimal and maximal time lags of
precedence constraints are satisfied; (iii) it allows for a«% of
the scenarios to be resource infeasible; (iv) it minimizes the
sample average makespan.

Since SORU is computationally expensive, the authors
propose a heuristic version, dubbed SORU-H. Instead of
a set of samples, one summarizing sample is used, which
represents a quantile of the distribution. Note that because
of Proposition 1, this heuristic approximates the c-robust
makespan. At the same time, it is much cheaper to compute
because typically the runtime increases for a larger sample
size in SAA, as shown by Varakantham, Fu, and Lau (2016).

Since nowadays CP is the state of the art for deterministic
project scheduling (Naderi, Ruiz, and Roshanaei 2023), we
re-investigate SAA approaches for SRCPSP/max with CP
and compare this CP-based proactive approach to reactive
approaches.

3.2 Partial Order Scheduling

In this section, we discuss partial order scheduling ap-
proaches, which can be seen as a reactive-proactive hybrid.
Partial order schedules have been used in the majority of the
contributions to SRCPSP/max.

Constructing Ordering Constraints A partial order
schedule (POS) can be seen as a collection of schedules that
ensure resource feasibility, but maintain temporal flexibility.
A POS is defined as a graph where nodes represent activi-
ties, and edges temporal constraints between them. There are
several methods to derive a POS. In the original paper by Po-
licella et al. (2004), two approaches are outlined to construct
the ordering constraints between activities, either analyzing
the resource profile to avoid all possible resource conflicts,
based on Minimal Critical Sets (MCS) (Lgelmund and Ra-
dermacher 1983), or using a single-point solution together
with a chaining procedure to construct resource chains (see
Figure 2). They find that using the single-point solution to-
gether with chaining seems both simple and most effec-
tive. Subsequent work explored alternative MCS-based ap-
proaches (Lombardi and Milano 2009; Lombardi, Milano,
and Benini 2013) and chaining heuristics (Fu et al. 2012).

Temporal Networks Partial order schedules are often
complemented with a temporal model to reason over the

26536

= N W s

Figure 2: Example Gantt chart (figure adjusted from Fu
et al. 2012). The X-axis is time, and Y-axis shows resource
demand. The arrows indicate an example of generating a
POS with chaining, starting from a fixed solution schedule.

temporal constraints. Most POS approaches rely on a Sim-
ple Temporal Network (STN), which is a graph consist-
ing of time points (nodes) and temporal difference con-
straints (edges). The Simple Temporal Network with Uncer-
tainty (STNU) extends the STN by introducing contingent
links. The duration of these contingent constraints can only
be observed, while for regular constraints it can be deter-
mined during execution. The works by Lombardi and Mi-
lano (2009) and (Lombardi, Milano, and Benini 2013) on
POS are the only ones that we know of using STNUs as
their temporal model. They introduce nodes for the start and
the end of each activity with duration constraints between
them, connecting respective start nodes with edges for the
precedence constraints.

Execution Strategies An STNU is dynamically control-
lable (DC) if there is a strategy to determine execution times
for all controllable (non-contingent) time points which en-
sures that all temporal constraints are met, regardless of the
outcomes of the contingent links. Some DC-checking algo-
rithms generate new so-called wait edges to make the net-
work DC (Morris 2014).

The DC STNU with wait edges is referred to as an Ex-
tended STNU (ESTNU) and is input to a Real-Time Execu-
tion Algorithm. Such an algorithm is the online component
that transforms an STNU into a schedule (i.e. an execution
time for each node), given the observations for the contin-
gent nodes. An algorithm specifically tailored to ESTNUs is
RTE* (Hunsberger and Posenato 2024; Posenato 2022).

As far as we know, the DC-checking and RTE* algorithms
have not been applied to SRCPSP/max, despite their effi-
ciency. (Lombardi and Milano 2009; Lombardi, Milano, and
Benini 2013) used constraint propagation for DC-checking,
but do not use RTE™. Other works on POS for SRCPSP/max
that do not use STNUs and DC-checking risk violations of
minimal or maximal time-lags during execution (Policella
et al. 2007; Fu, Varakantham, and Lau 2016). Thus, we con-
clude that there is a research gap in applying the develop-
ments in STNU literature to SRCPSP/max.

3.3 Benchmarking Approaches

Benchmarking procedures for comparing scheduling meth-
ods are inconsistent in the literature, with varying problem
sets and comparison methods. Some studies used industrial

scheduling instances (Lombardi and Milano 2009; Lom-
bardi, Milano, and Benini 2013), while the majority (Po-
licella et al. 2004; Fu et al. 2012; Varakantham, Fu, and
Lau 2016; Fu, Varakantham, and Lau 2016) relied on PSPIib
(Kolisch and Sprecher 1996) instances, which are determin-
istic and transformed into stochastic versions with noise. Re-
search typically focused on instances with 10, 20, and 30
activities (j10-j30). Different studies assessed varying met-
rics, such as schedule flexibility and robustness (Policella
et al. 2004, 2007), solver performance (Lombardi and Mi-
lano 2009; Lombardi, Milano, and Benini 2013), or the a-
robust makespan (Fu et al. 2012; Varakantham, Fu, and Lau
2016; Fu, Varakantham, and Lau 2016). However, no com-
prehensive benchmarking paper exists that evaluates both
solution quality and computation time while also correctly
accounting for infeasibilities. The main challenge is that not
all instances can be solved by all methods, making it diffi-
cult to directly compare the distributions of solution qual-
ity or other metrics. We take inspiration from Long and Fox
(2003), who compare different planners that can fail, provid-
ing a framework for comparing solution quality and speed
while also correctly considering these failures.

4 Scheduling Methods

This section outlines the proposed methods. We explain how
to use CP for these scheduling problems so far dominated
by MIP approaches. Note that in the Technical Appendix
(Van den Houten et al. 2024), we include a comparison be-
tween a CP and a MIP approach for RCPSP/max (CPOpti-
mizer and CPLEX; IBM (2024)) demonstrating that CP out-
performs MIP, which is in line with the literature.

First, we present a deterministic CP model for RCPSP/
max in Section 4.1. The new, stochastic methods for SR-
CPSP/max are proposed in Section 4.2. We explain the sta-
tistical tests for performing pairwise comparisons of these
new methods that lead to partial orderings based on solution
quality and computation time in Section 4.3.

4.1 Constraint Programming for RCPSP/max
The CP model is:

Min Makespan subject to
max{end(x;)} < Makespan;Vj € J
start(x;) > min;; + start(z;);Vj € J Vi € S
start(z;) < maz;; + start(z;); Vj € J Vi € S;

ZPulse(xj,rm) <c;VreR
jeJ
x; : IntervalVar(J, d;); Vj € J

For the deterministic RCPSP/max, we use the modern in-
terval constraints from the IBM CP optimizer (IBM 2024).
In the equations above, we use IBM’s syntax and modify
the RCPSP example from Laborie et al. (2018) to RCPSP/
max. We use the earlier introduced nomenclature together
with the minimal time lags min;,; and maximal time lags
max; ; that are the temporal differences between start times
of activities 7 and 7 if 7 is a successor of 7. We introduce
the decision variable x; as the interval variable for activity

26537

j € J. The Pulse function generates a cumulative expres-
sion over a given interval x; with a certain value. For a task
J» this value is its resource usage 7, ;. The aggregated pulse
values are constrained so that their sum does not exceed the
total available resource capacity c,..

4.2 New Methods for SRCPSP/max

This section introduces three new methods for SRCPSP/
max. The first method is a CP-based version of a proac-
tive model. Then, we present a novel, fully reactive schedul-
ing approach employing the deterministic model for RCP-
SP/max. Finally, we propose an STNU-based approach us-
ing CP and POS. We refer to these approaches as proactive,
reactive, and stnu, respectively.

Proactive Method We outline how to use a scenario-
based CP model (instead of MIP) for SRCPSP/max which
we call proactivegppa.

For this SAA method, we can reuse the deterministic
RCPSP/max CP model, introduced in Section 4.1, but we
introduce scenarios. This model is inspired by the MIP ver-
sion by Varakantham, Fu, and Lau (2016). A special variant
is the SAA with only one sample, for which a y-quantile can
be used which we call proactive,,. If a feasible schedule can
be found for the y-quantile, this schedule will also be feasi-
ble for all duration realizations on the left-hand side of the
v-quantile because of Proposition 1. We provide the SAA
model below. We use the same nomenclature as for the de-
terministic model, but we introduce the notion of scenarios
w € €, and find a schedule s; Vj € J that is feasible for all
scenarios it has seen if one exists:

1
9] u%;z Makespan(w) subject to
Max;(end(x}")) < Makespan(w); Yw € Q
start(z}’) > min;; + start(z}); Vj € J Vi € S Vw € Q
start(z}) < maw;; + start(xy); Vj € J Vi € S; Yw € Q
ZPulse(x}",rrJ) <cVre RVw €)
jeJ
xy : IntervalVar(J,y{'); Vj € J Vw € Q
sj = start(xy); Vj € J Vw € Q

Min

Reactive Method We now present a CP-based fully reac-
tive approach for SRCPSP/max that we refer to as reactive.

Fully reactive approaches, involving complete reschedul-
ing by solving a deterministic RCPSP/max, have been con-
sidered impractical due to high computational demands and
low schedule stability (Van de Vonder, Demeulemeester, and
Herroelen 2007). However, advances in CP for scheduling
(Laborie et al. 2018; Naderi, Ruiz, and Roshanaei 2023) mit-
igate these issues. In the industrial setting where we are ap-
plying our work, decision-makers often reschedule their en-
tire future plans when changes occur. Thus, including this
reactive approach in our comparison is valuable. To our
knowledge, such an approach has not been evaluated before.
The outline is:

e Start by making an initial schedule with an estimation of
the activity durations d. We can see d as a hyperparame-
ter for how conservative the estimation is. For example,
using the mean of the distribution could lead to better
makespans, but the risk of becoming infeasible for larger
duration realizations, while taking the upper bound of the
distribution could lead to a very high makespan.

At every decision moment (when an activity finishes) re-
solve the deterministic RCPSP/max while fixing all vari-
ables until the current time to reschedule with new infor-
mation, we again use the estimation d for the activities
that did not finish yet. Resolving is needed when the fin-
ish time of an activity deviates from the estimated finish
time. We warm start the solver with the previous solution.

STNU-based Method Finally, we present a partial order
schedule approach using CP and STNU algorithms (Huns-
berger and Posenato 2024) which we call stnu. This ap-
proach is inspired by many earlier works (Policella et al.
2007; Lombardi and Milano 2009; Fu, Varakantham, and
Lau 2016). We use a fixed-solution approach for construct-
ing the ordering constraints. The outline of the approach is:

1. We make a fixed-point schedule by solving the determin-
istic RCPSP/max with an estimation of the activity du-

rations d and using the chaining procedure, which was
explained in Section 3.2.

We construct the STNU as follows:

(a) For each activity two nodes are created, representing
its start and end.
(b) Contingent links are included between the start of the
activity and the end of the activity with [LB, UB],
where LB and UB are the lower and upper bounds
of the duration of that activity.
The minimal and maximal time lags are mod-
eled wusing edges (startp,—min,starts) and
(start 4, mazx, startp), where A and B are the pre-
ceding and succeeding activity, respectively. These
edges correspond to the edges in the precedence graph
of the instance, see Figure 1.
The resource chains that construct the POS are added
as additional edges as (startp, 0, end 4) if activity A
precedes activity B. Each arrow in Figure 2 would lead
to a resource chain edge.

2.

()

(d)

The resulting STNU is tested for dynamic controllabil-
ity (DC), and if the network is DC its extended form (ES-
TNU) is given to the RTE* algorithm. Since makespan min-
imization is of interest, we slightly adjust the algorithm from
Hunsberger and Posenato (2024): instead of selecting an ar-
bitrary executable time point and an arbitrary allowed ex-
ecution time, we always choose the earliest possible time
point at the earliest possible execution time. In the Technical
Appendix we include a step-by-step example of the STNU-
based method.

4.3 Statistical Tests for Pairwise Comparison

A strategy for benchmarking is to provide partial orderings
of the scheduling methods for the different metrics of inter-
est (e.g. solution quality, runtime offline, runtime online). A

26538

partial ordering can be obtained by executing pairwise com-
parisons of the methods per problem size and per metric,
taking inspiration from Long and Fox (2003).

The Wilcoxon Matched-Pairs Rank-Sum Test (the version
by Cureton (1967)) looks at the ranking of absolute differ-
ences and gives insight into which of a pair of methods has
consistently better performance than another method. Infea-
sible cases can be handled by assigning infinitely bad time
and solution quality to these cases, leading to an absolute
difference of oo or —oo that will be pushed to the highest
and lowest rankings.

An alternative test to the Wilcoxon test that is also used
by Long and Fox (2003) is the proportion test (see Test 4
in the book by Kanji (2006)). This test is weaker than the
Wilcoxon, but provides at least information about signif-
icance in the proportion of wins when the Wilcoxon test
shows no significant difference. The magnitude test provides
more insight into the magnitude differences of the perfor-
mance metrics. This test is also known as the pairwise t-test
on two related samples of scores (see Test 10 in the book
by Kanji (2006)). This test can only be performed on dou-
ble hits because infinitely bad computation time or solution
quality will disturb the test.

We provide a detailed explanation of all of the above sta-
tistical tests in our Technical Appendix.

5 Experimental Evaluation

The goal of the evaluation is to analyze the relative perfor-
mance of the different proposed scheduling methods.

5.1 Data Generation

We use the j10, j20, j30, ubo50, and ubo100 sets from the
PSPlib (Kolisch and Sprecher 1996). Instead of using all
instances from j10 to j30, we select 50 per set and ex-
tend previous work (Varakantham, Fu, and Lau 2016; Fu,
Varakantham, and Lau 2016) by including 50 instances each
from the ubo50 and ubo100 sets. Following prior research,
we use deterministic durations to set up stochastic distri-
butions with different noise levels, converting determinis-
tic instances into stochastic ones. We use uniform discrete
distributions for durations based on the deterministic pro-
cessing times d;. Specifically, we define the lower bound as
Ib; = max(1,round(d; — € - /d;)) and the upper bound as
ub; = round(d; + € - \/d;), where we vary the noise level
e = {1, 2}. The source and sink nodes always have a deter-
ministic duration of zero. Each evaluation of a method cor-
responds to one sample from the distribution, and we sample
10 times for each instance. We excluded the instance sam-
ples for which it is impossible to find a feasible schedule
(i.e. the deterministic problem with perfect information is
infeasible for the given activity duration sample).

5.2 Tuning of the Methods

In this section, we highlight the most important observations
and outcomes of our tuning results; for further details, see
our Technical Appendix.

All CP models are solved with the IBM CP solver
(IBM 2024) with default settings. Most of the deter-

Test Legend stnu-react stnu-progaa stnu-prog react-progaa react-prog Progaa-Prog g
Wilc. Quality [n] z (p) [3701-6.75 (*) [370]-6.8 (*) [370]-6.86 (*) [370]-2.76 (*) [370]-8.53 (*) [370]-7.09 (*)
Prop. Quality [n] prop (p) [277]0.78 (*) [276] 0.78 (¥) [278] 0.78(*) [61]0.67 (¥) [73] 1.0 (*) [65] 0.94 (¥)
Magn. Quality [n] ¢ (p) [330]-11.36 (*) [330]-11.39 (*) [330]-11.35(*) [370]-2.86(*) [370]-6.73 (*) [370]-6.01 (*)
norm. avg. stnu: 0.985 stnu: 0.985 stnu: 0.984 react: 1.0 react: 0.999 progaa: 0.999
norm. avg. react: 1.015 progaa: 1.015 progy o: 1.016 progaa: 1.0 prog o: 1.001 prog o: 1.001
Test Legend react-stnu react-progaa prog ¢-stnu Prog ¢-Progaa stnu-progaa
Wilc. Offline [n] z (p) [370]-16.67 (*) [370]-16.67 (*) [370]-16.67 (*) [370]-16.67 (*) [370]-7.26 (*)
Prop. Offline [n] prop (p) [370] 1.0 (*) [370] 1.0 (¥) [370] 1.0 (¥) [370] 1.0 (¥) [370] 0.62 (¥)
Magn. Offline [n] ¢ (p) [330]-36.15 (*) [370]-72.56 (*) [330]-36.15(*) [370]-72.56 (*) [330]-5.64 (*)
norm. avg. react: 0.36 react: 0.24 prog o: 0.36 prog o: 0.24 stnu: 0.82
norm. avg. stnu: 1.64 progaa: 1.76 stnu: 1.64 progaa: 1.76 progaa: 1.18
Test Legend prog ¢-stnu progaa-stnu prog o-react progaa-react stnu-react
Wilc. Online [n] z (p) [370]-16.67 (*) [370]-16.67 (*) [370]-16.67 (*) [370]-16.67 (*) [370]-9.85 (*)
Prop. Online [n] prop (p) [370] 1.0 (*) [370] 1.0 (¥) [370] 1.0 (%) [370] 1.0 (¥) [370] 0.89 (*)
Magn. Online [n] ¢ (p) [330] -3.95e3 (*) [330]-3.98e3 (*) [370]-3.07e4 (*) [370]-3.14e4 (*) [330]-142.76 (*)
norm. avg. prog o: 0.01 progaa: 0.01 prog 4: 0.0 progaa: 0.0 stnu: 0.15
norm. avg. stnu: 1.99 stnu: 1.99 react: 2.0 react: 2.0 react: 1.85

Table 1: Pairwise test results for ubo50, e = 1, covering solution quality and runtime. Metrics include Wilcoxon, proportion,
and magnitude tests (Section 4.3). Results: [pairs] z-value (p-value) (* for p < 0.05), proportion (p-value), and t-stat (p-value)
with normalized averages. Additional results for other ¢, j10-30, ubo50, and ub0100 are in the Technical Appendix. Column
headers list the compared methods, excluding zero-difference pairs.

ministic RCPSP/max the j10-j30 instances can be solved
within 60 seconds. For, ubo50 and ubol00 instances, we
fixed the time limit to 600 seconds. We tune the clas-
sical SAA with multiple scenarios proactivegys and a
heuristic approach proactive,. We used v = 0.9 for
proactive, . For proactivegaa, we sampled quantiles at y €
[0.25,0.5,0.75,0.9] and set a time limit of 1800 seconds.
The algorithm reactive uses offline the proactive,, algorithm,
for which we fixed v = 0.9. We investigated the effect of the
time limit for rescheduling and set this hyperparameter to 2
seconds. The algorithm stnu consists of an offline procedure,
which comprises building up the network and checking dy-
namic controllability; if it’s not DC, the method fails. We
observed that that the choice of the y-quantile for the fixed-
point schedule significantly affects the ratio of DC networks.
We select v = 1 for our final method stnu, because this set-
ting results in much more DC networks than lower quantiles.

5.3 Results

We include an analysis of the feasibility ratios of the differ-
ent methods. A selection of the results of the statistical tests
are shown in Table 1 (the remaining results are included in
the Technical Appendix). We present summarized partial or-
derings on 1) solution quality, 2) time offline, 3) time online.

Feasibility Ratio We first analyze the obtained feasibil-
ity ratios in Table 2. For ¢ = 1, the feasibility ratios
of proactivegpp, proactive 4, and reactive are similar for
instance sets j10-ubo50, with reactive slightly lower for

26539

Set e=1 ‘ €=2

stnu progas Prog g react ‘ stnu progan Prog g react
10 065 085 085 0.85/0.63 0.63 0.64 0.63
20 065 0.76 0.76 0.76/0.63 0.54 0.53 0.53
30 078 089 0.89 0.89/0.63 0.51 048 0.49
50 077 086 0.86 0.86/0.67 041 042 041
100 0.84 091 091 0.88/0.79 035 036 033

Table 2: Feasibility Ratios for ¢ = 1 and € = 2. Set 10, 20
and 30 refer to j10, j20 and j30, and set 50 and 100 refer to
ubo50 and ubo100.

ubo100. The stnu method has the lowest feasibility rate, but
the difference narrows as problem size increases. For € = 2,
the stnu achieves the highest feasibility ratios due to better
handling of larger variances in durations.

Results Statistical Tests Table 1 shows a subset of the
pairwise test results for the metrics solution quality, offline
time, and online time. In our Appendix, we provide all test
results per instance set / noise level e setting. The outcomes
of the test results can be used to make partial orderings of
the methods, distinguishing between a strong partial order-
ing (Wilcoxon test) and a weak ordering (proportion test).
Besides that, the results of the magnitude test give insight in
the magnitude differences of each performance metric based
on the double hits. For example, in Table 1, the normalized

T T .
reactive proactivegpp —> proactiveg ¢
\</ '
Figure 3: Summarizing illustration of the partial ordering of
the different methods for solution quality.

stnu

average makespan is 0.958 for stnu and 1.015 for reactive,
with a significant advantage for stnu on double hits.

Partial Ordering Visualization In Figures 3-5, an arrow
A — B indicates that in the majority of the settings either A
is consistently better than B (Wilcoxon) and/or A is better
than B a significant number of times (proportion). Due to
space constraints and for clarity, we have chosen to display
only the most common pattern per metric rather than all par-
tial orderings per instance set and noise level. Consequently,
the distinction between strong and weak partial orderings is
omitted in these figures. We refer to the Technical Appendix
for the partial orderings per setting including the distinction
between a strong and weak partial ordering.

5.4 Analysis

Figure 3 shows the visualization of the partial ordering for
solution quality (makespan). The results are consistent for
the different instance sets and noise levels. The stnu shows
to be the outperforming method based on solution qual-
ity. The reactive approach outperforms the proactive meth-
ods. Furthermore, proactivegy, outperforms in many cases
proactive ¢, although for larger instances and a higher noise
level a significant difference is not present. In earlier work,
proactive approaches were considered state-of-the-art, but
in our analysis, we found better makespan results for the
STNU-based approach. We found that for each pair for
which an arrow is visualized in Figure 3 also a significant
magnitude difference was found on the double hits.

Figure 4 shows that the proactive, o and reactive have
the lowest relative offline runtime and we found no sig-
nificant difference between the two. The ordering of stnu
and proactivegp, depends on the problem size (the ordering
flips for larger instances). These relative orderings are con-
firmed with the magnitude test on double hits. However, we
assign infinitely bad offline computation time to infeasible
solutions. When executing the Wilcoxon test we include all
instances for which at least one of the two methods gener-
ated a feasible solution. For that reason, a flip in the partial
ordering occurs for ¢ = 2, ubo50 and ubo100: stnu shows
the best performance, and proactive 4 outperforms reactive
according to the Wilcoxon tests. This was mainly due to the
higher feasibility ratio for the better methods (see Table 2)
as the results from the magnitude test on double hits contra-
dicted Wilcoxon in these cases (we did not visualize this pat-
tern in the main paper, but we included it in the Appendix).

We observe the general partial ordering for online run-
time in Figure 5. The superiority of proactive;, and
proactivega s are expected, as these methods only require a
feasibility check online. The faster online time of the stnu
compared to the reactive can be explained by the fact that the
stnu employs a polynomial real-time execution algorithm,

26540

proactiveg o /x\
T larger instances

proactivegaa

. smaller instanc
reactive

Figure 4: Summarizing illustration of the partial ordering of
the different methods for time offline.

T stnu reactive
/

Figure 5: Summarizing illustration of the partial ordering of
the different methods for time online.

stnu

proactive g

proactivegap

while reactive calls a deterministic CP solver multiple times.
These results are confirmed with a magnitude test on dou-
ble hits. Again, there are a few settings (¢ = 2, ubo50 and
ubo100) in which the magnitude and the Wilcoxon test con-
tradict each other: stnu outperforms the proactive methods
based on the Wilcoxon test due to higher feasibility ratios,
while the magnitude test on double hits shows better online
runtime for proactive g and proactivegpp.

6 Conclusion and Future Work

This study introduces new scheduling methods for SRCP-
SP/max and statistically benchmarks them, addressing the
existing research gap of a lacking benchmarking paper.

Until now, proactive (SORU-H) methods were consid-
ered the best method for SRCPSP/max, although partial
order schedules have shown potential in earlier research.
We found that proactive methods can be improved with
online rescheduling, resulting in better solution quality
for the method reactive compared to proactive approaches
proactivesaa and proactive,. We find that the algorithm
stnu that uses partial order schedules outperforms the other
methods on solution quality in our evaluation. Although in
general, proactive7 and reactive have better offline com-
putation time than stnu, and proactivesa, and proactive,
have better online computation time than stnu, the stnu also
showed good relative runtime results due to the polynomial
time STNU-related algorithms.

In future work, the same approach could be used to evalu-
ate other scheduling problems, and we can gain more insight
into how these methods perform on both well-known prob-
lems from the literature and in practical situations. Temporal
constraints that are defined from end-to-start can be an in-
teresting problem domain for future work. The stnu method
can extended in multiple directions, e.g. rearranging the or-
der of the jobs online or using probabilistic STNs are both
interesting for future work.

Furthermore, the set of methods could even be broadened
by including sequential approaches (Powell 2022) or ma-
chine learning-based methods like the graph neural network
in (Teichteil-Konigsbuch et al. 2023) for SRCPSP.

Acknowledgements

This work is supported by the Al4b.io program, a collab-
oration between TU Delft and dsm-firmenich, and is fully
funded by dsm-firmenich and the RVO (Rijksdienst voor
Ondernemend Nederland).

References

Bartusch, M.; Mohring, R. H.; and Radermacher, F. J. 1988.
Scheduling project networks with resource constraints and
time windows. Annals of Operations Research, 16: 199—
240.

Cureton, E. E. 1967. The normal approximation to the
signed-rank sampling distribution when zero differences are
present. Journal of the American Statistical Association,
62(319): 1068-1069.

Fu, N.; Lau, H.; Varakantham, P.; and Xiao, F. 2012. Robust
Local Search for Solving RCPSP/max with Durational Un-
certainty. Journal of Artificial Intelligence Research (JAIR),
43: 43-86.

Fu, N.; Varakantham, P.; and Lau, H. 2016. Robust Par-
tial Order Schedules for RCPSP/max with Durational Un-
certainty. Proceedings of the International Conference on
Automated Planning and Scheduling, 26: 124—130.

Herroelen, W.; and Leus, R. 2002. Project scheduling un-
der uncertainty: Survey and research potentials. European
Journal of Operational Research, 165: 289-306.

Hunsberger, L.; and Posenato, R. 2024. Foundations of
Dispatchability for Simple Temporal Networks with Uncer-
tainty. In Proceedings of 16th International Conference
Agents and Artificial Intelligence 2024, volume 2, 253-263.

IBM. 2024. IBM ILOG CPLEX Optimization Studio. IBM,
Armonk, NY.

Kanji, G. K. 2006. 100 statistical tests.

Kleywegt, A. J.; Shapiro, A.; and Homem-de Mello, T. 2002.
The sample average approximation method for stochastic

discrete optimization. SIAM Journal on optimization, 12(2):
479-502.

Kolisch, R.; and Sprecher, A. 1996. PSPLIB - a project
scheduling problem library. European Journal of Opera-
tional Research, 205-216.

Laborie, P. 2015. Modeling and Solving Scheduling Prob-
lems with CP Optimizer.

Laborie, P.; Rogerie, J.; Shaw, P.; and Vilim, P. 2018. IBM
ILOG CP optimizer for scheduling: 20+ years of scheduling
with constraints at IBM/ILOG. Constraints, 23.

Lgelmund, G.; and Radermacher, F. J. 1983. Algorithmic
approaches to preselective strategies for stochastic schedul-
ing problems. Networks, 13(1): 29-48.

Lombardi, M.; and Milano, M. 2009. A Precedence Con-
straint Posting Approach for the RCPSP with Time Lags and
Variable Durations. 569-583. ISBN 978-3-642-04243-0.

Lombardi, M.; Milano, M.; and Benini, L. 2013. Robust
Scheduling of Task Graphs under Execution Time Uncer-
tainty. Computers, IEEE Transactions on, 62: 98—111.

26541

Long, D.; and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis. Journal of Artificial
Intelligence Research, 20: 1-59.

Morris, P. 2014. Dynamic controllability and dispatchabil-
ity relationships. In Integration of AI and OR Techniques
in Constraint Programming: 11th International Conference,
CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceed-
ings 11,464-479. Springer.

Naderi, B.; Ruiz, R.; and Roshanaei, V. 2023. Mixed-
Integer Programming vs. Constraint Programming for Shop
Scheduling Problems: New Results and Outlook. INFORMS
Journal on Computing, 35.

Policella, N.; Cesta, A.; Oddi, A.; and Smith, S. 2007. From
precedence constraint posting to partial order schedules: A
CSP approach to Robust Scheduling. AI Communications,
20: 163-180.

Policella, N.; Smith, S. F.; Cesta, A.; and Oddi, A. 2004.
Generating Robust Schedules through Temporal Flexibility.
In ICAPS, volume 4, 209-218.

Posenato, R. 2022. CSTNU Tool: A Java library for check-
ing temporal networks. SoftwareX, 17: 100905.

Powell, W. B. 2022. Reinforcement Learning and Stochas-
tic Optimization: A Unified Framework for Sequential Deci-
sions. John Wiley & Sons, Inc.

Schutt, A.; Feydy, T.; Stuckey, P. J.; and Wallace, M. G.
2013. Solving RCPSP/max by lazy clause generation. Jour-
nal of scheduling, 16: 273-289.

Teichteil-Konigsbuch, F.; Povéda, G.; de Garibay Barba,
G. G.; Luchterhand, T.; and Thiébaux, S. 2023. Fast and ro-
bust resource-constrained scheduling with graph neural net-
works. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 33, 623-633.

Van de Vonder, S.; Demeulemeester, E.; and Herroelen, W.
2007. A classification of predictive-reactive project schedul-
ing procedures. Journal of Scheduling, 10: 195-207.

Van den Houten, K.; Planken, L.; Freydell, E.; Tax, D. M.;
and De Weerdt, M. 2024. Proactive and Reactive Constraint
Programming for Stochastic Project Scheduling with Maxi-
mal Time-Lags. arXiv:2409.09107.

Varakantham, P.; Fu, N.; and Lau, H. 2016. A Proac-
tive Sampling Approach to Project Scheduling under Un-
certainty. Proceedings of the AAAI Conference on Artificial
Intelligence, 30.

