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Problem background
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Energy Crisis and Rising Gas Price

• Energy Efficient Building 

• Cost Savings
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Moving towards an energy efficient building



Building 
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Energy usage

DUWO’s Uilenstede project

Gas



The site
South of Amsterdam Uilenstede
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Site location 8
Source: google earth

Student housing
3500 residents 
20 buildings



Built year 9

2010s
1970s

1970s

1990s

1980s



Housing types 10

StudiosGroup 
house

Group 
house

Apartments

Apartments

Group 
house Group 

house



Housing types
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Central heating system with Combined Heat 
and Power (CHP) systems and boiler
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Central heating CHP

CHP

CHP

CHP

Central heating
boiler

Central heating
boiler

Heating system of the building



Information
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Building Type & Energy Usage

Uilenstede project



Research Question
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How can energy consumption profiles guide energy 
conservation strategies?
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Understanding Patterns of Gas Consumption

Influence of Building Features on Energy Efficiency



Research framework
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Consumption data

Building features

Relation between 

Usage profiles

Built year, insulation values, heating system



Summarize data
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Features of the buildings
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Type Value

Roof Enhanced with insulation of approximately 5 – 10 cm Rc = 1.5 (m2K)/W.

Walls Contain uninsulated cavities, resulting in an insulation value of 

Rc = 0.36 (m2K)/W.

Windows, Glass + 

Frame, and Doors

Insulation value of U=1.7W/(m2K).



Hourly gas consumption

21/75



Analyze data
Average gas usage per floor area

Hot tap water percentage
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Annual gas consumption normalized by floor area

23/75

• Building 4504 is nearly three times difference with Building 
4510 despite both serving similar floor areas

• Varying energy efficiency of these buildings.
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Hot tap water gas consumption percentage

summer months, heating is not requiredShower, cooking



Hot tap water percentage vs floor area
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Typical residential home, it's often estimated 
that about 15-25% 

around 45 %
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Hot tap water percentage vs floor area
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•Meter #4905: Has the highest hot tap water usage percentage of 
58.09%, it has a central heating system, attributed to heat losses 
that occur during the distribution process.
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Consumption profiles
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Consumption profiles

By identifying when and how energy is used, it is 
possible to find opportunities to reduce 
consumption.
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Framework

Preprocessing



Find the periodicity 
• Hourly

• Daily 

• Weekly?
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Autocorrelation function

• Variables Explained:

• r(t) = original data

• r(t-k) = data shifted by k units.

• r_bar = The average of original data

31

shiftedoriginal



Autocorrelation function

• Variables Explained:

• r(t) = original data

• r(t-k) = data shifted by k units.

• r_bar = The average of original data
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K = k-unit shifted data



Autocorrelation across all meters
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Autocorrelation result - hourly
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•24 Hour



Segmentation – yearly data
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Segmentation – daily data
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Consumption on heating and non heating months
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Heating months: Oct - Apr

Heating days

Non-heating days
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Scaling

• By floor area
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How to find similarity
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Finding similar time-series in shape

40/75



Distance measurements 

• Euclidean distance vs Dynamic Time Warping

41/75

Source: https://medium.com/mlearning-ai/what-is-dynamic-time-warping-253a6880ad12



Dynamic time warping

• Calculating distance between time series data
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Tavenard, R. (n.d.). An introduction to Dynamic Time Warping. Github.Io. Retrieved June 1, 2023, from https://rtavenar.github.io/blog/dtw.html



How to group similar time-series data
Identify similar patterns 
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How to group similar time-series data

Distance Matrix (pairwise distance)

-> computationally intensive process time complexity O(n^2)

Principal component analysis (PCA)

-> suitable for high-dimensional data, data is only two dimension

Support Vector Machines (SVM) 

-> require a lot of tunning for kernel and the regularization parameter

1D Convolutional Neural Networks

->black box approach, difficult to explain why certain classifications were made
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How to group similar time-series data

Distance Matrix (pairwise distance)

-> computationally intensive process time complexity O(n^2)

Principal component analysis (PCA)

-> suitable for high-dimensional data, data is only two dimension

Support Vector Machines (SVM) 

-> require a lot of tunning for kernel and the regularization parameter

1D Convolutional Neural Networks

->black box approach, difficult to explain why certain classifications were made

Clustering



Clustering

46/75

For exploratory analysis

• Straightforward

• Interpretable
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Clustering



Different clustering algorithms

Density-based Clustering (DBSCAN): 

Density don't always hold for time-series data.

Hierarchical Clustering: 

Computationally intensive, time complexity of O(n^2 log(n))

Gaussian Mixture (GM) Model: 

Each data point is drawn independently from its Gaussian 
distributions, does not consider temporal dependency

48/75



Different clustering methods

Density-based Clustering (DBSCAN): 

Density don't always hold for time-series data.

Hierarchical Clustering: 

Computationally intensive, time complexity of O(n^2 log(n))

Gaussian Mixture (GM) Model: 

Each data point is drawn independently from its Gaussian distributions, does not 
consider temporal dependency

K-Means clustering is faster and easier to interpret for initial analysis.

49/75



K-Means Clustering
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Source: https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c

Group similar data together



K-Means Clustering
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• Source: https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c



Clustering Result
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Single building

Globally across all meters



Clustering result for single 
building
Consumption pattern for each building 
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Typical daily profiles of 4 building
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Typical daily profiles of 4 building
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Typical Daily Usage Profiles of Building 4531
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• High rise
• Group house
• Individual CHP



Typical Daily Usage Profiles of Building 4531

57

• The longer daylight hours, leading to a wider interval between peaks in non-heating 
months.

• Heating months, consumption relative higher at 3pm.

non-heating months

heating months

Even distribution



Typical Daily Usage Profiles of Building 4511

58

• Low rise
• Apartments
• Shared central 

heating system
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• Water heating scheduling at 6 am -> heating up hot water storage to set temperature

• Winter cluster has a less pronounced spike due to overall high gas consumption during heating season

Non-
heating

Spring

Winter

Typical Daily Usage Profiles of Building 4511

Different seasons



Clustering Result for all building
Similar patterns across all buildings globally
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1

2 3
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5

6
8

7

8 meters



Set the cluster num to 8 groups 

Objective : find different patterns for each meter
62
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Global clustering result across all meters
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Heating months more variant in terms of consumption
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Global clustering result across all meters

Similar to each other

6464

Hour of the day Hour of the day

Cluster 5Cluster 4

Cluster 7Cluster 6

G
as

 C
o

n
su

m
p

ti
o

n
 (

h
o

u
rl

y)
G

as
 C

o
n

su
m

p
ti

o
n

 (
h

o
u

rl
y)

G
as

 C
o

n
su

m
p

ti
o

n
 (

h
o

u
rl

y)
G

as
 C

o
n

su
m

p
ti

o
n

 (
h

o
u

rl
y)

Hour of the day Hour of the day

Hour of the day Hour of the day

Cluster 0

Cluster 2

Cluster 1

Cluster 3

G
as

 C
o

n
su

m
p

ti
o

n
 (

h
o

u
rl

y)
G

as
 C

o
n

su
m

p
ti

o
n

 (
h

o
u

rl
y)

G
as

 C
o

n
su

m
p

ti
o

n
 (

h
o

u
rl

y)
G

as
 C

o
n

su
m

p
ti

o
n

 (
h

o
u

rl
y)

Hour of the day Hour of the day

G
as

 C
o

n
su

m
p

ti
o

n
 (

h
o

u
rl

y)
G

as
 C

o
n

su
m

p
ti

o
n

 (
h

o
u

rl
y)



Amount of data in each cluster
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Hour of the day Hour of the day

Hour of the day Hour of the day

Cluster 1Cluster 0

Cluster 3Cluster 2

Cluster 5Cluster 4

Cluster 7Cluster 6
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Meter distribution in each group
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Gas consumption of each cluster

Cluster 1 has low consumption due to 
it’s composed of non-heating month
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Here show the percentage of winter summer
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Gas consumption of each cluster

Cluster 2 and Cluster 7: 

(both built in 1991)

lower insulation values
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Clusters consumption
Cluster 2 and Cluster 7: 

(both built in 1991)

having lower insulation values
• Low rise

• Apartments

• Shared central heating system
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8 profiles are all similar
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Too many number 
of groups



Can we reduce?
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What is the optimal numbers of 
groups?
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Elbow Method

•Within-Cluster Sum of Square

73

xi data point, 
cj centroid of the cluster to which xi is assigned.

Elbow

Minimize sum of the squared distances



Elbow Method

•Within-Cluster Sum of Square

74

3 clusters
Elbow

Divide all metered data into 3 clusters
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Non-heating months

Global clustering result

Lower consumption Higher consumption
Cluster 0 Cluster 1 Cluster 2
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Amount of data in 
each cluster

Cluster 0 Cluster 1 Cluster 2
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Cluster distribution Cluster 0 Cluster 1 Cluster 2
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Average gas consumption 
per floor area Cluster 0 Cluster 1 Cluster 2

Highest
consumption
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Meter distribution in each group

4501

4504

Cluster 0 Cluster 1 Cluster 2



Only heating months
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Heating months clustering results
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3 clusters

Cluster 0 Cluster 1 Cluster 2
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Amount of data in 
each cluster

Cluster 0 Cluster 1 Cluster 2
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Average gas consumption

Cluster 0 Cluster 1 Cluster 2
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Meter distribution in each group
Cluster 0 Cluster 1 Cluster 2
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Meter distribution in each group
Cluster 0 Clustser1   Cluster 2

4501

4504



Average gas consumption &Cluster information
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Lowest average insulation, oldest built year
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Average gas consumption

Winter months Non winter months

Cluster 1 Cluster 2
Higer consumption 
more data from winter

More winter data
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Average gas consumption

Cluster 1 Cluster 2
Higer consumption 
more data from winter
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Cluster 1

89

Buildings mostly from 2014, highest average insulation.
Not the lowest consumption, heat losses in the system.
Percentage of winter months

Large percentage of 
hot tap water

Winter months
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Conclusion & Limitations

90



Conclusion

• Similar gas usage patterns across all building student accommodations.

• Highlight the importance of heating schedules in energy usage.

• Heat losses in the heating system might reduce the energy efficiency 
more than level of insulation in the building. 
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Limitations

• Lack of direct end-user metering 

• More building information

• Focus on student accommodations may limit the scope and 
generalizability of results.

92



How can energy consumption profiles guide energy 
conservation strategies?

93

By understanding patterns of gas consumption, we see what 
building factors indicate higher energy consumption.

Such as the higher influence of heating systems and 
distribution system on energy efficiency.



Discussion
More information?

94

Consumption

Patterns & value

Introduce more building features? 
Feature extraction?
What features to consider?



Future research

• Explore diverse building types

• Alternative methods 

• Building Features: year, building size (floor area, number of floors), occupancy, equipment 
(heating, cooling, lighting systems), and insulation levels.

• Feature engineering: Encoding, hashing, transformer, feature 
crossing, feature extraction, feature crossing, PCA 

95
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Thank you
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Only winter months
December January February 
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Clustering only winter months
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4501

4504
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