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Abstract
Stress inaccuracies (oscillations) are one of the main problems in the material point method (MPM), especially when 
advanced constitutive models are used. The origins of such oscillations are a combination of poor force and stiffness integra-
tion, stress recovery inaccuracies, and cell crossing problems. These are caused mainly by the use of shape function gradients 
and the use of material points for integration in MPM. The most common techniques developed to reduce stress oscillations 
consider adapting the shape function gradients so that they are continuous at the nodes. These techniques improve MPM, 
but problems remain, particularly in two and three dimensional cases. In this paper, the stress inaccuracies are investigated 
in detail, with particular reference to an implicit time integration scheme. Three modifications to MPM are implemented, 
and together these are able to remove almost all of the observed oscillations.

Keywords Double mapping · Material point method · Shape functions · Stress oscillation

Abbreviations
CDPI  Convected domain particle interpolation
CMPM  Composite material point method
DDMP  Dual domain material point
DM  Double mapping
DM-C  Double mapping using CMPM
DM-G  Double mapping using GIMP shape functions
DM-GC  Double mapping using GIMP shape functions 

and CMPM
FEM  Finite element method
FE  Finite element
GIMP  Generalized interpolation material point
GM  Gauss mapping
MP  Material point
MPM  Material point method
SD  Material point support domain
SF  Shape function

Latin symbols
a  Acceleration vector
ap  Material point acceleration
�  Vector of nodal accelerations

A  Constant derived from the axisymmetric 
solution

A1  Constant derived from the axisymmetric bound-
ary conditions

b  Body forces
B  Strain-displacement matrix
Bax  Strain-displacement matrix for axisymmetric 

domain
BC  Strain-displacement matrix for CMPM patch
cp  Soil peak cohesion
cr  Soil residual cohesion
C  Constant derived from the axisymmetric 

solution
cmp  Current number of material points in the 

element
d  Distance between the element boundary and the 

axisymmetric internal boundary
Dg  Elastic matrix at the Gauss point
Di  Elastic matrix at node i
Dp  Elastic matrix at the sampling point
�ax

p
  Elastic matrix at the sampling point for axisym-

metric domain
E  Young’s modulus
elmp  Material points affecting an element
Fext  Vector of external nodal forces
Fint  Vector of internal nodal forces
Fmag

int  Internal nodal force magnitude
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FVM  Von Mises yield function
Fx

int  Nodal internal force in the horizontal direction
Fy

int  Nodal internal force in the vertical direction
Fyield  Yield function
g  Gravity vector
H  Height of the vertical cut benchmark
�  Matrix of shape functions, representing either 

N or matrix of  Sip*
Hs  Softening modulus
i  Subscript representing nodal values
J  Jacobian matrix
Jmp  Jacobian matrix computed using material point 

shape function derivatives
|�|  Jacobian matrix determinant
k  Iteration number
K  Stiffness matrix
Kel  Element stiffness matrix
Kmag  Stiffness matrix magnitude
Kx  Diagonal entry of the stiffness matrix corre-

sponding to the horizontal degree of freedom
Ky  Diagonal entry of the stiffness matrix corre-

sponding to the vertical degree of freedom
Kv  Global stiffness matrix
lp  Half of the material point support domain 

length
L  Length of the vertical cut benchmark
M  Mass matrix
mp  Material point mass
Mx  Diagonal entry of the mass matrix correspond-

ing to the horizontal degree of freedom
My  Diagonal entry of the mass matrix correspond-

ing to the vertical degree of freedom
N  Shape function
N  Matrix of shape functions
Ni  Nodal shape function
ngauss  Number of Gauss points in the element
nmp  Number of material points inside an element
nn  Number of nodes
�C

global
  Matrix of global CMPM shape functions

�C
local

  Matrix of local CMPM shape functions
Ni  CMPM shape functions, where i is the 

C-continuity
Ni  Matrix of CMPM shape functions, where i is 

the C-continuity
omp  Original number of material points in the 

element
ps  Applied pressure on the boundary of the 

axisymmetric benchmark
r  Distance between the cylinder axis and any 

point inside the cylinder wall
re  Outer boundary of the axisymmetric benchmark

ri  Internal boundary of the axisymmetric 
benchmark

rmp1  Radial position of a material point at the bound-
ary of the axisymmetric benchmark

rp  Radial position of a material point
s  Internal boundary of the axisymmetric 

benchmark
smp  Number of material points with a support 

domain inside an element
Sip  GIMP shape functions
Sip*  Local GIMP shape functions
t  Superscript denoting value at current time step
t+Δt  Superscript denoting value at next time step
u  Virtual displacement
�  Vector of nodal displacements
�
ext  Vector of nodal displacements in the extended 

domain using CMPM
v  Velocity vector
�  Vector of nodal velocities
V  Body volume
Vp  Material point volume
vp  Material point velocity
W  Material point integration weight
WFE  Weight associated with the Gauss point
W*  Modified material point integration weight
W  Material point weight, representing either W or 

W*
xC  Nodal coordinates of the CMPM patch
xg  Gauss position
xp  Material point position

Greek symbols
α  Newmark time stepping parameter
χp  Characteristic function
δ  Newmark time stepping parameter
��  Incremental displacement
δmp1  Material point domain
Δq  Incremental deviatoric stress
Δps  Incremental applied pressure on the boundary 

of the axisymmetric benchmark
Δr  Mesh radial dimension for the axisymmetric 

domain
Δ�p  Stress increment vector at the material point
Δσm  Incremental mean stress
Δt  Time step
Δ�  Vector of incremental nodal displacements
Δy  Mesh vertical dimension
Δx  Mesh horizontal dimension
Γ  Body surface
η  Vertical position in local coordinates
ν  Poisson’s ratio
ρ  Density
ρp  Material point density
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σ  Cauchy stress tensor
σA  Analytical radial stress
σax  Cauchy stress tensor for axisymmetric domain
σL  Stress inside a linear axisymmetric element
σQ  Stress inside a quadratic axisymmetric element
σθ  Tangential stress
σr  Radial stress
σy  Vertical stress
σxy  Shear stress
τ  Traction at the surface
τp  Material point traction force
Ω  Simulation domain
Ωp  Material point support domain
ξ  Horizontal position in local coordinates

1 Introduction

For many years, the finite element method (FEM) has been the 
most used numerical technique to analyse and design struc-
tures, but it is well known that it is often unable to handle 
large deformations. In FEM, the geometry of a problem is 
attached to a mesh, and if the mesh suffers large distortions, 
the analysis is unable to continue. The material point method 
(MPM) is a numerical technique that overcomes this limita-
tion [28, 30], allowing for problems involving large deforma-
tions and multiple bodies to be analysed [5, 29, 33]. In MPM, 
the mechanical properties and the geometry of a problem are 
attached to a group of (material) points that move through 
an FEM mesh used to calculate the equation of motion in 
each time or load step. To enable this, the state variables are 
continuously mapped between the material points and the 
mesh. Many researchers have shown that MPM can be used 
to analyse some of the most common geotechnical problems, 
such as slope stability [1, 4, 9, 15, 31], foundation installation 
[17, 21, 25] and soil anchors [12]. However, the accuracy of 
MPM, in particular relating to the stress fields, is still far from 
the desired level. Indeed, it is noted that many publications 
do not display full results of the stresses, either presenting 
only deformations or limited data, and that the majority of 
work presented in the literature so far uses simple constitutive 
models. In some work, the stress oscillations and inaccuracies 
are acknowledged, and mainly attributed to the use of discon-
tinuous finite element (FE) shape function (SF) gradients (e.g. 
[3, 26, 27, 34]). Hence, a number of techniques have been 
developed to keep the SF gradients continuous between ele-
ment boundaries, i.e. C1-continuous, for example:

• GIMP [6], which distributes the influence of each mate-
rial point over a characteristic or support domain, possibly 
extending the influence to multiple elements at a time. Both 
the SF and the SF gradients are modified.

• CPDI [24], which is an extension of GIMP in which the 
material point support domain can deform, maintaining 
the interaction between particles even after large exten-
sion. There are a number of CPDI variants, with different 
orientations and behaviour of the support domain.

• B-spline MPM [26], which replaces the linear SFs by func-
tions with higher-order B-spline basis functions, which are 
at least C1-continuous and positive definite.

• DDMP [34], which preserves the linear SFs and replaces 
the SF gradients by smooth continuous functions, thereby 
allowing the usage of a local integration procedure rather 
than having a material point support domain.

These techniques have been proven to reduce the impact 
of cell crossing. Meanwhile, other techniques use material 
point integration together with Gauss point integration to 
reduce numerical inaccuracies [2, 16]. However, a complete 
investigation of the causes of the stress inaccuracies has not 
been presented. Moreover, these techniques typically involve 
explicit MPM schemes, thereby ignoring the errors the pro-
posed solutions can cause in the integration of the stiffness 
matrix in implicit schemes and not exploiting the advantages 
of implicit time integration. Finally, examples have often been 
investigated only for 1D cases (usually with 2D elements), so 
that oscillations caused by other deformations, e.g. material 
rotation or distortion, have not been examined.

This paper first presents the theoretical background of 
implicit MPM. Then, two benchmark problems are introduced 
to illustrate the oscillation problem. In Sect. 4, the main causes 
of stress oscillations are investigated. Then, a series of existing 
and novel solutions are presented and investigated. Finally, a 
comparison of regular MPM and the new proposed oscillation-
free MPM is given for the simulation of a vertical cut failure, 
in order to demonstrate the relative performance for a problem 
involving both 2D geometry and elasto-plasticity.

2  Theoretical formulation

MPM shares the same continuum mechanics background as 
FEM. The equation of conservation of momentum is given as

where σ is the symmetric Cauchy stress tensor, a is the 
acceleration, b are the body forces, and ρ is the mass density. 
In MPM, because of the partition of unity of the SFs, mass is 
automatically conserved. The weak form of Eq. 1 including 
traction as a boundary condition is

(1)∇� − ρ� + ρ� = 0

(2)∫
V

(�(∇u) + ρ�u − ρ�u)dV − ∫
Γ

�udΓ = 0
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where u denotes the virtual displacement, τ is the traction 
at the surface Γ (i.e. the boundary condition), and V is the 
body volume. Following standard FEM discretisation, Eq. 2 
can be expressed in the matrix form [8, 32] 

where M is the mass matrix, a is the vector of nodal accel-
erations, K is the stiffness matrix, u is the vector of nodal 
displacements, and Fext and Fint are the external and inter-
nal force vectors, respectively. A quasi-static formulation is 
obtained by removing the Ma term from Eq. 3. Using the 
Gauss–Legendre quadrature rule and discretising the con-
tinuum body using a finite set of material points, the element 
(nodal) mass matrix can be expressed as

where nmp is the number of material points in the ele-
ment, ρρ is the material point density, N is the matrix of SFs 
evaluated at the material point position xp, J is the Jaco-
bian matrix, and W is the material point integration weight 
(which is dimensionless and equal to the volume of the 
material point in local coordinates).

The element stiffness matrix K can be expressed in terms 
of a small or large strain formulation, but for simplicity it is 
expressed here in the small strain formulation (for details of 
the large strain formulation, see [32]), as

where B is the strain–displacement matrix and Dp is the 
elastic matrix at the sampling point. The element (nodal) 
external forces Fext considering gravity and boundary trac-
tions are

where g is the gravity vector. The element (nodal) internal 
forces Fint are

where σp is the vector of material point stresses. Details of 
the axisymmetric form of the previous equations are pre-
sented in “Appendix A1”. Using Newmark’s [20] time inte-
gration scheme,

(3)�� +�� = �ext − �int

(4)� =

nmp∑
p=1

ρp�(�p)|�|W

(5)� =

nmp∑
p=1

�T(�p)�p�(�p)|�|W

(6)�ext =

nmp∑
p=1

ρp�
T(�p)�|�|W+∫

Γ

��pdΓ

(7)�int =

nmp∑
p=1

�p�(�p)|�|W

(8)�
t+Δt

= �
t
+
[
(1 − δ)�

t
+ δ�

t+Δt
]
Δt

where Δt is the time step, �t+Δt , �t+Δt and �t+Δt are the 
respective vectors of displacements, velocities and accel-
erations at time t +Δt, and α and δ are time stepping param-
eters that are chosen to be α = 0.25 and δ = 0.5 to give a 
constant-average-acceleration. Substituting Eq. 9 into Eq. 3 
and rearranging leads to

where Δ� = �
t+Δt

− �
t is the vector of incremental displace-

ments. In “Appendix B”, a study of the conservation of mass 
and momentum of the implicit MPM is analysed.

The above equation governs the behaviour of the body 
and it is therefore important to accurately evaluate each of 
the terms in order to ensure realistic behaviour. Following 
the solution of the updated displacements, the trial incre-
mental stresses at the material points can be computed using 
the strain–displacement matrix as

For an elasto-plastic material, stresses which are found to 
exceed the yield surface are redistributed using a consistent 
plastic return algorithm such that a new body force is calcu-
lated, and Eq. 10 is again solved to give plastic deformations. 
This is iteratively performed until no stresses exceed the 
yield surface. For more details see, for example, Bathe [8].

2.1  Material point method

MPM discretises the material into a series of (material) 
points which carry the information of the material (density, 
mass, deformation, velocity, acceleration and stresses). A 
mapping phase occurs at the start and at the end of each 
time or load step. At the beginning of each step the values 
required at the nodes in Eq. 10 (velocity, acceleration, etc.) 
are mapped via the SFs (see Wang et al. [32] for details). 
The matrices required for the calculation are calculated via 
element integration, as shown in Sect. 2, typically using 
material points as the sampling points. Afterwards, element 
assembly results in a set of global matrices representing 
nodal equations. A finite element calculation is then per-
formed, with the state variables calculated at the nodes, in 
order to compute the deformation of the domain. Finally, 
another mapping step is undertaken to update the position 
and state variables of the material points. In Fig. 1, a sketch 
of the steps followed in MPM is shown. The SFs used to 
carry out the mapping and the integration are usually first 

(9)�
t+Δt

= �
t
+ �

t
Δt +

[(
1

2
− α

)
�
t
+ α�

t+Δt
]
Δt2

(10)

(
�t +

�t

αΔt2

)
Δ� = �t

ext
+�t

(
1

αΔt
�
t
+
(
1

2α
− 1

)
�
t
)
− �t

int

(11)Δ�p = �p�(�p)Δ�
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order (e.g. bi-linear in 2D) to avoid negative values which 
cause instability.

3  Benchmarks

Two benchmarks are introduced to demonstrate and inves-
tigate the inaccuracies which occur in MPM. The first 
benchmark consists of an elastic quasi-static axisymmetric 
problem. The second benchmark is a 2D dynamic, elasto-
plastic, vertical cut problem.

3.1  Axisymmetric benchmark

The first benchmark is similar to that presented by Nay-
lor [19] and Mar and Hicks [18] to explore stress recov-
ery. It consists of a hollow cylinder which deforms due 
to an incremental pressure (Δps) applied on the internal 

boundary (s). The main benefit of this benchmark is that, 
unlike a 1D plane strain problem, the stresses inside the 
elements are not constant; moreover, they deviate from the 
real solution and, depending on the material point posi-
tion, the deviation may be large or small.

Figure 2a, b shows the initial conditions of the bench-
mark; that is, the top view of the cylinder and the finite ele-
ment discretization of the cylinder wall, respectively. In both 
figures, the position of the boundary material point is shown 
(i.e. the material point nearest to the cylinder axis), which is 
used to determine the position of the boundary (s). Figure 2c 
and d illustrate that, during the loading, the distance  ri to the 
inner wall (s) changes, and is equal to the distance between 
the cylinder axis and the nearest active node (this implies 
that  ri remains constant until the boundary material point 
jumps to the next element). To enable the numerical (large 
strain) solution to be interpreted in terms of the analytical 
(small strain) solution, the methodology includes the fol-
lowing three features: (1) the applied pressure Δps on the 

Fig. 1  Steps followed in MPM. 
a Integration of material point 
variables to nodes at time t, 
b deformation of the domain 
as a result of the solution of 
the finite element calculation, 
and c update of material point 
variables and reset of the back-
ground mesh (t = t + Δt)

(a) (b) (c)

Ω t Ω t+∆ t

Fig. 2  Axisymmetric model 
of a hollow cylinder under 
internal pressure. a top view of 
the benchmark, b domain and 
boundary conditions, c initial 
internal boundary location, and 
d internal boundary location at 
a given step

(a) (b)

(c) (d)

ri
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1
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boundary (s) is applied to the outer nodes of the elements 
containing the outer most material points; (2) due to the new 
location of the inner wall, Δps is re-evaluated as Δps(ri) = A/
ri

2 + 2C, where A and C are constants associated with the 
initial geometry and boundary conditions of the benchmark, 
as shown in Fig. 3 (a description of the analytical solution 
and the constants A and C are presented in “Appendix A2”); 
(3) instead of accumulated stresses, incremental stresses at 
the material points are used throughout the analysis. These 
three features ensure that the incremental stress at the mate-
rial points, for an arbitrary position of the cylinder wall, can 
be compared to the analytical stress related to the original 
geometry of the cylinder.

The inner (initial) and outer cylinder boundaries are 
located at  ri = 0.5 m and  re = 1.5 m, respectively. The cyl-
inder domain is discretised by elements of dimension 
Δr = Δy = 0.20  m, and each element initially contains 
four material points equally spaced. The elastic proper-
ties are Young’s modulus, E = 1000 kPa, and Poisson’s 
ratio, ν = 0.30. The initial applied pressure increment is 
Δps = 100 kPa, and A and C are 19.56 kN and 10.87 kPa, 
respectively.

In Fig. 4, the incremental stress invariants (deviatoric 
stress Δq and mean stress Δσm ) at material point  mp1 are 
plotted and compared to the analytical solution over 25 Δps 
increments. It is evident that the stress invariants can deviate 
strongly from the analytical solution.

3.2  Vertical cut benchmark

A 2D elasto-plastic vertical cut problem has been simulated 
using the Von Mises constitutive model incorporating post-
peak softening as described in Wang et al. [32]. Figure 5 
shows the domain, boundary conditions and discretisation. 
The height H of the cut and length L of the domain are 3.0 m 
and 6.0 m, respectively; the element size is Δx = Δy = 0.10 m 

and each element contains initially four equally distributed 
material points. The elastic parameters are E = 1000 kPa 
and ν = 0.35, whereas the peak cohesion is  cp = 12 kPa, the 
residual cohesion is  cr = 3 kPa, and the softening modulus 
is  Hs = − 30 kPa. At the left boundary, the nodes are partly 
fixed to avoid displacement in the horizontal direction, 
whereas the nodes are fully fixed at the bottom boundary. 
The initial stresses in the domain are generated by fixing 
the locations of the material points and applying gravity 
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20

30

40

50
60

70

80

90

100

110

120

0.55 0.65 0.75 0.85 0.95 1.05

q 
(k

P
a)

rmp1 (m)

MPM
Analytical

q =
1
2 r− y

2+ r− θ
2+ y− θ

2
1
2

E
le

m
en

t b
ou

nd
ar

y

-80

-70

-60

-50

-40

-30

-20

-10

0

0.55 0.65 0.75 0.85 0.95 1.05

m
(k

P
a)

rmp1 (m)

MPM
Analytical

E
le

m
en

t b
ou

nd
ar

y

= r +
3

(a)

(b)
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loads until the internal and external forces are in equilib-
rium. After equilibrium is reached, the material points are 
released and deformation takes place.

Figure 6a, b shows contours of the deviatoric and mean 
stresses, respectively. It is seen that during the movement 
of material points, both deviatoric and mean stress oscil-
lations occur, although the overall failure mechanism is as 
expected. For Fig. 6b, the shown range was fixed between 
10 and − 30 kPa because the oscillations are enormous in 
and around the shear band.

4  Oscillations in MPM

The MPM technique can be seen as an FE stepwise proce-
dure, in which the integration points (now called material 
points) move together with the mesh, but keep their new 
positions while the mesh returns to its original position. This 
allows the simulation of large deformations since extreme 
distortion of the mesh is avoided, although the process is 
found to cause stress oscillations. There are a number of 
contributing factors causing these oscillations, which are 
investigated below.

4.1  Stress recovery

As is typical in many implicit FEM formulations, displace-
ments have been used as the primary variable and stresses 
are back-calculated using the strain–displacement matrix 
and the elastic matrix (Eq. 11). During the back calcula-
tion of stresses, an oscillation occurs because the stresses 
inside the elements, interpolated using the element SF 
gradients, do not agree with the analytical stresses except 
at the superconvergent positions [7, 19, 35]. This problem 
is not observed in problems where the analytical stress is 
uniform across the element, e.g. as in a 1D bar. Figure 7 
illustrates the radial stress inside a linear or quadratic 
axisymmetric element. It is seen that the computed stress 
distribution across the linear element (σL) is different from 
that across the quadratic element (σQ), and that both are 
different from the analytical stress (σA). However, the lin-
ear and quadratic stresses (σL and σQ, respectively) match 
the analytical solution exactly at the Gauss point locations. 
This means that, depending on the position of the material 
point, the recovered stresses can be either higher or lower 
than the analytical stresses, as illustrated in Fig. 4.

Figure 8 shows the analytical radial stress distribution 
and the stress recovered using MPM (or FEM) at any stress 
recovery position for the first load step in the axisymmet-
ric benchmark. It is evident that the exact solution is near 
the centre of the elements, and recovering stresses at any 

Fig. 6  MPM stresses after 1.0 m 
of horizontal displacement at 
the toe. a deviatoric stress, and 
b mean stress

(a)

(b)

10

-30

∆
σ
m
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other position will cause oscillations. It can also be seen 
that there will be a large oscillation whenever a material 
point crosses an element boundary, since the radial stress 
is discontinuous across inter-element boundaries.

4.2  Nodal integration using SF gradients

The nodal integrations of Fint and K are performed using SF 
gradients and the material point positions. However, consid-
ering that the SF gradients used in MPM are bi-linear (lin-
ear elements) and discontinuous, and that the material point 
positions change each time step, the resulting nodal values 
are inaccurate, especially if material points cross element 
boundaries. Next, a description of the SF gradients in MPM 
and the consequences of using them are presented.

Fig. 7  Radial stress inside an 
axisymmetric element
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Fig. 9  a Element local number-
ing, b regular SF associated 
with node 1, c horizontal SF 
gradient associated with node 
1, and d vertical SF gradient 
associated with node 1.  Ni is the 
shape function for node i, and ξ 
and η are local coordinates
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4.2.1  2D bi‑linear shape functions

Figure 9 shows the SF (Fig. 9b) and the horizontal and verti-
cal SF gradients (Fig. 9c, d) of node 1 of a 4-node square 
element (Fig. 9a). It is noticed that the SF gradient is a 
maximum at the node, constant in the direction associated 
with the SF gradient, and decreases down to zero in the 
orthogonal direction. When a material point crosses an ele-
ment boundary, the combination of the two element SFs 
must be considered.

In Fig. 10, two elements are shown:  E1 and  E2 (Fig. 10a). 
The SFs and SF gradients in both directions of node 5 are 
shown in Fig. 10b–d, respectively. Figure 10b shows that the 
SFs are continuous between elements, while Fig. 10d shows 
that the vertical SF gradient is continuous between elements 
in the horizontal direction and constant in the vertical direc-
tion. On the other hand, Fig. 10c shows that the horizontal 
SF gradients at the inter-element boundary are discontinu-
ous, and that they decrease in the vertical direction.

4.2.2  Integration of the internal forces Fint and stiffness K

Using SF gradients in the integration of any variable (i.e. Fint 
and K) results in an inadequate nodal distribution, whereas, 
if regular SFs are used, the nodal distribution is smoother 
(M and Fext). Moreover, two differences should be noticed 
between the integration of Fint and K. The first is that, to 
integrate Fint, the strain–displacement matrix (B) is used 
once (Eq. 7), whereas the element stiffness is computed 
using both B and its transpose BT (Eq. 5). The second is that 
to integrate Fint, the stresses of the material points are used, 
whereas to integrate K the elastic properties of the material 
points are used. The significance of this is that the elastic 
properties are constant throughout the analysis, whereas the 
material point stresses change during the analysis, causing 
possible accumulation of errors.

As an example of the inaccuracies caused by using SF 
gradients, the vertical and horizontal nodal internal force 
distributions ( Fint

x
 and Fint

y
 ) and the diagonal entries of the 

stiffness matrix (Eq. 5) corresponding to the vertical and 
horizontal degrees of freedom  (Kx and  Ky) using two differ-
ent material point distributions, are computed for nodes 1–5 
of the plane strain finite element mesh shown in Fig. 11. In 
both cases the material points are equally distributed inside 
the elements; in the first case (Fig. 11a) the material points 
are located inside each element, whereas in the second case 
(Fig. 11b) the material points have moved and some are 
located at the inter-element boundaries. After the movement, 
the material points are still located inside their original ele-
ment, except for material points a-d which have crossed the 
boundary by an infinitesimal distance. Stress components of 
σx = σy = − 1.0 MPa and σxy = 0, a Young’s modulus of 
E = 1.0 kPa and a Poisson’s ratio of ν = 0 for each material 
point have been considered, while the distance between the 
nodes is 1 m and the material point weights are equal to 1.

In Fig. 11c, d, the vertical internal force is equal to zero 
in both cases. The force is unchanged because the horizon-
tal displacement of the material points does not affect the 
values of the vertical SF gradients, and equals zero because 
the internal vertical forces on both sides of the nodes are the 
same but with an opposite sign. However, the distribution of 
the horizontal internal force is highly inaccurate due to the 
material point crossing the element boundary and the dis-
continuity of the horizontal SF gradients (Fig. 11d). When 
integrating the nodal stiffness, the horizontal and vertical 
stiffnesses are initially similar (Fig. 11e). However, as the 
material points cross an element boundary (Fig. 11f), the 
inaccuracies are evident again, although they are smaller 
than those of the internal forces. This is because the product 
BBT returns positive nodal values, so avoiding the change in 
sign of the SF gradients.
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4.3  Nodal integration of the mass M and external 
forces Fext using SFs

The integration of M and Fext is performed using SFs 
rather than SF gradients, so that discontinuities between 
elements do not occur. In this example, only the external 
forces caused by gravity are considered. Since a lumped 
form of the mass matrix is used, and also because of the 
partition of unity of SFs, any initial distribution of material 
points inside the elements results in the same nodal mass 
(or external force), as long as the distribution is symmetri-
cal. As an example, Fig. 12 shows two different material 
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point distributions inside an element, but the nodal mass 
and nodal external forces are the same in both cases.

Figure 13 shows the distribution of M for the same 
problem as in Fig. 11. It is clear that the movement of 
material points and the crossing of nodes does not cause 
any trouble for the nodal integration because of the conti-
nuity of the SFs. Also, since the integration of Fext is per-
formed in a similar manner to M, the distribution would 
be similar to the one in Fig. 13.

4.4  Plastic stress redistribution

The stress oscillation caused by the plastic stress redistribution 
is an extension of the oscillations explained in the previous sec-
tions. As the stresses exceeding the yield surface are integrated 
as a new external force computed with SF gradients, additional 
oscillations comparable to the Fint oscillations are introduced. 
Moreover, oscillating stresses could cause some points to yield 
spuriously, leading to an unrealistic system behaviour.

5  Improvements to reduce stress 
oscillations

5.1  GIMP

The generalised interpolation material point (GIMP) method 
[6] was proposed to reduce oscillations derived from mate-
rial points crossing element boundaries. In GIMP, FE SFs are 
replaced by functions constructed based on the linear FE SF 
and a material point support domain (SD). This means that 
each material point has a domain over which its influence is 
distributed. The GIMP SF  (Sip) and its gradient (∇Sip) in one 
dimension are computed as

(12)Sip =
1

Vp
∫Ωp∩Ω

χp(x)Ni(x)dx

where  Vp is the material point volume, Ω is the problem 
domain, Ωp is the material point support domain, i is the 
node, and χp is the characteristic function delimiting the 
area of influence of the material point and is given as

The support domain is often assumed to be square, with a 
size of 2lp (lp = half of the material point support domain), 
which is obtained by dividing the element size by the num-
ber of material points. In Fig. 14, a 1D comparison between 
an FE SF and a GIMP SF is plotted, considering a distribu-
tion of two equally-distributed material points per element. 
It is seen that the GIMP SF and GIMP SF gradients are no 
longer exclusive to a single element and that the GIMP SF 
gradients are continuous between elements.

The GIMP SFs in 2D and 3D are computed as products 
of the 1D GIMP SF in each direction; that is, 
Si(x) = S1

ip
(x1) ⋅ S

2
ip
(x2)  i n  2 D  a n d 

Si(x) = S1
ip
(x1) ⋅ S

2
ip
(x2) ⋅ S

3
ip
(x3) in 3D, where Sk

ip
 is the 1D 

GIMP SF in the k-direction. An additional advantage of 
including a support domain is that the material boundary is 
explicitly defined, and can be used to apply boundary 
conditions.

5.2  Modified integration weights

To reduce the problems caused by an irregular number of 
material points inside an element, it is here proposed to 
modify the material point integration weight to

(13)∇Sip =
1

Vp
∫Ωp∩Ω

χp(x)∇Ni(x)dx

(14)χp(x)

{
1, if x ∩ Ωp

0, otherwise

(15)W∗ = W
omp

cmp
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Fig. 13  Nodal mass distribution considering a initial material point distribution, and b material point distribution after horizontal movement



566 Computational Mechanics (2020) 65:555–581

1 3

where W* is the modified material point weight (dimension-
less), cmp is the current number of material points in the 
element, and omp is the original number of material points 
in the element. This modified weight is used considering 
only structured meshes, i.e. a mesh composed of equal-sized 
square elements, and equal mass material points, and its use 
with unstructured meshes or unequal mass material points is 
not part of this work. This modified weight technique differs 
from the approach of other researchers who have modified 
the weights based on volumetric strain (e.g. [11]), which, 
while compensating for 1D deformations of the material 
points (compression or extension), does not reduce the 
problems caused by the rotation or advection of the mate-
rial points. Finally, it should be noted that for four noded 
elements this modified weight value reduces to 4.0/cmp.

5.3  Double mapping (DM)

Integration using SF gradients is seen to work only at Gauss 
point locations, whereas material point integration is stable 
when based on SFs. Therefore, mapping to the Gauss point 
locations using shape functions (via the nodes) is proposed. 
As an example, the stiffness matrix is used. The elastic 
matrix is mapped to the nodes from the material points and 
then to the Gauss points, prior to the integration. Using FE 
SFs, the material point elastic matrix is mapped to the ele-
ment nodes as

were Di is the elastic matrix at node i, and Dp is the elastic 
matrix of material point p.

At this point, the total stiffness contribution of the mate-
rial points is accumulated at the nodes, and this contribution 
is then redistributed to the original Gauss positions as

(16)�i =

cmp∑
p=1

Ni(�p)�pW
∗

were Dg is the elastic matrix at the Gauss point,  Ni(xg) is the 
nodal SF evaluated at the Gauss points, and nn is the number 
of nodes of the element. By substituting Eq. 16 into Eq. 17, 
Dg is obtained as

Finally, combining Eqs. 18 and 5 (in FEM form) results 
in the nodal stiffness:

where ngauss is the number of Gauss points in the element 
and  WFE is the weight associated with Gauss point g (as in 
FEM).

5.4  DM‑GIMP (DM‑G)

As mentioned in Sect. 5.1, the GIMP method was created 
to avoid problems caused by the use of discontinuous FE 
SF gradients. However, a simple example in calculating the 
stiffness reveals a key problem. Figure 15 shows the same 
problem as in Fig. 11, but in this case the stiffness is com-
puted using regular SFs and GIMP SF gradients.

As shown in Fig. 15a, for the initial configuration of 
material points, the nodal stiffness distributions remain the 
same for both techniques, because at this position the MPM 
and GIMP SFs and SF gradients are the same. With the 
movement of the material points (Fig. 15b), the nodal stiff-
ness computed with GIMP decreases, as the GIMP SF gra-
dients drop to zero at the inter-element boundaries (as shown 

(17)�g =

nn∑
i=1

Ni(�g)�i

(18)�g =

nn∑
i=1

(
Ni(�g)

cmp∑
p=1

Ni(�p)�pW
∗

)

(19)

� =

ngauss∑
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�T(�g)

[
nn∑
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in Fig. 14). In addition, the contribution of material points 
in neighbouring elements is not capable of compensating for 
this drop. This would be the case for other methods, includ-
ing DDMP and CDPI, that have this same characteristic.

To overcome the problems of using GIMP to integrate 
nodal stiffness, it has been proposed that the double map-
ping approach be used alongside the local GIMP SFs [10]. 
The local GIMP SFs  (Sip*) are similarly created as regular 
GIMP SFs, but the influence of the material point support 
domain affects only the nodal FE SF in a single element 
rather than contributing to all contiguous elements. In 
Fig. 16, an illustration of the development of regular and 
local GIMP shape functions of a node is shown.

In a similar manner to the double mapping technique 
using regular SFs, by using local GIMP SFs it is possible 
to distribute the elastic matrix to the nodes of an element 
and afterwards to the Gauss positions. The element stiff-
ness matrix is then constructed as

where  Sip* is the local GIMP SF of node i evaluated at the 
material point position, and smp is the number of material 
points with a support domain inside the element. The algo-
rithm to compute the stiffness matrix using DM and DM-G 
is given in “Appendix C”, together with a study of the com-
putational performance.

5.5  Composite material point method (CMPM)

The composite material point method (CMPM) [14] is a 
modification of the composite finite element method (CFEM), 
proposed by Sadeghirad & Astaneh [23], in which the support 
domain used to recover the stresses is extended, i.e. a patch, 
improving the accuracy of the stresses computed. New shape 
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functions enveloping all neighbouring elements of the element 
containing the material point are developed using Lagrange 
interpolation. In Fig. 17, the  C2 shape functions are shown 
in 1D, in which each shape function  N2 envelopes the local 
element plus the neighbouring elements.

Using Lagrange interpolation, each of the  N2 shape func-
tions is computed as

where ξ is the nodal local coordinate in the extended domain, 
n is the number of nodes, ξj is the local coordinate of the Ni

2 

(21)
N2

n
(ξ) =

n∏

m = 1

m ≠ j

ξ − ξm

ξj − ξm

shape function, and ξm is the local coordinate of the remain-
ing nodes. Solving Eq. 21 for each node, the CMPM shape 
functions for an element with two neighbours are

If the material point is located at the boundary, as in Fig. 18, 
the CMPM shape functions are then

It is important to mention that although the CMPM SFs 
extend beyond the limits of an element, the range of the func-
tions remains between − 1 ≤ ξ ≤ 1. Also, this solution can only 
be used with a structured mesh. To extend the solution to a 
2D domain, the new SFs are the product of the SFs in each 
direction. Finally, trial stresses using CMPM are computed as

where ∇�2 is the matrix of the CMPM SF gradients, and �ext 
is the vector of nodal displacements in the extended domain.

6  Testing of proposed techniques

Since the novel techniques presented in this paper are designed 
for the integration of the stiffness, the testing performed in 
this section is focused on the stiffness matrix. To compare the 
stiffness using each technique, the stiffness magnitude is used, 
and this is computed as

(22)

⎡
⎢⎢⎢⎢⎣
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Fig. 17  CMPM shape functions with  C2 continuity for a central local 
element

Fig. 18  CMPM shape function with  C1 continuity for a boundary 
local element
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The test consists of computing the stiffness of an infinite 
space made up of square elements that are full of equally 
spaced material points, four per element, as shown in 
Fig. 19a. The infinite domain is then rotated 20° degrees 
around its centre (C), as in Fig. 19b. The elastic properties of 
the material are E = 1000 kN/m2 and ν = 0.30. Figure 20 pre-
sents the stiffness computed using regular MPM and DM and 
the results are compared with the FEM stiffness, computed 
using four Gauss integration points  (Kmag = 3263.57 kN/
m2). In addition, the stiffness using the modified integra-
tion weights (W*) and Gauss mapping (GM) separately 
(the two components of DM) are shown to highlight their 

comparative effects. Since the material points remain equally 
distributed after rotation, the stiffness of the domain should 
not change (i.e. be mesh independent). Finally, a further test 
is performed using two materials, by considering the proper-
ties of material points below line A–A′ to be E = 1500 kN/
m2 and ν = 0.25.

Theoretically, the stiffness of the domain should be inde-
pendent of the rotation of the field of material points, and 
should be equal to the FEM stiffness before rotation (for 
the case with one material). As can be observed in Fig. 20, 
the stiffness obtained using regular MPM is not accurate 
and improvements are needed. After including the modified 

Fig. 20  Stiffness distribution 
considering rotation of the 
domain, using one and two 
materials, computed with FEM, 
MPM, W*, GM and DM
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integration weight (W*), which accounts for a varying 
amount of material points per element, the stiffness distribu-
tion oscillates, although with a different spatial pattern than 
in regular MPM. Using GM the oscillation also persists, as 
the number of material points per cell is still incorrect, but it 
is less than in regular MPM because it helps to reduce errors 
due to material point position. It is noted that including W* 
or GM separately is unable to fix the stiffness oscillation, 
and that the spatial distribution is almost opposite in pattern, 
i.e. where high values occur in GM, low values occur in W*, 
and vice versa. Using DM, i.e. combining GM and W*, the 
stiffness oscillation is reduced significantly, as it accounts for 
both the material point position and the number of material 
points per element. Moreover, the transition is smooth over 
the elements when two materials are used.

In Fig. 21, the tests from Fig. 19 have been performed 
using GIMP and DM-G. As can be observed, the stiffness 
obtained using GIMP integration is significantly more 
inaccurate when compared to MPM integration, as it both 
oscillates and reduces in magnitude. Note that the results 
for GIMP are shown using a different contour range; this is 
because using GIMP SF gradients the stiffness reduces sig-
nificantly, and it is necessary to change the contour range to 
visualize the stiffness distribution. On the other hand, using 
DM-G the stiffness oscillation is reduced further than using 
DM. This is because the W* approach, which only allows 
the impact of a discrete number of points in each element 
to be considered, is not being used. Utilising DM-G allows 
a gradual transition of mass from one element to another. 
Moreover, using DM-G, the transitions between materials 
appears sharper than in regular FEM due to an increase in 
the accuracy of the material stiffness distribution between 
the interface nodes.

In Table 1, the difference between the stiffness obtained 
using each technique is shown relative to the nodal stiffness 
magnitude of the real FEM stiffness. In this comparison, 

only the homogenous material is considered. As can be 
observed, regular MPM and GIMP give large stiffness 
oscillations relative to the FEM stiffness, but in the case 
of GIMP the stiffness only decreases (as observed also in 
Fig. 15b). Using only the modified integration weight the 
stiffness oscillation increases, whereas using the GM stiff-
ness the oscillation decreases (compared to regular MPM), 
but not significantly. Using DM and DM-G, the dependence 
between the mesh and the position of the material points is 
reduced, and the nodal stiffness oscillations reduce signifi-
cantly, especially using DM-G where the variation is smaller 
than 1%.

7  Benchmark problems 
including improvements

The benchmark problems introduced in Sect. 3 are now re-
analysed using the improvements described in Sect. 5.

Fig. 21  Stiffness distribution 
considering rotation of the 
domain, using one and two 
materials, computed with GIMP 
and DM-G
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Table 1  Relative differences in stiffness magnitude between FEM and 
other methods for homogeneous material

a Using GIMP the stiffness only decreases with respect to FEM

Method Maximum increase (%) Maximum decrease (%)

Regular MPM 5.51 − 7.38
W* 5.93 − 8.88
GM 4.75 − 5.63
DM 2.23 − 2.38
GIMPa 0.0 − 33.95
DM-G 0.21 − 0.39
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7.1  Axisymmetric benchmark

Figure 8 showed the stress oscillation caused by using regu-
lar SFs to recover stresses in the cylinder wall. In Fig. 22, 
GIMP and CMPM are compared against regular MPM for 
a single (i.e. the first) load step. As can be seen, the GIMP 

oscillation is the same as MPM close to the centre of the 
element, because there the SF gradients are the same for 
both techniques. However, stresses are continuous between 
the elements, due to the continuous gradients of GIMP. On 
the other hand, using CMPM the stresses remain discontinu-
ous between elements, but the reduction of oscillation when 
compared to the analytical solution is significant.

In Fig. 23, the evolution of the incremental deviatoric and 
mean stresses of material point  mp1 (over 25 load steps) are 
shown, comparing the stresses obtained using normal MPM 
(as shown in Fig. 4), DM and DM-CMPM (DM-C). As can 
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be seen, there is a significant increase in the accuracy of 
the stresses recovered using the DM technique, due to the 
improved stress recovery and stiffness integration. Moreover, 
if CMPM is included in the analysis, the stress oscillation 
reduces still further to give stresses close to the analytical 
solution.

Next, the same example using DM-G and DM-GIMP-
CMPM (DM-GC) is studied. Using DM-G, the stiffness is 
computed with the DM-G method and the stresses are recov-
ered using GIMP SFs. Using DM-GC, the DM-G method 
is again used to compute the stiffness, but the stresses are 
now recovered using CMPM rather than GIMP. In addition, 

since the inner wall boundary can be determined accurately 
using the material point support domain (as mentioned in 
Sect. 5.1), the distance between the cylinder axis and the 
inner boundary (s) is  ri = rmp1 − lp as in Fig. 24. Then, the 
applied pressure Δps is distributed linearly to the nodes of 
the boundary element based on proximity.

In Fig. 25 it can be seen that, using DM-G and DM-GC, 
the results approximate the analytical solution even better 
than DM and DM-C, respectively. This is because the stiff-
ness computed using DM-G is closer to the FEM stiffness 
and also due to the accurate distribution of the external 
pressure considering the accurate location of the internal 
boundary.
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7.2  Vertical cut benchmark

Figure  26 shows the elastic stiffness magnitude in the 
vertical cut benchmark problem, using regular MPM and 
DM-GC. As can be observed in Fig. 26a–d, using regular 
MPM large stiffness oscillations occur, from the beginning 
(small deformations) up until the end (large deformations) of 
the analysis. In contrast, using DM-GC (Fig. 26e–h) the stiff-
ness oscillation reduces significantly, although some small 
oscillation can be observed in the shear band and along the 
edge of the domain.

In Fig. 27 the nodal Fint magnitude is shown, once again 
comparing regular MPM and DM-GC. Analogous to Eq. 25, 
the magnitude of the nodal internal force is computed as

It is seen that if GIMP and CMPM are included in the solu-
tion, a large reduction in the oscillations of Fint is obtained. 
Using GIMP, the oscillation caused by the material points 
crossing cell boundaries is reduced. Furthermore, by includ-
ing CMPM, the recovered stresses are improved, reducing 
the oscillation caused by the stress recovery position.

Figure 28 shows the deviatoric stress contours from both 
analyses. It is evident that, after reducing the oscillation in 
the stiffness and the internal nodal forces by using DM-GC, 
the deviatoric stress distribution in the domain is signifi-
cantly smoother. Similarly, Fig. 29 shows the comparison 
of mean stresses during the analyses, demonstrating that the 
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mean stress oscillations are reduced with DM-GC. In this 
case, as in the axisymmetric benchmark, some oscillation of 
the mean stresses still occurs, but this is thought to be due 
to incompressibility during plastic yielding. For methods to 
reduce locking behaviour in MPM using low order shape 
functions the reader is referred to Coombs et al. [13].

As can be seen from previous figures, the oscillation of 
material point stresses, nodal stiffness and internal nodal 
forces are reduced significantly using DM-GC. Plots for the 
nodal mass and external nodal forces are not included in the 
results, since the oscillation for both MPM and DM-GC is 
small.

Finally, p-q curves have been plotted for 3 material points 
at key positions in the soil body. Figure 30 shows the loca-
tion of the points chosen; material point A is located at the 
toe of the cutting, material point B is found in the middle of 
the soil layer in the shear band, and material point C is in the 
centre of the sliding block.

Figure 31 shows the p-q stress paths at the 3 points, as 
computed using both techniques, as well as the initial posi-
tion of the yield surface for a Von Mises material  (FVM). 
It is seen that, for material point A, both techniques give 
reasonable results; this is because the bottom of the domain 
is fully fixed, so that the material point does not move 
much throughout the analysis. For material points B and 
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C, if regular MPM is used (Fig. 31b, c), the oscillations are 
extreme. It is evident that were a constitutive model differ-
ent from Von Mises to be used, in which plasticity does not 

depend only on the deviatoric stress, regular MPM would 
not perform well. On the other hand, using DM-GC, the 
stress path appears to be well-behaved (Fig. 31e, f), with 
only some small oscillations.

Based on the results obtained with the benchmarks, 
Table 2 summarises the advantages and disadvantages of 
each of the methods studied in this paper.

8  Conclusion

MPM is a technique that is able to handle problems 
involving large deformations, since material properties 
and the body geometry are no longer attached to a mesh. 
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Unfortunately, the use of regular bi-linear finite element 
shape functions causes significant oscillations when inte-
grating internal forces and stiffness, decreasing the accu-
racy of the simulations. Moreover, the grid crossing of a 
material point between elements and poor stress recovery 
create additional oscillations. A series of improvements, 
both novel and building upon the work of others, have 
been studied and combined to obtain an almost oscilla-
tion free version of MPM. It has been shown that GIMP 
reduces the errors caused by grid crossing, but integration 
using SF gradients, shown via an example using the stiff-
ness matrix, is inaccurate due to the use of SF gradients 
that drop to zero at the inter-element boundaries. Using 

GIMP together with a double mapping integration pro-
cedure significantly reduces the stiffness matrix oscilla-
tion. Also, it has been proven that CMPM increases the 
accuracy of the stresses computed at the material points 
compared to typical MPM and GIMP. These techniques 
combined (termed DM-GC) increases considerably the 
accuracy of the MPM simulations. Moreover, since it has 
been observed that DM performs well when using typical 
finite element shape functions, and better still when using 
GIMP shape functions, the combination of DM with other 
C1-continuous methods, such as CPDI, B-spline MPM or 
DDMP, is a possibility which can be studied in the future. 
The DM and DM-G methods have the benefit of being 

Fig. 31  p-q curves using MPM 
(a–c), and DM-GC (d–f) MPM DM-GC
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able to be implemented implicitly or explicitly with typical 
elasto-plastic constitutive models.
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Appendices

Appendix A1: Plane strain and axisymmetric 
matrices

For plane strain conditions, the B and D matrices are
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For axisymmetric conditions, cylindrical coordinates are 
used, and after integration over one radian the stiffness matrix 
becomes

The element (nodal) internal forces Fint are

and the element (nodal) external forces Fext considering only 
gravity are

where
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Table 2  Summary of advantages and disadvantages of the methods studied

MP: material point, CEB: crossing element boundary

Method Oscillations of nodal Fint caused by Oscillations of K caused by Stress recovery

MP position MP CEB MP position MP CEB –

MPM Inaccurate distribution of 
internal forces

Large oscillations due 
to discontinuity of SF 
gradients

Increase if MP is close to 
the node, and decrease 
in some directions if 
MP is far from the 
node

Accumulation or reduc-
tion of MPs causes an 
increase or reduction 
of stiffness

Poor

GIMP Decrease of oscillation 
by keeping continuity 
of SF gradients

Imbalance disappears 
because of continuity 
of SF gradients

Large stiffness oscilla-
tion

Stiffness vanishes if MP 
is at element boundary

Continuous between 
elements

DM-MPM Inaccurate distribution of 
internal forces

Large imbalance due to 
discontinuity of SF 
gradients

Stiffness oscillation 
reduces

Stiffness oscillation 
reduces significantly 
by using the modified 
weighting value W*

Poor

DM-G Decrease of oscillation 
by keeping continuity 
of SF gradients

Imbalance disappears 
because of continuity 
of SF gradients

Stiffness oscillation 
reduces significantly

Stiffness oscillation 
reduces significantly

Continuous between 
elements

DM-GC Decrease of oscillation 
by keeping continuity 
of SF gradients

Imbalance disappears 
because of continuity 
of SF gradients

Stiffness oscillation 
reduces significantly

Stiffness oscillation 
reduces significantly

Highly improved by 
increasing the solu-
tion domain and SF 
order

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


578 Computational Mechanics (2020) 65:555–581

1 3

where �ax refers to the axisymmetric strain–displacement 
matrix, Dax refers to the stress–strain matrix, and  rp is the 
radial distance between the sampling point and the axisym-
metric axis.

Appendix A2: Analytical axisymmetric solution

The radial, tangential and axial stress distributions (σr, σθ 
and σy, respectively) in the wall of a hollow cylinder at a 
radius r from the cylinder axis are computed as

where A and C are constants given by

in which  A1 is a function of the boundary conditions. For a 
cylinder that is fixed at the external boundary  (re) and loaded 
at the internal boundary by a pressure  ps,

For more details regarding this analytical axisymmetric 
solution, the reader is directed to Popov [22].

Appendix B: Conservation of mass and momentum 
of implicit MPM

In MPM, because of the partition of unity of the SFs, mass 
is automatically conserved in mapping:

where i denotes the node.
Considering the conservation of momentum, the method 

uses the FEM approach to solve the equation of motion on 
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the nodes, which conserves momentum, and therefore it is 
the updating of the material point momentum that is con-
sidered here. The total momentum of a material point at the 
end of a time step is used considering Newmark’s scheme, 
which is computed as

where vp and ap are the velocity and accelerations, respec-
tively, at the material points and

In MPM, the total nodal momentum and change of 
momentum are equal to the total material point momentum 
and change of momentum, due to the partition of unity of 
the SF, as

Substituting Eqs. 44 and 43 into Eq. 41 and rearranging 
loads to

which reduces further to

where Δ�i is computed using Eq. 10, which is extended 
using the Newton–Raphson iteration procedure as

and

where Δ�k is the displacement within an iteration step, �� is 
the incremental displacement, and k is the iteration number. 
After Eq. 47 reaches convergence (i.e. the right hand side 
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reduces to zero within a specified tolerance), the following 
is true:

Considering an isolated system, i.e. where momentum 
would not be altered by external forces, it can be stated that

At the beginning of the time step for an isolated system, 
there is no net rate of change of momentum:

where  mij is equivalent to Mt. Moreover, acknowledging that ∑nn

i
�i(�p)={0} , then

Summing Eq.  49 over all nodes, and substituting in 
Eq. 50–52, yields
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Finally, substituting Eq. 53 into Eq. 46 leads to the con-
servation of momentum for the isolated system as

Note that the previous elaboration also holds for DM, 
DM-G and DM-GC, because (1) the modified stiffness 
matrix (Kt) does not affect the conservation of momentum, 
and (2) the GIMP and CMPM SFs satisfy the partition of 
unity and Eq. 52.

Appendix C: Double mapping procedures

Figure 32 summarises the steps to perform stiffness inte-
gration using DM techniques (DM-MPM and DM-G). It is 
highlighted that both the DM and DM-G techniques follow 
the same steps. Making the following minor modifications, it 
is possible change between DM and DM-G: (i) Loop 3 loops 
over the material points affecting the element, which can be 
either all material points in the element (cmp) or all material 
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Fig. 32  Summary of the steps 
followed to perform DM stiff-
ness integration

Kv = zero

Loop 1: over all elements

Kel=zero

Loop 2: over the element Gauss points (ngauss)

Dg=zero

Evaluate N (xg)

Evaluate Bg

Loop 3: over the material points affecting the element

Compute Dp

Evaluate H (xp)

Dg= Dg + Dp Ni(xg)nn
i=1 Hi(xp)

END Loop 3

Kel = Kel + Bg
T Dg W Bg lJl WFE

END Loop 2

Assemble Kel into Kv

END Loop 1

Σ
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points with (part of) their support domain in the element 
(smp), for DM and DM-G respectively, (ii) the nodal shape 
function �i  represents  Ni or  Sip*, for DM and DM-G respec-
tively, and (iii) the material point weight W represents W* 
or W, for DM and DM-G respectively. Summarizing, DM 
uses cmp,  Ni and W*, whereas DM-G uses smp,  Sip* and W.

In Fig. 33, the stress recovery steps are shown considering 
CMPM. It is highlighted that all matrices are related to the 
patch used, so are larger than in regular MPM. For example, 
for 4 noded elements the patch is 4 × 4 nodes, instead of 2 × 2.

To demonstrate the computational performance of the 
DM-G algorithm (which has a higher computational cost 
when compared to DM), a series of tests were conducted on 
square meshes, with the results presented in Fig. 34. The tests 
consisted of computing the stiffnesses of meshes made up of 
50, 75, 100, 150, and 200 elements per side, with each element 
filled with 4 equally distributed MPs. Each stiffness cycle was 
computed 200 times to obtain an accurate mean value of the 
time taken. In Fig. 34, the relationship between computational 
time using DM-G and regular MPM is plotted as a function 
of the number of equations. It is observed that the relationship 
is almost constant, with DM-G taking about 50% longer than 
regular MPM. However, the overall increase of computational 
time for the problems studied is close to 5%, although this is 
dependent on the solver and characteristics of the problem 
solved.
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