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Abstract
Osteoarthritis (OA) is a progressive joint degeneration disease resulting in joint pain, stiffness,

and loss of mobility. Among patients with anterior cruciate ligament reconstruction (ACLR), OA inci-
dence is increased. Articular cartilage (AC) degeneration is irreversible, therefore prevention and early
detection are essential. Specifically, the possibility to predict the risk of AC degeneration would provide
options for patient-specific early interventions.

This thesis presents a Finite Element (FE) workflow for a patient-specific FE knee model of a
patient with ACLR. A degeneration algorithm is implemented to predict AC degeneration. Uncertainties
in the parameters of a FE workflow can affect the model’s outcome. The sensitivity of the workflow to
the AC and meniscal Young’s moduli should be determined, as these influence the stress distribution in
the joint but in-vivo measurement is not possible for patient-specific values. Therefore, the developed
FE knee model is used to answer the main research question: how sensitive is the predicted AC
degeneration of a patient-specific Finite Element ACL reconstructed knee model to changes in the AC
and meniscal Young’s moduli?

The FE knee model was created based on patient-specific MRI and gait analysis data. For the
sensitivity analysis, 24 models were simulated with AC and meniscal Young’s moduli varying between 5
MPa and 35 MPa, and 59 MPa and 80 MPa, respectively. A degeneration algorithm was implemented
for the calculation of AC degeneration, based on max principal stresses.

Minimal AC degeneration was calculated for both the tibial AC and the femoral AC, ranging from
no degeneration to a degeneration level of 0.9812, and 0.9694, respectively. The 5-year follow-up MRI
showed no AC degeneration either. Statistical analysis was performed with the volume of degener-
ated AC. A multiple regression analysis showed an exponential relationship between the degenerated
volume and the AC Young’s modulus for the tibial AC (𝑅2 = 0.995, p<0.05), and the femoral AC (𝑅2 =
0.989, p<0.05). The meniscal Young’s modulus did not affect the degenerated volume. The sensitivity
analysis demonstrated that increasing AC Young’s modulus resulted in a exponentially larger volume
of degeneration.

In conclusion, the established FE workflow showed promise for the calculation of AC degen-
eration following ACLR. A foundation was laid for future development of the model. The sensitivity
of the workflow to the AC Young’s modulus was determined, highlighting the need for patient-specific
estimation of the AC Young’s modulus for reliable patient-specific AC degeneration results.
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1
Introduction

The human body has the exceptional ability to heal itself. A cut on the finger or a broken leg
can be healed within a reasonable amount of time. A band-aid for a day or a cast for six weeks, and
the damage is miraculously repaired. Even the entire human skin renews itself approximately every
27 days [1]. The body is capable of a lot of healing, but the ability to regenerate damage to Articular
Cartilage (AC) is very limited. AC is devoid of blood vessels, lymphatics, and nerves [2]. Due to the lack
of blood vessels, the needed components to restore damage repair cannot be delivered to the damaged
tissue site, resulting in the limited healing abilities of the AC. These limited healing abilities imply that
damage to the AC is irreversible. This AC damage commonly develops into Osteoarthritis (OA). OA
is a progressive joint degenerative disease inducing symptoms such as joint pain, joint stiffness, and
ultimately physical disability. Affecting a broad population worldwide, OA is a large burden on healthcare
systems [3]. Because of the lack of blood vessels, administration of medication does not reach the
damaged target sites in the AC. Therefore, pharmaceutical treatment options have been insufficient to
treat OA. Physical therapy is the golden standard for treatment options and focuses on strength and
stability training of the joint’s surrounding muscles. However, physical therapy can only decelerate the
degeneration progress and delay the need for surgery. Also, it is not always effective for all patients.
The only solution for end-stage OA is joint arthroplasty. Replacing the damaged joint with an artificial
joint is an invasive procedure only used as a last resort.

Risk factors for AC degeneration can be characterized bymodifiable and unmodifiable factors [3].
Unmodifiable factors, such as genetic predisposition, gender, and age, are factors that are unchange-
able. The most prevalent risk factor is the unmodifiable factor, age [4]. The incidence of OA increases
with age, which results in OA being the most common condition among the elderly. Modifiable risk
factors such as obesity and injuries to the joint can cause younger people to become susceptible to
AC degeneration earlier on in life. As a consequence, injuries of the Anterior Cruciate Ligament (ACL)
result in a higher prevalence of OA [5].

One of the functions of the ACL is to stabilize the knee joint. The stabilization is essential for
the natural biomechanical behavior of the knee. Injuries to the ligament can result in changes in the
biomechanical behavior of the joint, such as an increase in internal rotation during gait or changes
in contact pressure distribution on the AC [6]. These abnormal biomechanics are thought to play an
important role in the increased susceptibility to AC degeneration, seen in patients with ACL injuries.
Treatment options for ACL injuries such as rupture, include ACL Reconstruction (ACLR). However, it
has been shown that ACLR often does not fully recover the abnormal biomechanics [7] and even after
ACLR, patients are more susceptible to OA. As these patients are usually relatively young and usually
do not have AC damage at the time of injury, prevention is essential to avoid the possible development
of OA.

In-vivo research methods allow for the estimation of kinetic and kinematic parameters through
motion analysis. In-vivo measurement of loading distributions in the knee, on the other hand, is not
possible in a non-invasive way. Computational modeling has become a promising field of study to mea-
sure internal stresses. Finite Element (FE) analysis is a method frequently applied to computationally
model the knee to calculate stresses and strains in the joint [8, 9].

When developing a FE model of a biological system such as the knee, many parameter values
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2 1. Introduction

are based on assumptions due to the impossibility to measure these values in-vivo (e.g. tissue material
properties, or tissue interaction). In literature, the majority of the FE knee models base these assump-
tions on other literature or cadaver studies. However, the reliability of these assumptions is usually not
validated and the effect of these assumptions on the model’s outcome remains unknown.

As mentioned, patient-specific knowledge of knee biomechanics, stress levels, and stress distri-
bution, could be of great importance in the prediction of AC degeneration and therefore a more patient-
specific approach to physical therapy. FE analysis can provide valuable information in terms of cartilage
stress. Even prediction of AC degeneration is possible when implementing a degeneration algorithm in
the model. Degeneration algorithms have been implemented in knee FE models. In literature however,
these models are usually incomplete [10, 11], overly simplified [12, 11], and/or are not patient-specific
[10, 12, 13]. Ideally, a FE knee model for the prediction of AC degeneration following ACLR is patient-
specific, provides reliable results (in terms of stress levels and distribution, and degeneration progno-
sis), and provides these results within minimum time. The latter is an important factor for the application
in clinical settings. Clinicians do not have the time to create a new FE knee model for every patient,
making it impossible to use FE modeling for all patients. Therefore, a template FE knee model should
be created into which patient-specific parameters can be implemented for a patient-specific analysis. A
template FE model is a complete FE base model with generic parameters, besides the patient-specific
parameters that need to be implemented. Generic parameter values of the template model are usu-
ally based on literature. However, literature shows wide ranges in many of these parameters. The
effect of changing model parameters on a FE model’s outcome is usually unclear. The sensitivity of a
model to these parameters should be tested to understand the impact of the parameter on the cartilage
stresses, and thus the AC degeneration prognosis. Material properties vary widely in literature. Within
linear elastic models, the value of Young’s moduli ranges widely as well [12, 14, 15, 16]. The Young’s
modulus influences the material’s ability to deform under a certain load. In FE knee model, the Young’s
modulus of the AC is an important factor that affects stress levels of the joint’s cartilage to knee loads.
As the menisci act as a force damper in between the tibial and femoral AC, changes in the meniscal
Young’s moduli can affect stress responses in the AC.

The main objective of this thesis is to create a multiscale workflow for a patient-specific FE
knee model of a patient with ACLR and implement a degeneration algorithm for the prediction of AC
degeneration. The main research question of this thesis will be answered with the created FE knee
model; how sensitive is the predicted cartilage degeneration of a patient-specific Finite Element ACL
reconstructed knee model to changes in the articular cartilage and meniscal Young’s moduli?



2
Method

Within FE analyses, the system of interest is discretized into many smaller parts, called finite ele-
ments. Subsequently, a set of algebraic equations can be solved to determine unknown displacements
at discrete nodes in structural analysis. These equations are commonly performed by a FE software,
such as Abaqus [17]. Thereafter, stresses, strains, and other output parameters can be calculated [18].
A typical FE workflow consists of 3 main phases; a pre-processing, processing, and post-processing
phase [19]. A simplified overview of the global components of an FE workflow is shown in Figure
2.1. Pre-processing starts with the segmentation of the images, most commonly Magnetic Resonance
Imaging (MRI), to retrieve the geometry of the parts that will be included in the model. Next, the ge-
ometry is meshed and material properties are assigned, after which loading and boundary conditions
are applied, and interactions are defined. The loading and boundary conditions of the current model
are derived from musculoskeletal modeling. A degeneration algorithm is implemented in the model for
the AC degeneration prediction. In the processing step, all pre-processed parameters are combined in
Abaqus. Post-processing of the FE model focuses on data analysis, followed by checking the validity
of the data through comparison with experimental data, or literature. An overview of the workflow cre-
ated in this thesis is presented in Appendix A. The current chapter will go over the steps in the order of
implementation.

Figure 2.1: General FE workflow.

2.1. Data acquisition
For the patient-specificity of the FE knee model, patient-specific MRI and gait analysis data

were used as a basis for the model. MRI and gait analysis data were provided by the Culvenor’s group
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4 2. Method

[20] from the KOALA cohort in Australia [21, 22, 23]. The MRI data were acquired at Olympic Park,
Australia. The images were acquired using a 3.0 T MR scanner (Philips Achieva, NL) [21]. Proton
Density-weighted (PD) 3d Vista MRI images were used for segmentation with the following acquisition
parameters; scanning sequence: Spin Echo (SE), with Segmented K-space (SK), echo time: 27.325
ms, repetition time: 1300 ms, slice thickness: 0.7 mm, spacing between slices: 0.35 mm, imaging
frequency: 127.8 MHz. Gait analysis data was acquired at the University of Melbourne, Australia. A
walking trial was performed, where the participant was instructed to walk at her natural pace up and
down the capture zone.

The participant was a 21-year-old female, weighing 60 kg at the time of baseline MRI and gait
analysis (November 2010). The patient underwent ACLR surgery of the left knee in October 2010
after injury, which occurred in June 2010. The ACL was reconstructed using a single bundle 4-strand
semitendinosus and gracilis graft. A follow-up MRI was performed 5 years after the baseline MRI. The
patient weighed 65 kg at the time of follow-up MRI, this was a small weight gain compared to baseline
and was not expected to influence the knee joint forces significantly. Other than an increased echo time
of 36.588 ms, compared to 27.325 ms for the baseline MRI, all settings were the same. The echo time
is the time between the radio pulse being sent out and the signal echo being measured [24]. There is
no significant difference in signal intensity between 36 and 27 ms echo time [25].

2.2. Segmentation
Segmentation of the baseline MRI was performed in 3D slicer (4.8.1) [26, 27]. The images from

the different view angles (axial, sagittal, coronal) were aligned by rotating the image slices so the axes
of the slices aligned with the segmentation axis to avoid striping artefacts [28].

The FE knee model included the femoral and tibial bones, the femoral and tibial AC, and both
menisci as seen in Figure 2.2. Even thought the ligaments were not included as constitutive models,
segmentation was performed to determine the origin and insertion sites of the ACLR, Posterior Cruciate
Ligament (PCL), Lateral Collateral Ligament (LCL), and Medial Collateral Ligament (MCL). For the
segmentation, various tools in the segment editor of 3D slicer were used [29]. For each segment
of interest, segmentation was performed using the draw, paint, and erase tools on every 2nd or 3rd
slice. The segmented slices were interpolated for the empty slices using the fill-between-slices tool.
Segmentations were smoothed using a Gaussian smoothing (window set to 1mm) and shrinking of
the segments was avoided using margins. Overlaps between segmentations were corrected using the
subtract tool.

2.3. Knee loading and kinematics
Processing of the gait analysis data was performed in OpenSim [30] using the Gait2392 model

with 1 Degree of Freedom (DoF) knee [31]. Flexion-extension angle and translational forces were ob-
tained using inverse kinematics, static optimization, and joint reaction analyses [32]. The forces of the
femur on the tibia were expressed in the tibial reference frame. The flexion-extension angle in radi-
ans was defined as the angle between the femur and tibia, as shown in Figure 2.3. The translational
forces in anterior-posterior, medial-lateral, and distal-proximal directions and the flexion-extension an-
gle of the knee were exported. After plotting the raw gait data in Matlab (R2020a), it could be observed
that the translational forces showed several non-physiological deviations as seen in Figure 2.4. These
deviations and irregularities could cause convergence issues during the simulation in Abaqus. There-
fore, the data were smoothed with a Gaussian smoothing window where the window length states the
number of data points which were averaged using a Gaussian weighting factor. The window length for
increments 1 through 9 was set to 10 for the anterior-posterior force, and 15 for the distal-proximal, and
medial-lateral forces. For increments 10 and up, the smoothing window was set to 5 for all translational
forces. The difference in window length was applied because the first 9 increments of the data showed
large deviations, while the rest of the data did not (Figure 2.4). Applying the same smoothing window
would either not be sufficient enough to smooth the large deviations at the start, or flatten the curve too
much in the remainder of the data. For the flexion-extension angle, a smoothing window of 3 was used,
as the raw data did not show any large deviations. See Appendix B for the used Matlab code. The
data comprised one full gait cycle, whereas only the stance phase was included in the FE simulation.
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(a) FE model as used in the simulations (b) Reference points and function

Figure 2.2: Included parts in the FE knee model were the femur, tibia, femoral cartilage, tibial cartilage, and both menisci.
Reference points were created to function as the origin and insertion points of the ligaments, modeled as springs.

As most of the cartilage stresses occur during the stance phase of the gait cycle, only this phase was
included in the simulation to shorten the computational time. The duration of the stance phase was
determined in OpenSim based on the presence of a ground reaction force.

The flexion-extension angle in OpenSim was defined as the rotation of the tibia around the hori-
zontal axis with respect to the femur. The flexion-extension angle in Abaqus was defined as the rotation
of the femur with respect to the tibia. Therefore, the rotation was multiplied by -1 when implementing
the angle in Abaqus. Furthermore, the tibial local coordinate system of the OpenSim model and the 3D
slicer segmented tibia did not align. The center of rotation for the flexion-extension angle was located
between the femoral condyles, in the origin of the tibial local coordinate system. To align the local
coordinate systems of the models, a transformation matrix was obtained.

The transformation matrix was acquired using 3-matic 16.0 (Materialise). Both the tibia segment,
obtained from the 3D slicer segmentation, and the tibia from the OpenSimmodel were imported into the
software. The OpenSim model contained generic segments, resulting in differences between the tibial
parts, due to which automatic alignment could not be initiated. Thus, alignment needed to be performed
manually. The 3D-slicer tibia segment was rotated and translated such that it aligned with the tibial head
of the OpenSim part by ’dragging’ the segment. After the alignment of the parts, the transformation
matrix was exported. Because the translation/rotation was performed manually and the tibial bones
were dissimilar, this method was prone to error due to uncertainty in the accuracy of the alignment.
Therefore, the process was performed three times, and the final transformations were averaged over
the three trials, which are documented in Appendix C. The patient was scanned in anatomical position,
thus the flexion-extension angle was assumed to be 0 radians. All segmented parts were transformed
in Abaqus using the transformation matrix of the tibia to preserve the joint alignment. As the femur was
segmented from the same scan, there was no transformation matrix created for the femur.
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Figure 2.3: The flexion-extension angle in radians was defined as the angle between the femur and tibia. A fully extended knee
meant 0 rad, and a decrease in rad when the knee goes in flexion.

Segment Average edge length [mm] Number of elements Number of nodes
Femur 1 12084 6044
Tibia 1 7814 3909
AC femur 0.3 485731 147294
AC tibia 0.2 447155 134474
Lateral meniscus 0.25 66534 20794
Medial meniscus 0.175 198974 60328

Table 2.1: Mesh details per segment of the final model

2.4. Meshing
Segmented knee parts were exported to STL files and meshed using 3-matic 16.0 (Materialise,

Leuven, Belgium). The segmented knee tissues were imported in 3-matic as parts and meshed sepa-
rately. The mesh element sizes were based on a mesh convergence study. All segments were meshed
with a uniform tetrahedral mesh with varying target triangle edge lengths per part. The femoral and tib-
ial bones are considered rigid bodies, therefore a volume mesh was not created. The soft tissues were
the parts of interest for the current FE knee model and thus needed to contain a volume mesh. The
element type was tet4, which are tetrahedral elements with 4 nodes. Tet4 elements are the simplest
linear-interpolation tetrahedron-shaped elements to decrease the computational cost of the model.

A mesh convergence study was performed to determine the mesh element size. Ligaments were
disregarded for the mesh convergence model for simplicity. A concentrated compression force of 500
N was placed on the femur. The mesh input parameter used was the number of sweep layers of the
AC and menisci. The number of sweep layers implied the number of element layers used to create
a volume mesh. E.g. for 2 sweep layers, the volume mesh was composed of 2 layers of elements.
For the femoral AC and the menisci, 5 different sweep layers were created (2, 3, 4, 5, and 6). The
tibial AC was too thin to mesh with 5 or 6 sweep layers, thus the 4-layer sweep was used for these
simulations. The main output parameter of the mesh convergence study was the peak max principal
stress of the medial and lateral compartments of both AC as this was an important output parameter for
the final model as well. The output parameters were assessed in Microsoft Excel (Version 2306). See
Appendix D for the included mesh details and convergence results. The output parameter changed
less than 5% after sweep layer 4. Therefore, sweep layer 4 was concluded to be the optimal mesh for
the final FE model. The corresponding mesh properties are documented in Table 2.1.

Mesh element quality was checked by Abaqus based on a quality measure, minimum interior
dihedral angle, and maximum interior dihedral angle. The quality measure was calculated by dividing
the volume of a tetrahedron by the volume of an equilateral tetrahedron with the same circumsphere
radius. Within the range from 0 for completely distorted, and 1 for equilateral tetrahedron, a quality
measure of at least 0.02 was recommended [17]. The interior dihedral angle is the angle between
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(a) Anterior-posterior translational force (b) Distal-proximal translational force

(c) Medial-lateral translational force (d) Flexion-extension rotation

Figure 2.4: Original OpenSim data and smoothed data

2 planes of the tetrahedron. This angle should be between 10∘and 160∘. If at least one of these
parameters did not meet the desired threshold, the element was reported as distorted.

After the mesh convergence study, the soft tissues were exported as volume meshes in an
assembly, Abaqus, INP file. The bony parts were exported as STL files. Matlab was used to convert
the STL files into SAT files, which allows the bony parts to be imported into Abaqus as discrete rigid
parts. The Matlab code used for this conversion is added in Appendix E.

2.5. Assembly
The meshed soft tissues (INP file) were imported in Abaqus as a model, which automatically cre-

ated an assembly. The femur and tibia were imported as discrete rigid parts and added to the assembly
as dependent instance types. Bones were assigned to be rigid because the significant difference in
Young’s Modulus could be simplified to the bones being rigid compared to the soft tissues [11, 13, 33,
34]. For both the femur and tibia, a Reference Point (RP) was added onto which boundary conditions
and loads could be applied for the entire rigid body. A point mass/inertia was created for both rigid
bodies, with an isotropic mass of 1 for an evenly distributed mass.

Ligaments were included, and modeled as linear springs. The included ligaments were ACLR,
PCL, LCL, and the MCL. An RP was used for every origin and insertion site of the ligaments. Origin
and insertion of the ligaments were estimated by importing the segmented ligaments into Abaqus. The
coordinates of the RPs were estimated by outlining the edges of the attachment sites and averaging the
coordinates. The placements of the RPs can be seen in Figure 2.2. The springs were added between
the origin and insertion RPs. Stiffness of the ACLR was set to 200 N/mm, the PCL was set to 120
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N/mm, and the MCL and LCL were set to 100 N/mm [35, 36].
After the assembly was created, the entire assembly was transformed using the transformation

matrix obtained in Section 2.3.

2.6. Material properties
To assign material properties to the femoral and tibial AC, and the menisci, sections were as-

signed. Both the AC and the menisci were assigned solid, homogeneous section types. All soft tissues
were modeled as linear elastic [37, 33, 38].

2.6.1. Sensitivity analysis

In literature, the material properties of soft tissues show a wide variety [14, 16, 12]. As part of
the sensitivity analysis, the Young’s moduli of the AC and the menisci were varied based on the found
ranges in literature. It was assumed that the femoral AC and tibial AC had the same properties. This
assumption was also applied to the medial and lateral menisci. The Young’s modulus of the AC ranged
from 5 MPa to 35 MPa with 6 intervals [14, 12]. The Young’s modulus of the menisci ranged from
59 MPa to 80 MPa with 4 intervals [15, 14, 16]. 24 models were run with combinations of material
properties within these ranges as presented in Table 2.2. The material properties for the simulations
can be seen in Table 2.2. The Poisson’s ratio remained the same for all simulations; 0.45 for the AC
and 0.49 for the menisci [38, 16, 15, 14].

The remainder of the model was identical for all simulations to allow for investigation of the
sensitivity of the material properties alone.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
AC [MPa] 5 11 17 23 29 35 5 11 17 23 29 35 5 11 17 23 29 35 5 11 17 23 29 35

Menisci [MPa] 59 59 59 59 59 59 66 66 66 66 66 66 73 73 73 73 73 73 80 80 80 80 80 80

Table 2.2: Young’s Moduli of the AC and menisci of the 24 models included in the sensitivity analysis

2.7. Simulation steps
Abaqus automatically created an initial step in which initial parameters were set for the start

of the analysis. Parameters were created in the initial step and remained unchanged throughout the
following steps unless mentioned otherwise.

After the initial step, 3 steps were created; a Pre-displacement step, a Pre-load step, and a
Gait-cycle step. The time for the pre-displacement step and Pre-load step was left at default; 1 sec
(increment sizes, initial: 0.01, minimum: 1E-6, and maximum: 0.1). The Gait-cycle step time was set
to match the time of the stance phase; 0.56 sec (increment sizes, initial: 0.01, minimum: 56E-5, and
maximum: 0.1). For the Pre-displacement and Pre-load steps, the maximum number of increments
was set to 100. The maximum number of increments for the gait-cycle step was set to 1000. Nonlinear
effects of deformations and displacements of the geometry (Nlgeom) were allowed. The remaining
settings were left at default.

2.8. Contact definitions
To set up the contact properties between parts, the ’finding contact pairs’ option of Abaqus was

used. This tool automatically finds contacting surfaces within the searched domain (AC and menisci),
and assigns a node-to-surface contact. The contact pairs of the current model included:

• Femoral AC - lateral tibial AC
• Femoral AC - medial tibial AC
• Femoral AC - lateral meniscus
• Femoral AC - medial meniscus
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• Lateral tibial AC - lateral meniscus
• Medial tibial AC - medial meniscus

An important consideration was determining the master and slave surfaces. In contact pairs
where a large size difference in the surfaces can be observed, the larger surface should be assigned
the master surface [39]. Thus, for every contact pair including the femoral AC, the femoral AC was
assigned the master surface. Between tibial AC and the menisci, the tibial AC was the assigned master
surface. A frictionless tangential behavior and a ’hard’ contact with normal pressure-overclosure were
implemented for all contacting pairs to account for contact behavior in all directions. Node adjustment,
slave adjustment, and surface smoothing were turned off to make sure Abaqus did not adjust the
position of elements.

2.9. Constraints
Two types of constraints were used for the FE knee model, tie constraints and rigid body con-

straints. Rigid body constraints were created for the femur and the tibia to allow loads and boundary
conditions, applied to a RP, to be applied to the entire rigid body. This RP was placed on the proximal
surface of the femur, and the distal surface of the tibia, as shown in Figure 2.2. The rigid body part
(femur or tibia) was selected as the body region type and the RP created was selected as the rigid body
RP. For the femur, the location of the RP was adjusted to the center of mass at the start of the analysis.
The center of mass was automatically calculated based on the assigned inertia, at the beginning of the
simulation.

The RPs representing the ligament origins were connected to the femur, using tie constraints.
With a tie constraint, the nodes and surfaces tied together experience the same loads and displace-
ments. The discretization method was set to ’node-to-surface’. A rigid body is not allowed to be the
slave surface, whereas a node surface should always be the slave surface. Therefore, the RPs were
assigned the slave surfaces and the rigid femur was the master surface. The position tolerance speci-
fies a distance from the master surface nodes within which slave surface nodes are tied. Nodes outside
the position tolerance are not tied. The position tolerance for the RPs was set to 2 mm to assure the
nodes were tied. To prevent adjustment of the initial position of the RPs, this setting was turned off.

Both AC were also connected to the bones using tie constraints. For the tie constraints between
AC and the rigid bones, surface-to-surface discretization methods were used. The rigid bodies were
selected as the master surface in their tie constraint, again because a rigid body cannot be the slave
surface. Therefore, AC was selected as the slave surface and adjustment of the slave surface was
not allowed. For tie constraint between AC and bones, the position tolerance was left at default, which
based the tolerance region on the average distance between nodes on the master surface.

2.10. Boundary conditions
An encastre boundary condition was applied to the rigid body RP of the tibia. An encastre bound-

ary condition restricts the node of interest of any translation or rotation. Therefore, the tibia was fully
constrained from all rotations and translations. As opposed to the origin RPs of the ligaments (located
on the femur), the insertion RPs (located on the tibia) were constrained using boundary conditions. The
insertion of the LCL is placed on the fibula, which was not included in the current FE Knee model. As
the positioning of the springs might affect model results, the RP representing the LCL insertion point
was fixed in space at the position where it would have been connected to the fibula (see Figure 2.2,
RP-6). All insertion RPs, representing attachment of the ligament to the tibia, were constrained using
an encastre boundary condition. The boundary conditions for ligaments, and the tibia were created in
the initial step and propagated throughout the following steps without modification.

Furthermore, the menisci needed to be constrained to avoid non-physiological movement. Pres-
sure on the menisci pushes the menisci laterally. In-vivo, the menisci are connected to the tibia via
meniscal horns to keep them in place. The current FE model does not contain meniscal horns on ac-
count of simplicity. The menisci were constrained at the meniscal horns using an encastre boundary
condition as can be seen in Figure 2.5. This boundary condition was also propagated throughout the
following steps without modification.
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Figure 2.5: An encastre boundary condition was applied where the meniscal horns would be in-vivo

Figure 2.6: Amplitude of the applied flexion-extension angle in Abaqus

The medial-lateral translation and the internal-external rotations were locked using displacemen-
t/rotation boundary conditions, while the anterior-posterior translation and superior-inferior translation,
and varus-valgus rotation were left open. The flexion-extension angle derived from the patient-specific
gait analysis data, was applied as a boundary condition with an amplitude as seen in Figure 2.6.
The flexion angle was gradually ramped up to the starting flexion angle of the gait cycle in the Pre-
displacement step (0 sec - 1 sec). In the Pre-loading step, the flexion angle was kept constant before
initiating a tabular amplitude for the gait cycle in the last step. See Figure 2.7 for the definitions of the
translations and rotations.

All boundary conditions acted in the tibial coordinate system.

2.11. Loading conditions
The translational forces were applied as loading conditions. The translational forces were applied

as concentrated forces (in Newton) to the RP of the femoral rigid body constraint. In the Pre-load step,
the forces were ramped up to the starting value of the loads in the Gait-cycle step. For this step, 3
tabular amplitudes were created for the translational forces. The applied forces can be seen in Figure
2.8.

2.12. Degeneration algorithm
To estimate the degeneration of the femoral and tibial AC, a degeneration algorithm was imple-

mented. The algorithm was based on the degeneration algorithm described by Mononen et al. [40,
10]. The algorithm was implemented using Python (version 2.7) integrated into Abaqus (Appendix F).
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Figure 2.7: An encastre boundary condition was applied where the meniscal horns would be in-vivo

The calculated degeneration represented collagen fibrillation, as this is the first sign of OA [41].
The level of degeneration was calculated for every tetrahedral mesh element of the tibial and femoral
AC at every increment, and defined as the total degeneration that occurred over the stance phase
of one gait cycle. An increment is defined as a converged increment within the FE analysis. It was
assumed that 70% of the degeneration over a longer time period could be estimated with one cycle [41].
The degree of degeneration was assumed to be the consequence of excessive max principal stresses
and fatigue following accumulated stress [42]. If the max principal stress of an element surpassed a
degeneration threshold value at a specific time increment, a degeneration factor was determined for
that increment. The degeneration factor was calculated as:

𝐷𝑒𝑙,𝑖 = (
(𝑆𝑖𝑒𝑙 − 𝑇𝛼)/𝑇𝛼

100 ), 𝑖𝑓(𝑆𝑒𝑙,𝑖 > 𝑇𝛼), (2.1)

𝐷𝑒𝑙,𝑖 = 0, 𝑖𝑓(𝑆𝑒𝑙,𝑖 ≤ 𝑇𝛼). (2.2)
where 𝐷𝑒𝑙,𝑖 was the degeneration factor of an element at a specific time increment, ranging from

0 to 1 for no degeneration to complete tissue damage, respectively. 𝑇𝛼 was the degeneration threshold.
If the max principal stress (𝑆𝑒𝑙,𝑖) was smaller or equal to the degeneration threshold, the degeneration
factor would be 0.

In FE calculation, the time per increment (𝐼𝑁𝐶𝑖) is not always the same for every increment (𝑇𝑂𝑇).
Therefore, the total degeneration was the weighted sum of the degeneration factor per time increment
as stated in Equation 2.3 below.

𝐷𝑒𝑔𝑒𝑙 = 1 −
1.5√

𝑇𝑂𝑇

∑
𝑖=1

𝐷𝑒𝑙,𝑖 ⋅ 𝐼𝑁𝐶𝑖 (2.3)

The calculated degeneration factor was subtracted from 1 (healthy cartilage), to calculate the
final level of degeneration per element,𝐷𝑒𝑔𝑒𝑙. When 𝐷𝑒𝑔𝑒𝑙 equaled 1, this represented no degenera-
tion was detected, whereas 0 represented complete cartilage breakdown. The root term index of 1.5
was based on experimental testing done by Mononen et al. (2016) [40]. A nonlinear ramp of degener-
ation was selected as this showed faster collagen degeneration, comparable to experimentally tested
approaches.

The degeneration threshold represents the magnitude of the max principal stress at which carti-
lage degeneration is initiated. For all 24 simulations, the level of degeneration was calculated using a
degeneration threshold of 5 MPa [43].

2.13. Delft High performance computer
Due to extensive simulation time, Abaqus simulations were run in the Delft High performance

Computer (DHPC) [44]. The code used to submit the jobs and run the degeneration algorithm called
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(a) Applied anterior-posterior force (b) Applied distal-proximal force

(c) Applied medial-lateral force

Figure 2.8: Original OpenSim data and smoothed data

the batch file, is listed in Appendix G. Per model simulation, 10 Central Processing Unit (CPU)s were
allocated to the batch submission. Per CPU, 10G of memory was requested for a total memory of
100G. The time reserved for the job submission was set to 24 hours. For model visualization, access
to an Abaqus Graphic User Interface (GUI) was needed. The access was achieved via a visual node
on the DHPC. How the connection to the visual node was attained is also listed in Appendix G.

2.14. Post-Processing
As the aim of the created FE knee model was to estimate the degree of cartilage degeneration,

the level of degeneration per element was the main output parameter of the model. The main thesis
objective was to analyze the sensitivity of the FE model’s output to changes in the AC and meniscal
Young’s moduli. For the sensitivity analysis, the Young’s moduli of both menisci and femoral and tibial
AC were varied over 24 models (see Section 2.6.1).

The level of degeneration was calculated, using the degeneration algorithm in Section 2.12. The
algorithm was based on the max principal stresses calculated in the tibial and femoral AC. Evolving
patterns in the stress distributions over the course of the gait cycle were evaluated. This evaluation
was performed in the Abaqus visualization module through visual inspection.

Further analyses were performed in MATLAB (R2020a). The level of degeneration of every el-
ement per model was presented as histograms for a clear presentation of the differences between
models. The degeneration was quantified as the volume of elements that show degeneration AC. The
degenerated volume was visualized in figures for both the tibial and femoral AC to observe where
degeneration occurred and how the volumes differed between models. For the sensitivity analysis,



2.14. Post-Processing 13

Menisci
59 66 73 80

AC

5 N = 1 N = 1 N = 1 N = 1
11 N = 1 N = 1 N = 1 N = 1
17 N = 1 N = 1 N = 1 N = 1
23 N = 0 N = 0 N = 1 N = 1

Table 2.3: Statistical analyses possibilities are limited due to the single sample per independent variable combination. Due to
the failure of the models with an AC Young’s modulus of 29 MPa and 35 MPa, and two of the models with 23 MPa, these

models had a sample size of N=0.

differences in degenerated volume between the models were assessed. Due to the design of the
experiment and the single sample per group as seen in Table 2.3, differences were assessed via de-
scriptive parameters and bar graphs instead of statistical tests [45, 46, 47, 48]. The mean degenerated
volumes, and ranges were reported to determine the variance in the data.

To determine if there was a correlation between the degenerated volume and the AC and/or
meniscal Young’s Moduli, multiple regression was used. First, a simple regression was performed
to determine the correlation between the degenerated volume and the AC Young’s modulus. The
exponential equation used for the fit was 𝑓(𝑥) = 𝑎 ∗ 𝑒𝑥𝑝(𝑏 ∗ 𝑥). Where 𝑓 was the dependent variable;
degenerated volume, 𝑥 was the independent variable; the AC Young’s modulus, and 𝑎 and 𝑏 were the
regression coefficients. Second, a multiple exponential regression was performed where the meniscal
Young’s modulus was added as an independent variable to determine whether the AC and meniscal
Young’s moduli affected each other and thus improved or decreased the regression with respect to the
exponential regression with only the AC Young’s modulus. The exponential equation used for the fit of
the multiple exponential regression was 𝑓(𝑥1, 𝑥2) = 𝑎 ∗ 𝑒𝑥𝑝(𝑏1 ∗ 𝑥1+𝑏2 ∗ 𝑥2). Where 𝑥1 and 𝑥2 were
the two independent variables, and b1 and b2 were the corresponding coefficients. The coefficients
were calculated, and the goodness of the fits of both exponential regressions were determined via the
coefficients of determination (𝑅2) [49]. 𝑅2 ranged between 0 and 1, where a value of 0 indicates that
the dependent variable cannot be explained by the independent variable(s) via the exponential model.
A value of 1 indicates that the dependent variable is perfectly explained by the independent variable(s)
via the exponential model. The results were significant when p < 0.05.
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Results

24 simulations of models with varying material properties, as seen in Table 2.2 were run. Out of
the 24 simulations, 10 simulations failed to converge. The models that failed are presented in Table 3.1
with their respected AC and meniscal Young’s Moduli. These models were excluded from the statistical
analysis. The run time of the completed models in the DHPC was approximately 20 hours per model.

3.1. Max principal stress
The peakmax principal stress of the completedmodels ranged from 2.83MPa to 9.77MPa for the

tibial AC. These peak stresses were reached between 0.11 sec and 0.12 sec. The peak max principal
stress on the femoral AC ranged from 9.72 MPa to 21.82 MPa. These peak stresses were reached at
0.33 sec for all completed models. Max principal stress patterns were similar for all completed models.
The highest max principal stress at the first peak of the superior-inferior force in the gait cycle was
located posteriorly on the lateral AC, while the highest max principal stress at the second peak of the
gait cycle was located anteriorly on the medial AC. The shift was visible on both the tibial and femoral
AC. As model 22 showed the highest max principal stress values, the shift for this model is presented in
Figure 3.1. The AC and meniscal Young’s moduli of model 22 were 23 MPa and 80 MPa, respectively.

3.2. Level of degeneration
First, the level of femoral and tibial cartilage degeneration was estimated using a degeneration

threshold of 5 MPa [40]. The calculated level of degeneration per model is shown in Figure 3.2. Only
the models that showed any degeneration are presented, and only elements that showed degeneration
were included in the figure, including elements with a degeneration level of 0.9999. On the femoral AC
of model 1, only 1 element showed degeneration, and in models 7 and 13, only 2 elements showed de-
generation. Prior to data analysis, outliers were detected in the distribution of the level of degeneration
per model. Both the tibial and femoral AC had one clear outlier. The outlier elements were located on
the outer rim of the cartilage layers (see Appendix H). As most degeneration occurs more towards the

Model # Ac Young’s Modulus
[MPa]

Meniscal Young’s Modulus
[MPa]

Time of failure [s]
(Total step time: 0.56 s)

4 23 59 0.11
5 29 59 0.10
6 35 59 0.10
10 23 66 0.11
11 29 66 0.10
12 35 66 0.10
17 29 73 0.11
18 35 73 0.10
23 29 80 0.11
24 35 80 0.10

Table 3.1: An overview of the models that did not converge to a solution.

15
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(a) Joint position at the first peak. (b) Joint position at the first peak.

(c) AC tibia at the first peak. (d) AC tibia at the second peak.

(e) AC femur at the first peak. (f) AC femur at the second peak.

Figure 3.1: Shift of the max principal stress [MPa] patterns between the first and second load peak of model 22, aut 0.12s and
0.47s, respectively.
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(a) The level of degeneration of the tibial AC.

(b) The level of degeneration of the femoral AC.

Figure 3.2: The level of degeneration per model, computed with a degeneration threshold of 5 MPa

center, the unexpected degeneration at the locations of the outliers was assumed to be irregularities
in the mesh. Therefore, the outliers were excluded from further data analysis. After correction of the
outliers, 8 models showed at least one degenerated element on the AC of the tibia. The tibial AC of
models 1, 2, 7, 8, 13, and 19 did not show any degeneration. For the femoral AC 13 models showed at
least 1 degenerated element, only model 1 did not show any degeneration. Models 7 and 13 contained
only 1 degenerated element. Analysis of differences in degeneration is limited by the lack of degener-
ation in multiple models. Therefore simulations were also run with a degeneration threshold of 3 MPa
to better analyze the effect of altered Young’s modulus on cartilage degeneration.

The distribution of the level of degeneration of all degenerated elements within each model after
calculation with the degeneration threshold of 3 MPa was visualized in a boxplot for both the tibial and
femoral AC in Figure 3.3. The data set shown was again corrected for outliers, which were the same
elements as for the level of degeneration calculated with a degeneration threshold of 5 MPa. Models
1, 7, 13, and 19 did not show any degeneration on the tibial AC. On the AC femur, all models showed
degeneration. The mean level of degeneration on the tibial AC was 0.9973 (sd: 0.0028) ranging from
1 (no degeneration) to 0.9812. The mean level of degeneration on the femoral AC was 0.9967 (sd:
0.0033) ranging from 1 to 0.9694.

3.3. Degenerated volume
The volume of the AC degeneration of the tibia and femur is presented for the completed models

in Table 3.2 for both the calculation with a degeneration threshold of 5 MPa and 3 MPa. The volume
of degeneration was 0 for multiple models with a degeneration threshold of 5 MPa. For sensitivity
analysis purposes, the degenerated volumes calculated with a degeneration threshold of 3 MPa were
used for further analyses and visualized in Appendix I. The degeneration showed similar patterns for
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(a) The level of degeneration of the tibial AC.

(b) The level of degeneration of the femoral AC.

Figure 3.3: The level of degeneration per model, computed with a degeneration threshold of 3 MPa
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Model Young’s Modulus [MPa] Degeneration threshold: 5MPa Degeneration threshold: 3MPa
AC Menisci AC Tibia AC Femur AC Tibia AC Femur

1 5 59 0 0 0 0.34
2 11 59 0 0.15 1.13 7.58
3 17 59 0.26 2.34 15.15 32.96
7 5 60 0 5.3e-4 0 0.77
8 11 60 0 0.30 1.41 9.12
9 17 60 0.375 2.92 1.41 9.12
13 5 73 0 5.3e-4 0 1.15
14 11 73 0.015 0.45 1.68 10.83
15 17 73 0.42 3.50 16.62 39.24
16 23 73 3.32 10.98 61.29 97.19
19 5 80 0 0.013 0 1.60
20 11 80 0.025 0.74 1.99 12.51
21 17 80 0.54 4.10 18.27 43.58
22 23 80 3.61 12.39 64.87 104.24

Table 3.2: Degenerated volume in 𝑚𝑚3.

AC Tibia AC Femur
a b1 b2 a b1 b2

Simple regression
f(x1) = a*exp(b1*x1) 0.28 (0.15, 0.40) 0.24 (0.22, 0.26) 1.76 (1.06, 2.46) 0.18 (0.16, 0.20)

Multiple regression
f(x1,x2) = a*exp(b1*x1+b2*x2) 0.19 (0.062, 0.32) 0.23 (0.21, 0.25) 6.7e-3 (-2.7e-3, 0.016) 1.01 (0.32, 1.70) 0.17 (0.15, 0.19) 9.7e-3 (-2.1e-4, 0.02)

Table 3.3: The calculated equation coefficients with 95% confidence bounds for the simple and multiple regression.

all completed models, where degeneration appeared predominantly on the posterior half of the lateral
AC.

In Figure 3.4 the volume of degeneration per model is presented in relation to the corresponding
AC and meniscal Young’s moduli for both the tibial and femoral AC. The mean volume of degeneration
on the tibial AC was 14.19𝑚𝑚3 (sd: 21.94𝑚𝑚3), ranging from 0𝑚𝑚3 to 64.89𝑚𝑚3. The total volume
of the tibial AC was 3714.93 𝑚𝑚3. The mean volume of degeneration on the femoral AC was 28.40
𝑚𝑚3 (sd: 34.30 𝑚𝑚3), ranging from 0.34 𝑚𝑚3 to 104.24 𝑚𝑚3. The total volume of the femoral AC
was 9849.93 𝑚𝑚3.

The simple regression between the degenerated volume and the AC Young’s modulus is shown
in Figure 3.5. The calculated equation coefficients (with 95% confidence bounds) are presented in Table
3.3. The coefficient of determination for the regression with the tibial AC was 𝑅2 = 0.994 (p<0.05). The
coefficient of determination for the regression with the femoral AC was 𝑅2 = 0.987 (p<0.05).

In the multiple regression analysis, the meniscal Young’s modulus was added to the regression
as a second independent variable. The AC Young’s modulus was the first independent variable, x1.
The meniscal Young’s modulus was the second independent variable, x2. The calculated equation
coefficients (with 95% confidence bounds) are presented in Table 3.3. The coefficient of determination
for the multiple regression with the tibial AC was 𝑅2 = 0.995 (p<0.05). The coefficient of determination
for the regression with the femoral AC was 𝑅2 = 0.989 (p<0.05).
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(a) Degenerated volume tibial AC.

(b) Degenerated volume tibial AC.

Figure 3.4: Bar plot of the degenerated volume per model, per AC and meniscal Young’s modulus, calculated with a
degeneration threshold of 3 MPa.

Figure 3.5: Simple regression of the degenerated volume with the AC Young’s modulus as a single independent variable.



4
Discussion

The main objective of this thesis was to develop a patient-specific FE knee model of an ACLR
patient. A degeneration algorithm was implemented in the model, to predict the development of carti-
lage degeneration. With this model, a sensitivity analysis was performed and a relation between the AC
degenerated volume and AC Young’s modulus was found. While this thesis only investigated the effect
of altering the Young’s moduli, a FE modeling workflow contains a larger number of parameters that
can influence the workflow. Therefore, assumptions and choices made that influenced the computation
time, complexity or outcome will be discussed prior to discussing the results.

First, segmentation of the knee bones and ACwas performedmanually, which is a time-consuming
task. Segmentation of the AC was complicated due to the presence of disturbance artifacts from metal-
lic attachments of the ACLR [50]. Due to the artifact, the segmented AC thickness might be affected.
AC thickness influences the contact between the femur and tibia, as contact is made sooner if the AC
is thicker. The segmentation was carefully performed and checked by an experienced radiologist, thus
the potential inaccuracy in segmentation is expected to be limited, resulting in a minor influence on
the outcome of the model. To speed up the time-consuming task of manual segmentation, automatic
segmentation algorithms should be developed that account for the ACLR induced artifacts [51]. Human
inspection of the segmentation would still be desired to verify the accuracy of the segmentation.

Second, the complexity of the geometries of the current model was an important factor in the
decision for a tetrahedral mesh, as the computation of a hexahedral mesh for complex geometries is
more time-consuming. Ramos and Simoes (2006) [52] performed a stress and strain test on the prox-
imal femur with either a tetrahedral or hexahedral mesh, and concluded that the tetrahedral elements
resulted in outcome values more closely to the experimental values. Whereas, the performance of hex-
ahedral elements is less affected by mesh refinement as it has fewer convergence issues. Therefore
it is recommended to further investigate hexahedral elements.

Third, the assembly of the current FE knee model contained the femur, tibia, their respective
AC layers, both menisci and the collateral and cruciate ligaments. There is no consensus regarding
the effect of the inclusion or exclusion of the patella. Where some studies show a change in internal-
external rotation of the knee and increased reaction forces on the tibial AC [53], others found no effect
on the kinematics and contact forces [36]. The patella was excluded to lower the complexity of the
model and reduce the computational time.

Fourth, a multiscale workflow was used, where translational forces and the flexion-extension an-
gle were derived from a musculoskeletal model with a one DoF knee [54]. This is a commonly used
generic model for the extraction of forces, moments, and joint rotations based on patient-specific gait
analysis [36, 55]. Compared to a 12 DoF knee model, using a 1 DoF model resulted in more excessive
external rotation of the femur in the FE knee model at mid-stance. This was seen early in the midstance
in the current FE knee model prior to locking the internal external rotation of the femur. This locking
was done for stability purposes, even though increased external rotation following ACL injury has been
reported [56]. Stability in the in-vivo knee is provided by the interaction between passive stabilizers;
the ligaments and menisci, and active stabilizers; the muscles [57]. In-vivo, the menisci are connected
to the tibia via meniscal horns with elastic behavior [58]. In literature, the meniscal horns have been
modeled as springs with varying stiffnesses [59, 60]. Increased stiffness showed a decrease in AC con-
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tact pressure error compared to experimental data [60]. As a large spring stiffness results in a minimal
displacement of the meniscal horns, the meniscal horns of the current FE model were fully constrained
for simplification. The rest of the menisci could still deform, providing stability and guiding the motion
of the femur. Even though the menisci play a role in the stability, the ligaments were the primary knee-
stabilizing components included in the model. In other words, the 4 linear springs were expected to
stabilize the entire knee. In-vivo ligaments are more complex than a single linear spring with 1 line
of action. The cruciate ligaments are both composed of 2 bundles; the anteromedial and posterolat-
eral bundles for the ACL, and the anterolateral and posteromedial bundles for the PCL [61]. The LCL,
and MCL both have different bundles and sections as well. The bundles within the ligaments differ in
size and attachment site, resulting in different lines-of-action, and unique functions of the bundles [62].
Therefore, Blankevoort (1991) suggested modeling the knee ligaments as multiple non-linear springs
[63]. Adding springs to the current FE knee model adds complexity and introduces new parameters to
optimize such as attachment sites, lines-of-action, stiffnesses, and pre-strain. Numerous simulations
with multiple springs were tested, but convergence issues remained when the femur was free to move
in all DoFs. The expectation is that successful modeling of the multiple springs requires a combination
of multiple of the parameters mentioned. Due to project time constraints, the multiple springs were not
successfully implemented in the FE knee model of the current thesis. Therefore, stability was provided
to the model by locking the medial-lateral translation, and the internal-external rotation. Opening up
the medial-lateral translation, and the internal-external rotation was expected to mostly influence the
shear stress, while the degeneration algorithm implemented in this thesis was based on the max prin-
cipal stress. In terms of kinematics, the opening of the DoFs is expected to have consequences, but
in terms of the expected max principal stress, the effect is expected to be smaller, and thus also the
effects on the level of degeneration are expected to be relatively small. However, when locking DoFs,
the physiological kinematic behavior of the knee joint is compromised and the real-world representabil-
ity of the model is reduced. Therefore, optimization of ligament modeling should be further researched
and implemented.

Fifth, the interaction definitions were defined as a node-to-surface contact discretization. The
node-to-surface contact was selected over the surface-to-surface contact, due to the large fraction of
the model that was involved in the contact. Using surface-to-surface discretization can largely increase
solution time. Furthermore, the assignment of the master and slave surfaces in the interaction defini-
tions influences the way the contact behaves, and how stresses are transmitted between surfaces. The
main rule for the assignment is that the larger surface part should be the master surface. Master nodes
on the master surface are able to penetrate the slave surface, whereas slave nodes cannot penetrate
the master surface. Therefore, the slave surface should have a finer mesh than the master surface
to limit penetration. Lastly, the master surface should be the body with higher material stiffness. The
femoral AC was assigned to be the master surface in all the involved contact pairs, as it was a signifi-
cantly larger body and had a coarser mesh size compared to the AC tibia and the menisci. However,
the menisci were assigned a higher Young’s modulus in all models included in the sensitivity analy-
sis. A slave surface with a higher stiffness compared to the master surface could affect the transfer of
stresses between the surfaces.

Sixth, the degeneration algorithm in the current thesis was based solely onmax principal stresses
while other mechanisms such as proteoglycan depletion are thought to contribute to AC degeneration
as well [64]. Mononen et al (2018) included a proteoglycan depletion algorithm in one of their studies
[65]. The AC degeneration and proteoglycan depletion were both independent processes, as the pro-
teoglycan depletion was calculated based on principal shear strains. In a follow-up study, they excluded
the proteoglycan depletion in the algorithm [10]. As the first sign of OA in AC is collagen fibrillation,
combined with the consideration of simulation time, these considerations led to the inclusion of only
the max principal stress as a factor for AC degeneration [41]. Furthermore, only one iteration was per-
formed as this was assumed to predict 70% of the degeneration that would occur over 5 years [10].
Over the course of 5 years, factors such as weight, kinematics, physical activity, and health-related
aspects can change. These changes are not accounted for in the current model. This should be kept
in mind when interpreting the level of degeneration calculated by the algorithm.

Based on these implemented assumptions, the AC degeneration was calculated. The level of
degeneration calculated with the current FE model showed minimal to no degeneration with a degen-
eration threshold of 5 MPa. To validate these findings, a 5-year follow-up MRI of the same patient was
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evaluated by clinicians. Based on the follow-up MRI it was confirmed that the patient did not show any
tibiofemoral cartilage degeneration at 5 years. Even when decreasing the degeneration threshold to 3
MPa, the calculated AC degeneration was small. The largest degeneration was 0.9812 on the AC tibia
and 0.9694 on the AC femur. These levels of degeneration indicate minimal collagen fibrillation, which
might even be present in the AC of people experiencing no joint pain or visible OA [66, 67]. However,
the regions where minor degeneration was calculated, could be indications of vulnerability to more de-
generation in the future. In terms of the statistical analysis, these small levels of degeneration limited
the ability to show differences between the models with varying Young’s moduli. Therefore, the volume
of degeneration AC was selected as the dependent variable for the statistical analysis. The range of
degenerated volumes of 0 𝑚𝑚3 to 104.24 𝑚𝑚3 was within a similar range as found by Mononen et al.
(2019), of 0 𝑚𝑚3 to approximately 140 𝑚𝑚3 [10]. The subjects included in their study did not have
ACLR but were confirmed to develop varying levels of OA at the 4-year follow-up.

For both the tibial and femoral AC, the standard deviation of the degenerated volume was larger
than the mean degenerated volume. As a negative value of the degenerated volume is not possible,
the larger standard deviation suggests that the data was heavily tailed. This can be seen in the bar plots
in Figure 3.4, where the degenerated volume increases with increasing AC Young’s modulus. The de-
generated volume seems to increase minimally with increasing meniscal Young’s modulus. The simple
regression with AC Young’s modulus as an independent variable resulted in a significant coefficient of
determination for both AC (R2: 0.994, p<0.05 and R2: 0.989, p<0.05, for tibia and femur respectively),
indicating strong predictability of the degenerated volume based on the AC Young’s modulus for both
AC. To evaluate the relative effect of the AC and meniscal Young’s moduli on the degenerated volume,
multiple regression was performed. For both AC, the coefficient of determination was not affected when
the meniscal Young’s modulus was added to the regression. Thus, the meniscal Young’s modulus did
not significantly affect the degenerated volume.

The sample size of 14 models and only 4 different AC and meniscal Young’s moduli should be
considered. A smaller data set is easier to fit with high accuracy due to limited data points. Notably, the
degenerated volume has a maximum value it can reach. This maximum is determined by the maximum
area of contact between the tibial and femoral AC during the gait cycle. This maximumwas not included
in the regression equation. The exponential equation implied that a difference between lower values
of Young’s moduli had a smaller effect on the degenerated volume, compared to the same difference
in value of larger Young’s moduli. As opposed to a linear relation, where the increase in degenerated
volume would have been the same for a certain difference in Young’s modulus.

Young’s modulus is a measure of the ability of a material to withstand deformation under a given
load [68]. As the max principal stress is determined by the applied load it would not directly be affected
by Young’s modulus, but an indirect effect was detected. The Young’s modulus affected the stiffness
of AC and the level of deformation it experienced. An increase or decrease in deformation altered the
stress distribution within the AC. These effects were demonstrated by the differences in peak max
principal stresses between the models. Under the same load, models with higher AC Young’s moduli
showed higher peak max principal stresses. The higher stiffness of the material resulted in a larger
distributed area of the stress due to decreased tendency for deformation. This explained the increased
degenerated volume calculated for models with higher AC Young’s moduli.

The peak max principal stress calculated for the current FE ACLR knee model ranged between
2.84 MPa and 21.82 MPa. These values were in the same ranges as found in other FE ACLR knee
models (3.36 MPa - 12.57 MPa [11, 35]). The shift in the location of the max principal stress, as seen
in Figure 3.1, was also presented in literature. A higher max principal stress on the lateral condyle
was found in patients with ACLR [69]. Even though a similar shift was seen in literature [6], the locked
DoF potentially affected the shift as well. As the medial-lateral translation and the internal-external
rotation were locked, forces acting in these directions were translated into other DoF. Since medial-
lateral translation is locked, a force working in this direction might result in a varus-valgus moment,
dependent on the distance to the center of rotation. According to clinician analysis of the patient-
specific follow-up data, a small valgus of 0.7∘from fully straight was detected. Furthermore, the lateral
tibial AC compartment of the patient was thicker compared to the medial compartment. This is in line
with literature, where the AC on the lateral compartment is reported to be generally thicker and contains
a more centered region of maximum thickness compared to the medial side where the thickness is
more equally distributed [70]. The centered peak thickness on the lateral compartment makes this
compartment more vulnerable to the combination of kinematic changes and a minor valgus. It has
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been reported that kinematic changes as a consequence of ACL injuries can displace the location of
repetitive contact during gait to unconditioned AC regions [7]. Together with a minor valgus which can
increase contact stress on the lateral compartment, the peak stresses on both AC can increase and
displace to AC regions that are not conditioned for these peak stresses [70].

The peak max principal stress on the AC tibia occurred between 0.11 sec and 0.12 sec for all
models. The models that failed to converge all aborted between 0.10 sec and 0.11 sec. As the AC
and meniscal Young’s moduli were the only parameters that changed, the inability of the current FE
model to converge to a solution is most likely related to the Young’s moduli. It was observed that
the model with an AC Young’s modulus of 23 MPa did not converge when combined with a meniscal
Young’s Modulus of 59 MPa or 66 MPa. The models with an AC Young’s modulus of 23 MPa and a
meniscal Young’s modulus of 73 MPa or 80 MPa did manage to converge. The Young’s modulus of the
AC is highly patient-specific, with factors such as age, physical activity, and overall health, playing a
substantial role in the stiffness of the AC [71, 72]. The higher Young’s moduli used for AC modeling in
literature [12], however, might not be physiologically accurate [73]. The type of errors documented by
Abaqus were max penetration errors, where the nodes causing the error varied per model. The nodes
that caused errors were often part of the contact pair between the medial meniscus and one of the AC.
None of the errors arose from AC - AC contact. The master and slave surface assignments could play
a role in the errors, as this affected the penetration allowed between contacting surfaces. Nodes on
the slave surface are allowed to penetrate the master surface up to a penetration tolerance of 0.1%
of the length between 2 nodes on the master surface. If the penetration is larger than the penetration
tolerance, the contact stiffness is locally augmented and a new iteration is attempted. For the failed
models, the penetration errors could not be solved within the maximum number of iteration attempts
allowed. Possible solutions include improvement of the mesh or adjustment of the contact behavior.
The mesh can be improved by decreasing mesh size, upgrading the tetrahedral element to have more
nodes (tet10), or applying a hexahedral mesh. Contact behavior can be adjusted by allowing more
penetration, reassigning the master and slave surfaces, or assigning other contact formulations.

Even though the max principal stresses and levels of degeneration calculated were within ex-
pected ranges, recommendations for improvements of the workflow were presented. The effect of
implementing these recommendations on simulation times should be considered. For the current work-
flow, the simulation time of the completed models took approximately 20 hours. Simulation times of 21
hours [34] up to 4 days [36] have been reported for FE knee models of similar complexity in terms of
included segments.

The current thesis was a setup for a proof-of-concept to establish a workflow for a patient-specific
FE knee model with an implemented degeneration algorithm. Through a multiscale modeling workflow,
patient-specific MRI and gait-analysis data were converted into a FE knee model, which determines
the AC degeneration levels based on the max principal stresses. A foundation was made for further
development of the model towards a clinically applicable model, guided by the indicated future recom-
mendations for improvements of the workflow made at the beginning of the discussion. The performed
sensitivity analysis shows the importance of parameter consideration. A sensitivity analysis was per-
formed solely based on changes in the Young’s moduli but did already show how the uncertainty in a
single parameter can affect the models’ outcome.
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Conclusion

The multiscale FE workflow presented in this thesis has proven to be a promising approach for
the estimation of AC degeneration occurring in ACLR knees. The exponential relation between the
AC Young’s modulus and the degenerated volume indicated that uncertainties in these values lead
to differences in the calculated degenerated volume. These differences suggest that a generic AC
Young’s modulus based on literature might not be appropriate for a patient-specific FE ACLR knee
model. There is a need for better estimations of patient-specific AC Young’s moduli. The workflow did
not show a sensitivity to the meniscal Young’s modulus, indicating that the use of a generic meniscal
Young’s modulus is sufficient.

The established FE workflow provides a foundation for future research studies. The predictability
of AC degeneration with the model should be researched by including a larger group of ACLR patients,
preferably including patients who show AC degeneration at the follow-up MRI. Furthermore, the cur-
rent model implemented single linear springs, and the medial-lateral translation and internal-external
rotation of the femur were locked. In future studies, modeling techniques of the ligaments should be
researched to improve the physiological behavior of the modeled ligaments and allow for the open-
ing of all DoF. The effect of implementing these changes on the calculated degeneration should be
assessed, as well as the increase in simulation time due to higher model complexity.

In conclusion, the proposed workflow showed sufficient promise to continue research of this FE
ACLR knee modeling workflow and its ability to predict AC degeneration.
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A
Appendix: Workflow FE model

Figure A.1: A global representation of the established FE workflow. The main patient-specific input parameters are knee MRI
and gait analysis data, which are implemented in the workflow to create a patient-specific FE knee model with the aim of

estimating cartilage degeneration, the main output parameter of the workflow.
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B
Appendix: Gait data smoothing code

%% Load data
Data = read tab le ( ’ Gai t_data . x lsx ’ ) ;
t ime = tab le2a r ray ( Data ( : , 1 ) ) ;
Time = time − t ime ( 1 ) ; % t ime s t a r t i n g from 0
fx_ fo r ce = tab le2a r ray ( Data ( : , 2 ) ) ; % An te r i o r − pos t e r i o r fo rce
f y_ fo r ce = tab le2a r ray ( Data ( : , 3 ) ) ; % D i s t a l − prox imal fo rce
f z_ fo r ce = tab le2a r ray ( Data ( : , 4 ) ) ; % Medial − l a t e r a l fo rce
Knee_angle = tab le2a r ray ( Data ( : , 5 ) ) ; % Flex ion − extens ion r o t a t i o n

%% Selec t stance phase
stance_phase = f i n d ( time <2.067) ; % t ime po in t manually observed i n OpenSim
stance_t ime = t ime ( stance_phase ) ;

fx_stance = f x_ fo r ce ( stance_phase ) ;
fy_stance = f y_ fo r ce ( stance_phase ) ;
fz_stance = f z_ fo r ce ( stance_phase ) ;
Angle_stance = Knee_angle ( stance_phase ) ;

%% Smoothen data
fx_smooth_star t = smoothdata ( fx_stance , ’ gaussian ’ , 1 5 ) ;
fx_smooth_end = smoothdata ( fx_stance , ’ gaussian ’ , 5 ) ;
fx_smooth = [ fx_smooth_star t ( 1 : 1 9 ) ; fx_smooth_end (20 : end ) ] ;

fy_smooth_star t = smoothdata ( fy_stance , ’ gaussian ’ , 1 5 ) ;
fy_smooth_end = smoothdata ( fy_stance , ’ gaussian ’ , 5 ) ;
fy_smooth = [ fy_smooth_star t ( 1 : 9 ) ; fy_smooth_end (10 : end ) ] ;

fz_smooth_star t = smoothdata ( fz_stance , ’ gaussian ’ , 1 5 ) ;
fz_smooth_end = smoothdata ( fz_stance , ’ gaussian ’ , 5 ) ;
fz_smooth = [ fz_smooth_star t ( 1 : 9 ) ; fz_smooth_end (10 : end ) ] ;

Angle_smooth = smoothdata ( Angle_stance , ’ gaussian ’ , 3 ) ;

% P lo t the data to check the smoothening
f i g u r e (9 )
p l o t ( stance_time , fx_smooth , ’ − − ’ , stance_time , fx_stance , ’ LineWidth ’ , 1 )
legend ( ’ F i l t e r e d data ’ , ’ rough data ’ )
t i t l e ( ’ Fx fo rce dur ing stance phase ’ )
x l abe l ( ’ Time [ s ] ’ )
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y l abe l ( ’ Force [N ] ’ )

f i g u r e (10)
p l o t ( stance_time , fy_smooth , ’ − − ’ , stance_time , fy_stance , ’ LineWidth ’ , 1 )
legend ( ’ F i l t e r e d data ’ , ’ rough data ’ )
t i t l e ( ’ Fy fo rce dur ing stance phase ’ )
x l abe l ( ’ Time [ s ] ’ )
y l abe l ( ’ Force [N ] ’ )

f i g u r e (11)
p l o t ( stance_time , fz_smooth , ’ − − ’ , stance_time , fz_stance , ’ LineWidth ’ , 1 )
legend ( ’ F i l t e r e d data ’ , ’ rough data ’ )
t i t l e ( ’ Fz fo rce dur ing stance phase ’ )
x l abe l ( ’ Time [ s ] ’ )
y l abe l ( ’ Force [N ] ’ )

f i g u r e (12)
p l o t ( stance_time , Angle_smooth , ’ − − ’ , stance_time , Angle_stance , ’ LineWidth ’ , 1 )
legend ( ’ F i l t e r e d data ’ , ’ rough data ’ )
t i t l e ( ’ Flex −ext r o t a t i on ’ )
x l abe l ( ’ Time [ s ] ’ )
y l abe l ( ’ Angle [ deg ] ’ )

%% Wri te data to excel sheets
Time_per = stance_t ime − stance_t ime ( 1 ) ; % Have the t ime per iod s t a r t a t 0
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , { ’ Time ’ } , 1 , ’ A1 ’ ) ;
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , Time_per , 1 , ’ A2 ’ ) ;
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , { ’ fx ’ } , 1 , ’ B1 ’ ) ;
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , fx_smooth , 1 , ’ B2 ’ ) ;
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , { ’ fy ’ } , 1 , ’ C1 ’ ) ;
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , fy_smooth , 1 , ’C2 ’ ) ;
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , { ’ fz ’ } , 1 , ’ D1 ’ ) ;
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , fz_smooth , 1 , ’D2 ’ ) ;
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , { ’ Angle deg ’ } , 1 , ’ F1 ’ ) ;
x l sw r i t e ( ’ F i l t e r ed_da ta . x ls ’ , Angle_smooth , 1 , ’ F2 ’ ) ;



C
Appendix: Transformation matrix

(a) Original misalignment of the tibial parts of
the OpenSim body and 3D-slicer segment.
The reference coordinate systems align, but

the tibial parts do not.

(b) Alignment of the tibial
heads.

(c) Alignment of the tibial heads, with a
visualization of the misalignment of the

reference frames.

Translations X Y Z Rotations X Y Z
Trial 1 -99.0000 40.1993 35.3842 1 90.1698 0 0
Trial 2 -95.0000 45.3581 35.3914 2 89.9084 0 0
Trial 3 -95.0000 45.3731 33.4019 3 90.1698 0 0
Mean -96.33333 43.84343 34.72583 Mean 90.0827 0 0

Table C.1: The transformation matrix, with the translations in mm and the rotations in degree.
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D
Appendix: Mesh Convergence study

Sweep layer AC femur AC tibia Lateral meniscus Medial meniscus

2 Edge length 0.2 0.4 0.4 0.3
# of elements 79508 31332 7681 19712

3 Edge length 0.35 0.3 0.3 0.2
# of elements 106019 58062 14206 45828

4 Edge length 0.3 0.2 0.25 0.175
# of elements 147294 134474 20794 60328

5 Edge length 0.25 0.2 0.2 0.125
# of elements 215009 134474 33150 120184

6 Edge length 0.2 0.2 0.175 0.1
# of elements 340666 134474 43694 188888

Table D.1: Mesh parameters used in the mesh convergence study

Figure D.1: Results of the mesh convergence study.
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Appendix: Bone conversion code

1 STLmesh = [ ’ Tibia_2000 . s t l ’ ]
2 CONVERT_stl_to_sat (STLmesh)
3

4 STLmesh = [ ’ Femur_3000 . s t l ’ ]
5 CONVERT_stl_to_sat (STLmesh)
6

7 f unc t i on CONVERT_stl_to_sat ( va ra rg in )
8 % CONVERT_stl_to_sat Convert an STL f i l e i n t o ACIS SAT format ( v4 . 0 )
9 %=========================
10 % FILENAME: CONVERT_stl_to_sat .m
11 % AUTHOR: Adam H. Aitkenhead
12 % INSTITUTION : The Ch r i s t i e NHS Foundation Trus t
13 % CONTACT: adam. a i tkenhead@chr is t ie . nhs . uk
14 %===========================
15

16 i f narg in==0
17 e r r o r ( ’ The <* . s t l > i npu t f i lename i s unspec i f i ed ’ )
18 e l s e i f i s cha r ( va ra rg in { 1 } ) ==0
19 e r r o r ( ’ The <* . s t l > i npu t f i lename must be spec i f i ed using a s t r i n g ’ )
20 e l s e i f narg in==1
21 f i l e I N = va ra rg in { 1 } ; % Inpu t f i lename
22 STLformat = ’ auto ’ ; % Defau l t STL f i l e type ( auto −

de tec t i on )
23 e l s e i f i s cha r ( va ra rg in { 2 } ) ==0
24 e r r o r ( ’ The STL f i l e type ( auto / a s c i i / b ina ry ) must be spec i f i ed using a

s t r i n g ’ )
25 e l s e i f narg in==2
26 f i l e I N = va ra rg in { 1 } ; % Inpu t f i lename
27 STLformat = lower ( va ra rg in { 2 } ) ; % STL f i l e type ( auto , a s c i i or b inary

)
28 e l s e i f nargin >2
29 e r r o r ( ’ Too many inpu t arguments ’ )
30 end
31

32 i f e x i s t ( f i l e I N , ’ f i l e ’ ) ==0
33 e r r o r ( [ ’ The STL f i l e < ’ , f i l e I N , ’ > cannot be found ’ ] )
34 end
35

36 %===========================
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37 % Read the STL f i l e
38 %===========================
39

40 [ coordVERTICES ,coordNORMALS ] = READ_stl ( f i l e I N , STLformat ) ;
41

42 %===========================
43 % Remove any face ts con ta in ing a zero− leng th edge
44 %===========================
45

46 ze r oa r ea l i s t = max ( [ min ( coordVERTICES ( : , : , 1 ) ==coordVERTICES ( : , : , 2 ) , [ ] , 2 )
, . . .

47 min ( coordVERTICES ( : , : , 2 ) ==coordVERTICES ( : , : , 3 ) , [ ] , 2 )
, . . .

48 min ( coordVERTICES ( : , : , 1 ) ==coordVERTICES ( : , : , 3 ) , [ ] , 2 )
, . . .

49 ] , [ ] , 2 ) ;
50

51 coordVERTICES = coordVERTICES ( ze r oa r ea l i s t ==0 , : , : ) ;
52 coordNORMALS = coordNORMALS( ze r oa r ea l i s t ==0 , : , : ) ;
53

54 %===========================
55 % Define the output f i lename
56 %===========================
57

58 % Find the ’ . s t l ’ ex tens ion and rep lace wi th ’ . sat ’ i n the output f i lename
59 extensionIND = s t r f i n d ( f i l e I N , ’ . ’ ) ;
60 f i leOUT = [ f i l e I N ( 1 : extensionIND ( end ) ) , ’ sa t ’ ] ;
61

62 % I f a f i l e by t ha t name al ready ex i s t s , append a number to the f i lename :
63 loopFILENAME = 1;
64 whi le e x i s t ( f i leOUT , ’ f i l e ’ )
65 loopFILENAME = loopFILENAME+1;
66 f i leOUT = [ f i l e I N ( 1 : extensionIND ( end ) −1) , ’ _ ’ , num2str ( loopFILENAME ) , ’ . sa t

’ ] ;
67 end
68

69 %===========================
70 % Wri te the ACIS SAT f i l e
71 %===========================
72

73 [ warncode l i s t ] = WRITE_sat ( f i leOUT , coordVERTICES ,coordNORMALS) ;
74

75 %===========================
76 % Disp lay end notes to user
77 %============================
78

79 i f sum( warncode l i s t ) >0
80 disp ( ’ F i l e convers ion f a i l e d . ’ )
81 else
82 disp ( ’ F i l e convers ion completed . ’ )
83 end
84 disp ( ’ ’ )
85 end
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Appendix: Degeneration algorithm

1 from caeModules impor t *
2 impor t random
3 from ar ray impor t *
4 from odbAccess impor t openOdb
5 impor t odbAccess
6 impor t math
7 impor t numpy as np
8

9 odb=openOdb ( ’Model . odb ’ )
10

11 OdbFull = odb . steps [ ’ Gait −cyc le ’ ] . frames
12 frames = len ( OdbFull ) # Number o f frames
13

14 # For the cu r ren t degenerat ion , the degenerat ion i s ca l cu la ted per element
, f o r the en t i r e step

15 Step_time = [ ] # step t ime i s documented i n s t r i n g s
16 f o r t i n range ( frames ) :
17 Time = OdbFull [ t ] . frameValue
18 Step_time . append ( Time )
19

20 # INC i s the du ra t i on o f the increment
21 INC = np . d i f f ( Step_time )
22

23 #Threshold values
24 T_stress5 = 5
25 T_stress3 = 3
26

27 # loop to f i n d the des i red element numbers o f the ins tance you want
28 Fem = [ ]
29 Tib = [ ]
30 f o r i i n range ( len ( OdbFull [ 0 ] . f i e l dOu tpu t s [ ’S ’ ] . values ) ) :
31 i f OdbFull [ 1 ] . f i e l dOu tpu t s [ ’S ’ ] . values [ i ] . ins tance == None :
32 cont inue
33 else :
34 I n s t = OdbFull [ 0 ] . f i e l dOu tpu t s [ ’S ’ ] . values [ i ] . ins tance .name
35 i f I n s t == ’ACFEMUR_1 ’ :
36 Fem. append ( i ) # elements o f the des i red ins tance
37 e l i f I n s t == ’ ACTIBIA_1 ’ :
38 Tib . append ( i )

41
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39

40 # Ex t rac t AC femur max p r i n c i p a l s t resses
41 Stress_Fem = [ [ 0 . 0 ] * frames f o r i i n range ( len (Fem) ) ]
42 f o r f i n range (0 , frames ) :
43 CurrentFrame = OdbFull [ f ] . f i e l dOu tpu t s [ ’S ’ ] . values
44 f o r e i n Fem:
45 MaxS = CurrentFrame [ e ] . maxPr inc ipa l
46 i = e − Fem[ 0 ]
47 Stress_Fem [ i ] [ f ] = MaxS
48

49 ## ca l cu l a t e CARTILAGE DEGENERATION f o r Femur
50 Fem_t5 = [ ]
51 Deg5 = [ ]
52 f o r e i n range ( len (Fem) ) :
53 Sel = Stress_Fem [ e ]
54 f o r f i n range (0 , frames ) :
55 Sel_ t = abs ( Sel [ f ] ) # abso lu te values as T_stress i s based on

compression st ress , which i s negat ive d i r e c t i o n
56 i f Se l_ t > T_stress5 :
57 D5 = ( ( Se l_ t − T_stress5 ) / T_stress5 ) /100 # ca l cu l a t e the

degenerat ion f a c t o r
58 Deg5 . append (D5)
59 e l i f Se l_ t <= T_stress5 :
60 D5 = 0
61 Deg5 . append (D5)
62 Fem_t5 . append (Deg5 )
63 Deg5 = [ ]
64

65 Deg_Fem5 = [ ]
66 f o r e i n range ( len (Fem) ) :
67 Del5 = Fem_t5 [ e ]
68 Deg_el5 = 1 − ( ( sum( Del5 [ 1 : ] * INC ) ) ** ( 1 / 1 . 5 ) ) # Skip the 0

degenerat ion a t t imestep 0
69 Deg_Fem5 . append ( Deg_el5 )
70 Deg_el5 = [ ]
71

72 Fem_t3 = [ ]
73 Deg3 = [ ]
74 f o r e i n range ( len (Fem) ) :
75 Sel = Stress_Fem [ e ]
76 f o r f i n range (0 , frames ) :
77 Sel_ t = abs ( Sel [ f ] ) # abso lu te values as T_stress i s based on

compression st ress , which i s negat ive d i r e c t i o n
78 i f Se l_ t > T_stress3 :
79 D3 = ( ( Se l_ t − T_stress3 ) / T_stress3 ) /100 # ca l cu l a t e the

degenerat ion f a c t o r
80 Deg3 . append (D3)
81 e l i f Se l_ t <= T_stress3 :
82 D3 = 0
83 Deg3 . append (D3)
84 Fem_t3 . append (Deg3 )
85 Deg3 = [ ]
86

87 Deg_Fem3 = [ ]
88 f o r e i n range ( len (Fem) ) :
89 Del3 = Fem_t3 [ e ]
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90 Deg_el3 = 1 − ( ( sum( Del3 [ 1 : ] * INC ) ) ** ( 1 / 1 . 5 ) ) # Skip the 0
degenerat ion a t t imestep 0

91 Deg_Fem3 . append ( Deg_el3 )
92 Deg_el3 = [ ]
93

94 ## T i b i a l s t resses
95 # Ex t rac t AC T ib i a max p r i n c i p a l s t resses
96 Stress_Tib = [ [ 0 . 0 ] * frames f o r i i n range ( len ( Tib ) ) ]
97 f o r f i n range (0 , frames ) :
98 CurrentFrame = OdbFull [ f ] . f i e l dOu tpu t s [ ’S ’ ] . values
99 f o r e i n Tib :
100 MaxS = CurrentFrame [ e ] . maxPr inc ipa l
101 i = e − Tib [ 0 ]
102 Stress_Tib [ i ] [ f ] = MaxS
103

104 ## ca l cu l a t e CARTILAGE DEGENERATION f o r T i b i a
105 Tib_t5 = [ ]
106 f o r e i n range ( len ( Tib ) ) :
107 Sel = Stress_Tib [ e ]
108 f o r f i n range (0 , frames ) :
109 Sel_ t = abs ( Sel [ f ] ) # abso lu te values as T_stress i s based on

compression st ress , which i s negat ive d i r e c t i o n
110 i f Se l_ t > T_stress5 :
111 D5 = ( ( Se l_ t − T_stress5 ) / T_stress5 ) /100 # ca l cu l a t e the

degenerat ion f a c t o r
112 Deg5 . append (D5)
113 e l i f Se l_ t <= T_stress5 :
114 D5 = 0
115 Deg5 . append (D5)
116 Tib_t5 . append (Deg5 )
117 Deg5 = [ ]
118

119 Deg_Tib5 = [ ]
120 f o r e i n range ( len ( Tib ) ) :
121 Del5 = Tib_t5 [ e ]
122 Deg_el5 = 1 − ( ( sum( Del5 [ 1 : ] * INC ) ) ** ( 1 / 1 . 5 ) ) # Skip the 0

degenerat ion a t t imestep 0
123 Deg_Tib5 . append ( Deg_el5 )
124 Deg_el5 = [ ]
125

126 Tib_t3 = [ ]
127 f o r e i n range ( len ( Tib ) ) :
128 Sel = Stress_Tib [ e ]
129 f o r f i n range (0 , frames ) :
130 Sel_ t = abs ( Sel [ f ] ) # abso lu te values as T_stress i s based on

compression st ress , which i s negat ive d i r e c t i o n
131 i f Se l_ t > T_stress3 :
132 D3 = ( ( Se l_ t − T_stress3 ) / T_stress3 ) /100 # ca l cu l a t e the

degenerat ion f a c t o r
133 Deg3 . append (D3)
134 e l i f Se l_ t <= T_stress3 :
135 D3 = 0
136 Deg3 . append (D3)
137 Tib_t3 . append (Deg3 )
138 Deg3 = [ ]
139
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140 Deg_Tib3 = [ ]
141 f o r e i n range ( len ( Tib ) ) :
142 Del3 = Tib_t3 [ e ]
143 Deg_el3 = 1 − ( ( sum( Del3 [ 1 : ] * INC ) ) ** ( 1 / 1 . 5 ) ) # Skip the 0

degenerat ion a t t imestep 0
144 Deg_Tib3 . append ( Deg_el3 )
145 Deg_el3 = [ ]
146

147 # For Matlab ana lys is , I should get the coord ina tes f o r de elements
148 Fem_x = [ ]
149 Fem_y = [ ]
150 Fem_z = [ ]
151 Fem_Co = [ ]
152 f o r e i n range ( len (Fem) ) :
153 El_nodes = mdb. models [ ’ Model ’ ] . pa r t s [ ’ACFEMUR ’ ] . elements [ e ] .

c onnec t i v i t y
154 Node_co1 = mdb. models [ ’ Model ’ ] . pa r t s [ ’ACFEMUR ’ ] . nodes [ El_nodes [ 0 ] ] .

coord ina tes
155 Node_co2 = mdb. models [ ’ Model ’ ] . pa r t s [ ’ACFEMUR ’ ] . nodes [ El_nodes [ 1 ] ] .

coord ina tes
156 Node_co3 = mdb. models [ ’ Model ’ ] . pa r t s [ ’ACFEMUR ’ ] . nodes [ El_nodes [ 2 ] ] .

coord ina tes
157 Node_co4 = mdb. models [ ’ Model ’ ] . pa r t s [ ’ACFEMUR ’ ] . nodes [ El_nodes [ 3 ] ] .

coord ina tes
158

159 Co_x = [ Node_co1 [ 0 ] , Node_co2 [ 0 ] , Node_co3 [ 0 ] , Node_co4 [ 0 ] ]
160 mean_x = np .mean(Co_x )
161 Fem_x . append (mean_x )
162 Co_y = [ Node_co1 [ 1 ] , Node_co2 [ 1 ] , Node_co3 [ 1 ] , Node_co4 [ 1 ] ]
163 mean_y = np .mean(Co_y )
164 Fem_y . append (mean_y )
165 Co_z = [ Node_co1 [ 2 ] , Node_co2 [ 2 ] , Node_co3 [ 2 ] , Node_co4 [ 2 ] ]
166 mean_z = np .mean(Co_z )
167 Fem_z . append (mean_z )
168 Fem_co = [Fem_x [ e ] , Fem_y [ e ] , Fem_z [ e ] ]
169 Fem_Co. append (Fem_co)
170

171 Tib_x = [ ]
172 Tib_y = [ ]
173 Tib_z = [ ]
174 Tib_Co = [ ]
175 f o r e i n range ( len ( Tib ) ) :
176 El_nodes = mdb. models [ ’ Model ’ ] . pa r t s [ ’ ACTIBIA ’ ] . elements [ e ] .

c onnec t i v i t y
177 Node_co1 = mdb. models [ ’ Model ’ ] . pa r t s [ ’ ACTIBIA ’ ] . nodes [ El_nodes [ 0 ] ] .

coord ina tes
178 Node_co2 = mdb. models [ ’ Model ’ ] . pa r t s [ ’ ACTIBIA ’ ] . nodes [ El_nodes [ 1 ] ] .

coord ina tes
179 Node_co3 = mdb. models [ ’ Model ’ ] . pa r t s [ ’ ACTIBIA ’ ] . nodes [ El_nodes [ 2 ] ] .

coord ina tes
180 Node_co4 = mdb. models [ ’ Model ’ ] . pa r t s [ ’ ACTIBIA ’ ] . nodes [ El_nodes [ 3 ] ] .

coord ina tes
181

182 Co_x = [ Node_co1 [ 0 ] , Node_co2 [ 0 ] , Node_co3 [ 0 ] , Node_co4 [ 0 ] ]
183 mean_x = np .mean(Co_x )
184 Tib_x . append (mean_x )
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185 Co_y = [ Node_co1 [ 1 ] , Node_co2 [ 1 ] , Node_co3 [ 1 ] , Node_co4 [ 1 ] ]
186 mean_y = np .mean(Co_y )
187 Tib_y . append (mean_y )
188 Co_z = [ Node_co1 [ 2 ] , Node_co2 [ 2 ] , Node_co3 [ 2 ] , Node_co4 [ 2 ] ]
189 mean_z = np .mean(Co_z )
190 Tib_z . append (mean_z )
191 Tib_co = [ Tib_x [ e ] , Tib_y [ e ] , Tib_z [ e ] ]
192 Tib_Co . append ( Tib_co )
193

194 odb . save ( )
195 odb . c lose ( )
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Appendix: DHPC

Running the FE knee model with the degeneration algorithm in the DHPC was done by submit-
ting the following batch file;

1 # ! / b in / sh
2 #SBATCH −−job −name=”abaqus ”
3 #SBATCH −− p a r t i t i o n =compute
4 #SBATCH −−nodes=1
5 #SBATCH −−ntasks −per−node=1
6 #SBATCH −−cpus−per− task=10
7 #SBATCH −−t ime =24:00:00
8 #SBATCH −−mem−per−cpu=10G
9 #SBATCH −−account=educat ion −3me−msc−be
10

11 module load abaqus
12

13 abq2022 cpus=$SLURM_NPROCS mp_mode=threads job=Model cpus=10
i n t e r a c t i v e

14

15 abq2022 cae noGUI=Degenerat ion_algor i thm . py

The ’Model’ file is the .inp (input) file containing the code for the model to be submitted. The .py file
contains the degeneration algorithm to be implemented.

Access to the visual node was achieved by running the following lines on the DHPC start-up
node to:

1 module load 2022 r2
2 module load desktop
3 module load slurm
4 vnc_desktop 1h −− −−cpus−per− task=8 −−mem−per−cpu=8GB

Tiger VNC (Version 2) was used as a remote display system for visualization of the virtual desktop
environment of the DHPC. In the environment, Abaqus was accessed by running the following lines:

1 module load 2022 r2
2 module load v i s ua l
3 module load qt
4 module load abaqus
5 module load v i r t u a l g l
6 vg l run abq cae

47





H
Appendix: Outliers

(a) Outlier element on the AC tibia (b) Outlier element on the AC femur

Figure H.1: Outlier elements that were excluded from the data sets.
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Appendix: Figures of degeneration

(a) Legend

(b) AC femur superior view
Model 1, AC: 5 MPa, menisci: 59 MPa

(c) AC femur inferior view
Model 1, AC: 5 MPa, menisci: 59 MPa

(d) AC femur superior view
Model 2, AC: 11 MPa, menisci: 59 MPa

(e) AC femur inferior view
Model 2, AC: 11 MPa, menisci: 59 MPa

Figure I.1: Level of degeneration mapped over the AC femur, left-right: medial-lateral condyle
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52 I. Appendix: Figures of degeneration

(a) AC femur superior view
Model 3, AC: 17 MPa, menisci: 59 MPa

(b) AC femur inferior view
Model 3, AC: 17 MPa, menisci: 59 MPa

(c) AC femur superior view
Model 7, AC: 5 MPa, menisci: 66 MPa

(d) AC femur inferior view
Model 7, AC: 5 MPa, menisci: 66 MPa

(e) AC femur superior view
Model 8, AC: 11 MPa, menisci: 66 MPa

(f) AC femur inferior view
Model 8, AC: 11 MPa, menisci: 66 MPa

(g) AC femur superior view
Model 9, AC: 17 MPa, menisci: 66 MPa

(h) AC femur inferior view
Model 9, AC: 17 MPa, menisci: 66 MPa

Figure I.2: Continuation: Level of degeneration mapped over the AC femur, left-right: medial-lateral condyle
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(a) AC femur superior view
Model 13, AC: 5 MPa, menisci: 73 MPa

(b) AC femur inferior view
Model 13, AC: 5 MPa, menisci: 73 MPa

(c) AC femur superior view
Model 14, AC: 11 MPa, menisci: 73 MPa

(d) AC femur inferior view
Model 14, AC: 11 MPa, menisci: 73 MPa

(e) AC femur superior view
Model 15, AC: 17 MPa, menisci: 73 MPa

(f) AC femur inferior view
Model 15, AC: 17 MPa, menisci: 73 MPa

(g) AC femur superior view
Model 16, AC: 23 MPa, menisci: 73 MPa

(h) AC femur inferior view
Model 16, AC: 23 MPa, menisci: 73 MPa

Figure I.3: Continuation: Level of degeneration mapped over the AC femur, left-right: medial-lateral condyle



54 I. Appendix: Figures of degeneration

(a) AC femur superior view
Model 19, AC: 5 MPa, menisci: 80 MPa

(b) AC femur inferior view
Model 19, AC: 5 MPa, menisci: 80 MPa

(c) AC femur superior view
Model 20, AC: 11 MPa, menisci: 80 MPa

(d) AC femur inferior view
Model 20, AC: 11 MPa, menisci: 80 MPa

(e) AC femur superior view
Model 21, AC: 17 MPa, menisci: 80 MPa

(f) AC femur inferior view
Model 21, AC: 17 MPa, menisci: 80 MPa

(g) AC femur superior view
Model 22, AC: 23 MPa, menisci: 80 MPa

(h) AC femur inferior view
Model 22, AC: 23 MPa, menisci: 80 MPa

Figure I.4: Continuation: Level of degeneration mapped over the AC femur, left-right: medial-lateral condyle
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(a) AC tibia superior view
Model 1, AC: 5 MPa, menisci: 59 MPa

(b) AC tibia inferior view
Model 1, AC: 5 MPa, menisci: 59 MPa

(c) AC tibia superior view
Model 2, AC: 11 MPa, menisci: 59 MPa

(d) AC tibia inferior view
Model 2, AC: 11 MPa, menisci: 59 MPa

Figure I.5: Level of degeneration mapped over the AC tibia, left-right: medial-lateral condyle



56 I. Appendix: Figures of degeneration

(a) AC tibia superior view
Model 3, AC: 17 MPa, menisci: 59 MPa

(b) AC tibia inferior view
Model 3, AC: 17 MPa, menisci: 59 MPa

(c) AC tibia superior view
Model 7, AC: 5 MPa, menisci: 66 MPa

(d) AC tibia inferior view
Model 7, AC: 5 MPa, menisci: 66 MPa

(e) AC tibia superior view
Model 8, AC: 11 MPa, menisci: 66 MPa

(f) AC tibia inferior view
Model 8, AC: 11 MPa, menisci: 66 MPa

(g) AC tibia superior view
Model 9, AC: 17 MPa, menisci: 66 MPa

(h) AC tibia inferior view
Model 9, AC: 17 MPa, menisci: 66 MPa

Figure I.6: Continuation: Level of degeneration mapped over the AC tibia, left-right: medial-lateral condyle



57

(a) AC tibia superior view
Model 13, AC: 5 MPa, menisci: 73 MPa

(b) AC tibia inferior view
Model 13, AC: 5 MPa, menisci: 73 MPa

(c) AC tibia superior view
Model 14, AC: 11 MPa, menisci: 73 MPa

(d) AC tibia inferior view
Model 14, AC: 11 MPa, menisci: 73 MPa

(e) AC tibia superior view
Model 15, AC: 17 MPa, menisci: 73 MPa

(f) AC tibia inferior view
Model 15, AC: 17 MPa, menisci: 73 MPa

(g) AC tibia superior view
Model 16, AC: 23 MPa, menisci: 73 MPa

(h) AC tibia inferior view
Model 16, AC: 23 MPa, menisci: 73 MPa

Figure I.7: Continuation: Level of degeneration mapped over the AC tibia, left-right: medial-lateral condyle



58 I. Appendix: Figures of degeneration

(a) AC tibia superior view
Model 19, AC: 5 MPa, menisci: 80 MPa

(b) AC tibia inferior view
Model 19, AC: 5 MPa, menisci: 80 MPa

(c) AC tibia superior view
Model 20, AC: 11 MPa, menisci: 80 MPa

(d) AC tibia inferior view
Model 20, AC: 11 MPa, menisci: 80 MPa

(e) AC tibia superior view
Model 21, AC: 17 MPa, menisci: 80 MPa

(f) AC tibia inferior view
Model 21, AC: 17 MPa, menisci: 80 MPa

(g) AC tibia superior view
Model 22, AC: 23 MPa, menisci: 80 MPa

(h) AC tibia inferior view
Model 22, AC: 23 MPa, menisci: 80 MPa

Figure I.8: Continuation: Level of degeneration mapped over the AC tibia, left-right: medial-lateral condyle
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