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SUMMARY

Using oblique coordinates, the static problems
of Aero—-elasticity for swept wings are reduced to the
solution of integral - or matrix equations, which may
be solved by iteration. The present treatment also
indicates the suitability of integral equations for
fundamental aero-elastic investigationse It shows
that the ab initio use of matrix equations may lead
to more complicated calculations, and that for this
recason they should be confined to computation offices,
particularly since the transition from the integral
equations to the matrix equations mostly used in this
type of work requires only a simple formal transformation.

Application of the theory to a simple swept
wing is given and its divergence speed obtained. In
two Appendices methods are deduced for estimating the
aerodynamic derivatives and calculating the elastic
influence functions from experimental datae. Both
methods are applied to the case of a model wing, and
the influence functions thus obtained are compared
with their theoretical valuese. To simplify future
applications of this method, the complete calculations
are presented in the form of tables, suitable as
computation schemese.
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NOTATION

Cij Influence coefficients for uniform wing
Cij(x) Influence functions for arbitrary wing
c(x) Wing chord
H(nyx) Kernel of integral equation (2.13)
H1(n,x), H2(n,x) Kernel of integral equation (2.11a)
H(m,x) Kernel of integral equation (3.2a)

H’(n,x) Kernel of integral equation (3.3a)

Hij = H(ﬂing)

L Aerodynamic Lift

L1, M1 Oblique components of couple about 0X, OY
respectively (see fige1

M Aerodynamic moment

0xy 2z Oblique system of coordinate axes (Fige1)

0X, 0Y Reference axes in Oxy plane, at right angles to

Oy and Ox respectively (Fige.1)
v Forward velocity of aircraft

Applied vertical force

eC
a=——L
1 da,
2~ OB
CL’ CM Aerodynamic 1lift and moment coefficients where the
latter refers to axis Oxe.
aC
S
d4 = Je
. aCM
2~ 0B
£ X coordinate of wing tip
n Number of subdivisions of wing for transition

from integral to matrix equation

p(x)sq(x) Oblique components of rotation of wing section
about 0x, Oy respectively.



Notation (contd.)

q = ipve Dynamic pressure
dp Dynamic pressure for aileron reversal
) qD Dynamic pressure for wing divergence
% ¥, & Oblique coordinates (Fig.1)
Xy Wing stations for matrix equations
a Complement of angle of sweep back (Fige.1)
B Aileron angle

e{x): P sing Local wing incidence
v _ (98 _
el i (dx) 9 91 . G(Xl)

A)%_ Length of subdivisions for transition from
integral to matrix equation

Some of the notation of the appendices is independent
of that of the main part and is stated at the beginning of

each appendixo




1. Introduction

Considerable attention has been given during the past
years to the "static" problems of Aero-elasticity, (i.e. aileron
reversal and divergence) for swept wingse. The majority of
reports (e.g. Refe. 1) on these subjects attempt to modify
methods of analysis, used in the case of straight wings, and
therefore fall to do Jjustice to the special features of swept
wingee. This criticism refers in particular to the introduction
of equivalent wings possessing elastic axes which are obtained
by rather arbitrary assumptions referring to the root ends of
the original wings (Ref.1 Other authors make use of the
semi-rigid approach (Ref.2) which was already found inadequate
in the case of straight wings, and which for swept wings will
be just as unsatisfactory, since it involves too great a
simplification of the actual deformations.

Finally, mention should be made of a recent paper (ref.3)
which comes nearest to the approach to be adopted here, in that
it represents the elastic structure by means of influence
coefficients, to be determined by measurements on models or
on the actual aircraft, Thus it is immediately seen that
this method is only applicable when these measurements can be
taken, and hence it is seriously restricted in its applicability.
The present report offers a new approach to the problem under
consideration, as far as structural representation is concerned,
while the actual analytical method makes use of integral
equations which are easily rewritten in the form of matrix
equations if the complexity of any particular application should
demand the latter. It is one of the objects of this report
to illustrate the use of integral equations in problems of this
kind, and to suggest that such equations present the best
approach in all fundamental investigations dealing with
continuous systems.

The method of solution proposed for the final equations
makes use of straight forward iteration of either the integral
or the matrix equation. Since the unknown function or vector
in these correspond to the rate of change of twist along the
wing, the initial solution assumed for the iteration may be
taken identically constant along the wing, a fact which
simplifies still further the rapidly converging process.

A simple problem, treated in the final section of this
report, illustrates the application of the method and, in
particular, the points raised above. Appendix 1 at the end
of this report gives a method for estimating the aerodynamic
derivatives required, while Appendix 2 deals with the
experimental determination of the influence functions which
are then compared with their theoretical values.
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2. Deduction of the Basic Equations

The most organic approach to any problems of aero-
elasticity and general dynamics of continuous systems makes
use of integral rather than matrix equationse. The main .
reason for this fact lies with the continuous character of
such physical systems. Thus it will invariably be found that
integral equations allow a more lucid presentation of the
problem considered, once their correct interpretation is fully
understood.

On the other hand there is no point in attempting to deny
the usefulness of matrix equations for the purpose of numerical
worke These are most convenient whenever the physical system
becomes complicated, and are of great assistance in simplifying
calculationse However they bear little relation to the
original system to be investigated and therefore ought to be
confined to computing offices, having the purpose of providing
numerical answerse. There may be some Justification for their
use also in connection with dynamic models, whenever
concentrated masses are used to represent continuous structures.

The present deduction of the basic equations for the
determination of aileron reversal and wing divergence speeds
makes use of the integral equation approach throughout, but the
final equations will also be given in their matrix form for use
in actual computations referring to more complicated structures.
But it should be noted that these matrix equations are obtained
from the final integral equations to which they are equivalent
within the approximation introduced by the necessary
transformation.

The conditions of aileron reversal and wing divergence
are essentially static in character and hence the steady
aerodynamic "derivatives" must be used. Thus the aerodynamic
force and moment acting on the element of a swept wing will be
given by

d L(x)

il

a C(x)(?1(x)e(x) + az(x)B}sina ax ——= (2.1)

a M(x)

1l

a 2(x) (2, (x)6(x) + a,(x)p) sina ax - (22)

where the sumbols are explained in the list of notation and

in Figele The quantities 845 85 d1 and d2 have been written

as varying with x, the coordinate along the span. Their exact
determination will often present great difficulties, since it
requires reference to lifting surface theory for swept wings;
and not only once, because these derivatives depend on the
actual wing deformation, so that in an exact treatment they
would have to be recalculated after every iteration step

which involves a change in the mode of deformation of the wing.
On the other hand, for most practical purposes it will be
sufficient to base the values of these derivatives on results
obtained by means of semi-empirical methods such as have been
given by O. Schrenk (Ref.l,) for straight wings, and extended
to the case of swept wings by Jones (Ref.5) and other

authors (Refs. 6 & 7) in America. In appendix 1 an example
has been given of how one may obtain a1(x) by use of the 1lift

distribution of the undeformed wing (Ref.5) and the so-called
basic 1ift distribution (Ref.8) due to twisting of the wings.
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Before proceeding with the process of obtaining the
fundamental equations of the problem, it should be pointed out
that in the above equations it has been assumed that the aileron
anglep isconstant over the part of the wing carrying the
aileron and, in addition, that the forces are transmitted
directly at each station to the main structure. In other words,
the existence of discreet hinges has been neglected; a
procedure which is customary in this type of investigation,
and which may require further examination in special casese.

The condition of aileron reversal is given by

t
f xdL(x) = 0 e (243)
o

which after substitution from (2.1) may be written as

ix c(x) a1(x)e (x) dx

J."
p = - 2 e B )
)

:Kx az(x) c(x) ax
o

where mostly az(x) will be zero over part of the span.

Substitution of (2.4) in (21) and (2.2) leads to expressions
for the 1lift and moment acting on a wing element at reversal
speed

J"%O(g)aﬁa)e(a)da{

- } - 2, ina °

aL(x) 4 ch(x>ia1(x)e<x) 5 () e Jsm dx (2.5)
o}

¢

j“EC(a)aﬁa)e(g)da[
am(x)

sinadx (2.6)

g = 9024, (x)e(x)-a,(x) &

0
jEay(8)c@) az |

-

Next consider the representation of the elastic
properties of the wing structure. Using oblique coordinates
(see Fige.1) it has been shown by W.S. Hemp (Ref.9) that the
rate of twist along a swept wing of constant cross section
may be related to the applied Moments and forces in the
following manner:

Qgiﬁl = Cyq Ly(x) + Cyp My(x) + Cyq Z(X) == (2s7)

where the constant influence coefficients C1jmay be determined

theoretically or experimentally. An obvious extension,
analogous to that customary in the generalisation of the
Bernoulli-Euler theorem, postulates for the case of varying
cross sections:

82(x) = o)y (x) Ly(x) + Opp(x) M (x) + Cy5(x) B(x) == (2.8)
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i.e. the assumption of varying influence coefficients Cij(x)

is introduced. It will be shown in Appendix 2 how the Cij may

be most easily obtained on the basis of deflection measurements
taken on the wing or on a model of ite. An example will be
treated there and the experimentally determined influence
coefficients will be compared with their theoretical values

as obtained by use of formulae of reference 9.

In order to link the aerodynamic and elastic forces,
one deduces from (2.5) and (2¢6) the moments L,s M, and force 2

of (2.8) in the following manner:

o . \
Ly(x) = Hawn)g ‘-.
b 4
L ’
M, (x) = j(n- x) ‘-\dL(n))R \ -—= (249)
X
z (x) = J(Q_L(n)}R
X
/
Further, as
P sina = © -==(2.10)

one obtains after substitution from (2.9) in (2.8):

¢

lzc(2)a, (2)e(z)ar
S quinza[cﬂ(x) lC(n)2{d1(n)6(n)-d2(n) = Edﬂ
L X ’ jgaz(a)C(a)da
0
ot / J?QC(g)a1(z)e(g)dgz
+04 o (x)jn-x)C(n)a, (n) o(n)=ay(n) % \an
& | gay(2)o(e) ag |
(o}
[ec(e)a, (2o (e)ag,

)

{an

N

+6,5(x) {0 (n) {a, (Vo (m)-ay (n)
X
gay(g)c(glae f

i
~

i
J
0

—=(2411)
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which can be written

= ] o
eg ) X ! {
ddxx = Qp sinZq JH1 msx)o(n)an - iHZ(n,x) 6(n) dn! ~—=(2s112)
X 0
L |
where

H1(n,X) " C(n)[c(n)d1(n)011(x) + 31(n)g(n'x)012(x)+c13(xﬁ]

C( ) ( ) l ——‘(2012)
— o (x) [o(e)2a, (2)ac
ga,(g)c(g)ag &

H2(n,%) =

J

(o}

{ -
+£C(€)32(€)EC1Z(X)(E‘X)+C13(x)%dg
X *

Finally (2.11a) may yet be simplified to give

A
dgxx = qp sinzaj H(n,x)6(n)dn ———({2e13)
0
with
(42 (ny ) oc nkx
H('I’I,X) = A 1 2 _ _—-(2'1L|-)
)H (nyx) = H (n,x) Xense &

Equation (2.13) is the basic integral equation for the
determination of aileron reversal speedss Its matrix form
which represents an approximation unless one uses an infinite
number of variables, is obtained from (2.13) by selecting
certain stations Xy along the wing at which (2.13) will

"still be assumed to hold with the one approximation that the
integral is replaced by a finite sum involving the values

of the variable at the selected stations. As for
computational purposes the integral on the right hand side
presents in practical cases great difficulty, the matrix
equation to be written down now,-will often be more convenient
when numerical results are required.

n
ST D e
| ST e [ESp——
0! = qp sin aégT Hji 65 L%y, & %, asey Ny (2.152)
where de(xi) '
0(x;) = 035 =g = 8] o4,

,Axi = length of subdivision allotted to Xy

number of stations selected.

s
]

/ In many eecoe




In many cases it is most convenient to distribute the
stations Xy uniformly along the span and to assume all the

Ax; to be equal in length. Then (2.15a) becomes

sin% 2 37 o, Hyg s 1 =1, eeey m ——— (2.15b)

It should be noted at this stage that naturally the integrals
involved in calculating the H.i may likewise be obtained as
finite sumse. J ‘

Finally an equation analogous to (2.15a) will be
deduced for the determination of wing divergence speeds.
In this case the aileron angle B appearing in (2e1),(2.2)
is identically zero, so that these equations become much
simpler, and it is easily seen that this implies that
H2(n,x) of (2.12) is zero. Thus one has for wing divergence

"
Qg&zl = ap sinza‘}H1(n,x) 6 (n) dan ——(2.168)
X

and the corresponding matrix equation

' 2 L g _ .
8! = qp sin% 3 521 Hy; 855 1=1, cceym (2.16b)

assuming n uniformly distributed wing stations and equal
subdivisionse.

/ 3¢ sceco
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3 Method of solution of the basic equations

An iteration process is most suitable for the solution
of equations of the type deduced here. However, particularly
when solving the corresponding matrix equations, the presence .
in the equations of the variable 6 as well as of its spanwise

derivative %% is not convenient as it will require an extra

stage in between each iteration step when the derivative must

be obtained. For this reason the following transformation will
be applied to the function e(x) under the integrals of (2 13)
“and (2.16):

o

o(n) = | 28LL) 4p —-=(3.1)

(o)

Assuming that 6(0) = O, i.e. that the root of the wing is at
zero incidence., If this condition is not fulfilled, the
transformation (3.1) involves an additive constant, the root
incidence, a fact which only slightly complicates the final
resulte. Using (3¢1) and inverting the orders of integration,
the basic integral equations become for aileron reversal

a4
de(x). tn, . | a
gxx)= ap sin a | B(n,x) -%%ﬂl dn

(o]
with ===(3.2a)

A(n,x) = J'H(t,x)dt
mn
and for wing divergence

t

ax 1) o
with ¢ --=(3.3a)
! (n,x) = j i (t,%)at
X
where X = max (x,y)e (This type of integration limit always

occurs in the process of inverting the order of integration

of double integrals of the present type, when the area covered
by the integration does not cover the complete triangle

formed by one of the coordinate axes and the line bisecting
the right angle between them).

/ The eeseocee
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The corresponding matrix equations are

~==(3.2b)

féi {4 il fofe Ttdgal
leig = gp sin% - LﬁlJ; ?ejg
and
2, Lig ] .-(;e ~——=(343b)

'M
D
e
N
1}

-
N st

. The transformation of the basic equations introduced
above demonstrates well the suitability of the integral
equation approache. At the expense of slightly more complicated
coefficients Hi" which normally have to be calculated once
only, one has I obtained equations which are suitable for a
simple iteration processe. Comparison of the corresponding
matrix equations (2.15b) and(3.2b), (2.18b) and (3.3b) shows
that such a transformation is by no means so obvious, if one
only deals with equations of that type. Note also that the
unknown functions or vectors in the equations (3.2) and (3.3)
are different from those normally used because the transformation
(3.1) was usede An alternative procedure, which howeverdoes
not always lead to as simple results, would have been to
integrate the equations (2.13) and (2.16) once and to invert
the orders of integrations on the right hand sides.

Equations (3.2) and (3.3) may be iterated in their
integral or matrix form by assuming some initial form for the
rate of twist function ¢' and calculating the right hand sides
of the equations,. The resulting functions or vectors (in the
case of the matrix equations) render then the new rate of twist
distribution to be used in the subsequent iteration step.

After a certain number of such steps the expression for o' will
stabilize so that one obtains after cancellation of the

function %% or the column {eig an equation of the type
* 4

K2 = dg Sin2a ~==(3s1)
in the case of the integral equation, and
2
K = qc sinza igl— """"(3-5)

in the case of the matrix equation, where K2 is a constant.
In general there will be several values of K2, the lowest of
which will give the critical speed required, since by
definition

1 . e
¢ = zp Vg
and hence by (3.4) or (3.5)
D TS _ _k pn e

respectivelye.
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Under normal circumstances, the initial function or
vector for the iteration may be assumed to be constant along
the wing, i.ec. one may assume uniform twist. As has been
noted earlier, when dealing with the aerodynamic derivatives,
in an exact treatment these would have to be calculated anew
after each iteration step on the basis of the newly determined
mode of deformation. In most practical cases, however, such
refinement will be considered too laborious and the derivatives
will be based e.ge On the assumption of uniform twiste

In the next section the above theory will be applied
to the very simple case of a uniform section swept wing and
variations of the derivatives will be neglected for the sake
of simplicitye.

Divergence of a simple swept wing

Consider the wing shown in Fige.2 which may be taken as
an approximation to the wing treated in Appendices 1 and 2
(see also Fig. 1,3) As mentioned at the end of the last
section, all the characteristic quantities of the wing will be
assumed constant, in fact they will be chosen within the range
of values found for the model wing of FPig.3 in Appendices 1
gnd 2, vizs

C = 24fin] Cyp = =17 x 10"8f1b"1in‘2]
a1 = Ule9 { = 76.5 {in} A
a, = 0.9 Gy5 = 1455 10-6!}b-1in-q

Cyq= 30 X 10-8[1b-1in—% sina = 0.79

then by (2.12):
6

5 lr;x) = 2u[2u X 2.5 x 30 x 10”24 u.9§-(n-x)17x1Cr8—1.55x1d—j

={2.5 - 062 x(n- x)] X ‘IO_LL

ieee (2.172) becomes

q i~
(x) £
X g B
By (3+3a) ,
- B J{JI
B! (m,x) = JH (t,x)at
XN
A -l . 3
= } 10 " {245 = 0.2(t-x)| at

——

XM
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1l

P 2
1074 2,56 + 0.2 x t - <2

f 2 o

[2.5({-x) + 0s2(H-x) x -0.1((2—x2) for x¥n
10-Li

[2.5((-n) + 0.2 x ({=m) - 0.1(42-n2) for x< M

1

Hence the corresponding integral equation becomes

R
o' (x) = g sin®a [&'(n,x) 6'(n)an
0]

s

= q sins x 10‘”y (Q—x)§2.5 + 0e2X - O.1((+x)}e'(n)dn
L0 i

L
, 1
+‘!(£-n)g205 + 0e2x - 0-1({+n)j6'(n)dn]
X L

X
= 1o—qusin%{§76.5—x){—5.15+O.1xje'(n)dn

2

6e5 )
(76.5-q){'5o15+o.2x—00hq 6'@1)dn}‘

f
*
X

ie.ee the following equation has to be iterated to obtain
the divergence speed

X
o' (x) = 10-u dp sin%m1(76.5—x)(0.1 X -5-15)j6'(n)dn
. o)

16 .
+ J(76.5-1) (042 x ~0e1n~541) 0'(n)dn|
X J

To shorten the iteration process, let 6'(x) = b, +'b1x

+ b x2 and deduce a system of equations for the bi by comparing

2

coefficients of xo, x' and x2. If it is then assumed that the
mode has stabilised, one obtains

2 o = s _ ¥4
K bO = bO 20255 X 10 607 bd i b1 2078 s glle) b2
K2 b, = 5.852 x b_ x 102 4+ 1.49 x 1o“b1 + 54685 x 1o5b2'
K° b, = - b 1.25
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ic€e one obtains a secular equation for K2:
K% 4+ 20255 x 10° 6.7 x 10° 2,78 x 10/
- 5,852 x 10° K2-1.49 x 10% ~5.685 x 10° | = 0
+ 1495 0 K2

1oce KO + 24106 x 10°KF = 3 x 107K2 + he12 x 1070 = 0

and the lowest root of this equation is

K? = 13,72, and hence K = 3.7
as is easily seen by inspection of the last two terms.

Therefore by (3.6)

=
° 2 X 10 :
VC ‘g—.-—l% ’o—.m [1n/sec} at sea level
3e7 2 x 12 - ;
A XAO.OO237 = 470 ‘ft/secj at sea level

Using the same value of K one finds from the above equations
the mode of deformation of the wing to be

1l

o' (x) = bog1 + 3.43x - .O91x2}

so that the above assumption of linearity of the mode of
deformation, on which normally the aerodynamic derivatives
are based, is not very well satisfiede Considering the low
divergence speed obtained, a compressibility correction is
obviously not requirede. It is indicated in Appendix 1, that,
in case that use is made of the process given there for
obtaining estimates of the distribution of the derivatives,
allowance may be made for compressibility effects when
deducing the underlying 1lift distribution.
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Conclusions

The method of determining aileron reversal and
divergence speeds of swept wings, deduced in this report,
serves well to illustrate the usefulness of oblique
coordinates in work relating to such structures. Combined
with the integral equation approach a compact presentation
of these two problems is obtained which in some respect
may be compared with the treatment of the analogous problems
for straight wings given in Ref. 10 which uses only matrix
equationse.

The application of the method, given in section L,
demonstrates the simplicity of the required calculationse.
Naturally, when dealing with a more complicated type of
wing, the process of computation will become more complex
and the use of matrix equations may well become necessarys
Nevertheless, the example treated here contains all the
essential steps which will be involved when dealing with
a wing with taper, crank, etc. and when variations in the
influence functions and in the derivatives are to be taken
into account.

In the Appendices 1 and 2 at the end of this report
the initial stages to the application of the method are
discussed separately and independently of the main part of
the report, although some of their numerical results are
used in section Y. In particular, Appendix 2 serves to
compare theoretical and experimental results obtained for
the influence functions. The author is indebted, as far
as the former are concerned, to Mre. Je.Ve./. Welbourn who
undertook the fairly tedious task of computing them from
the formulae of Ref.9. The experimental results underlying
the latter were obtained by the author as part of the
aero-elastic study of the model wing under consideration.

All numerical results contained in this report, with
the exception of the theoretical values of the influence

- functions, were obtained by use of a ten inch slide rule,

so that at the most three figure accuracy can be expected.
In view of the accuracy, which may be claimed for the basic
physical datay, it would appear doubtful whether the use

of a calculating machine would help to improve the position.
In general it may be said that little accuracy was lost
during the computations due to subtractions of almost equal
quantitiese.
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APPENDIX 1

Determination of Lift Slope Distribution along the Span of

a Swept Wing

Notation

0
21 == of whole aircraft
au
ASa{ Local variation of a, from its value relating to the
- undeformed winge.
a1 Local 1lift slope of deformed wing.
C Local chord of wing
g Geometric mean chord of wing
a{ Local 1lift slope of undeformed wing
CL Local 1lift coefficient
éi Mean 1lift coefficient for whole wing
CLB Bapic 1ift coefficient
A Aspect ratio
CCL
Kn 75— loading coefficient of undeformed wing
1, .
CCLB
Ké 3 basic loading coefficient
&
e Twist at wing tip
M % non~dimensional coordinate along Ox
C
A - taper ratio
C
r
Angle of sweep back of % chord line

/ As mentioned cocees
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As mentioned in the main part of this report, a method
will be given here for estimating the distribution of 1ift
slope along the spane. The method is approximate and makes
use of references 5 & 8 by R Stanton Jones, which contain a
semi-empirical approach to the determination of the 1lift
distribution of swept wings. These reports arec based on a
large number of experimental and theoretical results published
during recent years. The first person to suggest a similar
method for straight wings was 0. Schrenk (Ref.l), and since then
various related procedures have been suggested and used by
different authors (Refs.5-8).

In all these approaches the 1lift distribution is divided
into two parts, the first of which refers to the undeformed
wing (Ref.5), while the second, the so-called basic loading
(Ref.?), gives the correction to be applied to the former in
the case when the wing is twisted.

Pirst consider the distribution of 1ift slope along the
undeformed winge From Figse 7 & 8 of Refs5, after some
preliminary calculations which involve the following data
referring to the model wing, also considered in Section 4 and
Appendix 2:

A = L5, A= 0e475 , n o= Lot

one finds the following values for the load coefficient

cC
K = —= at the wing stations .
n =8 5 s

M 0 0.1 O0e2 06382 066 0707 0.8 085 00923 0496
Kﬁ 16164 1166 1169 1157 1,059 0.965 0.8LL 0.754 0.57L O.LLL

But from the expression for the load coefficient, which is only
a function of n, it follows that

_ o}
C, = K, 5 Cp
and hence
g =
T )
a1 = K% o a1

For the wing under consideration

G = 28.7[inl, c(n) cr«‘f{:1-(1—‘z\.)n‘% = 39¢3(1-0+525) [in]

LeO

x

.1

and therefore

a] = Kn/o.3u2 (1 = 0e5257)

/ Using ecesee
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Using the above values of Kﬁ, the corresponding values of
a{ are:

n O 001 002 00382 006 09707 068 0085 00923 0096
a; 3eli1 3460 3.82 Ue23 LeB1 LolO Le26 U.08 3.26 2,62

Next consider the deformed wing. The basic loading

CC
coefficient K% £ GLB is graphed for various wing stations,
€

angles of sweep back end aspect ratio in ref.8. The data given
in this reference refer to a wing twisted uniformly from zero

incidence at the root to 1° nose downward at the tiDe It 1s
also indicated there that without great difficulty, allowance
could be made for parabolic or even higher order twist, although
computations would then become more complicatede In the
present case the values of K% are:

n O 001 002 003 O.LI. OoLLS 005
X! 0;0132 00118 0.0093 0.006 0.0021 0 ~0.0019

n Ov6 Oe? 008 009
K,:,l -O' OO5L|- "Oo 0079 "Oo 0091 "'Oo 0075

But as the twist corresponding to these values of K% is uniform
and equals one degree washout at the tip, the local twist at
any station is no and hence the local change of Ké per radian is

K' x 57.3 CC
i = —EB x 57,3
m Cn

since ¢ = 1. But as CLB is the basic 1lift coefficient which
varies with n, one can interpret CLB X 57°3/n as local change
in dCL/da = aj per radian and hence

K% X 1.8
" n(1-.5257)

where the minus sign has to be introduced because K% corresponds'

Hal =
1

to washout.

Obviously the values of,sa; deduced in this way will be

unreliable near the wing root, i.ee for small values of ne.

On the other hand, for the purpose of aileron reversal and wing
divergence calculations, the outer wing is of greater importance
and the ay obtained in the above manner may be expected to be

satisfactory there. From the above formula one finds for
La% the values:

o vens
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n (0% 002 003 O.LI- OoLL5 O-5 Oa6 097 Oc8 009

,;‘,\8.1' -5920 -2.18 -0999 -0,28 0 0019 0055 0065 0082 0066

In Fige.l4 the values of a% 913a; and the actual 1ift slope
distribution 8y = a{ + ma% are graphed against ne

In the above work no allowance has been made for the effect
of compressibilitye. However, in ref.5 corrections for such
effects are given, so that the above procedure would have to be
repeated with different values of Kﬁ.

Finally, a remark will be made with regard to the
determination of the spanwise variations of the other
derivatives appearing in the basic equations of Section 2.
In most cases one will assume the aerodynamic centre to be at the
quarter chord line in which case the values of
- dac
d1(n) - 7;% follow from those of a, once the position of the

axis Ox has been fixede. An approach similar to the above has
been indicated for straight wings with flaps by O.Schrenk (Ref.lt)
so that the above procedure could be adopted, once the method

of refse 5 & 8 has been extended for such wings, with regard to

the calculation of d1 and d2.

On the other hand, the Re.Aes«Se. Data sheets may be used
to find the ratio a2/'a1 and a, may then be calculated from the

above distribution of 8y This is the procedure adopted for
the numerical example of Section L.

/ AppendixX 2 ecscee
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APPENDIX 2

Experimental Determination of Influence Functions of a Swept Wing

Notation

cij Constant coefficients of polynomials for Cij(x)

6 = Fod

w(x) Displacement of (x,0) in Oz direction

Wix) = W%El displacement of (x, 0) per unit load at tip.

Wi Measured values of W referriﬁg to a station x;
and corresponding to a test run jJ.

p(x) = E%%l rotation of wing section per unit load at tip.

ﬁg Measured values of P referring.to a station Xy and
corresponding to a test run Jjo

E = % nondimensional coordinate along OX.

In refe9 WeSe Hemp has shown that the following relations
hold between applied forces and moments and the resulting
deformations in the case of swept wings of conventional
construction (spars, ribs and stressed skin) and uniform cross
section:

dp

ax = G115y + Co My + Cy3 2
= (A201)
o
dg __4aWw .
= dx2 coSecCa = 012 L1 + 022 M1

where -the Cij are constants the values of which can be obtained
from formulae given in that reference. In the present
treatment shear deflections will be neglected, although Hemp
has extended his theory to take them also into account. Only
the first of the equations (A2.1) has been used in the main
part of this report, but it will be shown below that both the
above formulae have to be considered when it is required to
determine the Cij experimentally.

/ It has cecose
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It has been indicated in Scction 2 of this report that
an extension of the above formulae may be proposed analogous
to that applied to the Euler-Bernoulli theorem, for the
purpose of making these equations applicable to the case of
wings of non-uniform cross section. This generalisation leads
to the following equations:

15

011(X)L1 & 012(X)M1 * 013(x)z

-—= (A2.2)

acw

= _é- cose,
ax

i

2l

012(X)L1 + 022(X)M1

In these formulae, by definition, if Z(x,y) be the
resulting force for a cross section x acting at a point (x,y)

& 5

.I i
L1=Jyng ’ M1=j’ (z-x)2 d g

a X

Q —=— (A2.3)
Z

Z={dg
b

Next an assumption will be introduced regarding the type
of functions Cij(x)° Since it is experimentally easier to

measure deflections rather than slopes or curvatures, the
equations (A2.2) have to be integrated. TFor this reason it
will be most convenient to assume

m - -
U~ P X S 4 e
cij(x)._ %éa 0" x (A241)

i.es to replace the Cij(x) by polynomials approximating to

their real valuese. It should be noted here that the approach
of this Appendix is directly linked with the purpose of
determining the influence coefficients by a finite number of
deflection measurements and that it is of no theoretical
importance.

It will now be shown that the constants C%J
determined from an appropriate number of deflection measurements
taken along the span of the wing after a set of increasing

loads has been applied independently at two points of the tip
section, one of which should preferably correspond to the

can be

/ Under esccee
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Under those circumstances, for a general point of
application of the loads at the tip section, (A2.3) becomes

L1(X) =y Z, M= (x-)Z2 , 2 =2 ——= (A2.3')

where Z is now independent of X Substituting from (A2.3')
and (A2.4) in (A2.2), integrating once and twice respectively
with regard to x and using the following root conditions:

p(0) =0, w(0) = w'(0) =0 --- (A2.5)

one obtains

m K+1 m g 5 n K+1
p(x) y S ol X s = 015 X Lt G+ s 413 X

L LA TR D X o e
Z K=0 K K41 K=0 K K+2 K+1 | k20 K K+1
tatsgs o (A206)
-3
_oWx) P12 gl . Seg2dx | xS
Zsim = YUK (ReT) (Ka2) * z-g K |Ke3 ~ KT | Ka2

It is now seen that the determination of the C%J can be

reduced to the solution of four systems of m simultaneous
linear equations.

Before deducing these sets of equations, it is
convenient to make the equations (A206) partly non-dimensional
by putting

x=gt, Kcii. gl ~em (4247)

and to introduce the expcrimental measursements in the form
of rotations p and deflections W per unit load, i.e. let

‘%:f’s

Nj=

= i === (A2.8)

As one is working in the elastic range, this last step will
help to eliminate experimental errors by balancing the
deformations taken for a set of loads Z. Finally let the
superscripts 1 and 2 attached to p, W serve to distinguish
between the two test runs necessary; in particular let 1
refer to the case when the loads are applied at ({,0) and

2 when the point of application is (f,y).

/ With eese
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With the above convention the following systems of
simultaneous equations are obtained:

¢ ) ) 1 ';

. I S . WO WO 0§ o

3 sim} K3 KT Ke2 1K

iy w2 4 K+2 ¢ :

b Wi{ o) il 112!

)ygzsinaé : (X+1) (K+2 2 K |

f ot " B ; -2 5)
‘?_:L Y —12(51 1 ) J+14 ;Ei ; ;-135
| It EASTINE TE LA S S T IR b
(o gt L8 17 3

|Pi = Psl (5 ggdﬂl

- } ~jlzm |17k |

which can be easily solved by Cramer's Rule, particularly
if the degree of the polynomials (A2.4) replacing the Cij(x)

is not larger than two. In many cases such polynomials
will be quite satisfactory.

The remaining part of this Appendix will be devoted
to an application of the above method to the 1 ¢ 5 scale
model of a fighter aircraft with LO° sweepback of the quarter
chord line (see Figo3). In order to simplify the
procedure, the axis Ox was placed halfway between the outer
spars. Deflection readings were taken for the front and
rear spars at the following stations:

Rib station 2, 3, 5, 7, 9

and the corresponding displacements W of the O0x axis and
rotations p about that axis calculated; (note that the
change in "incidence" obtained directly from the ‘
measurements equals P sing)for loads, increasing in steps
of 5 1b to a total of 20 1b, applied to the points ({,0

and (£,10"). The resulting values 51, ﬁz, @' and W° are
given in Table 1 and graphed in Figs. 5 & be

Using values of P and W referring to the rib stations
3, 5 and 9, the elements of the systems of equations (A2.9)
have been evaluated in Tables 2 - 5 which at the same time
provide schedules for further applications of the method.
Underneath each table appear the values of the relevant
determinants for the application of Cramer's rule and the
ij
K L]

values of the constants C%j and C

/ Using eooe
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Using the coefficients CxJ, determined above, the
approximations (4A2.4) to the Cij(x) have been calculated for

certain stations (see Table 6) and graphed in Fig.7. For
comparison the theoretical values of all but one of the Cij

for these stations are likewise given in the table. It is
seen that on the whole agrecment between the experimental and .
theoretical values is fair, with the exception of the values of
012 and 022 at the two outboard stations. As this is the

first time that the formulae for the two-cell box have been used,
the present results can only give an indication of what may be
expected in future applications. Definite sources of error

in the present model may be expected to arise from the cutout
(Fige3), although the discrepancy between the experimental

and theoretical results does not occur until further out along
the span, and from the fact that the theoretical results were
referred to an axis 0x coinciding with the centre spar while

the experimental results assumed that axis along the centre

line between the outer sparse.

But the last condition is again sufficiently met at the
outboard stationss. On the other hand, 012 and 022 depend to

a large degree on the moments of inertia of the wing sections,
and it appeared from the computations that use of larger values
for these quantities would reduce the corresponding values of
the influence coefficients. In fact, the contribution of the
spar-boom areas to the moments of inertia increases along the
span until at the tip it almost equals that from the skins,.

For these reasons it will be suggested here, that, in view of
the small cross sections of the model wing near the tip and the
difficulty involved in constructing this part of the wing, the
actual model is stiffer than predicted by calculations based on
nominal sizes and dimensionse. This last effect may yet be
accentuated by the large number of closely spaced rivets
holding the skins to the spars. Perhaps it should still be
mentioned that the discrepancy for C would also have been
observed if use had been made of sim%ge beam theory as

1

Cop = T T sing

Finally there arises the question as to the correctness
of including constant terms in the polynomials (A2.4)
representing the influence functions, for obviously Cij(x)
should be zero at the roote. However, similarly as in
Appendix 1, it may be reasoned that conditions near the root
will be of little importance. On the other hand, one may
equally well exclude the constant terms without making the
computations much more complicated, but this has not been done
in the present calculationse.

/ Table 1 oocese
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TABLE 1

Experimental Data

Rib | I i

Station 2 5 5 7 2

Ei 000825 00198 OOLLBLI- 00716 00905

B [rad/1b]| 0.454x107° [0.745x107° |2.54x10™ |1 69x107 [7.46x107°

B2 (rad/1t}| 0.537x1077 [1.005x1077 {3413x10™° | 6.60x10 [114.80x10™>

W) An/109 | 0.079x107|0.236x107>|1422%107 | 3438x10 > | 6.00x10™>

W2 An/16) | 0.069x1072 |0.236x107° |1.22x10 2| 3, 46X10 > | 6414210

l 1
TABLE 2

Determination of Czi

(! (2) (3) | () (5)| _(6) (7) | _(8)

1 ey g2 | Eoa| gd/3 Byl e/ | iy

3 7 5

1 10198 | 060196 | =0.93L | 0.00259 |=-.U451 .00038L4 | =-.294

2 {Oelblh | 00103 | -0.849 | 0.0312 [=0387 . 0106 -o2U3

3 OO905 OoL'-1O -00698 ] 002“-7 ".27'—'- 0168 —0152

(9) (10) (11) | (12)

1| (3)x(u) | (5)x(6) | (7)x(8) | -0} /t7sing

1| =e0183 | =e00116| =+000113 | =0666x10"°

2| =.0875 | =o012L | =+00257 | -z.15%x10"2

z | “&To8E- [:< 0676 | =.0255 “6.93%10™2
det (9), (10),(11) = —1.127x1o‘6
det (12),(10),(11) = ~L.52x10™ 14, 622 = +l.02x1078; c2? = Lo 02x10™0
get (9), (12),(11) = +12.82x07"%; 22 = -1137x107%; 22 = -.1L9xt0”
get (9), (10),(12) = =56.1x10 1 632 = +49.8x10°%; cgz = +0085x10"

/ Table 3 cecee
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TABLE 3
Determination of 0%2
(1) | (2) (3) (4) (5) | (6)
2, 3 /6 0y Wl - W?
3 E Es /e g E /M2 e~
1 i 1l nk yIZSinQ,
’ 198 | .0196 | .00129 | 000128 0
2 o45L4 | 103 | «0156 « 00353 0
3 | 2905 |.u10 | o124 . 056 ~9,06%x10~7
det (3)9(&)9(5) = 3-79X10—6
det (6),(L),(5) = —.232x10"1; 622 = =.0612x1077; 022 = -.612x10°0
det (3),(6),(5) = +5.07x10712; &2 = +1.34 x1077; €}® = +el 7528072
dget (3),(4),(6) = =15.7x107"3; G2 = =kl x1077; ¢)2 = - 00709108

Determination of C

det (2),(3),(4)

det (5),(3), (L)

det (2),(5), (kL)

det (2),(3),(5)

TABLE L
o2
K
(1) (2) | (3) (4) (5)
i E. g?/z g?/} ﬁ? - Py
B 5 3 8 { v
1 c198 | 00196 | 400259 | . 3lLxd0 O
g L5l | «103 00312 .771x1o'8
3 «905 | o410 | o247 9¢6x10
= 1,098%107°
= L468x10°10; égz = JL426x107(; c?? -
= -4.06x1079; 822 = -3,7x10"(; cfz =
= 9.3x10719; 622 = B.u7x1077; 022 =

/ Table

Le26 x10°
baad L|.8Ll.X1 O-

0145x10"
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TABIE 5
. Determination of 0%3
i ]

(1) (2) (3) (g) (5) (g) (7) (g)1

. £, E, 1 e .

S T N A L '31-; g3 ‘Z}-% tCyo

114198 | =901 |.0392 | =.u3l | 00776 | -.284|- L.68x1077

2 | o5l | =0773 0206 | -o349 | 0936 | -.220| 1024 x107/

3 |4905 [ =547 4819 | =198 | 47U -.107|-316.5 x10™'
| (9) (10) (11) (12)

1 1(8)%(2)x(3) | (8)Tx(w)x(5) | (8)%x(6)x(7)| (9)+(10)+(11)

1 83%5x10° 7 | - 1.7u2x10" 7 | .696x10™7 | -.211x107'

2| 1.64 x1077 | = 7.37 x10”7 | 6.51 x10~/ .78 x10™/

3| 2431 x10°7 | =16.63 10~ |25.10 x10~7 | 10.78 x10~"

(13) | (14) 515) (;6)

i By (13)-(12) £3/2 £1/3

11 ~973x1077 1e184x10”7 0196 00259

2 | 3.32 107/ 2.5 x10™/ .103 0312

319,75 x10°7 | -1.03 x10~/ 110 .2L7
det (2),(16),(17) = 1,098 x 10~
det (14),(16),(17) = «500x10™7; G17= .L56x107°%; ¢12= .u56x10”
det ((2),(14),(17) = 2.43x10"7; | }3_ 2.22x107°; c}3= 2029x10"
dget (2),(16), (14) = -6.3x1o"9;'6;3= =5, Tl c;3= -+ 00099Lx10"

/ Table 6 eceseces
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TABLE 6

Comparison of Experimental and Theoretical Values of Cij (Fige7)

Station Cyq X 108 Cyo X 108 Cop X 108 C,‘3 X 106
Exp. | Theor. Expo. Theore. Expe |{ Theor. EXpe.
« 0825 1.8 202 021 -2428 3el42 3e92 o6
«310 «93 365 -olly | -3.83 5428 6e11 584
«596 12632 | 9L =735 1 =9496 | 14092 | 1595 | =0306
0811 29,97 | 3242 -1703 | 28442 27458 | 4641 =1 o 5U47
1.0 52427 | 6845 ~-28e81 | =531 L2.62 | 86,2 -3416
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Front spar. R.S. longeron

T(C.S. longeron
SECTION THROUGH U/C BAY.

“

2.56" 3.2"  2.8",

__Q_.,_-..- ,;‘__-._.M.w_.:i.;i.: - i ¢_
4.28" ]'

RIB AT TIR

Item Material

Ribs land 2 18g Lt Alloy
Ribs 3and 4 24g Lt Alloy
Ribs 51to tip | 269 L1 Alloy
Spars [*section] 22g Lt. Alloy
Spars 2"%ection | 24g Lt. Alloy
Spars 3"%ection| 26q Lt. Alioy
Skin _i"section| i8g Lt. Alloy
skin 2"%ection| 20q Lt. Atloy
Skin 3 Section | 26g Lt. Alioy

Fig. 3b.
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Fig. 5. Measured twists per unit load at tip. (Toblc.l.)
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