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SUMMARY 

Using ohlique coordinates, the static problems 
of Aero-elasticity for swept wings are reduced to the 
solution of integral - or matrix equations, which may 
he solved hy iteratlono The present treatment also 
indicates the suitahility of integral equations for 
fundamental aero-elastic investigations. It shows 
that the ah initio use of matrix equations may lead 
to more complicated calculations, and that for this 
reason they should be confined to computation offices, 
particularly since the transition from the Integral 
equations to the matrix equations mostly used in this 
type of work requires only a simple formal transformation! 

Application of the theory to a simple swept 
wing is given and its divergence speed obtained. In 
two Appendices methods are deduced for estimating the 
aerodynamic derivatives and calculating the elastic 
influence functions from experimental data. Both 
methods are applied to the case of a model wing, and 
the Influence functions thus obtained are compared 
with their theoretical values. To simplify future 
applications of this method, the complete calculations 
are presented in the form of tables, suitable as 
computation schemes. 
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NOTATION 

C. . Influence coefficients for uniform wing 
-^'^ 
C..(x) Influence functions for arbitrary wing 
-'- J 
C(x) V/ing chord | 

I 

11(11,x) Kernel of integral equation (2.13) 

H (ri,x), K (ri,x) Kernel of integral equation (2.11a) 

H(TI,X) Kernel of integral equation (3«2a) 

H (ii,x) Kernel of Integral equation (3»3a) 

L Aerodynamic Lift 

L., M. Oblique components of couple about OX, QY 
respectively (see fig.l) 

Aerodynamic moment 

Oblique system of coordinate axes (Pig.l) 

Reference axes in Oxy plane, at right angles to 
Oy and Ox respectively (Pig.l) 

Forward velocity of aircraft 

Applied vertical force 

M 

Oxys 

OX, 

V 

Z 

^1 = 

^2 = 

OY 

èa 
ac^ 
ap 

C-r, C^ Aerodynamic lift and moment coefficients where the 
latter refers to axis Ox. 

d^ = 

^2 = 

i 

^^M 
ae 
Ŝ 

ap 

X coordinate of wing tip 

Number of subdivisions of wing for transition 
from integral to matrix equation 

p(x),q(x) Oblique components of rotation of wing section 
about Ox, Oy respectively. 
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Notation (contd.) 

q = ^pV Dynamic pressure 

q_ Dynamic pressure for aileron reversal 

q_̂  Dynamic pressure for wing divergence 

X, y, z Oblique coordinates (Fig.l) 

X. Wing stations for matrix equations 

a Complement of angle of sweep back (Pig.l) 

p Aileron angle 

e(x)= p sina Local wing incidence 

e! = O , 6, = e(x,) 

Ax. Length of subdivisions for transition from 
integral to matrix equation 

Some of the notation of the appendices is independent 

of that of the main part and is stated at the beginning of 

each appendix. 
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Introduction 

Considerable attention has been given during the past 
years to the "static" problems of Aero-elasticity, (i.e. aileron 
reversal and divergence) for swept wings. The majority of 
reports (e.g. Ref. 1) on these subjects attempt to modify 
methods of analysis, used in the case of straight wings, and 
therefore fail to do justice to the special features of swept 
v/lngR. This criticism refers in particular to the introduction 
of equivalent v;ings possessing elastic axes which are obtained 
by rather arbitrary assiomptions referring to the root ends of 
the original wings (Ref.l) Other authors make use of the 
semi-rigid approach (Ref.2) which was already found inadequate 
in the case of straight v/ings, and which for swept v/ings will 
be just as unsatisfactory, since it involves too great a 
simplification of the actual deformations. 

Finally, mention should be made of a recent paper (ref.3) 
which comes nearest to the approach to be adopted here, in that 
it represents the elastic structure by mxeans of influence 
coefficients, to be determined by measurements on models or 
on the actual aircraft. Thus it is immediately seen that 
this method is only applicable when these measurements can be 
taken, and hence it is seriously restricted in its applicability. 
The present report offers a new approach to the problem under 
consideration, as far as structural representation is concerned, 
while the actual analytical method makes use of integral 
equations which are easily rewritten in the form of matrix 
equations if the complexity of any particular application should 
demand the latter. It is one of the objects of this report 
to illustrate the use of integral equations in problems of this 
kind, and to suggest that such equations present the best 
approach in all fundamental investigations dealing with 
continuous systems. 

The method of solution proposed for the final equations 
makes use of straight forv/ard Iteration of either the integral 
or the matrix equation. Since the unknovm function or vector 
in these correspond to the rate of change of twist along the 
wing, the Initial solution assiimed for the Iteration may be 
taken identically constant along the wing, a fact which 
simplifies still further the rapidly converging process. 

A simple problem, treated in the final section of this 
report, illustrates the application of the method and, in 
particular, the points raised above. Appendix 1 at the end 
of this report gives a method for estimating the aerodynamic 
derivatives required, while Appendix 2 deals with the 
experimental determination of the Influence functions which 
are then compared with their theoretical values. 

/ 2. 
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2. Deduction of the Basic Equations 

The most organic approach to any problems of aero-
elasticity and general dynamics of continuoiis systems makes 
use of Integral rather than matrix equations. The main 
reason for this fact lies with the continuous character of 
such physical systems. Thus it will invariably be found that 
integral equations allow a more lucid presentation of the 
problem considered, once their correct interpretation is fully 
understood. 

On the other hand there is no point in attempting to deny 
the usefulness of matrix equations for the purpose of n\imerlcal 
work. These are most convenient whenever the physical system 
becomes complicated, and are of great assistance in simplifying 
calculations. Hov/ever they bear little relation to the 
original system to be investigated and therefore ought to be 
confined to computing offices, having the purpose of providing 
numerical answers. There may be some justification for their 
use also In connection with dynamic models, whenever 
concentrated masses are used to represent continuous structures. 

The present deduction of the basic equations for the 
determination of aileron reversal and wing divergence speeds 
makes use of the integral equation approach throughout, but the 
final equations will also bo given in their matrix form for use 
in actual computations referring to more complicated structures. 
But it should, be noted that these matrix equations are obtained 
from the final integral equations to which they are equivalent 
within the approximation introduced by the necessary 
transformation. 

The conditions of aileron reversal and wing divergence 
are essentially static in character and hence the steady 
aerodynamic "derivatives" must be used. Thus the aerodynamic 
force and moment acting on the element of a swept wing will be 
given by 

d L(x) = q C(x) fa^(x)e(x) + a2(x)(3Jsina dx (2.1) 

d M(x) = q C^(x)(d^ (x)e(x) + &^(x)^j sina dx (2,2) 

where the sumbols are explained in the list of notation and 
in Fig.l. The quantities a., a^, d. and d„ have been written 

as varying with x, the coordinate along the span. Their exact 
determination will often present great difficulties, since it 
requires reference to lifting surface theory for swept wings; 
and not only once, because these derivatives depend on the 
actual wing defonnation, so that in an exact treatment they 
would have to be recalculated after every iteration step 
which involves a change in the mode of deformation of the wing. 
On the other hand, for most practical purposes it will be 
sufficient to base the values of these derivatives on results 
obtained by means of semi-empirical methods such as have been 
given by 0. Schrenk (Ref.U) for straight wings, and extended 
to the case of sv/ept v/ings by Jones (Ref.5) and other 
authors (Refs. 6 & 7) in America. In appendix 1 an example 
has been given of how one may obtain a.(x) by use of the lift 

distribution of the undeformed vering (Ref.5) and the so-called 
basic lift distribution (Ref.8) due to twisting of the wings. 

/ Before 
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Before proceeding with the process of obtaining the 
fundamental equations of the problem, it should be pointed out 
that in the above equations it has been assiimed that the aileron 
anglep is constant over the part of the wing carrying the 
aileron and, in addition, that the forces are transmitted 
directly at each station to the main structure. In other v/ords, 
the existence of discreet hinges has been neglected, a 
procedure virhich is customary in this type of investigation, 
and vifhich may require further examination in special cases. 

The condition of aileron reversal is given by 

I X d L(x) = 0 ! (2.3) 
Ö 

which after substitution from (2.1) may be written as 

ƒ X G(X) a,(x) e (x) dx 

p = - ^ 1 — (2.1+) 
-( 
\ X a^(x) C(x) dx: 
o "^ 

where mostly ap(x) will be zero over part of the span. 

Substitution of (2.U) in (2.1) and (2.2) leads to expressions 
for the lift and moment acting on a wing element at reversal 
speed 

f /kc(?)a^(g)e(5)d5j 
dL(x) p = q^C(x)ia (x)e(x)-a (x) 71 ^Vsinadx (2.5) 

^ ^ V J|a2(dc(?) d? j 

I' j'?C(?)a^(g)0(ë)dg/ 

dM(x) ^ = q^C(x)^^fd (x)6(x)-d.,(x) % ^ f si 

^ ^ n ^ j\a^iOG(^) d? j 
sinadx (2.6) 

Next consider the representation of the elastic 
properties of the wing structure. Using oblique coordinates 
(see Fig.l) it has been shown by W.S. Hemp (Ref.9) that the 
rate of twist along a swept wing of constant cross section 
may be related to the applied Moments and forces in the 
following manner: 

I 

^ ^ = C^^ L^(x) + C^2 ^^1^^) + ^13 Z(x) i (2.7) 

where the constant influence coefficients C^.may be determined 

theoretically or experimentally. An obvious extension, 
analogous to that customary in the generalisation of the 
Bernoulli-Euler theorem, postulates for the case of varying 
cross sections: I 

^ 1 ^ = C^^(x) L^(x) + 0^2^^) ^l(^) + ^13^^) 2(x) (2.8) 

/ i.e. the 
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i.e. the assumption of varying influence coefficients C. .(x) 
J- J 

is Introduced, It v/ill be shovm in Appendix 2 how the C . may 
•'• J 

be most easily obtained on the basis of deflection measurements 
taken on the wing or on a model of it. An example will be 
treated there and the experimentally determined Influence 
coefficients will be compared with their theoretical values 
as obtained by use of formulae of reference 9. 

In order to link the aerodynamic and elastic forces, 
one deduces from (2.5) and (2.6) the moments L., M. and force Z 

of (2.8) in the following manner: 

ri 

L^(x) = 

M^(x) 

!(d M(-n))^ 

(TI- X) '(dL(Ti)) 
R 

\ 

V. 

•X 

- J(̂  z (x) = (d L(n) i 
'/ R 

/ 

Further, as 

p s ina = 0 

one obtains a f t e r subs t i t u t i on from (2.9) in (2 ,8 ) : 

(2.9) 

(2.10) 

A 

d6(x) 
dx q j ^sm a 

.i 
c^^(x) |G(-n)^]d^(Ti)e(Ti)-d2(Ti) ^ 

l ? C ( g ) a ^ ( 5 ) 6 ( ? ) d 5 

J ?a (g)c(?)d^ 
f-dn 

o 
A 

j-.t f J?C(?)a^(^)e(g)d?j 

^ i ?a (?)C(€) d? j 

J ^ j ? C ( g ) a ^ ( g ) e ( g ) d ^ v 

+C^^(x)Jc(-n)ja^(Ti)e(Ti)-a2(Ti) ^ (dn 
"" ' j ? a _ ( g ) c ( g ) d g j 

(2.11) 

/ which 
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which can be w r i t t e n 
I 

d e ( x ) _ _ „..„2 L i 
dx = ^R ^=^^ ^ 

1 ^ , 

v/here 

r ('n,x) = C('n) 

jH'('n,x)e(Ti)dTi - JH''(TI,X) e(T)) d̂ i 

iu.. 

(2o11a) 

P , , •nC(Ti)a (TI) 
H ' ' ( T I , X ) = 77 

C(n)d^(7 l )C^^(x) + a ^ ( n ) ^ , ( T i - x ) c ^ 2 ( ^ ^ + ° i 3 ( ^ ) i 

( 2 . 1 2 ) 

J?a2(?)c(?)d5 
C^^(x)jC(g)2d2(g)d^ 

<" I i 

w i t h 

Finally (2,11a) may yet be simplified to give 

^ ^ ^ = q^ sin^a I H(Ti,x)6(n)dTi 

o 

( H^(TI,X) 
H(TI,X) = S ^ ^ p 

/H'(n,x) - H^'dijX) 

0 4 Ti < x 

xv. n ^ <i. 

— ( 2 . 1 3 ) 

— (2.1i|) 

Equation (2.13) is the basic integral equation for the 
determination of aileron reversal speeds. Its matrix form 
which represents an approximation unless one uses an infinite 
number of variables, is obtained from (2.13) "by selecting 
certain stations x. along the wing at which (2.13) will 

still be assumed to hold with the one approximation that the 
integral is replaced by a finite sum involving the values 
of the variable at the selected stations. As for 
computational purposes the integral on the right hand side 
presents in practical cases great difficulty, the matrix 
equation to be written down now, will often be more convenient 
when numerical results are required. 

n 
'1 = ^R Bin a _ ^ H.. e. AX., i = 1 p O « • j riy — ( 2 . 1 5 a ) 

where d6(x ) 

i etc. 

Ax. = length of subdivision allotted to x. 

n = number of stations selected. 

/ In many 
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In many cases it is most convenient to distribute the 
stations X. uniformly along the span and to ass\ime all the 
AX. to be equal in length. Then (2.15a) becomes 

e| = q̂^ sina ^ 2J 6̂  Ĥ j_ , i = 1, ..., n (2.15b) 
J — I 

It should be noted at this stage that naturally the integrals 
involved in calculating the H.. may likewise be obtained as 
finite sums. '^ 

Finally an equation analogous to (2.15a) will be 
deduced for the determination of wing divergence speeds. 
In this case the aileron angle p appearing in (2.1),(2.2) 
is identically zero, so that these equations become much 
simpler, and it is easily seen that this implies that 
112(11,x) of (2.12) is zero. Thus one has for wing divergence 

^ ^ = d^ sin^a j Ĥ  (n,x) e (TI) dTi (2.16a) 
X 

and the corresponding matrix equation 

6[ = qjj sin^a ^ f^ H'I^ 6 , i = 1, ..., n —(2.l6b) 

assuming n uniformly d i s t r i b u t e d wing s t a t ions and equal 
subdivis ions . 

/ J» . . . . . 
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3o Method of solution of the basic equations 

An iteration process is most suitable for the solution 
of equations of the type deduced here. However, particularly 
when solving the corresponding matrix equations, the presence . 
in the equations of the variable 6 as well as of its spanwise 

derivative ;r~ is not convenient as it will require an extra 

stage in between each iteration step when the derivative must 
be obtained. For this reason the following transformation will 
be applied to the fiinction 6(x) under the integrals of (2.13) 
and (2.16): 

•n 

O 
— (3.1) 

Assuming that 6(o) = 0, i.e. that the root of the wing is at 
zero incidence. If this condition is not fulfilled, the 
transformation (3»l) involves an additive constant, the root 
Incidence, a fact which only slightly complicates the final 
result. Using (3-1) and inverting the orders of integration, 
the basic integral equations become for aileron reversal 

ri 
de(x) „ o,-,-̂2 «/ „\ de(n) -, 

with (3.2a) 

H(ri,x) = |'H(t,x)dt 

•n 

and for wing divergence 

A 
S|i^.= .,sln2aJHl(..x)^ a. 

With 

H^ (TI,X) = H^(t,x)dt 

Xjf) 

(3.3a) 

where xVh = max (x,y). (This type of integration limit always 
occurs in the process of inverting the order of integration 
of double integrals of the present type, when the area covered 
by the integration does not cover the complete triangle 
formed by one of the coordinate axes and the line bisecting 
the right angle between them). 

/ The 
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The corresponding matrix equations are 

le'i = qj,.in^ I jŝ ji jeU —(3.2b) 

and 

e'| = q^^sm^ I ̂^ 'I (̂' 4 J eU —-(3.3b) 

The transformation of the basic equations introduced 
above demonstrates well the suitability of the integral 
equation approach. At the expense of slightly more complicated 
coefficients H.., which normally have to be calculated once 
only, one has '' obtained equations which are suitable for a 
simple iteration process. Comparison of the corresponding 
matrix equations (2.15b) and(3.2b),(2.18b) and (3.3b) shows 
that such a transformation is by no means so obvious, if one 
only deals with equations of that type. Note also that the 
unknown functions or vectors in the equations (3*2) and (3.3) 
are different from those normally used because the transformation 
(3*1) was used. An alternative procedure, which howeverdoes 
not always lead to as simple results, would have been to 
integrate the equations (2.13) and (2.16) once and to invert 
the orders of integrations on the right hand sides. 

Equations (3.2) and (3*3) may be iterated in their 
integral or matrix form by assuming some initial form for the 
rate of twist function e' and calculating the right hand sides 
of the equations. The resulting functions or vectors (in the 
case of the matrix equations) render then the new rate of twist 
distribution to be used in the subsequent iteration step. 
After a certain number of such steps the expression for e' will 
stabilize so that one obtains after cancellation of the 

function ^ or the column jelC an equation of the type 

2 ? 
K = q_ sin a (3*̂ )̂ 

in the case of the integral equation, and 

¥? = q̂  sin̂ a ^ (3.5) 

in the case of the matrix equation, where K^is a constant. 
In general there will be several values of JSr , the lowest of 
which will give the critical speed required, since by 
definition 

1C = ^ P ̂ G 

and hence by (3.U) or (3*5) 

re'spectively. 

/ Under 
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Under normal circumstances, the initial function or 
vector for the iteration may be assxamed to be constant along 
the wing, i.e. one may assume uniform twist. As has been 
noted earlier, when dealing with the aerodynamic derivatives, 
in an exact treatment these would have to be calculated anew 
after each Iteration step on the basis of the newly determined 
mode of deformation. In most practical cases, however, such 
refinement will be considered too laborious and the derivatives 
will be based e.g. on the assumption of uniform twist. 

In the next section the above theory will be applied 
to the very simple case of a uniform section swept wing and 
variations of the derivatives will be neglected for the sake 
of simplicity. 

U» Divergence of a simple swept wing 

Consider the wing shown in Fig.2 which may be taken as 
an approximation to the wing treated in Appendices 1 and 2 
(see also Fig, 1,3) As mentioned at the end of the last 
section, all the characteristic quantities of the wing will be 
assiomed constant, in fact they v;ill be chosen within the range 
of values found for the model wing of Fig.3 in Appendices 1 
and 2, viz: 

c = 
^ = 

^2 = 

°11 = 

2i+ [in] 

1+.9 

0 .9 

30 X 10~^ 1 Ib""^ in"^ 

C^2 = -''7 X 10"^ [lb"''in"̂ j 

i =76.5 M 

G.^ = -1.55 X 10~̂ |lb"'̂ in~'' 

sina = 0.79 

then by (2.12): 
.1 

H'^(TI,X) = 214- 2 U X 2.5 X 30 X 10 ̂ + U.9 -(TI-X)17X1 0~^-1.55 x10~^f 

= J2.5 - 0.2 X(TI- X ) X 10 -k 

i.e. (2.17a) becomes 

..t 
^ 1 ^ = q^ Sin-̂ a J 10"^ 2.5 - 0.2(TI-X) 

2 1 . -U 
• ' 10 ^ 

X 
e(n)dn 

By (3.3a) 

H ̂  (TI,X) = jH''(t,x) dt 
X,T1 

= f^o-'^ 
X,T1 

2.5 - 0.2(t-x) dt 
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= 10~^ i2 .5 t + 0.2 X t - •^~-
•3C,T1 

= 10-i4i 

f 2 . 5 ( ( - x ) + 0 .2( ' ( -x) X -0 .1 ( ^ -x ' ^ ) fo r xyt] 

i2.5(^-Ti) + 0.2 X ( t - n ) - 0.1 (^^-n^) for X^T] 

Hence t h e cor responding I n t e g r a l equa t i on becomes 

A 

^D ^ ' " ^ - ^ 

u 

X 

j ( ( -x ) ' |2 .5 + 0.2x - 0.1 (<+x)l0'(Ti)dTi 

0'(x) = q^ sin^a J H' '( i l ,x) 6«(Ti)dTi 

ji. I 0 = q_̂  s in^a x 10 

+ J (^-Ti){2.5 + 0,2x - O.l('i::+Ti)J0'(Ti)dTi 

= 1 o" \^s ina^J(76.5-x) [ -5,15+0.1 xU ' ( ' n ) dTi 

76.5 r 
I 

J 
X 

+ J (76.5-.i.)[-5.15+0.2x-0.1n] e'(Ti)dTii 

i . e . t h e fol lowing equa t i on has to be i t e r a t e d to o b t a i n 
the d ivergence speed 

X 

0'(x) = 10~^ q_^ sin^a ( 7 6 . 5 - x ) ( 0 . 1 x - 5 . 1 5 ) j 0'(Ti)d'n 
I o 

76.5 
+ J (76.5-n)(0.2 X - O . I T I - 5 . 1 ) 0'(Ti)dTij 

'x J 

To shorten the iteration process, let 0'(x) = b + b.x 

+ bpX and deduce a system of equations for the b. by comparing 

coefficients of x , x' and x , If it is then assumed that the 
mode has stabilised, one obtains 

K^ b^ = - b^ 2.255 X 10^ - 6.7 X 10^b^ - 2.78 x lo'^'bg 

K̂  b^ = 5.852 X b^ X 10^ + 1.i|9 X 1 o \ ^ + 5.685 x 10^1 

K^ bg = - ^Q 1'25 

/ i . e . . . . . . 
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I.e. one obtains a secular equation for K : 

K^ + 2.255 X 10^ 6.7 X 10^ 2.78 X lo'' ' 

- 5.852 X 10^ K^-1.i4-9 x 10^ -5 .685 x 10^ 

+ 1 . 2 5 0 K^ 

i . e . K^ + 2,106 x 10^K^ - 3 x 10^K^ + 1+.12 x 10^*° = 0 

and the lowest root of t h i s equa t i on i s 

= 0 

K = 13.72, and hence K = 3.7 

as is easily seen by inspection of the last two terms. 

Therefore by (3«6) 

^C = 0I79 io!o02378 [ i V s e c J a t sea l e v e l 

_ 111 - I 2 X 12 
" 0. ̂79 ^jo.002378 = ^^° f*/^^°J ^^ ^^^ =̂ ®^̂ ^ 

Using the same value of K one finds from the above equations 
the mode of deformation of the wing to be 

0'(x) = b^(l + 3.U3X - .091x^j' 

so that the above assumption of linearity of the mode of 
deformation, on which normally the aerodynamic derivatives 
are based, is not very well satisfied. Considering the low 
divergence speed obtained, a compressibility correction is 
obviously not required. It is indicated in Appendix 1, that, 
in case that use is made of the process given there for 
obtaining estimates of the distribution of the derivatives, 
allowance may be made for compressibility effects when 
deducing the underlying lift distribution. 
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5» Conclusions 

The method of determining aileron reversal and 
divergence speeds of swept wings, deduced in this report, 
serves well to illustrate the usefulness of oblique 
coordinates in work relating to such structures. Combined 
with the integral equation approach a compact presentation 
of these two problems is obtained which in some respect 
may be compared with the treatment of the analogous problems 
for straight wings given in Ref. 10 which uses only matrix 
equations. 

The application of the method, given in section U, 
demonstrates the simplicity of the required calculations. 
Naturally, when dealing with a more complicated type of 
wing, the process of computation will become more complex 
and the use of matrix equations may well become necessary. 
Nevertheless, the example treated here contains all the 
essential steps which will be involved when dealing with 
a wing with taper, crank, etc. and when variations in the 
influence functions and in the derivatives are to be taken 
into account. 

In the Appendices 1 and 2 at the end of this report 
the initial stages to the application of the method are 
discussed separately and independently of the main part of 
the report, although some of their n\imerical results are 
used in section U. In particular. Appendix 2 serves to 
compare theoretical and experimental results obtained for 
the influence functions. The author is indebted, as far 
as the former are concerned, to Mr. J.V.A, Welbourn who 
undertook the fairly tedious task of computing them from 
the formulae of Ref.9» The experimental results underlying 
the latter were obtained by the author as part of the 
aero-elastic study of the model wing under consideration. 

All niimerical results contained in this report, with 
the exception of the theoretical values of the influence 

• ftmctions, were obtained by use of a ten inch slide rule, 
so that at the most three figure accuracy can be expected. 
In view of the accuracy, v/hich may be claimed for the basic 
physical data, it would, appear doubtful whether the use 
of a calculating machine would help to improve the position. 
In general it may be said that little accuracy was lost 
during the computacions due to subtractions of almost equal 
quantities. 

/ References 
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APPENDIX 1 

Determination of Lift Slope Distribution along the Span of 

a Swept V'/ing 

Notation 
aCj^ 

a. = •-•— of whole aircraft 
1 da 

z}.a.' Local variation of a. from its value relating to the 
. undeformed v/ing, 

a. Local lift slope of deformed wing, 

C Local chord of wing 

Ö Geometric mean chord of wing 

a.] Local lift slope of undeformed wing 

Cj Local lift coefficient 

Cj Mean lift coefficient for whole wing 

G-TT, Basic lift coefficient 
IJD 

A Aspect ratio 

CCj 
K = -r-.~ loading coefficient of undeformed wing 

CC^ 

CC-p-g 
K' = —z— basic loading coefficient 
n Ce 

e Twist at v/ing tip 

T] = T non-dimensional coordinate along Ox 

^t ,\ = 7~ taper ratio 

^r 

j \ Angle of sv/eep back of i chord line 

/ As mentioned ,,,,. 
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As mentioned in the main part of this report, a method 
will be given here for estimating the distribution of lift 
slope along the span. The method is approximate and makes 
use of references 5 & 8 by R. Stanton Jones, which contain a 
semi-empirical approach to the determination of the lift 
distribution of sv/ept wings. These reports are based on a 
large number of experimental and theoretical results published 
during recent years. The first person to suggest a similar 
method for straight v/ings was 0, Schrenk (Ref.l;), and since then 
various related procedures have been suggested and used by 
different authors (Refs.5-8).. 

In all these approaches the lift distribution is divided 
into two parts, the first of which refers to the undeformed 
wing (Ref,5), while the second, the so-called basic loading 
(Ref,7), gives the correction to be applied to the former in 
the case when the wing is tv/isted. 

First consider the distribution of lift slope along the 
undeformed v/lng. From Figs. 7 & 8 of Ref.5, after some 
preliminary calculations which Involve the follov/lng data 
referring to the model wing, also considered in Section k and 
Appendix 2: 

A = 1+.5 , X= O.I4.75 , J\ = 1+0° 

one finds the follov/lng values for the load coefficient 

CC^ 
K = TTT- at the wing stations -n : 
r\ CC^ ' 

n 0 0.1 0.2 0.382 0.6 0.707 0,8 0,85 0,923 0.96 

K I.I6I4. 1.166 1.169 1.157 I0O59 0,965 0,81+1+ 0,751+ 0,571+ 0.1+1+1+ 

But from the exp res s ion for the load c o e f f i c i e n t , v/hich i s only 
a funct ion of ri, i t follows t h a t 

Q 
°L " -^ C °L 

and hence 

a ' = K § a. 1 ri C 1 

For the wing under c o n s i d e r a t i o n 

(ï = 2 8 . 7 [ i n l , C(TI) = C^(l-(1-A)ni = 39.3( l -0 .5257i) [ i n ! 

a^ = l+.O 

and t h e r e f o r e 

a ' = K /0.3U2 (1 - 0.525ri) 

/ Using 
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Using the above v a l u e s of K , the cor responding va lue s of 
a! a r e : 

•n 0 0,1 0,2 0.382 0.6 0,707 0,8 0.85 0,923 0.96 

a ] 3.1+1 3.60 3.82 Li-,23 1+.51 l+,l+9 l+,26 l+.OB 3.26 2,62 

Next consider the deformed v/ing. The basic loading 
GC 

coefficient K' = —^— is graphed for various wing stations, 
'^ Ce 

angles of sweep back and aspect ratio in ref.8. The data given 
in this reference refer to a wing twisted uniformly from zero 
Incidence at the root to 1 nose downward at the tip. It is 
also indicated there that without great difficulty, allowance 
could be made for parabolic or even higher order twist, although 
computations v/ould then become more complicated. In the 
present case the values of K' are: 

T) 0.1 0,2 0,3 0.1+ 0.1+5 0,5 

K' 0,0132 0.0118 0.0093 0.006 0,0021 0 -0 .0019 

•n 0.6 0,7 0.8 0.9 

K' -0,0051+ -0 .0079 -0.0091 -0 ,0075 

But as the twist corresponding to these values of K' is uniform 

and equals one degree washout at the tip, the local twist at 

any station is ri° and hence the local change of K' per radian is 
•n 

K' X 57 .3 CC^^ 

Ti C T I 

s ince e = 1 , But as 0 -̂0 i s the b a s i c l i f t c o e f f i c i e n t v/hich 
LiD 

varies with ri, one can interpret Cy-n x 57,3/n as local change 

in dCj/da = al per radian and hence 

K' X 1+1,8 

''̂ 1 - Ti(1-,525-n) 

v/here the minus sign has to be introduced because K' corresponds 

to washout, 

Obviously the values of ..-Aa' deduced in this way will be 

unreliable near the wing root, i,e. for small values of TI. 
On the other hand, for the purpose of aileron reversal and wing 
divergence calculations, the outer wing is of greater Importance 
and the a, obtained in the above manner may be expected to be 

satisfactory there. From the above formula one finds for 
i..a' the values: 

/ . o o o o o 
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0.5 0,6 0,7 0.8 0.9 

0.19 0.55 0.65 0,82 0.66 

In Flg.l+ the values of a.' , j^al and the actual lift slope 

distribution a. = a I + .>.a! are graphed against r\« 

In the above v/ork no allov/ance has been made for the effect 
of compressibility. Hov/ever, in ref,5 corrections for such 
effects are given, so that the above procedure would have to be 
repeated with different values of K , 

•n 
Finally, a remark v/ill be made v/lth regard to the 

determination of the spanv/ise variations of the other 
derivatives appearing in the basic equations of Section 2. 
In most cases one will assume the aerodynamic centre to be at the 
quarter chord line in v/hich case the values of 

CI-J(TI) = —^— follov/ from those of a. once the position of the 
1 da 1 
axis Ox has been fixed. An approach similar to the above has 
been Indicated for straight v/ings with flaps by 0,Schrenk (Ref.U) 
so that the above procedure could be adopted, once the method 
of refs, 5 & 8 has been extended for such v/ings, v/lth regard to 
the calculation of d̂  and dp, 

On the other hand, the R,Ae.S. Data sheets may be used 
to find the ratio ap/a. and ap may then be calculated from the 

above distribution of a.. This is the procedure adopted for 

the numerical example of Section 1+. 

•n 0.1 0.2 0,3 0,1+ 0,1+5 

isâ ' -5,20 -2,18 -0,99 -0,28 0 

/ Appendix 2 
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APPENDIX 2 

Experimental Determination of Influence Functions of a Swept Wing 

Notation 

oi'' Constant coefficients of polynomials for C. .(x) 
i\. 1J 

piÓ _ «K pij 

W(x) Displacement of (x,0) in Oz direction 

W(x) = W(x) displacement of (x, O) per -unit load at tip, 
Z 

Wj Measured values of W referring to a station x. 
and corresponding to a test run j, 

p(x) = ^ 7 ^ rotation of wing section per unit load at tip, 

5? Measured values of p referring to a station x. and 
corresponding to a test run j. 

g = T- nondlmenslonal coordinate along Ox. 

In ref.9 W.S, Hemp has shov/n that the following relations 
hold between applied forces and moments and the resulting 
deformations in the case of sv/ept wings of conventional 
construction (spars, ribs and stressed skin) and uniform cross 
section: 

g = Ci1 h + 0̂ 2 1̂ ^ ^13 2 
(A2,1) 

g _ ^ e o s e c a = 0̂ 2 L̂  + ^22 M̂  
dx 

where the C. . are constants the values of which can be obtained 
1J 

from formulae given in that reference. In the present 
treatment shear deflections will be neglected, although Hemp 
has extended his theory to take them also into accoxmt. Only 
the first of the equations (A2.1 ) has been used in the main 
part of this report, but it v/ill be shov/n below that both the 
above formulae have to be considered v/hen it is required to 
determine the C . experimentally. 

/ It has 
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It has been indicated in Section 2 of this report that 
an extension of the above formulae may be proposed analogous 
to that applied to the Euler-Bernoulli theorem, for the 
purpose of making these equations applicable to the case of 
wings of non-uniform cross section. This generalisation leads 
to the follov/lng equations: 

^ = C^^(x)L^ + Ĉ 2̂ )̂'̂ 1 + C^3(x)Z 

2 
g = - ^ coseaa = Ĉ  2(^)^1 + 022(X)M^ 

dx 

(A2.2) 

In these formulae, by definition, if Z(x,y) be the 
resulting force for a cross section x acting at a point (x,y) 

L̂  = j y Z d^ , M̂  = j (5"-x)Z d g 

z = IZ d ? 

(A2.3) 

X 

Next an assumption v/111 be introduced regarding the type 
of functions C^.(x). Since it is experimentally easier to 

measure deflections rather than slopes or curvatures, the 
equations (A2,2) have to be Integrated. For this reason it 
will be most convenient to assxime 

Ci.(x) .= 7Z, 0̂ 3 x^ (A2.1+) 
'̂̂  K=0 ^ 

i.e. to replace the C. .(x) by polynomials approximating to 

their real values. It should be noted here that the approach 
of this Appendix is directly linked v/ith the purpose of 
determining the influence coefficients by a finite n;imber of 
deflection measurements and that it is of no theoretical 
importance. 

It will now be shov/n that the constants Ĉ *̂  can be 

determined from an appropriate number of deflection measurements 
taken along the span of the wing after a set of increasing 
loads has been applied independently at two points of the tip 
section, one of which should preferably correspond to the 
point (•<, 0 ) , 

/ Under 
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Under those circumstances, for a general point of 
application of the loads at the tip section, (A2.3) becomes 

L^(x) = y Z , M̂  = (x-Oz , Z = Z (A2.3') 

where Z is nov/ independent of x. Substituting from (A2.3') 
and (A2.1+) in (A2.2;, integrating once and tv/ice respectively 
with regard to x and using the following root conditions: 

p(0) = 0 , W(0) = W'(0) = 0 (A2.5) 

one obtains 

P(x) _ ̂  ̂ -̂ .11 2£1 ̂  .̂. o^tx U. K̂+1 =?'̂  ĉ 3 XÏÜ 
z ~ K;,O ^ ^+^ ifco K;K+2 K+I J ^ "̂  ^^ ^K K+I 

(A2.6) 

wf^'S ^ A o •,rK+2 m ryJ ^ ,, ! _K+2 W^x; î-'-î  X s""<p2̂ _x_ _ '- i. X 
Zsim "̂  1^0^ TK+ITTK+ÏÏ) gi-̂ 5̂ K|K+3 K+1 j K+2 

It is now seen that the determination of the Ĉ '' can be 

reduced to the solution of four systems of m simultaneous 
linear equations. 

Before deducing these sets of equations, it is 
convenient to make the equations (A2.6) partly non-dimensional 
by putting 

X = g t, i^ GI^ = G]? (A2.7) 

and to introduce the experimental measurements in the form 
of rotations p and deflections W per unit load, i.e. let 

f = p , I = W . (A2.8) 

As one is working in the elastic range, this last step v/ill 
help to eliminate experimental errors by balancing the 
deformations taken for a set of loads Z. Finally let the 
superscripts 1 and 2 attached to p, W serve to distinguish 
between the two test runs necessary; in particular let 1 
refer to the case when the loads arê âpnlied at (̂ jO) and 
2 when the point of application is ((,y). 

/ With .... 
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With the above convention the following systems of 
simultaneous equations are obtained: 

-Wj_ 

[{^ sinaJ 

i W j_ - W ^ f 

jy(^sina j 

_ ' (ZL. 1 ) '̂i 
K+V K+2 I ) K 

M„22| 

I j ; ^K+2 
_' ^1. . J -r̂ ĵ 
- ; (K+1) (K+2) iTK j 

' vT» 

•j=0 ̂ j ^j+2 

j 

I i' Kfl 
_ j _ ) . j + i i _ ; ! i _ 

j+V ^ 1 i - : K+1 
]C. 13! 

(A2.9) 

K 

i'_? 1 ̂  

T y J 

,K+1 

K+1 
,•11! 
"K I 

which can be easily solved by Cramer's Rule, particularly 
if the degree of the polynomials (A2.1+) replacing the C. .(x) 

is not larger than two. In many cases such polynomials 
will be quite satisfactory. 

The remaining part of this Appendix v/ill be devoted 
to an application of the above method to the 1 : 5 scale 
model of a fighter aircraft with 1+0° sweepback of the quarter 
chord line (see Fig.3)» In order to simplify the 
procedure, the axis Ox was placed halfway between the outer 
spars. Deflection readings were taken for the front and 
rear spars at the following stations: 

Rib station 2, 3, 5, 7, 9 

and the corresponding displacements W of the Ox axis and 
rotations p about that axis calculated; (note that the 
change in "incidence" obtained directly from the 
measurements equals p sina)for loads, increasing in steps 
of 5 lb to a total of 20 lb, applied to the points (• ,0) 

and (i-,10" ). The resulting values p \ p^, Ŵ  and W^ are 
given in Table 1 and graphed in Pigs. 5 & 6. 

Using values of p and W referring to the rib stations 
3, 5 and 9, the elements of the systems of equations (A2.9) 
have been evaluated in Tables 2 - 5 v/hich at the same time 
provide schedules for further applications of the method. 
Underneath each table appear the values of the relevant 
determinants for the application of Cramer's rule and the 

-ii 11 values of the constants Cĵ *̂  and G-tr • 

/ Using ...• 
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Using the coefficients ci'̂ , determined above, the 

approximations (A2.1+) to the G. .(x) have been calculated for 

certain stations (see Table 6) and graphed in Fig.7" For 
comparison the theoretical values of all but one of the C. . 

for these stations are likewise given in the table. It is 
seen that on the v/hole agreement between the experimental and 
theoretical values is fair, v/lth the exception of the values of 
Gjp and Cpp at the two outboard stations. As this is the 

first time that the formulae for the tv/o-cell box have been used, 
the present results can only give an indication of what may be 
expected in future applications. Definite sources of error 
in the present model may be expected to arise from the cutout 
(Fig.3)J although the discrepancy between the experimental 
and theoretical results does not occur until further out along 
the span, and from the fact that the theoretical results were 
referred to an axis Ox coinciding with the centre spar while 
the experimental results assumed that axis along the centre 
line between the outer spars. 

But the last condition is again sufficiently met at the 
outboard stations. On the other hand, Ĉ p and Cpp depend to 

a large degree on the moments of inertia of the wing sections, 
and it appeared from the computations that use of larger values 
for these quantities would reduce the corresponding values of 
the influence coefficients. In fact, the contribution of the 
spar-boom areas to the moments of inertia increases along the 
span until at the tip it almost equals that from the skins. 
For these reasons it will be suggested here, that, in view of 
the small cross sections of the model wing near the tip and the 
difficulty involved in constructing this part of the wing, the 
actual model is stlffer than predicted by calculations based on 
nominal sizes and dimensions. This last effect may yet be 
accentuated by the large nximber of closely spaced rivets 
holding the skins to the spars. Perhaps it should still be 
mentioned that the discrepancy for Cpp would also have been 
observed if use had been made of simple beam theory as 

a ' 
22 E I sina 

Finally there arises the question as to the correctness 
of including constant terms in the polynomials (A2.1+) 
representing the influence f'unctions, for obviously C. .(x) 

should be zero at the root. However, similarly as in 
Appendix 1, it may be reasoned that conditions near the root 
will be of little importance. On the other hand, one may 
equally well exclude the constant terms v/ithout making the 
computations much more complicated, but this has not been done 
in the present calculations. 

/ Table 1 .... 
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TABLE 1 

Experimental Data 

Rib 
S t a t i o n 

kl 
\vl I rad/ lb! 

, p j i r a d / l b i 

I Ŵ  i'in/l'b] 

W? ' in / lb j 

2 

0.0825 

0,l+5l+x10"^ 

0,537x10"^ 

0.079x10"^ 

0.069x1O"^ 

3 

0.198 

0.71+5x10"^ 

1.005x10"^ 

0,236x10"^ 

0,236x10"^ 

5 

0,1+51+ 

2.51+xlo"^ 

3.13x10"^ 

1.22x10"^ 

7 

0.716 

l+.69x10~^ 

6,60x10~^ 

3.38x10 -̂  

1.22x10"^| 3.1+6x10"^ 

i i 

0,905 

7.1+6x10"^ 

1i+,80x1 0"^ 

6.00x10"^ 

6.1+2x10"^ 1 

TABLE 2 
22 Determination of C .. 

i (1) 
; 1 

1 

3 
1 

CM
 

-H
 

^—
' U

P
 

0.198 

0.1+51+ 

0.905 

2 (3) 
? i / 2 

0.0196 

0.103 
0.1+10 

"1 - 1 

-0,93U 
-0,81+9 
-0 .698 

3 / ^5) 
? l / 3 

0,00259 
0,0312 

0.21+7 

(6) 
^ i 4 

-,1+51 

- . 3 8 7 

-.271+ 

,000381+ 
,0106 

,168 

(8) 1 

- .291+ 

- .21+3 

- .152 1 

1 

1 

2 

3 

(9) 

(3 )x (4) 

- . 0 1 8 3 

- ,0875 
- . 2 8 6 

(10) 

(5)x(6) 

- .00116 

-.0121+ 
- .0676 

(11) 
(7)x(8) 

- .000113 
- .00257 
- .0255 

(12) 1 

- .666x10"^ 

-3.1+5x10"^ 

-16.93x10"^ 1 

det ( 9 ) , ( 1 0 ) , ( 1 1 ) = -1.127x10""^ 

det ( 1 2 ) , ( 10 ) , (11) = -l+.52x10"^^; C^^ = +l+.02x10"®; C^^ = l+.02x10~' 

det ( 9 ) , ( 12 ) , (11) = +12.82x10"''^; C^^ = -11.37x10""^; C^^ = -.11+9x10' 

det ( 9 ) , ( 1 0 ) , (12) = -56.1x10"""^; C^^ = +1+9.8x1 o"^; G^^ = . 0085x1 o' 

/ Table 3 



- 26 -

TABLE 3 

1 2 Determina t ion of CT̂  

1 ( 1 ) 

1 

1 ^ 
2 

3 

(2) 

^ 1 

. 198 

.1+51+ 

.905 

(3 ) 

? i / 2 

. 0196 

. 1 0 3 

.1+10 

ik) 

,00129 

.0156 

.121+ 

(5 ) 

? ^ / 1 2 

.000128 

. 0 0 3 5 3 
, 056 

(6) 

w1_ - W^ 

y / ; ^ s i n a 

0 1 
0 

- 9 , 0 6 x 1 0 ~ ^ 

de t ( 3 ) , ( l+ ) , ( 5 ) = 3.79x10"° 

de t (6 ) , ( l+ ) , (5 ) = - .232x10" ' ' ^ ; G^^ = -.0612x10""^; cj,^ = - , 6 l 2 x 1 0 

de t ( 3 ) , ( 6 ) , (5) = +5.07x10"^^; C^^ = +1,31+ x10""''j G\^ = +,175x10 

de t (3 ) , ( l+ ) , (6 ) = -15 .7x10" ' ' ^ ; G]^ = -1+.11+ xio""^; G^^ =-,00709x10 

TABLE 1+ 

22 Determination of G,.̂  

1 (1) 
1 1 

1 ^ 
2 

1 ̂  

(2) 

^ 1 

. 1 9 8 

.1+51+ 

. 9 0 5 

(3) 

? i / 2 

. 0 1 9 6 

. 1 0 3 

.i+IO 

(1+) 

? ^ / 3 

. 00259 

.0312 

.21+7 

(5) 1 
-2 -1 
P i - P i 

. 31+xl 0 " ^ 1 

.771x10""^ 

9 . 6 x 1 0 " ^ j 

det (2) , (3) , (1+) = 1.098x10"-^ 

det (5) , (3) , (1+) = .1+68x10""''°; C^^ = .1+26x10""''; G^ = 1+.26 x10' 

det (2) , (5) , (1+) = -l+.06x10"'^°; C^^ = -3.7x1 o"^; G^^ = -.U81+x10' 

det ( 2 ) , ( 3 ) , ( 5 ) = 9 .3x10" ' ' ° ; G^ = 8.1+7x10""''; G^ = .01l+5x10' 

/ Table 5 
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TABLE 5 

Determina t ion of C 13 
K 

(1) 
j 1 

1 

2 

3 

(2) 

? i 

. 198 

.1+51+ 

, 905 

(3) 

2 

- . 9 0 1 

- . 7 7 3 

-,51+7 

(1+) 

,0392 

, 206 

. 8 1 9 

(5) 

3 

-.1+31+ 

-.31+9 

- . 1 9 8 

(6) 

, 00776 

,0936 

.71+1 

(7) 

- . 2 8 U 

- . 2 2 0 

- . 1 0 7 

(8) 

CG^"'' 

^°12 1 
- 1+, 68x10"' ' ' 

102,1+ x i o " ^ 

- 3 1 6 , 5 x10~^ 

1 

1 

2 

3 

(9) 

(8)°x(2)x(3) 

.835x10""^ 

1.61+ x io" ' ' ' 

2 .31 x10"^ 

(10) 

( 8 ) ^ x ( U ) x ( 5 ) 

- 1.71+2x10"^ 

- 7 . 3 7 x i o " ^ 

- 1 6 , 6 3 x10""^ 

(11) 

( 8 ) 2 x ( 6 ) x ( 7 ) 

.696x10""^ 

6.51 x io" ' ' ' 

2 5 . 1 0 x10~"^ 

(12) 1 
(9) + ( lO) + ( l l ) 

- , 2 1 1 x 1 0 " ^ 

. 7 8 x io" ' ' ' 

1 0 . 7 8 xio""^ 

i 

! 

: 1 

1 

2 

3 

(13) 

.973x10""^ 

3 . 3 2 xio""^ 

9 ,75 x10~^ 

(11+) 
( 1 3 ) - ( 1 2 ) 

1.1 81+xl O"^ 

2.51+ xio""^ 

-1 . 0 3 x1 0~^ 

(15) 

? i / 2 

.0196 

, 1 0 3 

,1+10 

1 

(16) 1 

, 00259 

,0312 

.21+7 1 

det ( 2 ) , ( 1 6 ) , ( 1 7 ) 

de t (11+),(16),(17) 

de t ( (2) , (11+) , (17) 

det (2) , (16) ,(11+) 

1.098 X 10 3 

.500x10"^; cP= ,1+56x10"^; cP= .1+56x1 o"^ 

2.1+3x10"^; C^3= 2.22x10" 

-6 .3x10"^ ; C2^= -5,7l+x10"^; 

c!j3= .029x10"^ 

C2^= -.00099l+x10~^ 

/ Table 6 
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TABLE 6 

Comparison of Experimental and Theoretical Values of Ĉ  ̂  (Fig.7) 

j s tat ion 

.0825 

1 .310 

.596 

.811 

1.0 

G^̂  X 10^ 

Exp. 

1.8 

.93 

12.32 

29.97 

52.27 

Theor. 

2 .2 

3.5 

9.1+ 

32.2 

68.5 

°12 ^ ' ' ° ^ 

Exp. 

.21 

-.1+1+ 

- 7 . 3 5 

- 1 7 . 0 3 

-28.81 

Theor, 

-2 .28 

- 3 . 8 3 

-9 .96 

-28.1+2 

-53.1 

C22 X 10^ 

Exp. 

3.1+2 

5.28 

11+. 92 

27.58 

1+2.62 

Theor. 

3.92 

6.11 

15.95 

1+6.1 

86.2 

C.,3 X 10^ 

Exp. 

. 6 

.581+ 

- . 3 0 6 

-1.51+7 

- 3 . 1 6 





Ibl"" Fuel weight. 

Weight of wing 8S lb. «mply 

Fig. 3a. MODEL 
WING STRUCTURE 



Plb I. 

Front spar. R.S. longeron 

CS. longeron 

SECTION THROUGH U/C BAY. 

RIB AT TIP. 

Item 
1 Ribs land 2 
1 Ribs 3end 4 
1 Ribs 5 to lip 
1 Spors l*4ection 

1 Spars 2"iection 
1 Spars 3'"'̂ ection 

Skin 1* section 
Skin 2"iection 

1 Skin Bisection 

Material | 
I8g U. Alloy 1 
24g Lt. Alloy 
26g Lt. Alloy 
22g U. Alloy 
24g Lt. Alloy 1 
26g LI. Alloy 
I8g Lt. Alloy 
20g Li. Alloy 
26g Lt. Alloy | 

Fig, 3b. 



ioXl^) 

Fig. 4, L i f t slope distribution 

(See Appendix. I.) 

p'^^o'lt] 

O I -2 3 -4 .5 6 -7 -8 -9 l O 

Fig. 5. Measured twists per unit load at tip. (Table. I.) 
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Fig.6. Measured deflections per unit load o l tip (Table. I.) 
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