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Abstract: The rapidly developing computing and communication technologies improve the autonomy of individual vehicles on the
one hand and facilitate the coordination among vehicles on the other. In the context of dynamic speed management, this paper
considers a platoon of intelligent vehicles that are required to maintain desired inter-vehicle spaces and to respond to speed
changes in a collision-free, stable and cooperative way. The platoon is modelled as a cascaded network with linear longitudinal
vehicle dynamics, independent physical constraints, and coupling safety constraints. In the case of global information sharing, we
first propose a centralized collision-free solution based on model predictive control that guarantees asymptotic platoon tracking
of speed changes and satisfaction of system constraints during the transient process. A cooperative distributed approach is then
further proposed based on the alternating direction method of multipliers resulting in a scheme involving communication only with
the roadside infrastructure, e.g., the speed manager. Vehicles in a platoon conduct parallel computation while still achieving global
optimal performance and coordination with respect to the collision avoidance constraints. Convergence properties of the distributed
solutions are established for the concerned vehicle platoon problem. Simulation results show satisfactory platoon performance and
demonstrate the effectiveness of the proposed algorithms.

1 Introduction

Large cities are benefiting from the widely implemented intel-
ligent transport systems (ITS) that improve traffic safety, effi-
ciency, and sustainability significantly. Vehicle platoons are con-
nected vehicles that move with closer inter-vehicle spaces, and
thus increase road throughput due to vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication. Instead of the ran-
dom and possible selfish human car-following behaviours, coop-
erative autonomous manoeuvring of vehicles in a platoon aims at
system-wide economical and safety crucial goals preferably still
retaining individual decision-making. Moreover, guaranteed platoon
performance during both transient and asymptotic processes in vary-
ing traffic scenarios could make the platoon control problem even
more complex.

Various technological aspects involved in the vehicle platoon
problem have been considered in the literature. From both micro-
scopic and macroscopic traffic perspectives, the positive and nega-
tive impacts of vehicle platoons on environment and moving jams
are assessed by [1] [2]. These works confirm that properly designed
car-following controllers contribute to higher road capacity and
smoother traffic flows. For logistics applications, truck platoons are
being tested on freeways due to the ability to reduce air drag and save
fuel when driving close together. Fuel-optimal routes and reference
speed profiles for lower-level controllers to track are calculated for
truck platoons in [3]. Longitudinal vehicle control plays an impor-
tant role in platoon behaviours and the research can be dated back to
1990s at PATH California [4]. In the one-dimensional longitudinal
direction, different spacing policies, e.g., constant distance, constant
time headway distance or other nonlinear speed dependent distances,
result in different platoon control performance [5]. The constant dis-
tance spacing policy is used the most widely due to its simplicity.
As a physically uncoupled chain system, the impact of different
communication topologies is explored in [6] [7]. Information flow
involved issues such packet loss or time delays are usually treated
as disturbances. Robust control [8], event-trigger based [9], and net-
work analysis [10] tools are usually applied to attenuate the influence

of disturbances. Most existing research requires V2V communica-
tions in a either predecessor-follower or predecessor-leader-follower,
directional or bi-directional way. For scenarios where vehicle infor-
mation is kept private among vehicles, coordinated decision-making
could be challenging.

Principally, the vehicle platoon coordination problem can be
solved centrally at the platoon level or locally at the vehicle level.
However, distributed controllers are customarily designed for vehi-
cle platoons due to the following reasons: 1) platoon vehicles are
physically distributed by nature; 2) the inherent modularity in a dis-
tributed design facilitates possible split or merge platoon behaviours;
3) local information is kept private to individual drivers; 4) a dis-
tributed design is more robust to local platoon vehicle failures;
5) distributed smaller local problems are computationally more effi-
cient to solve. A highly relevant technology is the so-called cooper-
ative adaptive cruise control (CACC) technology that autonomously
maintains vehicle speed and distance to a preceding vehicle at cer-
tain values [11]. Mostly, a reference acceleration is calculated based
on relative speed and distance information for the following vehi-
cle. However, no overall platoon performance, e.g., optimality and
stability, can be guaranteed for such CACC systems [2]. Different
distributed platoon controllers that guarantee certain platoon per-
formance under particular assumptions have been proposed. Based
on H∞ control, [6] [12] propose distributed state feedback con-
trollers that guarantee robustness for vehicle platoons with different
interaction topologies. No system constraints are accommodated.
In [13], a primal-dual distributed computation scheme is proposed
with consideration of physical and safety constraints. However, the
connections among vehicles are treated as the distributed compu-
tation nodes rather than physically distributed vehicles. Moreover,
asymptotic stability is only guaranteed for the unconstrained case.
Model predictive control (MPC) has the advantages of handling con-
flicting objectives, constraints conveniently with inherent robustness
and guaranteed closed-loop properties for certain classes of systems
[14]. Distributed vehicle platoon or formation controllers based on
MPC are proposed in [15] [16] [17]. Techniques are proposed for
ensuring vehicle and platoon stability. While [15] and [16] only con-
sider uncoupled physical constraints, [17] requires that each vehicle
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solves the optimization problem for all the vehicles in the neighbour-
hood and invokes extra mechanism for coupled collision avoidance
constraints. A compact solution to distributed control, guaranteed
performance, and safety constraint satisfaction for vehicle platoons
has not been seen.

For distributed MPC [18] with coupled state constraints, system
properties are usually established by assuming that the deviations
of trajectories from consecutive steps are small, ensured by com-
patibility [19], consistency [17] constraints or deviation penalties in
cost functions [15] [16]. When assuming the deviations are bounded,
robust approaches can also be applied [20] [21]. However, the afore-
mentioned methods all sacrifice certain system optimality in order
to achieve distributed control. In general, the iterative optimization
frameworks such as dual decomposition [13] and the alternating
direction method of multipliers (ADMM) [22] can achieve optimal-
ity close to the corresponding centralized problem, and thus realize
cooperative distributed control. Dual decomposition and ADMM
based distributed distributed MPC are compared in [23] and show
that ADMM has better convergence properties. The decomposition-
coordination procedure of ADMM has well established convergence
properties [22] for certain type of problems. Applications of ADMM
for distributed MPC are seen in communication networks to reduce
congestions [24], networked road vehicles [25] and waterborne AGV
transport systems [26]. Parallel computations that treat all networked
nodes equally with guaranteed overall performance and satisfac-
tion of coupling constraints are possible at the same time. However,
applications of ADMM to vehicle platoons have not been discussed
in the literature to date.

This paper proposes an ADMM-based cooperative distributed
MPC controller for intelligent vehicle platoons that systematically
guarantees both collision-free manoeuvres and platoon performance
in terms of speed tracking and inter-vehicle space maintenance. Par-
ticularly, we consider a dynamic speed management scenario where
vehicles in a platoon are required to respond to speed changes
and maintain desired inter-vehicle distance with actual distances
not smaller than a safety distance in both transient and asymp-
totic processes. Centralized and distributed solutions that need
global and partial information sharing, respectively, are proposed
with guaranteed closed-loop stability. Particularly, the distributed
decision-making relies on communication only with the roadside
infrastructure that acts as the coordinator in ADMM iterations.
This contributes to a new and flexible information flow topology.
Moreover, convergence properties for the distributed solution are
established for the underlying vehicle platoon problem. Scenarios
of accelerations and decelerations are simulated to illustrate the per-
formance of the proposed algorithms. To the best of our knowledge,
this is the first work that handles coupling collision avoidance con-
straints, constrained stability, and distributed decision-making with
overall system optimality for vehicle platoons in a systematic way.

The remainder of this paper is organized as follows. We present
the platoon control problem in the dynamic speed management sce-
nario as well as the vehicle platoon dynamics for later controller
design in Section 2. Then in Section 3, a cooperative centralized
scheme based on MPC is first proposed and the closed-loop per-
formance is studied. Distributed decision-making based on ADMM
with convergence analysis is proposed in Section 4. In Section
5, simulation experiments and results are discussed, followed by
concluding remarks and future research in Section 6.

2 Problem statement and vehicle platoon
dynamics

2.1 Problem statement

The decision-making with intelligent vehicles is typically cate-
gorised into hierarchical levels [11] for managing traffic on different
spatial and temporal scales, as shown in Figure 1. The network
layer uses route guidance to distribute the traffic in a large road net-
work. The link layer controls the speed and the size of any existing
platoons on a specific road segment. Vehicle layers then compute

Fig. 1: Typical ITS decision-making levels with intelligent vehicles.

proper accelerations or lower level torques/power to track the refer-
ence speed. For completeness, the following assumptions are made
regarding the cooperative distributed platoon problem considered at
the vehicle layer: 1) Platoon vehicles are considered as mass points,
and detailed vehicle powertrain dynamics including engine, drive-
line, brake systems, etc. are not considered. Therefore, the reference
accelerations from the vehicle layer could be implemented by low-
level actuators perfectly with no inertial delay. 2) All vehicles are
equipped on-board with sensors, micro-computers and communi-
cation devices to measure system states, solve local problems and
communicate with other platoon vehicles. Moreover, zero sensor
errors and communication delays are assumed for these devices.
3) Vehicles are on a straight way and the lateral manoeuvres are
governed by either human drivers or lateral stability controllers [27].

The link and vehicle layers are connected by V2I communi-
cation in the dynamic speed scenario. Specifically, we consider a
fixed number of n intelligent vehicles moving as a platoon that
receives dynamic reference speeds v0(k) from the road-side link
every several minutes, as shown in Figure 2. The discrete-time step k
relates to the continuous-time t as t = kTs with Ts as the sampling
time. The longitudinal platoon formation is guaranteed by a desired
constant inter-vehicle space, ds. Furthermore, an actual minimum
distance, dmin, is imposed to avoid rear-end collisions. The overall
platoon control goals are to maintain the constant space formation
and to track the dynamic reference speeds in a cooperative and sta-
ble way while guaranteeing safety in both transient and asymptotic
processes.

2.2 Vehicle platoon dynamics

Without loss of generality, we assume homogeneous longitudi-
nal dynamics for simplicity for all vehicles p = 1, 2, . . . , n in the
platoon. For each vehicle p, define (sp(k), vp(k)) as the discrete-
time system states, i.e., the position and speed, and ap(k) as
the discrete-time system input, i.e., the acceleration. Longitudinal
vehicle dynamics are then described by the widely used double-
integrator [2] [12] [13] [28] as:

xp(k + 1) = Apxp(k) +Bpup(k), (1)

with xp(k) = [sp(k), vp(k)]
T , up(k) = ap(k), state matrix A =[

1 Ts
0 1

]
, and input matrixB =

[
T 2
s /2
Ts

]
.

Due to physical limitations on speeds and accelerations, vehicle
manoeuvres are also confined by constraints on states and control
inputs:

vmin ≤ vp(k) ≤ vmax, (2)
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Fig. 2: Vehicle platoon in a dynamic speed management scenario.

amin ≤ ap(k) ≤ amax, (3)

where vmin, vmax, amin, and amax are specified bounds on vehicle
longitudinal speed and acceleration.

To avoid possible collisions, the actual distances between consec-
utive vehicles are required to satisfy

sp−1(k)− sp(k) ≥ dmin (4)

with dmin = L+ τvp(k)−
(
v2max − v2min

)
/2 that is dependent

on vehicle length L, mechanical reaction time τ ≥ Ts, and the speed
bounds. Note that vehicle p− 1 represents the vehicle in front of
vehicle p.

Vehicles keep a platoon formation by moving at the same speed
and maintaining the desired space between adjacent vehicles. For
the tracking problem with reference speed v0(k), we define a vir-
tual reference trajectory x0(k) = [s0(k), v0(k)]

T with s0(k) being
the reference position, andx0(k + 1) = Ax0(k) for the time period
when the dynamic reference speed is not updated. Further define the
error states for p = 1, 2, . . . , n as:

zp(k) =

[
sp0(k)
vp0(k)

]
=

[
sp(k)− s0(k) + (p− 1)ds

vp(k)− v0(k)

]
. (5)

Then, the error system dynamics are:

zp(k + 1) = Apzp(k) +Bpup(k). (6)

Correspondingly, speed constraints (2) and safety constraints (4)
are transformed as:

vmin − v0(k) ≤ vp0(k) ≤ vmax − v0(k), (7)

and

s(p−1)0(k)−sp0(k) ≥ ds + L

+ τ
(
vp0(k) + v0(k)

)
−
(
v2max − v2min

)
/2, (8)

respectively.

Assumption 1. The reference speed v0(k) satisfies the vehicle speed
constraints (2), i.e., vmin ≤ v0(k) ≤ vmax.

For each vehicle p, denote the error state constraint set due to (7)
as Zp(k), and the input constraint set due to (3) as Up. For the vehi-
cle platoon, denote the coupling constraint set due to (8) as Zc(k).
Then, under Assumption 1, the sets Zp(k), Up and Zc(k) are all
closed convex and contain the origin in their interior. The coupling
collision avoidance constraints (8) impede individual solutions to the
vehicle platoon problem. Centralized and distributed approaches are
proposed in the next section to achieve the control goals stated at the
beginning of this section.

3 Centralized platoon control with stability

We propose a centralized solution first in this section based on MPC,
and explore the closed-loop properties that guarantee transient and
asymptotic performance. At each time step k, MPC solves an open-
loop constrained optimization problem over a finite time prediction
horizon N based on current system states zp(k). The first optimal
control input is applied to the system over [kTs, (k + 1)Ts]. At time
step k + 1, the optimization problem is solved using new measure-
ments over a shifted prediction horizon. We next present how the
receding horizon centralized platoon problem at step k is formulated.

min
U(k)

J∑ (z(k),U(k)) =

n∑
p=1

Jp(zp(k),Up(k)) (9)

with

Jp(zp(k),Up(k)) =

‖zp(N |k)‖Pp
+

N−1∑
i=0

‖zp(i|k)‖Q + ‖up(i|k)‖R (10)

subject to

zp(i+ 1|k) = Apzp(i|k) +Bpup(i|k),
i = 0, . . . , N − 1, p = 1, . . . , n (11)

zp(i|k) ∈ Zp(k), i = 0, . . . , N − 1, p = 1, . . . , n (12)

up(i|k) ∈ Up, i = 0, . . . , N − 1, p = 1, . . . , n (13)

zp(N |k) ∈ Zfp (k), p = 1, . . . , n (14)

zp(0|k) = zp(k), p = 1, . . . , n (15)

(z1(i|k), . . . , zn(i|k)) ∈ Zc(k), i = 0, . . . , N − 1 (16)

(z1(N |k), . . . , zn(N |k)) ∈ Zfc (k), (17)

where i|k stands for the ith prediction step at time step k, and hereby,
if contextually clear, i = 0, . . . , N − 1. The predicted error states
zp(i|k) in (11) are defined based on (5) with the reference trajectory
over N as [

s0(i+ 1|k)
v0(i+ 1|k)

]
= A

[
s0(i|k)
v0(i|k)

]
and [s0(0|k), v0(0|k)]T = [s0(k), v0(k)]

T. For notational sim-
plicity, define capitalized characters Zp(k) ∈ R2×(N+1) and
UT
p (k) ∈ RN as the predicted state and input trajectories over N

for vehicle p, respectively, and Z(k) ∈ R2n×(N+1) and U(k) ∈
Rn×N as the predicted state and input trajectories over N for the
entire platoon, respectively. The platoon initial state has also been

compactly denoted as z(k) =
[
zT1 (k), . . . , zTn (k)

]T
∈ R2n. The

total cost function J∑ (z(k),U(k)) is a summation of costs over
individual vehicle costs, and the individual vehicle cost (10) con-
sists of the stage costs and the terminal cost minimizing the tracking
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errors and control input efforts. The symbol ‖zp(i|k)‖Q stands for
the weighted 2-norm, i.e., zTp (i|k)Qzp(i|k). The weight matrices
satisfy Q = QT � 0, R = RT � 0, and Pp � 0. The set of con-
straints can be categorized into independent constraints (11) – (15)
and coupling constraints (16) – (17). In addition, Zfp (k) and Zfc (k)
denote terminal constraint sets.

In general, the closed-loop system stability, i.e., the convergence
of the tracking errors zp(k) to the origin, is not guaranteed. Fol-
lowing standard MPC results [14], we next briefly discuss how the
terminal weight matrix Pp and the terminal constraint sets Zfp (k)
and Zfc (k) are designed to ensure the closed-loop stability of the
centralized platoon problem.

For all vehicles p = 1, . . . , n, setPp as the solution to the infinite
horizon algebraic Riccati equation, i.e.,

Pp = Q+ATp PpAp −ATp PpBp
(
R+BT

p PpBp
)−1

BT
p PpAp.

Consider the closed-loop error dynamics for the linear time-invariant
system (6), i.e., zp(k + 1) = (Ap +BpFp)zp(k) where Fp ∈
R1×2 is the corresponding unconstrained Linear Quadratic Regu-
lator (LQR) feedback gain as

Fp = −
(
R+BT

p PpBp
)−1

BT
p PpAp (18)

Then, Zfp (k) is chosen as the maximal positive invariant set [29]
for the closed-loop system zp(k + 1) = (Ap +BpFp)zp(k) with
respect to state constraint set on zp(k):

0 1
0 −1
f1p f2p
−f1p −f2p

zp(k) ≤
 vmax − v0(k)
−vmin + v0(k)

amax

−amax

 ,
where f1p , f2p are the elements of Fp, i.e., Fp =

[
f1p , f

2
p

]
.

Regarding Zfc (k), since all the vehicle states are coupled in the
collision avoidance constraints, we consider the platoon closed-loop
error dynamics

z(k + 1) = (A+BF )z(k) (19)

withA = blockdiag (A1, . . . ,An),B = blockdiag (B1, . . . ,Bn),
and F = blockdiag (F1, . . . ,Fn). Then, Zfc (k) is chosen as the
maximal positive invariant set for (19) with respect to the coupling
constraint set on z(k):

Cz(k) ≤D (20)

with the ith row of the coupling matrix C ∈ R(n−1)×2n

being Ci =
[
01×2(i−1),−1, 0, 1,−τ,01×2(n−i−1)

]
and D =

−
(
ds + L+ τv0(k)−

(
v2max − v2min

)
/2
)

1(n−1)×1.

The above design of the terminal invariant sets Zfp (k), Zfc (k)
and the terminal cost ‖zp(N |k)‖Pp

will guarantee that

J∑ (
Az(k) +BU∗(k),U∗(k + 1)

)
− J∑ (

z(k),U∗(k)
)

≤ −

 n∑
p=1

‖zp(k)‖Q +
∥∥u∗p(k)∥∥R

 < 0

which establishes the stability property of the centralized platoon
problem (9) – (17). The closed-loop optimal trajectories z(k) are
ensured to be driven towards the origin. Interested readers are
referred to [14] for more stability proof details with the above design.

As can be seen from (19) and (20), the coupling collision avoid-
ance constraints as well as calculation of the corresponding terminal
constraint sets in the centralized platoon problem require the knowl-
edge on all vehicle dynamics and trajectories. We next propose a
distributed approach that enables vehicle parallel computation and
retains the independence of platoon vehicles.

4 Cooperative distributed control and
convergence analysis

For the vehicle platoon problem in the dynamic speed manage-
ment scenario as defined in Section 2, vehicles have indepen-
dent dynamics, objectives and physical constraints. However, the
distance and speed dependent safety constraints that impose a
minimal inter-vehicle space prohibit individual vehicle decision-
making. This section proposes cooperative distributed controllers
that ensure parallel local computation, satisfaction of coupling con-
straints, and global optimality at the same time based on the iterative
decomposition-coordination procedure of ADMM [22]. Conver-
gence of the iterations is also analysed exploring features of the
vehicle platoon problem under concern.

4.1 Cooperative distributed formulation based on ADMM

At time step k, for all vehicles p in the platoon, we introduce a copy
of the predicted error state variables Zp(k) as Z̃p(k). Define the
coupling safety constraints (16) and the corresponding coupling ter-
minal constraints (17) on z̃p(i|k), i = 0, . . . , N − 1 and z̃p(N |k),
respectively, then (16) and (17) can be rewritten using indicator
functions as:

IZc
(z̃1(i|k), . . . , z̃n(i|k)) (21)

=

{
0, for (z̃1(i|k), . . . , z̃n(i|k)) ∈ Zc(k)
∞, otherwise,

for i = 0, . . . , N − 1, and

IZf
c
(z̃1(N |k), . . . , z̃n(N |k)) (22)

=

{
0, for (z̃1(N |k), . . . , z̃n(N |k)) ∈ Zfc (k)
∞, otherwise,

The centralized platoon problem (9) – (17) is then equal to:

min
U(k)

n∑
p=1

Jp(zp(k),Up(k)) + IZc
(k) + IZf

c
(k) (23)

subject to (11) – (14) and

Zp(k) = Z̃p(k). (24)

for p = 1, . . . , n. We further relax (24) by introducing the aug-
mented Lagrangian as:

Lρ(k) =
n∑
p=1

{
Jp(zp(k),Up(k)) + λ

T
p (k)

(
Zp(k)− Z̃p(k)

)
+
ρ

2

∥∥∥Zp(k)− Z̃p(k)∥∥∥2
2

}
+ IZc

(k) + IZf
c
(k) (25)

where λp(k) ∈ R2×Np is the dual variable with respect to (24)
and ρ > 0 is the augmented Lagrangian parameter. Observing that
the first part of (25) as well as constraints (11) – (14) are sepa-
rable for each vehicle p, we introduce a platoon coordinator, e.g.,
the link speed manager, for evaluating the coupling indicator func-
tions, and we decompose the centralized problem following ADMM
decomposition-coordination procedures. The coordinator then takes
care of the collision avoidance constraints updating Z̃p(k) while
vehicles in the platoon are able to solve local problems updating
Zp(k) in a parallel way. Consensus between the coordinator and
individual vehicles is achieved via iteratively adjusting the dual
variable.

Specifically, the cooperative distributed platoon problem based
on ADMM at each iteration j = 0, 1, . . . , consists of the following
three steps with initial values λ0

p(k) and Z̃0
p(k):
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Algorithm 1 Local problem: processed in parallel by all vehicles p

1: initializes λ0
p(k) and Z̃0

p(k);
2: loop
3: computes Zj+1

p (k) as (26);
4: sends Zj+1

p (k) and λjp(k) to the coordinator;
5: repeat
6: wait;
7: until Z̃j+1

p (k) arrive;
8: computes λj+1

p (k) as (28), and j + 1→ j;
9: end loop

Algorithm 2 Coordinator problem: processed by the coordinator

1: repeat
2: repeat
3: wait;
4: until Zj+1

p (k) and λjp(k) arrive;
5: computes Z̃j+1

p (k) as (27);
6: broadcasts Z̃j+1

p (k) to all vehicles p;
7: until Stopping criteria are met.

Step 1: each vehicle p solves the following local problem and
updates (Up(k),Zp(k)):(

U j+1
p (k),Zj+1

p (k)
)
= argmin Jp(zp(k),Up(k))

+ λjp(k)
T
(
Zp(k)− Z̃jp(k)

)
+
ρ

2

∥∥∥Zp(k)− Z̃jp(k)∥∥∥2
2

(26)

subject to (11) – (14). Note that since platoon vehicles are modeled
as linear double-integrator (11), local problems (26) in Step 1 are all
tractable and can be solved sufficiently fast by commercial solvers.
The updated Zj+1

p (k) is sent to the coordinator.
Step 2: with Zj+1

p (k), the platoon coordinator solves the follow-
ing problem and updates Z̃p(k):

Z̃j+1
p (k) = argmin IZc

(k) + IZf
c
(k)+ (27)

n∑
p=1

{
λjp(k)

T
(
Zj+1
p (k)− Z̃p(k)

)
+
ρ

2

∥∥∥Zj+1
p (k)− Z̃p(k)

∥∥∥2
2

}
.

The updated Z̃j+1
p (k) is then sent back to all the platoon vehicles.

Step 3: each vehicle p updates dual variables λp(k) based on
λjp(k), Z

j+1
p (k) and Z̃j+1

p (k):

λj+1
p (k) = λjp(k) + ρ

(
Zj+1
p (k)− Z̃j+1

p (k)
)
. (28)

The iterations continue until stopping criteria as specified next are
achieved.

Note that the computations in Step 1 and Step 3 can
be carried out in parallel by all the vehicles. The coor-
dinator problem at Step 2 can be further written into the
Euclidean projections of (z̃1(i|k), . . . , z̃n(i|k)) , i = 0, . . . , N − 1

and (z̃1(N |k), . . . , z̃n(N |k)) onto Zc(k) and Zfc (k), respectively,
which are implemented as:

Z̃j+1
p (k) = argmin

n∑
p=1

∥∥∥Z̃p(k)− (Zj+1
p (k) + λj+1

p (k)/ρ
)∥∥∥2

2

(29)
subject to (16) – (17).

The overall cooperative distributed algorithm is illustrated as
Algorithm 1 that will be carried out locally by all platoon vehicles
and Algorithm 2 that will be carried out by the coordinator link.

4.2 Convergence analysis and stopping criteria

We next show that the distributed platoon problem iteratively pro-
cessed by Algorithm 1 and Algorithm 2 will achieve convergence as
j →∞.

Firstly, for all vehicles p, define the local constraint set due to
Zp(k), Up(k) and Zfp (k) as Cp(k), then the local cost functions
can be written as Jp (zp(k),Up(k)) + ICp(k) with ICp(k) being
the indicator function of (zp(k),Up(k)) over Cp(k) that equals zero
for (zp(k),Up(k)) ∈ Cp(k) and∞ otherwise.

Lemma 1. Local and coordinator cost functions Jp (zp(k),Up(k)) +
ICp(k) and IZc

(k) + IZf
c
(k) are closed, proper and convex.

Proof: Under Assumption 1, Zp(k), Up(k) and Zc(k) are all closed
convex and contain the origin in their interior. Then, the indicator
functions are all closed, proper and convex. For Jp(zp(k),Up(k))
in the form of (10), it can rewritten as:

Jp(zp(k),Up(k)) = U
T
p (k)

(
ΠT Q̄Π + R̄

)
Up(k)+ (30)

2zTp (k)
(
ΓT Q̄Π

)
Up(k) + z

T
p (k)

(
ΓT Q̄Γ

)
zp(k)

with Q̄ = blockdiag (Q, . . . ,Q,Pp), R̄ = blockdiag (R, . . . ,R),
and Γ, Π being the concatenated state and input matrices, respec-
tively, as

Γ =



I
A
...
...

AN

 ,Π =



0 . . . . . . 0
B 0 . . . 0

AB
. . .

. . .
...

...
. . .

. . .
...

AN−1B . . . . . . B


Consider Q � 0,R � 0 and Pp � 0, we have

(
ΠT Q̄Π + R̄

)
�

0. Therefore, Jp(zp(k),Up(k)) is strongly convex, and closed,
proper. �

Lemma 2. The unaugmented Lagrangian L0(k) (with ρ = 0) of
(25) has a saddle point.

Proof: Since the constrained sets Cp(k) are with nonempty
relative interior, the Slater’s condition holds. Besides, since
Jp(zp(k),Up(k)) is strongly convex, there exists a unique optimal
solution U∗p (k), and the strong duality holds so that the dual prob-
lem supλ infUp(k) L0(k) has an optimal solutionλ∗(k). Therefore,(
U∗p (k),λ

∗(k)
)

is a saddle point of L0(k), i.e.,

L0
(
U∗p (k),λp(k)

)
6 L0

(
U∗p (k),λ

∗
p(k)

)
6 L0

(
Up(k),λ

∗
p(k)

)
.

�

Proposition 1 (Convergence of the distributed platoon problem).
With Lemma 1 and Lemma 2, the following convergence is achieved
as iteration j →∞:

1. Primal feasibility, i.e., Zjp(k)→ Z̃jp(k) for all vehicles p;
2. Objective convergence, i.e., the objective function J∑ (z(k),U(k))
approaches the optimal value.
3. Dual variable convergence, i.e., λjp(k) approaches the dual opti-
mal point λ∗p(k) for all vehicles p.

Proof: The above proposition follows directly from general ADMM
convergence properties [22] due to Lemma 1 and Lemma 2 for the
distributed platoon problem. �
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The convergence of primal feasibility, objective optimality, and
dual variables as j →∞ implies that 1) individual vehicle solu-
tions are satisfying the coupling collision avoidance constraints (16)
and (17); and 2) global optimality, i.e., cooperative behaviours, is
achieved via the local decision-making. In practice, the above con-
vergence is indicated by small primal and dual residuals defined
as:

rj(k) =

n∑
p=1

∥∥∥Zjp(k)− Z̃jp(k)∥∥∥
2
6 εpri, (31)

sj(k) =

n∑
p=1

∥∥∥Z̃j+1
p (k)− Z̃jp(k)

∥∥∥
2
6 εdual, (32)

where εpri, εdual are primal and dual feasibility tolerances specified
as:

εpri =
√
2nNεabs + εrel max


n∑
p=1

∥∥∥Zjp(k)∥∥∥
2
,

n∑
p=1

∥∥∥Z̃jp(k)∥∥∥
2

 ,

εdual =
√
2nNεabs + εrel

n∑
p=1

∥∥∥λjp(k)∥∥∥
2
.

Small primal residuals imply that the error trajectories computed
locally at Step 1 and coordinated by the coordinator link at Step
2 are driven close to each other. Small dual residuals imply that
the coordinated error trajectories at Step 2 are almost constant over
iterations.

5 Simulation results and discussions

Simulations are carried out to demonstrate the effectiveness of the
proposed cooperative centralized and distributed vehicle platoon
controllers. Specifically, we test a platoon with five homogeneous
vehicles in a dynamic speed management scenario on a straight way,
as illustrated in Figure 2. The platoon is required to track the fol-
lowing dynamic reference speeds broadcast by the roadside link that
involve an acceleration and a deceleration:

v0(t) =


12 m/s, 0 s ≤ t < 5 s
18 m/s, 5 s ≤ t < 20 s
12 m/s, 20 s ≤ t ≤ T

(33)

with T = 30 s being the total simulation time. The platoon starts
at t = 0 s with zp(0) = [0, 0]T for p = 1, . . . , 5. Vehicle physical
limits are set as: vmin = 0 m/s, vmax = 22 m/s, amin = −8 m/s2,
and amax = 2 m/s2. Vehicle length L = 5 m and the desired inter-
vehicle distance ds = 50 m. The vehicle reaction time is set as
τ = 0.8 s that is larger than the vehicle sampling time Ts = 0.5 s.
For the MPC controller parameters, we consider a prediction hori-

zon of N = 10, and weight matrices Q =

[
10 0
0 1

]
, R = 0.1.

ADMM relevant parameters are set as: εabs = 1e− 3, εrel = 1e− 4
and the augmented Lagrangian parameter ρ = 1. Zero initial values
of λ0

p(k) and Z̃0
p(k) are set for the ADMM iterations. Algorithms

are implemented in MATLAB 2016b [30] with solver Cplex [31]
on a platform with Intel(R) Core(TM) i3-7100 CPU @3.70 GHz.
The controlled platoon performance on maintaining stable safe vehi-
cle formations, and properties of the distributed decision-making are
illustrated as follows.

5.1 Safe stable vehicle platoon control

With the dynamic reference speeds in (33), the vehicle platoon needs
to maintain the formation by tracking the reference speeds v0(t) or
equivalently, the reference position s0(t), and keeping the desired
inter-vehicle space ds in a stable and safe way. Figure 3 and Figure 4
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Fig. 3: Reference tracking errors - centralized controller.
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Fig. 4: Reference tracking errors - distributed controllers.

show the reference position tracking errors of all the platoon vehicles
by the proposed centralized and distributed controllers, respectively.
In both figures, tracking errors are seen for all platoon vehicles when
the reference speed changes. However, tracking errors converge to
zero in both acceleration (around t = 5 s) and deceleration (around
t = 20 s) cases. Note that variation patterns are slightly different for
the acceleration and deceleration periods. Particularly, when the ref-
erence speed increases, the magnitude of the deviations from zeros
and the time for reaching the steady state of the five platoon vehi-
cles vary from each other. The deviation magnitudes decline and the
converging times increase from the platoon start vehicle to the tail
vehicle. When the reference speed drops, five vehicles see identical
tracking error trajectories. The different patterns during acceleration
and deceleration are due to the different activeness of the coupling
collision avoidance constraints. The coupling constraints are active
during acceleration and inactive during deceleration, as illustrated
in Figure 6. Overall, centralized and distributed controllers show
similar tracking error trajectories, which also demonstrates that the
distributed decision-making achieves global optimality.

Figure 5 further plots the distances between consecutive vehi-
cles with distributed controllers. Similarly, the predecessor-follower
distances fluctuate during the acceleration period and converge to
the desired inter-vehicle distance 50 m afterwards. Moreover, the
fluctuation magnitude also decreases and the converging time also
increases from the platoon head to the tail, which show that the pro-
posed controllers could weaken the deviation or fluctuation impacts
along the platoon. Satisfactions of the coupling and local constraints
by the distributed controllers are demonstrated in Figure 6 and
Figure 7, respectively. In Figure 6, the actual inter-vehicle distances
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Fig. 5: Inter-vehicle distance.

0 10 20 30

time (s)

40

45

50

55

d
is

ta
n
c
e
 (

m
)

(a)

0 10 20 30

time (s)

40

45

50

55

d
is

ta
n
c
e
 (

m
)

(b)

0 10 20 30

time (s)

40

45

50

55

d
is

ta
n
c
e
 (

m
)

(c)

0 10 20 30

time (s)

40

45

50

55

d
is

ta
n
c
e
 (

m
)

(d)

Fig. 6: Inter-vehicle distances and safety distances.
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Fig. 7: Speed and acceleration trajectories.

of all vehicle pairs are not smaller than the safety distance with tight
fit showing activeness of the collision avoidance constraints during
the acceleration period. Note that the safety distance is not con-
stant due to its dependence on the follower vehicle’s speed as in (4).
The speed and acceleration trajectories of all vehicles also satisfy
the corresponding limits. Fluctuations around the acceleration and
deceleration periods and convergence afterwards are also observed
in Figure 7.
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Fig. 8: Iterations and computational time.

5.2 Convergence of the cooperative distributed controllers

It has been demonstrated that the proposed cooperative distributed
controllers can achieve overall system performance and safety. For
the defined ADMM convergence accuracy parameters εabs and εrel,
Figure 8 reports the number of iterations and the corresponding com-
putational times before reaching convergence. The computational
times are calculated based on the time required for each iteration and
the computational time per iteration sums the maximum time solv-
ing the problem at Step 1 parallelly by all vehicles, the time solving
the problems at Step 2 by the link coordinator, and the dual vari-
able updating time at Step 3. The required number of iterations and
computational times are relatively large during acceleration due to
the activeness of the coupling collision avoidance constraints. Note
that the iteration and computational times during deceleration are
also larger than those in the steady-state periods since the tracking
errors are initialized with zeros for ADMM iterations. Computa-
tional complexity is a commonly known issue for iteration based
control problems. Although the involved optimizations are all con-
vex, for cases when a large number of iterations are required, timely
convergence might not be reached within the sampling time. Then,
a reliable decision recovery mechanism needs to be designed for the
platoon. Besides, the algorithm efficiency could also be improved
by further exploiting the problem structure with designed heuris-
tics such as [24], better tuning controller parameters and using faster
computing solvers or platforms.

For the convergence behaviours over iterations, we consider a par-
ticular time step k = 14 after the reference speed increases which
involves 87 iterations. As formulated in (31) – (32), the practi-
cal convergence of the proposed cooperative distributed controllers
for vehicle platoons is indicated by small primal and dual residu-
als. Figure 9(a) and 9(b) show that both primal and dual residuals
decreases rapidly at the first iterations and then converge slowly to
the defined accuracy. For comparison, we also implement the cen-
tralized controller for the platoon problem at time step k = 14. As
can be seen in Figure 9(c), the distributed objective value that is the
summation of the local objective values of all platoon vehicles at
the end of iterations also converges to the centralized optimal value,
which illustrates the global optimality convergence. Note that the
convergence is achieved from below since the couplings among vehi-
cles are not considered in the local problems. However, by iterative
updating the dual variables considering the coordinated trajectories,
the cost incurred due to satisfying the collision avoidance constraints
are also reflected in distributed objective values in the end.

The iterative communication and coordination procedure for sat-
isfying the coupling constraints is further illustrated in Figure 10 and
Figure 11. The iterative inter-vehicle distances (green solid line) are
compared with the iterative safety distances (red dashed line) over
the prediction horizon. For all consecutive vehicle pairs, the actual
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Fig. 9: Convergence: primal residuals, dual residuals and objectives
over iterations at k = 14.
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Fig. 10: Distance iterations over N at step k = 14, green solid line
- distance, red dashed line - safety distance. (a) Distances between
vehicles 1 and 2; (b) distances between vehicles 2 and 3.

inter-vehicle distances are below the safety distances for the first iter-
ations over certain prediction steps. However, as iterations increase,
the green solid lines are pulled up from below while the red dashed
lines are pulled down from above. Upon reaching convergence, the
inter-vehicle distances coincide with or are above the safety dis-
tances over all prediction steps, which is consistent with Figure 6.
The convergence pattern is because the platoon vehicles are solving
local problems selfishly with the goal mainly on maintaining desired
vehicle spaces. Along with iterations, the goal is driven also to sat-
isfy the safety constraints by updating dual variables. Convergence
of primal and dual residuals imply that the optimal trade-off between
local and coupling goals is achieved resulting in overall optimality.

6 Conclusions and future research

We consider intelligent vehicle platoon problems in the context of
dynamic speed management scenarios in this paper. Cooperative
predictive controllers are proposed to maintain the vehicle platoon
formations and track dynamic reference speeds in a stable and
safe way. Both centralized and distributed decision-making solu-
tions are proposed with guaranteed closed-loop stability. Particularly
for the distributed controllers, only vehicle-to-infrastructure commu-
nications are required, which differs from the existing approaches
that mostly necessitate certain types of vehicle-to-vehicle communi-
cations. Moreover, the distributed controllers ensure parallel local
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Fig. 11: Distance iterations over N at step k = 14, green solid line
- distance, red dashed line - safety distance. (a) Distances between
vehicles 3 and 4; (b) distances between vehicles 4 and 5.

computation, satisfaction of collision avoidance constraints, and
global optimality at the same time with guaranteed convergence.
Simulation results in both acceleration and deceleration cases are
provided and demonstrate the effectiveness of the proposed con-
trollers for vehicle platoons. Future work will explore more complex
vehicle models with relaxed assumptions. Low-level powertrain
dynamics and the couplings between longitudinal and lateral vehicle
dynamics could be considered in more general ITS scenarios.
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