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Summary

In this thesis a novel model is proposed to solve the Robust Tail Assignment problem. The Robust Tail
Assignment problem aims to assign aircraft to flights, while minimize expected costs of operating a
flight schedule, including expected delay costs. This problem is difficult, because delays can propagate
between successive flights in the schedule, creating dependencies between flights assigned to the same
aircraft.

Using probability distributions of delay for every individual flight, as well as expected costs associated
with delaying flights, the expected delay costs of a full flight schedule can be estimated. The workings
of a simulator are described, which can be used to evaluate the total expected costs of solution schedules
for the Robust Tail Assignment problem.

To be able to incorporate expected delay costs in a mathematical model, the construction of a
multi-commodity flow network is described, which uses departure and arrival states for flight rotations,
corresponding to discrete amounts of delay. The amount of flow through edges of this network represents
the probability of these states transitioning into other states. By activating and deactivating edges, based
on the assignment of aircraft to rotations, this network can be used in a model to approximate the total
expected delay costs of a model solution.

The proposed robust flow model uses such a state network in a MIP model, that can be solved
using an iterative solver to find good solutions to the Robust Tail Assignment problem. Delay costs are
imposed on edges in the network, to quantify the expected delay costs. In the model, the network size is
reduced by only considering connections between rotations that have high probabilities of propagating
delay. This reduces the accuracy of the model, but shortens the run-time of the optimization process
significantly.

Several experiments are done to test the run-time and performance of the robust flow model. The
model proved hard to solve to optimality, but is able to find good solutions, if the model parameters are
well tuned. Recommendations are given for using the model, as well as future research directions.
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Introduction

1.1. Background

Air travel is a popular means of transport, that has been steadily growing in recent decades, doubling in
use between 2006 and 2019, transporting over 4.3 billion passengers in 2019 [3]. Air travel is provided by
airlines, big companies that sell aircraft tickets and provide cargo transport for revenue. These airlines
take care of all operations necessary for air travel, such as scheduling, airport handling, IT services,
aircraft maintenance or catering. The size of these operations is substantial. In 2016, 65.5 million jobs
were supported by air transport, causing $2.7 trillion of economic activity, amounting to 3.6% of the
global GDP [15].

Since air travel is such a large business, there is much to gain in terms of reducing costs and work
by optimizing airline operations. This thesis, assigned by KLM, will focus on optimizing a part of the
airline planning process, to reduce the costs of operating flights. KLM Royal Dutch Airlines is the flag
carrier airline of the Netherlands and the oldest airline in the world, operating flights to 145 destinations.

1.1.1. Flight planning process

This section will contain an overview of the flight planning process, from long term decisions to short
term decisions. This process is a generalisation of the processes of all airlines, meaning the specifics can
differ per airline.

Figure 1.1 shows the decision-making steps of the airline planning process. The steps are divided
into four categories, and four time horizon intervals.

The outer layer represents 12 to 3 months before the day of operation, where long-term decisions are
made, such as the fleet composition and route planning. Fleet composition deals with the purchase of
new aircraft and maintenance or retirement of existing aircraft. Route planning deals with creating the
initial flight schedule, to satisfy the expected demand. This schedule needs to be implementable with
the current fleet. KLM and many other big airlines use a hub-and-spoke system for their flights. In this
system the airline has a central hub, that all flights are connected to. For KLM this hub is Amsterdam
Airport Schiphol, meaning all KLM flights fly either from Schiphol, or towards Schiphol, see Figure 1.2.
In Figure 1.3 you will find an example of a flight schedule, where the blocks correspond to an outgoing
flights followed by a return flight. After creating the initial schedule, ticket sale will start.

The inner layers represent the time period from 3 months to the day of operations, where the short-
term decisions are made. At this time, more information is available about the required maintenance
of the aircraft, as well as an expectation of the final amount of bookings for every flight. Using this
information, an assignment of aircraft to flights in created, with the goal to create an executable schedule,
while minimizing the expected operational costs. In the time period of 2 weeks to 1 day before day of
operations, this schedule will be re-assessed to account for the most recent changes and information, to
further reduce the expected operational costs of the schedule.

The middle circle represents the day of operations, where disruptions and last-minute changes are
handled, and flights are delayed if necessary.
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Figure 1.1: Integrated decision-making across organisational silos and changing planning horizons.[1]

1.1.2. Robust Tail Assignment

The focus of this thesis in the Robust Tail Assignment problem. The Tail Assignment problem is
the problem that is often solved in the time period of 2 weeks to 1 day before the day of operations,
denoted by “Tail assign” and “Tail swap" in Figure 1.1. The word tail is often used in airline literature,
representing an individual aircraft.

At this time, an initial assignment of aircraft to flights is already created, and the bookings of every
flight are mostly known. This new information means the schedule can be re-optimized. If a flight is
expected to be under-booked, this flight could be assigned a smaller aircraft (different subtype), saving
fuel and operational costs. This process is called down-gauging. Note that this is only possible if a
smaller aircraft is available, or if another flight is up-gauged to a larger aircraft. Up-gauging a flight is
likely to cause extra costs in fuel and operational costs, so these aircraft “swaps" are only implemented
if the net gain is positive.

Besides this, 3 days to 1 day before the day of operations, some airlines have information regarding
expected delays of flights, which depend on factors such as the destination, time and weather forecast.
Using this information, a flight that has a high likelihood to be delayed can be scheduled in such a way,
that the assigned aircraft has longer buffer times between this flight and the next scheduled flight. This
way, the next flight is less likely to be delayed as a result of the aircraft arriving late. Taking this factor of
delay propagation and its related costs into account, the tail assignment can again be re-optimized. This
problem is called the Robust Tail Assignment problem.

So, in general, the goal of the Robust Tail Assignment problem is to find an assignment of aircraft to
all flights, such that the final schedule is executable, while minimizing the total expected costs. These
expected costs consist of many different terms, such as the expected fuel costs, landing fees, parking
charges and expected delay costs. It is usually preferred to keep the assignments as close as possible to
the original assignments, as to not change the schedule too much soon before the day of operations. For
this purpose, a reassignment penalty can be used.
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Figure 1.2: Map of KLM flights, a hub-and-spoke system.

Original schedule

maintenance
B ralse
W True

alrcraft

00:00 12:00 00:00 12:00 00:00 12:00 00:00
Jan 13, 2000 Jan 14, 2000 Jan 15, 2000 Jan 16, 2000

Figure 1.3: Example flight schedule over three days by KLM. The dates are randomized.

1.2. Complexity

The Robust Tail Assignment problem aims to find a feasible assignment of aircraft to all flights with the
lowest expected costs. A feasible flight assignment means the resulting flight schedule is executable.
All relevant costs of a flight are only dependent on the assigned aircraft and the corresponding flight
route. Note that by propagation of delay from one flight to the next, the expected delay of costs of a
flight in a flight route is dependent on all previous flights in that route. Because of this dependency, the
expected delay costs of a flight cannot be calculated locally, i.e. by only considering the predecessor of
every flight.

One thing to note is that the costs of the flights in a specific aircraft’s flight route are independent of
other aircraft’s flight routes. Using this observation and the fact that every flight has to be assigned
precisely one aircraft, the problem reduces to a set partitioning problem, where the sets are possible
flight routes and the elements of the sets are flights.

1.2.1. Set partitioning problem

Let us define the problem as a set partitioning problem. Define A to be the set of available aircraft, and
F to be the set of all flights in the schedule. Define R, C F to be the set of feasible flight routes for an
aircraft a € A. Let ¢,; be the expected cost of operating flight route r € R, on aircraft a. Lastly, define
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by to equal 1if flight f € F is included in route € R,, and 0 if not. Now we can formulate the problem:

minimize Z Z CraXra (1.1

Xra

acA reR,

subject to > D bpxn =1 VfeF (1.2)
ac€A, reR,
D xn=1 VaeA (1.3)
reR,
Xrq € {0,1} YaeA,r €R, (1.4)

In this formulation, the variables x,, equal 1 if the flight route r is assigned to aircraft 2. The objective
function, Equation (1.1), calculates the sum of the expected costs of all selected flight routes. Constraint
(1.2) ensures every flight is assigned to exactly one aircraft. Constraint (1.3) ensures that an aircraft
operates exactly one flight route.

This formulation is a constrained set partition problem, where all flights have to be included in
exactly one set, and the sets are chosen from the possible sets in [ J,c4 R;. The problem is constrained,
since exactly one set from every R, has to be chosen.

The set partitioning problem is known to be NP-hard [13]. Also, note that the sets R, are very big,
since they contain all possible feasible flight routes for an aircraft a. If we only consider one specific
flight route in a set R, containing k flights, all subsets of this flight route are also feasible flight routes,
meaning there are 2 such flight routes in R,,. Thus, the sets R, are exponentially big, making the Robust
Tail Assignment problem very difficult.

1.3. Previous work

The Tail Assignment problem is a well studied problem. Grénkvist [14] contains an overview of the
Tail Assignment problem and approaches for solving the problem. In the literature many different
problem formulations related to tail assignment have been studied, as the process of airline planning
differs among airlines. Airlines with regular schedules and large fleets of aircraft can often decide on
tail assignment closer to the day of operations, in which case more exact data and expected costs of
operation are available.

Flight delays are a large cost factor for airlines. Eurocontrol [11] estimates the cost of delaying a
flight to be around 59 to 85 euros per minute. Solving the Tail Assignment problem while minimizing
the operational costs, as well as delay costs is called the Robust Tail assignment problem.

In the literature, the Tail Assignment and Robust Tail Assignment are often solved separately. First
aircraft are assigned to flights, to minimize operational costs, without accounting for delay costs. The
assignments are then reoptimized for robustness, while not allowing aircraft of different subtype from
before to be assigned to flights. Since the operational costs (e.g. fuel costs, landing fees, parking charges)
are very similar for aircraft of the same subtype, this optimization for robustness often does not consider
costs in its objective, but rather a notion of the amount of delay propagation.

To solve the non-robust Tail Assignment problem, two main formulation types are used. Firstly,
there is the set partitioning formulation, as described in Section 1.2.1, which is often solved using
Lagrangian relataxion (e.g. Clarke et al. [8]), or a column generating algorithm (e.g. Kabbani et
al. [17]). The second formulation is a multi-commodity flow network, used by Feo et al. [12]. This
formulation defines a network with flights as nodes and feasible connections between flights as arcs.
The different commodities correspond to different aircraft. Some papers, such as Desaulniers et al. [9]
even propose an algorithm that uses both formulations, to obtain optimal branching strategies for the
column generating method.

Since this flow formulation considers local connections between flight, it is not trivial to incorporate
robustness into such a model, because of the dependency throughout the whole flight route.

Approaches to solve the Robust Tail Assignment problem can be split into three main categories that
we shortly address here.
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1.3.1. Key performance indicators (KPI)

A simple way to introduce a sense of robustness into the Tail Assignment problem is to change or
replace the objective of the problem using terms that measure robustness in a heuristic way. These
terms are called "key performance indicators". For example, one could optimize for having an even
distribution of buffer time between flights. Examples of KPI approaches for solving the Robust Tail
Assignment problem can be found in Burke et al. [7], Reoenberger et al. [18] and Ahmadbeygi et al.
[2]. These appoaches respectively use swap opportunities, cancellation cycles, and locally propagated
delays. Note that these approaches do not optimize directly for the expected total costs, but rather for
measures that decrease the expected total costs heuristically. These approaches are often applied in
situations when not much information about expected delays is available.

1.3.2. Robust optimization

The field of robust optimization considers problems where some input parameters are not fixed, but are
uncertain. Soyster [19] first introduced robustness to linear programming. The idea is that a solution
needs to be feasible for all possible values of its input parameters, i.e. the worst case values. This
approach is highly conservative, and not applicable to the Robust Tail Assignment problem because of
its many possibilities of delay. Later work, such as Ben-Tal & Nemirovski [4] and Bert-simas & Sim [5]
propose less conservative approaches. For example, Bert-simas & Sim [5] only allow a limited amount
of parameters for which to account uncertainty to consider a solution feasible. But, because of the
conservative nature of such worst case concepts, these approaches are expected to high costs and have
not yet been applied to the Robust Tail Assignment problem.

1.3.3. Stochastic optimization

In stochastic optimization, the uncertainty of the input parameters of the problem is considered by
regarding these parameters as random variables. As an objective, the expectation of some objective
function is minimized. For the Robust Tail Assignment problem, a stochastic model can be used to
consider possible delays and delay propagation. Borndoérfer [6] and Dovica [10] use the sum of the
probability of delay propagation for all flights as the objective to minimize. The problem is formulated
as a set partitioning problem, and a column generation algorithm is used to find the optimal solution to
the linear relaxation of the problem. The solution to this linear relaxation is then rounded to an integer
solution.

1.4. Thesis outline

In this thesis we will propose a model to solve the Robust Tail Assignment problem. In Chapter 2 the
problem will be mathematically formulated, a way to evaluate a solution of the problem will be given,
and both a non-robust and a benchmark robust model provided by KLM will be described.

Chapter 3 will mathematically describe delay propagation through a flight schedule, explain its
difficulties and give a way to calculate the expected delay costs of a flight route.

In Chapter 4, a Robust Flow Model will be described and explained, which can be used to solve the
Robust Tail Assignment problem.

In Chapter 5 the experiments performed on the model will be described and justified, after which
the results of the experiments will be given and analysed.

Finally, Chapter 6 will contain the conclusion of this thesis, and give directions the usage of the
model, as well as for further research.



Robust Tail Assignment Problem

2.1. Problem description

The Robust Tail Assignment problem deals with the assignment of aircraft (or tails) to scheduled flights,
shortly before the day of operation. The goal is to construct a feasible flight route for every aircraft, such
that every flight is operated by some aircraft, while considering business rules (such as restrictions on
aircraft size at certain airports), necessary maintenance, turn-around times at the airport and minimizing
the total expected costs. This problem is solved every day, to adjust the previously constructed routes
based on the most recent information about expected disruptions and changes in the schedule.

This thesis will focus on flight schedules that use a hub-and-spoke system, meaning one aircraft has
to both operate the flight to another airport and the flight back from this airport. The central airport
is called the hub station, while the other airports are called outstations. When using a hub-and-spoke
system, the scheduled flights can be combined into rotations. A rotation consists of a journey of two
flights, where the first flight departs from the hub station and the second flight arrives back at the
hub station !. The schedule also contains maintenance blocks, which we will consider to be rotations,
consisting of one “flight”. Maintenance blocks are bound to a certain aircraft, that requires some
maintenance at a given time slot.

Using this description of rotations, the problem reduces to an aircraft-rotation assignment problem.

2.1.1. Business rules
Business rules are instructions or constraints on the business activities. These rules must be satisfied in
the final flight schedule and assignments of the aircraft to flights.

Several business rules apply to the assignment of aircraft to flights. For example, some outstations
are unable to operate a certain subtype of aircraft. This means that rotations containing flights to and
from this outstation are not allowed to be assigned to an aircraft of this subtype.

These assignment business rules affect the input of the problem and have a restricting effect, meaning
they reduce the solution space. For the sake of this thesis we will omit these business rules, since they
vary greatly between airlines, often change over time, and have little impact on the difficulty of the
problem. So, every aircraft-rotation combination is considered to be valid.

A business rule that will be incorporated into this thesis is the use of reserve aircraft. If an aircraft
arrives much later than scheduled, causing the next flight to be delayed by more than 120 minutes,
a reserve aircraft will be used for the next flight. This rule has some exceptions, as there is not an
unlimited supply of reserve aircraft, and other business rules may prevent a reserve aircraft to be used.
For the purpose of this thesis, this notion is simplified. We will assume an unlimited supply of reserve
aircraft, and set a fixed cost to the use of a reserve aircraft.

!Note that some airlines also schedule rotations consisting of more than two flights. For the purpose of this thesis we shall
restrict ourselves to rotations of two flights. All methods and theory studied in this thesis can be modified to also work for
rotations with more than two flights.
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2.1.2. Costs
The costs dependent on the assignment of aircraft to rotations considered for the Robust Tail Assignment
problem are the following:

Assignment costs

Assigning an aircraft to a rotation has many associated costs. There are operational costs, which consist
of many types of fees, that are dependent on the outstation and the subtype of the aircraft. These
include airport landing fees, taxes, parking charges at outstation and night stop fees (including hotel
costs for crew).

The fuel cost of a rotation is dependent on the aircraft, since some aircraft are more fuel efficient
than others. The average fuel costs per minute for every aircraft are given as input, so the total fuel price
for every rotation-aircraft pair can be estimated, using the average flight duration of the flights in the
rotation.

Using the information on bookings for a flight, an estimation can be made for the costs of swapping
to an aircraft of a different subtype. For example, if not enough business class seats are available, but
the aircraft has free economy class seats, a cost will be imposed. This will imply a denied boarding cost
on the corresponding rotation-aircraft combination. This cost consists of refunds and future value loss.
Future value loss is an estimation of the missed revenue of passengers that may be less likely to choose
the same airline for their next journeys due to the negative experience.

The assignment cost for every aircraft-rotation combination consists of these costs, which can all be
independently calculated.

Delay costs

If a flight arrives later than scheduled, there are several fees that have to be paid, depending on the
flight and the amount of delay. For example, a delay may cause refunds for passengers that miss their
connecting flight and passengers can request EU claims for delayed flights. Also, future value loss needs
to be considered again. All these factors induce a type of expected costs or reduced future income.
Based on the flight and the amount of delay minutes, an estimation can be made for the delay costs.

2.2. Robustness

Planned schedules are never exactly executable in real life. Due to unforeseeable events, every scheduled
rotation has a possibility of taking longer than planned. If two tightly connected rotations are scheduled
to be flown on the same aircraft, longer flight times of the first rotation can cause delays to the second
rotation, which might in turn cause delays for the next scheduled rotation. To reduce the total amount
of disruption in the real life flight schedule, we need to account for this propagation.

Dealing with such situations can be classified in two approaches: reactive or proactive. Reactive
approaches require you to find a good solution close to the original schedule quickly, when disruptions
occur. In the case of a flight schedule, these disruptions are often only identified at the moment they
occur. The decision of aircraft assignment to rotations are decisions that need to be made in advance,
because of the size and dependencies of the operations required to fly aircraft. Therefore, it is not
preferred to change the assignments at the last moment, meaning a solely reactive approach is not ideal.

Proactive approaches try to find a schedule that can handle disruptions better, in advance. To
accomplish this, the schedule needs to be robust, meaning that the impact of delays on the schedule is as
small as possible. To achieve this robustness, the schedule needs to have buffer time between rotations
that are more likely to be delayed, or cost a lot to be delayed. To be able to quantify the robustness
of a schedule, weather forecasts and data about the previous delays of certain flights can be used to
create expected delay distributions for all flights?. These delay distributions can then be used to find an
expectation of the delay costs for all flights, based on the connected rotations in the schedule, the buffer
time between these rotations, and the delay distributions of the flights.

Calculating the expected total delay cost of a schedule based on these delay predictions is not a
trivial task. Section 3.1 will explain exactly why this is the case.

2The process of predicting delay distributions for a flight is not covered in this thesis. This prediction can be achieved through
Machine Learning algorithms, see e.g. [20]. For the purpose of this thesis, we assume independent delay distributions are
available for all flights in the schedule.
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2.3. Problem Formulation

In this section some mathematical notation will be introduced and the input data, solution space and
objective function will be described.

2.3.1. Input data

The input of the problem consists of:

i) Decision scope: typically the three consecutive days before the day of departure.

ii) Schedule: A schedule of all rotations that are to arrive or depart within the decision scope. The
rotations in the schedule have an initially assigned aircraft. The schedule contains information
about the rotations, such as the scheduled departure time, scheduled arrival time and probability
distribution of expected delay of its flights.

iii) Aircraft: A list of all available aircraft, containing information about the aircraft, such as subtype,
fuel usage, required turnaround time at all stations, etc.)

iv) Operational restrictions: A mapping of stations to compatible aircraft subtypes, along with
restrictions active on aircraft.

v) Delay predictions: For every flight, a probability distribution of the amount of delay is given as a
random variable. These random variables are considered to be independent.

vi) Costs: Assignment costs for each pairing of destination and aircraft. Also, for every flight, the
expected costs associated with arrival delay of the flight are given.

2.3.2. Solution space

A feasible solution is an assignment of aircraft to rotations, such that:

e Every rotation is assigned one aircraft, which is compatible according to the business rules of the
rotation.

o If no flights are delayed, there is enough turnaround time between rotations assigned to the same
aircraft, i.e. every aircraft is assigned a feasible flight route if no flight is disrupted.

2.3.3. Objective
The goal of this optimization tool is to minimize the sum of the total expected costs of all flights in the
time scope.

2.3.4. Mathematical notation

Sets

T Set of time-values in scope

R Set of rotations scheduled to arrive or depart within T, indexed by r

F Set of flights and maintenance blocks, scheduled to arrive or depart
within T, indexed by f

¥, Set of flights and maintenance blocks in rotation r € R, scheduled to
arrive or depart within T, indexed by f

S Set of all aircraft subtypes available within T, indexed by s

S, Set of all aircraft subtypes that are allowed to operate rotation v € R

A Set of all aircraft available within T, indexed by a

As Set of all aircraft of subtype s € S available within T, indexed by a

A, Set of all aircraft a € A allowed to operate rotation r € R

Dy Random variable, containing the probability distribution of delay of a flight f € F

Parameters

stdy Scheduled departure time of a flight f € ¥

stas Scheduled arrival time of a flight f € F



2.3. Problem Formulation

std, Scheduled departure time of the first flight of a rotation r € R

stay Scheduled arrival time of the last flight of a rotation r € R

ainit Initially assigned aircraft (€ A) for rotation r € R

Sa Subtype (€ S) of aircrafta € A

Y Minimum ground time needed between flights at the hub station
for aircraft of subtype s € S

o Minimum ground time needed between the two flights of rotation r

at the outstation for aircraft of subtypes € §

Costs
cra " Expected assignment costs of assigning a rotation r € R to an aircraft a € A
c?emy(t) Function mapping the amount of arrival delay of a flight f € F in minutes to
the expected delay costs
creseree Expected cost of using reserve aircraft
Example 1.

Let us consider a small example of the Robust Tail Assignment problem. This example will be used to
elaborate the workings of the models explained in this thesis.

We consider a schedule containing seven rotations, to be scheduled using a fleet of three aircraft with two
subtypes. The rotations contain thirteen flights in total, where one flight is a maintenance block. We have the
following information about the schedule:

T := [0, 500]

R = {rlr 12,73,74,75,7%6, 7’7}

F :=A{f1, f2, f3, fa, f5, fo. f7, f8, fo, fr0, fi1, fi2, fi3}
A = {ay,az,a3}

S = {s1, 52}
Frn ={f1, f2} Frs = {fs, fo}
Fro = {13, fa} Fre = {fr0, fu1}
Frs = {fs, fo} Fr, = {fi2, i3}
Fro = {f7}
As, = {a1, a2}
As, = {as}
Ay = {a2}

A=A Vr € R\{rs}
Ay = {az}
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std 0 std 210
sta 45 sta 295
f1 | maint False fg | maint False
Z)f1 Gamma(6, 5) - 30 D £y Gamma(7, 8) - 55
std 80 std 330
sta 125 sta 415
fo | maint False fo | maint False
D £, Gamma(5, 6) - 30 D £ Gamma(9, 6) - 55
std 5 std 290
sta 70 sta 365
f3 | maint False fio | maint False
D % Gamma(9, 8) - 55 D f1o Gamma(6, 7) - 50
std 110 std 405
sta 175 sta 480
fa | maint False f11 | maint False
Dy, Gamma(8, 9) - 55 Dy Gamma(5, 8) - 50
std 10 std 350
sta 105 sta 405
f5 | maint False f12 | maint False
Dy, Gamma(9, 7) - 70 Dp, | Gamma(8, 4) - 35
std 145 std 440
sta 240 sta 495
fe | maint False f13 | maint False
Dy Gamma(11, 6) - 70 Dy, | Gamma(6,5) - 35
std 205
sta 250
f7 | maint ap
D fs 0

Table 2.2: Flight information of example problem. The std and sta values represent the amount of minutes after the start of
the schedule. Flight f7 is a maintenance block for aircraft ap, which has no delay predictions. All other flights have delay
predictions in the form Gamma(k, 0) + s, representing a shifted Gamma distribution, with shape parameter k, scale
parameter 0, shifted by s minutes.

62 51 S
0 | 25|30
rp | 30 | 35
rp | 35 | 40
r3 | 35 | 40
rs | 30 | 35
re | 35 | 40
r7 | 30 | 30

Table 2.3: Turnaround times in minutes of aircraft subtypes at the various stations in the schedule of the example problem.

The value 7 = 0 represents the hub-station, while the 7; values represent the outstations on the corresponding rotations.
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flight cj[lday(d)
fi 20 % d
b 18+d
cfZSlgn a a» as f3 10+d
ri | 1210 | 1290 | 1330 fa 12+4d
v | 2150 | 2110 | 2240 f5 1544 —reserve
rs | 3410 | 3420 | 3510 fe 13+4d 5500
rs | 2930 | 2900 | 3120 f7 5+d
re | 2350 | 2270 | 2550 /8 8xd
r7 | 1990 | 2090 | 2120 ;9 291*‘2
10 *
f1 | 20+d
fi2 19+d
fi3 18+d

Table 2.4: Costs in euros for example problem. The delay costs are linear functions of the amount of delay in minutes d.

In the example, shifted Gamma distributions are picked as probability distributions of delay, since these
distributions have a minimum, but no maximum. This makes sense in practice, since flights have a physical
limitation on the amount of minutes they can arrive early (e.g. minimum flight time), but no limitation on
the amount of extra delay that may be realised due to unforeseen events.

Gamma distributions have a shape parameter k and a scale parameter 0, a mean equal to kO and variance
equal to k62, and start at 0. So, for example, the shifted gamma distribution used for f, starts at —30 minutes,
has mean E[Dy | = 55 — 30 = =5 minutes and variance Var[Dp]| =5 - 5% = 125. This distribution is
plotted in Figure 2.1. Note that these distributions can take negative values of delay. This means a flight has
a positive probability to negate propagated delays.

Note that the cost functions of arrival delay are linear functions, depending on the amount of delay
minutes.

Probability density function of delay for flight f

0.035 — Dy,
Mean
0.030 H

0,025 H

0.020 4

Probability

0.015 H

0,010 H

0.005 H

0.000 T T T T
—30 —20 —10 0 10 20 30 it] 5l

Delay (min)

Figure 2.1: Delay prediction for flight f, a shifted Gamma distribution Gamma(6, 5) — 30, with mean
E[Df]=6-5-30 = 0and variance Var[Ds ] =6 52 = 150.

An example of a solution to the problem can be found in Figure 2.2. In this solution rotations r1 and rs are
assigned to aircraft ay, rotations vy, v4 and v to aircraft ap and rotations r3 and r7 to aircraft az. Note that
the flights in rotation re and ry; have higher delay costs than rs, and the flights in rotation v, have a high
probability of delay, compared to the other rotations. This means that operating this schedule will likely result
in a high delay cost for the flights in rotation re.

11
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Figure 2.2: Example solution schedule for this example problem. The arrows indicate the flight path of the different aircraft.
Note that the rotations are represented by blocks, where the length of the block corresponds to the operating time of the
block, when no flights are delayed.

After some quick deductions, it can easily be seen that this problem has 8 feasible solutions, given in Table 2.5.
The total assignment costs of these solution is also given in this table. As we can see, soll has the lowest
assignment cost, but the question remains which schedule has the lowest total expected costs.

’ solution H r ‘ 10) ‘ 3 ‘ 4 ‘ r5 ‘ 76 ‘ 7 H chassign ‘
soll ai | apx | a3 | ap | a1 | ap | a3 14150
sol2 ai | ax | a3 | ap | a1 | a3 | a2 14400
sol3 as al as an ay an as 14270
sol4 a» | a1 | a3 | ap | a1 | a3 | a2 14520
sol5 a» | az | a1 | ap | a3 | a1 | a2 14500
sol6 a as ay an as an al 14320
sol7 az | ax | a1 | ap | a3 | a1 | a2 14410
sol8 az | ax | a1 | ap | a3 | ap | a1 14230

Table 2.5: All feasible solutions to the example problem, and their total expected assignment costs.

2.4. Evaluation

To compare the quality of different models of the Robust Tail Assignment problem, we need to be able
to evaluate the model solutions. In a real life scenario, there is only one schedule that can be executed,
so we cannot easily compare different solutions. The only way to compare solutions is by their expected
costs, as given in the problem input.

Given a solution schedule, most of the expected costs can easily be calculated. The assignment costs,
consisting of operational costs, fuel costs, and swap costs are solely based on the assignment of aircraft
to rotations in the solution. But, the delay costs are more difficult to calculate, since we need to consider
random variables. Moreover, because a delayed flight can cause the next flight operated by the same
aircraft to also be delayed, the expected amount of delay costs of a flight is dependent on the delay of
previous flights. In Section 3.1 this notion will be described in more detail.

To avoid the need to calculate the distributions of (propagated) delay for every flight, a simulation
approach can be used. This section will explain the workings of a simple simulation engine, that
simulates the flight schedule many times, using random draws from the delay distributions. This
simulation engine can be used to evaluate and compare different solutions of the Robust Tail Assignment
Problem. The next section will describe the workings of the simulation engine.

2.4.1. Simulation Engine

We describe the workings of a simulation engine, that estimates the delay costs of a schedule using
simulations. In one simulation, for every flight a delay value is drawn from the given distribution
of delay. In this way, by performing many simulations, the delay distributions for every flight are
approximated. In every simulation we use these delay values to calculate the delay costs of every flight.
In this calculation propagation of delay is considered. The simulations are performed in the following
way:
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Every fleetline can be simulated separately by following the timeline, using a time variable. Initially,
this time variable is set to the departing time of the first flight in the fleetline. The flights in the fleetline
are evaluated in order, starting them at the maximum of the time variable and the scheduled departure
time of the flight. If the departure delay is more than 120 minutes, a reserve aircraft is utilised, and the
flight will depart on the scheduled time. Then, the time variable is updated by adding the duration of
the flight and the drawn amount of delay of the flight, after which the resulting arrival delay of the flight
is saved. Finally, the turnaround time is added to the time variable, before evaluating the next flight
in the fleetline. The saved arrival delay values are used for estimating the delay costs of the solution
schedule. The pseudocode for the simulation engine is given in Algorithm 1.

Algorithm 1 Simulation engine

1: simulationAmount < amount of simulations to perform

2: fleetlines « dictionary holding the solution fleetlines

3: (aircraft — sorted list of rotations)

simDury « list containing simulation Amount simulated duration
times of flight f (scheduled duration plus randomly drawn
delay from distribution) Vf € F

5! « turnaround time after flight f for aircraft subtype s, Vf € ¥,s € S
delays « dictionary holding the simulated arrival delays
(flight — list of length simulation Amount)
10: reserveAircraft « list of zeros of length simulation Amount
11: fora € A do

R A

12: time « [—o0,—00, ..., —co] of length simulation Amount

13: forr € fleetlines[a] do

14: for f € ¥, do

15: fork €0,1,...simulationAmount —1 do

16: time[k] < max(time[k],stdy)

17: if time[k] > stdy + 120 and f first flight of rotation f then
18: time[k] « stdy

19: reserveAircraft[k] « reserveAircraft[k] +1
20: end if

21: delays|f][k] < max(time[k] + simDurg[k] — stay,0)
22: timelk] « timelk] + simDurs[k] + 6/;1

23: end for

24: end for

25: end for

26: end for

27: return delays, reserveAircraft

Using the delay and reserve aircraft values found using Algorithm 1, the total expected delay and
reserve aircraft costs can be calculated using the delay costs and reserve aircraft as defined in the
problem description. We get:

delay
¢, (delays[f1[k])
f
E[del = 2.1
[delay costs] } Z Z simulationAmount @1)
ke{0,1,...,simulationAmount—1} feF
. CVESCVUC .
E[reserve aircraft costs] = SimnlationAmount reserveAircraftlk] (2.2)

ke{0,1,...,simulationAmount—1}

By performing many simulations, these equation approximate the total expected delay and reserve
aircraft costs. Since the delay costs are not the same in every simulation, we can show the total costs of a
solution using a cumulative distribution function (cdf) of the simulated costs. See Example 2 for an
example of the outcome of the simulations.
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Example 2.

Let us evaluate the different solutions given in Table 2.5, to the example problem defined in Example 1.
Using the simulation engine to perform 10000 simulations for every solution, we get the results given in
Figure 2.3 and Table 2.6.

Cdf of expected total costs of 10000 simulations

1.0
soll
sol2
sol3
08 sol4
. sol5
sol6
sol7
sol8
0.6
Z
3
(]
S
&
0.4
0.2 4
0.0

T 2 T T T T
14000 16000 18000 20000 22000
Total costs

Figure 2.3: Result a cumulative distribution function of expected total costs for all 8 solutions to the example problem.

assignment | delay reserve total delay
costs costs aircraft costs costs minutes

soll 14150 3900.00 253.5 18303.50 | 304.3
sol8 14230 3934.17 253.5 18417.67 307.1
sol3 14270 2923.03 57.0 17250.03 255.4
sol6 14320 3116.78 84.75 17521.53 276.5
sol2 14400 2673.56 70.0 17143.56 246.5
sol7 14410 2683.36 70.0 17163.36 248.1
sol5 14500 2596.89 84.75 17181.64 | 2509
sol4 14520 2427.52 57.0 17004.52 231.0

Table 2.6: Expected costs for all feasible solutions to the example problem, averaged over 10000 simulations. The solutions
are sorted by the expected assignment costs.

By simulating the solutions, we found that sol4 has the lowest expected total costs, averaged over all 10000
simulations. This does not mean the solution the cheapest in every simulation. For example, if a single
simulation draws negative delays for all flights, the delay costs will be zero for all flights, and the solution
with the lowest assignment costs will be the cheapest. In fact, sol4 has the highest assignment costs of all
solutions, so it will be the most expensive in this simulation! But, sol4 is more robust, and has a smaller
probability of propagating delays, so higher delays drawn in simulations often cause smaller delay costs for
sol4. In Figure 2.3, a steeper cdf corresponds to a more robust solution. Solutions soll and sol8 have the least
robustness, which results in high expected delay costs for these solutions.

2.5. Non-Robust Tail Assignment Model

The Robust Tail Assignment problem is a stochastic problem, since we are considering random variables
to calculate the expected delay costs of a solution. If we disregard the delay costs of the Robust Tail
Assignment problem, this problem is reduced to the Non-Robust Tail Assignment problem, a purely



2.5. Non-Robust Tail Assignment Model 15

deterministic problem. This decreases the difficulty tremendously. In this section an Integer Linear
Programming model formulation of the model is proposed, to illustrate the basic workings of a Tail
Assignment problem.

For every allowed rotation-aircraft combination (r, ), a binary decision variable X, , is created.
These variables will indicate the solution, where X, ; = 1 if aircraft a is assigned to rotation r, and
X;,a = 0if not. Using these variables, we can express the total costs in an objective function, which we

will try to minimize, as
assign
E Cra © Xra.

(r,a):reR,aeA,

What remains is to assure feasibility of the problem. Firstly, exactly one aircraft has to be assigned to
a rotation. This can be enforced through the following constraints:

Z X, a=1 Vrewr
acA,

Secondly, flight routes need to be feasible. This can also be achieved through constraints on the

decision variables X ,. Let RP: olp denote the set of rotation pairs (11, r2), where rq, r, € R, that overlap if
assigned to the same aircraft of subtype s € S. This means that either r; and r; are overlapping blocks,
or that if r1 and r, are assigned to such an aircraft, there is not enough turn-around time between the
rotations. We can describe this set mathematically as:

RP:UZP :={(r1,m2) : 11,12 € R, std,, < std,, and sta,, + 62 > std,,} (2.3)
The sets RP; *7 can be used to enforce feasibility of the flight routes, through the constraints:

Xy o+ Xpa <1 V(r1,12) € RP™Y Va e A, U A, U A,

With this objective function and these two sets of constraints, the model is complete. A full description
of the model can be found in Equation 2.4. The model can be optimized using an iterative solver, such
as Gurobi [16]. Section 4.6 will explain the workings of such an iterative solver.

mir}(irr?ize Z CfZSlg" Xy,
§ (r,a)reR,aeA,
subject to Z Xra=1 reR. (2.4)
aeA, ’
Xrpa+ Xrpa <1 (r1,r2) € RPT" 0 € AU A, U A,
X, €{0,1} reR,aecA,
Example 3.

We build the Non-Robust Tail Assignment Model for our example problem, as defined in Example 1. We have
A, =A{ax} and A, = A for all v € R\{r4}. This means we have the following decision variables:

Xr1 /a1 Xrl,ﬂz Xh,lls
szrlll Xr2,ﬂ2 szfll3
X X X
3,41 r3,a2 r3,a3
Xr4,ﬂ2
X"5,ﬂl X75,ﬂ2 X75/113
XrGral Xfe,ﬂz X76,ﬂ3

Xry,a1 X77,ﬂ2 XV7,H3
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Using Definition (2.3), we get:

!

RPV = {(r1,12), (r1,13), (r3,14), (3, 75), (14, 73), (15, 76), (15, 77), (Y6, 77)}
!

RPg7 = {(r1,12), (r1,13), (r3,75), (15, 76), (15, 77), (16, 77)}

Using these sets, we can create the model. The full description of the model can be found in Appendix A.1.

2.6. Benchmark Robust Model

For the purpose of evaluating the quality of the robust model given in this thesis, KLM provided a
Benchmark Robust Model to compare the model to. This model uses two separate sub-models to solve
this problem. The result of the first model is used as input for the second model. In this way, some of
the complexity of the problem can be split into two models, making both problems significantly faster to
optimize, at the cost of optimality. For the sake of confidentiality, the full model description is omitted
from this thesis.

Subtype assignment model

This model determines which aircraft subtype is to be used on which rotations, to minimize the total
operational costs, without considering the delay costs. To ensure feasibility of the subtype assignment
in the final solution schedule, the model actually assigns an aircraft to every rotation, creating a fully
feasible solution schedule. The subtypes of the assigned aircraft in this model are used as input for the
next model, the robust model.

Robust model

This model is used for aircraft assignment. It determines which aircraft is to be used on which rotation,
given the assigned subtype by the subtype assignment model solution. It aims to minimize operational
costs, while also improving the overall robustness of the schedule in a heuristic way. The schedule is
considered robust if the probability of delay propagation from one rotation to the next is low. This
model uses the delay predictions of the flights to model this robustness.



Towards Incorporating Delay
Propagation

In this section we will give a mathematical description of delay propagation through a schedule, show
why incorporating this propagated delay in an optimization is not an easy task, and give an approach
for approximating the expected costs of delay, including propagated delays, for a solution of the Robust
Tail Assignment problem.

3.1. Mathematical description of delay propagation

If for every flight a probability distribution for the delay of the flight is given, we can mathematically
propagate these distributions through the flight schedule. In this section we will describe the workings
of this propagation.

Assume we know the probability distribution of the delay of any scheduled flight, and that these
distributions are independent. For a flight f € ¥, we denote the delay as a random variable Dy, and the
propagated delay from previous flights by PDy. Let us denote the resulting total delay (arrival delay) as
arandom variable T Dy for every flight f € ¥ . For these random variables the following equation holds:

TDf =PDf+@f (3.1)

Note that the probability distribution of TDy is equal to the convolution of the probability distributions
of PDy and Dy.

To mathematically describe the propagation of the delay, we define the random variables PDg, ¢
for every flight pair (g, f) € ¥ X ¥ and aircraft subtype s € S. This variable holds the propagated
delay of flight f € ¥, if flight ¢ and f are scheduled to be operated in succession by the same aircraft of

subtypes € S. Let 6{ denote the required turnaround time at the airport after a flight f for an aircraft
of subtype s € S. Let stdy and stay denote the scheduled departure and arrival time of flight f. The
following equation relates the variables PD,_ s to the arrival delay of flight g:

PDq_, s = max(stag + TDg + 65 — stdy,0) Vg, fleFXF,s€S (3.2)

Note that a flight f € ¥ has multiple flights g € ¥ that could possibly propagate delay to flight f,
but only one of these connections is realised in a schedule. For every pair of flights (f, g) and subtype
s € S, define xf¢s € {0,1} to equal 1 if flight g follows flight f using the same aircraft with subtype
s € § in the schedule, and 0 if not. Then the following equation selects the correct connection in the
schedule:

PDf= > Xgps-PDgogs VieF (3.3)
g€F ,s€S

17



3.2. Discretization 18

In Equation (3.3), the variables x, s select correct PD,_, ¢ s, that corresponds to the preceding flight
of f, with the correct subtype. Note that in this summation, only one x will equal 1. Also note that for a
long fleetline, the PD of the last flight will be dependent on the distributions of all preceding flights.

By Equation (3.2), the propagated delay of a flight is a summation of two random variables with
some translating. Note that if we get a negative propagated delay, the flight will depart at its scheduled
departing time. Therefore, all the probability of negative propagated delay is assigned to 0 delay using a
max-operation. Note that, if we disregard the max-operation, adding and translating random variables
are operations that can be performed exactly. But, because of the max-operation, calculating these
propagated delay probabilities is not a trivial task. If we consider continuous random variables, the
max-operation sends all probability of negative delay to the exact point 0, giving a mixed distribution
that is partly discrete in the point d = 0, and partly continuous for d > 0. Since performing exact
operations on these mixed random variables is very difficult, it is convenient to approximate these
operations by discretizing the continuous random variables.

3.2. Discretization
To avoid dealing with mixed random variables, we will discretize our continuous random variables. To
discretize the distributions, we define a step size h""? € R, (e.g. h""°" = 1 minute).. Now we can limit
our distributions to only consider values that are multiples of this 17"°". We get the following set of
delay options:

Ty = (t eRst. IneZ:t =n-hProt} (3.4)

Note that the random variables of delay may have an infinite number of these points ¢ € T4/ that
have a positive probability of occurring. To reduce this amount to a finite number, we can limit the
amount of delay options by defining a distribution threshold, the distribution cutoff point p?. Using this
threshold, the set of discrete delay options to consider for the random variable of delay of a flight f €
can be limited by defining:

t;’i” = max (t eT¥ M st P (@f <t) < Pdcp) (35)
{1 := min (t € Tf”’””y st.P(Df2t) < pde) (3.6)
T;lelay ={te Tdelay ¢ ¢ tjnrqin <t< t}nuX} (3.7)

Note that if a random variable already has a lower or upper bound, we can refrain from using " or
t"e¥ respectively. The continuous probability distributions of delay for the flights f € ¥ can now be
discretized by defining the probability mass functions:

hprob prob delay )
pp,(t) =P (t - <Df<t+ ) Ve € T7E\ (i pmoxy (3.8)
(tmin) =PlD, < tmin + hprob (3 9)
Poste ) Fsty 2 .
(#19%) = P [ H10Y — ikl <D (3.10)
pr f = f > f .

Note that the discretized random variables are denoted by Dy for all f € ¥, as opposed to the continuous
random variables Dy.

Example 4.

Let us discretize the probability distribution of expected delay of flight f from the example problem defined in
Example 1, using time-steps hP"°% = 1 minute, and a distribution cutoff point p? = 0.001. The continuous
distribution given is a shifted Gamma distribution, which has a lower bound and no upper bound, so we
calculate

e =min (t € Zs.t. B(Dy, > t) <0.001 =54

Using Definition (3.8) and (3.10), we get the discrete distribution plotted in Figure 3.1. In all the future
examples regarding the problem defined in Example 1, the values hP™°" = 1 and pP = 0.001 are used to
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discretize the probability distributions.

Probability mass function of delay for flight f, after discretization
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Figure 3.1: Discretized delay prediction for flight f1, using 1P"°? = 1 and p9? = 0.001. The original delay distribution for f;
is a shifted Gamma distribution Gamma(6,5)-30, see Figure 2.1.

3.2.1. Delay propagation of discrete delay distributions

Let us revisit the derived equations for propagated delay of continuous distributions as defined in
Section 3.1. Equation (3.1) and (3.3) still hold when we consider discrete random variables Dy for all
f € F. Equation (3.1) can be used to find the delay distribution of total delay for a flight. Note that if
both the random variables PDy and Dy only take delay values in T%¢/*Y, the random variable TDy is
also restricted to delay values in TV,

Equation (3.3) selects the correct PD;_¢ s, that corresponds to the preceding flight of f, with the
correct subtype.

Equation (3.2) calculates the distribution PD_,f s, for flights f,¢ € # and s € S. Note that if
stag + 63 — std ¢ is not a multiple of h#™", using this equation will cause PD,_, s to contain delay
values t not in T9¢/#Y. In this case, we need to round the values to values in T%!*, giving the following
equations for the probability mass function of PD¢_ s:

rob

Dy < stdg —stdy — 05—k +

prp;_,,.(0) = P( ) -P(PDs = k) (3.11)
k: P(PD;=k)>0

pprob Jprob
< Df —(stdg —stag — 05+t —k) <

pro;, . (t) = P( ) -P(PDf = k) Vt e Tl
k: P(PD¢=k)>0

(3.12)

Note that if stag + 0% —std ris a multiple of hPro?, Equation (3.11) and (3.12) do not require any rounding,
and reduce to:

ppo (0= > P(Dy < stdg —stdp -6, — k) - P(PDy = k) (3.13)
k: P(PDy=k)>0
ppD;_g. (H) = Z P(Ds = stdg —stag — 65+t —k) - P(PDs = k) Vt € Ty (3.14)

k: P(PD=k)>0
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Note that if stag + 6% —std ¢ is a multiple of hprob, Equation (3.13) and (3.14) are equivalent to Equation
(3.2).

Example 5.
To prozl))ide some insight into this propagation of delay using Equations (3.1), (3.3), (3.2), (3.13) and (3.14),
let us go over a simple example. We consider two flights f and g scheduled to be operated on aircraft a, where
g is operated right after f. For simplicity sake, we refrain from using actual timestamps, and just use generic
"time-steps”. Let stay = 0, stdgy = 30, 05, = 28. The discrete distributions of PDs and Dy, with hprob — 1
can be found in Table 3.1 and 3.2. Note that the values of stay, stdg and b, are all multiples of hP"°?, so
there is no need for rounding.

Delay | Prob

Delay | Prob -1 0.5
0 0.7 0 0.2
1 0.2 1 0.15
2 0.1 2 0.1
3 0.05
Table 3.1: PDf
Table 3.2: Dy
Delay | Prob
_(} 8§Z Delay | Prob
) 0 0.905
1 0.195 1 0.07
2| on2 2 | on
4 0.02 3 0.005
5 0.005

Table 3.4: max(stuf +PDy + Dy + 6, —stdg,0) = PDg
Table 3.3: (PDf + Df) = TDf

Firstly, we use Equation (3.2) to calculate PDs_, ¢ s. Using the probabilities of delays of PD ¢ and Dy, we
can find the distribution of (PDs + Dy). We get:

P(PDy + Ds = -1) = P(PDy = 0) - P(Dy = 1) = 0.7 - 0.5 = 0.35
P(PDy + Ds = 0) = P(PDy = 0) - P(Df = 0) + P(PDf = 1) - B(Ds = —1)
=07-02+02-05=0.24
P(PDf + Df = 1) = P(PDf = 0) . P(Df = 1) +P(PDf = 1) . P(Df = 0)
+PB(PDf = 2)-P(Ds = -1)
=07-015+02-0.1+0.1-0.5=0.195

In this way we can calculate all the values and probabilities for (PDy + Dy), see Table 3.3. Note that by
Equation (3.1), this is equal to TDy. To find the values for PDg = PDf_,, = max(stag +Ts + 05, —stdg,0),
we first translate this distribution. We have stas + 05, — stdgy = =2, so we translate the values of Ty by two
time-units. After taking the max, we get the distribution found in Table 3.4. Note that we could have also
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used Equation (3.13) and (3.14), giving:

pro, (0= > P(Df <30-0-28—k) PDy(k)
ke{0,1,2}
=P (Dy <2)-PD#(0) + P (Ds < 1) - PD(1) + P (D < 0) - PD4(2)
=0.95-0.7+0.85-0.2+0.7-0.1 = 0.905
pros ()= > P(Dy=30-0-28+1-k) PDy(k)
ke{0,1,2}
=P (Dy =3) - PDf(0) + P(Dy = 2) - PD¢(1) + P (Dy = 1) - PD(2)
=0.05-0.7+0.1-0.2+0.15-0.1 = 0.07
pro, ()= D, P(Df=30-0-28+2-k) PDys(k)
ke{0,1,2}
=P (Df = 4) . PDf(O) +P (Df = 3) . PDf(l) +P (Df = 2) . PDf(Z)
=0-0.7+0.05-0.2+0.1-0.1 = 0.02
proy . (8)= . P(Df=30-0-28+3-k) PDys(k)
ke{0,1,2}
=P (Dy =5) - PD(0) + P(Dy = 4) - PD¢(1) + P (Dy = 3) - PD{(2)
=0-0.7+0-0.2+0.05-0.1 = 0.005

All distributions in this example are also plotted in Figure 3.2.

Probability mass function of delay
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Figure 3.2: Probability mass functions of the random variables evaluated in the example.

Now that we have seen the workings of Equations (3.1), (3.3), (3.2), (3.13) and (3.14), we can apply
these equations to a fleetline of our example problem.

Example 6.
Let us consider the fleetline of aircraft ay for our example problem defined in Example 1, in the solution
schedule from Figure 2.2. The fleetline contains two rotations, r1 and rs. Both rotations contain two flights,



3.2. Discretization 22

where delay may propagate between the flights. Similarly to Example 4, we discretize the delay distributions
of the flights in the fleetline usin§ hProl = 1 and p9P = 0.001, see Figure 3.3. Note that all values defined in
Example 1 are multiples of h*"°", so we can use Equations (3.13) and (3.14).

Since rotation ry is the first rotation in the fleetline of a) we have no propagated delay for f1,i.e. PDp = 0.
Using Equation (3.13) and (3.14), we can calculate the distribution of propagated delays PDy for flights
f € {f2, fs, fo}, see Figure 3.4. We see that for this fleetline, there is only a very small probability of
propagating delay from flight f, to flight fs.

The distributions of the random variables TDy = PDy + Dy for f € {f1, f2, fs, fo} are given in Figure
3.5.

Probability mass function of delay predictions after discretization for flights f, fs, fs and fy
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Figure 3.3: Discretized delay predictions for flights fi, f2, fs and fo, using h?"°" = 1 and p9°? = 0.001.
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Figure 3.4: Propagated delay distributions for flights f>, fg and fg9. The leftmost bars represent the probability of no delay.

The area of the bars are consistent with this probability, which is written inside the bar.

Probability mass functions of total delay for flights fi, fa, fs and fy
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Figure 3.5: Total delay distribution of arrival, for flights f1, f>, fg and fo.
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3.3. Cost of delay

If a flight arrives later than scheduled, the airline has to pay several costs, depending on multiple factors.
Among these factors are the amount of delay, amount of passengers, missed connections of passengers
and expected future value loss. Based on these costs, a cost function based on amount of delay minutes
can be defined for every flight. So we define:

c?my(t) := Cost of flight f € ¥ arriving t minutes late.
Using this definition, the total expected delay cost of a flight f € ¥ is equal to:

E[C?W (max(T Df,O))] = > B(TDy =d)- i (max(d, 0)) (3.15)
dETDf

Note that if a flight arrives earlier than scheduled, it has no delay, so we round negative delays to 0 in
the cost function. The total expected delay cost of a schedule can now be expressed as:

Z E [cj,lemy (maX(TDf,O))] = Z Z P(TDy = d) - c;fd”y(max(d, 0)) (3.16)

feF feF deTDy

Example 7.

Let us again consider the fleetline of ay for our example problem defined in Example 1, in the solution
schedule from Figure 2.2. The expected delay cost of this fleetline is equal to the sum of the expected delay
costs of its flights. Using the distributions found in Figure 3.5 we get:

E ’cjff’“y (max(TDys,0))| = Y B(TDs =d)- ¢! (max(d, 0)) = 10077
) " deTDy,

E ’cf;’”y (max(TDy, 0))| = > | P(TDp, =d) - """ (max(d, 0)) = 137.68
) ) dETDf

E Ec;:lay (max(TDyp,, 0))- = Z 2 P(TDy, = d) - C}i;lay (max(d, 0)) = 72.31
) . dETDf

B[ (max(TDg,, 0))| = 3 | P(TDy, = d) - ¢y " (max(d, 0)) = 106.85
) ) dETng

So the total expected delay cost of the fleetline of a1 is equal to

B [cf™ (max(TDy, 0)) | = 417.61
fetfifafs.fo}




Robust Flow Model

In this chapter a new proposed model for the Robust Tail Assignment problem will be motivated and
described. In the first section, various model approaches are discussed. In the later sections, the model
will be explained, built and formulated.

4.1. Model approaches

To find a solution that is close to optimal, the delay costs of a solution need to be accurately approximated.
Therefore, it is necessary to incorporate the expected propagated delay distributions for all flights in
the model. The delay costs of flights in the schedule are dependent on all earlier scheduled flights by
propagation of delay. This dependency is the main difficulty of the problem.

One way to solve the problem is by brute force, i.e. trying all possible solutions. For a full schedule
with 1 rotations and m aircraft, we have O((m!)"/™) possible solutions !. For all these solutions, the
total expected costs are to be compared. To find the delay costs of a solution, the propagated delay
distributions for all flights need to be calculated, using Equation (3.2) for every flight. This means we
need to perform these heavy operations on random variables O(# - (m!)"/™) times, which will take a
very long time. Therefore, brute force is not feasible for solving the Robust Tail Assignment problem.

Another approach to solve the problem would be to use dynamic programming. This method
requires the problem to be dividable into nested sub-problems, where the optimal solution of a sub-
problem is also a part of the optimal solution of the whole problem. But, because of the dependencies in
the problem, this is not the case, meaning we cannot use dynamic programming.

As deduced by exploring the brute force approach, calculating the propagated delay distributions
for all possible fleetlines in a solution is not feasible. An approach often used in literature is a column
generating algorithm, using the set partitioning formulation as defined in Section 1.2.1. In this formula-
tion, possible fleetlines correspond to columns in a Mixed-Integer Linear Programming (MIP). Since it
is infeasible to consider all possible fleetlines, columns that can improve the solution are dynamically
added to the linear relaxation of the problem, until no more improving columns exist. At this point
the linear relaxation is optimally solved. A rounding heuristic can be used to round the solution to an
integer solution. Note that, because of this final rounding stage, the optimality is lost.

To find optimal integer solutions, delay propagation and delay costs needs to be incorporated in a
model of the problem. In a solution, the propagation of delay distributions can locally be described as
a dependency of a rotation to the previous and the next rotation. This local relation can be depicted
using a graph of nodes and edges, where nodes correspond to rotations, which are connected by edges

1A full schedule means a schedule where all aircraft are operational most of the time. In the worst case, this schedule consists
of n/m blocks of time (with enough turnaround time for the aircraft in between), where in each of these timeblocks m rotations
are operated by the m aircraft. In that case, each block has a total of m! possible assignments. Since we have #/m independent
blocks, we have a total of (m!)"/™ possible solutions.

25
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that represent the operation of delay propagation. The model described in this thesis is a MIP model.
The model uses a depiction of local dependencies, to accurately approximate the delay propagation
through the entire fleetline. The operations of delay propagation are performed by considering various
states of delay a rotation can reside in, where a state is connected to all states it can possibly transition
into in any solution by directional edges. Probabilities are calculated using flow over these edges. The
probability of a rotation being in a certain state is determined by the flow over its connected edges.
Depending on the assignments of a solution, edges in this network are activated or deactivated, to be
able to approximate the correct delay distributions for that solution. The values of the active edges will
be used to approximate the total expected delay costs of a solution.
The creation of this model will be explained in detail and in small steps in the next sections.

4.2. Aircraft assignment

The Robust Tail Assignment problem is an assignment problem, with the same degree of freedom as the
Non-Robust Tail Assignment problem. Therefore, the base of the model is similar to the Non-Robust
Tail Assignment model, as described in 2.5. For every feasible rotation-aircraft combination, a decision
variable X is created, which can take the binary values 0 and 1:

X,.€{0,1} VreR,acdA,. @.1)

If such a variable X, ; has value 1 in a model solution, rotation  will be assigned to aircraft a is the
schedule. These values form the solution of the model. In a solution, exactly one aircraft needs to be
assigned to every rotation, which can be enforced using the constraints:

Z X,o=1 VreRr. 4.2)

To ensure the assignment costs are optimized for in the model, the sum over these costs for every
assignment variable is added to the objective value:

Z Z RAELED S 4.3)

reR acA,

Finally, to have a solution schedule that is feasible, rotations that will overlap if assigned to the same
aircraft must be forced to be assigned to different aircraft. In the Non-Robust Tail Assignment model
from Section 2.5, this is achieved by finding pairs of rotations that overlap, and defining constraints for
these pairs, see Equation (2.3). Note that if we have k rotations that all overlap with each other, this
requires k - (k —1)/2 = O(k?) constraints per aircraft, while the same can be achieved using one constraint
per aircraft, forcing the sum of the values of X corresponding to this aircraft and the k rotations to be
less than or equal to 1.

To find these sets of overlapping rotations, let us define a small preprocessing algorithm, shown in

Algorithm 2. Since the turnaround time depends on the aircraft subtype, we define the variables RSSWJ

to hold rotation sets, that overlap if two of these rotations are assigned to the same aircraft of subtype s.
The idea of this algorithm is create a running set, adding rotations to this set in chronological order,
based on their std,. If this std, is higher than the sta,; plus turnaround time of any of the rotations
g currently in the running set, these rotations are deleted from the set. In this way the running set
always contains rotations that all overlap with each other, for which we can create a single constraint
per aircraft.

What remains is to define the corresponding feasibility constraints:

> Xu<1  VaedArseRSI. (44)

rers,s.t. aeA,



4.2. Aircraft assignment 27

Algorithm 2 Determine overlapping rotations

RSSUIP < empty set that will hold rotation sets Vs € S
sortedList « list of all rotations r € R, sorted by std,
runningSets < empty set that will hold the running sets Vs € S
forr € sortedList do
fors € S, do
toDelete < empty set that will hold rotations to be deleted
for g € runningSets do
if stay + 60 < std, then
add g to toDelete
end if
end for
if [toDelete| > 0 then
ovlp

add runningSets to RS
end if
for g € toDelete do
delete g from runningSets
end for
add r to runningSet,
end for
: end for
: fors € S do

if runningSet; ¢ ngvlp then

add runningSet; to RSZUIP

end if
: end for l
. return RS, Vs €S

NN NN N NN R &2 92 /3 9
SARQD NS0 PIT RPN

Example 8.
We apply Algorithm 2 to create feasibility constraints for our example problem, as defined in Example 1.
We loop over the rotations in order of std, so we start with ri. We have S, = {s1,s2}. The sets
runningSet,, and runningSets, are intially empty, so after evaluating r1 we have:

runningSets, = runningSets, = {r1}

Now ry is evaluated. We have sta,, + 62, =125+ 25 > 5 = std,, and sta,, + 63, = 125 +30 > 5 = std,,,
so no rotations are to be deleted from the running sets. We get:

runningSets, = runningSets, = {r1, 12}
After evaluating r3, we have:
runningSets, = runningSets, = {r1,r2, 13}
Evaluating r4, we only loop over S,, = {s1}. We have:

stap, + 6% =125+ 25 < 205 = std,,
star, + 63 =175 +25 < 205 = std,,
stap, + 062 =240 + 25 > 205 = std,,

We now have toDelete = {r1, 12}, so by line 12-18 of the algorithm, we get nglvlp = {{1’1, o, 1*3}}, and
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runningSets, = {r3, r4}. Looping over the last three rotations rs, re and ry, we end up with the sets:

1
RSP = {{r1, 12,73}, {r3, 14, 15}}

1
RS ={{r1, 12, 13}, {r3,15}}
runningSets, = {rs, 16,17}
runningSets, = {rs, 6,17}

In lines 21-25, these final running sets are added to the overlapping sets, and we get:

I
RSP = {{r1, 12,73}, {r3,ra, 15}, {rs, 76, 17} }

!
RSV = {{r, 12,13}, {r3, 15}, {rs, 16, 17}}
Now, we can define the feasibility constraints for the example problem, using Equation (4.4):

Xiay + Xryyan + Xpyan <1
X oy + Xiyyay + Xpyay <1

Xiyay + Xrs,ay <1
Xrsay + Xryag + Xps,ay <1

Xiyay + Xps,ay <1
Xysay + Xegay + Xpppay <1
Xysay + Xrgan + Xpyay <1
Xysay + Xrgay + Xppay <1

Xrja + Xy + Xig ey <1

Note that only 9 constraints are required, as opposed to 23 constraints if we create overlapping constraint per
pair of rotations.

4.3. Delay propagation by flow

As described in Section 3, subsequent flights assigned to the same aircraft may propagate delay. This
section will describe a way to estimate the expected delay costs of a schedule, taking into account this
delay propagation, using a flow network. Firstly, Section 4.3.1 describes what a flow network is. Section
4.3.2 describes how a flow network can be used to model propagation of probabilities. Then, in Section
4.3.3, an algorithm for determining the pairs of rotations that may propagate delay is given. Finally, in
Section 4.4, the necessary steps for creating the network are described. Section 4.5.2 will contain the
mathematical formulation of the model.

4.3.1. Flow network

In graph theory, a flow network is a directed graph containing nodes and edges. Every edge receives a
flow value, which cannot exceed the capacity of the edge. This flow must satisfy the flow propagation
restriction, which means that in every node that is not a source or sink, the sum of flows of incoming
edges is equal to the sum of flows of outgoing edges. A source node has a predefined total outgoing
flow, while a sink node has a predefined total incoming flow.

4.3.2. Network description

The general idea of this network is to create a network of connected nodes, corresponding to departure
and arrival timestamps for every rotation, with directional edges between nodes, where flow represents
probability. The network will contain states as nodes, where the flow though these nodes corresponds
to the probability that this state occurs. These state nodes will be subtype dependent, since the subtype
of the assigned has an impact on the turnaround time of the aircraft between flights, and therefore has
an impact on the delay propagation. Edges in this network will be activated based on the assignments
created by the assignment decision variables of the base model, using constraints. To ensure conservation
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of probability, for every node the outgoing probability should be equal to the incoming probability,
which can also be achieved by constraints.

For this model, instead of the actual timestamps, let us consider the relative time compared to the
start of the schedule, in minutes. For example, for a schedule that starts on January 1st at 00:00, the
timestamp 01/01 01:10 will have a relative time of 60 + 10 = 70 minutes. This means that we will refer to
this timestep as t = 70.

The nodes in this network correspond to timestep states where a rotation can possibly start or end,
and are subtype dependent. We will denote these nodes by (t,7,s),t € T,r € R,s € S;. There are
two types of nodes, departure state nodes and arrival state nodes, for every rotation. We denote the

departure and arrival state nodes for a rotation r € R and subtype s € S by fop and N/!”, respectively.

The nodes in Nfl:p represent the states of departure for rotation r, so anode (¢,7,s) € fop corresponds
to the state that rotation r departs at timestep ¢ on an aircraft of subtype s. Similarly, the nodes in
N/ represent the states of arrival for rotation 7, so anode (t,7,s) € N corresponds to the state that
rotation r arrives at timestep ¢ on an aircraft of subtype s. For this model, we incorporate the turnaround
time at the hub airport into the arrival states. This means a state (¢,7,s) € N/" indicates the assigned
aircraft is ready for the next rotation at timestep £.

These nodes are connected by edges, that can take any value between 0 and 1, corresponding to
probabilities. There are two types of edges, edges between rotations and edges within rotations. Edges
between rotations connect arrival state nodes of one rotation to departure state nodes of another rotation.
Edges within rotations connect departure state nodes to arrival state nodes. Nodes are only connected
by edges if the transition of states from the outgoing state node to the incoming state node is feasible
and has a positive probability of happening, based on the delay predictions. Precisely how this is
determined, will be described in the following sections.

The total incoming flow into a node (t,7,s) € N fl:p represents the probability that rotation r departs
at timestep ¢ on an aircraft of subtype s, i.e. P (tf 7 =t A assigned subtype = s). Note that if, in a

solution, an aircraft with another subtype is assigned, this probability will be equal to 0, thus the node
should have no incoming flow. Similarly, the total incoming flow into a node (¢, 7,s) € N2 represents
the probability that rotation r is turned around at the hub station at timestep ¢ on an aircraft of subtype
s:

P(t/"" =t A assigned subtype =s).

An edge between two nodes represents the probability that the first and the second event happen. As
we have seen in Section 2.2, within a single rotation, the delay probabilities of the arrival of the last
flight in the rotation are solely dependent on the probabilities of the departure of the first flight in the
rotation (propagated delay from previous rotations), and the subtype of the assigned aircraft. Therefore,
we create edges that are subtype specific. That way, we can preprocess all delay propagation within

every rotation. For example, an edge from a node (f1,7,s) € Nfl:p to anode (f,7,s) € N/I" represents
the probability:

P (tfw =t At =ty A assigned subtype = s)

=P (tf” = b7 = b, assigned subtype = s) P (tfep = t; A assigned subtype = s) . (4.5)

The probability P (t;"r = tzltf P = 11, assigned subtype = s) can be calculated in preprocessing, us-

ing Equations (3.13) and (3.14) from Section 2.2, while the probability P (tf P = 11| assigned subtype = s)

is equal to the incoming flow from edges corresponding to subtype s in the node (t1, 7, s). Therefore,
we can enforce the right amount of flow into the corresponding edge ((t1, 1), (t2,7), s), using a linear
constraint. These constraints, and this preprocessing step will be further explained in Section 4.4.2

Edges between arrival states of a rotation N/ and departure states of another rotation Nrd;sp are
quite straightforward. For every rotation pair (r1, r2) and subtype s for which r; — r; is a feasible

connection on an aircraft of subtype s, we create edges. Every arrival state (t1,71,5) € N;] is connected

to the first feasible departure state (tp,12,5) € N ,dfsp. This means we take the minimum t,, such that
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(tz,12,8) €N, fl;sp and f; > t1, meaning it is a feasible connection. If rotations r; and r; are assigned to
be operated in succession on the same aircraft of subtype s by the decision variables, these edges are
activated. If this is not the case, these edges are set to 0.

4.3.3. Propagation pairs

If we consider this network for delay propagation, we need to connect the arrival state nodes of a
rotation scheduled early in the day to departure state nodes of all feasible rotations that can be scheduled
directly after this rotation. This means we need to create a great number of edges between rotations,
creating many variables. Having many variables will cause the model to be more difficult to solve,
impacting the optimization speed. Since for a lot of these connections, the probability of propagating
delay is very small or even negligible, we might be able to disregard these connections, and reduce
the number of edges in the network, speeding up the optimization. To accomplish this, let us set a
threshold of probability, where if a connection in the worst-case scenario has a probability of delay
propagation lower than this threshold, we disregard the connection. We will call this threshold the
propagation cutoff point or pP°?. So, for a connection between two rotations r1 and r,, we consider the
worst-case scenario of propagated delay for rotation rq. If we assign r, to be operated right after
r1, and the probability of r; having any propagated delay from r; is smaller than pP?, we do not
connect arrival state nodes of r; to departure state nodes of r,. If we do assign these rotations to the
same aircraft, we send all probability from arrival state nodes of r; to a sink and let the departure
state node of 1, that corresponds to no delay be a source of 1 flow, disregarding the propagated de-
lay probability. In this way, the number of edges between rotations in the network can be greatly reduced.

To determine which pairs of rotation do need to be connected by edges, and to determine the
possible departure and arrival states options that need to be considered for every rotation, we need
to know exactly how much delay can be propagated from previous rotations. Let us define a small
pre-processing algorithm to determine the maximum timestep where these rotations can arrive over all
possible assignments, as well as the maximum timestep where the threshold p”? is passed, using the
given probability distributions of delay.

For every feasible rotation-aircraft combination (r,a),r € R,a € A,, we define the variables

pep

arr tmax,, as:

de
tmaxmp,tmaxm ,

d . . . .
tmax,,” The maximum timestep where rotation r can depart if

assigned to aircraft a, considering possible propagated delays.

tmax;,” The maximum timestep where rotation r can be turned around

at the hub airport if assigned to aircraft a, considering possible

propagated delays.

tmaxl;” The maximum timestep where the p”*? threshold is passed,

considering possible propagated delays.

Since for a rotation r € R, the time-steps tmaxif P and tmax!,;" only depend on rotations g that are
scheduled to arrive before r departs in the schedule, we can determine these time-steps by evaluating
the rotations in order of increasing std. Note that the time-steps tmax",” depend on the full worst-case
probability distribution of propagated delay of r, it is dependent all the distributions of previous
rotations. To simplify this, we will only consider the worst-case mean value (meanProp,,) of the
propagated delay from previous rotations to calculate this value.

Using these variables, we can define an algorithm that can be used to determine all values of tmaxif 7,

tmax?" and tmaxty’, see Algorithm 3.

First, for every rotation r € R, the maximum duration of the flights (du r;”" ) is determined, based on
the delay predictions of these flights. Also, a list of all rotations (sortedList) is created, sorted by std.
For every rotation-aircraft combination (r,a),r € R, a € A, we initially save the worst-case mean of
propagated delay as meanProp,, = 0. Also, an empty set propPairs is created, which will hold pairs of
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rotations with aircraft subtypes, for which we need to create edges.

Algorithm 3 Determine propagation pairs
J’Z“”‘ — stay —stdy + max(Dy) VfeF

dur

1:
2: sortedList « list of all rotations r € R, sorted by std,
3. propPairs « empty set that will hold tuples (r1, 72, s) to create edges for
4: tmaxfﬁp «— std, VreR,a €A,
5. tmax?" « sta, VreR,aeA,
6 tmaxl,’ «—0 VreR,aeA,

7: meanProp,, < 0 VreR,aeA,

8: forr € sortedList do

9

fora € A, do
10: maxMean, « std,
11: for g € sortedList., do
12 if g — r is feasible & tmaxsflp > std, then
13: add (q,r,s,) to propPairs
14: maxMean, «— max(maxMean,, meanPropqa)
15: if 7 is a maintenance block then

dep dep

16: tmax,, «— max(tmax,,”, tmaxgg
17: else
18: tmaxf,fp — max(tmaxifp,min(tmax%r, std, +120))
19: end if
20: end if
21: end for
22: if 7 contains two flights, fi, f>. then
23: tmaxd’" — max(stdy,, tmax®? + dur™ + 6 ) + durp®™ + 6
24: Dmax;;" = max(maxMean, + Dy, +stap —stdg + 6F ,stdp,)+
25: Dy, +stag, —stdg, + 62
26: else > 7 is a maintenance block
27: tmax® — tmaxt? + dur ™ + 6
28: Dmax®" « maxMean, + Dy, + sta, — std, + 62,
29: end if
30: meanPropy, < E[Dmax?]"
31: tmaxh," = min(t € T s.t. P(Dmax®" > t) < pPeP)
32: end for
33: end for

34: return tmax®?, tmax®", tmaxpe?, propPairs
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Let us again consider a simple example, to illustrate the workings of Algorithm 3.

Example 9.

Let us again consider the example problem defined in Example 1, to illustrate the workings of Algorithm 3.
The probability distributions of delay are discretized using h?"°® = 1 and p?? = 0.001, as in Example 4.
For the algorithm, we take propagation cutoff point p?P = 0.05. This means that only connections with a
probability of propagated delay higher than 5% are considered in the model. First we sort the rotations by std,
and get:

sortedList = [r,12,73,74,75,76]

We loop over sortedList, starting with r1. Rotation r1 can be operated by all aircraft, so we loop over
[a1, a2, a3]. By line 10 we get:

maxMeang,, < std, =0
There are no rotations in sortedList before rq, lines 11 to 21 are skipped. This means that we have
tmax’? = std,, =0.

rai
Rotation rq contains two flights, fi and f,, so in line 22 to 31 we calculate:

tmaxyl, < max(stdy, tmaxff,z + durj'Z]’“x + 6;1) + dur};l“" + 62“
= max(80, 0 + 99 + 30) + 105 + 25 = 259
Dmaxj; < max(maxMean, o, + Dg +stay —stdp + g ,stdp) + Dp, +stay, —stdy, + 62ﬂ

max(0 + Dy +45 -0+ 30,80) + Dy, + 125 -80 + 25
= max(Dy, +75,80) + Dy, +70

meanPropy, o, < E[Dmax})”

= E[max(Dy, +75,80) + Dy, +70] = 158
tmax!l «— min(t € T s.t ((Dmax®" > t) < pP¥?)

= min(t € T s.t P(max(Dy, +75,80) + Df, +70 > t) < 0.05) = 182

Similarly, we find the values for the pairs (r1, a2), (1, a3), as well as all the pairs with ry and rs, since they
have no feasible preceding rotations. For these values, see Table 4.1.

Next, rotation r4 is considered. This rotation is a maintenance block for aircraft a, so we loop over [az].
By line 10 we get:
maxMean,, « std,, =205

Rotations r1 and ry are feasible to be operated before r4, and we have tmax!.) = 182 < 205 and

tmaxl;} =313 > 205, so by line 12, we only operate lines 13 to 19 for rotation ro. We get:

(r2, 14,51) is added to propPairs
maxMean,, « max(205, 250) = 250
Rotation ry is a maintenance block, so we get:
tmaxieh — max(205,460) = 460

Then, lines 22 to 31 are operated in the same way as before. Repeating this process for all rotations and
aircraft, we get the values as found in Table 4.1. The propagation pairs that are saved by the algorithm are:

propPairs = {(rp, ra,51),(r2, 15, 51), (r2, 5,52), (2, 76, 51), (*2, 76, 52),
(r3,76,51),(r3,76,52), (14, 76,51), (14,77,51)}

Figure 4.1 shows the propagation pairs as arrows between rotation blocks.
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pep

Rotation r | Aircraft a tmax;is tmaxi" | tmax,, meanProp;,
1 ai 0 259 182 158
" s 0 259 182 158
r1 a3 0 269 190 164
P 0 5 460 313 250
1 ap 5 460 313 250
r) a3 5 470 322 259
3 ai 10 416 306 274
s s 10 416 306 274
r3 a3 10 426 314 280
T4 ap 460 530 383 320
r5 ai 330 709 515 468
r5 ap 330 709 515 468
rs a3 330 724 539 490
16 ai 410 757 534 510
re s 410 757 558 519
T6 as 410 762 539 515
p 0 350 609 542 524
r7 ap 470 729 542 524
ry a3 350 614 547 529

Table 4.1: Values of tmax'f; P tmax®" and tmax?," in minutes for the example problem, found using Algorithm 3.

0 100 200 300 400 500

time

) 4

i »—‘ =3 i |
‘ 3 ): 7
Figure 4.1: Visualisation of the propagation pairs propPairs, found using Algorithm 3. The arrows correspond to feasible

connections that have a significant probability of propagating delay, if assigned to the same aircraft. The color of the arrows
corresponds to the aircraft subtype.

v

Using the values found using Algorithm 3, we can easily define all the possible departure and arrival
state options for every rotation, which will be described in the next section.

4.4. Network creation

This section describes the creation of the delay propagation network, using the results of Algorithm 3.
First, we define a constant step size h* teP in minutes, which we use for the discrete departure and

arrival state nodes of the rotations.
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4.4.1. Nodes
Using the values found using pre-processing Algorithm 3, we can create the nodes of the network. For
every rotation r € R and subtype s € S,, we define:

NP .= ((std,,r,5)}
U {(t,r,s) st.t=0 mod k', std, <t < mg{xtmaxf:;p + hStep/Z} (4.6)
acA;

N = {(star + 6ga, r,s)}

U {(t,r,s) st.t=0 mod K,

sta, +0° <t < min (maxtmax,”;r, max  max t;i;p + hm”) + hSteP/Z} 4.7)
4 aeA; gs.t. aeA;
(r,9,5)€propPairs

Nir= | ] NP 4.8)
reR,s€S,

NeT= ) N (4.9)
reR,s€S,

N := NP y N¥7 (4.10)

Firstly, regardless of the step size hster  for every rotation r € R and subtype s € S;, anode (std,, r,s)
is created, corresponding to the scheduled time of departure, which is added to fop . Similarly the

nodes (sta, + 62 ,7,s) are created and added corresponding N//". These nodes are the earliest possible
departure and arrival states to consider, since a rotation is not allowed to depart before its scheduled
time, and two rotations are only assigned to the same aircraft if the connection is feasible, meaning it is
not necessary to consider earlier arrival times. We can simply round earlier arrival time states up to the
sta, + 6! states.

Note that for the other state nodes, the timesteps are multiples of #°/°7, so they are globally rounded,
which will make it easier to define edges between rotations. Departure state nodes are created for
all globally rounded possible time steps, as found by Algorithm 3. For the arrival states, we take a
minimum, to reduce unnecessary states. If for a rotation the maximum timestep of the departure states
of its propagation pairs is later than the maximum arrival state timestep, this means all states between
these timesteps will result in a reserve aircraft being used, if this pair is connected. Therefore, we only
need to create a single state that represents these reserve aircraft states. Also note that if a rotation has no
outgoing propagation pairs, only one arrival state node is created, corresponding to the sta of the rotation.

Example 10.
Using Definitions (4.6) and (4.7), we can determine the state nodes for our example problem, defined in

Example 1. For this example, let us take a stepsize of h°'°P = 15 minutes. First, let us consider rotation ry.

de de de
We have tmaxrl[z = tmaxﬁ;; = tmaxm:; = 0, so we get:

de
er,fl = {(01 rllsl)}
NiT = {(0, 71, 52)}

11,52

Rotation r1 has no outgoing propagation pair for s1 and sy, so we get:

FJuﬂ‘ = {(150,71,51)}

1,51

N5, ={(155, 11, 52)}

r1,52
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. de de de
For rotation rp, we have tmax,zf1 = tmaxrzfz = tmaxmf; =5, so we get:

d
NV;Z] = {(5/ r2, Sl)}

NP = {(5,12,52))

12,82

Rotations ro has three outgoing pairs for s1, and two outgoing pairs for s, where:

d d d d d d
max  max taa, = MaX(tryar, trsans Eragas Ereans Eross) = Max(460, 330, 330, 410, 410) = 460
qst. a€A,
(r.,q,51)€propPairs 1

d d d
max max tq;l’ = max(tr:aiz, tr:;z) = max(330,410) = 410
qs.t. a€As,
(rp,q,52)€propPairs

tmax®’ = tmax®¥" =460 and tmax®" = 470, so we get:
r2a1 1202 r2as3

Nfzrrgl = {(200, ra, Sl), (210, ra, Sl), (225, I, Sl), (240, ra2, 51), (255, T, Sl), (270, ra, Sl), (285, ra, Sl),
(300, 12, s1), (315, 72, 51), (330, r2, 51), (345, 12, 51), (360, 12, 51), (375, 72, 51), (390, 12, 51),
(405, T2, S1), (420, 2, Sl), (435, 12, 51), (450, T2, 51), (465, ra2, Sl), }

NG, ={(205,12,52), (210, 12, 52), (225, 12, 52), (240, 12, 52), (255, 12, 52), (270, 12, 52), (285, 12, 52),
(300, ra, 52), (315, T2, Sz), (330, ra, Sz), (345, 2, Sz), (360, ra, Sz), (375, ra, Sz), (390, T2, Sz),
(405, 12, s2), (420, 12, s2)}

Similarly, nodes are created for the other rotations. All nodes created for this problem can be found in Tables
4.2 and 4.3.

Rotation r | Subtype s Timesteps t, s.t. (t,7,s) € Nf esp

1 S1 0

r S 0

) S1 5

ry S 5

r3 51 10

r3 52 10

74 s1 205, 210, 225, 240, 255, 270, 285, 300, 315,

330, 345, 360, 375, 390, 405, 420, 435, 450, 465

15 s1 210, 225, 240, 255, 270, 285, 300, 315, 330
5 S 210, 225, 240, 255, 270, 285, 300, 315, 330
6 $1 290, 300, 315, 330, 345, 360, 375, 390, 405
6 S 290, 300, 315, 330, 345, 360, 375, 390, 405
7 $1 350, 360, 375, 390, 405, 420, 435, 450, 465
ry S 350

Table 4.2: All departure state nodes in the Robust Flow Model network for the example problem.
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Rotation | Subtype s Timesteps t, s.t. (t,7,5) € N/
r S1 150
1 kb 155
7 51 200, 210, 225, 240, 255, 270, 285, 300,315,330,
345, 360, 375, 390, 405, 420, 435, 450, 465
) So 205, 210, 225, 240, 255, 270, 285, 300, 315, 330,
345, 360, 375, 390, 405, 420
3 S1 265, 270, 285, 300, 315, 330, 345, 360, 375, 390, 405, 420
3 So 270, 285, 300, 315, 330, 345, 360, 375, 390, 405, 420
74 S1 275, 285, 300, 315, 330, 345, 360, 375, 390, 405
420, 435, 450, 465, 480
rs S1 440
rs 52 445
76 S1 505
Tre S 510
ry S1 520
r7 S 525
Table 4.3: All arrival state nodes in the Robust Flow Model network for the example problem.

4.4.2. Edges

We need to define two sets of edges, between rotations and within rotations. First, for every rotation
r € R and subtype s € S,, let us define:

T =t st (1,5 € NP (4.11)
T = {t st (tr,s)e NI (412)

Now, for every rotation pair with subtype (r1,12,5) € propPairs, let us define the edges between
rotations as:

EVOP = {((t, r,s),(t,12,5) Ve T T;ji’”} 4.13)
U {((t,rl,s), (stdy,, 12,5)) Vt < stdy, € TO\T } (4.14)
U{((t,1,9), (stdry, 12,9)) Vit 2 max(Ti), € T} (4.15)

The first set of edges (4.13) connects arrival states and departure states of the two rotations in a
propagation pair with the same subtype, corresponding to the exact same time steps. The second set of
edges (4.14) connects arrival states and departure states of the two rotations in a propagation pair with
the same subtype, where the second rotation departs on time. The last set of edges (4.15) corresponds to
reserve aircraft edges, where the first rotations causes more than 120 minutes of delay for the second
rotation, so a reserve aircraft is used. To be able to use this reserve aircraft set in our objective function,
let us define

Ejeserve = {((t,rl,S),(stdrz,rz,S)) vt > max(T'), t € Tflif} V(r1,r2,5) € propPairs  (4.16)
E?’(’SCVUC — U E;lesri;f'éli’ (4.17)

(r1,r2,5)€propPairs
For every rotation r € R, we define the edges within this rotation as:
El% = {((t1,7,5), (t2, 7,5)) Vh € Tl ty e TU
if P (tz — B8P < 07T <ty + h5t8p|tf€p = t1, subtype = s) > O} (4.18)

Note that the probability P (tz — RSP < 40T <y + BStP|HEY = 1y, subtype = s) is dependent on

the distribution of all flights in the rotation. The calculations that need to be done to find this probability
use Equations (3.13) and (3.14), as defined in Section 2.2.
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Creating edges within a maintenance rotation is treated as a special case, since a maintenance
block has no available delay prediction. This means these block are assumed to have the trivial delay
distribution Dy =0, i.e. P (D = 0) = 1. If the duration of this maintenance (including turnaround time)
is not an exact multiple of the defined step size h*'??, using Definition (4.22) will cause departure states
corresponding to 4 minutes of delay to either be rounded up or down to an arrival state corresponding to
d’ # d minutes. Because of the trivial delay distribution, this rounding will be the same for all departure
states corresponding to delay. This will cause the delay propagation in these blocks to be inaccurate.

To avoid this inaccuracy, in this case we will create two edges for every departure state node, to both
the arrival state nodes corresponding to delay minutes closest to d minutes (rounded up and down).
The probability of this departure state will be linearly split over these nodes, based on the distance to
the exact amount of delay minutes d of the departure state, using a constraint which we will formulate
later. In this way, delay propagation is maintenance blocks will be more accurate.

Besides these edges, we also create edges from and to the sink and source respectively. If a rotation
has no propagated delay coming from previously assigned rotation, its departure state corresponding
to no delay needs to get a probability of 1 from the source. To achieve this, we define the edges:

E;J"e .= {(source, (std,,r,s)) VreR,s €S} (4.19)

If a rotation is not connected to any of its outgoing propagation pairs, we need to let all the probability
flow away into the sink, since no delay will be propagated. The delay costs used in the objective value
are imposed on edges towards departure state nodes, which will be explained in the next section. For
this reason, in the case of no outgoing propagation pairs, probability can flow from these departure
states directly to the sink. So we can define the edges to the sink as:

Eﬁé”k{((t, r,8),sink) VreR,s eS8, (t,r,s)"" e N}’ (4.20)

Let us define the sets

EPrOp .— U EP'P 4.21)
r1,r2,5€propPairs

Erot .= U El% 4.22)
reR,seS,

ESource . U E;fist (4‘23)
reR,seS,

Esink .— U E:f’st (4.24)
reR,seS,

E := EPTop (y Erot y psource | Esink (4.25)

Ef := {(v1,v2) € EP"P UES"'° . 9y =0} Vo € NP (4.26)

E} == {(v1,v2) € E"" vy =v} Vove NV’ (4.27)

E; = {(v1,v2) € E' UES . vy =0} Vo e N9 (4.28)

E, :={(v1,v2) € EF'? : vy = v} Vv e N (4.29)

Example 11.

Let us again consider the example defined in Example 1, and use Definitions (4.13), (4.14), (4.15), (4.19) and
(4.20) to determine the edges in the model. For the definition of the nodes in the model, see Example 10. First,
let us consider the edges between rotations. We create edges for all rotation pairs with subtypes in propPairs,
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that we found using Algorithm 3. One of the pairs with subtype to consider is (r4, 16, 51). We have
Tédip = {290, 300, 315, 330, 345, 360, 375, 390, 405}
T, = {275,285,300, 315, 330, 345, 360, 375, 390, 405, 420, 435, 450, 465, 480}
i AT = {300,315, 330,345, 360, 375, 390, 405}

arr d"p) — 7
(TivTeh g, = 1275.285)
de
THT\T, p) = {420,435, 450, 465, 480
( 4161 J5std,, +120 { }
So, we get

EZ;Of := {((300, 74, 51), (300, 76, 51)),
((315, 14, 51), (315, 76, 51)),
((330, 74, 51), (330, 76, 51)),
((345, 74, 51), (345, 16, 51)),
((360, r4, 51), (360, 76, 51)),
((375,14,81), (375, 16, 51)),
((390, 74, 51), (390, 76, 51)),
((405, r4,51), (405,76, 51))}

U {((275,14,51), (290, 76, 51)),
((285, 14, 51), (290, 76, 51)),
U {((420,74,51), (195,76, 51)),
((435, T4, 51), (290, re, Sl)),
((450, 74, 51), (290, 76, 51)),
((465, 14, 51), (290, 16, 51)),
((480, r4,51),(290, 76, 51))}

Next, we consider the edges within rotations. For example, rotation 2 has edges from (5, 1, s1) to all nodes
(t,r2,51) € NG, as all the corresponding state transitions have a positive probability.

Rotation 4 is a maintenance block, which has no delay prediction. This maintenance is scheduled to take
65 minutes plus a turnaround time of 30 minutes, while the state nodes correspond to times globally rounded
to 15 minutes. Since 105 is not exactly divisible by 15, this block is treated as a special case, and we will
create two edges for every departure state node. For example, the node (210, r4, 51)? has a probability of 1
to have arrival state (305, r4,51)""", but this node does not exist. The closest arrival state nodes are the nodes
(300, 14, 51)"" and (315, r4, 51)*", so we will connect the departure node to both these nodes.

Finally edges from the source and to the sink are created. All edges can be found in Appendix A.3.

The created edges are decision variables in the flow network, which can take any value in the interval
[0, 1], corresponding to probabilities. Let these decision variables be defined as:

ev 0, €[0,1]  V(v1,v2) €E (4.30)

To achieve conservation of probability, we need to to have flow propagation in every node, which
can be achieved through the following constraints:

Z evl,vz = Z e'{)],'{)z VU (S N (431)

(v1,v2)€Ey (v1,v2)€E;

The edges within rotations, E™ (4.18), send the probability flowing into the departure state nodes to
possible arrival state nodes, according to the delay distributions of the flights within the rotation. By the
previously defined Constraints (4.31), there is flow propagation in the departure state nodes. In order to
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assign the correct amount of flow to outgoing edges of these nodes, this incoming flow needs to be split
over these edges in the correct amounts. To achieve this, constraints can be used that enforce the ratio of
flow values between these edges to be consistent with the correct probabilities.

Example 12.
For example, suppose we have a departure state (¢, r, s)dgp that can transition into three states (t1,r,s)"",
(t2,7,5)"" and (t3,r,s)*" with probabilities:

P((t,7,5)""|(t,7,5)™F) = 0.5

P((t2, 7,5)" |(t, 7,5)"") = 0.3

P((t3,7,8)""|(t, 7,5)%P) = 0.2
To ensure the incoming flow in node (t1,r,s)""" is split correctly over the three edges, the ratios need to be
consistent with these probabilities. We can use the following constraints:

e(t,r,s)d”’,(h,r,s)“” N 03 = E(t’rls)dpp/(tZ/r’s)urr : 05

e(t,r,s)d”?’,(tz,r,s)“” . 02 = e(t,y,s)d"”,(tg,r,s)“” : 03

e(t,r,s)d“#’,(tl,r,s)”” . 02 = e(t,r,s)d"?’,(tg,r,s)ﬂ” : 05

Note that the third constraint in the above example is implied by the first two constraints, meaning we
can omit this constraint. In fact, if we have n possible arrival states a departure state can transition into,
we can arbitrarily choose one such state, and relate the edge towards this state node to all other edges.
So, in general, let us define the following probability splitting constraints:

VreR,seS,, ter e TP .

Pick an arbitrary ty € T%'", such that P((to, 7, )" |(t%?, r,5)7") > 0

d
Vti € Trsgp\{tO} :
e(td"p,r,S)dﬁp,(i‘i,}’,S)“” . P((to, 1’, S)Hryl(tdep, 1’, S)dep)
= E(tdep,rls)dyp/(to,r’s)urr . P((tl, r, S)ﬂTV |(td6p, r, S)dep) (432)

The values of the probabilities P((t“”, r,s)MT|(t4eP, ¥, 5)dep ) can again be calculated using Equations

3.13 and 3.14, in preprocessing. By these equations, the following holds for a rotation containing two
flights, f1 and f;, if assigned to an aircraft of subtype s; € S;:

TDfZ = Psz + sz
= max(stay, + PDy, + Dy, + 61 —stdj,,0)+ Dy, (4.33)
(4.34)

Note that if we want to calculate the values of P((t*"",r,s)"" |(t%P, r,s)%"), we are given PDy, =
t7 — stdy, and s1 = s, so we get the following:

(TDAIE, 7,57 ) = max(stag + +7 = stdg + Dy, +of' = stdg,0)+ Dy (4.35)

Since we created distinct arrival state nodes using Definition (4.7), with a step size of h°/°7, the following
holds for most of the nodes (t*'",r,s)*"":

P((turr, r, S)arrl(tdep/ r, S)dep)

= P(7 — h*'P < stay, + 60 + (TDf2|(tde”, r,s)"’ep) < U7 4 pteP) (4.36)

In Definition (4.7), we took the minimum of two values as an upper bound for ¢, which may cause higher
values of the distribution of (TD b (4¢P, r, s)de P) to not be considered in these probabilities. Therefore,
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for the latest arrival state node, we omit the upper bound in the calculation of this probability. So for

the latest arrival state node (¢"%*,r,s)*" € N}, we get:

P((tmax, r, S)arrl(tdep, r, S)dep)

= P(£"9 — 1St < stap, + 60 + (TDf2|(tdf-’P, r,s)dfp) ) (4.37)

Similarly, we need to round all probability of a negative arrival delay to the first arrival state node.
Additionally, since the difference in time between the first and second arrival state node is not necessarily
equal to h°'°?, we need to adjust the bounds for these nodes, so they do not overlap. For the first arrival
state node (t°, 7, 5)?"" and the second arrival state nodes (¢!, r, s)*", we get:

= P(stay, + 60 + (TDf2|(td€P, r,s)%P < min(t0 + hter 1 — hsfep)) ) (4.38)
P((tl, r, S)arr|(tdep’ r, S)dep)
= P(min(t? + 1517, £ — B1P) < stag, + 60 + (TDf2|(tde”, r,s)tr <l 4 hsfef’) ) (4.39)

There are two special cases to these equations. If a departure state node is connected to only one arrival
state node, naturally we send all probability from the departure state node to this arrival state node. If a
departure state node is connected to two arrival state nodes, Equation (4.38) holds, but for the second
arrival state node we get a combination of Equation (4.39) and (4.37):

(7, s) " (t7F, 7, 5)"F)

= P(min(t? + 1P, £ = BS1P) < stag, + 60 + (TDf2|(tdEp, y, s)dfp) ) (4.40)

The values of P((t"",r,s)""|(t7, r,s)%F) are calculated for every edge ((t'",r,s)™", (t9°F,r,5)%P) €
E™!, in preprocessing. These values are then used to define the probability splitting constraints (4.32).

4.4.3. Delay costs

To impose delay costs in the objective value of the model, we need to add costs to some of the created
edges. We are given a cost function cdezuy(t) for every flight, which returns the costs of delaying flight f
by ¢ minutes. Since the nodes of our network represent departure and arrival states of rotations, and not
of flights, we can not use this cost function directly. The easiest way to assign delay costs is to calculate
the expected delay costs for both flights in a rotation, given an departure state, and assign this cost to all
edges flowing into this departure state node.

To calculate this cost, Equations (3.2), (3.1) and (3.15) can be used. For an departure state node
(t,r,s) € N%P, where r contains flights f; and f,, we take PDy, = t—stdy,, such that P(PDy, = t—stdy,) =
1. Then Equations (3.2) and (3.1) are used to calculate the probability distributions of TDy, and TDy,.
Using these distributions, the expected delay costs of flights f; and f> can be determined, using Equation
(3.15). The sum of these two values will be imposed as expected delay cost of departure state node
(t,7,5), by adding this cost to all edges flowing into this state node.

For all departure nodes (¢, 7,s) € N%?, this process is performed in preprocessing, and the costs are
saved. To access these values in the model, define a function c¢/@¥m0d¢ (¢ r s), which returns this value
for every node (t,r,s) € Nder,

Example 13.

We calculate the cost of the node (0,11, s1) € NP in our example problem, as defined in Example 1. Rotation
r1 contains two flights, fi and f. We have stdy, = 0, so we take PDy, = 0 — stdy, = 0. The calculations
of TDy, and TDy, if PDy, and rotation ry is assigned an aircraft of subtype s, and the calculations of the
expected delay costs are already performed in Example 6 and Example 7. So, the value that will be imposed to
the node (0, r1, s1) will be equal to cdelaynode( y, s1) = 100.77 + 137.68 = 238.45. All incoming edges for
this node in the model network will have a cost of 238.45.
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4.4.4. Deactivating edges

In order to use the defined network to calculate the delay cost in an optimization model, we need
activate the right edges of the network, based on the selected assignments of aircraft to rotations in the
model. To achieve this, let us define some more variables:

nolncPair, s € {0,1} VreR,s €S, (4.41)
noOutPair, s € {0,1} VreR,s €S, (4.42)
pairey s €{0,1} V(r1,12,5) € propPairs (4.43)

The variables nolncPair, s and noOutPair, s equal 1 if rotation r is assigned to an aircraft of subtype s,
and respectively no incoming or no outgoing propagation pair is assigned to the same aircraft, else
they equal 0. This means that if nolncPair, s = 1 for some r € R, s € S;, rotation r has no probability of
propagated delay in the model. Similarly, if noOutPair, s = 1, rotation r has no chance of propagating
delay to the next rotation in the schedule, in the model. Note that if rotation r is not assigned an aircraft
of subtype s, these variables always equal 0.

If two rotations 11, r, € R are assigned to be consecutively operated on the same aircraft of subtype
s,and (r1,2,s) € propPairs, the variable pair,, , s equals 1, else it equals 0.

Note that these rotations need to be consecutively connected, meaning that if for a propagation
pair (r1, 12, s) € propPairs, there is no rotation assigned to be operated on the same aircraft between
rotations r; and rp. For example, if propPairs contains the propagation pairs (r1, 12, s), (2, 13, s) and
(r1,73,5), and all three rotations r1, r, and r3 are assigned to the same aircraft of subtype s, only the
edges considering the pairs (11, 72, s) and (2, r3, s) should be activated. To achieve this, let us define the
sets:

propPairsffffz"’s := {(r1,13,5) € propPairs s.t. sta,, +6° < std,,} (4.44)
propPairsttt .= {(r1,12,8') € propPairs st. 1y =r,s" = s} (4.45)
propPairsif’sC :={(r1,12,5) € propPairss.t. rp =r,s" = s} (4.46)

Now we can enforce these variables nolncPair, s, noOutPair, s and pair,, r, s to have the correct value
using the following constraints:

Pairy s + Z Pairy s 2 Xna + Xro =1

betw

(r1,r3,5)€propPairs;y 0

Y(r1,12,5) € propPairs,a € A, N A, N A;  (447)

noOutPair, s + Z Pairy, r sy = Z X
(r1,r2,5’)epropPairs?it acA,NA;
VreR,s €8s (4.48)
nolncPair, s + Z Pairy, r, sy = Z X0
(rl,rz,s’)epropPairsif‘f aeA,NA;
VreR,s €S (4.49)

Constraint (4.47) sets the pair variables to 1 if assigned consecutively on the same aircraft of the right
subtype. Constraint (4.48) ensures that precisely one of the variables noOutPair and pair is selected to
equal 1 for the assigned aircraft subtype, and none for the other subtypes. Constraint (4.49) does the
same thing as Constraint (4.48), for the variables nolncPair and pair.

Example 14.
Let us consider our example problem, defined in Example 1. As found in Example 9, we have propagation
pairs:

propPairs ={(r2,14,51),(r2,75,51), (12, 5,52), (r2, 76, 51), (12, 76, 52),
(73/ 76, Sl)/ (1’3, T6, SZ)/ (1’4, Y6, Sl), (r4r ¥y, Sl)}

Note that we have propagation pairs (ro, 14,51), (14, te, 51) and (ro, v, 51). This means, using Definition
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between
12,76,51

(4.44), we have propPairs

set of constaints:

Pairyy ry

pPairy, rss

PaAiTry s s,

PAiTyy rs s,

PAiTry re 51 + PALT 1y 101

PAiTry re.s1 + PAITry 1y s

PAiTry 16 5

PAiTry re 51

PAiTry ro .51

PAiTry 1.5

Pﬂirm,i’e,sl

Pﬂi7r4,r7,sl

noOutPairy, s,

noOQutPair, s,

noOuUtPaity, s, + paire, rys; + PAitry sy + PAiTry 1o 51
noOutPairy, s, + paire, rs,s; + PALTry 159
noOutPairy, s, + paire, rq.s,
noOutPairy, s, + paire, ro s,
HOOULPAITy, 5 + PATTry g5, + PAITr, ) s,
noOutPaity, s,

noOutPaity, s,

noOutPairy, s,

noOutPairy, s,

noOutPairy, g,

noOutPait,, s,

nolncPairy,

nolncPair,, s,

nolncPair,, s,

nolncPair,, s,

nolncPair,, s

nolncPair,, s,

nolncPairy, s, + paire, v, s
nolncPair,, s, + pairy, rs s
nolncPairy, s, + pairy, rs s,
noINCcPairy, s, + pairy, rs) + PAiry, res + PAiTry rgs,
nolncPairy s, + pairy, i s, + PAiTrs 1o s
noIncPairm,sl + Pﬂirm,rmm
nolncPair,, s,

r,',r,',s

2 Xf’zlllz + Xr4,ﬂ2 -

z Xna + Xis,m

2 XVz,ﬂz + erraz -

\%

ra,a3 T Xrs,as
r2,a1 + X"e,m

v v

ra,a5 + Xrg,ar

+ X

v

12,43 76,43

ra,a1 + Xrg,m

vV v

+ X

73,43 76,43

\Y \Y
XXX XX X X XX

v
e

ra + Xra
= Xr1,a3
= X1 + X0
= Xry,a3
= Xra,a1 + Xra,n
=X
= Xry0
= Xrs,ar + Xrs,a
= Xrs,a3
= Xrga + Xrg,a
= Xig,a3
= Xrya + Xrg 0
= Xy7,a3
= Xra + Xri 0
= Xr a3
= Xrya + X0
= Xy, a3
= Xra1 + Xrs0
= X303
= Xrya
= Xrs,ar + Xrs,a

73,43

= Xis,a3
= Xrgar + Xrg,a
= Xrga3
= Xrya + Xry 0
= Xr7,a3

13,02 T X"eﬂz -

4,00 T Xf’e,ﬂz -

raay + Xry,a, —

= {(r2,14,51)}. For all other propagation pairs (r;,rj,s), there is no
vasible propagation pair in between the pair, so we get an empty set propPairletveen We et the followin
propag p p 8 pty set prop 8 g

1
-1
1
-1
-1
-1
-1
-1
1
-1
1
1

These variables can now be used to deactivate edges that do not correspond to the assignment
selected by the decision variables of the model, using the constraints:
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Csource (std,,r,s) = nolncPairy VreR,s €S, (4.50)

Z epsink < noOutPair, s VreR,s €S, (4.51)

(v,sink)eEsink

A

Z Cparr yiep < PALTry py s Vri, 12,5 € propPairs (4.52)

(07" 0P )EEP 1OPr 1y 5

By Constraints (4.50), edges from the source are set to 1 if the corresponding rotation is assigned

an aircraft of the corresponding subtype, and this rotation-subtype combination has no incoming

propagation pair. Constraints (4.51) set edges to the sink to 0 if noOutPair, s is 0, meaning no probability

should flow away into the sink if a propagation pair is selected. Constraints (4.52) ensure that probability
can only flow to rotation states corresponding to a selected rotation pair.
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4.5. Model formulation

4.5.1. Mathematical notation
This model uses the same notation used in the problem formulation in Section 2.3.4. Also, the notation
used in the definitions in Sections 4.2, 4.3 and 4.4 will be used, which is summarized here:

Sets

Nder Set of nodes (t,7,5)%P € Urer ses, Nf;p

NeT Set of nodes (t,7,5)"" € U,er ses, Ny&"

N Set of nodes (f,7,s) € NP uN"

Tfp Set of timesteps for which departure state nodes are created

TAT Set of timesteps for which arrival state nodes are created

ro

Eprop Set of edges (Uarr, Ud(fp) € U(rl,rz,s)epropPairs Eflrzz

ETo! Set of edges (v, v") € U,er ses, EX'

Esource Set of edges (source, (std,,r,s)) VreR,s €S,

Esink Set of edges (v, sink) Vv e N*7

E Eprop U E?’Dt U ESOL[TCC U ESiﬂk

E} C E, set of all incoming edges for any node v € N

E, C E, set of all outgoing edges for any node v € N

E}, C E, set of all incoming edges for any node v € N,
corresponding to subtype s € S

E;s C E, set of all outgoing edges for any node v € N,
corresponding to subtype s € S

propPairs Set of all propagation pairs 11,2, s

propPairst®® C propPairs, set of propagation pairs r1, 3, s that may be
assigned between rotations r; and r, on an aircraft of subtype s

propPairs{! C propPairs, set of outgoing propagation pairs
for rotation r on an aircraft of subtype s

propPairs)"s C propPairs, set of incoming propagation pairs
for rotation r on an aircraft of subtype s

ngvlp Set of sets of rotations r € R that overlap if assigned to

Decision Variables

an aircraft of subtype s € S

€oy,0 €[0,1] ¥(vy,v2) € E
Xia €{0,1} VreR,ae A,
Pairy rys € {0,1} V(r1,1r2,5) € propPairs

nolncPair,
noOutPair, s

Cost functions
chssign (1,, 11)
Cdelaynode(tl r, S)

€{0,1} VreR,seS
€{0,1} VreR,seS,

Assignment cost of assigning rotation r € R to aircraft a € A,
Expected delay costs of rotation r € R, if its first flight departs

at timestep ¢ € T,iep, on an aircraft of subtype s € S,
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4.5.2. Formulation

minimize Z S8 (1, ) X, 4 (4.53)
e, X
reR,aeA
+ Z Z delaynude(vdep) €y yiep (4.54)
Vaep ENP (v,0%P) eE*
subject to
Z Xyq =1 Vr e R (4.55)
acA
> X< Va e A,rs € RS\ (4.56)
rers, s.t. acA,
Z Cor o — Z Cow =0 V(t,r,s) €N (4.57)
(vl ‘I))EE([ 7,5),5 ( )EE(t r,5),5
paity rs + Z Paity s > Xna+ Xna—1  ¥(r1,12,s) € propPairs,
(r1,r3,5)€propPairsieiit ¢
aeA;NA,, NA,, (4.58)
noOutPair, s + Z pPaire rs = Z Xia VreR,seS, (4.59)
(r1,r2,5)epropPairstt a€ANA,
nolncPair, s + Z Pairs rs = Z Xia VreR,seS, (4.60)
(r1,72,5)epropPairsi™ a€AsNA,
Carr piep < PALTry 1y s ¥(ri,12,5) € propPairs (4.61)
(07 p%er)eELE
Csource,(std,,r,s) = nolncPair, s VreR,seS, (4.62)
Z ey sink < noOutPair, g VreR,s €S, (4.63)
(v,sink)eEsink
P((t‘l, r, S)ﬂ}’l’ |(t0, r, s)dep)'e(to,r,s)dep,(tz,r,s)“” VT’ € R, (to, r, t)ln D}n,
= P((tz, r, S)m/r|(t(), r, S)dep) . e(to,r,s)dep,(tl,r,s)”” (f, tl)out Dout, Where
(f, 1) € Dj?”t arbitrary  (4.64)
€u1,0; € [0/ 1] V(Ull UZ) €E (465)
Xra€{0,1} VreR,a €A, (4.66)
paity rs € {0,1} ¥(ri,12,5) € propPairs (4.67)
nolncPair, s € {0,1} VreR,s €S, (4.68)
noOutPair, s € {0,1} VreR,s €S, (4.69)

4.5.3. Parameter influence

The size and shape of the network, as well as the accuracy of the solutions are dependent on the
parameters used to create the network. In total, we defined four parameters: h?"°", paP, pP°P and hste?.
In this section, the influence of these four parameters on the network is evaluated. The decision variables
corresponding to the network are the edges E, as well as the variables nolncPair, noOutPair and pair.
Since the number of variables |nolncPair| and [noOutPair| are not dependent on the size and shape of
the network, an the number of variables |pair| is simply equal to |pair| = |propPairs|, we will omit
these variables in the analysis, and only consider the number of edges. First the number of edges is
given as a function of the number of state nodes N%? and N*'", as well as the number of propagation
pairs propPairs. Then, conclusions are drawn about the influence of the four parameters. Finally, the
accuracy of the solutions of the network is evaluated.
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Number of Edges

The network contains four types of edges; edges between rotations EF"?, edges within rotations E"",
edges from the source to departure state nodes E°°*'“¢ and edges from arrival state nodes to the sink
Esi"k, Let us consider the influence of the number of state nodes and number of propagation pairs on
these types of edges separately.

e Edges between rotations EF"°? connect all arrival state nodes to exactly one departure state nodes
of another rotation, if these rotations are a propagation pair. So the total number of edges between
rotations is equal to:

[EPrerp = TN (4.70)
(r,q,5)epropPairs

e Edges within rotations E’® connect departure state nodes to arrival state nodes of the same
rotation. One departure state node is connected to many arrival state nodes, corresponding
to possible state transitions, based on the delay distributions of the flights in the rotation. By
Definition (4.18), a departure state node (t1, 7, s) is connected to an arrival state node (2,7, s)

if P (tz — WP < T <ty + hStg”|t;16p = t1, subtype = s) > 0. So the number of edges within

rotations is equal to:
E =Y > Hlar,s) e N
reR seS, (tl,i’,S)EN:i:p
s.t. P (tz —BStP < T <ty + hmpltfgp = t1, subtype s) > 0} 4.71)

We can further evaluate this equation, if we assume the distribution to satisfy the following
(natural) relation for ¢ < ":

P (t2 — hster < tly <t + h””’ltfep = t1, subtype s) >0
AP (tz — hster < tff{ <t + hStef’ltrdeP = t1, subtype s) >0=
P (t2 — RSP < 40T < by 4+ BSP | P = 1, subtype s) >0 V) < < ey

min
Let t(h,r,

P (t2 — hstep < 4

(tl;l',s) <t + h”"plt;iw = t1, subtype s | > 0.
i.mux
(t

) be equal to the maximum value, such that

) be equal to the minimum value, such that

Similarly, let

P (tz — hster < t(’fl’“r‘s <ty + hswpltfep =11, subtype s) > 0. Then, we get:

)

Ef =)0, D, Were)eNy

reR SES, (t'l,r,S)ENf:p
s.t. P (t2 — B8P < 07T <ty hm”ltfep = t1, subtype s) > 0} (4.72)

min(t"*  max(T4")) - maX(tmi" ,min(T,5"))

SIS (tu..5) i () (4.73)

reR SES, (tl ,T,S)EN;j:p

min(t{™ | max(T4")) - max(t(':’i” o stars + 69)

- Z Z Z o L (4.74)

reR seS, (t ,r,s)eNf’:”

For real-life instances of the Robust Tail Assignment problem, considering sensible parameters,
the terms of the sum in this equation would roughly be equal the some constant 0 < ¢ < 1 times
the amount of arrival state nodes of the rotation-subtype pair (7, s).
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e Every feasible rotation-subtype combination has exactly one edge from the source to the corre-
sponding no-delay departure state, see Equation (4.19). Therefore, the number of edges from
source in the network is equal to:

[E=ovree] = 1S, (4.75)

reR

e For every arrival state node in the network, exactly one edge to the sink is created, see Equation
(4.20). Therefore, the total number of edges to the sink is equal to:

B = > D INE (4.76)

reR seS,

Distribution discretizing parameters

The probability step size 177°? and distribution cutoff point p??, as defined in Section 3.2, influence the
discretization and rounding of the delay distributions for every flight in the schedule. The discretization
of the delay distribution approximates the actual distribution, where higher values of step size h?"?
cause a rougher approximation of the distribution. The value p“‘? influences the tail of the delay
distributions of flights, causing high delay options to be rounded down to a maximum value. A higher
value of p“°? causes a lower cutoff point in the tail of the distribution. If we have h**? > hP°" and
pPeP >> pir 2, the values hP"? and p?“? do not influence the state creation of the model. But these
values do influence the accuracy of the probabilities concerning the various possible state transitions, i.e.
edges in the model. Also, the accuracy of the delay costs assigned to states in the model are dependent
on hP"°" and p¥cP. Lower values of 17"°? and p?P cause these probabilities and delay costs to be more
accurate, at the cost of more preprocessing time.

Propagation cutoff point

The propagation cutoff point p”“?, as defined in Section 4.3.3, is used in Algorithm 3 and influences the
number of edges in the network, and therefore the number of decision variables in the model, in the
following way:

By line 31 in Algorithm 3, the values of tmax},’ negatively correlate to p*°?, i.e. a lower value of p?<?
causes a higher values of tmax!,’ . By line 12, higher values of tmax!,” cause more pairs of rotations
with subtype to be added to propPairs. A higher number of propagation pairs directly causes more
edges between rotations EP"° and edges to the sink ES"¥ to be created in the network,see Equation
(4.70) and (4.76). But, propPairs also influences the number of edges in a different way. By Equation
(4.7), the arrival state nodes created for a rotation r and subtype s are dependent on the maximum
departure timesteps tmax;lgp of rotations g such that (r, q,s) € propPairs. Also, the values of these

maximum departure timesteps tmaxzsp are dependent on the propPairs, by line 15-19 in Algorithm 3.

This means that the number of departure state nodes are also dependent on the number of propPairs.
Therefore, an increase of these propagation pairs causes an increase in departure and arrival state
nodes. As discovered in Equation (4.70), (4.74) and (4.75), more state nodes means more edges between
rotations, within rotations and from the source.

Note that a higher cutoff point causes more propagation pairs to be omitted from the model,
decreasing the accuracy of the model.

So, in general, the propagation cutoff point has a negative correlation with the number of edges in
the network, as well as the accuracy of the model.

State step size
For the state creation of the model, the step size h*°? is used. State nodes corresponding to delayed
states all correspond to timesteps that are multiples of 17, which directly influences the number of

2In theory, the parameter p?P can have an impact on the number of nodes created in the network. By line 1, 23 and 27 of
Algorithm 3, the values of tmax}}" are dependent on pP°?, meaning these values tmax;;" increase for decreasing p?F. But by
Definition (4.7), the arrival states nodes are bounded by the departure state nodes of its outgoing propagation pairs, which are

bounded in line 18 of Algorithm 3.
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nodes in the network. For a rotation r and subtype s, by Definition (4.6) and (4.7), we have:

cffp = max (tmaxm — std, ) (4.77)
aeA;
¢!’ = min (maxtmaxfa ,  max max tqu ) —sta, — 8" (4.78)
A€A; qs.t a€eA; i
(r,q,s)epropPairs
del” ste dep
dep + hsterj/2 3 Crg
|N I~1+hs7 §+W (479)
arr + hstep/z 3 carr
arr| ., 2 rs
INZT |~ 1+ e =5 + ster (4.80)

Note that the values of cfs and ¢?I" do not depend on %7, The exact values for |N Pl and |N2"

are equal to the derived approximation rounded up or down, depending on the values of std,, cdeP

and sta,, 69 , c#". Using this approximation we can conclude that the number of nodes in the network
decreases linearly with the parameter 17, This means doubling h°'*? will approximately half the
number of arrival and departure state nodes.

The number of nodes in the network impacts the number of edges in the network. Combining
Equation (4.70) and (4.80), we find:

arr

3 ol
TS YR D Y | wsn
(r,q,s)epropPairs (r,q,s)epropPairs

Similarly, using Equation (4.76) and (4.80), we get:

|Esink| — Z Z |Narr| ~ Z Z 5 hstep (4.82)

reR seS reR seS

So, the number of edges between rotations and edges to the sink are decreases linearly with the parameter
hstep

Using Equation (4.74) and (4.79), we find that the number of edges within rotations decreases
quadratically with the parameter 1?7, This means halving h%'*” would increase the number of edges
within rotations by a factor of 4.

The number of edges from the source is not influenced by the parameter h5¢7.

So, increasing the parameter 15?7 will decrease the number of edges between rotations and to sink
linearly, and the number of edges within rotations quadratically.

4.6. Solution method

The model formulation of the Robust Tail Assignment problem, as given in Section 4.5.2 is solved
using the Gurobi solver package [16], using a Python environment. This main part of this solver is a
linear-programming based branch-and-bound algorithm. This section will describe the workings of this
algorithm, and other operations performed by the solver.

4.6.1. Branch-and-Bound
The main algorithm of the solver uses a search tree to find the optimal solution. See Figure 4.2 for an
example of a search tree. The algorithm will evaluate nodes of this tree in turn, starting at a root node
(the top node), and working its way down. Every node corresponds to a slightly different MIP model.
The root node corresponds to the original MIP model. For every other node, the MIP is has the same
formulation as the MIP of the parent node, with one added constraint.

Throughout the algorithm, the best solution found thus far is saved, as well as its objective value,
called the "incumbent". Initially, the value of incumbent is set to None.

Evaluating nodes
When evaluating a node, the corresponding MIP model is reduced to its linear-programming relaxation,
a Linear Programming (LP) model, by lifting all integrality restrictions. In the MIP formulated in
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6o 0060

Figure 4.2: Example of a search tree.

Section 4.5.2, this means the binary variables X, pair, nolncPair and noOutPair are no longer binary
variables, but can take any value in the interval [0, 1]. Note that every feasible solution of the MIP
model is also a solution of the corresponding LP model. Solving such an LP model is much easier than
the corresponding MIP model, the Gurobi solver can solve this LP model very quickly using efficient
implementations of the simplex and interior-point methods.

If the LP model has no feasible solutions, the MIP model also contains no feasible solution. In this
case the node can be omitted from the search tree. If an optimal solution to the LP model is found, this
solution is checked. Three possibilities are considered:

e The solution satisfies all integrality restrictions of the MIP model.
This solution is also the optimal solution to the corresponding MIP model. In this case the node is
considered fathomed, meaning the node does not need further branching. The solution is also a
solution to the original MIP in the root node by the definition of the search tree. Therefore, we can
update the incumbent value to the minimum of the current incumbent value and the objective
value of this solution.

e The solution does not satisfy all integrality restrictions of the MIP model and the objective value is
not lower than the current incumbent value. In this case the objective value of the solution is a
lower bound on solutions of this MIP model. Since this lower bound is higher than the current
value of incumbent, there is no need to further examine this branch, since no better incumbent
solutions can be found. The node is fathomed and needs no further branching.

e The solution does not satisfy all integrality restrictions of the MIP model and the objective value is
lower than the current incumbent value.
Since the integrality constraints are not satisfied, the solution is not feasible for the MIP model of
this node. In this case the objective value of the solution is a lower bound on solutions of this
MIP model. Since the lower bound is lower than the current incumbent value, this node is worth
exploring. To further explore the MIP model, a single non-integral variable Var = k, k ¢ Z from

the solution is picked. The node is branched into two nodes, with the added constraints Var > k

and Var < k, respectively. Here k denotes the value of k rounded up, and k rounded down. In
this way, the search space of the MIP model is cut into two distinct parts.

After evaluating a node and creating branches if necessary, another node is picked to be evaluated,
until all nodes are fathomed. At that moment, the best solution found is the optimal solution to the
original MIP model. This is the end of the branch-and-bound algorithm.

Note that order in which the nodes are evaluated, as well as the variable selected for branching, have
big impact on the run-time of the algorithm. If better choices are made, incumbent solutions are found
quicker, and nodes are more often fathomed. The Gurobi package uses many sophisticated techniques
to select nodes and variables, as well as several other operations to speed up the algorithm.

4.6.2. Other operations
In this section some of the most important algorithm improving operations are described. More
information about these operations can be found on the Gurobi website [16].
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Presolve

Before initiating the branch-and-bound algorithm, the model formulation is reduced and tightened
by presolve operations. Such operations include deleting constraints implied by other constraints,
tightening constraints using integrality if variables, and deleting variables that have implied values.
Note that these operations change the MIP model, meaning some of these operations need to be reversed
to be able to represent the final solution in terms of the original MIP model.

Cutting planes
When evaluating nodes, after a solution to the LP-relaxation is found, which contains some non-integer
variable values that ought to be integers in the MIP model, clever constraints can be added to the model
to cut this solution from the LP search space. Now the LP model can be resolved, and the LP solver will
find a different optimal solution.

Note that this operation adds constraints to the model, making the LP-relaxations harder to solve.
Therefore, such constraints are only added by the Gurobi solver, if they benefit the solving process.

Heuristics

In order to find good incumbent solutions early in the algorithm, heuristics can be used. Heuristics are
quick methods to find a feasible solution of a model, with no guarantee of optimality. For example,
non-integer variables in the solution of the LP-relaxation can be rounded to integer values and fixed,
after which the LP-relaxation can be resolved with the hope of finding an incumbent solution. A good
incumbent solution will cause the branch-and-bound algorithm to be able to fathom nodes quicker,
speeding up the process. Gurobi employs several heuristics on the nodes of the branch-and-bound
algorithm, to find incumbent solutions.

Parallelism

The operations performed at the nodes of the branch-and-bound algorithm are independent of each
other, and can be parallelized. A computer contains multiple cores, that Gurobi can control to evaluate
separate nodes at the same time, speeding up the solving process.



Experiments

The Robust Flow Model, described in Section 4, will be tested using two types of experiments. Firstly,
the model is tested using a variety of parameter values, to determine the influence of these parameters
on the run-time of the model. Secondly, the model is compared to robust model currently used by KLM,
described in Section 2.6, as well as the Non-Robust model, described in Section 2.5, to see which model
finds better solutions within a given time-frame. In this section, the setup of these experiments will be
explained, the results of the experiments are discussed, and conclusions about the performance of the
model are drawn.

5.1. Experimental setup

This section will describe the setup of the experiments. First the setup of the problem schedule and the
delay distributions will be described. Then, the setups of the experiments will be given. All experiments
are run on a 64-bit laptop PC with an Intel(R) Core(TM) i7-8750H processor with 2.20GHz and 16 GB of
RAM memory, running Windows 11. The code is written in Python.

5.1.1. Problem flight schedule

Since this thesis is written on behalf of KLM, the problem used in the testing environment is a
flight schedule provided by the KLM. This problem contains flights and maintenance blocks, with all
corresponding expected cost functions, as well as an original assignment of aircraft to flights. Since the
flight schedule and expected costs are confidential, this information will be omitted from this thesis. In
order to be able to show the performance of the different models, the expected costs will be scaled to the
expected costs of this original assignment solution. This way, the percentage difference in expected
costs between the models can be shown.

The given problem scenario is a flight schedule of three days long, where information about the
delay distributions is only provided for the first day. The goal is to consider the expected delay costs
for the flights operated on this first day. For the last two days robustness can be ignored, as in a real
life scenario the assignments for these days can be re-evaluated the next day, when more information
about the expected delays is available. By including these two days in the problem in a non-robust
way, a feasible connection between the days is ensured. Also, since the schedule often contains bigger
overnight gaps between flights, the chance of delay propagation between different days is usually very
small.

Some general information about the problem can be found in Table 5.1, and a figure of the flight
schedule can be found in Figure 5.1. Note that the aircraft names and the dates are randomized.

51
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Flights 1630
Rotations 879
Flights on first day 618
Rotations on first day 341
Maintenance blocks 23
Maintenance blocks on first day 14
Aircraft 101
Aircraft Subtypes 5
Average Flight Duration 97.9 min
Minimum Flight Duration 34 min
Maximum Flight Duration 306 min

Table 5.1: General information about the problem used for the experiments.

Original schedule

maintenance
B False
B True

aircraft

00:00 12:00 00:00 12:00 00:00 12:00 00:00
Jan 13, 2000 Jan 14, 2000 Jan 15, 2000 Jan 16, 2000

Figure 5.1: Full schedule used for the experiments, with original assignments. The dates are randomized.

To be able to find the influence of problem size on the run-time of the Robust Flow Model, need to
test the model using various problem sizes. The problem is determined by the problem size, i.e. the
amount of flights/rotations/aircraft, and the delay distributions of the flights in the schedule. In this
analysis, two ways are used to change the problem size.

Firstly, a parameter sparsity is used to determine the sparsity of the schedule. If we use sparsity =1,
the full schedule is used. If we take sparsity = 0.5, half the rotations in the schedule are deleted from
the problem. An example of a schedule with sparsity = 0.5 is given in Figure 5.2.

Secondly, a parameter size is used to determine the amount of aircraft in the schedule. If we have
size = 0.5, half the aircraft are omitted from the problem. To preserve feasibility of the problem, all
rotations that were originally assigned to these aircraft are also omitted. An example of a schedule with
size = 0.5 is given in Figure 5.3.
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Original schedule

maintenance
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00:00 12:00 00:00 12:00 00:00 12:00 00:00
Jan 13, 2000 Jan 14, 2000 Jan 15, 2000 Jan 16, 2000
Figure 5.2: Schedule with sparsity = 0.5, with original assignments. Half of the rotations are deleted.
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Figure 5.3: Schedule with size = 0.5, with original assignments. Half the aircraft with corresponding rotations are deleted.

5.1.2. Delay distributions

Besides the flight schedule, the problem also depends on the probability distributions of delay for the
flights in the schedule. In practice, these distributions are based on several factors, such as weather
and previous data on delays. In this section, some research will be done to figure out what realistic

probability distributions of delay look like, after which an way to generate such distributions for the
experiments is given.

Research

In order to use realistic probability distributions of delay in our experiments, we do some research into
real delay predictions, as given by a KLM delay prediction model. This model gives delay predictions
using a percentile description, with a step size of 5%, from 5% to 95%. Also, the 1% and 99% percentiles
are given. We denote by perc;e, the value of the i% percentile. An example plot of delay predictions of
all flights in a one day schedule, is given in Figure 5.4.
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Delay prediction for all flights in the schedule
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Figure 5.4: Cumulative distribution function of delay predictions by percentile for all flights in the example schedule.

Note that in this figure, we assume a linear relation between the different percentile prediction
points, as an approximation of the cumulative distribution function (cdf). Under this assumption, we
can find the probability density function (pdf), corresponding to this cdf. Using the piecewise linearity
of the cdf, we have that a linear line segment [(a., a,), (bx, by)] in the cdf corresponds to a horizontal

line segment [(ay, (by — ay)/(bx — ax)), (b, (by — ay)/(bx — ay))] in the pdf. In Figure 5.5 the pdf and cdf
of the delay prediction for one flight are given.
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PDF and CDF of delay predictions for one flight
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Figure 5.5: Example probability density function (pdf) and cumulative distribution function (cdf) of the delay predictions for a

single flight.

Note that the shape of the approximation of the PDF has one mode and is bell-shaped. This is the
case for all delay predictions in the schedule. Let us find the mean and variance of the delay distributions

for these flights, using the definitions:

n

p=EX)= in}?i,

(72

i=1

=V(X) = ) xi ~ EX)Ppi,
i=1

(5.1)

(5.2)

where x; are discrete events of the sample space X, where |X| = n, that occur with a probability of
pi. As an estimation, we take the x;’s to be the midpoints between two percentiles, and take as p; the
difference between the percentiles. For the remaining 1% blocks at the ends of the predictions, we take
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as x; the value of the percentile. So, we get:

u =0.01percio, + 0.04(percse, + percie,)/2 + i 0.05(percs(is1)% + percsiw)/2
+ 0.04(percage, + percose,)/2 + 0.01percoge, -
0% = 0.01(percio — p)2 + 0.04((percse + percin)/2 — [J)2
18
+ 0.05((percs(ir1yw + percsiu)/2 — #)2
i=1
+ (1).04((;761’699% + percosy,)/2 — w)* + 0.01(percogy, — 1)

If we plot the mean and standard deviation of the delay distributions for every flight in the schedule
on both a stormy and calm day, we find the results as shown in Figure 5.6 and 5.7.

Mean and Standard Deviation of delay predictions
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Figure 5.6: Mean and standard deviation of delay predictions for every flight on the first day of the schedule, on a stormy day.
The colour of the points corresponds to the length of the flight, where a longer flight has a darker colour.



5.1. Experimental setup 57

Mean and Standard Deviation of delay predictions
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Figure 5.7: Mean and standard deviation of delay predictions for every flight on the first day of the schedule, on a non-stormy
day. The colour of the points corresponds to the length of the flight, where a longer flight has a darker colour.

From figure 5.7 we conclude that the delay distributions of non-disrupted flights have a mean
between -25 and 10, with most distributions between -20 and 0 minutes of delay. We also see that the
standard deviation mostly takes values between 13 and 40, where the standard deviation takes lower
values when the mean is close to -8, and and higher values when the mean is further away from this -8.

The means of the delay distributions of this non-disrupted day, have a mean of -10 and a standard
deviation of 7.

In Figure 5.6 we see that some flights have a higher expected delay (i.e. higher mean) than in Figure

5.7. We see many means between 0 and 15. These are flights that are expected to be disturbed by a

storm. The delay distributions of these disturbed flights seem to follow the relation ¢ = 25“; 20

Delay distribution generation

Using this information, we will generate realistic delay distributions to use for the experiments. First,
let us address the type of probability distribution to use. The Robust Flow Model is not restricted to
any distribution. Based on the analysis performed in the previous section, a continuous unimodal
distribution is expected. Also, since there is a physical limitation to the amount of time a flight can
be faster than scheduled (minimum flight time), we can assume that there is a lower bound to the
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distributions. For these reasons, a shifted Gamma distribution will be used in the experiments. This
distribution has a lower bound and no upper bound in its domain, is unimodal and is continuous.

The Gamma distribution has a shape parameter k > 0 and a scale parameter 0 > 0, and is defined on
the domain (0, o). It has a mean equal to y = kO and a variance equal to 6 = k62 If we shift the Gamma
distribution by a factor s, the domain changes to (s, c0) and the mean will equal ¢ = k6 + s, while the
variance remains 02 = k62. Note that the shifted Gamma distribution can be uniquely described by its
mean i, standard deviation 0% and lower bound s. Given these values, the shape and scale parameters
are equal to:

JRY)
=W st) (5.3)
o - %2 (5.4)

What remains is to generate shifted Gamma distributions to use in the experiments. In the ex-
periments, we will test the models using various degrees of disturbances. Therefore, we need to be
able to create multiple scenarios of delay predictions, ranging from an undisturbed schedule to a very
disturbed schedule. To achieve this, we will use two different pools of distributions to draw samples
from, one pool corresponding to non-disrupted flights and one corresponding to disrupted flights. In
the experiments, we use a parameter disruption € [0, 1], which determines the fraction of flights that
draw from the disrupted pool. The remainder of flights will draw from the non-disrupted pool. The
distributions in the pools will be described using their mean i, standard deviation 62 and lower bound
s.

By our research in the previous section, on a non-disrupted day we found that the means of the
distributions are distributed with a mean of -10 and a standard deviation of 7. Therefore, for a delay
distribution of a non-disrupted flight, we will draw a mean u using a truncated normal distribution
with mean -10 and standard deviation 7. The distribution is truncated at -30 and 10, in order to discard
extreme outliers. The standard deviation o2 of the non-disrupted delay distribution is drawn uniformly
from a interval within two bounds, based on Figure 5.7.

For means between -30 and -12, we draw standard deviations using a uniform distribution, such that

Hp+4l _ _9-7u
7 -’73

For means between -12 and -5, we draw standard deviations using a uniform distribution, such that
13 <0 <31.

For means between -5 and 15, we draw standard deviations using a uniform distribution, such that

By our research in the previous section, we also found that delay distributions of disrupted flights

have means and standard deviations that follow the relation ¢ = 25%;120. Since these predictions have

been evaluated by KLM to underestimate the impact of disturbances, we will draw means that are
somewhat higher than we found in this research. So, for the delay distributions of disrupted flights, we
will draw means p using a truncated normal distribution with mean 10 and standard deviation 10. The
distribution is truncated at -20 and 40, in order to discard extreme outliers. As standard deviations
of the delay distributions for these flights we will use the relation o = 2t t;lZO’ but we take 0 =20 as a
minimum.

Now that we have a way of generating realistic values i, o for non-disrupted and disrupted flights,
we can use the corresponding gamma distributions as delay distributions for the flights in the schedule.
As lower bound s for these distributions, we take -0.5 times the expected flight time, which seems like a
reasonable physical limitation.
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5.1.3. Run-time analysis

Let us define the experiments to run, in order to determine the influence of the problem size and shape,
as well as the model parameters on the run-time of the Robust Flow Model. In total we defined 7
parameters, which influence the problem and the model, these parameters are

sparsity,size,disruption, pdC”, CLS pFer, hster

The problem itself is defined by parameters sparsity, size and disruption, while the model depends on
the parameters p“?, h?"°%, pPP and h**°P. As concluded in Section 4.5.3, the parameters p“? and h?"?
only influence the accuracy of the approximation of the delay costs, at the cost of some preprocessing
time. As the main bottleneck of the model is the solving process, we will omit these parameters from
our run-time analysis. To be able to see the influence of the 5 remaining parameters separately, three
values for every parameter will be taken. For every combination of these values, an experiment will be
run. In total, there are 3° = 243 such combinations. Note that we have 3 problem-defining parameters
and 2 model-defining parameters. In order to maintain consistency in the experiments, experiments
using the same problem-defining parameters will be performed on the exact same problem. This means
a total of 3° = 27 problems will be generated, where each such problem will be solved using 23 = 9
different models.
The parameter values used in the experiments are the following:

sparsity € {0.25,0.5, 1}
size € {0.25,0.5,1}
disruption € {0,0.5,1}
p? =0.001
WPt =1
pP? € {0.025,0.05,0.1}
k7 € {5,10,20}

In every experiment, the problem is solved using the Robust Flow Model and evaluated using the
evaluator. This process is divided into multiple parts, for which the run-time is saved seperately. These
parts are:

e Preprocessing. In this step, all the relevant sets for the model are created and the probabilities
corresponding to the edges are calculated, using Algorithm 2, Algorithm 3 and the equations
formulated in Section 4.4.

e Model creation. In this step, the model variables are initiated, and the objective function and all
constraints are defined using these variables.

e Optimization. In this step, the MIP solver Gurobi [16] is used to solve the model. For the
optimization part, a time limit of one hour is used.

e Simulation. In this step, the solution of the model is simulated using the simulator.

5.1.4. Performance analysis

To analyse the performance of the Robust Flow Model (RFM)), the final solution of the model will to be
compared to the solutions found by the Non-Robust Tail Assignment model (NRM) and the Benchmark
Robust Model (BRM), as well as the original schedule.

To resemble the real-life use case as much a possible, these experiments will be performed using on
the full schedule, and using a time limit of 15 minutes. This means we use problems with sparsity =1
and size = 1. To determine the effectiveness of RFM on differing levels of expected disruptions, a wider
range of disruption values will be used. To be able to find the best parameters settings to use for RFM,
a wider range of p?°? and h%!°? values will be used. The parameter values used in these experiments are
the following:
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sparsity =1
size =1
disruption € {0,0.2,0.4,0.6,0.8,1}
p? =0.001
hProb =1

pP? € {0.05,0.1,0.2,0.35,0.5,0.65}
hteP € {10, 20, 40, 60,90}

For every problem (defined by disruption), the problem is solved using the RFM with all possible
settings pP? and h*¢?, as well as using one instance of BRM and NRM. The solutions found by all these
models are evaluated using the evaluator, and compared to the originally given schedule.

5.1.5. Expectations

Run-time analysis

In the preprocessing step, Algorithm 3 is used to define the set of propagation pairs propPairs. The
most time-consuming operation of this algorithm is expected to be the calculation of the propagated
delay distributions (line 24/28). This operation is performed once for every feasible rotation-aircraft
combination considered for robustness.

Also, to find the probabilities associated with the propagation of probability over edges within
rotations E™, see Equation (4.35) in Section 4.4.2, a similar calculation needs to be performed for
every departure state node N“°?. After this operation, propagation probabilities for these edges can be
calculated. This process is performed for every departure state node, making this process expected
to be more time-consuming than Algorithm 3. Since the amount of departure state nodes increases
linearly with the amount of rotations considered for robustness, and decreases linearly with the step
size h®'°P, we expect the run-time of the preprocessing step to show the same behaviour.

In the model creating step, the variable objects and constraints are created, using the results from the
preprocessing step. The most time consuming part is expected to be the creation of the flow propagating
constraints (see Constraint 4.57 in the formulation of the Robust Flow Model, Section 4.5.2). To create
these constraints, we need to loop over the incoming and outgoing edges for every node in the network.
This means every edge in the network needs to be incorporated twice in such constraints. Therefore, the
model creating time is expected to increase linearly with the total amount of edges in the network.

Besides this, for a lower value of the step size h*°?, a departure state node is connected to more
arrival state nodes. This means that more edges are captured in a single constraint. So, besides the total
amount of edges in the network, the value of 15/ is expected to affect the model creating time as well.
A lower value of 1%/¢7 with the same amount of edges is expected to have shorter model creating time
than a higher value of 77,

The run-time of the optimization step is not easy to predict, since it depends on the "difficulty"
of the model to solve. The main decision variables are the assignment variables X,,; these variables
determine the solution, that all other variables in the model depend on. Therefore, the amount of
variables X,, directly impacts the size of the search space, and therefore the difficulty of the problem.
But, the real difficulty of the problem lies in the dependency in the solutions. By only considering
relevant propagation pairs propPairs, this dependency is simplified in the Robust Flow Model. If more
propPairs are considered in the model, the model is harder to solve. Another factor of the difficulty of
the problem may be the sparsity of the problem. In a more dense schedule, there are more feasibility
constraints acting on the assignment variables, which should make it more difficult for the optimizer to
navigate through the search space. Therefore, the run-time of the optimization step of the model is
expected to be mostly influenced by these factors. Note that the amount of propPairs considered in the
model for a specific problem setup is directly impacted by the value of p?<P.

Besides these factors, the step size h%/?7 will impact the run-time as well, since its value will directly
change the total amount of variables and constraints in the model.
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Performance analysis

The performance of RFM depends on several factors. Lower values of h°/*7 cause the model to be more
accurate in the approximation of the delay costs, but will cause the model to contain more variables
as well. Similarly, a lower value of p”P will cause the model to be more accurate and contain more
propagation pairs |propPairs|, causing more edges as well. More variables will generally cause longer
optimizing times. But, since the main difficulty of the problem lies in the propagation, more propagation
pairs will likely have the biggest impact on the optimizing time.

For the full schedule, the optimizer will likely not find optimized results within the given timespan.
This means the performance of the model will be a tradeoff between accuracy of the model, and
simplicity of the model. A higher accuracy will cause the model to be more difficult to solve, which will
decrease the quality of the best solution found by the model in the given timespan. What parameter
values will cause the best performance of the model likely depends on the problem size, as well as the
expected disruption in the schedule. A higher expected disruption will cause more propagation pairs to
be considered in the model, with the same value of p?°F.

In general, the quality of the solution found by the model is expected to mostly depend on the value
of pPep.

5.2. Results

In this section, the general results of the experiments will be given. The results and information for
every specific experiment can be found in Appendix A.4.

5.2.1. Run-time
The run-time of the model consists of three parts; preprocessing time, model creation time and
optimizing time. In this section the run-time of these parts will be evaluated separately.

Preprocessing time

In the preprocessing step, the propagation pairs propPairs are determined using Algorithm 3, and the
sets N7, N'" are created, as well as all edges E, with their corresponding probabilities (see Equation
(4.32)).

Figure 5.8 and 5.9 show the preprocessing time in the plots of the experiments, plotted against
the amount of rotations considered for robustness. From these figures, we can conclude that the
preprocessing time linearly depends on this amount of robust rotations in the problem, where the slope
depends (mostly) on the values of h'P and disruption.

Model creation time
In the model creating step, the sets from defined in the preprocessing step are used to create all variables
and constraints in the model.

Figure 5.10 shows the model creating time in the experiments plotted against the total amount of
edges in the model network. In this figure, we can clearly see that the model creating time depends
linearly on the amount of edges in the network, where the steepness depends on the step size h°/?. Do
note that the amount of edges also depends on the value of h'¢7.

Optimization process

The optimizing time is the biggest bottleneck in solving the model. For 91 out of the 243 experiments,
the optimal value was not found after 60 minutes of optimization. For 6 experiments, not a single
feasible solution was found in 60 minutes. But, the optimizing time can still be analysed. To analyse
the run-time of the optimization process, we will look at two different values; The first timestep when
a feasible solution is found and the timestep when the final solution is proven to be optimal. If in an
experiment such a timestep is not reached within the timeframe of 60 minutes, the experiment will be
plotted using a cross symbol on the timestep value of 3700 seconds.
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Preprocessing time
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Figure 5.8: Processing time of the experiments, plotted against the amount of rotations in the problem to consider for robustness.
The results are grouped by the values of h°!¢P used in the model.
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Figure 5.9: Processing time of the experiments, plotted against the amount of rotations in the problem to consider for robustness.
The results are grouped by the values of disruption used in the model.
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Model creating time vs amount of edges, grouped by h*
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Figure 5.10: Model creating time in the experiments plotted against the amount of edges in the model network. The results are

grouped by the value of 15t¢?
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Optimization time vs |rotPairs|, grouped by sparsity
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Figure 5.12: Log-log plot of the optimization time in the experiments against the amount of propagation pairs |propPairs|. The

results are grouped by the sparsity of the problem used in in the experiments.
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Figure 5.13: Log-log plot of the optimization time in the experiments against the amount of propagation pairs |propPairs|. The
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Optimization time

First, let us consider the optimization time, i.e. the timestep when the final solution is proven to be the
optimal solution. In section 5.1.5 we expected this time to mostly depend on the amount of propagation
pairs |propPairs|, the amount of main decision variables X, qc, the sparsity of the problem, and the
step size h¥!°P. Figures 5.11, 5.12 and 5.13 show the optimization time in the experiments plotted against
the amount of propagation pairs.

From Figure 5.11 and 5.13, we can conclude that for every distinct schedule setup used in the
experiments, and for every distinct value of 1/, a linear relation in the log-log plot is present between
the optimization time and the amount of propagation pairs |propPairs|. Using Figure 5.12, we see that
the steepness of this linear relation in the log-log plot seems to depend on the sparsity of the problem.

A linear relation in a log-log plot corresponds to a polynomial relation. Thus, for every distinct
problem schedule and value of 1/, we have:

optimizationtime ~ c * |propPairs|t

The steepness of the linear relation in the log-log plot is equal to the power k in this polynomial
relation. If we look at specific problem setups (size, sparsity,disruption), we see that for different
values of h°!°?, the time-to-optimal-solution shows linear relations with the amount of propagation
pairs propPairs in the log-log plot, with similar steepness. As an example, see Figure 5.14. Therefore,
we assume the value of the power k is not dependent on the value of 15?7, Note that for different
problem setups, the steepness of this relation in the log-log plot can be different. This means that k is a
function of the problem setup. Thus, when solving a specific problem, the value of |propPairs| has a
polynomial influence on the optimization time of the problem.

Optimization time vs |rotPairs| for several problem setups (size, sparsity, disruption), grouped by h*~step, for changing p~pcp h”step (min)
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Figure 5.14: Log-log plots of the optimization time in the experiments against the amount of propagation pairs |propPairs|. The
lines correspond to same problem setup and value of 157, for changing p”°? (and thus changing |propPairs|. The titles of the
sub-figures correspond to the problem setups (size, sparsity, disruption). Only a subset of the experiments are shown.

The value of h°'*” had a translating effect on the relation between the optimization time and the
amount of propagation pairs |[propPairs|, see Figure 5.13. To investigate the precise influence of the
value of h°'°? on the optimization time, let us plot the optimization time against the value of 17, while
keeping all other parameters constant, see Figure 5.15.
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Figure 5.15: Log-log plot of the optimization time in the experiments against the value of h/¢P used in the model. The lines
correspond to experiments on the same problem setup, as well as the same value of p?°? for the model, for changing values of
hstep‘

In general, the lines in Figure 5.13 show a linear relation between the optimization time and the
value of h°!°F in the log-log plot, when all other parameters are constant. Also, we see that the steepness
of these linear relations in this plot is quite constant. Note that the lines reaching an optimization
time of 3700 seconds are experiments that did not reach optimality, and were cut off at 3600 seconds
of optimization. If consider the steepnesses of the linearized relations in this plot, disregarding any
experiments that were cut off, we find an average steepness of approximately -1.18. Therefore, we
update the our equation for the optimization time to:

optimizationtime ~ ¢ » (h*'?)"118 « |propPairs|
Note that both ¢ and k are solely dependent on the specific problem setup.

In conclusion, given a problem, both the amount of propagation pairs |propPairs|, and the step size
h*tP have polynomial influence on the optimization time of the Robust Flow Model.

First solution time
Next, let us consider the first solution time, i.e. the timestep in the optimization process when the first
feasible solution is found. We perform an similar analysis to the optimization time. Figure 5.16 and 5.17
show the first solution time in the experiments versus the amount of propagation pairs |[propPairs]|.
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Figure 5.17: Log-log plot of the first solution time in the experiments against the amount of propagation pairs |propPairs|. The

results are grouped by the value of 1P used in for the model.

Using Figure 5.16 and 5.17, we see that for every distinct value of 75/°7, a linear relation in the log-log
plot is present between |propPairs| and the first solution time, with the same steepness. The linear
relation approximation of this relation is given in Figure 5.18.
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First solution time vs |propPairs|, grouped by h~step
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Figure 5.18: Log-log plot of the first solution time in the experiments against the amount of propagation pairs |propPairs|. The
results are grouped by the value of 15 used in for the model. For every value of h%/¢F, a linear approximation of the values is
also shown.

A linear relation in a log-log plot corresponds to a polynomial relation. Thus, we have the following
time complexity:
firstsolutiontime ~ c + |propPairs|¥

Note that ¢ depends on the value of h%/¢P. The steepness of the linear relation in the log-log plot is equal
to the power k in this polynomial relation. The linear approximations in Figure 5.18 have a steepness of
1.66, which is independent of the value of h°'*7. So, we get the time complexity:

firstsolutiontime =~ c * [propPairs|"®

The value of 15/ has a translating effect in the on the linear relation in the log-log plot between the
first solution time and the amount of propagation pairs |propPairs|, see Figure 5.18. To investigate the
precise influence of the value of 15/ on the first solution time, let us plot the first solution time against
the value of 1!, while keeping all other parameters constant, see Figure 5.19.

The lines in Figure 5.19, disregarding the experiments corresponding to very short times (that are
prone to fluctuations, see the lines with timesteps under one second), show a linear relation between the
first solution time and the value of 157 in the log-log plot. We see that the steepness of these linear
relations in this plot is quite constant. If consider the steepnesses of the linearized relations in this plot,
we find an average steepness of approximately -1.64. Therefore, we update the assumed time complexity
of the first solution time to:

irstsolutiontime ~ ¢ » (h*'P) 1% « |propPairs|'®°
prop
If we assume c to be constant, we have:
irstsolutiontime = O ((h°1P)"1%% « |propPairs|'-%°
prop

In conclusion, both the amount of propagation pairs |propPairs|, and the step size h*'®’ have
polynomial influence on the first solution time of the Robust Flow Model.
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h~step vs |propPairs|, all other parameters constant
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Figure 5.19: Log-log plot of the first solution time in the experiments against the value of h°/¢7 used in the model. The lines
correspond to experiments on the same problem setup, as well as the same value of p”° for the model, for changing values of
hstep

5.2.2. Performance

In this section the results of the performance analysis for RFM will be evaluated. First, the approximation
ratios of the RFM solutions from these experiments are evaluated. Next, we analyse the achieved
MIP gap within the timespan of the experiments. Finally, the solutions found by the REM models are
compared to each other, to the BRM solution, and the NRM solution.

For the purpose of this analysis, a total of 180 experiments are performed, one experiment for each
combination of the parameter values specified in Section 5.1.4. For these experiments, a time limit of 15
minute is given. Note that this time limit includes the preprocessing, model creating, and optimizing
time. Out of the 180 experiments, three models were solved to optimality, and 32 experiments did not
find any feasible solutions within the given time-span. For every problem setup, BRM and NRM are
also optimized.

Approximation ratio
RFM approximates the expected costs of operating a solution schedule in real life. In the creating
process of RFM, several approximation are made, causing the model to be solved more easily, at the cost
of optimality. The delay distributions are discretized, the states are discretized with steps of length
he'e?, and propagation of delay is only considered for pairs of rotations with higher probabilities of
propagation. Note that these approximations only apply to the calculations concerning expected delay
costs (including reserve aircraft costs). The expected assignment costs are not approximated in the
model.

Exactly how much the approximated expected cost of a solution differs from its actual expected cost
is called the approximation ratio. For a solution S, let us define this approximation ratio R*’?"°* as:

delay
Rapprox(s) = Cmodel(s)
Cdeluy (S)

simulation

The values CZ;lgeyl(S) and ijriiylu tion(S) correspond to the delay costs of a solution S, respectively
calculated by the model and by the simulation engine. If this ratio is close to 1 for any feasible solution,
the model is considered accurate. Note that we only consider delay costs for this ratio, since these are
the only costs that are approximated in the model.

To evaluate the accuracy of REM, approximation ratios RPP"°*(S) are calculated for the final solution
S of every experiment. Note that these solutions are often not proven to be the optimal solutions. Figure
5.20, 5.21 and 5.22 show these ratios plotted against the amount of propagation pairs |propPairs| in the

corresponding models.
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Approximation ratio vs |propPairs|, grouped by disruption
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Figure 5.20: Plot of the approximation ratios R?’P"°% in the experiments against the amount of propagation pairs |propPairs|
used in the model network. The results are grouped by the value of disruption, which corresponds to the different problem
setups.
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Figure 5.21: Plot of the approximation ratios R?’P"°* in the experiments against the amount of propagation pairs |propPairs|
used in the model network. The results are grouped by the value of h!¢F used in the models.
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Figure 5.22: Plot of the approximation ratios R?’P"°% in the experiments against the amount of propagation pairs |propPairs|
used in the model network. The results are grouped by the value of pPP used in the models.

From these figures, we can conclude that there is a clear relation between the approximation ratio
RPPT* and the amount of propagation pairs |propPairs|. This makes sense, since a lower amount
of propagation pairs means that more omitted propagation pairs in the model. Also, for schedules
with higher disruption, the accuracy drops faster when lowering the amount of propagation pairs
|propPairs|, since more heavily disrupted schedules naturally have more delay propagation. This
means more propagation pairs are necessary to capture most of this propagation into the model.

Besides this, also note that the value of h°/*? has some influence on the approximation ratio. On
average higher values of h'?” causes the approximation ratio to be slightly higher. Note that for lower
pPeP (and thus lower |[propPairs|), a bigger step size h'°P causes the approximation ratio to increase
often above 1. This is the a result of the more extreme rounding that occurs with higher values of 757,
Since the probability density functions of expected propagated delay are usually decreasing functions
throughout the fleetline (see Example 6 in Section 3.2), a bigger step size h!° causes the delay to be
rounded up.

MIP-gap
Most of the performed experiments do not finish the optimization process, and are unable to find the
optimal solution or prove that a found solution is optimal. As we have seen in the run-time analysis,
even if we extent the run-time to 3600 seconds, schedules with full sparsity prove hard to optimize.
Therefore, we shall analyse the final MIP-gaps achieved in the experiments.

As described in section 4.6, the Gurobi solver used to solve the model uses a branch and bound
algorithm to search for feasible solutions. At any stage in this process, the MIP-gap is defined as:

MIP :=|zp — zp|/|zp|,

where zp denotes the objective value of the best feasible solution found thus far, and zp denotes the best
proven bound on feasible solutions. If the zp = zp in any stage of the solving process, it is proven that
the found solution is optimal. In this case we have MIP = 0.

In the experiments, the value of the MIP-gap after 15 minutes of run-time is saved. Figure 5.23
shows the MIP-gap plotted against the amount of propagation pairs |[propPairs|. In this figure we see
that if we consider relatively little propagation pairs (|propPairs| < 20000), the MIP-gap often drops
below 1%. Also, we see that the MIP-gap depends on the amount of disruption in the schedule. This
can be explained by considering the fraction of expected costs that are delay costs in model, for the
final solution found by the optimizer. Figure 5.24 shows this fraction of expected delay costs for all
experiments. In this figure we see that the delay costs incorporate about 8% of the expected costs in
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schedules with minimal expected disruption, and up to 23 % of the expected costs in very disrupted
schedules. The delay costs are most difficult to optimize over, which is why the MIP-gap will be higher
if a higher fraction of the expected costs are delay costs.

MIP-gap vs |propPairs|, grouped by disruption
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Figure 5.23: Plot of the the MIP-gap plotted against the amount of propagation pairs [propPairs|. The results are grouped by the
value of disruption, which corresponds to the different problem setups.
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Figure 5.24: Plot of the the fraction of delay costs in the final model solution, plotted against the amount of propagation pairs
|[propPairs|. The results are grouped by the value of disruption, which corresponds to the different problem setups.

Simulation results
The approximation ratio combined with MIP-gap, after 900 seconds, give an indication of the expected
performance of the model. If more propagation pairs propPairs are considered in the model, the
approximation ratio gets better, but the MIP-gap gets worse. To get the best model performance, we
need to find the sweet spot for this trade-off.

To evaluate the quality of the final solutions found by the models in the experiments, Figure 5.25
shows the average total costs after simulating these solution schedules 500 times each. The average costs
are given as a ratio of the average costs of the given original schedule. Note that for schedules with



5.2. Results 73

more expected disruption, there are more delay costs to be reduced by the models, which will cause
lower ratios of costs. Therefore, we also plot these average simulated costs separately for the different
values of disruption, see Figure 5.26. For comparison, this figure also includes the solutions found by
BRM and NRM.

Simulated costs of final model solutions, grouped by disruption
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Figure 5.25: Plot of the simulated costs of final model solutions, scaled by the simulated costs of the original schedule, against the
amount of propagation pairs |propPairs| in the model. The results are grouped by the value of disruption, which corresponds
to the different problem setups.

From these figures, we can conclude that the optimal amount of propagation pairs |propPairs| for
the tested problem schedule and time limit seems to be around 20000 propagation pairs, independently
of the amount of disruption in the schedule. A direct correlation between the value of h'¢’ and
the solution quality is not clearly deducible. For schedules with small amounts of disruption (i.e.
disruption € {0.0,0.2}), models with higher step size 157 seem to perform better. In schedules with
higher amount of disruption, there is a lot of variation in the quality of the solution of the models.

Figure 5.27 shows the same figure as before, but this time colored based on the final MIP-gap reached
by the optimizer. From this figure we can deduce that the MIP-gap is a clear indicator of the quality of a
solution. For models with the same value of p?*? (and therefore similar |propPairs|), a lower MIP-gap
implies a better solution, irregardless of the value of h°!°?. Therefore, 1!V does not seem to influence
the quality of the solution much (within the set of values used for 15/°7), but may still have an impact on
the speed of solving the model and thus on the MIP-gap.

We do see that models with very little propagation pairs |propPairs| do not produce very good
solutions while having a very low MIP-gap. This can be explained by the low approximation ratios, as
discussed before.

An explanation for the large variation in MIP-gaps for similar experiments can be due to luck when
branching in the branch and bound solving method. If a relatively good solution is found early in the
process, the algorithm can cut branches faster, resulting in faster optimization.
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Figure 5.26: Plots of the simulated costs of final model solutions, scaled by the simulated costs of the original schedule, against

the amount of propagation pairs |[propPairs| in the model. The results are split by the value of disruption, which corresponds to

the different problem setups, and grouped by the value of 4¢P used in the model. Also, the scaled simulated costs of the final
solutions of the Benchmark Robust Model (BRM) and the Non-Robust Model (NRM) for each problem setup are shown.
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Simulated costs of final model solutions per experiment setup, colored by MIP-gap
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Figure 5.27: Plots of the simulated costs of final model solutions, scaled by the simulated costs of the original schedule, against

the amount of propagation pairs |[propPairs| in the model. The results are split by the value of disruption, which corresponds to

the different problem setups, and coloured by the MIP-gap achieved in the experiments. Also, the scaled simulated costs of the
final solutions of the Benchmark Robust Model (BRM) and the Non-Robust Model (NRM) for each problem setup are shown.

From these experiments, we can conclude that BRM, as provided by KLM, finds better robust
solutions than NRM. But the experiments also show that even better solutions are possible, and that
RFM is capable of finding such solutions.

In order to find good solutions using REM, a sufficient amount of propagation pairs need to be
included in the delay network, to be able to capture the propagated delay. This amount of propagation
pairs |propPairs| can be controlled by changing the value of the parameter p?? in the network creating
process. If a solver is able to reduce the MIP-gap enough, the solution will be of great quality. For big
problems sizes, such as the problem used in this analysis, the model proves hard to optimize using the
Gurobi solver on a regular computer. But, if good solutions are found quickly in the solving process,
RFM can outperform BRM.

To show that the REM indeed outperforms BRM if low enough MIP-gaps are reached in the solving
process, let us consider a smaller problem size, i.e. 20% of the full schedule. As before, Figure 5.28
shows the evaluated results of solving this problem for several instances of RFM, compared to BRM
and NRM. All models used in this experiment were fully optimized. From this figure we can conclude
that considering more propagation pairs |propPairs| included in the network increases the accuracy
of RFM, providing better solutions if solved to optimality. If enough propagation pairs are included,
RFM outperforms BRM. The value of 7°¢? used for REM does not seem to influence the quality of the
solution much.
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Simulated costs of final model solutions for reduced problem size, grouped by A% R*P (min)
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Figure 5.28: Plot of the simulated costs of final model solutions, scaled by the simulated costs of the original schedule, against the
amount of propagation pairs |propPairs| in the model. The problem solved is a problem with reduced size (size = 0.2). The
results are grouped by the value of #*'¢7 used in the model. Also, the scaled simulated costs of the final solutions of the
Benchmark Robust Model (BRM) and the Non-Robust Model (NRM) for each problem setup are shown.



Conclusion

In this thesis a novel model for the Robust Tail Assignment problem is described and analysed. The
proposed Robust Flow Model uses a multi-commodity flow network to approximate the propagation
of delay through solution flight schedules. The delay options that are considered in the network are
discretized, using a constant step size. To reduce the amount of connections in the network, only
connections between flight rotations are considered if the probability of delay propagation exceeds
a threshold. This network is utilized in a Mixed Integer Programming model, which can be solved
using an iterative solver. The model uses the network to consider expected delay costs for every flight,
including propagated delay, using assignment variables to activate and deactivate edges in the network,
creating the correct flows.

With the right parameters, the model is capable of finding very good robust solutions. A good
robust solution will cause a decrease in expected total costs of operating the schedule. But for big
problem instances, the model proves difficult to solve to optimality. Using a iterative solver, based on a
branch-and-bound algorithm, the quality of solutions found during the solving process depends on
the branching decisions. Therefore, if a time limit is used in the solving process, causing the model
to not be solved to optimality, the best solution found in this time period can vary in quality. Ta-
ble 6.1 contains a summary of the pros and cons of the three different models that were tested in this thesis.

Robust Flow Model
Capable find great robust solutions
Optimizes accurately for expected costs
Parameters need to be well tuned
Difficult to solve to optimality for big problem sizes

Pros

Cons

Benchmark Robust Model
Finds good robust solutions
Solvable in reasonable time for big problem sizes
Does not optimize for expected costs
Cons Optimality is lost by limiting the assignments
to one subtype based on non-robust optimization

Pros

Non-Robust Model
Pros | Fast optimization
Cons Not robust

Table 6.1: Pros and cons of the three models described in this thesis.
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The Robust Flow Model can be extended to include other airline related aspects. Two common exten-
sions to the Tail Assignment Problem are Schengen/Non-Schengen connections and crew connections.
Schengen/Non-Schengen connections influence the required turnaround time of the aircraft at the hub
station based on the destinations of the rotations, which can directly be included while creating the
delay propagation network, since this network is connection based. Crew connections can cause delays
in the fleetline of one aircraft to propagate to the fleetline of another aircraft. This means delays in the
different fleetlines are no longer independent. Therefore, considering delay propagation caused by crew
connections increases the difficulty of the problem significantly. But, the state nodes in the Robust Flow
Model and the corresponding probabilities can be used to account for this propagation of delay by crew
connections, using constraints that allow crew connections to update the probabilities of departure
delay states accordingly.

In order to speed up the solving process for the Robust Flow Model, further research can be done.
The solver could benefit from advanced branching methods or rounding heuristics, which will cause the
branch-and-bound algorithm to find good solutions faster, and therefore reduce the optimization time.
Another way of speeding up the algorithm, is by supplying a good initial solution. A simple heuristic
or heuristic model can be used to find a reasonably good robust solution, which can be supplied as
an initial solution. The Robust Flow Model can then be initialised using this solution, to kick-start the
branch-and-bound algorithm with a low incumbent value. This way, nodes in the search tree can be
fathomed more often, decreasing the optimization time.

To use the Robust Flow Model in practice, a simple option to get better performance from the model
is by using a better computer. The computational capabilities of a laptop are limited, using hardware
specifically designed for solving computational problems can speed up the solving process significantly.

Besides this, the Robust Flow Model can be simplified significantly by using a similar approach as
the Benchmark Robust Model. One could first solve the non-robust tail assignment problem, without
considering delay costs, and use the resulting assignment as input for the Robust Flow Model. By
restricting the Robust Flow Model to only assign aircraft of the same subtype as the aircraft assigned by
this non-robust model to the rotations, the problem is split into sub-problems. This will decrease the
search space of the model and speed up the model, at the cost of optimality. But, since the Robust Flow
Model accurately optimizes over the total expected costs, it will still outperform the Benchmark Robust
Model, which uses a heuristic method to quantify robustness.

Finally, it is worth noting that the simulator, as defined in Section 2.4.1 can be used to the advantage
of the user. Several solutions found in the process of solving the Robust Flow Model for varying model
parameters can be saved and evaluated, after which the best solution can be chosen to use in practise.
Note that this is a general tool that can be used to evaluate solutions of any robust tail assignment model,
and is not restricted to the Robust Flow Model.
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A.1. Example Non-Robust Tail Assignment Model

minimize
X r,a

subject to

1210 - Xy, 0, + 1290 - X, 4, + 1330 - X, 05

+ 2150 - X, 4, + 2110 -
+3410 - Xy, 0, + 3420 -
+0- X0

+2930 - Xy, 4, +2900 -
+ 2350 - Xy, 4y + 2270 -
+1990 - X, 4, +2090 -

Xna + Xriay + X0
sz,ﬂl + XVz,llz + XVZﬂS
Xrs,a1 + Xrsay + Xrs 0
Xry

Xrs,ar + Xrs,ar + Xrs,03
Xrs,a1 + Xrgay + Xrg a3
X"7,ﬂ1 + X?’7,llz + XV7,ﬂ3
Xna + Xy

X0 + Xry

Xrja + X

X0 + Xry

sz,{l] + X73/al

Xrr0, + Xry

Xrsar + Xry

Xrsar + Xrs,m

Xis0, + Xrs,ar

Xryar + Xrs,a

X"5,ﬂ1 + Xf’ellll

Xrs,a, + Xrg

Xrs,ar + Xrpm

Xrs,ar + Xry

X"erﬁﬁ + X?’7,111

Xrs,a, + Xry

X3 + Xry a3

Xri,a3 + X303

Xrya3 + Xy a3

Xr3ra3 + XVS,H:;

Xrs,a3 + Xrg a3

Xrs,a3 + Xy a3

Xrs,a3 + Xry a3

X0 €1{0,1}

Xy, + 2240 -
Xy, +3510 -

Xy a0y +3120 -
Xy, + 2550 -
X0y +2120 -

XTZ,IZS
Xr3/53

Xr5,a3
X76,ﬂ3
Xr7,ll3

reR,acA
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A.2. Base of example Robust Flow Model

minimize
XT,{Z

subject to

1210 - X, 0, + 1290 - X, 4, + 1330 - X,y 5

+2150 - Xy, 4, + 2110
+3410 - X, 4, + 3420
+0- Xy 0,
+2930 - X;s 0, +2900
+2350 + Xy, 0, + 2270
+1990 - X;, 4, +2090

Xna + Xy + Xrs g
X0 + Xryar + Xrs 0
X3 + Xryas + Xrsa
Xrsa1 + Xrs,m
+ Xipa + X
X305 + Xrsaz
Xrs,a + Xrga + Xi7 a0
Xrs,a, + Xrgar + Xrg 0
Xrs,a3 + Xrgas + Xry,a3
PaiTry s

pairrz,f’slsl

Pairy, rs,s

pairrZ/rS/SZ

PaiTry res) + PAiTry s
pairrerﬁrsl + Pairrz,r4,51
PAiTry r,s:

PaiTrs g5

PAiTr; re,s:

PAiTrs r,s:

pairr-i/ré/sl

paity, rm.s

X

r3,a2 5,42

<1
<1
<1
<1
<1
<1
<1
<1
<1

Xy 0y + 2240
- Xy 0y + 3510

+ Xyo 0y + 3120
 Xroa + 2550
Xy 0y +2120 -

2 X0, + Xryyar
> Xy a + Xos,ay
> Xiy 0y + Xis
2 X0 + Xrsaz
2 Xrya + Xrgm
> Xiy 0y + Xiga
> Xiy a3 + Xig
2 Xrgar + Xrgm
> Xiy a0 + Xig
> Xiy a3 + Xig a3
Z Xr4ra2 + XTé;ﬂz

> X

r4,a2

+ X

17,42

-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1
-1

' sz,aa
' erﬂs

- X
- X

5,43

76,43

Xr7,g3
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noOutPairy, s,

noOutPair,, s,

noOuUtPairy, s, + paity, ry,s; + PAiTryrs,s + PAIT 1y 165
noOutPairy, s, + paire, rs,s, + PALiTr, 16,0,
n0OUtPAITr, 5 + PAITry v s,
n0OUtPairy, s, + PaAite, re s,
noOutPairy, s, + pairty, ros, + PAire, rp s
noOutPairy, s,

noOutPairy, s,

noOutPairy, s,

noOutPaity, s,

noOutPairy, s,

noOutPair,, s,

nolncPair,, s,

nolncPair,, s,

nolncPairy, s

nolncPair,, s,

nolncPair,, s,

nolncPair,, s,

nOITlCPﬂiT’m,sl + P”irrz,m,sl
nolncPairy, s, + pairy, ro s
nolncPairy, s, + Paite, rs s
noIncPairy s, + paite, o5, + PAiTryrgs; + PAiTrsrg s
nolncPairy s, + paire, o s, + PAiTes 1o s
nolncPairy, s, + paire, ;s
nolncPair,, s,

Xr,a

= Xrpa + Xr 0
= X a3
= Xy + Xy 0
= Xry 03
= Xry,a + X0
= Xrs,a3
= Xrya
=X
= X503
= Xrga + Xron
= Xg,03
= Xy + X0,

+ X

15,41 5,42

= X703
= X, + Xra
= Xry,03
= Xy + Xy 00
= Xry,03
= Xrg,00 + Xy,
=X
= Xry,00
= Xrs,a1 + Xrs,0
= Xrs,a3
= Xrga + Xrg,a0
= Xre,a3
= Xrym + X7
= Xr7,a3

13,43

€ {0,1} VreR,a e A,
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A.3. Edges in example Robust Flow Model
A.3.1. Edges between rotations EP"°7

((200, 72, s1), (205, 14, 51))
((210, ra2, Sl), (210, T4, Sl))
((225, ra, Sl), (225, T4, 51))
((240, 15, 51), (240, 14, 51))
((255, T2, 51), (255, Y4, Sl))
((270, ra2, 51), (270, T4, S]))
((285, ra, Sl), (285, T4, 51))
((300, 72, s1), (300, 4, 51))
((315, T2, Sl), (315, Y4, Sl))
((330, 2, S1), (330, T4, S]))
((345, 1, Sl), (345, Y4, 51))
((360, 72, 51), (360, 4, 51))
((375, T2, Sl), (375, Y4, Sl))
((390, 2, Sl), (390, T4, S]))
((405, ra, Sl), (405, T4, 51))
((420, 72, 51), (420, 14, 51))
((435, ra2, Sl), (435, T4, Sl))
((450, ra, Sl), (450, T4, 51))
((465, 12, 51), (465, 14, 51))

((200, 72, s1), (210, 15, 51))
((210, 2, Sl), (210, rs, Sl))
((225, ra2, Sl), (225, rs, S]))
((240, ra, Sl), (240, rs, 51))
((255, 72, 51), (255, 15, 51))
((270, T2, Sl), (270, rs, Sl))
((285, ra, Sl), (285, rs, 51))
((300, 72, s1), (300, 75, 51))
((315, 72, 51), (315, 15, 51))
((330, ra2, Sl), (330, rs, Sl))
((345, ra, Sl), (210, rs, 51))
((360, 2, 51), (210, rs, 51))
((375, T2, Sl), (210, rs, Sl))
((390, ra2, 51), (210, rs, S]))
((405, ra, Sl), (210, rs, 51))
((420, 2, 51), (210, rs, 51))
((435, 2, Sl), (210, rs, Sl))
((450, ra2, Sl), (210, rs, S]))
((465, ra, Sl), (210, rs, 51))

((205, ra2, Sz), (210, rs, Sz))
((210, ra, Sz), (210, rs, Sz))
((225, 72, 52), (225, 15, 52))
((240, 2, Sz), (240, rs, 52))
((255, ra2, Sz), (255, rs, Sz))
((270, ra, Sz), (270, rs, Sz))
((285, 72, 52), (285, 15, 52))
((300, ra2, Sz), (300, rs, Sz))
(315,12, 52),(315, 15, 52))
((330, 2, 82), (330, 5, 52))
((345, 2, Sz), (210, rs, Sz))
((360, ra2, Sz), (210, rs, Sz))
((375, ra, Sz), (210, rs, 52))
((390, 17, s2), (210, 5, 52))
((405, 2, Sz), (210, rs, Sz))
((420, ra2, Sz), (210, rs, Sz))

((200, 72, 51), (290, 76, 51))
((210, T2, Sl), (290, Y6, Sl))
((225, ra2, Sl), (290, T6, S]))
((240, ra, Sl), (290, Te6, 51))
((255, 72, 51),(290, 16, 51))
((270, T2, Sl), (290, Y6, 51))
((285, ra2, Sl), (290, Te, S]))
((300, 72, s1), (300, 76, 51))
((315, 72, 51), (315, 16, 51))
((330, ra2, 51), (330, Te6, Sl))
((345, ra, Sl), (345, Te, S]))
((360, 72, 51), (360, 76, 51))
((375, 2, Sl), (375, Y6, S]))
((390, ra2, Sl), (390, Te, S]))
((405, ra, Sl), (405, T6, 51))
((420, 72, 51), (290, 16, 51))
((435, T2, Sl), (290, Y6, Sl))
((450, ra2, Sl), (290, T6, S]))
((465, ra, Sl), (290, Y6, 51))

((205, 2, 52), (290, 76, 52))
((210, 12, 52), (290, 76, 52))
((225, 12, 52), (290, 76, 52))
((240, r2, 52), (290, 76, 52))
((255, 12, 52), (290, 76, 52))
((270, 12, 52), (290, 76, 52))
((285, 12, 52),(290, 76, 52))
((300, r2, 52), (300, 76, 52))
((315, 2, Sz), (315, te, Sz))
((330, 12, 52), (330, 76, 52))
((345, 12, 52), (345, 76, 52))
((360, 172, s52), (360, 76, 52))
((375, 2, Sz), (375, Te, Sz))
((390, r2, 52), (390, 76, 52))
((405, 12, 52), (405, 76, 52))
((420, 17, s2), (290, 76, 52))

((265, rs3, Sl), (290, Y6, 51))
((270, r3, 1), (290, 76, 51))
((285, 13,51),(290, 76, 51))
((300, 13, 51), (300, 76, 51))
((315,r3,51), (315, 76, 51))
((330, r3, Sl), (330, Te, Sl))
((345,13,51),(345, 16, 51))
((360, 13, 51), (360, 76, 51))
((375,r3,51), (375, r¢,51))
((390, r3, Sl), (390, e, Sl))
((405, 13, 51), (405, 16, 51))
((420, r3, Sl), (290, Y6, 51))



A.3. Edges in example Robust Flow Model

85

((270, r3, Sz), (290, Y6, Sz))
((285, r3, Sz), (290, Y6, Sz))
((300, r3, Sz), (300, Te, 52))
((315, r3, Sz), (315, Y6, 52))
((330, 3, 52), (330, 76, 52))
((345, r3, Sz), (345, Y6, Sz))
((360, r3, Sz), (360, Y6, Sz))
((375, r3, Sz), (375, Y6, Sz))
((390, 3, 52), (390, 16, 52))
((405, r3, Sz), (405, Y6, Sz))
((420, r3, Sz), (290, Te, Sz))

((0/ r, Sl)/ (1501 r1, Sl))
((0,71,52),(155, 11, 52))

((5,72,81),(200, 72, 51))
((5,72,51),(210, 72, 51))
((5, 12, 81), (225, 2, Sl))
((5,72,81), (240,12, 51))
((5,72,81),(255,12,51))
((5,72,81), (270,72, 51))
((5,72,51),(285,72,51))
((5,72,81),(300,72,51))
((5,72,51), (315,72, 51))
((5,72,81),(330,72,51))
((5,72,81), (345,72, 51))
((5,72,81),(360,12,51))
((5,72,51),(375,12,51))
((5,72,81),(390, 12, 51))

((275, r4, Sl), (290, Y6, 51))
((285, r4,51),(290, 16, 51))
((300, ¥a, Sl), (300, Y6, 51))
((315, ra, Sl), (315, Te, S]))
((330, 74, 51), (330, 76, 51))
((345, Y4, Sl), (345, Y6, Sl))
((360, ¥a, 51), (360, Y6, Sl))
((375, T4, Sl), (375, Y6, S]))
((390, 74, 51), (390, 76, 51))
((405, Y4, Sl), (405, Y6, S]))
((420, ra, Sl), (290, T6, S]))
((435, ry4, Sl), (290, Te6, 51))
((450, 74, 51), (290, 16, 51))
((465, Y4, Sl), (290, Y6, 51))
((480, Ya, Sl), (290, T6, S]))

A.3.2. Edges within rotations E"%

((5,72,82), (205,72, 52))
((5,72,82),(210, 72, 52))
((5,72,82),(225,72,52))
((5,72,52),(240, 12, 52))
((5,72,82), (255,72, 52))
((5,72,82),(270, 72, 52))
((5,72,82), (285,72, 52))
((5,72,52),(300, 12, 52))
((5, 12, Sz), (315, 2, Sz))
((5,72,82),(330,72,52))
((5,72,82),(345, 712, 52))
((5,72,52), (360,72, 52))
((5,72,82),(375,72,52))
((5,72,82),(390, 12, 52))
((5,72,82), (405,12, 52))

((10, 73, 51), (265, 13, 51))
((10, 3, 81), (270, 13, 51))
((10, 73, 81), (285, 13, 51))
((10, 73, 51), (300, 13, 51))
((10, 73, 51), (315, 13, 51))
((10, r3, 81), (330, 13, 51))
((10, 73, 81), (345, 13,51))

((275, 14, 51),(350, 17, 51))
((285, r4,51), (350, r7,51))
((300, r4,51), (350, 77, 51))
((315, 14, 51),(350, 17, 51))
((330, 74, 51), (350, 17, 1))
((345, r4,51), (350, r7,51))
((360, 14, 51), (360, 77, 51))
((375,14,51),(375,17,51))
((390, r4, 51), (390, 17, 51))
((405, Ta, Sl), (405, rz, 51))
((420, 14, 51), (420, 77, 51))
((435,14,51),(435,17,51))
((450, 74, 1), (450, 77, 51))
((465, Ta, Sl), (465, rz, 51))
((480, 14, 51), (350, 17, 51))

((10,73,52),(270, 13, 52))
((10, r3, Sz), (285, rs, Sz))
((10, 73, 52), (300, 13, 52))
((10, 73, 52), (315, 13, 52))
((10, 73, 52),(330, 13, 52))
((10, 73, 52), (345, 13, 52))
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((205, 74, 51), (275, 14, 51))
((210, Ta, 51), (285, T4, S]))
((225, T4, Sl), (285, Y4, 51))
((225, 74, 51), (300, 4, 51))
((240, T4, Sl), (315, r4, Sl))
((240, r4,51), (300, 74, 51))
((255, T4, Sl), (330, Y4, 51))
((255, r4,51), (315,14, 51))
((270, T4, Sl), (330, r4, Sl))
((270, T4, Sl), (345, T4, S]))
((285, T4, Sl), (345, Y4, 51))
((285, r4,51), (360, 4, 51))
((300, Ta, Sl), (360, ra, Sl))
((300, T4, Sl), (375, T4, 51))
((315, r4,51), (375,14, 51))
((315, Ta, 51), (390, Y4, Sl))
((330, r4,51), (405, 14, 51))
((330, T4, Sl), (390, Y4, 51))
((345, 74, 51), (420, 14, 51))
((345, T4, Sl), (405, t4, Sl))
((360, 4,51), (420, 14, 51))
((360, T4, Sl), (435, Y4, 51))
((375, 74, 51), (450, 14, 51))
((375, T4, Sl), (435, r4, Sl))
((390, T4, Sl), (465, T4, S]))
((390, 74, 51), (450, 14, 51))
((405, 74, 51), (465, 14, 51))
((405, Ta, Sl), (480, T4, Sl))
((420, T4, Sl), (480, T4, 51))
((435, r4,51), (480, 14, 51))
((450, Ta, 51), (480, Y4, Sl))
((465, Ya, 51), (480, T4, S]))

((210, 15, 51), (440, 15, 51))
((225, 5, 51), (440, 15, 51))
((240, rs, Sl), (440, rs, Sl))
((255, rs, Sl), (440, rs, S]))
((270, 15, 51), (440, 15, 51))
((285, rs5, Sl), (440, rs, Sl))
((300, rs, Sl), (440, rs, Sl))
((315, rs, Sl), (440, rs, S]))
((330, 5, 51), (440, 15, 51))

((210, 5, 52), (445, 15, 52))
((225, rs, Sz), (445, rs, Sz))
((240, rs, Sz), (445, rs, Sz))
((255, rs, Sz), (445, rs, Sz))
(270, 5, 52), (445, 15, 52))
((285, rs, Sz), (445, rs, Sz))
((300, 15, 52), (445, 15, 52))
(315,75, 52), (445, 15, 52))
((330, rs, Sz), (445, rs, Sz))

((290, Y6, Sl), (505, Y6, 51))
((300, Y6, Sl), (505, T6, S]))
((315, Y6, Sl), (505, Y6, 51))
((330, Y6, 51), (505, Y6, Sl))
((345, Te, Sl), (505, Y6, Sl))
((360, Y6, Sl), (505, T6, S]))
((375, 76, 51), (505, 16, 51))
((390, Y6, Sl), (505, Y6, 51))
((405, Ye, Sl), (505, Te6, Sl))

((290, Te, Sz), (510, e, Sz))
((300, 76, 52), (510, 76, 52))
((315, 16, 52), (510, 76, 52))
((330, r¢, 52), (510, 76, 52))
((345, 16, 52), (510, 76, 52))
((360, 16, 52), (510, 76, 52))
((375, 76, 52), (510, 76, 52))
((390, Te, Sz), (510, Te, Sz))
((405, 16, 52), (510, 76, 52))

((350, r7, s1), (520, r7,51))
((360, 17, 51), (520, 17, 51))
((375,17,51), (520, 17, 51))
((390, rz, Sl), (520, rz, 51))
((405, r7, s1), (520, 77, 51))
((420,17,51), (520, 77, 51))
((435,77,51), (520,17, 51))
((450, r7, s1), (520, 17, 1))
((465, r7, Sl), (520, rz, Sl))
((350, 77, 52), (525, 17, 52))
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A .4. Experiment results
A.4.1. Run-time experiments

B0
= %) %D % g
= = S8 | | E |
s |, s |5 2 8285
0.250 | 0.250 0 5 0.025 57 24 | 26 | 133 24.946 5.121 2.202 0.072
0.250 | 0.250 0 5 0.050 57 24 | 26 | 114 24 .441 4.841 1.617 1.311
0.250 | 0.250 0 5 0.100 57 24 | 26 74 20.395 3.421 0.860 0.036
0.250 | 0.250 0 10 | 0.025 57 24 | 26 | 139 13.844 1.576 0.625 0.449
0.250 | 0.250 0 10 | 0.050 57 24 | 26 | 114 14.819 1.505 0.571 0.023
0.250 | 0.250 0 10 | 0.100 57 24 | 26 69 12.075 1.023 0.510 0.024
0.250 | 0.250 0 20 | 0.025 57 24 | 26 | 143 9.203 0.607 0.326 0.021
0.250 | 0.250 0 20 | 0.050 57 24 | 26 | 116 10.150 0.567 0.307 0.019
0.250 | 0.250 0 20 | 0.100 57 24 | 26 70 8.350 0.475 0.302 0.010
0.250 | 0.250 | 0.500 5 0.025 57 24 | 26 | 158 35.847 7.150 2.648 0.087
0.250 | 0.250 | 0.500 5 0.050 57 24 | 26 | 134 33.239 8.193 2.624 0.064
0.250 | 0.250 | 0.500 5 0.100 57 24 | 26 | 111 32.271 5.696 1.955 0.049
0.250 | 0.250 | 0.500 | 10 | 0.025 57 24 | 26 | 158 20.836 2.186 0.820 0.027
0.250 | 0.250 | 0.500 | 10 | 0.050 57 24 | 26 | 133 18.868 1.958 0.617 0.020
0.250 | 0.250 | 0.500 | 10 | 0.100 57 24 | 26 | 111 17.826 1.578 0.802 0.021
0.250 | 0.250 | 0.500 | 20 | 0.025 57 24 | 26 | 156 11.440 0.739 0.365 0.194
0.250 | 0.250 | 0.500 | 20 | 0.050 57 24 | 26 | 130 11.319 0.665 0.341 0.015
0.250 | 0.250 | 0.500 | 20 | 0.100 57 24 | 26 | 111 11.117 0.617 0.410 0.013
0.250 | 0.250 1 5 0.025 57 24 | 26 | 190 46.256 9.553 6.425 5.708
0.250 | 0.250 1 5 0.050 57 24 | 26 | 168 46.340 8.457 4.664 0.093
0.250 | 0.250 1 5 0.100 57 24 | 26 | 142 43.818 7.007 3.060 0.078
0.250 | 0.250 1 10 | 0.025 57 24 | 26 | 188 25.194 2.531 1.074 0.926
0.250 | 0.250 1 10 | 0.050 57 24 | 26 | 168 25.237 2.431 0.935 0.755
0.250 | 0.250 1 10 | 0.100 57 24 | 26 | 141 24.651 2.036 0.634 0.487
0.250 | 0.250 1 20 | 0.025 57 24 | 26 | 190 15.331 0.904 0.522 0.018
0.250 | 0.250 1 20 | 0.050 57 24 | 26 | 165 14.666 0.858 0.418 0.015
0.250 | 0.250 1 20 | 0.100 57 24 | 26 | 136 13.594 0.705 0.335 0.016
0.250 | 0.500 0 5 0.025 | 119 | 41 51 | 524 47.836 10.612 6.994 2.616
0.250 | 0.500 0 5 0.050 | 119 | 41 | 51 | 459 56.895 10.048 5.150 2.022
0.250 | 0.500 0 5 0.100 | 119 | 41 51 | 308 47.004 7.848 2.810 0.928
0.250 | 0.500 0 10 | 0.025 | 119 | 41 51 | 531 28.437 3.572 3.144 1.028
0.250 | 0.500 0 10 | 0.050 | 119 | 41 | 51 | 464 36.704 3.619 3.345 0.987
0.250 | 0.500 0 10 | 0.100 | 119 | 41 51 | 309 30.748 3.148 2.327 0.040
0.250 | 0.500 0 20 | 0.025 | 119 | 41 51 | 540 21.610 1.706 2.445 0.330
0.250 | 0.500 0 20 | 0.050 | 119 | 41 51 | 450 18.709 1.451 1.619 0.212
0.250 | 0.500 0 20 | 0.100 | 119 | 41 51 | 319 18.921 1.456 1.311 0.164
0.250 | 0.500 | 0.500 5 0.025 | 119 | 41 51 | 721 82.778 18.390 | 23.156 9.637
0.250 | 0.500 | 0.500 5 0.050 | 119 | 41 51 | 670 85.701 17.747 | 32.370 | 19.228
0.250 | 0.500 | 0.500 5 0.100 | 119 | 41 51 | 592 88.038 16.989 | 18.177 4.639
0.250 | 0.500 | 0.500 | 10 | 0.025 | 119 | 41 51 | 730 49.613 6.631 11.839 5.846
0.250 | 0.500 | 0.500 | 10 | 0.050 | 119 | 41 | 51 | 678 41.782 5.211 9.977 3.935
0.250 | 0.500 | 0.500 | 10 | 0.100 | 119 | 41 51 | 595 40.370 4.570 6.845 2.576
0.250 | 0.500 | 0.500 | 20 | 0.025 | 119 | 41 51 | 724 23.043 2.217 2.873 1.256
0.250 | 0.500 | 0.500 | 20 | 0.050 | 119 | 41 | 51 | 676 22.984 2.069 3.527 1.065
0.250 | 0.500 | 0.500 | 20 | 0.100 | 119 | 41 51 | 585 22.774 1.844 3.126 0.529
0.250 | 0.500 1 5 0.025 | 119 | 41 51 | 811 104.707 | 24.021 | 26.129 7.332
0.250 | 0.500 1 5 0.050 | 119 | 41 | 51 | 765 | 102.008 | 21.330 | 18.900 8.603
0.250 | 0.500 1 5 0.100 | 119 | 41 51 | 682 | 103.193 | 17.256 | 20.275 7.944
0.250 | 0.500 1 10 | 0.025 | 119 | 41 51 | 815 54.085 7.372 8.160 2.706
0.250 | 0.500 1 10 | 0.050 | 119 | 41 | 51 | 765 58.120 6.642 6.538 1.936
0.250 | 0.500 1 10 | 0.100 | 119 | 41 | 51 | 685 49,922 5.124 5.697 1.756
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0.250 | 0.500 1 20 | 0.025 | 119 | 41 | 51 817 26.165 2.433 2.483 1.024
0.250 | 0.500 1 20 | 0.050 | 119 | 41 | 51 769 26.405 2.257 2.631 0.877
0.250 | 0.500 1 20 | 0.100 | 119 | 41 | 51 701 26.471 2.051 2.956 0.898
0.250 1 0 5 10.025 | 226 | 92 | 101 | 2681 | 139.636 | 35.569 | 194.503 | 118.839
0.250 1 0 5 10.050 | 226 | 92 | 101 | 1970 | 136.638 | 30.308 | 87.308 52.954
0.250 1 0 5 10100 | 226 | 92 | 101 | 1270 | 112.247 | 23.497 | 18.284 13.728
0.250 1 0 10 | 0.025 | 226 | 92 | 101 | 2658 | 71.037 | 13.602 | 51.923 21.141
0.250 1 0 10 | 0.050 | 226 | 92 | 101 | 2011 | 69.045 | 11.158 | 33.372 11.099
0.250 1 0 10 | 0.100 | 226 | 92 | 101 | 1291 | 61.942 8.423 8.620 3.519
0.250 1 0 20 | 0.025 | 226 | 92 | 101 | 2655 | 44.447 7127 40.103 6.505
0.250 1 0 20 | 0.050 | 226 | 92 | 101 | 2010 | 43.720 5.725 13.875 3.695
0.250 1 0 20 | 0.100 | 226 | 92 | 101 | 1290 | 39.733 | 4.238 7.695 2.269
0.250 1 0500 | 5 | 0.025 | 226 | 92 | 101 | 3391 | 175.090 | 46.220 | 255.560 | 136.984
0.250 1 0500 | 5 | 0.050 | 226 | 92 | 101 | 2899 | 174.060 | 41.579 | 180.909 | 93.622
0.250 1 0500 | 5 | 0.100 | 226 | 92 | 101 | 2355 | 171.385 | 35.823 | 103.448 | 65.914
0.250 1 0.500 | 10 | 0.025 | 226 | 92 | 101 | 3427 | 94.568 | 17.827 | 74.356 25.544
0.250 1 0.500 | 10 | 0.050 | 226 | 92 | 101 | 2898 | 94.759 | 15.755 | 43.640 21.970
0.250 1 0.500 | 10 | 0.100 | 226 | 92 | 101 | 2349 | 94.180 | 13.212 | 36.884 14.952
0.250 1 0.500 | 20 | 0.025 | 226 | 92 | 101 | 3420 | 54.415 | 9.464 | 32.050 13.662
0.250 1 0.500 | 20 | 0.050 | 226 | 92 | 101 | 2896 | 54.688 8.357 21.269 7.412
0.250 1 0.500 | 20 | 0.100 | 226 | 92 | 101 | 2348 | 54.402 6.815 14.532 10.117
0.250 1 1 5 10.025 | 226 | 92 | 101 | 4292 | 210.936 | 58.451 | 428.244 | 205.077
0.250 1 1 5 10.050 | 226 | 92 | 101 | 3856 | 210.267 | 53.325 | 355.699 | 169.254
0.250 1 1 5 10100 | 226 | 92 | 101 | 3260 | 210.480 | 47.401 | 153.776 | 93.134
0.250 1 1 10 | 0.025 | 226 | 92 | 101 | 4311 | 105.151 | 23.353 | 99.208 27.150
0.250 1 1 10 | 0.050 | 226 | 92 | 101 | 3848 | 114.719 | 20.493 | 76.155 22.332
0.250 1 1 10 | 0.100 | 226 | 92 | 101 | 3267 | 114.521 | 18.082 | 32.119 14.747
0.250 1 1 20 | 0.025 | 226 | 92 | 101 | 4294 | 66.610 | 12.434 | 45.975 7.273
0.250 1 1 20 | 0.050 | 226 | 92 | 101 | 3855 | 66.742 | 11.018 | 41.628 6.160
0.250 1 1 20 | 0.100 | 226 | 92 | 101 | 3254 | 61.849 9.524 17.368 7277
0.500 | 0.250 0 5 10025 | 114 | 41 | 26 | 536 | 53.058 | 11.363 | 4.963 2.268
0.500 | 0.250 0 5 10050 | 114 | 41 | 26 428 57.284 | 10.075 4.524 1.630
0.500 | 0.250 0 5 10100 | 114 | 41 | 26 306 47.501 7.176 3.144 0.817
0.500 | 0.250 0 10 | 0.025 | 114 | 41 | 26 | 543 | 31.699 | 3.560 3.120 1.038
0.500 | 0.250 0 10 | 0.050 | 114 | 41 | 26 435 31.064 3.345 2.492 0.872
0.500 | 0.250 0 10 | 0.100 | 114 | 41 | 26 321 31.111 2.955 1.573 0.371
0.500 | 0.250 0 20 | 0.025 | 114 | 41 | 26 547 18.737 1.429 2287 0.320
0.500 | 0.250 0 20 | 0.050 | 114 | 41 | 26 432 18.468 1.182 1.410 0.235
0.500 | 0.250 0 20 | 0.100 | 114 | 41 | 26 329 17.156 1.027 1.061 0.146
0.500 | 0.250 | 0.500 | 5 | 0.025 | 114 | 41 | 26 694 78.675 | 15.397 | 12.327 3.728
0.500 | 0.250 | 0.500 | 5 | 0.050 | 114 | 41 | 26 592 78.617 | 13.889 8.870 1.785
0.500 | 0.250 | 0.500 | 5 | 0.100 | 114 | 41 | 26 474 75.024 | 11.778 3.018 2.085
0.500 | 0.250 | 0.500 | 10 | 0.025 | 114 | 41 | 26 | 690 | 42385 | 4.697 5.441 1.239
0.500 | 0.250 | 0.500 | 10 | 0.050 | 114 | 41 | 26 601 42.156 4.343 5.724 1.155
0.500 | 0.250 | 0.500 | 10 | 0.100 | 114 | 41 | 26 489 40.261 3.587 3.298 0.601
0.500 | 0.250 | 0.500 | 20 | 0.025 | 114 | 41 | 26 704 24.996 1.771 3.771 0.765
0.500 | 0.250 | 0.500 | 20 | 0.050 | 114 | 41 | 26 606 24.795 1.581 2.062 0.664
0.500 | 0.250 | 0.500 | 20 | 0.100 | 114 | 41 | 26 490 24.227 1.374 1.378 0.252
0.500 | 0.250 1 5 10025 | 114 | 41 | 26 773 81.479 | 17.755 | 28.785 4.969
0.500 | 0.250 1 5 10050 | 114 | 41 | 26 | 649 | 80.384 | 16.022 | 17.049 3.165
0.500 | 0.250 1 5 10100 | 114 | 41 | 26 510 73.678 | 14.173 9.477 1.958
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0.500 | 0.250 1 10 | 0.025 | 114 41 26 783 40.477 5.531 10.948 1.584
0.500 | 0.250 1 10 | 0.050 | 114 41 26 666 40.093 4.865 7.614 1.317
0.500 | 0.250 1 10 | 0.100 | 114 41 26 521 40.454 4.282 6.026 0.685
0.500 | 0.250 1 20 | 0.025 | 114 41 26 785 23.740 2.151 7.005 0.915
0.500 | 0.250 1 20 | 0.050 | 114 41 26 670 25.959 1.833 5.004 0.710
0.500 | 0.250 1 20 | 0.100 | 114 41 26 525 25.868 1.600 2.787 0.589
0.500 | 0.500 0 5 0.025 | 230 80 51 1949 127.100 31.121 124.720 7.610
0.500 | 0.500 0 5 0.050 | 230 80 51 1556 126.921 26.750 65.678 7.169
0.500 | 0.500 0 5 0.100 | 230 80 51 1032 119.681 22.252 19.595 3.777
0.500 | 0.500 0 10 | 0.025 | 230 80 51 1977 69.436 10.088 65.028 3.387
0.500 | 0.500 0 10 | 0.050 | 230 80 51 1589 69.550 8.878 48.255 3.048
0.500 | 0.500 0 10 | 0.100 | 230 80 51 1046 65.553 7.021 8.310 2413
0.500 | 0.500 0 20 | 0.025 | 230 80 51 1953 39.918 4.288 44 388 1.318
0.500 | 0.500 0 20 | 0.050 | 230 80 51 1558 39.722 3.691 24.329 2.394
0.500 | 0.500 0 20 | 0.100 | 230 80 51 1068 38.884 3.005 7.256 0.414
0.500 | 0.500 | 0.500 5 0.025 | 230 80 51 2510 161.798 39.499 1706.891 72.721
0.500 | 0.500 | 0.500 5 0.050 | 230 80 51 2185 160.475 35.198 1284.845 36.624
0.500 | 0.500 | 0.500 5 0.100 | 230 80 51 1814 155.976 31.250 479.195 23.932
0.500 | 0.500 | 0.500 | 10 | 0.025 | 230 80 51 2544 87.675 13.811 969.364 13.166
0.500 | 0.500 | 0.500 | 10 | 0.050 | 230 80 51 2201 88.620 12.076 426.966 9.946
0.500 | 0.500 | 0.500 | 10 | 0.100 | 230 80 51 1872 84.970 10.436 244186 7.805
0.500 | 0.500 | 0.500 | 20 | 0.025 | 230 80 51 2512 50.287 5.811 314.306 2.852
0.500 | 0.500 | 0.500 | 20 | 0.050 | 230 80 51 2174 50.219 5.321 135.490 5.816
0.500 | 0.500 | 0.500 | 20 | 0.100 | 230 80 51 1845 48.947 4.353 196.712 3.933
0.500 | 0.500 1 5 0.025 | 230 80 51 3067 176.952 47.334 3600.508 | 129.335
0.500 | 0.500 1 5 0.050 | 230 80 51 2673 177.428 42.657 3600.388 81.423
0.500 | 0.500 1 5 0.100 | 230 80 51 2262 177.049 37.853 1376.143 33.155
0.500 | 0.500 1 10 | 0.025 | 230 80 51 3074 95.900 16.268 3600.183 15.715
0.500 | 0.500 1 10 | 0.050 | 230 80 51 2670 96.141 14.307 3600.182 6.263
0.500 | 0.500 1 10 | 0.100 | 230 80 51 2301 96.352 12.860 627.688 12.749
0.500 | 0.500 1 20 | 0.025 | 230 80 51 3046 56.050 7.096 1307.878 5.579
0.500 | 0.500 1 20 | 0.050 | 230 80 51 2687 55.363 6.478 695.974 8.188
0.500 | 0.500 1 20 | 0.100 | 230 80 51 2285 55.293 5.415 399.683 6.667
0.500 1 0 5 0.025 | 451 | 175 | 101 8607 242.263 80.985 1041.284 | 301.534
0.500 1 0 5 0.050 | 451 175 | 101 6663 228.424 65.463 532.427 148.864
0.500 1 0 5 0.100 | 451 175 | 101 4527 218.287 52.124 167.188 56.842
0.500 1 0 10 | 0.025 | 451 | 175 | 101 8659 136.611 35.070 387.015 73.812
0.500 1 0 10 | 0.050 | 451 175 | 101 6777 136.681 28.580 225.794 44 946
0.500 1 0 10 | 0.100 | 451 175 | 101 4581 131.251 21.276 64.020 18.978
0.500 1 0 20 | 0.025 | 451 | 175 | 101 8673 80.370 22.181 116.752 21.563
0.500 1 0 20 | 0.050 | 451 175 101 6780 79.831 17.345 77.821 13.242
0.500 1 0 20 | 0.100 | 451 175 | 101 4620 77.378 12.275 31.965 6.961
0.500 1 0.500 5 0.025 | 451 | 175 | 101 | 12528 | 322,513 | 118.525 | 3601.105 | 815.600
0.500 1 0.500 5 0.050 | 451 175 | 101 10862 | 320.041 103.856 | 3232.693 | 569.751
0.500 1 0.500 5 0.100 | 451 175 | 101 8937 318.093 87.953 1533.478 | 368.890
0.500 1 0500 | 10 | 0.025 | 451 | 175 | 101 | 12589 | 175.660 55.164 1629.842 | 105.437
0.500 1 0.500 | 10 | 0.050 | 451 175 | 101 10931 175.678 47.293 2083.873 83.514
0.500 1 0.500 | 10 | 0.100 | 451 175 | 101 8997 174.078 39.101 505.813 70.443
0.500 1 0500 | 20 | 0.025 | 451 | 175 | 101 | 12540 | 102.319 35.259 988.595 29.635
0.500 1 0.500 | 20 | 0.050 | 451 | 175 | 101 | 10895 94.220 29.815 332.309 23.979
0.500 1 0.500 | 20 | 0.100 | 451 175 | 101 8910 101.497 23.781 280.253 17.298
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0.500 1 1 5 1 0.025 | 451 | 175 | 101 | 14507 | 367.036 | 142.298 | 3601.497 | 1444.277
0.500 1 1 5 1 0.050 | 451 | 175 | 101 | 12749 | 366.982 | 125.830 | 3601.232 | 1049.609
0.500 1 1 5 | 0.100 | 451 | 175 | 101 | 10993 | 366.087 | 108.100 | 3600.956 | 628.300
0.500 1 1 10 | 0.025 | 451 | 175 | 101 | 14572 | 199.586 | 67.927 | 3600.979 | 196.112
0.500 1 1 10 | 0.050 | 451 | 175 | 101 | 12828 | 200.769 | 57.872 | 3125.061 | 138.755
0.500 1 1 10 | 0.100 | 451 | 175 | 101 | 11069 | 199.156 | 49.158 | 3600.668 | 84.892
0.500 1 1 20 | 0.025 | 451 | 175 | 101 | 14585 | 116.676 | 42.559 | 3602.123 44.128
0.500 1 1 20 | 0.050 | 451 | 175 | 101 | 12842 | 120.593 | 37.047 | 2166.988 34.082
0.500 1 1 20 | 0.100 | 451 | 175 | 101 | 11038 | 122.543 | 32.309 | 1001.672 23.801
1 0.250 0 5 1 0.025 | 258 | 97 26 3412 | 134180 | 35.764 | 3602.005 39.883
1 0.250 0 5 1 0.050 | 258 | 97 26 2650 | 143.806 | 31.585 | 3600.345 54.961
1 0.250 0 5 10100 | 258 | 97 | 26 | 1785 | 139.309 | 25.890 | 3600.298 | 23.758
1 0.250 0 10 | 0.025 | 258 | 97 26 3441 79.046 12.032 | 3600.195 13.478
1 0.250 0 10 | 0.050 | 258 | 97 26 2714 78.104 10.234 | 3600.191 8.902
1 0.250 0 10 | 0.100 | 258 | 97 | 26 | 1790 | 76.291 8.159 | 3600.179 9.560
1 0.250 0 20 | 0.025 | 258 | 97 | 26 | 3450 | 45.364 5346 | 3600.162 9.320
1 0.250 0 20 | 0.050 | 258 | 97 26 2652 45.224 4.325 3600.099 7.226
1 0.250 0 20 | 0.100 | 258 | 97 | 26 | 1865 | 44.603 3.524 1969.120 4.154
1 0.250 | 0.500 | 5 | 0.025 | 258 | 97 | 26 | 4253 | 177.272 | 45.704 | 3600.448 | 38.065
1 0.250 | 0.500 | 5 | 0.050 | 258 | 97 26 3623 | 176.830 | 40.294 | 3600.418 15.906
1 0.250 | 0.500 | 5 | 0.100 | 258 | 97 | 26 | 2928 | 175.665 | 34.800 | 3600.479 | 35.181
1 0.250 | 0.500 | 10 | 0.025 | 258 | 97 | 26 | 4258 | 88.449 15.814 | 3600.256 | 30.340
1 0.250 | 0.500 | 10 | 0.050 | 258 | 97 26 3658 95.296 14.026 | 3600.247 18.854
1 0.250 | 0.500 | 10 | 0.100 | 258 | 97 | 26 | 2953 | 94.978 11.695 | 3600.209 17.991
1 0.250 | 0.500 | 20 | 0.025 | 258 | 97 | 26 | 4275 | 55.169 7.091 3600.179 9.234
1 0.250 | 0.500 | 20 | 0.050 | 258 | 97 26 3615 55.216 5.949 3600.133 9.575
1 0.250 | 0.500 | 20 | 0.100 | 258 | 97 | 26 | 2995 | 55.064 5.060 | 3600.151 9.192
1 0.250 1 5 0025 | 258 | 97 | 26 | 5437 | 209.013 | 59.172 | 3600.396 | 80.364
1 0.250 1 5 1 0.050 | 258 | 97 26 4822 | 192.498 | 53.293 | 3600.447 | 114.589
1 0.250 1 5 | 0.100 | 258 | 97 26 4140 | 196.116 | 47.070 | 3600.421 | 138.756
1 0.250 1 10 | 0.025 | 258 | 97 | 26 | 5476 | 104.552 | 21.398 | 3600.254 | 35.402
1 0.250 1 10 | 0.050 | 258 | 97 26 4826 | 113.149 | 19.775 | 3600.277 75.410
1 0.250 1 10 | 0.100 | 258 | 97 26 4147 | 113.507 | 16.423 | 3600.234 | 134.858
1 0.250 1 20 | 0.025 | 258 | 97 | 26 | 5441 65.401 9.586 | 3600.218 18.508
1 0.250 1 20 | 0.050 | 258 | 97 26 4814 65.556 8.254 3600.200 16.492
1 0.250 1 20 | 0.100 | 258 | 97 26 4135 65.529 7.026 3600.135 9.767
1 0.500 0 5 | 0025 | 470 | 184 | 51 | 10487 | 261.848 | 81.146 | 3601.013 | 580.381
1 0.500 0 5 | 0050 | 470 | 184 | 51 8479 | 282.683 | 68.887 | 3600.686 | 359.563
1 0.500 0 5 10100 | 470 | 184 | 51 5841 | 275.662 | 55.321 | 3600.588 | 512.314
1 0.500 0 10 | 0.025 | 470 | 184 | 51 | 10630 | 153.558 | 33.419 | 3600.269 | 139.161
1 0.500 0 10 | 0.050 | 470 | 184 | 51 8581 | 154.057 | 27.763 | 3600.361 94.451
1 0.500 0 10 | 0.100 | 470 | 184 | 51 5954 | 148.889 | 21.004 | 3600.285 45.133
1 0.500 0 20 | 0.025 | 470 | 184 | 51 | 10645 | 89.228 18.902 | 3600.361 45.825
1 0.500 0 20 | 0.050 | 470 | 184 | 51 8541 89.459 14.879 | 3600.312 28.820
1 0.500 0 20 | 0.100 | 470 | 184 | 51 5957 87.863 10.895 | 3600.192 14.857
1 0.500 | 0.500 | 5 | 0.025 | 470 | 184 | 51 | 13666 | 337.915 | 115.303 | 3600.725 | 1900.757
1 0.500 | 0.500 | 5 | 0.050 | 470 | 184 | 51 | 11823 | 323.073 | 100.590 | 3600.625 | 1376.361
1 0.500 | 0.500 | 5 | 0.100 | 470 | 184 | 51 9808 | 319.097 | 86.648 | 3600.597 | 494.167
1 0.500 | 0.500 | 10 | 0.025 | 470 | 184 | 51 | 13678 | 175.604 | 48.339 | 3600.360 | 509.010
1 0.500 | 0.500 | 10 | 0.050 | 470 | 184 | 51 | 11874 | 175.825 | 41.851 | 3600.285 | 177.697
1 0.500 | 0.500 | 10 | 0.100 | 470 | 184 | 51 9845 | 174.215 | 35.296 | 3600.623 | 115.733
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1 | 0500 | 0.500 | 20 | 0.025 | 470 | 184 | 51 | 13645 | 105.536 | 27.545 | 3600.185 85.709
1 | 0.500 | 0.500 | 20 | 0.050 | 470 | 184 | 51 | 11848 | 102.637 | 23.310 | 3600.487 54.419
1 | 0.500 | 0.500 | 20 | 0.100 | 470 | 184 | 51 9883 | 114.460 | 19.306 | 3600.302 | 35.795
1 | 0.500 1 5 | 0.025 | 470 | 184 | 51 | 16201 | 381.735 | 143.361 | 3600.876 | 2881.946
1 | 0.500 1 5 | 0.050 | 470 | 184 | 51 | 14579 | 402.769 | 127.847 | 3600.756 | 2150.661
1 | 0.500 1 5 10100 | 470 | 184 | 51 | 12693 | 397.189 | 110.536 | 3600.678 | 1635.734
1 | 0.500 1 10 | 0.025 | 470 | 184 | 51 | 16239 | 217.061 | 61.028 | 3600.400 | 882.221
1 | 0.500 1 10 | 0.050 | 470 | 184 | 51 | 14629 | 217.144 | 54.081 | 3600.393 | 615.937
1 | 0.500 1 10 | 0.100 | 470 | 184 | 51 | 12705 | 218.168 | 46.084 | 3600.308 | 197.584
1 | 0.500 1 20 | 0.025 | 470 | 184 | 51 | 16316 | 127.778 | 34.701 | 3600.222 | 246.764
1 | 0.500 1 20 | 0.050 | 470 | 184 | 51 | 14624 | 127.458 | 30.133 | 3600.232 91.208
1 | 0.500 1 20 | 0.100 | 470 | 184 | 51 | 12702 | 127.282 | 25.298 | 3600.179 58.688
1 1 0 5 | 0.025 | 902 | 355 | 101 | 40152 | 530.286 | 269.173 | 3602.028 None
1 1 0 5 | 0.050 | 902 | 355 | 101 | 31703 | 505.926 | 215.259 | 3601.225 | 3514.667
1 1 0 5 | 0.100 | 902 | 355 | 101 | 21508 | 495.680 | 157.608 | 3601.772 | 581.162
1 1 0 10 | 0.025 | 902 | 355 | 101 | 40259 | 276.782 | 163.410 | 3600.801 | 749.811
1 1 0 10 | 0.050 | 902 | 355 | 101 | 32080 | 276.890 | 123.339 | 3600.733 | 338.219
1 1 0 10 | 0.100 | 902 | 355 | 101 | 21787 | 278.045 | 82.471 | 3600.490 | 133.372
1 1 0 20 | 0.025 | 902 | 355 | 101 | 40053 | 165.198 | 125.535 | 3600.551 | 269.684
1 1 0 20 | 0.050 | 902 | 355 | 101 | 32185 | 165.439 | 93.431 | 3600.483 | 115.592
1 1 0 20 | 0.100 | 902 | 355 | 101 | 22316 | 163.584 | 60.816 | 3601.237 | 64.312
1 1 0.500 | 5 | 0.025 | 902 | 355 | 101 | 52271 | 658.974 | 408.085 | 3606.961 None
1 1 0500 | 5 | 0.050 | 902 | 355 | 101 | 45571 | 653.635 | 348.207 | 3601.602 None
1 1 0.500 | 5 | 0.100 | 902 | 355 | 101 | 38133 | 637.966 | 282.982 | 3601.606 | 2392.121
1 1 0.500 | 10 | 0.025 | 902 | 355 | 101 | 52517 | 352.722 | 247.166 | 3607.400 | 2324.515
1 1 0.500 | 10 | 0.050 | 902 | 355 | 101 | 45827 | 354.084 | 208.695 | 3600.951 | 1133.626
1 1 0.500 | 10 | 0.100 | 902 | 355 | 101 | 38497 | 359.672 | 170.414 | 3601.151 | 619.397
1 1 0.500 | 20 | 0.025 | 902 | 355 | 101 | 52311 | 207.123 | 190.681 | 3600.816 | 701.954
1 1 0.500 | 20 | 0.050 | 902 | 355 | 101 | 45685 | 206.932 | 159.154 | 3600.656 | 347.843
1 1 0.500 | 20 | 0.100 | 902 | 355 | 101 | 38498 | 205.994 | 129.282 | 3600.576 | 196.509
1 1 1 5 10025 | 902 | 355 | 101 | 63768 | 721.717 | 535.770 | 3609.536 None
1 1 1 5 | 0.050 | 902 | 355 | 101 | 56228 | 712.856 | 455.418 | 3605.596 None
1 1 1 5 | 0.100 | 902 | 355 | 101 | 48548 | 717.290 | 385.588 | 3603.948 None
1 1 1 10 | 0.025 | 902 | 355 | 101 | 64197 | 391.477 | 330.976 | 3601.590 | 3318.057
1 1 1 10 | 0.050 | 902 | 355 | 101 | 56380 | 392.411 | 277.367 | 3602.242 | 2181.179
1 1 1 10 | 0.100 | 902 | 355 | 101 | 48661 | 391.167 | 228.595 | 3601.055 | 1253.526
1 1 1 20 | 0.025 | 902 | 355 | 101 | 64004 | 233.382 | 258.936 | 3600.992 | 1033.265
1 1 1 20 | 0.050 | 902 | 355 | 101 | 56360 | 231.545 | 211.919 | 3600.890 | 530.310
1 1 1 20 | 0.100 | 902 | 355 | 101 | 48513 | 231.501 | 173.151 | 3601.228 | 273.765
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A 4.2, Performance experiments
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T [ 1] 0 [10]0050 |27329 | 0.019 | 0.982 | 0.977
T [ 1] 0 [10]0100 19936 | 0.008 | 0.973 | 0.951
T [ 1] 0 [10]0200 1096 | 0.002 | 0.971 | 0.903
1T [1] 0 [10]0350 | 3963 | 0.000 | 0.974 | 0.861
T [ 1] 0 [10]0500 | 654 | 0.000 | 0977 | 0.831
T [ 1] 0 [10][0650 | 0 [0000] 0976 | 0.840
T [ 1] 0 [20]0050 27438 | 0.018 | 0.980 | 0.982
T [ 1] 0 [20]0100 19781 | 0.006 | 0.971 | 0.952
T [ 1] 0 [20]0200] 11154 | 0.001 | 0.971 | 0.899
T [1] 0 [20]0350 | 4313 | 0.000 | 0.974 | 0.859
T [ 1] 0 [20]0500 | 963 | 0.000 | 0.977 | 0.835
T [1] 0 [20[0650 | 0 [0000] 0976 | 0.840
T [ 1] 0 [40]0050 |26866 | 0.011 | 0.973 | 0.983
T [ 1] 0 [40] 0100 | 19837 | 0.006 | 0.972 | 0.951
T [ 1] 0 |40 020011081 | 0.002 | 0.971 | 0.908
T [ 1] 0 [40][0350 | 4510 | 0.000 | 0.974 | 0.862
T [ 1] 0 [40[0500 | 961 | 0.000 | 0.977 | 0.838
1 [1] 0 [40]0650 | 106 | 0.00 | 0.977 | 0.834
T [ 1] 0 [60]0050 |27327 | 0.010 | 0.972 | 0.990
T [1] 0 [60] 0100 19815 | 0.006 | 0.971 | 0.959
1 [ 1] 0 [60]0200] 11619 | 0.002 | 0.971 | 0.904
T [T 0 [60]0350 | 5545 | 0.000 | 0.974 | 0.864
T [1] 0 [60]0500 1177 [ 0.000 | 0.977 | 0.834
T [ 1] 0 [60]0650 | 32 |0000]| 0977 | 0.829
T [ 1] 0 [90]0050 |25384 | 0.011 | 0.971 | 1.005
T [ 1] 0 [90]0100 18875 | 0.008 | 0.971 | 0.978
T [ 1] 0 [90]0200 10405 | 0.003 | 0.972 | 0.917
T [1] 0 [90]035 | 3746 | 0.000 | 0.973 | 0.870
T [1] 0 [90[0500 545 |0.000 | 0976 | 0.839
T [ 1] 0 [90]0650 | 22 [0000 | 0977 | 0.835
1 [ 1[0200 [ 100100 | 26785 | 0.028 | 0.981 | 0.973
T [ 1[0200 [ 100200 | 18105 | 0.010 | 0.970 | 0.926
T [ 1]0200 |10 0350 | 9770 | 0.003 | 0.970 | 0.870
T [ 1[0200[10]0500 | 4266 | 0 | 0972 | 0.828
T [ 1[0200[10]0650 | 746 | 0.000 | 0.977 | 0.799
T | 1]0200 |20 | 0.100 | 26611 | 0.019 | 0.973 | 0.968
1 [ 1[0200 [ 200200 | 18078 | 0.010 | 0.968 | 0.938
T [ 1[0200 200350 | 9959 | 0.001 | 0.968 | 0.865
T [ 1]0200 |20 0500 | 4621 | 0.000 | 0.972 | 0.830
1 [ 1[0200 200650 | 846 0 [0977 [ 0794
T |1 [0.200 40 [ 0.050 | 32890 | 0.040 | 0.992 | 0.990
T | 1 ]0.200 | 40 | 0.100 | 26442 | 0.013 | 0.968 | 0.971
T [ 1 [0.200 |40 [ 0200 | 18269 | 0.009 | 0.968 | 0.937
T | 1[0200 |40 [ 0350 | 10014 | 0.001 | 0.967 | 0.875
T | 1]0200 |40 | 0500 | 4973 | 0.000 | 0.973 | 0.828
1 [ 1 [0200 |40 | 0.650 | 880 0 | 0977 [ 0796
1 [ 1[0200 |60 [ 0050 | 33273 | 0.015 | 0.967 | 0.993
T [ 1[0.200 [ 60 | 0.100 | 26547 | 0.014 | 0.968 | 0.977
1 [ 1]0200 |60 [ 0200 | 18127 | 0.008 | 0.967 | 0.925
1 [ 1[0.200 |60 0350 | 10700 | 0.001 | 0.966 | 0.881
T [ 1[0200 |60 0500 | 6199 | 0.000 | 0.973 | 0.826
1 [ 1020060 | 0650 | 997 | 0.000 | 0.977 | 0.798
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1 1 | 0.200 | 90 | 0.100 | 26177 | 0.015 | 0.969 | 0.981
1 1 | 0.200 | 90 | 0.200 | 17734 | 0.009 | 0.967 | 0.942
1 1 | 0.200 | 90 | 0.350 8895 0.004 | 0.967 | 0.891
1 1 | 0.200 | 90 | 0.500 3731 0.000 | 0.970 | 0.841
1 1 | 0.200 | 90 | 0.650 741 0.000 | 0.976 | 0.802
1 1 | 0.400 | 10 | 0.200 | 25400 | 0.026 | 0.973 | 0.952
1 1 | 0400 | 10 | 0.350 | 18292 | 0.013 | 0.969 | 0.892
1 1 | 0400 | 10 | 0.500 | 12099 | 0.001 | 0.967 | 0.829
1 1 | 0.400 | 10 | 0.650 5466 0.001 | 0972 | 0.797
1 1 | 0400 | 20 | 0.050 | 37239 | 0.032 | 0.974 | 0.992
1 1 | 0400 | 20 | 0.100 | 31944 | 0.026 | 0.970 | 0.978
1 1 | 0.400 | 20 | 0.200 | 25429 | 0.018 | 0.968 | 0.943
1 1 | 0400 | 20 | 0.350 | 18091 | 0.014 | 0.967 | 0.913
1 1 | 0400 [ 20 | 0.500 | 11750 | 0.001 | 0.966 | 0.831
1 1 | 0.400 | 20 | 0.650 5619 0.000 | 0.973 | 0.789
1 1 | 0400 | 40 | 0.050 | 37249 | 0.027 | 0.969 | 0.997
1 1 | 0.400 | 40 | 0.100 | 31859 | 0.025 | 0.968 | 0.984
1 1 | 0.400 | 40 | 0.200 | 24967 | 0.022 | 0.969 | 0.958
1 1 | 0400 | 40 | 0.350 | 18201 | 0.008 | 0.964 | 0.893
1 1 | 0400 | 40 | 0.500 | 11552 | 0.002 | 0.967 | 0.839
1 1 | 0.400 | 40 | 0.650 4727 0.000 | 0.973 | 0.790
1 1 | 0400 | 60 | 0.050 | 37135 | 0.032 | 0.973 | 1.003
1 1 | 0400 | 60 | 0.100 | 32305 | 0.034 | 0.976 | 0.992
1 1 | 0400 | 60 | 0.200 | 25147 | 0.033 | 0.980 | 0.953
1 1 | 0400 | 60 | 0.350 | 17562 | 0.008 | 0.965 | 0.888
1 1 | 0400 | 60 | 0.500 | 10594 | 0.002 | 0.968 | 0.828
1 1 | 0.400 | 60 | 0.650 4555 0.000 | 0.972 | 0.796
1 1 | 0400 | 90 | 0.050 | 37450 | 0.042 | 0.979 | 1.024
1 1 | 0400 | 90 | 0.100 | 32111 | 0.026 | 0.967 | 1.005
1 1 | 0400 | 90 | 0.200 | 26166 | 0.022 | 0.966 | 0.980
1 1 | 0400 | 90 | 0.350 | 16966 | 0.010 | 0.965 | 0.899
1 1 | 0400 | 90 | 0.500 | 10581 | 0.003 | 0.967 | 0.844
1 1 | 0.400 | 90 | 0.650 5082 0.000 | 0.971 | 0.804
1 1 | 0.600 | 10 | 0.350 | 23189 | 0.036 | 0.979 | 0.927
1 1 | 0.600 | 10 | 0.500 | 16960 | 0.014 | 0.969 | 0.851
1 1 | 0.600 | 10 | 0.650 | 10324 | 0.001 | 0.968 | 0.789
1 1 | 0.600 | 20 | 0.050 | 40454 | 0.044 | 0.975 | 0.998
1 1 | 0.600 | 20 | 0.200 | 29856 | 0.035 | 0.970 | 0.970
1 1 | 0.600 | 20 | 0.350 | 22918 | 0.027 | 0.971 | 0.915
1 1 | 0.600 | 20 | 0.500 | 17005 | 0.015 | 0.969 | 0.864
1 1 | 0.600 | 20 | 0.650 | 10470 | 0.001 | 0.970 | 0.782
1 1 | 0.600 | 40 | 0.050 | 40188 | 0.047 | 0.977 | 1.000
1 1 | 0.600 | 40 | 0.200 | 29658 | 0.056 | 0.991 | 0.974
1 1 | 0.600 | 40 | 0.350 | 23135 | 0.042 | 0.983 | 0.932
1 1 | 0.600 | 40 | 0.500 | 17129 | 0.010 | 0.962 | 0.869
1 1 | 0.600 | 40 | 0.650 | 10671 | 0.002 | 0.968 | 0.796
1 1 | 0.600 | 60 | 0.100 | 35146 | 0.039 | 0.970 | 0.994
1 1 | 0.600 | 60 | 0.200 | 29649 | 0.040 | 0.975 | 0.977
1 1 | 0.600 | 60 | 0.350 | 22575 | 0.022 | 0.965 | 0.927
1 1 | 0.600 | 60 | 0.500 | 16654 | 0.010 | 0.967 | 0.846
1 1 | 0.600 | 60 | 0.650 8381 0.001 | 0.968 | 0.791
1 1 | 0.600 | 90 | 0.050 | 39846 | 0.056 | 0.983 | 1.022
1 1 | 0.600 | 90 | 0.100 | 34963 | 0.036 | 0.965 | 1.008
1 1 | 0.600 [ 90 | 0.200 | 29005 | 0.032 | 0.964 | 0.991
1 1 | 0.600 | 90 | 0.350 | 22297 | 0.035 | 0.972 | 0.958
1 1 | 0.600 | 90 | 0.500 | 15045 | 0.011 | 0.963 | 0.873
1 1 | 0.600 | 90 | 0.650 8360 0.002 | 0.968 | 0.799
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1 1 | 0.800 | 10 | 0.350 | 23803 | 0.040 | 0.972 | 0.925
1 1 | 0800 | 10 | 0.500 | 16915 | 0.032 | 0.981 | 0.845
1 1 | 0.800 [ 10 | 0.650 | 9922 | 0.000 | 0.968 | 0.760
1 1 | 0.800 | 20 | 0.200 | 30448 | 0.049 | 0.974 | 0.969
1 1 | 0.800 | 20 | 0.350 | 23713 | 0.026 | 0.960 | 0.917
1 1 | 0.800 | 20 | 0.500 | 17221 | 0.017 | 0.963 | 0.859
1 1 | 0.800 | 20 | 0.650 | 9961 0.001 | 0.965 | 0.770
1 1 | 0.800 | 40 | 0.200 | 30265 | 0.036 | 0.961 | 0.962
1 1 | 0.800 | 40 | 0.350 | 23300 | 0.048 | 0.979 | 0.933
1 1 | 0.800 | 40 | 0.500 | 16834 | 0.015 | 0.965 | 0.844
1 1 | 0.800 | 40 | 0.650 | 9562 | 0.002 | 0.969 | 0.762
1 1 | 0.800 | 60 | 0.050 | 41971 | 0.052 | 0.970 | 1.011
1 1 | 0.800 | 60 | 0.100 | 36911 | 0.055 | 0.974 | 1.002
1 1 | 0.800 | 60 | 0.200 | 30459 | 0.053 | 0.978 | 0.970
1 1 | 0.800 | 60 | 0.350 | 23741 | 0.043 | 0.977 | 0.921
1 1 | 0.800 | 60 | 0.500 | 17146 | 0.013 | 0.962 | 0.845
1 1 | 0800 | 60 | 0.650 | 8471 | 0.001 | 0.969 | 0.758
1 1 | 0.800 | 90 | 0.100 | 36603 | 0.070 | 0.986 | 1.021
1 1 | 0.800 | 90 | 0.200 | 29239 | 0.041 | 0.964 | 0.983
1 1 | 0.800 | 90 | 0.350 | 23370 | 0.043 | 0.974 | 0.934
1 1 | 0800 | 90 | 0.500 | 16794 | 0.012 | 0.960 | 0.850
1 1 | 0800 [ 90 | 0.650 | 7779 | 0.001 | 0.965 | 0.773
1 1 1 10 | 0.500 | 21975 | 0.031 | 0.962 | 0.861
1 1 1 10 | 0.650 | 14508 | 0.027 | 0.977 | 0.779
1 1 1 20 | 0.200 | 34757 | 0.063 | 0.969 | 0.974
1 1 1 20 | 0.350 | 28329 | 0.060 | 0.974 | 0.935
1 1 1 20 | 0.500 | 21855 | 0.040 | 0.968 | 0.874
1 1 1 20 | 0.650 | 14314 | 0.012 | 0.964 | 0.776
1 1 1 40 | 0.200 | 34837 | 0.058 | 0.964 | 0.972
1 1 1 40 | 0.350 | 27837 | 0.047 | 0.963 | 0.927
1 1 1 40 | 0.500 | 22178 | 0.031 | 0.961 | 0.866
1 1 1 40 | 0.650 | 13634 | 0.009 | 0.960 | 0.779
1 1 1 60 | 0.050 | 46273 | 0.067 | 0.967 | 1.010
1 1 1 60 | 0.350 | 28136 | 0.055 | 0971 | 0.927
1 1 1 60 | 0.500 | 20908 | 0.025 | 0.957 | 0.861
1 1 1 60 | 0.650 | 12508 | 0.006 | 0.961 | 0.762
1 1 1 90 | 0.350 | 27227 | 0.046 | 0.958 | 0.943
1 1 1 90 | 0.500 | 21616 | 0.054 | 0.974 | 0.915
1 1 1 90 | 0.650 | 14162 | 0.010 | 0.960 | 0.783
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1 0.200 0 5 0.0125 | 2005 0 0.980 | 0.972
1 | 0200 | 0 5 0.025 | 1686 | 0 | 0.980 | 0.970
1 0.200 0 5 0.050 1294 0 0.980 | 0.954
1 0.200 0 5 0.100 850 0 0.981 | 0.925
1 |10200 | 0 5 0.200 449 0 | 0982 | 0.877
1 0.200 0 5 0.350 127 0 0.985 | 0.845
1 0.200 0 10 | 0.0125 | 2017 0 0.980 | 0.974
1 10200 | 0 | 10| 0.025 | 1706 | 0 | 0.980 | 0.972
1 0.200 0 10 0.050 1303 0 0.980 | 0.958
1 0.200 0 10 0.100 841 0 0.980 | 0.940
1 |10200 | 0 | 10 | 0.200 469 0 | 0982 | 0.880
1 ]10200 | 0 | 10 | 0.350 159 0 | 0985 | 0.846
1 0.200 0 20 | 0.0125 | 2018 0 0.980 | 0.975
1 10200 | 0 |20 | 0.025 | 1673 | 0 | 0.980 | 0.973
1 10200 | 0 |20 | 0.050 | 1262 | 0 | 0.980 | 0.956
1 0.200 0 20 0.100 806 0 0.980 | 0.926
1 |10200 | 0 | 20 | 0.200 409 0 | 0983 | 0.886
1 |10200 | 0 | 20 | 0.350 162 0 | 0984 | 0.859
1 0.200 0 40 | 0.0125 | 1962 0 0.980 | 0.982
1 10200 | 0 | 40| 0.025 | 1657 | 0 | 0.980 | 0.978
1 10200 | 0 | 40 | 0.050 | 1289 | 0 | 0.980 | 0.964
1 0.200 0 40 0.100 818 0 0.980 | 0.940
1 | 0200 | 0 | 40 | 0.200 423 0 | 0983 | 0.882
1 |1 0200 | 0 | 40 | 0.350 163 0 | 0983 | 0.868
1 0.200 0 60 | 0.0125 | 2025 0 0.979 | 0.991
1 0.200 0 60 0.025 1702 0 0.980 | 0.985
1 10200 | 0 | 60 | 0.0560 | 1262 | 0 | 0.980 | 0.968
1 0.200 0 60 0.100 815 0 0.981 | 0.918
1 0.200 0 60 0.200 484 0 0.983 | 0.879
1 |10200 | 0 | 60 | 0.350 182 0 | 0985 | 0.847
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