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SUMMARY
In this paper we investigate the boundary layer which arises between the parallel flow

of fresh and salt groundwater as occurs in vertical aquifers. It is caused by small molecular
diffusion and transversal dispersion brought about by the porous environment. A
self-similar transformation leads to a variant of the Falkner-Skan equation. Existence,
uniqueness and various properties of the solution, such as monotonicity and asymptotic
behaviour, are established and the influence of the ratio of molecular diffusion to
transversal dispersion is analysed. Some numerical results are presented.

1. Introduction

CONSIDER the two-dimensional flow of an incompressible fluid through a
homogeneous and isotropic porous medium. The fluid has a constant dynamic
viscosity /i > 0 and a variable density p, and the porous medium is characterized
by a constant porosity <D e (0, 1) and a constant permeability K > 0.

A typical example of such a situation arises in the flow of fresh and salt
groundwater in a two-dimensional vertical aquifer (1, 2, 3). In this application
one has for the densities pf and p, of the fresh and of the salt groundwater,
respectively:

0<pf<p<p,<co (1.1)

throughout the entire flow domain. Assuming that the volume of the fluid is
not affected by its density, the equations describing the problem result from
fluid incompressibility:

div<7 = 0, (1.2)

momentum balance (Darcy's law):

-<7 + grad p - pg = 0, (1.3)

K
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and mass balance:

CD — + div F = 0.
dt

(1.4)

In these equations, q = (q{,q2) = («, v) denotes the specific discharge of the
fluid, p the fluid pressure and g the acceleration of gravity. In equation (1.4),
the vector F denotes the mass flux. It is given by

where D =

F = pg — D grad p, (1.5)

is the hydrodynamic dispersion matrix defined by (1, p. 612)

Du = {aT\q\ + <I>Dmo[}d
IJ

(aL - (1.6)

Here aT and aL are positive constants with aT < aL. They are called the
transversal and the longitudinal dispersion length and they describe the diffusion
due to the mechanical dispersion caused by the randomness of the structure of
the porous matrix. Further, Dmol is a positive constant representing the molecular
diffusion in the fluid. Finally 5U denotes the Kronecker delta and | • | the Euclidean
norm in R2.

In this paper we study a particular flow problem, which was recently
investigated by Uffink (4, 5). In Fig. 1 below we sketch the situation and explain
some notation. In the region {.x < 0, z > 0} we suppose that fresh water (p = pf)
has a uniform specific discharge u = U, v = 0 along an impervious boundary
{x < 0, z = 0]. In the region {.v > 0} we suppose that fresh water is present far
above the plane {z = 0} and salt water far below.

In the absence of diffusion or dispersion (D = 0 in (1.5)), an abrupt transition
or interface exists between the fresh and the salt water. It is well known that
this leads to a jump in the tangential component of the specific discharge along

Fresh water

Salt water

FIG. 1. Geometry of the problem
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the interface, the shear flow (1, 6), of magnitude

(qf-qs). i=(p,- pf)g-sin p. (1.7)

Here qf and q, denote the specific discharge just above and below the interface
and f is the tangential unit vector along the interface pointing in the direction
of positive x. Thus, if we look for a flow configuration in which the salt water
is stagnant, we must require that

U = (P, ~ pf)g - sin p. (1.8)

This leads to a fresh-salt interface which coincides with the half-plane {x > 0,
z > 0 } .

In general, when dispersion is present, a transition zone will develop which
will be thin if the coefficients a.T, aL and Dmo, in the dispersion matrix D are
small. In (4) Uffink presents a boundary-layer model to describe the steady
mixing of the two fluids in this transition zone. Below we give the main steps
of the derivation.

To eliminate the pressure from Darcy's law (1.3) we take the curl. This yields

curll - q - pg I = 0,
\K )

or, written out in detail,

du dv K [dp dp \
+ -g — s i n / ? - — cos p = 0. 1.9)

cz ox /< \oz ox )

The system of equations consisting of (1.2), (1.4) to (1.6) and (1.9) describes the
mixing of the fluids.

To investigate the development of the transition zone, a singular perturbation
method is used (7). Thus we get

<52 = aT/L,

where L is a characteristic length of the problem such as the distance to the
origin. Introducing dimensionless variables

x' = x/L, z' = z/(LS), u' = u/U, v' = v/(US) (1.10a)

and

p' = P ~ Pf , (1.10b)
P,~ Pj
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and omitting the primes again for convenience, (1.9) yields

dz dx \dz dx

where

U \i

If we now let b —> 0 and use (1.8), we obtain

du dp
— + — = 0.
dz dz

Choosing u = 0 deep in the salt-water region, where p = 1, we obtain upon
integration

u + p=\. (1.11)

This yields u = 1 (or u = U in the original variables) in the fresh-water region,
far from the transition layer.

Similarly, we substitute (1.10) into equations (1.2) and (1.4) to (1.6) and let
S -> 0. We then find the following set of boundary-layer equations for steady flow:

(1.12)

Here

du
Tx +

uBp
U dx

u = '.

dv
Tz

1 -

dp

dz

p-

d

~~d~z

aTU

denotes the ratio between molecular diffusion and transversal mechanical
dispersion. The value of A depends on the type of soil: for homogeneous fine
grained soils it can be large but for heterogeneous soils it is very small. Note
that, using (1.12)3 to eliminate p, (1.12)2 can be written as

du du d f,. , ., du,

At this point it is worthwhile to compare equations (1.12) with the Prandtl
boundary-layer equations (7). The additional term in (1.12)4 is the degenerate
diffusion term (|u|u2)r, where the subscript z denotes differentiation with respect
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to z. The appearance of this term enables us to consider solutions in the limit
as k -»0.

We consider (1.12) in the half-space

Cl = {(x, z):x > 0, - o o < z < oo}.

Along the boundary x = 0 we require that

(1.13)
0 for z < 0

and far into the fresh-water region we impose the condition that

v(x, z)-»0 as z —> oo for every x > 0. (1-14)

As with the classical Prandtl boundary layer in the wake of a flat plate, we
construct the solution of (1.12) to (1.14) as a similarity solution. We introduce
the stream function ip(x,z):

dip diu
u = — and v =

dz dx

and write

Then

" = f'(i) an(J v =

where the primes denote differentiation with respect to r\. This shows that (1.12),
is satisfied for any / e C2(U). Substitution into (1.12)4 yields for / the ordinary
differential equation

(2?.f + \f'\f')" + ff" = 0. (1.15)

Note that this equation resembles the Blasius equation (8); however, it has the
additional term ( | / ' | / ' ) " .

The conditions (1.13) at the boundary x = 0 are satisfied if

if t] -* — co,

and the condition (1.14) at z = +oo yields

if'(i)-f(i)^O as//̂ +oD. (1.17)

In order to ensure that v(x, z) remains bounded for each x > 0, also as z -» — oo,
we replace (1.16)2 by the stronger condition

a s r / - > - c o . (1.18)
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Here the number a is a priori not known but needs to be determined as part
of the solution. We shall show in section 4 that t]f'( t]) -> Oasr; -> — oo. Hence

a
l im v(x, z)= - — — .

Thus, the number a is directly related to the amount of salt drawn into the
mixing zone. Therefore it is important to have some quantitative information
about a.

In this paper it is assumed that

a for all rjeU. (1.19)

In section 2 we show that this condition implies that solutions are monotonic
so that u = / ' ^ 0, ruling out the possibility of back flow.

To study the problem posed by (1.15) to (1.19), we reduce (1.15) in section
2 to a second-order nonlinear diffusion equation, which we study in section 3.
In particular, existence and uniqueness of a solution is established for any / ^ 0,
subject to appropriate boundary conditions. This solution is then used in section
4 to obtain the unique solution (a,f) of (1.15) to (1.19).

In addition to proving the existence and uniqueness of a solution we derive
a number of qualitative properties of the function f{t]) and the limiting value
a, in particular the dependence of the latter on L For / we find that

f(ij) > t] for — co < i] < oo

and
(a) if/ > 0, then

f{rj)>a, / ' ( r / ) > 0 , f"(r])>0 for— x < r / < x ;

(b) if /. = 0, then there exists a constant a < 0 such that

/(>;) = a f o r — x < ^ 7 ^ a

and

f{r\) > a, f'{tj) > 0, f"(rj) > 0 for a < t] < x .

A numerical computation shows that % = —2-4130.
About the asymptotic behaviour of f{rj) as r\ -> x and r\ -> — x (or a) we

show that

e - i ' ' ^ + ; i >) as i\ -> x ,

and

f(n) = a + O(eM'<2;) a s > / - - x if ;. > 0

l\a\(n-i)2 +O((>] - a ) 3 ) a s >, - a if ;. = 0.

For a we find that it depends continuously and monotonically on / and that
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it tends to — oo as k -* oo. Specifically, writing a = a{k) we prove that (i) for
every kl, k2 ̂  0 there exists a constant C > 0 such that

(ii) for every ku k2 > 0,

A, > k2=>a{kl)<a{k2),

and we prove the following upper and lower bounds:

-a*y/(k+l)<a{k)< -a*Jk for k ̂  0,

where a* = 1-23675. In Table 1 we give some values of a.

TABLE 1

k a(k)

0 -0-7102
1 -1-4256
2 —1-8885

10 -40013

Finally, in section 5 we consider the case when both the fresh water (far up)
and the salt water (far down) move in the positive x-direction:

' " ^ (1.20)
, as z -»• — co,

where Uf=Us+U and Us>0. This leads again to equation (1.15) and
condition (1.17). However, conditions (1.16)1-2 become

if f/-> - c o ,

where 9 = (75/l/.

2. Preliminaries

In this section we shall establish some qualitative properties of solutions. It
will be convenient to rewrite the problem slightly. Set

g(s) = 2ks + \s\s, k S* 0.

Then we shall consider the problem

(g(f'))"+ff" = 0 on (-GO, co), (2.1)

/ ( - < » ) = a and / ' ( o o ) = l , (2.2)

= 0, (2.3)
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where as R. By a solution of (2.1) to (2.3) we shall mean a number a and a
function / : R -> [a, oo) such that (i) both / ' and (g(f'))' are locally absolutely
continuous on R, (ii) equation (2.1) is satisfied almost everywhere and (iii) (2.2)
and (2.3) hold.

Suppose that / is a solution of (2.1) to (2.3). Then we can define the set /
on which / ' > 0:

I = {r1sR:f'(t])>0}.

In view of the condition at infinity, / is non-empty. It will also be convenient
to introduce the function F denned by

-co<n<<x>.

Equation (2.1) can then be written as

LEMMA 2.1. feCw(I). If ). > 0 then f s C2(U).

Proof. The function g satisfies g'(s) > g'(0) = 2?. for s e R \ { 0 } and by the
definition of a solution, F' is locally absolutely continuous on R. Thus, since

f'(n) = g-\F{r])) fori/eR,

it follows that feC2(I) or, if X > 0, that fe C2(R). The first assertion now
follows from a standard bootstrap argument.

LEMMA 2.2.

Proof. We

This shows

We

first

have

f'(n)->0 and

write equation (2

(2/.f + \f'\f' + \f2

that

is convex on R.

the function

h(tj) = 2/.f'(n

We assert that

h Js 0 and

•1)

)"

) 4

h

F'(n)-*0 as

as

= /<^0 a.

•\f\n)\fW

' S s O o n ( -

n

e.

+ •

oo

-> - c o .

o n ( — oo, oo).

l/2(f)

, 0 0 ) .

(2.4)

(2.5)

(2.6)

To prove that h is non-decreasing, suppose that, for some r/0 e R, h'{n0) < 0.
Then by the convexity of h,

h{n) -> oo as//-*—oo. (2.7)

Since, by (2.2), f(n) tends to some constant as n -> — oo, (2.7) implies that f'(n)
becomes unbounded, violating this boundary condition.

Next, suppose that, for some n0 e R, h(n0) < 0. Then by the previous result
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h(t]) < 0 for all r\ ̂  r/0 and hence

2A/' + | / ' | / ' ^ 2A/' + | / ' | / ' + i / 2 < 0 on (-oo, fj0].

This implies that f'(r\)< - 5 < 0 for some 5 > 0 for all t) e ( - oo, r/0], and thus
that /(>/) -• — oo as t] -* - oo , violating the boundary condition.

It follows from (2.6) that

lim h(t]) exists = b ^ 0. (2.8)
I J - - C O

This implies, by the boundary condition at r\ — — oo, that

lim {2Xf\r,) + \f(ri)\f'{r,)}=W-b, (2.9)

and hence that

lim f'(t]) exists = c. (2.10)
t]-

1 — 00

Plainly, by the boundary condition, c = 0, so that by (2.9), b = \a2.
To prove the second assertion of Lemma 2.2, we use the fact that by the

convexity of h,

lim h'(rj) exists = d, (2.11)
i l - - o o

where d > 0 in view of (2.6). If d > 0 then h(rj) -* — oo as r\ -* — oo, which is
impossible, because h(rj) > 0 for all r\ e R. Therefore d = 0, and we have

lim /I'(J/) = 0.
H - - o o

Because

F'(^) = fc'(^) - fWf'ir,)

we conclude using (2.10) and the boundary condition that

lim F'(r/) = O

f]-* — oo

as well.

LEMMA 2.3. We have
f'(n)>0 if f{tj)>a.

Proof. When we integrate equation (2.1) over ( — oo, r\) and use Lemma 2.2, we
obtain

F'in) + f(n)f'(i) = P {f'(s)}2ds. (2.12)
J - CO

Suppose that there exists a point ^ e R such that both /(r^) > a and
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f'(ii) ^ 0- Then the boundary condition / ( - c o ) = a implies the existence of
a point r]0 e (— oo, t]{] such that

/(>/„) > a, f'(no) = 0

and

/ ( f X / 0 / o ) for - c o o/s£>70 . (2.13)

Thus at rj = n0 (2.12) becomes

-f. (2.14)

If / > 0, then by Lemma 2.1, / is smooth in a neighbourhood of n0. Thus,
in this case

f(rio) > 0,

which implies that f(r\) > f(n0) in a left neighbourhood of rj0, contradicting
(2.13).

If X = 0, we conclude from (2.14) that

Since by the definition of a solution, \f'\f e Cl(U), it follows that (\f'\f)' > 0
in a neighbourhood of rj0. This implies that \f'\f < 0 in a left neighbourhood
of rj0 and thus that f(t]) > f{rj0) in this neighbourhood, again contradictiing
(2.13).

By definition / ^ a on R. Hence Lemma 2.3 implies that

/ ' Ss 0 on R.

This allows us to reformulate the result of Lemma 2.1.

COROLLARY 2.4. (a) / / / > 0 then f e C°°(IR);
(b) // / = 0 then f e C=°({/ > a})-

Define

a = inf{f/eR; f(n) > a}.

Plainly, by Lemma 2.3,

f>a and / ' > 0 on (a, oo). (2.15)

Near n = a we have

\imf(n) = a (2.16)
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by the condition at rj = — oo and the continuity of / , and

Kmf'(rj) = 0, limF'(>;) = 0 (2.17)

by Lemma 2.2 and the continuity of/' and F'.
Rather than studying the problem (2.1) to (2.3) as it stands, we first transform

it, in a way well known in the theory of the Falkner-Skan equation (9) to a
problem involving a second-order equation. Thus, we introduce / as an
independent variable, which is possible by Lemma 2.3, and choose / ' as a
dependent variable. Specifically, define a:(a, oo) -> (a, oo) by

o(f(i)) = T\ for a < r/ < oo (2.18)

and y:\_a, oo) ->(a, oo) by

f / > ( / ) ) i f a < / < o o ,
[0 if / = a.

In view of the continuity of/' and Corollary 2.4, y e C([a, oo)) n Ccc(a, oo).
For / > a or r; > a, we have

/'(»/) = rt/W) (2-19)
and so, upon differentiation we obtain

f'Xn) = / (
Similarly,

and

When we substitute this into (2.1) and use Lemma 2.3, we arrive at the equation

(Uy + y2)y')' + \fy' = 0 when a < /<oo , (2.20)

whilst (2.2) becomes

>>(/)-> 1 a s / - o o . (2.21)

Finally, from (2.16) and (2.17) we conclude that

y ( / ) - 0 and {>.y{f) + / ( / ) } / ( / ) - 0 a s / - a . (2.22)

Thus, we have shown that if (a, / ) is a solution of(2.1) and (2.2) then (a,/'(cr(/)))
is a solution of (2.20), (2.21) and (2.22).

In the next section we shall show that the problem (2.20) to (2.22) has a
unique solution (a, y).

Having obtained a and >>(/), and therefore also /'(r/), we can obtain f(t]) by
integration. This involves a constant of integration. We shall show that this
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constant can be chosen so that the condition (2.3) at tj = oo is satisfied, and
that this choice is unique.

3. The diffusion problem

In section 2 we transformed the original problem (2.1) to (2.3) involving a
third-order ordinary differential equation for/(^) to one with a second-order
ordinary differential equation for y(f) = f'(o{f))- In this section we study the
latter problem. It is of the form

((D(y)y'Y + i />' = 0, a < / < o o , (3.1)

(I) ly(a) = 0, (D(y)/)(a) = 0, (3.2)

U/)- l as/^oo, (3.3)
where

D(s) = h + s2. (3.4)

Note that if y is a solution of (3.1) to (3.3), then y' > 0 on (a, oo) and y" < 0
on (0, oo), and so y'(f) -> 0 as / -• GO. In Lemma 3.5 we shall establish the rate
of convergence.

Problem (I) is a classical problem, which arises in the study of similarity
solutions of the nonlinear diffusion equation

u,=(D(u)ux)x. (3.5)

Since the diffusion coefficient D(s) vanishes at s = 0, and in fact

f
Jo

A

ds < oo,

equation (3.5) is degenerate and gives rise to free boundaries. For further
references we refer to (10, 11).

In analysing Problem (I) we follow in particular the theory developed in (12
to 15). There, we often work with y as the independent variable. This is possible
because y is strictly monotonic on [a, oo). Thus, define T: [0, 1) -> [a, oo) by

Ay(f))=f, a^f< oo.

As the new dependent variable we choose

=-£z{y)=-\ r(Z)dZ. (3.6)
Jo

To derive an equation for z, we integrate (3.1) over (a, / ) . If we then use the
continuity of the flux D(y)y' at / = a, we obtain

D(y)y' = - - sy'(s) ds= - -
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and so

z = 2D(y)y\ (3.7)

On the other hand, when we differentiate (3.6) twice we obtain

z"=-l//. (3.8)

When we now use (3.7) to eliminate / from (3.8) we obtain the equation

zz" = -2D(y), 0<y<\. (3.9)

Consistent with the conditions imposed on y(f) at / = a and / = oo, we
choose at the end points y = 0 and y = 1,

z(0) = 0 and z(l) = 0.

Finally, by (3.6) and (3.3),

z ' ( l )= - o o .

Thus, we have arrived at the following problem

f z z " = -2D(y), 0<y<\,
(II)

[z(0) = 0, z(l) = 0, z'(l) = - o o ,

and we seek a solution z e C2(0, 1) n C([0, 1]). The existence and uniqueness
of such a solution was established in (14, 15). This in turn implies existence
and uniqueness for Problem (I).

Let z be the solution of (II). Then, because D > 0 on (0, 1), z and z" have
one sign on (0, 1). Since z'(l) = — oo, it follows that z" < 0 on (0, 1) and so, by
the differential equation, z > 0 on (0, 1). Therefore

lim - z'(y) exists = a < 0. (3.10)
J.-0

Also

a > — co.

To see this, we write the differential equation as

D(y) l z „
= z .

y 2 y
By the convexity of z, we have zjy > z' and hence

l , „
> Z2 ,

y 2
which yields upon integration over (0, y0), where y0 e (0, 1) is the zero of z ,



14 C. J. VAN DUIJN AND L. A PELETIER

and hence

Note that y0 = y(0).
Summarizing we have proved the following result.

THEOREM 3.1. Problem (I) has a unique solution (a, y). Moreover,

V
< a < 0 .

o s

We note a monotonicity property of a with respect to L Let X^ < X2
 a n c ' s e ^

Then, plainly, D^y) < D2(y) for 0 < y «S 1. Suppose that Z; and z2 are the
solutions of (II) which correspond respectively to Dl and D2. Then by (14,
Theorem 2.1; 15, Theorem 4),

zl<z2 on (0 ,1) and z\(0) < z'2(0).

Thus, if we write a = a(X), emphasizing the dependence on k, we have the
following monotonicity property.

THEOREM 3.2. Let a(X) be as defined above. Then

In the next theorem we show that a{l) is locally Lipschitz continuous for
0 < A < oo.

THEOREM 3.3. For every A,, A2 > 0 there exists a constant ^(1), where X =
minj/1,, X2}, such that

\a(Xi)-a(X2)\<V(X)\Xi-X2\.

Proof. Let / , , X2 ^ 0 and let z, and z2 be the solutions of Problem (II)
corresponding respectively to Xx and X2. Without loss of generality we choose
X2 > / i > 0. Set

y = z2 - z , .

Then veC2(0, l ) n C ( [ O , 1]), t> > 0 on (0, l ) a n d v(0) = y(l) = 0. Therefore, D
attains its maximum value at a point b e ( 0 , 1):

u(fc) > 0, v'(b) = 0, v"(b) < 0.

According to the differential equation for z,

zxz'[ = 2 ( / 2 - Xx)y, (3.12)
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or

(z2 - zJIzil = 2(A2 - A,)y + z2v".

Thus, at y = b we have

(z2 - zJlfe) < 2(X2 - At) —
b— = (A2 - AJz^

|z'(fr)|

and so

11*2-*iII. <(*2-Ai)z ' i(0). (3.13)

When we divide (3.12) by Zj and recall that zl < z2, we obtain

To remove the singularity at y = 1 we multiply by 1 — y. Then

y)< 2(A2 - / , ) J / ( 1 ~ J > )

where X is a positive generic constant, because of the concavity of zv This
yields upon integration over (0, b)

-v'(y)(\ -y) -v(y)

or

v'(0) < K(l2 - /,) + v(b).

Thus, in view of (3.13) there exists a positive constant # such that

t/(0) <<<?(; . , - / , ) .

Since u'(0) = z'2(0) — z\(0) = —a{"/.2) + a(/n) the assertion follows.

Finally, using a comparison argument based on the inequalities

and using a scaling property of equation (3.1) with D(y) = y, we obtain the
following bounds for a{/.) (3).

THEOREM 3.4. Let a(/.) be as defined above. Then

-a*yJ(/.+ \)<a(/.)<-a*J>. for A 2s 0,

where a* = 1-23675.
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COROLLARY 3.5. a{k) -* — co as /.-> oo.

For later use we need an estimate for the rate with which y(f) approaches
the value 1 as / tends to infinity.

LEMMA 3.6. We have

y{f)= 1 + O ( / - V ' / : ) and y'(f) = O(e->f) as f - oo,

where y = 1/{4(1 + / ) ] .

Proof. Define the function

D(t)dt.
o

This satisfies the equation

w" + —— w' = 0
W(y)

and so, since w' = D(j ')/ > 0 on (a, oo),

r1 f s
log w'(f) = ds + constant.

2 j D(y(s))

But y(f) < 1 and so D(y(f)) < D{\) for all fe (a, oo). Therefore

f2
log w'(/) < h constant

40(1)

exp( --—— ), a < / < c o ,
V 4D(1)/

or

where C, is a positive constant. Because D(y) > Z)(̂ ) for / large enough this
means that

( f2 \/( /)<C2expl - — — I for / large enough,

where C2 = C,/D(^). The assertion now follows upon integration.

4. The solution f(t])

From the solution y(f) obtained in section 3 we now construct the solution
f(r\) of the original problem (2.1) to (2.3). In view of its definition (2.19), y
yields the first-order differential equation

dn 1
— = , a < f < co, (4.1)
df y(f)'
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where we have replaced a by rj for the sake of clarity. Remembering that a < 0,
we can integrate (4.1) over (0,/) with f > a. This yields

y(s) Jo y(s)

where t]0 is a constant which we are still free to choose. We shall use this
freedom to satisfy the second boundary condition at infinity:

Hm{tif'{t1)-f(ri)}=0. (4.3)

By Lemma 3.6 the integrand (1 — y)/_yin(4.2)isintegrableover(0, co)and

~-V( ds = O(f-2e~'f2) a s / - c o . (4.4)
/ y(s)

Thus, we can write (4.2) as

lif) = f + 1o + A + O(f~2e~yf2) as/—oo, (4.5)

where

Note that since y(f) is an increasing function which tends to 1 as / -> oo, it
follows that y(f) < 1 for all / e (a, oo) and so A > 0.

Turning to the boundary condition (4.3), we note that

* / / ' - / = nU)y(f) - / • (4.7)

With the expression (4.5) for rj(f) we now write the right-hand side of (4.7) as

I(f)y(f) - / = f{y(f) -\} + {A+rlo + O(f-2e-"2)}y(f)

= A + t]0 + O(e-yf2) a s / - c o ,

where we have used Lemma 3.6 once more. Therefore, in order to satisfy (4.3)
we need to choose

f J - ^ * ,4.8,

Note that t]0 is uniquely determined by y.
For the inverse rj(f) of the solution we thus find from (4.2) that

„/,./- fi^i)fc ,4.9,

This completes the construction of the solution of the problem (2.1) to (2.3).
We conclude this section with a few observations about the solution f(t]).
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From (4.9) we deduce that

i(f) < f for a < / < oo

which implies that

/(//) > t] for a < t\ < co, (4.10)

where a = limy^a+ r/(/) was defined in section 2. In view of the asymptotic
behaviour of t](f) as / -> co and (4.9) we find that

f{r]) = r) + 0{t]-2e-"2/{4(l+X)') as r/-> oo.

For a we find from (4.8) that

u = a- lim r i -Z^ds. (4.11)

Since a < 0 it is clear that a < 0. Depending on the behaviour of y(f) near
f = a, a. will be bounded or unbounded.

To determine the behaviour of y(f) near / = a we proceed as in (12) and
integrate (3.1) over (a,f), where a < f < 0. This yields

2 Jo

1 f
(/) = - \sy'(s)\ds,

2 J
or, writing / = x(y) as in section 3,

dx 2D(y)

dy ly
0\T(s)\ds'

Since z(y) = a + o(l) as y ->0, we obtain upon integration that

f ^ . ,4,2,

Clearly

|T(S)| ds = \a\t[\ + o ( l ) ] a s r - > 0 (4.13)

and hence by (4.12)

2 f D(f)
/ [ l l)] a s v - » 0 ,

which implies that

= a + o(Ay + y2) as.y->0.
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Thus, we can strengthen (4.13) to

T(S)| ds = \a\t\_\ +o{h + t2)] a s f ->0 (4.14)
10

which yields in (4.12)

2 ry

Ifll
dt\_\ + o().y + y2)~] as y -» 0,

o

or

t(3') = fl+ — ( *y + r

Thus,

T(J;) = a + — y + O(y2) asy-^0 if A > 0,
\a\

r(y) = a + — y2 + O(y*) as><-»0 if A = 0.

We conclude that, as / -• a+,

a)] if̂  > 0,y(f) =

[V(|fl|(/ - fl)}[l + O(V{/ - a\)-\ if A = 0.

Using this in the expression (4.11) for a we find that

a = -co ifX > 0,
- oo < a < 0 if A = 0.

The behaviour of f(r}) near r\ = a can now be obtained from (4.1).
For / > 0 we obtain

so that

' /( /) = — log(/— a) + 0(1) as / —>
|fl|

or

f{r\) - a = 0(eMn/2/-) as r\ -> - oo.
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For /. = 0 we obtain in a similar fashion

fin) -a = i|fl|(>, - a)2 + O((n - a)3) as n -+ a.

Finally we observe that since / > 0 in (a, co), we have in both cases

f"(n)>0 if f(t])>a.

The qualitative properties obtained in this section and in the previous one are
clearly demonstrated in Fig. 2, where we present the numerical solution of
Problem (II) and the corresponding solution of the problem (2.1) to (2.3) for
different values of / .

5. Non-stagnant salt water

Here we consider the case when initially, at x = 0, the fresh and the salt water
are both moving in the positive x-direction. Thus the boundary condition at
x = 0 is replaced by

\ Uf for z < 0,
"(0, z) = ,

' .[/ , f o r z < 0,
where Uf = Us+ U and U, > 0. Looking again for a similarity solution, as we
did previously, we arrive at a boundary-value problem consisting of equation
(1.15) together with the boundary conditions (1.17) and (1.21). Instead of (1.19)
we now require that solutions are strictly increasing:

/ ' (f?)>0 for all / /e R. (5.1)

Solving this problem leads to a velocity field in which the horizontal component
u satisfies (1.20).

Again, we introduce the variable y = y(f) for which we find the problem

{D(y)y)+±fy' = 0 for-oo</<co, (5.2)

b ( - o o ) = 0, y(oo)= 1 +6, (5.3)

where 6 = UJU. Using the results of (15) and a bootstrap argument we obtain
that for each I > 0, Problem (III) has a unique solution yeC"(U). This
solution satisfies

y'(f) > 0 for all / e R.

With respect to the asymptotic behaviour at — oo and + oo we find, as in
Lemma 3.6, that

y(f) = l + 0 + 0(f le y*/!) as/->+co,

where

v_ = and v+ =
4(2.6 + 62) 4{A(1 +0) + (l + 0)2}
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To obtain from y = y(f) the solution / = f{t]) we follow the procedure of
section 4. We now write

i(f) = Vo + T ^ T (5.4)
Jo y(s)

1 + 0 1 + 0 Jo y(s)

or

ri(f) = t]0 + -J— + A L_ I ' +9~ ""' ds,
1+0 1 + 6}/ y{s)

where

ds.

Again we

to ensure

set

that

rif'W,

A —
1

)-f(n) = i

1

A

(/))'(

'o

+

f)

1 +

- /

0 - y(s)

y(s)

o,

= O(e-»-

(5.6)

as / - oo,

so that (1.17), the second boundary condition at + oo, is satisfied. Therefore,
the function / : R - + R denned by

/(»?) = ( ! + % + P l+0~y{s)ds (5.7)
J/0!> ^(S)

is the required similarity solution.
Note that the monotonicity of y on R implies that

f(rj)>(\+6)n and f"{t]) > 0 for all ^ e R.

To obtain a second lower bound for / we write (5.7) as

e~~y(5) ds

ds

K"~U ds (5.8)
y(s)
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by (5.4) and (5.6). With

we can write (5.8) as

(*/(T)

f{t]) = 9(t] + A — B) +

Remembering that y(f) is strictly increasing we conclude that

f(r\) > 6(t] + A - B) for all p R .

For the asymptotic behaviour as tj -* — oo we deduce from (5.10) that

f[t]) = 0[r] + A — B) + O(t]~2e~y~1'2) as r\ —> —oo

and that

= -A +B + O(e'y /2) a s / - - o o .

The monotonicity of y( / ) implies that we can estimate A and B by

B> en + e) f° {yw-e)ds- (5-12^
However, when we integrate (5.2) over (— co, GO) and use the fact that / ( / ) -• 0
as / -> + oo, we find that

I™ fy'(f)df = o,
J - co

or

I +9

f
Jo

>>) dy = 0,

where, as in section 3, r is the inverse of y. This means that

{y(f)-9}df= ["{1 +9-y(f)}df
- x

and so, in view of (5.11) and (5.12), that

B-A>0 for all /> ̂  0 and 6 > 0. (5.13)
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From the asymptotic behaviour for n -* co one finds that

B - A
lim v(x, z) = — for all x > 0.

— 2 / JC

Thus (5.13) tells us that in this case, salt water is also drawn into the mixing zone.

REMARKS, (i) The stream function ty vanishes when/vanishes. Thus, let/(»J) = 0.
Then we deduce from (5.7) that

« - - *
1 +6

This implies that

i/^x, z) > (<)0 when z > (<)
1 + 6

(ii) Because we imposed the condition v(x, z) -> 0 as z -> oo we find for 0 ^ 0
that salt water is drawn into the mixing zone. We might equally well have
started out by assuming that v(x, z)->0 as z-> — oo. The fresh water would
then have been drawn into the mixing zone.
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