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Summary

The current state-of-the-practice in the Dutch operational road traffic management is
mostly based on experience: the traffic manager judge the traffic dynamics on a road
network on basis of their previous experience and select the right control measures. As the
amount of data and number of possible control measures available increase in the future,
the Dutch operational traffic management needs to implement a good decision support
system as the traffic managers can’t handle all this (possibly conflicting) information
simultaneously. This decision support system should provide a clear view of the current
and near-future situation on which the right control measures can be based.

Despite some pilot studies and a lot of scientific research in traffic prediction, automated
traffic estimation and predictions are not yet used in the Dutch operational traffic man-
agement.

This thesis has as objective to combine the current and near-future state of the practice
with state-of-the-art knowledge in order to develop an architecture of a monitoring and
prediction tool. Moreover, this thesis further examines the possible performance of such
a tool by means of a prototype.

By means of a requirement analysis the most important requirements of an estimation and
prediction tool are identified. From different use cases, it is derived that the estimation
and prediction tool is most beneficial in non-recurrent situations. Moreover, the influence
of the control measures taken by the traffic manager should be incorporated into the
prediction results.

On basis of these requirements, an architecture is developed. It is chosen that the pre-
dictions should be based on macroscopic simulation models, as these models are most
competent to include non-recurrent conditions and control measures. An advanced state
estimation method such as (the variants of) the Kalman filter is needed to adapt the
simulation model to the traffic situation at hand.

A prototype is built in order to further analyse the performance of the data assimilation
method. As data assimilation method, the Ensemble Kalman Filter (EnKF) is chosen
instead of the Extended Kalman Filter, that is more commonly used in the state estima-
tion of macroscopic traffic models. The EnKF is then theoretically analysed, and three
improvements to the traditional formulation are identified:

1. The main correction equation is reformulated using the Sherman-Morrison-Woodbury
reformulation. This reduces the computational complexity without loss of accuracy.
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2. Instead of the traditional stochastic approach, the deterministic approach of Sakov
and Oke (2008) is adopted. This deterministic approach avoids the influence of
coincidental sampling, at the costs of an analytical approximation of the posterior
state covariance.

3. By localizing the relation between model elements that are physically distant in the
real system are restricted. This localization improves the estimation accuracy as it
removes fake correlations and increases the effective ensemble size.

This prototype is subjected to a number of simulation experiments in order to test the
performance. Synthetic observations were used that are generated by a macroscopic traffic
model. The prototype was able to estimate the traffic state reasonably well in 40 times
faster than real time, when no structural differences existed between the assimilation
model and the true model. Especially the localization increases the accuracy considerably:
it is not feasible to get the required accuracy using a global method.

When imperfect system knowledge was assumed, the performance dropped. Further re-
search and development of the prototype could increase the accuracy in these conditions
by using additive errors instead of multiplicative errors. Further research should focus
validating the model using observations from microscopic traffic models and real data.
Moreover, more complex traffic models can be used.
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Chapter 1

Introduction

In this chapter an introduction is given to the topic of this thesis: the use of short-term
road traffic estimation and prediction in Dutch highway traffic control centres.

The first section gives a short introduction to the motivation of this research. The second
section derives the research objectives and research questions. The third section describes
the chosen methodology. The other section give the relevance and outline of this thesis.

1.1 Problem definition

As road traffic is only a self-organizing system to a certain extent, the Dutch public
authorities find it as its task to influence and control the traffic operations on the Dutch
roads. As the infrastructural measures such as the addition of lanes are not sufficient
in combating all problems that arise with rising mobility, control of road traffic on the
operational level is necessary. This observation is also shared by Rijkswaterstaat, which is
the Dutch executive agency for i.a. management of road traffic on the main road network.
The current focus of Rijkswaterstaat is to promote the more efficient use of the existing
infrastructure.

As the responsibility of traffic managers in the Netherlands will shift from actively oper-
ating dynamic traffic management measures to monitoring the network-wide public goals
and conditions, traffic managers will need more advanced decision support systems for
making the right decisions on the right time (Rijkswaterstaat, 2013). The decision making
process of the traffic operators is complex in several aspects, and will probably become
more complex in the future.

Firstly, data issues exist: the traffic operators need to interpret lots of data coming
from various sources in different forms. Examples are road-side cameras that can be
controlled by the traffic operator, but also road-side systems that measure travel time on
a road stretch and speed measurements at certain locations. In the future, more data
becomes available, for example from individual cars that transmit their data, e.g. speed
or headway, on certain time intervals. Moreover, more complex traffic control options
become available. One can think about individual or vehicle class route suggestions,

1
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network-wide coordination of ramp metering installations or dynamic speed advice. An
operator has to interpret all these data and come up with the right responses.

Secondly, the impact of traffic management will become larger, as the utilization of the
road infrastructure in the Netherlands increases. Traffic management will become a de-
ciding factor as the efficiency of the self-organization of the traffic system decreases with
a larger utilization of the infrastructure. The need for the Dutch operational traffic man-
agement to be effective is high.

One way for the Dutch traffic control to remain effective, is the implementation of a good
decision support system. In order to select the best control option, a traffic operator needs
a clear view of the current and near-future situation on the road system. Currently, the
estimation and prediction of the traffic situation is mostly based on experience and tacit
knowledge: traffic operators implicitly form their opinion on the traffic situation at hand
and in the near future based on their experience with the job. The implementation of a
tool that better monitors and predicts the traffic situation would provide large benefits to
the traffic control. The operators in the traffic control centres agree with this observation:
in a survey a total of 80% of the respondents that they are optimistic about the use of
short-term predictors. (Mott MacDonald, 2012)

Despite some pilot studies and a lot of scientific research, automated traffic estimation
and prediction is not yet used in Dutch traffic control centres. This could be caused
by technical issues (e.g. incompatibility with existing systems or low performance of
predictions), but also organizational issues (perceived lack of benefits or fear of change)
and financial issues (high implementation costs or high operating costs).

1.2 Research questions and goals

Concluding, the application of traffic state prediction would be beneficial for the oper-
ational road traffic management, now and especially in the future. A clear gap occurs
between the traffic state prediction in literature and the traffic state prediction in prac-
tice. The goal of this project is to combine the state-of-the-art theoretical basis with the
current traffic management practice, in order to design (a prototype of) a traffic state
predictor that clears the barriers of implementing a prediction tool.

1.2.1 Research objective

The first objective of this research is to combine the current and near-future state of the
practice with state-of-the-art knowledge in order to develop an architecture of a monitor-
ing and prediction tool that is beneficial for a Dutch regional traffic management centre.
This architecture can be used as guideline for the future development of such a monitoring
and prediction tool.

The second objective is to further examine the possible performance of a monitoring and
prediction tool. If such a tool is capable of achieving a sufficient performance, this could
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lead to further interest in such a tool from practical and research perspective.

1.2.2 Research questions

These two research objectives lead to the following two main research questions:

1. What architecture of a short-term prediction tool will be useful for the current and
near-future Dutch operational traffic management practice?

(a) What functional, performance and stakeholder requirements are imposed on a
monitoring and prediction tool?

(b) Which estimation and prediction paradigm suits these requirements best?

2. Could a monitoring and short-term prediction tool be capable of achieving a suffi-
cient accuracy within the computation time available in a real-time setting?

(a) Based on the chosen estimation and prediction paradigm, how should the real-
time observations be optimally used in the estimation of the traffic situation?

(b) Based on the chosen estimation and prediction paradigm, is a monitoring and
short-term prediction tool capable of achieving a sufficient accuracy faster than
real-time using synthetic observations?

(c) Based on the chosen estimation and prediction paradigm, how sensitive is a
monitoring and short-term prediction tool to imperfect knowledge of the real
system?

1.2.3 Scope of thesis

In order to reduce the complexity and fit the project into the proposed time, choices need
to be made concerning the scope of the project.

Type of road

The highways are chosen instead of arterial or urban roads due to the reduced complexity
of the highways. There are many detectors present on the Dutch highways and the traffic
flow is quite organized, which can lead to more accurate predictions of the traffic state.
Moreover, the highways have the highest priority in the traffic management process, and
would be the first application of traffic state predictors.

Complexity road network

It is chosen to look at this project on a regional network scale. This aligns with the
increased focus on network management. Furthermore, this also corresponds to a scale
where a prediction of 1 hour in advance makes sense: a prediction of 1 hour of a road
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stretch of 2 kilometers where traffic only drives for a minute will mostly depend on the
boundaries of the road stretch. However, a network scale increases the complexity as
route choice will play a larger role and the number of parameters to be estimated will
increase greatly.

Moreover, the choice for a regional highway network scale ensures that the influence of
the need for coordination between different traffic control centres is limited.

1.3 Project approach

As there are two main research questions, this thesis is divided into two main parts where
each part is focused on one main research question. The approach for answering the two
main research questions are discussed in next subsections.

1.3.1 Approach design of architecture

A systems engineering approach is used to form the architecture (US Department of
Defense Systems Management College, 2001). This approach consists of three major
parts:

1. Requirement analysis

2. Functional analysis

3. Design synthesis

The requirement analysis is mainly based on the identification of use cases. By identifying
how the monitoring and prediction tool would be used in the operational traffic manage-
ment context, several issues can be deduced in each step of the use case. One could
for example deduce which function the tool should provide (e.g. provide a prediction 1
hour ahead), but also in which conditions (e.g. non-recurrent traffic conditions) and the
interaction with other systems (e.g. the monitoring system should give non-conflicting
information with other systems).

In this research, the functional analysis and design synthesis quite overlap as the goal
is a mainly functional architecture instead of a physical design. The functional analysis
is used to decompose high-level functions into lower-level functions. Furthermore the
(performance) requirements give direction how to design the architecture that fulfils these
requirements.

1.3.2 Approach evaluating performance prediction tool

The best way to evaluate the performance of the prediction tool is to actually develop the
prediction tool. Therefore, in the next paragraph the methodology how to come up with
the design is selected. After that the steps of the methodology is further elaborated on.
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Choice of design methodology prediction tool

In order to achieve the best possible results, it is good to think about the risks that could
lead to failing the project. By investigating these risks, suitable design processes and
methods can be selected.

• Context risks: the context of the traffic control centres is quite stable. Although
there is a change in traffic management processes from old-fashioned control of
traffic to supervision of traffic, the requirements of the proposed prediction tool
will not be changed much. The largest risk context wise is the use of new complex
technology. As this technology is hard to make and the exact benefits are unclear, it
is a large risk that the new technology doesn’t satisfy the requirements in terms of
functions and quality. Therefore an incremental prototyping approach is suitable,
as the quality of the prototype can be checked while adding functionalities.

• Project risks: one of the project risks is the short time frame of only 6 months.
This leads to a need for sharp planning and sharp scope of the project. By using an
iterative/incremental design process, the scope can be adjusted along the way when
difficulties arise. Moreover, it is not possible to expect a full implementation within
this short time frame. Therefore the goal is to design a prototype: this reduces the
dependency on other stakeholders such as the traffic control centre.

As can be concluded from the identification of the risks, an iterative prototyping approach
will be suitable for this part of the project (Pressman, 1992). Due to the short time frame
of the project, only the first iteration(s) of the prototype are done. The goal of the
prototype is work from simple to complex: the first version of the prototype consists of
only the essential components with the simplest implementation. For example, no effort
is put into visualization and security aspects.

Elaboration on incremental design steps

The incremental model consists of four parts: analysis, design, code and test. (Pressman,
1992)

Analysis In the first phase, the requirements are further analysed so the requirements
are clear.

Design This part consists mostly of selecting the theoretical concepts and mathematical
formulations of these theoretical concepts for making short-term traffic predictions. The
goal is to use state-of-the-art techniques, such as model-based estimation (using a Kalman
Filter approach) and prediction methods.

Code The code part consists of selecting the numerical algorithms and exact software
formulations in order to match the design. The preference is to collaborate with a new
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project of TU Delft called OpenTraffic. OpenTraffic is an open-source traffic simulator
written in Java.

Test It is important to test the prototypes in their ability to recreate the results as
intended by the modeller (verification) and real life (validation).

Possible verification methods are dimension analysis (checking if the equations match on
the dimension of the variables used) and numerical analysis (checking if the results change
much when precision of numerical algorithm is increased).

1.4 Overview thesis

In this section an overview of this thesis is given. First an outline of the contents of
this thesis is given with the main conclusions and choices. After that, the scientific and
practical relevance of this research is elaborated on.

1.4.1 Thesis outline

As this thesis has two main research questions, this thesis is split into two parts.

In part I a functional architecture is developed how a traffic estimation and prediction tool
should be implemented and which functionalities it should have. A number of require-
ments are derived by analysing when traffic estimation and prediction is useful. Examples
of these requirements are the applicability in non-recurrent conditions and the inclusion
of the effects of control measures of traffic operators. From these requirements, a func-
tional architecture is designed. The basis of this design is a model-based estimation and
prediction approach using a Kalman Filter approach.

In part II a prototype that fits the architecture of part I is developed. Chapter 4 and
5 are literature based chapters that further analyse the main parts of the prototype. It
is chosen to adopt a fairly simple system model in chapter 4. In chapter 5 the choice
is made for the Ensemble Kalman Filter (EnKF) instead of the mainly used Extended
Kalman Filter (EKF). The EnKF is a promising alternative to the EKF on theoretical
grounds: both algorithmic as technical benefits of the EnKF exist. Further theoretical
analysis of the EnKF identifies three refinements to the traditional EnKF: the Sherman-
Morrison-Woodbury formula, deterministic approaches and localization. In chapter 6, the
prototype is developed and verified. In chapter 7, the prototype is used for six different
simulation experiments, testing the performance of the EnKF and its refinements on a
large scale road network by means of a twin experiment.

After that, conclusions are drawn and recommendations are made for further research.
It is shown that the localized deterministic EnKF is capable of estimating the state very
fast. Although no definitive conclusions can be made about the accuracy as no validation
is done using real data, the computational speed causes the localized deterministic EnKF
to be a promising research direction.
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Figure 1.1: Graphical outline of the thesis.

The motivations of the different choices are further elaborated on in the corresponding
chapters.

1.4.2 Scientific relevance

• This research gives a functional architecture for traffic state estimation and pre-
diction. This functional architecture can be used in further research and further
prototypes.

• This research gives a quite extensive theoretical analysis of the Ensemble Kalman
Filter (EnKF). This theoretical analysis includes comparison with the EKF, refor-
mulations for efficient computation, avoiding sampling errors and localization for
increased accuracy and computational speed.
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• This research is the first application found that uses a EnKF using a first-order
macroscopic traffic model with non-linear observations. Previous research amended
the traffic model to make the observations linear, restricting the generalizability to
other observation types.

• This research shows the need of localization of the EnKF approaches when applied to
large scale traffic network. In the simulation experiments of this research, the local
analysis increased the accuracy tremendously in comparison to its global counter-
part. The global EnKF approaches are not feasible for the use in real-time accurate
state estimation.

• This research gives empirical evidence that the DEnKF by Sakov and Oke (2008)
performs better than the traditional EnKF in the use with a first-order macroscopic
traffic model. The DEnKF increases both the accuracy as the robustness to the
calibrated assimilation parameters.

1.4.3 Practical relevance

• The requirements derived in chapter 2 can be used as starting point in projects for
implementation of a traffic prediction tool. Although the requirements mostly fo-
cuses on the functional requirements that are not very case-specific, the requirements
indicate the main functions and constraints that should be fulfilled.

• The architecture developed in chapter 3 can serve as a guideline for further studies
of the implementation of traffic prediction in operational traffic management. The
choices made in the architecture, such as the choice for predictions based on simula-
tion instead of statistics, are fundamental in the design process. A head start in the
development of a traffic monitoring and prediction tool will shorten the development
time and increase the chance of successful implementation.

• Efficient alternative for network-wide state estimation. The localized (D)EnKF,
that is used as data assimilation method in the prototype, is a promising solution
for the traffic state estimation of large scale networks. Although the data assimi-
lation method needs to be validated using real data, the computation time of the
localized (D)EnKF makes it possible to simulate large scale networks, possibly up to
nation-wide, on one computer. This way it is an efficient alternative to (an efficient
implementation of) the Extended Kalman Filter.
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Architecture of traffic estimation
and prediction tool
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Chapter 2

Requirements of traffic estimation
and prediction tool

In this chapter, the requirements which a traffic estimation and prediction tool should
fulfill are derived.

The first section covers the background of the Dutch operational traffic management.
Here it is defined what operational traffic management is and how this operational traffic
management works in practice now and in the near future. Moreover, the main stake-
holders in the operational traffic management are (briefly) analysed in order to derive
their main common interests and conflicts. The estimation and prediction tool should
accommodate these interests and mitigate the effects of the conflicts.

The second section derives the requirements from a few use cases. In these use cases,
it is described how the estimation and prediction tool would be used. From these use
cases the functions and constraints of the tool are derived. Moreover, some stakeholder
requirements are derived from the stakeholder analysis.

The third section compares the found requirements with the requirements of previous
studies.

2.1 Background of operational traffic management

In this section the background of the Dutch operation traffic management is described.
This background serves as input for the requirement analysis that follows.

2.1.1 Operational traffic management in a broader context

The increasing use of the road transportation system induces delays, environmental prob-
lems and safety concerns. Therefore, governments see a role for themselves to properly
manage traffic on the roads. Before further analysing the roles the governments can take,
the (road) transportation system is further analysed.

11
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The basic layer model of Schoemaker, Koolstra, and Bovy (1999) can be used to analyse
a transportation system in general, and thus the road transport system in particular. See
figure 2.1 of a graphical description of this model.

Figure 2.1: Basic layer model of Schoemaker et al. (1999), via Van Nes (2002).

The basic layer model of Schoemaker et al. (1999) consists of three layers: (economic)
activities, transport services and traffic services, with the transport market and the traffic
market in between.

The activities layer represents the economic activities that lead to the demand for trans-
portation. As travellers use transportation for a reason (e.g. for commuting or trans-
portation of goods), the activities layer indicates the reasons the users have of using
transportation.

The transport services layer represents the facilities that can accommodate the need for
transport generated by the (economic) activities. Examples of transport services are
(privately owned) cars and lorries, but also forms of public transport. The transport
services layer generates a demand pattern in space and time for the traffic market.

The traffic services layer represents the facilities that provide the infrastructure of the
vehicles of the transport layer. This infrastructure accommodates the trips generated by
the transport services.

The transport market and the traffic markets balance the demands and supplies. The
main difference is that the transport market deals with the distribution of trips over
mode, time and space, and the traffic market deals with the handling of these trips given
the infrastructure.

Governments can influence the outcome of the transport and traffic markets in multiple
ways. The Dutch government adopted three major strategies to properly manage road
transport and traffic:
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1. Building new infrastructure such as extra roads or lanes. In this way the capacity
of the infrastructure is increased, which increases the supply into the traffic market.
However, this strategy is very expensive and politically challenged.

2. Pricing and other demand management methods. By this strategy the government
tries to manage the demand for transport. Examples of these methods are pricing
the use of the infrastructure, promoting changing of working hours and promoting
working at home. These methods are mostly unaccepted by public or the effective-
ness unclear (to the general public)

3. Better utilization of infrastructure. This strategy refers to the promotion of more
efficient use of existing infrastructure. An example of a method that focuses on
better utilizing the infrastructure is the provision of better route information to the
road users

Weng (2010) coupled these three strategies to the basic layer model described above, see
figure 2.2.

Figure 2.2: The solid lines indicate direct influence; the dashed lines indicate secondary
influence. Adapted from Weng (2010).

In this research, by traffic management is meant influencing the infrastructure supply
and traffic demand of the traffic market in such a way that they match best, both in
time as space. The goal of traffic management is to achieve a better utilization of the
infrastructure. Although at first sight the word utilization seems to only refer to the
throughput or capacity of infrastructure, traffic management can also focus on making
the use of infrastructure friendlier to the environment.

Traffic management is operational traffic management (as opposed to tactical or strategic
traffic management) when the focus lies on the execution of the operational measures
on a day-to-day basis. Operational traffic management is here also referred to as traffic
control.

In order to translate the broad goals such as better utilization and safety to the use of
operational measures on a specific network, the “Gebiedsgericht Benutten Plus” (Region-



14CHAPTER 2. REQUIREMENTS OF TRAFFIC ESTIMATION AND PREDICTION TOOL

specific Utilization Plus”, GGB+) approach is mainly used in the Netherlands. This ap-
proach consists of nine steps. In general, the GGB+ approach identifies the gaps between
how the network should function given the policy objectives of the different stakeholders
and the actual situation on a network. From these gaps, the right solution directions
and operational measures are selected. At last, the control measures are combined into a
control philosophy, that indicates which operational measures should be applied.

After the suitable operational measures are identified by the GGB+ approach, control
scenarios are made that are in line with the vision set by the GGB+ approach. These
control scenarios are made using the “Werkboek Regelscenario’s” (Instruction manual
control scenarios). These control scenarios translates the the suitable operational mea-
sures of the GGB+ approach (e.g. reduce speed on route X) to the exact execution of the
operational measures (e.g. set speed limit to 80 km/h on matrix signs A, B and C).

2.1.2 Taxonomy of traffic control

The traffic management (here also referred to as traffic control) can be classified on
several scales. This taxonomy is given in order to provide more information of the used
methods in operational traffic management and the main characteristics operational traffic
management should have to be efficient.

Basic working principles

The road system is in itself a self-organizing system. However, when the utilization if the
system increases, the road system fails to be as efficient as could or should be. When
more demand is put on a road network, the number of vehicles able to flow out of the
network decreases.

Four main principles that end the efficient self-organizing system are:

• Blocking back and grid-lock. One main issue with is that the occurring congestion
takes space on the network. This occupied space can lead to problems. One example
is congestion on a highway that blocks traffic routed for an off-ramp upstream of a
bottleneck. This way, vehicles are delayed by a bottleneck that they will not pass.
This spillback causes further acceleration of congestion.

• Capacity drop. The capacity of the road drops up to 30% when congestion sets in.
More specifically: drivers tend to take more (time) distance to the vehicles in front
when driving out of congestion than when the traffic is not broken down.

• Unequal spread of traffic. The unequal spread of traffic implies that more routes
will contain bottlenecks. Therefore the congestion is spreading spatially as more
traffic is diverted onto alternative routes. The traffic on these routes will become
denser and possibly congested. This leads to more traffic that will divert, which
completes the traffic-degrading circle.
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• Inefficient behaviour of individual travellers. Drivers tend to make selfish choices
in routes that minimize their own travel times or travel costs. However, the sum
of costs associated with these individual selfish choices are higher than when the
system-optimal choice behaviour occurs. This is related to game theory, i.e. the
widely known prisoners’ dilemma where selfish choices lead to worse overall results
than cooperative choices. From an economic standpoint, the (negative) external
costs (costs imposed upon a third party) are not taken into account in the route
choice of an individual traveller. Specifically, the travel time losses of other drivers
doesn’t affect the choice behaviour of a driver.

The effects of these four principles can be mitigated by four main solution directions:

• Control spillback of queues. This solution direction implies that only traffic headed
for an active bottleneck is affected by the queue.

• Improve throughput. This solution direction tries to improve the throughput by
increasing the capacity where possible in order to prevent the capacity drop.

• Route guidance. This solution direction distributes the traffic more evenly in order
to prevent congestion spreading. This route guidance can require giving priority to
certain groups of travellers.

• Limit inflow. In this solution direction, the inflow in subnetworks are limited so
that the most severely congested parts are able to recover and will not spread to
other parts of the network.

The possible control measures used by the traffic management centre work according to
these solution directions. Examples of possible (dynamic) operational control measures
are:

• Traffic lights. One of the main urban traffic management measures are traffic lights.
In recent years, the configuration (i.e. green times) of the traffic lights are made
dynamic, based on traffic demand, and changeable from traffic management centres.
By reconfiguring the green times, certain routes can be prioritized by the traffic
manager.

• Ramp meters. By restricting the access from the on-ramps to the highway, it is
prevented that congestion occurs on the highway and therefore associated problems
such as the capacity drop are prevented or delayed. Moreover, drivers will possibly
avoid these on-ramps on the long term, which can lead to better traffic flow. The
metering rate (including obstructing the flow completely) is essential in the work-
ing of the ramp meters. If the rate of vehicles entering the highway is too high,
congestion will occur and the ramp meter fails. If the rate is too low, the buffer
on the on-ramp will become full too fast and the congestion will spillback onto the
underlying road network or need to be “flushed”. Not commonly used is mainline
metering, which is equivalent to ramp metering on a main road.

• Route information panels. By informing or advising the drivers on the travel times
of possible routes, one tries to redistribute the traffic more efficiently. The route
information panels can be dynamic (so called DRIPs) and temporary.



16CHAPTER 2. REQUIREMENTS OF TRAFFIC ESTIMATION AND PREDICTION TOOL

• Dynamic speed limit. The speed limit can be dynamically set just upstream of
congestion to improve safety as the drivers are warned and speed differences are
decreased. Another way of using dynamic speed limit is to remove wide moving
jams by means of the SPECIALIST algorithm.

• Peak hour lanes. The traffic operator can decide to open or close special lanes when
the flow on the road is high. Two types of peak hour lanes exist in the Netherlands:
a peak hour lane on the hard shoulder lane (emergency lane) and a peak hour
lane on the left side of the road (which is commonly narrower than usual). As
the peak hour lanes normally serves as emergency lane, the peak hour lanes are
checked manually or automatically on stationary vehicles and other obstacles before
and during opening. The peak hour lanes increase the throughput of the road and
decrease the spillback caused by congestion.

• Dynamic lanes. On some locations, lanes can be reversed to be used by different
driving directions. This is primarily useful on roads with asymmetric peak hour
directions. Related are lanes that are adaptable to prioritize routes at junctions.
For example, a lane can be set to accommodate extra traffic for left-turning traffic
instead of right-turning traffic.

The control measures vary from informing the drivers, advising the drivers or controlling
the drivers.

Geographical scale

In principle, the control measures above influence the traffic quite locally. However, it
is important to consider the influence of the control measures in a regional context, as
different local controls can counteract the impact of each other. Optimal regional control
is more than just the sum of optimal local controls.

From the perspective of a traffic control centre, the regional scale has two major impacts
on the traffic control procedures. One is that the controls should be coordinated in order
to achieve the best performance. Another impact is that the regional scale implies that the
traffic is controlled on different types of road, governed by different road authorities. The
traffic control centre thus should account for the different priorities set by the different
road authorities. The method of deriving scenarios by the “Workbook control scenarios”
tries to accommodate these two issues.

Selecting control measures

Two main approaches are possible for selecting the right set of coordinated control mea-
sures by the operator.

The first, currently used, approach is the scenario based approach. This approach uses
predefined scenarios: one has predetermined what are the best actions in certain cases.
The traffic operator has to select the right scenario to the traffic situation at hand, man-
ually or preselected by some decision support system.
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The second approach is an optimization approach. In this approach, the deployment of the
control measures is optimized using an algorithm and a traffic model. The prediction of the
traffic state is an integral part of this approach, as the optimization needs a mathematical
description of the traffic state or performance in the near future in order to optimize.

One main advantage of the scenario approach that this approach is quite transparent: the
traffic operator sees which scenarios are assessed and can adapt the scenarios if possible.
The optimization approach is more a black box approach: the algorithm gives an answer
but the reasoning is quite unclear. Another advantage of the scenario approach over the
optimization approach is that this approach is relatively easy to implement. On the other
hand, the optimization approach can theoretically yield better results, as the fit between
the traffic situation at hand and a predefined scenario isn’t perfect and the scenario
approach can’t handle unseen conditions. The optimization approach is much better able
to adapt to situations and respond optimally.

2.1.3 The future of operational traffic management

Figure 2.3 gives a concise roadmap of the future of the operational traffic management.
More data sources become available that need to be interpreted by the traffic operator.
Moreover, an integrated monitoring and prediction tool could be a stepping stone for
further automatisation of traffic control.

The geographical scale on which the traffic is controlled could increase in the future, as
the traffic management will be more effective that way.

The strategy of selecting the control measures would preferably go to a more optimization
approach instead of a scenario based approach. As the number of possible control options
will increase, together with more available data and higher needed effectiveness of the
operational traffic management, the use of an optimization approach is needed. The
proposed integrated monitoring and prediction approach is a stepping stone in the roadway
to this optimization approach.

2.1.4 Stakeholders

In this subsection the main stakeholders of the operational traffic management are identi-
fied. These stakeholders are identified using Hoogendoorn, Westerman, and Hoogendoorn-
Lanser (2011).

From these stakeholders, the common interests and conflict in interests are identified.
By making a tool that accentuates the common interests and mitigates or resolves the
conflicts between the stakeholders, the tool will have a higher chance of success.
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Overview stakeholders

• Operational traffic managers. They are the main users of a monitoring and predic-
tion tool. The traffic operators are responsible for the activation and deactivation of
several control measures. Currently the traffic operators make their decisions mostly
based on experience. They fit the traffic situation at hand to a predefined scenario
and select the appropriate control measures, while implicitly considering the near-
future. Moreover, traffic engineers are responsible for the generation and evaluation
of the control scenarios. The current evaluation of the traffic management is quite
hard as the influence of operational traffic is hard to identify and quantify due to
the absence of possibility of (blind) experiments. As part of the road authorities,
the operational traffic managers are most interested in efficient and safe travel on
their network.

• Private service providers. The private service providers use the traffic information in
order to use in their own products. Examples of these products are route information
and navigational tools. A major factor for these private service providers is the
existence of a business model: they need to cover the costs associated with their
products. In their products, the private service providers are focused on the goals
and wishes of their customers (e.g. the individual road users), which may contradict
with the interests of the society as a whole.

• Government. The government has in general a broader goal than the road author-
ities. Not only are they interested in a efficient road network, its focus lies also on
the economic position of the ITS and mobility sector, the (environmental) impacts
on the neighbourhood around the roads and cost effectiveness of its activities.

• Road users. The individual road users are mostly interested in their own travel
costs. These individual wishes could deviate from the societal goals.

• Research groups such as universities. These research groups have generally the most
knowledge about traffic behaviour. They try to use or sell their knowledge in the
operational traffic management field. Moreover, they are interested in testing their
own research questions and hypotheses using real-life data and systems.

Common interests

• Provision correct, reliable and objective information. All stakeholders are interested
in the provision of correct, reliable and objective traffic information, such as travel
times and activated control measures, to road users and other interested parties.
The proposed monitoring and prediction tool could provide this information to
the interested parties. The private service providers can use this information to
improve their products, and the road authorities try to improve the traffic flow on
their network.
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Conflicts

• Cost effectiveness. The government is more interested in the cost effectiveness of the
operational traffic management than the other stakeholders. The operational traffic
managers (and possibly the research institutes) are more convinced of the success
of their approach. As the government constantly makes a cost-benefit analysis and
the costs are generally quite clear, quantifying the benefits of operational traffic
management could resolve this conflict.

• Individual vs. collective interests. The individual road user are most interested in
the their own travel costs. As the road users are the main customer of the private
service providers, the service providers try to give the best information possible to
the individual road user, even if it is conflicting with the goals of society as a whole.
The government can try to alleviate this mismatch by using public stimuli, such as
compensation for loss of travel time or (in the future) congestion pricing. For these
stimuli to succeed, the impact of this mismatch and the effects of stimuli should be
quantifiable.

• Knowledge gap. The main centre of knowledge about traffic behaviour and opera-
tional traffic management lies with the research institutes. Although the operational
traffic managers have of course much practical experience with controlling traffic,
the theoretical knowledge of the underlying principles is mostly present within the
research institutes. This knowledge gap leads to non-optimal adoption of new knowl-
edge in operational traffic management. The monitoring and prediction tool should
be developed and adaptable with this theoretical knowledge in mind.
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Figure 2.3: The three tasks of a traffic manager depicted against the possible traffic
management scenarios. The first scenario is the current situation. The second (undesir-
able)scenario is the future situation when no changes in the working processes are made.
The third scenario is the future situation with an integrated estimation and prediction
tool. The fourth scenario is the future situation with automatic control, which is the
desired situation.
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2.2 Requirement analysis

In the previous section the background of the Dutch operational traffic management is
described. This background gives insight in what operational traffic management is, which
methods the traffic operators could use and the different stakeholders in the operational
traffic management.

As concluded in the introduction and the investigation of the future trends in traffic
control, it is essential that accurate and reliable traffic predictions are available to the
operators in the traffic management centre. This section gives the main requirements
such a tool should fulfil.

These requirements are derived from three different use cases of such a tool and the respon-
sibilities and goals of the different stakeholders. It is chosen to derive the requirements
from the use cases with at the end a comparison to the previous experience of the STEP
project and the Verkeersonderneming project. The requirements are thus not directly
derived from the previous projects. This choice is made in order to keep the comparison
independent and valid.

2.2.1 Use cases

In this subsection, three typical use cases of a traffic estimation and prediction tool are
described. The use cases are situated in the current traffic control procedures where the
traffic is controlled using control scenarios. The use cases describe the way an integrated
monitoring and prediction tool would be used.

Real-time monitoring during recurrent or predictable conditions

This use case is the base use case of a traffic operator. Consider a traffic operator that
starts his work shift at the traffic management centre.

The first thing a traffic operator does in (the preparation of) his shift is the creation of
situational awareness. The traffic operator makes an assessment of the traffic situation
at hand and in the near future. The traffic operator can ask himself many questions. Is
the traffic behaving normally? Are there road works that influence the traffic and the
possible control measures? Are there events that require special focus in the controlled
region? What are the weather predictions? The traffic operator has many options for
creating this situational awareness. Not only the proposed estimation and prediction tool
will provide this information, but also roadside cameras, weather information and social
media such as Twitter.

The traffic operator looks not only at these information providers independently, but
also compares them to each other: do they give the same information? Therefore it is
important that the information is aligned in time and space, so a fair comparison can be
made. This monitoring function of the traffic operator is performed throughout its shift.
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The prediction function can be used to predict the impact of the (recurrent) congestion. If
the impact of the applied scenarios and control measures can be modeled and used in the
predictions, the traffic operator can use the prediction to determine the time of activation
and deactivation of the control measures. The time horizon on which the traffic operator
needs to predict is not set in stone. In general, a prediction horizon of 1 hour should
be sufficient. It is important to make the operator understand how much confidence the
operator can put in the prediction results.

Real-time monitoring during non-recurrent and unpredictable conditions

In addition to the previous use case, unpredictable conditions can always occur. A good
example of these unpredictable conditions are accidents.

In the case that an accident occurs, the traffic operator first has to know that the accident
has occurred. This can be done by for example an alert that pops up in the system,
or by means of other information sources. Then the traffic operator needs to make an
assessment of the impact of the accident, the time duration and the necessity of activating
control measures. These control measures can be imposed by a fitting pre-existing control
scenario, or can be imposed by making an ad-hoc scenario.

The prediction component can play a large role in this use case. The traffic operator
can see the impact of the incident using different (ad-hoc) control scenarios. Important
is that the incident length is an input to the system that needs to be supplied by the
traffic operator or other information systems. With this incident length, the prediction
system can perform a sensitivity analysis on this incident length: what is the impact on
the traffic system when the incident influences the traffic longer?

Ex-ante or ex-post evaluation of implemented or unimplemented scenarios

As opposed to the real-time monitoring function, the system can also be used in a off-line
context. Multiple off-line applications can be thought of:

• Ex-ante or ex-post evaluation of control scenarios

• Ex-ante or ex-post training of traffic operators

• Evaluation of estimation and prediction algorithms

In principle, the off-line applications can be used in two ways: firstly the estimation
component itself can be replaced by a simulation component that simulates the traffic
state. The second option is to simulate the detector data and the other input of the
estimation component. The second option is better, as the estimation algorithms can then
be evaluated. However, this requires an extra restriction on the estimation component, as
the estimation procedure must provide the same results with the same input. Therefore no
randomness can be involved in the algorithms, or the randomness should be controllable.
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2.2.2 Functional requirements

F.1. The system should be able to monitor the traffic in real-time.

F.2. The system should be able to predict the traffic state up to 1 hour into the future

F.3. The system should be able to estimate and predict the traffic in an off-line context
using simulated data.

F.4. The system should be able to correctly estimate the traffic state in both recurrent
and non-recurrent situations.

F.5. The system should be able to incorporate possible control scenarios into the esti-
mation and prediction.

F.6. The system should give reproducible results

F.7. The system should estimate and predict on all locations in the network; also loca-
tions without a detector present

F.8. The system should be adaptable to multiple different data sources

F.9. The system should be able to output multiple data variables, including number of
vehicles on a road stretch, speeds and (total) delay.

2.2.3 Performance requirements

P.1. The system should provide the estimation results faster than real-time.

P.2. The system should provide a prediction under a minute.

P.3. When the system is in real-time monitoring mode, the latency in the results must
be minimal or non-existent.

P.4. The system should achieve a reasonable estimation accuracy

P.5. The system should achieve a reasonable prediction accuracy in predictable condi-
tions

2.2.4 Stakeholder requirements

These stakeholder requirements are mainly derived from the stakeholder analysis.

Derivation stakeholder requirements

The provision of correct, reliable and objective information is mainly covered by P.4. and
P.5.. The information should be accessible by third parties (S.1.). In order to make this
provision possible, the estimation and prediction tool should be user-friendly so the tool
will be actively used by the traffic managers (S.2.)
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The stakeholder analysis made clear that quantifying the cost effectiveness of operational
traffic management would help the government legitimize its support of operational traffic
management (S.3.).

In order to analyse the effects on the individual travellers as basis for further policy anal-
ysis, one should be able to evaluate the impact of the control measures on the individual
travellers, which is covered under requirements F.3. and F.5.. This evaluation will most
likely be based on historical data, which must be saved (S.4.).

In order to minimize the knowledge gap, the main architecture should be modular in
the sense that main components of the architecture can be independently changed. This
way new theoretical knowledge can be incorporated into the tool without disturbing the
operation of the operational traffic managers by training of new systems (S.5.).

Overview stakeholder requirements

S.1. The information that is put into and generated by the monitoring and prediction
tool should be accessible by third parties.

S.2. The user interface of the prediction tool should be user friendly.

S.3. The added value of traffic management should be (able to be) calculated automat-
ically on a daily basis

S.4. The tool should provide a database of data of previous days so that those can be
simulated and evaluated.

S.5. The architecture should be modular so the individual components should be easily
modifiable.

2.3 Comparison requirements with previous studies

The found requirements are validated by comparing the requirements to previous studies
on this subject, in particular the STEP project (Mott MacDonald & Fileradar, 2011) and
the Rotterdam project by de Verkeersonderneming (VO)(Verkeersonderneming, 2014). In
tables 2.1, 2.2, 2.3 the results of this comparison are displayed. Here the main conclusions
of this comparison are presented.

This research has a stronger focus on the integrated combination of estimation/monitoring
and prediction than the STEP project and the Verkeersonderneming project, which are
only focused on the prediction part. In this research, the additional focus on the estimation
of the traffic state is preferred due to two main reasons. The first reason is the increased
trust by the users in the prediction when it is shown that the current situation is estimated
correctly. The second reason is that the manual state estimation by the traffic operator
will become harder in the future due to fewer cameras available and more data from
individual vehicles.
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The STEP and VO project impose more specific requirements on technical side and the
user friendliness of the prediction tool. When implementing a prediction system, it is
advised to investigate these requirements more in-depth. In this research, the focus lies
more on the functional side of the traffic prediction.

The VO project focuses more on the comparison of the predicted traffic state with his-
torical measurements, for example by means of explicit visualizing recurrent and non-
recurrent congestion. This is a nice function for the traffic operator, although it is ques-
tionable if this requirement should be a “must-have” as identified in the VO project. It
requires an (extensive) classification in order to distinguish between recurrent and non-
recurrent congestion. This distinction can also be made by the traffic operator himself,
just as in the current procedure.

The STEP project and VO project focused on the direct application of traffic prediction
in operational traffic management. This research also identified use cases for a traffic
prediction tool other than the use by the traffic operator. The prediction tool can also be
used for ex-ante and ex-post training purposes of traffic operators using simulated data,
for ex-ante and ex-post evaluation of control scenarios and the evaluation of estimation
and prediction algorithms. Moreover, the prediction tool can be used for evaluating
“what-if”-scenarios. This way, the added value of traffic prediction can be identified on
a daily basis, which possibly helps policy makers to invest more in operational traffic
management.

This research STEP Verkeersonderneming

F.1. The estimation of the actual traffic state is an integral
part of the STEP pilot.

The VO project doesn’t consider the estimation of the
current traffic state explicitly. When the predictions
are compared to the actual and historical values, the
crude measurements are used.

F.2. The STEP project indicates that a prediction tool
should deliver accurate results with a time horizon of
at least 20 minutes. The aspiration is a longer time
horizon, but reasonable results of 20 minutes into the
future is the minimal requirement.

The VO project defines the prediction horizon as a
multiple of 5 minutes with a minimum of 5 min-
utes and a maximum of 60 minutes. The predictions
should be initializable manually and periodically.

F.3. Off-line estimation is possible using the STEP ap-
proach.

An off-line aspect is not mentioned in the VO project.

F.4. The STEP project also indicates that the prediction
in non-recurrent situations is crucial.

The VO project has specific focus on the prediction
in non-recurrent situations. Firstly, the prediction
should be capable of incorporating capacity changes
due to network changes such as incidents (require-
ment FE17). Secondly, it considers the difference
between regular congestion and irregular congestion
explicitly, and should be presented differently to the
operator.

F.5. The STEP project indicates this requirement that it
should be able to simulate the control scenarios as
highly desirable.

The VO project sets the incorporation of the impact
of a control measure as an explicit requirement.

F.6. The reproducibility is not mentioned in the VO
project, but the end result probably satisfies this re-
quirement.

The reproducibility is not mentioned by the VO
project.

F.7. The approach used by the STEP project considers all
locations.

The Verkeersonderneming project is not very clear if
it considers non-measurable locations. It seems im-
plied in the set of requirements as the location of the
queues should be accurately described.

F.8. The used approach can use different data sources,
such as loop detectors but also rain sensors.

The Verkeersonderneming project seems to focus on
the data available from the NDW, which currently are
the loop detector data.

F.9. The STEP project is somewhat more specific: it in-
dicates that both speed and travel time (and delays)
should be predicted.

The VO project is very specific in the output: i.a.
speed, volume, travel time, (vehicle) delay, congestion
length.

- - The user should receive a warning when non-recurrent
congestion occurs.

- Explicit comparison of current and future traffic sit-
uation with historical average data

The current and predicted situation should be com-
pared with historical data, e.g. weekly averages.

Table 2.1: Comparison functional requirements of this research with the STEP project
and the Verkeersonderneming project.
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This research STEP Verkeersonderneming

P.1. No computation time used in the STEP project was
found, although in order to make running the tool
feasible, fast state estimation is needed.

No explicit estimation is considered.

P.2. The STEP project has as requirement that the pre-
dictions need to be available within minutes.

The VO project has as requirement that the predic-
tions need to be available within 30 seconds, without
slowing the work process of the operator.

P.3. The latency was a major factor in the STEP project.
During the STEP pilot, the latency was reduced from
7 minutes to 3.5 minutes.

The VO project requires the used data to be as actual
as possible. Therefore the prediction tool should use
the MRM system (“Meetraaimanager”).

P.4. No explicit accuracy of the estimation is taken into
account in the STEP project

No explicit estimation accuracy is needed.

P.5. The STEP project is more specific in this require-
ments, as it indicates that both queue length and
traffic speed should be accurately predicted. The re-
quired accuracy is not quantified: it should be “rea-
sonable”.

The VO project requires an accuracy varying between
70 % and 80% depending on the prediction horizon
and the predictability of the congestion.

Table 2.2: Comparison performance requirements of this research with the STEP project
and the Verkeersonderneming project.

This research STEP Verkeersonderneming

S.1. No explicit requirement, although due to the web
based technology it is possible for third parties to ac-
cess the data.

The VO project requires that the prediction tool
should be independently used by both the regional
traffic operator and the highway traffic operator. By
using a webbased application, also third parties out-
side Rijkswaterstaat should be able to view the results
of the traffic prediction tool.

S.2. The STEP project further specifies the user friendli-
ness by means of live trials. It indicates that color-
coded links on a map view were an essential view.
Moreover, a dual display of both the current situation
and an animation of the predictions was very success-
ful

The VO project requires user friendly visualization
of the predictions. Its requirements on this topic are
mostly based on the STEP project.

S.3. No mention of comparing with “what if” scenarios is
made.

No mention of comparing with “what if” scenarios is
made.

S.4. The STEP project used an extensive database of his-
torical traffic data.

The VO project requires a database consisting of the
traffic data of 1 year.

S.5. The tool used in the STEP project is quite modular. No explicit mention is made about the modifiability
of individual components, as new insights can be in-
corporated into new versions of the prototype.

Table 2.3: Comparison stakeholder requirements of this research with the STEP project
and the Verkeersonderneming project.

2.4 Conclusions

In this chapter, the Dutch operational traffic management was analysed, culminating in a
set of requirements in subsections 2.2.2, 2.2.3 and 2.2.4. These requirements were derived
by describing use cases how the traffic prediction tool was used. Moreover, the interests
of different stakeholders are identified in order to make the implementation of a traffic
prediction tool successful.

The most important requirements are that the prediction tool should deliver accurate
results in a real-time setting. These results should be accurate in non-recurrent conditions,
as the prediction tool is most relevant to the traffic operator in these conditions. Moreover,
the prediction tool should be able to incorporate control measures taken by the traffic
operator.

The requirements derived in this thesis are compared to the requirements in the STEP
project and the Verkeersonderneming project. The different projects agree on the most
important requirements, but differ slightly on some details. This research focuses more
on the integrated combination of estimation and prediction instead of only prediction,



2.4. CONCLUSIONS 27

as it is perceived that the state estimation is a quite hard problem and accurate state
estimation leads to more trust in the prediction results. Another difference is that this
research identified more use cases, such as training and evaluation purposes, of a traffic
prediction tool. These additional use cases can lead to more enthusiasm by the decision
makers as the added value of the traffic prediction tool would be higher and can be made
explicit.
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Chapter 3

Design of architecture

As in the previous chapter multiple requirements for an integrated monitoring and predic-
tion tool are derived, in this chapter an (functional) architecture is produced that satisfies
these requirements.

Here the definition of Clements et al. (2002) for a architecture is used:

Architecture: the set of structures needed to reason about the system, which
comprises elements, relations among them, and properties of both.

As a basis for the architecture, the control cycle is selected. The elements of the control
cycle are further specified in the following sections using the state-of-the-art. Firstly it is
argued that a model based prediction approach is most suitable. Then the macroscopic
model type is selected as traffic flow model paradigm. In the third section the estima-
tion approach is selected. In that section, the Kalman filter approach (belonging to the
recursive Bayesian method class) is selected as main component.

Section 4 gives a more detailed overview given the choices in the first sections. In sec-
tion 5, the match of the architecture with the requirements of the previous chapter is
investigated.

3.1 Prediction approach

A lot of research is done in short-term predicting the traffic state. Van Hinsbergen,
Van Lint, and Sanders (2007) give a taxonomy of short term traffic prediction models
used in literature. They consider short-term traffic prediction as solving an input-output
problem, where the input (with some parameters) is transformed by a model into an
output.They divide the different methods into naive, parametric (also known as model-
based) and non-parametric (also known as data-driven) methods. Naive methods are
methods that use no (or a very simple) model and no parameters deduced from data.
Parametric methods use a model with a predetermined model structure, and used some
parameters from (real-time) data. The non-parametric methods also derive the model
structure from the data. Other taxonomies divide the possible approaches in similar

29
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classes: the non-parametric class is also known as the empirically based (Arem, Kirby,
Vlist, & Whittaker, 1997) or machine learning (Nikovski, Nishiuma, Goto, & Kumazawa,
2005) class; the parametric class is also called the traffic process theory based (Arem et
al., 1997) or the dynamic traffic assignment (Nikovski et al., 2005) class.

3.1.1 Naive prediction

Naive models are models that do not use any model assumption. It can be interpreted as
the use of only the data at hand and exact physical relationships (e.g. distance = speed ×
time) (Van Hinsbergen et al., 2007). Also the (direct) use of measured variables as proxy
for unmeasured variables falls within the naive approaches. Examples of naive methods
are: the use of historical averages of a certain traffic variable as predictor for the future
state; and the calculation of (instantaneous) travel times assuming the prevailing traffic
conditions to be constant. Advantages of the these naive methods is that the calculations
are non-existent or very fast and the reasoning is easy to understand by practitioners. As
the accuracy of these naive methods is mostly low for short term traffic prediction, they
are not considered a good alternative for this application. Note that the second example
of the use of instantaneous travel times as proxy for predicted travel times is still the
most widely used method for most en-route travel times in many countries including the
Netherlands, although more intelligent approaches outperform this methods. (Van Lint
& Van Hinsbergen, 2012)

3.1.2 Non-parametric or data driven prediction

The non-parametric approach derive the model parameters and model structure from the
collected data. Examples of these non-parametric approaches are the use of regression
methods, (advanced) time series or neural networks. The derived input-output relation
can be characterized as a (merely) statistical relationship: no theoretical knowledge or
assumptions from traffic flow theory is used. The non-parametric approach is thus a “black
box”: the exact relationship between input and output is unknown or has no value for
further interpretation. The advantage of a non-parametric approach is that the dynamic
and non-linear traffic processes can be (quite accurately) modeled. The non-parametric
approach has some disadvantages: firstly, a lot of data is needed to “train” the model.
Secondly, handling of unseen scenarios that are not present in the calibration data is hard
as the model is only derived from data. Thirdly, there is limited experience in application
of non-parametric approaches on a network scale. Most applications focused on predicting
traffic on a single location or route. Fourthly, the non-parametric approaches are very
inflexible in terms of location. As the non-parametric models are trained using local
data, the whole training procedure must be reapplied when considering other networks or
changes in the network.



3.2. TYPES OF TRAFFIC FLOW MODELS 31

3.1.3 Parametric or model based prediction

The parametric approach has a certain model structure as starting point, and derives
the parameters from the historic or current data. The model structure is chosen using
theoretical analyses of traffic flow. The chosen models can range from simple analytical
formulas to estimate travel time (such as the BPR function) to full-fledged microscopic
traffic flow models that model every individual vehicle in the network. As this model-
based approach is essentially a “white-box” approach, and therefore very suitable for
traffic predictions in unseen situations or controlled cases. A large disadvantage is the
vast number of parameters and variables that need to be set (correctly). This tuning
requires a lot of (real-time) data that is possibly not available. Another problem is the
fit of the chosen model: the assumptions that are made in the model can be very strong
and unrealistic, or the model can’t provide behaviour that is seen in the real world.

3.1.4 Conclusion: model-based prediction

A parametric, also called model-based, approach seems to be a wise choice, especially
with requirements F.4., F.5., F.7., F.8. and F.9. in mind. Van Lint and Van Hinsber-
gen (2012) suggest a hybrid approach of using parametric and non-parametric models to
combine internal model variables with real-life data. This hybrid approach, where a sim-
ulation model is used as base and non-parametric models are used to estimate parameters
in this simulation model, is chosen in this thesis.

3.2 Types of traffic flow models

As in the previous section a model based prediction approach was selected, the type
of traffic model used needs to be selected. In this section, two main classes of traffic
models are elaborated on: the macroscopic traffic models and the microscopic traffic
models. Other, less commonly used, types of traffic models exist, such as the Network
Transmission Model that describes traffic flow on a (sub)network level, and mesoscopic
models that are in a sense a hybrid version of the macroscopic and microscopic models.

3.2.1 Microscopic traffic models

In microscopic traffic models the base elements are the individual vehicle-driver combina-
tions (or “vehicles” in short). For these individual vehicles, the interaction with the other
vehicles is described: e.g. the braking of a vehicle depending on the surrounding traffic.
The basic variables used are the speed, the (time) headway and the space headway of the
vehicle.

As microscopic traffic models describe individual vehicles, the resulting traffic patterns
as congestion regions and traffic waves are emergent behaviour. Microscopic models are
therefore very useful to model how single vehicles affect the traffic, e.g. for investigation
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of the influence of adaptive cruise control to the traffic flow or the impact of different
driving styles to traffic capacity.

Many microscopic models are stochastic, which means that random behaviour is included.
In order to achieve representative results, the results of a microscopic model are usually
average over multiple model runs.

3.2.2 Macroscopic traffic models

Macroscopic models describe the traffic flow analogously to liquids or gases. In contrast
to the microscopic traffic models, macroscopic traffic models don’t describe individual
vehicles. Instead, the macroscopic models use (locally) aggregated variables for a road
section.

These basic variables can be the density k which describes how close in space vehicles are
apart; the flow q which describes how close in time vehicles are apart; and the average
speed u of the vehicles on a road section.

Macroscopic traffic models thus describe the collective behaviour instead of the individual
behaviour of vehicles. Therefore, the macroscopic traffic models are suitable when one is
interested in this collective behaviour.

3.2.3 Choice of traffic model type

The macroscopic traffic model is preferred, due to the following reasons:

1. The traffic manager is mostly interested in collective behaviour, so a model that
describes the collective behaviour suits the goal best.

2. Although a microscopic model may describe the traffic flow better in ideal situations,
microscopic models have lots of parameters that need to be correctly calibrated. In
a real-time context, this is very hard or impossible.

3. The computation time of a macroscopic traffic model is lower, as fewer degrees of
freedom are used.

3.3 Estimation approach

The basis of estimation is to estimate the traffic state, which is input of the prediction
component, using the traffic data from the sensors. The estimation deals with multiple
main issues:

• The traffic data is measured in a different variable than the traffic state. An example
is that the speed is measured instead of the density.

• Traffic data can be fused from different data sources.
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• The traffic data is observed on different spatiotemporal locations as the traffic state.
The traffic state could be on given on a 50 meter, 2 second interval, as opposed to
measurements that are given in a 500 meter, 1 minute interval.

• The traffic data has errors. Traffic measurements seldom produce no errors: e.g.
loop detectors miss vehicles or count vehicles double. Moreover, traffic data can
have a structural error, also called a bias. An example of this bias is the averaging
of the speed of vehicles over time, as representation of the speed of the vehicles over
space.

Three estimation techniques are discussed here: naive estimation, the adaptive smoothing
method and the recursive Bayesian methods. Other techniques exist, e.g. nudging. Nudg-
ing is a technique that, in the same way as the recursive Bayesian methods, combines a
traffic model with detector data. However, this technique is somewhat less flexible than
the recursive Bayesian methods, and therefore is omitted here. (Schreiter, 2013)

3.3.1 Naive estimation

The naive class consists of traffic state estimation methods that do not use (or very simple)
model assumptions. The main advantage of these techniques are that they are very fast
to compute.

One method is simple interpolation/extrapolation in space. This means that e.g. the
speed on an unobserved location is estimated by copying the data of the nearest detector,
or interpolation the traffic data of the detectors around that location. These interpolation
methods are mostly not very effective, as the dynamics of traffic are not taken into account.

Other more elaborate “naive” methods can fuse data from several data sources in order
to form data with less error; this is so-called data-data consistency. For example speed
data can be fused with (realized) travel time data in order to remove the bias from the
speed data. (Ou, Van Lint, & Hoogendoorn, 2008)

3.3.2 Adaptive smoothing method

The Adaptive Smoothing Method (Treiber & Helbing, 2002), extended and generalized
by Van Lint and Hoogendoorn (2010), is in essence an approach that interpolates over
space and time. It takes traffic dynamics explicitly into account. The basis of this method
is that some characteristics, such as speed and flow, travel with a certain speed along the
freeway. This propagation speed is however dependent on the traffic state: in free flow the
characteristics travel downstream, but in congestion the characteristics travel upstream.
The ASM interpolates the data along this propagation speed.
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3.3.3 Recursive Bayesian methods

As opposed to the adaptive smoothing method, the recursive Bayesian methods combine
the data of the sensors with predicted data from a traffic model. These methods are also
called sequential estimation algorithms, as these methods consist of iteratively updating
the estimate when new sensor data becomes available.

The name of these methods refers to Bayes’ theorem:

P (H|E) =
P (E|H)

P (E)
· P (H) (3.1)

Loosely speaking, the (posterior) probability of a hypothesis given some evidence is de-
termined by the likeliness of the (prior) hypothesis and the likelihood of observing the
evidence with the hypothesis. In this context, the hypothesis H (traffic state) is estimated
using the evidence (observations from detectors).

Commonly used recursive Bayesian estimation techniques are the Kalman filter (and its
numerous extensions and adaptations) and the particle filter. The particle filter uses
a (large) number of simulation runs to estimate the distribution of the posterior traffic
state. However, this technique is too computationally expensive when considering high-
dimensional systems such as a large traffic network. The Kalman filter assumes that the
model error is Gaussian distributed, which makes the Kalman filter far more efficient if
that assumption is valid. Therefore the particle filter is omitted in further considerations.

3.3.4 Comparison Adaptive Smoothing Method and Kalman
Filter

In this subsection the ASM and the KF are compared. The comparison is made on both
theoretical basis and the set requirements. The theoretical comparison is based on the
comparison by Schreiter (2013). In table 3.1 the results are summarized.

Category Criterion ASM Kalman Filter

Characteristics

Paradigm Data driven Hybrid of data driven and model based

Traffic flow theoretical basis Shockwave theory Generic, any process and observation model

Data estimated Density, speed, flow All parameters needed, including e.g. FD parameters

Network topology Motorway All networks; urban and motorway

Calibration complexity Easy Hard

Prediction Independent Integrated

Requirements related

Inclusion control scenarios Complex Natural

All locations Yes, interpolated Yes, physical representation by model

Different data sources All data sources All, excluding time aggregated measurements

Table 3.1: Comparison Adaptive smoothing algorithm and Kalman Filter approach

Comparison of theoretical characteristics

The Kalman Filter approach is a more generic approach than the ASM. The ASM is a
purely data driven approach, whereas the KF uses a data driven approach in combination
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with a traffic flow model. The ASM has shockwave theory as theoretical basis, whereas
the Kalman Filter approach can work with any process and observation model. (Schreiter,
2013)

The Kalman Filter approach integrates the estimation and prediction more than the ASM.
This is visible in two ways: firstly the prediction is a integral part of the prediction-
correction scheme used in the KF approach. Secondly, the KF approach ensures that
all state elements and parameters needed for predicting using the traffic flow model are
estimated, as the same model is used for estimation and prediction. If the ASM is used,
additional parameters have to be (independently) estimated in order to complete the
necessary set of parameters for the prediction model.

The ASM approach is only suitable for motorway traffic. The Kalman Filter approach
can also use a (macroscopic) urban traffic model. (Schreiter, 2013)

The main problem of the Kalman Filter approach is that for correct estimation, a lot of
parameters need to be calibrated correctly. The ASM is less complex due to the fewer
degrees of freedom. (Schreiter, 2013)

Comparison on requirements

When the focus lies on the requirements derived in the previous chapter, the Kalman Filter
scores slightly better. The inclusion of the influence of control in the state estimation is
more natural in the Kalman Filter approach than in the ASM. Take for example a case
where (possibly class-specific) rerouting is implemented by the traffic operator. In the
Kalman Filter approach, the estimation of the (class-specific) density is quite natural,
whereas in the ASM this information is hard to add.

The Kalman Filter is also slightly better in the estimation of the traffic state in unobserved
locations than the ASM, as the estimated state between detectors is estimated by the
model instead of just smoothed value of the detected values. This is graphically explained
in figure 3.1. In this figure, a situation is described where congestion has formed between
two measurements. The ASM smoothes the measured values, which omits the congestion
inbetween. The traffic flow model used by the Kalman Filter predicts the congestion as
result of the lane drop.

The ASM is capable of incorporating time aggregated measurements, such as realized
travel times. It isn’t computationally feasible for the Kalman Filter approaches to incor-
porate these travel times, as the (augmented) state vector becomes too large. (Van Lint
& Hoogendoorn, 2010)

3.3.5 Conclusion: Kalman Filter approach

The Kalman Filter approach is far more generic than the ASM approach. This means
that complex system models and different data sources can be used in without completely
changing the framework. Moreover, the Kalman Filter approach integrates the estimation
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Figure 3.1: Possible traffic pattern near a lane drop and associated congestion between
two loop detectors. The ASM approach interpolates the measurements, which omits
the congestion. The traffic flow model in the Kalman Filter can correctly predict the
occurrence of congestion even though the measurements don’t indicate the congestion.

and prediction part. This is advantageous, as it ensures that the estimation and prediction
part are aligned.

The main disadvantage of using the Kalman Filter approach is the calibration procedure
and associated validity. It is very hard to correctly calibrate the parameters in the Kalman
Filter approach due to the large number of parameters. The desired accuracy and validity
of an approach is only achieved when the parameters are set right. As the ASM needs far
less parameters, this calibration is easier.

Although the list of approaches above seem to indicate that these approaches are disjoint,
the approaches can be combined. One can for example use the ASM to fuse speed and
travel time information together as input for a Kalman Filter.

3.4 Overview functional architecture

In figure 3.2 the derived architecture is shown.

The most important properties of the components is already described in the previous
sections. Here, the structure of some components is further described.

3.4.1 Model component

In this architecture, it is chosen to use the same model for the estimation and the short-
term predictions. This makes it easier to initialize the prediction model, as the state and
structure of the estimation model and prediction model are compatible.

A generic model step of instant t1 to t2 of cell j consists of three phases (Van Wageningen-
Kessels, 2013):
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Figure 3.2: Architecture

1. Preparation: the preparation phase consists of calculating values of some variables
of cell j, given the current state at instant t1, that are necessary for determining
the state at time t2. In the context of a macroscopic traffic flow model, this step
consists for example of determining the flow through a node. The preparation phase
can use (and mostly will use) information about other cells than cell j.

2. Actual time step: this phase determines per simulated object (e.g. cell or node) the
state of that simulated object at instant t2. In this context this step consists of e.g.
determining the density (for a LWR-model), class-specific density (for Fastlane) or
density and velocity (for a Payne-model). The update of the state of cell j only uses
variables of cell j.

3. New values other variables: this phase determines the values for the other variables
at instant t2. In this context this could consist of determining the speeds or pce-
values. The variables that are updated are variables at cell j that only depend on
the state of cell j.
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The structure of the model above guarantees that the dynamics of the model don’t rely
on the order of execution. This becomes especially clear in the second phase. If in the
second phase the update of the state of cell j was dependent on the state of e.g. cell i,
the state of cell j would differ if the state of cell i was already updated or not.

3.4.2 Estimation component

The proposed estimation approach is a two-step approach. First the detector data (from
conventional loop detectors, but also data from individual cars, travel time cameras or
even weather information) is preprocessed. After this procession, the processed data is
fed into the Kalman filter algorithm.

Several algorithms can serve (together) as data preprocessing. These processing algo-
rithms vary from simple (removing erroneous data, such as unfeasible data values) to
quite advanced (reducing observation error by the Adaptive Smoothing Method), as de-
scribed in section 3.3. These algorithms can not only change the values of the detector
data, but also fuse data from several detectors together and add (estimated) data on other
spatiotemporal locations. The data processing algorithms need some kind of parameters,
e.g. threshold values or assumed traffic behavioural values such as characteristic wave
speed.

The processed data is used as observation in the Kalman Filter approach. The Kalman
Filter component uses a traffic model, a prior estimation of the traffic state and the pro-
cessed observation data, in order to make a (posterior) estimated traffic state. Depending
on which Kalman Filter method is chosen, one or more instances of the traffic model is
needed.

3.4.3 Prediction component

The prediction component is quite small. It uses the estimated traffic state and a macro-
scopic traffic model to predict the future traffic state. Essential for the performance is
the inclusion of the correct future control measures and future parameters such as inflow
and turn fractions.

3.4.4 Scheduler component

The main scheduler is the main function in the architecture. The scheduler handles the
main time loop the simulation must follow. It keeps track of a queue of processes that need
to be called at a certain point in time. The main process is the calling the estimation
component when new observation data becomes available. Moreover, it keeps track of
when a short-term prediction is needed.

The scheduler can compare the timestamps of the detector data and the real-life time
to calculate the latency. The latency should be minimal. One solution to minimize
this latency is to use the prediction component to predict the “real-time” data based on
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the data that is a few minutes old. This solution is used in the estimation system in
Düsseldorf. (Gentile & Meschini, 2011)

3.5 Verification architecture with requirements

In this section the architecture is verified. This means that it is checked if the architecture
corresponds with the requirements. See table 3.2 for an overview of these requirements.

Requirement Satisfied Motivation

F.1. X The monitoring aspect is performed by the estimation component.

F.2. X The prediction aspect is performed by the prediction component.

F.3. X The off-line aspect can be used by feeding artificial data into the estimation component

F.4. X The model-based nature of the architecture makes it possible to be used in both recurrent and non-recurrent
situations.

F.5. X The different control scenarios can be used as input to the descriptions of the infrastructure and (prior)
knowledge on driving behaviour.

F.6. ? The reproducibility of the results depends on the implementation: the macroscopic traffic model and the
data assimilation components should be deterministic, or incorporate stochastic methods with the use of
a random number generator with an easily modifiable seed.

F.7. X In principle the macroscopic traffic model can estimate and predict on all locations in the network. How-
ever, due to the discretization of the model in implementation the traffic state at some location can be
approximated by the traffic state at a location nearby.

F.8. X Observations from data sources can be explicitly used in the main Kalman filter algorithm. Another option
is to fuse multiple data to one better data set in the data processing component. An example of this is the
PISCIT algorithm that fuses individual travel time measurements and aggregated speed data from loop
detectors in order to remove the bias from the speed data. (Ou et al., 2008)

F.9. X Assuming that the required output can be formed by the traffic state

P.1. X Practical experience with (localized) Kalman filter estimation has shown that some Kalman filter algorithms
can deliver fast enough results on a comparable time scale.

P.2. X Once the current traffic state is estimated by the estimation component, the prediction component shouldn’t
take too much time.

P.3. ? The amount of latency depends on the used data source. Normally the data from the NDW has a few
minutes delay before arriving in the traffic management centre. Two main options to combat the latency
can be used. Firstly data can be used from the Meetraaimanager which data has less delay. A second
option is to predict the “real-time” data based on the data of a few minutes old. This last option is used
in Düsseldorf. (Gentile & Meschini, 2011)

P.4. ? The question remains if the right accuracy can be found. It is mostly based on the geographical scale and
the trade-off between accuracy and computation time. Practical experience seem to suggest that it should
be possible. Further experimenting could provide this answer.

P.5. ? It depends on the predictability of the boundary conditions. Further experimentation should provide light
on this requirement.

S.1. ? Depends on the implementation and security settings.

S.2. X Depends on the implementation, but the architecture doesn’t prevent user friendliness

S.3. X One could use the system to predict the performance both with and without control by the traffic operator.
The accuracy of the computation of this added value is quite arbitrary, as one has to assume the response
of the traveller in both situations.

S.4. X Logging is part of the architecture.

S.5. X The modular approach of this architecture makes it possible to modify components of the architecture: e.g.
use a different Kalman Filter algorithm.

Table 3.2: Verification architecture with requirements

The architecture complies reasonably well with the set requirements. The compliance
with some requirements, such as the amount of latency and the prediction accuracy, rely
on the exact implementation of the architecture or needs more research.

3.6 Conclusions and further steps

In this chapter an architecture was derived from the requirements in the previous chapters.
On basis of theoretical arguments is is chosen to adopt a simulation model based approach



40 CHAPTER 3. DESIGN OF ARCHITECTURE

instead of a pure statistical approach. This approach is more suitable for the estimation
and prediction in non-recurrent conditions and the effects of control scenarios can be
evaluated. The simulation model should apply a macroscopic paradigm instead of a
microscopic paradigm to limit the number of parameters and the computation time.

In further implementation of this architecture several choices need to be made. Some of
these choices that need further research are:

1. Choice of macroscopic traffic model. Several macroscopic traffic models exist with
different characteristics. In chapter 4 a short overview of different choices in the
selection of a macroscopic traffic model is given.

2. Choice of Kalman Filter algorithm. Several variants of the Kalman Filter algorithm
exist that are suitable in different situations. Further research is needed to select
the right algorithm for the problem at hand. In chapter 5 the Ensemble Kalman
Filter is further analysed.

3. Data preprocessing techniques. It needs to be further researched which combination
of data preprocessing techniques are suitable in conjunction with the Kalman filter
approach.

4. Calibration procedures. The parameters needed for the data preprocessing and the
Kalman Filter need to be set with appropriate values. These calibration can be
done off-line (independently of the traffic situation at hand) or on-line. Moreover,
a choice need to be made which parameters need to be estimated by the calibration
procedure. One has for example multiple options for the setting of the capacity of a
certain link: a) set the capacity at a fixed value; b) on-line estimation of the capacity
by a independent calibration method; or c) on-line estimation of the capacity as part
of the state of the Kalman filter.

In the next part of this thesis, a prototype is made on basis of the architecture of this
chapter. The main focus will lie on the selection of a right Kalman Filter approach.



Part II

Development of prototype
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In part I an architecture of a traffic estimation and prediction tool was designed. In
this part of the thesis a prototype is designed that fits the proposed architecture. This
prototype could be seen as a first stepping stone for further more elaborate prototypes.

The outline of part II is as follows. In chapter 4 the used framework for the macroscopic
system model, which represents the traffic flow, is chosen. Chapter 5 further investigates
the data assimilation part of the framework. The choices made in these chapters are
mostly based on theory and previous research.

Chapter 6 describes the implementation of the prototype. In the implementation part
many choices are made how the selected system model and data assimilation methods are
implemented. The last section of the implementation chapter the prototype is verified.
Verification means checking if the prototype is correctly implemented as designed. If no
errors occur, the confidence in the behaviour of the prototype is increased.

In chapter 7 a total of six simulation experiments are performed using the prototype.
These experiments indicate the possible performance of the prototype: does the prototype
deliver satisfying results that would justify further effort into maturing the prototype into
a more elaborate traffic estimation and prediction tool?



Chapter 4

Macroscopic system models

In chapter 3 it was derived that the architecture should consist of a model-based prediction
and estimation approach. In this chapter the model used in the prototype is derived. The
system model consists of a process model, which describes the propagation of traffic, and
an observation model, which describes the used observations.

4.1 Choice of process model

This section is divided into three subsections. The first subsection covers the choice of
a coordinate system. The second subsection treats the choice of the order of the traffic
model and the inclusion of different vehicle classes. The third subsection chooses the used
fundamental diagram.

4.1.1 Coordinate system

Traffic flow can be analysed in three dimensions: space, time and vehicle number (Makigami,
Newell, & Rothery, 1971; Laval & Leclercq, 2013). Therefore, three two-dimensional co-
ordinate systems can be formed: the space-vehicle-number coordinates, space-time coor-
dinates, the vehicle-number-time coordinates (Yuan, 2013). The second and third coordi-
nate systems are also called the Eulerian and Lagrangian coordinate system respectively.

The Eulerian coordinate system is the most prevailing coordinate system in this context.
A (discretised) Eulerian coordinate system is easy to understand: viewing the network
as a collection of cells of fixed length, which is updated every (fixed) time step, is quite
natural. The use of the Lagrangian coordinate system in traffic engineering is a more
recent development. As opposed as the Eulerian coordinate system, (platoons of) vehicles
are observed as they move through space. The Eulerian method can be visualized by
observing the traffic standing besides the road, and the Lagrangian coordinate can be
visualized by observing the traffic from within a vehicle that moves through the network.

43
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Yuan (2013) proposes the use of the Lagrangian method, as it found that the Lagrangian
method is a more accurate and efficient simulation of freeway traffic, and the Lagrangian
method is more a suitable approach for the application of data assimilation methods
such as the Extended Kalman Filter due to availability of a better numerical solution.
However, the implementation of the Lagrangian method and an associated assimilation
scheme is quite hard. Platoons need to be generated and deleted from the model as they
reach the begin and end of the described network. Therefore, the state vector in the data
assimilation scheme changes over time.

Therefore, the Eulerian method is chosen in this research.

4.1.2 Traffic classes and order of traffic model

Traffic models can also be classified into their use of traffic classes and the order of the
traffic model. Schreiter (2013) gives an overview of different types of macroscopic traffic
models:

1. macroscopic model LWR

2. mixed-class generalizations of LWR

3. multi-class macroscopic models with fixed pce

4. multi-class macroscopic models with dynamic pce

First order model: the LWR model

Macroscopic models are models that represent average traffic behaviour as a fluid. The
main idea behind macroscopic models is the conservation of vehicles: vehicles can’t be
generated or destroyed in the model. The first macroscopic model was the LWR model
independently proposed by both Lighthill and Whitham (1955) and Richards (1956). This
model can be mathematically described as

∂k

∂t
+
∂q

∂x
= 0, (4.1)

which represents the (Eulerian) conservation of vehicles equation, with q = Q(k) (referred
as the fundamental diagram) and q = kv. k represents the vehicle density, q the average
flow and v the average speed. Equivalently, one could also define v = V (k) and v = q

k
.

For numerically solving this partial differential equation (PDE), the conservation of vehi-
cles equation is discretized in the space and time dimension. The space dimension then
consists of cells of length ∆xi with i = 1 . . . n with n the total number of cells. The time
dimension is discretized into time segments of ∆t. The discretized PDE can be written
as:

kiτ+1 = kiτ +
∆t

∆xi

(
qi−1→iτ − qi→i+1

τ

)
, (4.2)
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for all cells i. This discretized equation has a clear structure: the density at the new time
instant is the old density, plus the traffic that flows into the cell, minus the traffic that
flows out.

Different numerical schemes are developed to calculate the flux qi→i+1, which is assumed
to be maximized. The most widely used numerical scheme for this application is the
Godunov scheme, also called the minimum supply-demand scheme (Lebacque, 1996). It
defines at time instant τ :

qi→i+1 = min(Di, Si+1) (4.3)

Di =

{
Q(ki) ki < kiC
Ci otherwise

(4.4)

Si =

{
Ci ki < kiC
Q(ki) otherwise

(4.5)

kiC denoted the critical density of cell i, and Ci the capacity (the flow attained at the
critical density) of cell i. The subscripts τ were omitted for notational purposes.

The numerical method is only stable when the Courant-Friedrichs-Lewy’s (CFL) condi-
tions is satisfied, which reads

∆xi ≥ max
k

∣∣∣∣∂Q(k)

∂k

∣∣∣∣∆t, for all i. (4.6)

Most (realistic) density-flow relations Q(k) attain their steepest ascent or descent at zero

density, which reduces the steepest slope to the maximum velocity: maxk

∣∣∣∂Q(k)
∂k

∣∣∣ = vmax.

The CFL-condition thus can be interpreted as that within a time step a vehicle can only
cross at most one cell boundary. (Van Wageningen-Kessels, 2013)

At merges and diverges one has to choose how to distribute the traffic flow over the
incoming and outgoing links. Tampère, Corthout, Cattrysse, and Immers (2011) proposes
a generic class of first order node models for nodes with an arbitrary number of incoming
and outgoing cells. However, the associated algorithm is quite complex and will cost a
lot of computation time. Therefore the used network is restricted to nodes of 1 → 1
cells (one-to-one), 2 → 1 cells (merges, e.g. on-ramps) and 1 → 2 cells (diverges, e.g.
off-ramps). The mentioned merge and diverge models are the degenerate versions of the
generic model of Tampère et al. (2011).

For the diverge model one considers the turn fraction γi to be the fraction of vehicles
arriving at the node going to link i. Assumed is that vehicles flow first-in-first-out over
the node regardless of their destination. If delays occur as one of the outgoing links
is congested, both outgoing links are restricted in such a way that the turn fraction is

maintained. The total flow over the node is then given as q = min
(
D, S

1

γ1 ,
S2

γ2

)
. The flows

over the node to the different links are q1 = γ1q and q2 = γ2q.

In the merge model, one has to define distribution factors to indicate the priority in
merging. Here, based on Tampère et al. (2011), these distribution factors are based on
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capacity: di = Ci∑
i Ci

. If one defines S∗i = diSi, then one can define si = S∗i +max(S∗i′−Di′),

where i′ is the other link than link i, and qi = min(Di, si). What this means is that the
supply of the outgoing link is filled maximally, where the available supply to each incoming
link is based on the capacity of the incoming link. When one incoming link doesn’t use
all the supply available, this supply can be used by the other incoming link.

Mixed-class generalizations of LWR model

As the LWR model is very basic, some unrealistic behaviour is produced by the LWR
model. For example, the LWR model assumes that the new equilibrium velocity is directly
attained after a changed traffic state. This implies that vehicles in the LWR model are
capable of infinite acceleration. Another example is that the transition from free flow
regime to the congestion regime always occurs at the same density. (Van Wageningen-
Kessels, 2013)

These problems can be mitigated by using variants of the LWR model, e.g. by introducing
bounded-acceleration or using a stochastic model. Another approach is the use of a
second order model. Noteworthy is the Payne model (Payne, 1971), which combines the
conservation of vehicle equation with an equation for the velocity dynamics:

∂v

∂t
+ v

∂v

∂x
=
v∗(k)− v
trelax

− c2

k

∂k

∂x
, (4.7)

in which v∗(k) is the equilibrium velocity from the fundamental relation. The Payne
received some (theoretical) criticism by Daganzo (1995) as the negative velocities could
be reached in certain conditions, due to the lack of anisotropy. Anisotropy means that
the characteristics of the traffic state can travel faster than the vehicles themselves. After
that, some models are proposed that repairs this issue. Well-known is the model by Aw
and Rascle (2000), which replace the Payne (Payne, 1971) velocity equation by

∂

∂t
(v + p(k)) + v

∂

∂x
(v + p(k)) = 0. (4.8)

In this equation, p(k) represents a ‘pressure’ term. In further research, this model is
adapted, extended and generalized many times.

Mixed-class vs. multi-class

The previous mixed-class models only accounted for one type of vehicles. However, differ-
ent vehicle classes such as trucks, vans and person cars have different characteristics. A
truck is for example longer and slower than a normal car. Multi-class macroscopic models
explicitly include different vehicle classes.

The conservation of vehicles equation of the LWR model is generalized to each vehicle
class u:

∂ku
∂t

+
∂qu
∂x

= 0. (4.9)
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In this equation, the class-specific flow qu = Qu(ktot) is determined by the class-specific
fundamental diagram based on the total density of all vehicle classes. This represents that
the vehicles of the different vehicle classes are conserved and flow according to their own
(fundamental) relation. However, all vehicle classes share the same space on the network,
so the flows and velocities are based on the combined total density ktot. The total density
ktot can be modeled as the weighted sum ktot =

∑
u πuku, where the weights πu are the

passenger car equivalent (pce) values.

Most researches assume the pce values πu having state-independent values. However,
this assumption is quite crude. In free-flow conditions, the difference in physical lengths
trucks and cars don’t have a large influence on the average space the vehicles occupy.
However, when traffic is standing still, a large truck can occupy up to 3 times the space of
a passenger car. The pce values are thus state dependent. The Fastlane model explicitly
uses the state-dependent pce values.

Explained phenomena

Figure 4.1: Overview of phenomena explained by the different macroscopic models. From
(Schreiter, 2013).
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Conclusions

Although the number of explained phenomena by the single class LWR-model is low, it
is chosen as model type in this prototype. This is due to a number of reasons:

1. Number of parameters. The number of dynamic parameters involved in the single
class LWR-model is low: the whole system model is defined by the density k when
the fundamental diagram parameters are considered constant. As the number of
cells is high given the geographical scale, the number of parameters per cell are very
important for the computational speed of the data assimilation algorithm.

2. Computational speed of model steps. As this model is the simplest, the computation
will be the fastest. This is advantageous in this application as more time is available
for data assimilation.

3. Ease of implementation. Given the limited time for the implementation this proto-
type, traffic models that are easy to implement are preferred.

4. Prototype approach. It makes sense to begin with the simplest approach for the
first prototype, as the verification of a simpler model is easier. In following versions
of the prototype more complex traffic models can be used.

4.1.3 Fundamental diagram

A critical part of the LWR model is the relation between the density and flow Q(k).
This relation is called the fundamental diagram. The fundamental diagram has two
applications (Van Wageningen-Kessels, 2013). One application is the use of the relation
as part of the traffic flow model, as described in this subsection. The other application is
the use of the fundamental relation for relating observations with the traffic state.

One of the first fundamental relations was proposed by Greenshields, Channing, Miller,
et al. (1935), based on seven observations. His fundamental relation consists of a linear
relationship between the density and speed, which implies a parabolic relationship between
density and flow. Later empirical findings indicate that at larger densities the relationship
between the density and flow is approximately linear.

Daganzo (1994) proposes a bilinear relationship between the density and flow. It is also
mentioned as a triangular fundamental diagram due to the shape in the density-flow
plane. The linear relation between the density and flow in the free flow branch implies
a constant velocity of the vehicles when more vehicles are present on the road. The
interaction between vehicles in free flow is thus ignored.

The fundamental diagram of Smulders (1990) is a hybrid version of the fundamental
relations of Greenshields et al. (1935) and Daganzo (1994). It assumes a parabolic rela-
tionship between the density and flow in the free-flow branch and a linear relationship in
the congested branch.

The fundamental diagram of Smulders (1990) is chosen as fundamental relation in this
prototype. See Van Wageningen-Kessels (2013); Li (2008); Del Castillo (2012) for more
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detailed overviews and requirements of shapes of the fundamental relation.

4.2 Choice of observation model

Just as the traffic propagation model, traffic observations can be divided into two main
categories: Eulerian observations and Lagrangian observations.

Eulerian observations are observed at a fixed point in space, as opposed to Lagrangian
observations that are observed moving along the vehicle stream. Examples of Eulerian
data are the common double loop detectors, but also cameras and radar detectors. GPS or
other tracking devices transmitting data of individual vehicles are examples of Lagrangian
detectors.

Incorporating Lagrangian data generally improves the estimations in comparison to using
only Eulerian data. In the use with a Eulerian process model, the Lagrangian source data
is usually transformed to Eulerian formulated observations that easily fit into the Eulerian
process model. Here the assumption is made that the Lagrangian sensing data at that
spatiotemporal location represent the conditions in a fixed cell around that location. As
an example: a car transmits its position and velocity at a certain point in time, which
is a Lagrangian observations. The assimilation model uses this information as a ‘virtual’
detector at that (fixed) location that detects the velocity. This virtual detector is thus a
Eulerian observation. Essentially, the change in position of the moving detector is ignored.

Only Eulerian double loop detectors are chosen, as this is the main available measurement
instrument in the current situations. These loop detectors give the velocity and the flow
at a fixed location, averaged over 1 minute.
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Chapter 5

Data assimilation using the
Ensemble Kalman Filter (EnKF)

In this chapter the data assimilation part of the prototype is further specified. Data
assimilation techniques are techniques that combine a priori knowledge, mostly consisting
of a parametric model that describes a system mathematically, with real-life observations.
As identified in chapter 3, the recursive Bayesian methods known as the Kalman Filters
is chosen as main algorithm of the data assimilation or state estimation component.

In this chapter first a short introduction to the Kalman Filter is given. Then two different
approaches, the Extended Kalman Filter (EKF) and the Ensemble Kalman Filter (EnKF),
and their differences and previous applications are further examined. There it is concluded
that the EnKF is a promising method. Therefore, the EnKF is further analysed for its
use in the traffic state estimation and prediction prototype.

5.1 Introduction to Kalman Filter approaches

Kalman (1960) set the basis of modern filtering theory in his seminal paper, which pro-
vided a sequential algorithm to compute an optimal estimator of the state for linear dis-
crete dynamical systems, under additive white Gaussian process and observation noise.
His estimation technique estimates the state of a system optimally given observations of
the system and knowledge of the system. Kalman filtering is widely applied in many
different fields of engineering.

A dynamical system can be written in a state-space form:

xk+1 = fk(xk) +wk (5.1)

yk+1 = hk(xk) + vk (5.2)

If the functions f and h are linear, the state-space equations can be rewritten by using
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transformation matrices as replacements for the linear functions:

xk+1 = Fkxk +wk (5.3)

yk+1 = Hkxk + vk (5.4)

The state-space form consists of a process equation (5.1) and an observation equation
(5.2) (or equations (5.3) and (5.4) in the linear case). In the equations above, the vector
xt represents the state at time t. The matrix Fk is the state transition model, which
defines the function that maps the previous state xk at time k to the new (predicted)
state at time k+ 1. The vector yt represents the measurements at time t. The matrix Hk

defines the observation model, which maps the state into (predicted) measurements. wk

and vk are the noise terms. It is assumed that these noise terms are white Gaussian error
terms, which means that have a zero-mean normal distribution (with covariance matrices
Qk and Rk respectively).

As the Kalman filter is a sequential Bayesian filter, it iteratively updates the state when
new observation data becomes available. The Kalman filter has a clear predictor/corrector
scheme. In the prediction component, the time is updated (e.g. from time t− 1 to t) and
a rough estimate of the state x̂−t is given, called the prior state. This prior state is then
corrected using observations to form the more accurate posterior state x̂t. In figure 5.1
this scheme is visualized.

Figure 5.1: Predictor-corrector scheme of the Kalman filter approaches

Now the Kalman filter algorithm is described, using the formulation of Van Lint and Dju-
kic (2012). Step 1a and 1b correspond to the prediction step, step 2a and 2b correspond
to the correction step.
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Algorithm 1: the Kalman Filter

Consider a linear space state model as in equations (5.3) and (5.4), where wk and
vk are independent, zero-mean, Gaussian noise processes with covariance matrices
Qk and Rk. Initialization:

x̂0 = E [x0] and P0 = E [x0 − E [x0]
ᵀ]

for k = 1, 2, . . . do
Step 1a: predict mean and variance of state variables (forecast step)

x̂−k = Fkx̂k−1

P−k = FkPk−1Fk
ᵀ +Qk−1

Step 1b: predict output variables

ŷ−k = Hkx̂
−
k

Step 2a: compute Kalman gain

Kk =
P−k Hk

ᵀ

HkP
−
k Hk

ᵀ +Rk−1

Step 2b: update mean and covariance

x̂k = x̂−k +Kk(d− ŷ−k )

Pk = (1−KkHk)P
−
k

end

In step 1, the prior state x̂−k at time k is predicted using the posterior state x̂k−1 at time
k − 1 and our knowledge of the system (i.e. the model). In step 2, this prior state is
corrected using the observations to form the posterior state. The Kalman gain has an
intuitive structure:

uncertainty process model · sensitivity state to observations

uncertainty observation model + uncertainty observations

The main assumptions of the Kalman filter are:

• the process and observation models are linear

• the noise terms are independent unbiased Gaussian with known covariance matrices

As the process and observation models in a macroscopic traffic model are not linear, the
basic Kalman filter is not useful (Blandin, Couque, Bayen, & Work, 2012). Therefore
multiple (non-optimal!) extensions to the basic Kalman filter are developed and applied
in traffic estimation applications (Blandin et al., 2012). Here two of these extensions
are investigated: firstly the Extended Kalman Filter (EKF), as the EKF is the method
used most for traffic applications, and secondly the Ensemble Kalman Filter (EnKF)
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which could provide better results than the EKF. Other not discussed extensions are the
unscented Kalman filter (UKF) (Julier & Uhlmann, 1997; Mihaylova, Boel, & Hegyi, 2006)
and the mixture Kalman filter (MKF) (Chen & Liu, 2000; X. Sun, Muñoz, & Horowitz,
2004)

5.1.1 The Extended Kalman Filter (EKF)

The basic Kalman Filter assumes that the process and observation models are linear.
However, traffic flow models are not linear (Blandin et al., 2012). The EKF tries to solve
this by linearising the process and observation models.

Algorithm 2: the Extended Kalman Filter

Consider a (non-linear) state space model as in equations (5.1) and (5.2), where wk

and vk are independent, zero-mean, Gaussian noise processes with covariance
matrices Qk and Rk.
Initialization:

x̂0 = E [x0] and P0 = E [x0 − E [x0]
ᵀ]

for k = 1, 2, . . . do
Step 1a: predict mean and variance of state variables (forecast step)

x̂−k = f(x̂k−1)

P−k = FkPk−1Fk
ᵀ +Qk−1

with Fk = ∂f(x)
∂x

∣∣∣
x=x̂k−1

Step 1b: predict output variables

ŷ−k = h(x̂−k )

Step 2a: compute Kalman gain

Kk =
P−k Hk

ᵀ

HkP
−
k Hk

ᵀ +Rk−1

with Hk = ∂h(x)
∂x

∣∣∣
x=x̂−k

Step 2b: update mean and covariance

x̂k = x̂−k +Kk(d− ŷ−k ) (5.5)

Pk = (1−KkHk)P
−
k

end

Notice that the due to the linearisation the EKF is not an optimal filtering technique as
the basic KF per se. The accuracy of the approximation is strongly dependent on how
non-linear the process and observation models are. In the context of the macroscopic
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traffic models, this depends on the state: e.g. the fundamental diagram is quite linear
in a free-flowing or congested state, however around capacity the linear approximation is
not so good.

Aside from the state vector x, which can represent the traffic system uniquely (e.g. density
at every cell), several parameters that govern the dynamics of the traffic model (e.g.
fundamental diagram) need to be estimated. These parameters are not explicitly taken
into account in the equations above. Three main options for estimating the parameters
are used in literature :

1. The parameters as input to the data assimilation. This means that the parameters
are outside the scope of the EKF. This implies that the parameters are assumed
constant or are updated in another way.

2. The parameters are part of the state. This is the approach preferred by Wang and
Papageorgiou (2005). This way, the parameters are jointly updated with the rest of
the state, i.e. cell densities using the same data. This is the most general approach.
However, this means that the state vector becomes large and would seriously hamper
the computation time. Moreover, the question remains if the filter can estimate the
state accurately due to the high number of degrees of freedom.

3. Another option is a hybrid version of the previous two options: dual filtering. In
this way, one couples two different EKF algorithms: one that updates only the state
elements, and the second that updates only the parameters. For the parameter
updating, one could use a different spatiotemporal scale. This agrees with the
physical phenomenon: the average driving behaviour, which is caught within the
fundamental diagram, varies on a broader spatiotemporal scale than the vehicles
themselves.

5.1.2 The Ensemble Kalman Filter (EnKF)

Another approach to the extension of the KF to non-linear situations is to use a Monte
Carlo sampling approach: the Ensemble Kalman Filter (EnKF). The idea is to represent
the state distribution by using a collection of state vectors (called an ensemble), instead
of using the mean state vector (xk) and the state covariance matrix (Pk).

The main equations are quite similar for the EnKF as for the other Kalman filters (Mandel,
2009). Let n be the number of state variables, m be the number of measurements and
N the number of ensemble members. Instead of the vectors x (size n) and d (size m),
we now use the matrices X (n × N) and O (m × N). The columns of X now form
a sample of N members of the prior distribution. By using the main update equation
(Xa = X + K(O − HX)), the columns of Xa form a random sample of the posterior
distribution. The EnKF is completed by substituting the state covariance P in the Kalman
Gain matrix K = (PHᵀ)/(HPHᵀ +R) by the sample covariance C = AAᵀ/(N − 1) with
A = X − E(X) (the anomalies matrix).
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Algorithm 3: the (traditional) Ensemble Kalman Filter

Consider a (non-linear) state space model as in equations (5.1) and (5.2), where wk

and vk are independent, zero-mean, Gaussian noise processes with covariance
matrices Qk and Rk. Consider the observation matrix Hk given for each k.
Initialization:

X0 = E [X0]

for k = 1, 2, . . . do
Step 1a: predict mean and variance of state variables (forecast step)

X−k = f(Xk−1) =
[
f(x1

k−1),f(x2
k−1), . . . ,f(xNk−1)

]
P−k =

AAᵀ

N − 1

xit denotes the i-th ensemble member at time t, and A = X−k − E
[
X−k
]

is the
anomalies matrix
Step 1b: predict output variables

Y −k = HkX
−
k

Step 1c: perturb observations

O = [d+ ε1,d+ ε2, . . . ,d+ εN ]

Step 2a: compute Kalman gain

Kk =
P−k Hk

ᵀ

HkP
−
k Hk

ᵀ +Rk−1

Step 2b: update mean and covariance

Xk = X−k +Kk(O − Y −k ) (5.6)

end

5.1.3 Applications of the EKF and EnKF in macroscopic traffic
simulations

Application of the EKF

Quite a lot of research is done using the EKF for state estimation in macroscopic traffic
models, both on theoretical basis (Wang & Papageorgiou, 2005) and large scale case
studies. The EKF is used for all kinds of traffic models, varying from second order mixed-
class models to multi-class models. Wang and Papageorgiou (2005) provide a general
approach of using the EKF in macroscopic traffic state estimation.

Special attention is given to the localized Extended Kalman Filter (L-EKF) by Van Hins-
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bergen, Schreiter, Zuurbier, Van Lint, and Van Zuylen (2012). The basis of the L-EKF
is that the covariance between elements of the state x that are physically distant is, and
should be, close to zero. As consequence, a measurement at a specific location has a
negligible influence on the state at a location far away from this location. The L-EKF
exploits this feature by using a measurement of a detector to only correct the states of
cells in the vicinity of that detector. In the L-EKF algorithm many EKF-analyses are
done sequentially, using only one measurement and only the cells in the neighbourhood
of the measurement at a time.

The main advantage of using the L-EKF is the computational speed when considering a

large network. This can be seen by investigating the EKF equations: the
(
HkP

−
k Hk

ᵀ +Rk−1
)−1

is now a 1× 1 matrix instead of a m×m matrix. As the inverse operation is notoriously
slow (and inaccurate), the transformation of to the inverse operation of a scalar value
saves a lot of time. Moreover, all matrix multiplications are faster due to the reduced size
of the matrices.

Application of the EnKF

Only a few articles have been found that an EnKF approach for data assimilation in
macroscopic traffic models.

Work et al. (2008) used instead of the chosen LWR model, where the densities of the
cells are used as state, the adapted LWR-v model where the velocities of the cells are
used as state. In this way, they avoid using a non-linear observation function Hk as
the observations are directly linked to state elements. Coric, Djuric, and Vucetic (2012)
employed the EnKF is the same manner as the Work et al. (2008): also the speed version
of the LWR model is used. In a follow-up article, Work, Blandin, Tossavainen, Piccoli,
and Bayen (2010) used the EnKF with a localization approach to make sure that the
framework is suitable for large scale application.

In this thesis, it is opted to use a more general approach where different process models
(e.g. standard LWR, possibly multi-class) or different observations (e.g. flow measure-
ments) can be used.

5.1.4 Comparison of EKF and EnKF

The main difference between the EKF and the EnKF is that the EKF is a one-shot
procedure that uses only one state vector as estimation of the true state. The EnKF
uses an ensemble of up to 100 state vectors: the average of the ensemble represents the
estimated true state. This distinction has quite some impact on the algorithm: the EKF
has to maintain both the average state x and covariance matrix P separately, where the
EnKF estimates both quantities via the ensemble.

Reichle, Walker, Koster, and Houser (2002) describes five major differences between the
EKF and the EnKF. The most important differences are here further explained and
elaborated on.
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(a) (b)

Figure 5.2: Example of updating using the EKF (a) and the EnKF (b). The red dot
represents the prior (average) state, with if applicable in light red the different ensemble
members. The green dot depicts the observation, and the yellow posterior state.

Algorithmic viewpoint

The EnKF estimates the ensemble in the prediction step via the non-linear model update.
This implies that the prior state and the prior error covariance matrix are both non-
linearly formed each time step by propagating a finite ensemble of model trajectories.
This is in contrast with the EKF: the prior state is also non-linearly formed by the model,
but the covariance matrix is linearly extrapolated from the posterior covariance matrix of
the previous time step. The error covariance of the EnKF could thus be more accurate,
but only if the ensemble is representative.

Both the EKF and the EnKF are based on linearisation. This can be seen by inspecting
equations (5.5) and (5.6), which both say that the difference in state is linearly dependent
on the difference between the observations and the predicted output by means of the
matrix K. However, these linearisations are fundamentally different. The linearisation in
the EKF is based on the Jacobian matrix (which represents the derivative) of the state and
the observations around the estimated state. These derivatives can be found analytically,
if that information is available, or using numerical approximations. The EKF is thus a
local approach using only information at the estimated state, which is one point in the
whole space of possible state vectors. The EnKF uses an ensemble of state vectors, and
linearises using a linear fit between the ensemble members. The linearisation of the EnKF
is thus essentially non-local : information outside the location of the (average) state in the
state space is used in the linearisation. Concluding, the EKF is more an approach that
extrapolates from the current state, and the EnKF essentially interpolates between the
states.

One way this difference becomes visible is in the example of the “wrong sign” updating
by the EKF (in a Eulerian coordinate system) (Yuan, 2013). See for example figure 5.2,
where a (q, k) fundamental diagram as observation function is given. The current state
is denoted with the red dot, and an observation is given by the green dot. In figure 5.2a
the EKF procedure is depicted: the linearisation of the flow q with respect to the density
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k is given by the red line. This red line has a positive slope, which results in a negative
update of k due to an observation with a lower flow q. This update of k has the wrong
sign: in reality the density k should be increased in order to match the observation. In
figure 5.2b the same situation is given with some ensemble members given in light red.
Here the linear fit of the ensemble has a negative slope, which leads to a correction with
the correct sign. The EnKF seems less prone to large errors due to non-linearity than the
EKF, assumed that the ensemble members are spread correctly.

Technical viewpoint

From a computational perspective, the fact that the EnKF represents the whole distri-
bution by the ensemble members is quite advantageous. In principle, in the EnKF both
the average state x as the covariance matrix P are defined by the state matrix X, which
is a n × N -matrix. Here denotes n the state size and N the ensemble size. The total
number of stored elements is thus nN . For the EKF, one has to save a state vector x
of size n and a covariance matrix P of size n × n. As P is symmetric, one only needs
to save e.g. the upper half of the matrix. The total number of elements saved is thus
1
2
n(n+1)+n = 1

2
n(n+3). If we take an example of n = 5000, N = 100 and one element in

the matrix is represented by a double-precision floating point number of 8 bytes, storing
the needed elements for the EKF takes 100.06 MB instead of 4 MB for the EnKF with
no overhead considered.

Moreover, the EnKF is easier to implement than the EKF. This is due to the fact that no
derivative needs to be calculated analytically or numerically. Therefore the model part
and the assimilation part can be separated. However, this argument only holds when
the model and data assimilation can be separated by the simulation tool or programming
language. If one for example can’t (easily) initialize and run multiple instances of the
simulation model separately, an ensemble-based approach is hard to manage.

In terms of computation time, the choice between the EKF and the EnKF depends on the
used traffic model. A traffic model that takes long time to compute has more influence on
the computation time of the EnKF algorithm, as this traffic model is run up to 50 times
concurrently. However, the data assimilation algorithm of the EnKF is most likely more
efficient: no derivatives need to be analytically or numerically calculated, and the covari-
ance matrix P doesn’t need to be updated or calculated explicitly. The exact computation
time depends heavily on which algorithm is used. For example, only the localized EKF
instead of the (standard) global EKF is suitable for large network estimation faster than
real-time (Van Hinsbergen et al., 2012). For the EnKF, multiple reformulations are pos-
sible (e.g. using localization or using the Sherman-Morrison-Woodbury formula) to speed
up the computation time; see subsection 5.2.1 and further for these reformulations.

5.1.5 Conclusion: the choice of the EnKF as preferred method

As described above, the Ensemble Kalman Filter has theoretical benefits over the Ex-
tended Kalman filter in some performance and algorithmic aspects. However, the ques-
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tion remains if the EnKF is a feasible choice in terms of computation speed when applied
to a large scale traffic model. The memory usage of the EnKF may be lower, but if the
prediction of a large ensemble of traffic models takes a long time, the application of the
EnKF is not feasible.

Almost no application of the EnKF in traffic engineering literature was found. Possible
reasons for ignoring the EnKF could be a long computation time, but also unfamiliarity
of the researchers with the EnKF. The exact reason the EnKF isn’t the preferred choice
is not clear.

In this thesis, the choice is made for the EnKF as the data assimilation method in this pro-
totype, as the EnKF best fits in the modular architecture described in previous chapters.
A simulation study should check if the EnKF could provide the expected accuracy within
a reasonable time frame. In the next sections the EnKF if further theoretically anal-
ysed and extended in order to identify some good practices and pitfalls so the subsequent
implementation performs well.

5.2 Theoretical analysis of the Ensemble Kalman Fil-

ter

In this section, the traditional EnKF as described in algorithm 3 is further analysed and
adapted where needed.

5.2.1 Reformulation of EnKF equations for efficient computa-
tion

By rewriting the Kalman gain equation, it is shown that the observation matrix H is only
needed as part of the matrix product HX (and thereby HA): (Mandel, 2009)

Kk = P−k Hk
ᵀ
(
HkP

−
k Hk

ᵀ +Rk−1
)−1

(5.7)

=

(
AAᵀ

N − 1

)
Hk

ᵀ

(
Hk

(
AAᵀ

N − 1

)
Hk

ᵀ +Rk−1

)−1
(5.8)

=
1

N − 1
AAᵀHk

ᵀ

(
1

N − 1
HkAA

ᵀHk
ᵀ +Rk−1

)−1
(5.9)

=
1

N − 1
A(HkA)ᵀ

(
1

N − 1
(HkA)(HkA)ᵀ +Rk−1

)−1
(5.10)

Therefore, the matrix H doesn’t need to be saved explicitly, but the matrix HX can be
directly formed using the observation function h(x) can be on each ensemble member.
This has some advantages:

• Creating the observation matrix H is often much harder than programming the
observation function itself. (Mandel, 2006)



5.2. THEORETICAL ANALYSIS OF THE ENSEMBLE KALMAN FILTER 61

• The matrix H will in a typical application be sparse, e.g. when in the traffic
engineering context a measurement links to only one cell. So a lot of elements
in the matrix H would be zero. Saving the matrix H as a normal matrix can use a
lot of memory, or additional effort has to be made to store the matrix as a sparse
matrix. (Mandel, 2006)

• The direct use of the matrix HX makes it easier to include non-linear and smoothed
observations from the model. The model can directly output the matrixHX without
defining which observation function h is used and which state elements influences
the data. This is especially important for our context, as the measurements are
mostly non-linear (due to the fundamental diagram) and smoothed (due to the use
of (e.g. 1 minute) time-smoothed measurements). Otherwise, one would need to
redefine the matrix H for different values of X in order to correctly form HX.

• The “hidden” use of the observation function in the model will ensure the black-box
characteristics of the data assimilation. Changes in for example the observation
function (i.e. the fundamental diagram) implies no change in the working of the
data assimilation algorithm, which ensures the separation between model and data
assimilation described earlier.

5.2.2 Ensemble size and filter divergence

One of the main problems in EnKF approaches is the handling of the ensemble members.
As in all sampling approaches, the trade-off exists between the accuracy of a large ensemble
and the computational costs of a small ensemble. According to Oke, Sakov, and Corney
(2007), it is essential that the ensemble adequately spans the model sub-space. This can
be seen by expressing by recognizing that the changes to the mean model state by the
data assimilation can be expressed, using equation (5.14), as:

xa − xb = Ac, (5.11)

with c a N -dimensional column vector. This means that the update of the mean state
is essentially a weighted sum of the ensemble members. Therefore the importance of the
representativeness of the ensemble members is clear: if the ensemble doesn’t span the
same space as the forecast errors, no vector c can be found such the true state is reached

(Oke et al., 2007). As an example: suppose A =

−1 2 −1

−2 4 −2

−3 6 −3

 , then no c can be found

so that ∆x = (1, 0, 0) ᵀ; the mean state can only be updated in the direction of (1, 2, 3) ᵀ.
The rank of A is thus crucial: it defines the linear subspace of the mean update. The rank
of A is at maximum N − 1 (assuming that N ≤ n), as one degree of freedom is removed
by the fact that all rows sum to 0.

When the ensemble doesn’t span the model subspace adequately, it is called filter di-
vergence. A limited ensemble size increases the risk of filter divergence. As the system
covariance is estimated by the sample covariance of the ensemble, an ensemble that is
not spread enough will underestimate the process covariance and therefore put too much
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Figure 5.3: An example of an EnKF update step using only 1 state element (the density of
a cell) and a non-linear observation function (fundamental diagram). Figure 5.3a depicts
a situation where the ensemble is too narrowly spread, which causes the system to be
unresponsive to a new observation; Figure 5.3b depicts a situation where the ensemble
is unevenly spread, which leads to wrongly updating the state to a lower density instead
of a higher density; Figure 5.3c depicts a situation where the ensemble is evenly spread.
Note that the mean and the variance of the state in figure 5.3c is the same as in figure
5.3b.
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confidence in the model. A filter that systematically underestimates the uncertainty of
the process will lead to converging ensemble members and the filter becoming unable to
adequately respond to new observations. See figure 5.3a for an example of a converged
ensemble.

Another type of filter divergence is when some ensemble members converge to each other,
but the covariances are maintained. However the values of the mean state and the co-
variance matrix are near the true values, there are no ensemble members that are near
the true state. This leads to a decrease in effective ensemble size (as some ensembles
describe the same situation and thus add no value to the analysis) and a high risk of an
incorrect analysis, especially when the model is non-linear. In figure 5.3b and figure 5.3c
the impact of such a uneven spread of the ensemble is visualized.

Another consequence of a limited ensemble size is the creation of spurious correlations
(fake correlations). Spurious correlations are correlations between elements of the state
that are not physically related and are at a significant physical distance from each other.
These spurious correlations can lead to wrong updating of the state, as a measurement at
a certain location will update the state at a wrong place. This is a direct effect of a limited
ensemble size: the dimension of the system state is simply larger than the dimension of
the ensemble.

In literature, numerous ways to diminish the risk of filter divergence are identified.

1. Sampling strategies: in literature several different sampling strategies are sug-
gested. For example Houtekamer and Mitchell (1998) suggest separating the ensem-
ble in two groups. The covariance of the one group is used in the computation of
the Kalman gain for the update of the other group, and v.v. A problem that can
arise in such sampling strategies is the inaccuracy of the Kalman gain computation
as the ensemble size for computing the Kalman gain is essentially halved.

2. Covariance inflation: it is suggested that by artificially inflating the covariance
(or equivalently the spread of the ensemble) at each update step, it is prevented
that the covariance becomes too small. There are some different inflating strategies:
multiplicative inflation of the state a priori or a posteriori or an additive inflation.
In this research, it is important to acknowledge that the observation function is not
well-defined (as it depends on previous states) so inflation of the prior state matrix
X is not possible as the predicted observations matrix HX is then hard to update.
The DEnKF has a implicit adaptive covariance inflation built in, as this method
always overestimates the analysed error covariance. (Sakov & Oke, 2008)

3. Localization: in literature was found that localization is recommended (or even
necessary) for large-scale EnKF approaches (Sakov & Bertino, 2011). The different
localization approaches are further discussed in the next section.

5.2.3 Non-linearity in process model

In this subsection the influence of non-linearity of the propagation model is investigated.
In the (standard) Kalman Filter, it is assumed that the propagation model is linear. The
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Ensemble Kalman Filter relaxes this assumption, although the results of the EnKF are
not optimal in non-linear conditions. on f in forecast step at time k. In general, the
non-linearity of the propagation model implies that f(Xk−1) 6= f(Xk−1), or in words, the
mean of the propagated ensemble is not equal to the propagated ensemble mean.

Figure 5.4: Difference between propagated ensemble mean and mean of propagated en-
semble, and resulting artificial update

Consider for example an ensemble Xa of size N = 11 at time t (see figure 5.4). As the
ensemble is nicely spread, the ensemble mean coincides with the 6th ensemble member
(green line). However, at time t + 1, this 6th ensemble member lies above the ensemble
mean at that point in time.

There are thus two main ways to represent the traffic state between the assimilation time
steps. This intermediate traffic state is important as it is shown to the traffic operator
and can be used for short-term predictions. One way is to represent the intermediate
traffic state by propagating the ensemble mean (f(Xt), the green line in figure 5.4), or by
the ensemble mean every model time step (f(Xt), the blue line in figure 5.4).

The main advantage of the first method is that the intermediate traffic state are physical
traffic states that comply with the traffic model at hand. Moreover, the first method
is computationally better as the mean of the propagated ensemble doesn’t need to be
computed every model time step.

The main disadvantage of propagation of the ensemble mean to mean of the propagated
ensemble is that the first method induces an artificial update. This artificial update
occurs when for example at time t + 1 the innovation d − Hx = 0, the posterior state
should be the same as the prior state. However, the traffic state is updated from f(Xt+1)
to f(Xt+1), and thus a change in mean state occurs (see figure 5.4).

This size of this artificial update effect is influenced by a number of factors. This effect
will be increased when the ensemble spread is large, the propagation model f is non-linear
(diverging) and the assimilation interval is large.



5.3. REFINEMENTS TO ENKF 65

5.3 Refinements to EnKF

In this section three refinements to the traditional EnKF are proposed. These three
refinements form the basis of the tested assimilation methods in the experiments in the
next chapter.

5.3.1 Sherman-Morrison-Woodbury formula

Matrix inversions are well-known for their computational costs. The computation of Kk

according to the formula implies an inversion of a m × m matrix. If the number of
observations m is large, the formulation above can be computationally expensive: the
computational complexity of correction step of the traditional EnKF is O(m3 + m2N +
mN2 + nN2) (Mandel, 2006). This means that when the number of observations is
doubled, the computation time can be multiplied by 8.

However, the inversion part of the Kalman gain equation can be reformulated using the
Sherman-Morrison-Woodbury formula (Hager, 1989; Mandel, 2006):

W−1 =

(
R +

1

N − 1
(HA)(HA)ᵀ

)−1
(5.12)

= R−1

[
I − 1

N − 1
(HA)

(
I + (HA)ᵀR−1

1

N − 1
(HA)

)−1
(HA)ᵀR−1

]
. (5.13)

This SMW formula depends on the cheap inversion of the matrix R: as R in this context
is mostly chosen diagonal, the computation of R−1 is easy. Note that equation 5.13 is a
reformulation of 5.12, and not an approximation.

The SMW implementation reduces the total computational complexity to O(N3 +mN2 +
nN2) (Mandel, 2006). See Appendix A for an in-depth analysis of the computational
complexity.

5.3.2 Perturbation of observations: deterministic approaches

The EnKF approaches can be divided into two main classes: the stochastic approach that
uses randomized observations for each ensemble member, and the deterministic approach
that uses the same observations for the whole ensemble. As described in the algorithm
above, the traditional EnKF is a clear example of a stochastic approach.

In this subsection the two stochastic and deterministic approach are further investigated.
This is done by further investigating the update equation (5.6). The EnKF algorithm
has two separate main functions: updating the mean state xa and updating the ensemble
spread Aa. The update equation (5.6) can be split into a separate update of the mean of
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the ensemble and the update of the deviations from the mean.

xa = x+K (d−Hx) (5.14)

Aa = A+KA (D −HA) (5.15)

The traditional stochastic approach consists of sampling D using the probability distri-
bution of the measurement error R and using K = KA. The deterministic approach sets
D = 0 and K 6= KA.

Traditional stochastic approach: the EnKF

The reason for using randomized observations is to ensure the right posterior error co-
variance. This can be made clear by explicitly calculating the posterior error covariance
Pa: (Sakov & Oke, 2008)

Pa =
1

N − 1
AaAa

ᵀ (5.16)

=
1

N − 1
[A+K(D −HA)] [A+K(D −HA)] ᵀ (5.17)

= P − PHᵀKᵀ −KHP +KHPHᵀKᵀ

+
1

N − 1
KDDᵀKᵀ +

1

N − 1
(I −KH)ADᵀKᵀ +

1

N − 1
KDAᵀ(I −HᵀKᵀ).

(5.18)

The last step is done by expanding the product and substituting P = 1
N−1AA

ᵀ. When
the observations are not randomized (i.e. D = 0), the equation for the posterior error
covariance becomes:

Pa = P − PHᵀKᵀ −KHP +KHPHᵀKᵀ (5.19)

= (I −KH)P (I −HᵀKᵀ), (5.20)

which is smaller than the value proposed by the traditional Kalman Filter Pa = (I −
KH)P . Without perturbing the data, this analysis scheme thus reduces the ensemble
spread too much. (Burgers, Van Leeuwen, & Evensen, 1998)

The traditional way to solve this problem is to randomize the data, so that the 1
N−1DD

ᵀ =
R. For this choice, the analysed Pa approximates the theoretical value: Pa = (I−KH)P+

O(N−
1
2 ). (Burgers et al., 1998)

Deterministic approaches: the EnSRF and DEnKF

The other class of ensemble based Kalman filter approaches are the deterministic filters,
also called the ensemble square-root filters (ESRF). Some examples of ESRF approaches
are the EnSRF (Whitaker & Hamill, 2002), SEIK (Pham, 2001), EAKF (Anderson, 2001)
and ETKF (Bishop, Etherton, & Majumdar, 2001). See Tippett, Anderson, Bishop,
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Hamill, and Whitaker (2003) for a further discussion of these variants. Here the EnSRF
is further elaborated on.

In the traditional EnKF, Kx = KA and D is sampled using the probability distribution
of the observations R. In the EnSRF, D = 0 in equation (5.15) as the observations are
not perturbed. Equation (5.15) thus simplifies to Aa = A −KAHA = (I −KAH)A. In
order to fit KA that the analysed ensemble will have the right covariance matrix, it can
be shown that KA can be chosen as: (Andrews, 1968)

KA = P bHᵀ

[(√
HP bHᵀ +R

)−1]
×
[(√

HP bHᵀ +R +
√
R
)−1]

(5.21)

The calculation of KA thus requires the computation of square roots of m×m matrices.
This can be done using Cholesky factorization or singular value decomposition, but re-
quires accurate linear algebra packages and imposes significant computational overhead.
Note that when measurements are updated one at a time, the square root and inverse
operations are operated on scalars which reduces the computational complexity signifi-
cantly. Moreover, Leeuwenburgh, Evensen, and Bertino (2005) suggest that using ESRF
approaches in nonlinear dynamics, all members but one tend to collapse into one state
instead of a nice Gaussian ensemble spread. Moreover, the application of localization
techniques (see next paragraph) is harder using a ESRF approach.

Sakov and Oke (2008) describe the DEnKF (deterministic EnKF), which is a hybrid
approach that “combines the performance of the ESRF and the simplicity and versatility
of the EnKF” (Sakov & Oke, 2008, p. 370). As the ESRF, it doesn’t rely on perturbation
of the observations. However, it approximates the theoretical posterior error covariance.
In essence, the basis of the DEnKF is choosing KA = 1

2
K.

The posterior error covariance without perturbation of observations (see equation (5.19))
is analysed for this choice. As PHᵀKᵀ = KHP (which can be proved by substituting
K), equation (5.19) can be written as:

Pa = P − PHᵀKA
ᵀ −KAHP +KAHPH

ᵀKA
ᵀ (5.22)

= P − 1

2
PHᵀKᵀ − 1

2
KHP +

1

4
KHPHᵀKᵀ (5.23)

= P −KHP +
1

4
KHPHᵀKᵀ (5.24)

≈ (I −KH)P (5.25)

When KH is small in some sense, and thus the quadratic term is very small, the posterior
error covariance matches the theoretical error covariance.

The question remains if the approximation is good in the context of this application.
Sakov and Oke (2008) had some promising results in the application of the DEnKF in
some (small) applications.

The DEnKF algorithm thus consists of roughly the following steps:

1. Calculate the mean posterior state xa using equation (5.14).
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Traditional
EnKF

EnSRF DEnKF

Observation perturbation Yes No No

Separation between up-
date of mean and update
of ensemble spread

No, K = KA
Yes, independent
K and KA

Yes, linear depen-
dent: KA = 1

2
K

Match posterior error co-
variance with theoretical
values

Approximation,
statistical

Exact
Approximation,
analytical

Implementation Very Easy Hard Easy

Adding refinements, e.g.
localization

Very Easy Hard Easy

Table 5.1: Overview characteristics of the EnKF, EnSRF and DEnKF approaches

2. Calculate the posterior ensemble anomalies using

Aa = Af − 1

2
KHAf .

3. Calculate the full posterior state by Xa = Aa + [xa, . . . ,xa].

This approach is equivalent to updating the whole ensemble using equation (5.6) with half
the Kalman gain and no perturbed observations, and then shifting the ensemble mean to
the explicitly calculated ensemble mean by equation (5.14).

Comparison between stochastic and deterministic approaches

In table 5.1 the characteristics of the stochastic and the two deterministic approaches are
summarized.

These deterministic approaches have as advantage that they in contrast to the traditional
EnKF don’t depend on the randomly chosen realization of the observations. The deter-
ministic nature makes verification easier, as results stay the same in different runs. The
deterministic nature also reflects in the ease-of-use when the whole data assimilation tool
is used in practice. When for example an evaluation is made in which scenarios the data
assimilation tool performs badly, it is useful when the performance can be accounted to
the specific scenario instead of some randomness in the data assimilation.

Example of differences between EnKF and DEnKF

In this subsection the difference between the traditional EnKF and the DEnKF is graph-
ically explained.
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(a) (b)

Figure 5.5: Example of the update of an ensemble member in the traditional EnKF
algorithm (figure (a)) and the DEnKF algorithm (figure (b))

An simple situation is chosen with only 1 state element, which is directly observed (which
implies H = 1). An ensemble size of 10 is chosen. The prior state is normal distributed
with mean x = 1 and variance P = 1

4
. An observation is measured with value d = 3 and

measurement error R = 1
4
. When the normal Kalman Filter is used, the Kalman gain K

can be computed by K = PHᵀ (HPHᵀ +R)−1 = 1
2
. The mean posterior state thus is

derived as (5.14): xa = x+K (d−Hx) = 2, with Pa = (I −KH)P = 1
8
. The ensemble

based Kalman Filter should approximate these values in this linear example.

Firstly the basic update procedure of the EnKF and the DEnKF are graphically explained.
After that, the reason for using the DEnKF, i.e. the consistent estimation of the posterior
state error, is graphically explained.

Update using EnKF and DEnKF Figure 5.5 depicts the basic update procedure of
the traditional EnKF and the DEnKF.

For the EnKF, the Kalman gain is derived using the ratio between the prior state error
and the sum of the state and measurement error. Each ensemble member is indepen-
dently updated using the Kalman gain on the difference between the observation and the
predicted observation. The measurement is perturbed for each ensemble member.

For the DEnKF, firstly the mean update is determined using the mean prior state and
the measurement. Secondly, the deviation of each ensemble member from the ensemble
mean is reduced by a factor 1−KA. The measurements are not perturbed.

Reason of using DEnKF In figure 5.6a the situation is depicted of using the EnKF
without perturbing the observations. Every ensemble member is updated with half the
difference between observation (indicated in red) and the prior state (indicated in blue),
as the Kalman gain is equal to 1

2
. The updated ensemble is indicated in green. When the

traditional EnKF is used without perturbing the observations for each ensemble member,
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the posterior state covariance becomes too small as in equation (5.19). This is indicated in
5.6a, where the spread of the posterior state is too small in comparison with the optimal
spread.

In order to statistically approximate the right posterior state covariance, in the traditional
EnKF the observations are perturbed using the measurement error R. See figure 5.6b for
this example. Also here, the posterior state is formed by the average distance between
the observation and the prior state. The posterior state spread is quite close to the ideal
value.

However, the accuracy of this statistical approximation is quite dependent on values of
the samples measurement errors. This can be seen by inspecting figures 5.6c and 5.6d,
which use the same measurement error sample, but sorted differently. In figure 5.6c
the measurement error sample is sorted descending, which causes the state spread to be
dampened. This leads to a very narrow posterior ensemble. In figure 5.6d the opposing
scenario is depicted, in which the state spread is maintained as much as possible.

The spread of the ensemble is thus quite dependent on the values of the measurement error
that are coincidentally sampled. Therefore the DEnKF is used, as depicted in 5.6e. The
DEnKF update essentially consists of two steps. Firstly the mean update is computed.
As the Kalman gain was computed to be 1

2
, the mean posterior state is halfway between

the mean prior state and the observed value. Secondly, the posterior deviations around
its mean are computed. For these deviations, another Kalman gain KA = 1

2
K = 1

4
is

used. This means that the deviations of the posterior state are 3
4
× the deviations of the

prior state. This approximation is quite good in this example.

The rule of thumb KA = 1
2
K used by the DEnKF is only an approximation. As in

this simple situation using only one state element/observation, the optimal value KA can
be easily calculated exactly using (5.21). This exact calculation is done in the EnSRF
approaches. The optimal KA was found at KA = 0.2929, see figure 5.6f.

5.3.3 Localization

As identified in the previous subsection, localization is one of the possible solutions to
all kinds of problems of ensemble based Kalman Filters. Localization provides in essence
extra information to the filter, namely the (geographical) network description. The basis
of the localization techniques is deleting or minimizing the relations between model ele-
ments, i.e. state elements or measurements, that are physically distant. The assumption
is made that these distant relations are not relevant in the physical world: the correlations
between distant model elements are spurious.

In short, two main reasons exist for using localization in the EnKF: (Sakov & Bertino,
2011)

1. Deleting spurious correlations (‘fake’ correlations) between physically distant model
elements (Hamill, Whitaker, & Snyder, 2001; Houtekamer & Mitchell, 2001). Spu-
rious correlations are correlations that arise in the equations due the estimation of
the covariance matrices by a limited ensemble size. These correlations govern the
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EnKF, without perturbation of observations
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EnKF, with random perturbation
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EnKF, with perturbation, extreme case 1
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(c)

EnKF, with perturbation, extreme case 2
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(d)

DEnKF
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(e)

ESRF
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Figure 5.6: This figure indicates the results of six examples of the different assimilation
schemes. Each subfigure consists of two subplots: the left subplot depicts the analysis of
the ensemble members, where the prior state and the observation are combined into the
posterior state. The right subplots depict the analysis of the mean state. The crosses
indicate the mean value, and the bars indicate the associated error (standard deviation)
of the variables.
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impact of the observations on the state elements: a large correlation increases the
sensitivity of a state element to the innovation of an observation (the difference
of the predicted observation and observed value). Spurious correlations will thus
correct the state in a wrong way.

2. Insufficient ensemble rank. In general the degrees of freedom of the ensemble is
less than the degrees of freedom of the model. Localization increases the effective
ensemble size by in essence decoupling the model into several independent parts,
which are separately solved by the ensemble. (Oke et al., 2007)

The second reason is further developed in an example in figure 5.7. In figure 5.7a a
situation is depicted where an ensemble consisting of three ensemble members. The x-
axis depicts for example a road stretch, where the y-values indicate the density on location
x. The dotted lines are the trajectories of the ensemble members, which combine to the
green line. The red line indicates the truth, to which the ensemble is going to be fitted.

In figures 5.7b and 5.7c the way of working of the global method is depicted. In 5.7b
the deviations to the ensemble mean are depicted. The blue line indicates the updated
deviation of the mean, which is found by a linear sum of the ensemble members. In this
example, the blue line is found by ∆x = A · [−0.0384;−0.0720;−0.5725]. In 5.7c it is
shown that the updated posterior state fits the truth state much better than the prior
state.

In figure 5.7d and 5.7e a local method is used. The state vector is split into three regions,
which are individually updated. In this case, the blue line is found by

∆x =

∆x1

∆x2

∆x3

 =

A1 · [−0.1794, 0.0061,−0.3115] ᵀ

A2 · [3.8815, 4.2998, 3.1438] ᵀ

A3 · [−0.1211,−0.1310,−1.1509] ᵀ

For each region, another combination of ensembles can be chosen to fit the truth line.
This is what is meant by increasing the effective ensemble size. The local method works
as if a total of 9 ensemble members exist. The result of the localized method in figure
5.7e is much better than the result of the global method in figure 5.7c.

However the accuracy is better, the bounds of the regions can cause sudden discontinu-
ities (‘jumps’) in state, which may not be possible in a global method. This is a major
disadvantage of localization.
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Figure 5.7: An example of a global and local analysis. The figures plot the values of the
state vectors.
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In this section three localization techniques are further elaborated on: covariance local-
ization, state based local analysis and observation based local analysis.

Covariance localization

Covariance localization: covariance localization is a technique that restricts the update
of elements of the state to measurements in the (physical) vicinity of that element. This
is done by replacing the state error covariance P (in the EnKF estimated by its sample
covariance C) by its element-wise product (also called the Schur product or the Hadamard
product) with a distance-based function ρ: Pnew = ρ� P . Sakov and Bertino (2011) has
illustrated the method clearly, as can be seen in figure 5.8.

Figure 5.8: Covariance localization: filtering the state error covariance matrix P with a
distance-based function ρ. From Sakov and Bertino (2011).

One has multiple possibilities for choosing the function ρ: simple functions as 1(dij < δ)
which has value 1 for measurements close enough, and value 0 for measurements further
away, or smoother functions that weigh the nearby measurements based on distance, e.g. a
5th-order piecewise rational function (Gaspari & Cohn, 1999). It is important to consider
that ρ should be positive-definite, as then ρ � P is also positive definite and thus the
factor

(
HkP

−
k Hk

ᵀ +Rk−1
)

in the computation of the Kalman gain is positive definite and
thus invertible. For large systems, where P is not explicitly calculated (see subsection
5.2.1), it can be chosen to localize the Kalman gain directly: Knew = ρ�K.

Local analysis (state based)

Local analysis is a similar technique as covariance localization, based on the same principle
of restricting the update of the state to measurements in the physical vicinity of the
elements of the state. It approximates the state error covariance for each state vector
element by solely considering a “virtual local spatial window around this element” (Sakov
& Bertino, 2011). The difference can be seen in the figure 5.9 (from (Sakov & Bertino,
2011)) when compared to the figure above. In essence, the state is updated element
by element using a subset of observations located near the currently updated element.
(Evensen, 2003)
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Figure 5.9: Local analysis: considering only a local window around a certain state element.
From Sakov and Bertino (2011).
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Algorithm 4: the (state based) localized Ensemble Kalman Filter

Consider a (non-linear) state space model as in equations (5.1) and (5.2), where wk

and vk are independent, zero-mean, Gaussian noise processes with covariance
matrices Qk and Rk. Consider the observation matrix Hk given for each k.
Initialization:

X0 = E [X0]

for k = 1, 2, . . . do
Step 1a: predict global mean and variance of state variables (forecast step)

X−k = f(Xk−1) =
[
f(x1

k−1),f(x2
k−1), . . . ,f(xNk−1)

]
P−k =

AAᵀ

N − 1

xit denotes the i-th ensemble member at time t, and A = X−k − E
[
X−k
]

is the
anomalies matrix
Step 1b: predict global output

Y −k = HkX
−
k

Step 1c: perturb observations

D = [d+ ε1,d+ ε2, . . . ,d+ εN ]

for every state element x in the state vector x do
Step 2a: select elements corresponding to that state element
Select row vector xL from X−k corresponding to the state element x. Select
the row vector aL from Ak analogously.
Select corresponding observation matrix DL, HXL and HAL from D, HX
and HA respectively. Select also the corresponding matrix RL from R.
Step 2a: compute Kalman gain

Kk =
aL(HA)ᵀL

(HA)L(HA)ᵀL +RL

Step 2b: update mean and covariance

x̂L = xL +Kk(DL −HXL)

Step 2c: update global matrix
Update X−k by replacing the corresponding cells with x̂L. Moreover,
compute âL and substitute into Ak.

end

end

The consequence of using this approach to the computational costs are significant. Using
the straightforward implementation, the computational complexity reduces from O(m3 +
m2N + mN2 + nN2) to O(m3

l n + m2
l nN + mlnN

2) (see appendix A). As for large scale
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applications where the number of measurements m is big in comparison to the localization
radius ml, this reduction of computational complexity is significant.

Another reason for using local analysis is that in large-scale applications the number of
measurements m is typically larger than the ensemble size N . This can lead to singularity
problems, i.e. the matrix ((HA)(HA)ᵀ)/(N − 1) +R) is not invertible. This problem can
be solved by using a pseudo-inverse or low rank approximations (Evensen, 2004), but
it is not ideal. Moreover, by transforming the updating from a (n,m,N) problem to a
(1,m′, N) problem, the model is solved in a relatively large ensemble space. The local
analysis scheme therefore “significantly reduces the impact of a limited ensemble size and
allows for the use of EnKF with high-dimensional model systems” (Evensen, 2009, p. 101).

Local analysis (observation based)

Observation based local analysis is similar to state based local analysis. Instead of iter-
ating over each state element, only one measurement is selected every iteration. Suppose
that for every observation only n′ state elements are selected. This way, the computational
complexity reduces to O(mnlN

2 + nN) (see appendix A) . Note that now the inverted
matrix is reduced to a scalar. Moreover, when m < n, the update equation has to be
iterated less than in the state based local analysis. So this method has computational
benefits over the state based local analysis.

However, in contrast to the state based local analysis, the matrix with measurements HX
also needs to be updated after an update of the state X. This might pose a problem, as the
observation function is not readily available (due to invisibility for the data assimilation
package in a black box approach). Therefore, two possible solutions exist:

• Force calculation of an approximation of the synthetic observations by the model.
This can for example be the calculation of instantaneous observations (by applying
the fundamental diagram) instead of using the time-smoothed values.

• Approximate observations by the use of the ensemble. Consider that the original
vectors x0 (state) and y0 (observations) are given. Now, given the change of the
state to xa, the value of ya needs to be found. This can be solved by using (linear)
regression. If it is assumed that the value of an observation is only dependent on one
state element (e.g. the speed observation at a location is dependent on the density
at that location), β1 is a scalar in the following linear regression equation:

ya = y0 + β1 (xa − x0) .

β1 is obtained using linear regression, i.e.: β =
(
β1

β2

)
= (HHᵀ)−1HY with H =

(
x0

1

)
and Y = y0.

Comparison localization methods

Sakov and Bertino (2011) compares the covariance localization and local analysis tech-
niques. It concludes that the two techniques are formally different, in practice the two
techniques should yield similar results.
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The local analysis makes it easier to incorporate reformulations of the update equations,
as the covariance localization is based on approximations which may not hold in e.g.
non-linear conditions.

5.4 Conclusions

There are multiple changes or extensions to the traditional EnKF scheme that theoreti-
cally provide benefits for using the EnKF in estimating the state of a large-scale traffic
model. The “hidden” observation function provides the use of non-linear and smoothed
observations. Covariance inflation can save the EnKF filter from becoming unresponsive
to new measurements. The use of a deterministic algorithm can reduce the impact of
coincidental sampling and associated sampling errors. Most important is the inclusion
of localization as it has several possible advantages for large-scale applications: blocking
unnecessary correlations, decreasing computation time due to smaller matrix inversions,
increasing the accuracy by increasing the effective ensemble size.



Chapter 6

Implementation of prototype

In this chapter the implementation of the prototype is described. The implementation is
based on the literature review in chapter 4 and 5.

6.1 General information

In order to incorporate the modularity of the architecture, it is chosen to adopt an object-
oriented approach and associated programming language.

The architecture is built as an extension to (an old version of) the OpenTrafficSim project,
which is an initiative to combine multi-scale and multi-modal traffic simulations. This
means that basic classes for visualization can be reused. The OpenTrafficSim project is
programmed in Java.

The source code can be found on GitHub: http://www.github.com/frisoscholten/

OTSim-Macroscopic-DA.

6.2 Traffic flow model

Initialization: All cells are joined based on same lanes, speed limit, fundamental diagram
properties and no merges and diverges between cells. Then split according to defined
minimum length (based on CFL).

Network: cell and node classes cell has density; Demand and supply calculated via FD
interface . Node: calculates fluxes using demand and supply. Several FD classes can be
set as implementation of FD interface. Every cell has begin and end nodes

Detector special case of node; stores velocity and flow of associated cell every time step.
For memory reasons “old” measurements are removed.

In this prototype inflows can be set time dependent, turn fractions not, but that can be
changed in later versions.
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6.3 Input and output

In order to compute the performance, intermediate performance metrics are computed
every time step. At the end of the analysed time window the intermediate performance
metrics are combined into an overall performance. This procedure using intermediate
performance is used due to memory constraints: otherwise the whole state over the whole
time horizon must be stored.

6.4 Data assimilation

In order to incorporate prior knowledge of the inflow pattern, the inflow pattern is modeled
as I(t) = γIp(t), where Ip(t) is the prior inflow pattern. In the data assimilation methods,
the value of γ is estimated in order to fit the inflow I(t) to the observations.

The time propagation of the ensemble members every assimilation time step is done in
a multi-core setting, as the propagation of an ensemble members is independent from
the other ensemble members. This multi-core propagation is done using the ForkJoin
framework (Lea, 2000).

The data assimilation classes are implemented in a quite general way: one can easily
decide which variables are present in the state vector (e.g. cell density, inflow and turn
fractions, but also fundamental diagram parameters).

6.4.1 Matrix implementation

Matrix is based on JAMA class due to the ease of implementation and integrated methods
as the Cholesky decomposition. Disadvantages are possibly the absence of sparse matrices
and the non-optimal speed of matrix operations.

In order to find the best (matrix) implementation that can do the update equations the
fastest, some small tests were done. A test class was built, where the matrices X, A,
HX, HA, R and D were filled with random values and the size of the matrices were
configurable. The computations of the following equation was timed:

∆X = K(D −HX),

∆X = A(HA)ᵀ ((HA)(HA)ᵀ +R)−1 (D −HX). (6.1)

Equation (6.1) can be solved in many ways. In general, two main considerations are to be
made: firstly the choice if the Kalman gain K is explicitly or implicitly calculated, and
secondly the choice that direct solving is used or solving via the Cholesky decomposition.
This leads to four different methods. The four methods are as follows:

Solving via Cholesky decomposition, with (on the left, method 1) implicit and (on the
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right, method 2) explicit Kalman gain computation:

P = ((HA)(HA)ᵀ +R) P = ((HA)(HA)ᵀ +R)

L = Chol(P ) L = Chol(P )

M = Solve(L,D −HX) M = Solve(L, Im×m)

∆X = A(HA)ᵀM K = A(HA)ᵀM

∆X = K(D −HX)

Directly solving, with (on the left, method 3) implicit and (on the right, method 4) explicit
Kalman gain computation:

P = ((HA)(HA)ᵀ +R) P = ((HA)(HA)ᵀ +R)

M = Solve(P,D −HX) M = Solve(P, Im×m)

∆X = A(HA)ᵀM K = A(HA)ᵀM

∆X = K(D −HX)

The computations are done 10 times with n = 4000, m = 1000 and N = 20, which are
similar conditions as in the Rotterdam highway network case. The computation times
are give in table 6.1. According to this small test, the Cholesky decomposition with an
implicit calculation of the Kalman gain is the best.

Implementation Mean computation time [ms] Standard error [ms]

1: Cholesky, implicit K 394 15.4

2: Cholesky, explicit K 17789 48.1

3: Direct, implicit K 489 12.3

4: Direct, explicit K 1398 12.7

Table 6.1: Mean computation times with associated standard errors for the four different
implementations.

For the DEnKF, in essence two equations have be solved:

∆X1 = A(HA)ᵀ ((HA) (HA) ᵀ +R)−1
(
D −HX

)
∆X2 = A(HA)ᵀ ((HA) (HA) ᵀ +R)−1 (D −HX) ,

in which the overbar indicates the mean over the ensembles.

Therefore it has to be decided if it’s faster to explicitly calculate K, as K is the common
factor in the two equations, or it’s faster to solve the equations twice. Table 6.1 indicates
that it will be faster to solve the equations twice, as the explicit K methods are at least
3.5 times as slow as the implicit methods.

6.5 Verification of prototype

In this section the implementation of the prototype is verified. The goal of the veri-
fication is to check if any errors in implementation occurred. A succesful verification
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makes sure that the prototype behaves as intended and builds confidence in the results
of the prototype. Note that in contrast to validation, the verification only checks if the
implementation behaves as the modeller intends to. In validation the link between the
behaviour of the model and the real world behaviour is checked.

This section is divided into a few subsections. In the first subsection the implementation
of the traffic flow model is verified. The second subsection checks the implementation of
the data assimilation method.

6.5.1 Verification of traffic flow model

In this subsection the traffic flow model is verified. The following list indicates some of
the verification tests done, both by checking automatically and manually.

X Unit tests cell methods, e.g. update of the density .

X Unit tests node methods, e.g. computation of the fluxes.

X Check if cells have correct length, i.e. not too small for the CFL condition or
unreasonable large.

X Check if cells have physical attributes, e.g. density and flows shouldn’t be negative.

X Check if fundamental diagram is used correctly by plotting all speeds and flows
corresponding to the densities.

The verification tests above only check the traffic flow model implementation on a certain
sublevel: e.g. only at one time step or at one submodel. In order to verify the imple-
mentation of the traffic flow model as a whole, a simple case is considered of a highway
stretch with a lane drop. When considering different fundamental diagrams and inflow
patterns, the resulting congestion patterns can be checked by shockwave theory, as the
first order traffic flow model should model these shockwaves.

Several tests are done using different inflow patterns and fundamental diagram parame-
ters. In all tests, the shockwave speeds are identified using two methods: a computation
using the model output and a computation using only the fundamental diagram. An
example of a test is displayed in figure 6.1. In all tests, the shockwave speeds using the
two methods only differ slightly (1% at most). These differences can be explained by the
error imposed by discretizing the model, as the differences in speed (εv) are smaller than
a cell length (Lcell) in the time interval (∆t) the shockwave exists: εv∆t < Lcell.

As the implementation of the traffic flow model passed all the previous checks with success,
it is concluded that traffic flow model is correctly implemented.
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Figure 6.1: An example of the results of the traffic flow model in a lane drop case. The lane
drop occurs at location x = 3000. The inflow pattern is 1500 veh/h with a peak of 3000
veh/h between t = 300 and t = 1200. Three shockwaves exist: a horizontal shockwave at
x = 3000, shockwave 1 between the high density region and the traffic jam and shockwave
2 between the low density region and the traffic jam. Figure (a) describes the time space
plot of the density of the cells. The shockwaves surround the triangle: at the bottom
border the horizontal shockwave, shockwave 1 at the left border and shockwave 2 at the
right border; Figure (b) describes the used fundamental diagram with the calculation of
the shockwaves.

6.5.2 Verification of data assimilation

X As the data assimilation is matrix based, errors would occur if matrices having
incompatible sizes are added or multiplied. Automatic checks are provided to ensure
that the matrices have the correct size. In this way it is ensured that the equations
are correct.

X Some methods, for example the noise generation method in order to perturb vectors,
are tested independently.

X The correction equations of all the data assimilation methods are manually checked
using synthetic input.

X For some model runs it is manually checked that the model states of the ensemble
members are correctly put into the corresponding matrices.

X For some model runs, it is manually checked that the model states are correctly
updated with the values of the (updated) model state matrix.

Assimilation of equivalent assimilation methods

In this research, two different implementations of the correction step of the ensemble based
methods were used: the straightforward implementation and the implementation using
the Sherman-Morrison-Woodbury (SMW) formula. These implementations are applicable
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to the global EnKF, state based localized EnKF, global DEnKF and the state based
localized DEnKF. In order to ensure that both implementations have the same effects,
the implementations are subjected to an assimilation run using the same network and
assimilation parameters. Both methods should provide identical model runs and identical
error statistics.

First the small network that is described in Experiment 1 is used. The model runs
consisted of 3600 model timesteps (of 2 seconds) and 88 cells. The model runs gave
identical error statistics, as can be seen in table 6.2.

RMSE K MAPE K RMSE V MAPE V TRE

EnKF global SF 0.0030 0.0150 0.5937 0.0050 84160

EnKF global SMW 0.0030 0.0150 0.5937 0.0050 84160

EnKF local state SF 0.0082 0.0513 1.4215 0.0149 276663

EnKF local state SMW 0.0082 0.0513 1.4215 0.0149 276663

DEnKF global SF 0.0058 0.0265 0.9660 0.0078 143549

DEnKF global SMW 0.0058 0.0265 0.9660 0.0078 143549

DEnKF local state SF 0.0059 0.0271 1.0068 0.0086 150806

DEnKF local state SMW 0.0059 0.0271 1.0068 0.0086 150806

Table 6.2: Error statistics of straightforward implementation (SF) and Sherman-Morrison-
Woodbury implementation (SMW) for identical model runs on a small network

Moreover, the differences in densities of the 88 cells for the 3600 timesteps were analysed
using MATLAB. The cumulative absolute error (CAE) was computed by

CAE =
X=88∑
x=1

T=3600∑
t=1

∣∣∣k(SF )
x,t − k

(SMW )
x,t

∣∣∣ .
The mean absolute deviation (MAD) is defined as

MAD =
1

X

1

T
CAE.

The results are given in table 6.3. The small differences are likely caused by rounding

Cumulative absolute error MAD

EnKF global 4.2717e-12 1.3484e-17

EnKF local state 8.4938e-12 2.6811e-17

DEnKF global 1.1363e-11 3.5868e-17

DEnKF local state 1.2103e-11 3.8204e-17

Table 6.3: Errors of cell densities of straightforward implementation (SF) and Sherman-
Morrison-Woodbury implementation (SMW) for identical model runs on a small network

errors as the densities are represented by double precision floating point numbers, as
these numbers have 15-17 significant decimal digits. These rounding errors occurs when
the Cholesky decomposition was used, as the matrices needed to be forced as symmetric.

Secondly, the same procedure was used for the big Rotterdam network. In order to make
MATLAB cope with a reasonable memory size, only T = 300 timesteps were analysed
with the number of cells X = 4645. In the large network the same conclusions hold as
in the small network. The errors are too small to be of significant value.
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RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 0.0039 0.7622 0.3333 0.0074 0

EnKF global SMW 0.0039 0.7622 0.3333 0.0074 0

EnKF local state 0.0021 0.3574 0.2020 0.0048 0

EnKF local state SMW 0.0021 0.3574 0.2020 0.0048 0

DEnKF global 0.0038 0.6863 0.3197 0.0070 0

DEnKF global SMW 0.0038 0.6863 0.3197 0.0070 0

DEnKF local state 0.0019 0.3208 0.1901 0.0044 0

DEnKF local state SMW 0.0019 0.3208 0.1901 0.0044 0

Table 6.4: Error statistics of straightforward implementation (SF) and Sherman-Morrison-
Woodbury implementation (SMW) for identical model runs on a small network

Cumulative absolute error MAD

EnKF global 3.8132e-10 2.7364e-16

EnKF local state 5.8292e-12 4.1831e-18

DEnKF global 9.8418e-11 7.0626e-17

DEnKF local state 6.7514e-12 4.8449e-18

Table 6.5: Errors of cell densities of straightforward implementation (SF) and Sherman-
Morrison-Woodbury implementation (SMW) for identical model runs on a large network

6.5.3 Verification of error statistics

X Computing error statistics using synthetic data and comparing the results with the
expectation.

X The error statistics in the Java implementation is compared with a MATLAB com-
putation of the error statistics.

X The correction equations of all the data assimilation methods are manually checked
using synthetic input.

6.5.4 Verification of whole prototype

X When the prior estimate of all parameters are set to the true values and the associ-
ated error inputs of the parameters are set to zero, the estimated state is equal to
the true state and the performance indicators give an optimal result.

X The prototype is further verified using the several data assimilation algorithms on
a small network. See section 7.3 for these results.
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Chapter 7

Performance of traffic estimation
and prediction tool

In this chapter the performance of the prototype is tested. In the first section the setup of
the experiments is described. The second section derives the main performance indicators.
Sections 3 to 8 give the main results of the six performed experiments.

7.1 Experimental setup

In this section the experimental setup is described. In the first subsection the main
methodology of the experiments is described. The second subsection gives an overview of
the experiments.

7.1.1 Recap of design choices of prototype

In the previous chapters, the developed prototype is described and the the several design
choices are further elaborated on. Here a short recap is given for the the convenience of
the reader.

A model-based architecture is chosen for the estimation and prediction of the traffic
dynamics. In this prototype, it is chosen to adopt the LWR model as traffic flow model,
which is a fairly simple model, and measurements given by double loop detectors.

As state estimation model the Ensemble Kalman Filter (EnKF) is chosen. From the
theoretical analysis, three refinements to the traditional EnKF are derived:

1. The Sherman-Morrison-Woodbury reformulation of the computation of the Kalman
gain. This refinement should increase the computational speed, without loss of
accuracy.

2. The deterministic approach by Sakov and Oke (2008) instead of the traditional
stochastic approach. In the stochastic approach, the observations used in every en-
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semble member is randomly sampled in such a way the optimal posterior covariance
matrix is approximated statistically. The deterministic approach approximates the
posterior covariance in a analytical way. This refinement could lead to increased
accuracy without harming the computational speed too much.

3. Localization of the network. By localizing the network, the spurious correlations
between physically distant model elements are deleted. Moreover, the effective en-
semble size is increased. A localized EnKF should give a far better accuracy in
comparison with its global counterpart.

The main goal of this experiment is to investigate the performance of the EnKF and its
refinements for the use in traffic state estimation and prediction on a regional scale.

7.1.2 Experiment methodology

As main methodology to assess the performance of the prototype the (identical-)twin
experiment is chosen. This methodology is widely used in data assimilation research
(Yilmaz, 2015). In figure 7.1 this methodology is visualized.

Figure 7.1: Graphical overview of the used experimental setup

The experimental setup consists of the following steps:
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1. The first step is to run a simulation model to generate the “true” solution that
represents real traffic flow. This simulation model generates the true traffic state,
but also associated observations. In this research, the traffic state consists of the
density over space and time. The associated observations are the local (1-minute
smooth) speed and flow at the location of detectors. Note that the traffic state
is discretized much denser than the observations: the traffic state is discretized in
segments of 2 seconds and approximately 60 meter, whereas the observations are
given every minute and approximately 450 meter.

2. The second step is to add some error to the true observations. This error represents
the measurement noise of the detector equipment. These perturbed observations
are used as the real-time observations for the data assimilation algorithm.

3. The third step is the actual assimilation. It uses the synthetic observations includ-
ing the measurement noise and a prior “guess” of the traffic state. This prior traffic
estimate is generated by using the simulation model with different initial conditions
and parameters. It represents the imperfect knowledge one has before the assimi-
lation. The data assimilation algorithm combines the observed data with the prior
estimate of the traffic state to get the estimated traffic state.

4. The fourth step is the comparison between the estimated traffic state and the true
traffic state. This is done using some performance indicators, derived in the next
section.

The twin experiment framework is a suitable intermediate step towards assimilation of
real observations. The main advantage of this framework is the controllability of the
simulation as every step in the framework can be controlled by the modeller. One can
control and investigate the influence of factors such as the measurement error, which is
normally unknown. Moreover, the true state is exactly known and thus the performance
of the data assimilation can be computed quite accurately. The large disadvantage of this
experiment framework is the simplification of the dynamics as they would occur in real
life. The model structure of the simulation model used in the data assimilation is assumed
to be perfect description of the real-life dynamics. Therefore the data assimilation will
perform better than it would using real-life observations.

7.1.3 Overview experiments

In figure 7.2 an overview of the experiments is given.

Experiment 1 is an experiment designed for further verification of the prototype. A small
network is used in order to shorten the computation time. Therefore lots of simulations
can be run in a limited time. The performance of the different assimilation methods
can provide some interesting research directions in the large network. By testing some
hypotheses that can be derived from literature it is tested if the prototype works as
expected. Some sensitivity analyses give insight in the general working of the assimilation
methods and the different trade offs.

Experiment 2 is the first experiment that uses a large network case. The first subexper-
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Figure 7.2: Graphical overview of the experiments

iment tries to identify the best implementation of each assimilation method. The choice
of the best implementation is based on the computation times, as each implementation of
an assimilation method is equivalent in terms of accuracy. In the further subexperiments
the performance of the different assimilation methods are empirically compared. The
goal of these subexperiments is to determine which methods perform best and are most
promising for further research. This choice is based on both empirical results and theo-
retical reasoning. Moreover, this experiment gives a basic indication of well-performing
assimilation parameters.

Experiments 3 to 6 examines the sensitivity to certain assumptions of the assimilation
methods and advanced applications of the prototype. In experiment 3 the influence of dif-
ferent observation configurations is investigated. By observation configuration the number
and location of detectors, observed variables and measurement noise are meant. This way
the data assimilation methods are tested in quite extreme conditions where only a little
information is provided. In experiment 4 the application of the prototype in non-recurrent
conditions is tested. The performance in these non-recurrent conditions indicate the per-
formance when unpredicted events occur and the assimilation model doesn’t model or
isn’t capable of modeling real traffic flows. In experiment 5 this mismatch between the
‘true‘ model and the assimilation model is further investigated. Instead of an incidental
mismatch in experiment 4, in experiment 5 a structural mismatch is examined by setting
an imperfect fundamental relation in the assimilation model. Experiment 6 investigates
the performance in the ultimate goal of the prototype: correctly short-term predicting



7.2. PERFORMANCE INDICATORS 91

the traffic.

7.2 Performance indicators

Several factors of performance are important in this experiment:

• Accuracy of state estimation. There exist several ways to determine the accu-
racy of the state estimation. One of the mainly used indicator is the root-mean-
square error (RMSE):

RMSE =

√∑
(ŷ − y)2

n
,

where ŷ is the predicted value, y is the true value and n is the size of the data set.
The variable y can represent several quantities: e.g. density, speed or flow. Another
commonly used indicator is the mean absolute percentage error (MAPE):

MAPE =
1

n

∑∣∣∣∣y − ŷy
∣∣∣∣ .

The MAPE gives a relative error in contrast to the RMSE that represents the
absolute error. These indicators can be computed for the whole data set, but can
also give more information when the data set is split into the free flow and congested
parts of the data set.

Moreover, Schreiter (2013) used an indicator for analysing if congestion occurs at
the same location and time:

Jreg =
∑
i

∑
j

∣∣γij − γ̂ij∣∣∆xi∆t
with the traffic regime of cell i at time step j:

γij =

{
1 if vij < vijc
0 else

It is chosen to compare the density, speed and traffic regime. This leads to the
following list of indicators:

1. RMSE of density k in the whole dataset

2. RMSE of speed v in the whole dataset

3. MAPE of density k in the whole dataset

4. MAPE of speed v in the whole dataset

5. Traffic regime error Jreg of the whole dataset

6. RMSE of density k where the traffic is free flowing
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7. RMSE of speed v where the traffic is free flowing

8. MAPE of density k where the traffic is free flowing

9. MAPE of speed v where the traffic is free flowing

10. RMSE of density k where the traffic is congested

11. RMSE of speed v where the traffic is congested

12. MAPE of density k where the traffic is congested

13. MAPE of speed v where the traffic is congested

• Accuracy of predictions using estimated state. The accuracy of the predic-
tions is determined by using the (mean) estimated state in order to predict the state
several time steps ahead. In this case, this is done by predicting every 5 minutes
the traffic state up to 1 hour ahead with 5 minute steps. The predicted states can
then later be compared with the true state, using the 13 indicators described above.

• Stability of data assimilation to initial boundary conditions. One major
requirement is that the state estimation and prediction needs to be insensitive to
the error in of the boundary conditions, given a set of assimilation parameters.
This means that if the network parameters are incorrect, the data assimilation will
provide reasonable performance without recalibrating the assimilation parameters.
In this experiment, this insensitivity can be made clear by the distribution of the
performance indicators for each assimilation parameter set, when simulating with
different network parameters. In particular, the worst performances are relevant.
Therefore the 90th percentiles of the performance values for the different network
parameters are chosen as indicator.

Note that here the 90th percentile value is chosen as indicator, instead of the maxi-
mum value (which corresponds with the worst performance). This is due to the fact
that the maximum value of the indicators isn’t robust to changes in the (sample
of) network parameters. That is not a significant problem in this experiment as all
assimilation methods and assimilation parameters are tested with the same network
parameter sets. However, choosing the maximum value as indicator would harm
the comparability of the results when another sample of network parameter sets is
used.

• Computation time. Another major factor is the computation time of the different
assimilation schemes. However, for a small network the difference in computation
times could be negligible. It is expected that the ensemble size is a major factor in
the computation time.
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7.3 Experiment 1: a small toy network using syn-

thetic data

From the theoretical analysis some hypotheses are derived that can tested in this simu-
lation experiment. By accuracy both accuracy in state estimation as in state prediction
(∆t < 1h) is meant.

Hypothesis 1.1. The deterministic methods are more accurate than the stochas-
tic methods.

The deterministic methods are not influenced by the sampling error of the perturbation
of the observations. However, the deterministic methods use an approximation in deter-
mining the Kalman gain, which can counteract the sampling error.

Hypothesis 1.2. All methods are less accurate for smaller ensemble sizes. The
deterministic methods suffer less from smaller ensembles than
the stochastic methods.

A smaller ensemble will decrease the accuracy of the estimation as the linearisation be-
comes less accurate. Moreover, the sampling error of the stochastic methods increases as
the algorithm becomes more sensitive to sampled values of the perturbed observations.

Hypothesis 1.3. The computation times of the observation based localized
schemes is the lowest, followed by the state based localized
schemes and the global schemes.The computation times are
mostly dependent on the ensemble size.

Based on the computational complexity, this hypothesis should be true. However, it is
possible that this effect can’t be discovered in the small test network. One possible reason
could be that the differences in computation times could be too small to be significantly
detected. Another explanation could be that the computation time of the implementation
doesn’t match the theoretical complexity due to overhead.

The ensemble size has a large linear influence on the computation time of the prediction
step of the algorithm, and the computation time of the correction step is also increased
with an increased ensemble size.

Hypothesis 1.4. The smaller the radius, the less accurate the localized methods
are in comparison to the the global methods.

When the localization radius becomes smaller, less information from the observations is
taken into account and thereby decreasing the accuracy.

Hypothesis 1.5. There exist a configuration of an ensemble based method that
has satisfying performance in both estimation accuracy, predic-
tion accuracy, stability and computational speed.
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The theoretical investigation suggest that ensemble based methods can be very helpful
for the posed problem. The main goal of this simulation experiment is to investigate if
an ensemble based method can perform satisfactory on a small network, and thereby also
has good potential for larger networks.

In order to test these hypotheses and thereby the performance of different ensemble
schemes, experiments are performed using a small test network. The small test net-
work allows for many simulation runs as the computation time will be (relatively) short.
This experiment is a so called twin experiment: firstly data is generated using the traffic
model with a certain set of parameters (inflow, turning fractions, free speed etc). After
perturbing the data, this data is then used as observations for runs of the traffic model
with slightly different values for the parameters.

The goal of this experiment is to find a good ensemble based assimilation scheme that
is accurate in a reasonable computation time. Moreover, this experiment tries to deduce
some do’s and don’ts for the use in the large network.

7.3.1 Experiment design

This experiment is divided into several subexperiments:

• Experiment 1a: first calibration of assimilation schemes. In order to fairly
compare the different assimilation schemes, each scheme needs to have its parameters
calibrated so all assimilation schemes perform reasonably well. This calibration is
split into two parts: in experiment 1a the initial errors of the state are calibrated,
and a further calibration in experiment 1b.

• Experiment 1b: calibration of covariance inflation. In experiment 1b, the
covariance inflation factors are calibrated using the best parameters found in exper-
iment 1a.

• Experiment 1c: sensitivity to ensemble size. Using the parameters found
in experiment 1b, the influence of a smaller ensemble size on the performance of
the assimilation is investigated. The ensemble size should have a large influence
on the computation time. In order to make the trade off between accuracy and
computation time, the accuracy of the data assimilation for smaller ensemble sizes
is crucial.

• Experiment 1d: sensitivity to localization width. In experiment 1c, the as-
similation schemes that perform well with smaller ensemble sizes are found. In
experiment 1d, the sensitivity of these (local) assimilation schemes to smaller local-
ization widths is investigated. For larger networks, the localization width will have
significant influence on the computation time.

The design of the experiment consists of two parts: the first part is the design of the
reference situation. The second part is the design of the assimilation schemes that use the
observations of the reference situation in order to approximate the reference situation.
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Reference situation

Figure 7.3: Network under consideration

In figure 7.3 the network at hand is displayed. Note that two inflow nodes and one
diverge node exist corresponding inflow demands i1 and i2 and turning fraction t1. The
locations of the detectors are also displayed in the figure. The properties of the links are
summarized in the table below.

# Link Length # Lanes Speed limit

0 500 m 2 27.78 m/s

1 1500 m 2 33.33 m/s

2 500 m 2 27.78 m/s

3 500 m 2 27.78 m/s

4 500 m 2 27.78 m/s

5 500 m 1 27.78 m/s

6 1000 m 2 27.78 m/s

7 500 m 2 25 m/s

The demand patterns i1 and i2 are chosen as in figure 7.4. The peaks of the demand
patterns are at 0.5veh

s
and 0.44veh

s
respectively. The turnfraction t1 is chosen as the

constant value of 0.6 in the direction of link 1. For all links, the fundamental diagram
of Smulders is used with parameters vcri = 22.22 m/s, kcri = 0.025 veh

m·lane and kjam =
0.125 veh

m·lane and vfree the speed limit of that link.

As model parameters, a time step of dt = 2 s is chosen. The cell lengths are chosen
according to the minimum cell length as in the CFL condition: l = dt · vfree. The runs
are simulated for 2 hours.

In figure 7.5 the space-time plots of the reference data are given. Three routes are dis-
tinguished: route 1 consists of links (0, 1, 2), route 2 consists of links (0, 3, 6, 7, 4, 2) and
route 3 consists of links (5, 6, 7, 4, 2).
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Figure 7.4: Demand patterns i1 (blue) and i2 (green)

Figure 7.5: The space-time plots of the reference data.
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Assimilation design

The observations are generated by storing the speeds and flows at the corresponding cells
every model time step (chosen as dt = 2 s). Then the speeds and flows are averaged
to 1-minute time mean speeds. Note that this use of the arithmetic mean is generally
not correct, but corresponds to the technique used by Dutch detectors. This data is
then perturbed by a Gaussian white noise with standard deviation 1.5 m/s for speed
measurements and 0.04 veh/s for flow measurements in order to be used for assimilation
in the experiment runs.

In this experiment, the following assimilation schemes are chosen to be compared:

1. EnKF (global)

2. EnKF (state based local analysis)

3. EnKF (observation based local analysis)

4. DEnKF (global)

5. DEnKF (state based local analysis)

6. DEnKF (observation based local analysis)

7. No assimilation (using only prior knowledge)

In Scheme 1-6 covariance inflation is excluded by setting the inflation factor to 1. The
ensemble size is chosen as 20, and for the local schemes a radius of 20 cells upstream and
20 cells downstream is chosen. As the length of the cells is minimal in the sense of the
CFL condition, this means that the 40 cells correspond to 1.33 minute in free speed. This
is more than the update time span of 1 minute, so the localization radius should be large
enough.

The assimilation schemes will be tested for 25 different demand patterns and turn frac-
tions. The demand patterns i∗1 and i∗2 of the simulation runs are randomly chosen as
i∗1 ∼ i1 · N(1, 0.05556

i1
) and i∗2 ∼ i2 · N(1, 0.04167

i2
). This means that the demand patterns

for the simulation runs are scaled, where the peaks of the demand patterns have stan-
dard deviation 0.05556 and 0.04167 respectively. The turn fraction t∗1 is randomly chosen
with t∗1 ∼ N(t1, 0.15). All assimilation schemes are subject to the same parameters and
(perturbed) observations, in order to better compare the assimilation schemes. The used
parameter sets are displayed in table 7.1.

An illustrated overview of the different simulation runs is presented in figure 7.6. In this
experiment 6 different assimilation schemes (excluding the ‘no assimilation’-scheme) with
(e.g.) 10 different assimilation parameter sets and 25 different network parameter sets are
used. This leads to the execution of ((6 · 10) + 1) · 25 = 1525 simulation runs.
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Network parameter set Inflow 1 Inflow 2 Turn Fraction

1 0.6133 0.4494 0.8088

2 0.4312 0.5052 0.5703

3 0.4711 0.4120 0.6747

4 0.4467 0.4230 0.5978

5 0.5821 0.4083 0.5631

6 0.4164 0.5295 0.3769

7 0.5318 0.4243 0.8145

8 0.5552 0.5073 0.6341

9 0.6046 0.4708 0.5541

10 0.4475 0.3855 0.7793

11 0.5502 0.4513 0.5721

12 0.5504 0.4059 0.4124

13 0.5390 0.4610 0.7135

14 0.5023 0.4129 0.3142

15 0.5056 0.4048 0.7705

16 0.4173 0.4666 0.8989

17 0.5249 0.3969 0.5106

18 0.4809 0.4579 0.7096

19 0.4467 0.4653 0.4057

20 0.5532 0.4048 0.6621

21 0.5360 0.4140 0.6448

22 0.5836 0.4568 0.7631

23 0.5241 0.4137 0.6457

24 0.5286 0.4749 0.7348

25 0.4619 0.4380 0.5522

Table 7.1: Overview of the used network parameter sets

Figure 7.6: Illustrated overview of the experiment: different assimilation schemes, net-
work parameter sets and assimilation parameter sets are compared. Note that the ‘no
assimilation’ scheme uses only one assimilation parameter set.

7.3.2 Results experiment 1: small network

The whole overview of the results are presented in appendix B. In this subsection the
main results and conclusions are given.
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Hypothesis 1.1. The deterministic methods are more accurate than the stochas-
tic methods. In table 7.2 an overview of the estimation accuracy found in experiment
1b is given, which corresponds to the best performances found in Experiment 1. The val-
ues represent the average performance over the 25 different network settings. The selected
assimilation parameters are the parameters that performed best.

RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 0.0045 0.0212 0.8952 0.0104 159424

EnKF local state 0.0048 0.0229 0.9523 0.0113 178441

EnKF local observation 0.0055 0.0300 1.1020 0.0133 224706

DEnKF global 0.0045 0.0201 0.8901 0.0101 154162

DEnKF local state 0.0044 0.0202 0.8718 0.0096 148865

DEnKF local observation 0.0050 0.0235 0.9866 0.0126 177815

No Assimilation 0.0403 0.8721 7.6055 0.3921 6288372

Table 7.2: Overview mean accuracy of the assimilation methods

The absolute differences between the accuracy indicators are small. However the relative
differences are quite large. Using the best assimilation parameter sets found, the global
EnKF performs on average 3% worse than the global DEnKF on the main estimation per-
fomance indicators. The state based localized EnKF performs on average 14% worse and
the observation based scores 16% worse than their deterministic counterparts. Compared
to the case where no assimilation was used, the data assimilation provide a far better
performance.

The simulation results thus correspond with the hypothesis: in this experiment the deter-
ministic methods are more accurate than the stochastic methods. This can be caused by
two characteristics of the DEnKF: the absence of the sampling error of the observation
perturbations and the implied use of adaptive instead of a fixed covariance inflation. The
increased difference between the stochastic and the deterministic methods when localized
can possibly be caused by the fact that less observations are used in a localized method.
The adverse effect of the sampling noise is increased when less observations are used.
(A. Y. Sun, Morris, & Mohanty, 2009)

In order to visualize the performance of the data assimilation, time-space plots of an
assimilation run is displayed in figure 7.7. The associated errors of figure 7.7 are displayed
in table 7.3. Note that the performance for this case in quite comparable to the average
performances given in table 7.2.

RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 0.0052 0.0237 0.9427 0.0079 149838

No Assimilation 0.0583 2.0211 10.6156 0.2718 11069269

Table 7.3: Error statistics of network parameter set 1, which correspond to the timespace
plots in figure 7.7.

The same pattern of error statistics is prevalent in the prediction accuracy: the error of
the global EnKF is 8% higher, the state localized EnKF 22% higher and the observation
based EnKF scores 6% higher than their deterministic counterparts.
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Figure 7.7: Time-space diagrams of the three routes using network parameter set 1.
Depicted are the truth data, the assimilated data using the global EnKF and the no
assimilation data. The horizontal axes depict time in seconds and the vertical axes space
in meters. Figure (a) describes the density of the cells (in veh

m
); Figure (b) describes the

difference in density between the truth situation and the assimilated situations.

Hypothesis 1.2. All methods are less accurate for smaller ensemble sizes. The
deterministic methods suffer less from smaller ensembles than the stochastic
methods. In experiment 1c it was found that all methods become less accurate for
smaller ensemble sizes. However, the influence of a smaller ensemble on the performance
differs greatly. The estimation accuracies of the global DEnKF and the state localized
DEnKF only decrease by circa 18% when the ensemble size is decreased from 40 to 5.
The estimation accuracies of the other methods decrease by 302-723%.

The results make sense: the induced sampling noise of a stochastic method is larger for a
small ensemble than for a large ensemble. This sampling noise only affects the stochastic
methods. Moreover, the linear approximation made in the observation based approaches
performs worse for smaller ensembles. Theoretically, (state) localization should increase
the performance in small ensemble situations as localization increases the rank of the
assimilation system. However, this effect is not visible in the results of this experiment.

The same result patterns hold for the estimation stability, prediction accuracy and sta-
bility.

Hypothesis 1.3. The computation times of the observation based localized
schemes is the lowest, followed by the state based localized schemes and the
global schemes. The computation times are mostly dependent on the ensemble
size. The ensemble size (p = 0.0000), the assimilation method (p = 0.0351) and their
interaction (p = 0.0000) were significant factors in the computation time as determined
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by a two-way Analysis of Variance (ANOVA).The average computation times and linear
fits (with goodness-of-fit R2 = 0.875) for different assimilation schemes and ensemble size
are displayed in figure 7.8.

The DEnKF approaches took more time than the EnKF approaches. Instead of what was
expected, the observation based localized schemes had the largest computation time. An
explanation for this could be overhead in the execution of the algorithms. The theoretical
computational complexity didn’t take the handling of selecting the corresponding state-
observation pairs into account. The localized schemes could thus have a better theoretical
performance, but in implementation the computational speed is (somewhat) slower.
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Figure 7.8: The computation times of each assimilation method for different ensemble
sizes (dots) and the associated linear fits (lines)

Hypothesis 1.4. The smaller the radius, the less accurate the localized meth-
ods are in comparison to the the global methods. For this hypothesis, only the
DEnKF approaches are considered as the other experiments indicated that the EnKF
would perform worse for smaller ensemble sizes. Two localization widths are investigated
separately: the localization width of the cells and the localization width of the inflows
and turn fractions.

The results indicate that setting the localization width of the inflows and turn fractions is
absolutely crucial in this network. When one of the four observations doesn’t “observe”
some inflows or turn fractions, the performance worsens significantly: up to 30% for only
a few omitted relations. When almost no inflows or turn fractions are observed, the error
indicators increase 2-fold or even 6-fold.

The importance of the correct setting of the inflows and turn fractions is also likely
caused by the small size of the network. As for example route 1 consists of only 2.5 km
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of road. With a free speed of 120 km/h, this means that a car travels 80% of route 1
in one assimilation time step of 1 minute. A disturbance in traffic density gets out of
the network quite quickly. Therefore the dynamics of the traffic on the network at time
t + 60s is mainly caused by the turn fractions and inflow patterns, instead of the traffic
situation at time t.

The state based localized DEnKF is quite insensitive to changes in the localization width
of the cells. The estimation accuracy only decreases by a few percent when the cell radius
is decreased by 30%. However, the observation based localized DEnKF is more sensitive
to changes in the cell radius. This could be caused by overcorrection as cells are updated
multiple times when the cells lie within the influence regions of multiple detectors.

Hypothesis 1.5. There exist a configuration of an ensemble based method that
has satisfying performance in both estimation accuracy, prediction accuracy,
stability and computational speed. All tested assimilation methods have configu-
rations that perform reasonably well, as can be seen from table 7.2 and the space-time
plots of figure 7.7.

7.3.3 Conclusions and consequences for large scale application

The small network experiments provides good outsight for large scale application, as
estimation and prediction accuracy is quite good. The theoretical benefits of localization
on the accuracy of the estimation are not visible in this experiment, as the network is too
small. The number of observations and number of cells is relatively small in comparison
to the ensemble size.

The addition of covariance inflation works quite well, it increased the accuracy slightly in
comparison to when no covariance inflation was used.

The DEnKF performs better for smaller ensemble size in this experiment. However, if
this is caused by small absolute size or small relative size is unknown.

7.4 Experiment 2: Rotterdam highway network us-

ing synthetic data

In this experiment, the network is upscaled to a large network that is comparable to the
network size used in practice.

In experiment 1 a simulation study was done using a small scale network. As a small
network is fundamentally different in terms of importance of boundary conditions, the
large model needs to be calibrated again. The benefits of localization were also not
prevalent in the small network.
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7.4.1 Goal and hypotheses of experiment 2

The main goal of this experiment is to investigate if the proposed framework can achieve
a reasonable result on this network scale in a limited computation time. The hypotheses
are split into two parts: one part covers the computational speed, and the other part
handles the accuracy of the data assimilation.

Computational speed

Hypothesis 2.1. In a large traffic network, the SMW formulations provides sig-
nificant benefits over the traditional formulations in terms of
computational speed without loss of accuracy.

For the large scale network, several different implementations of the assimilation are
possible. The Kalman gain equation can be reformulated using the Sherman-Morrison-
Woodbury formula instead of the straightforward implementation. Theoretically, this
application of the SMW formula will have a large impact on the computation time of the
global methods and a somewhat smaller impact on the state localized methods. However,
the question remains if this benefit occur in the implementation due to possible overhead.

Hypothesis 2.2. In a large traffic network, parallelization of the state localized
methods provides significant benefits over single-threaded for-
mulations in terms of computational speed without loss of ac-
curacy.

Another option is parallelize some of the computations. By means of parallelization,
independent parts of the algorithms can be computed by different cores of the (multi-core)
CPU. For the global methods, the update equation (∆X = K∆Y ) can be parallelized by
the update of each ensemble member separately if K is computed. However, the benefits
of parallelization would be small as this update isn’t very computationally expensive: the
computation of K is the computationally expensive part of the algorithm. For the state
localized methods, the update of each state element is independent of the updates of the
other state elements. This would thus be a natural application of parallelization. The
observation based localized methods doesn’t have a natural application of parallelization,
as the update using one observation influences the update of the other observations.

Hypothesis 2.3. In a large traffic network, the computation of localized ensemble
based methods is faster than the computation of global methods.

Theoretically, the localized methods should be faster than the global methods. However,
if this still is the case in implementation remains unknown. The global methods could
have a very fast computation time due to the SMW formulation. The localized methods
don’t have the same benefit of this formulation. Moreover, the local methods have a high
chance of additional overhead due to selecting the observations and state elements from
the global matrices. The state localized method could have benefits of parallelization.
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Accuracy

Hypothesis 2.4. In a large traffic network, the DEnKF methods perform better
than the EnKF methods.

The deterministic methods are not influenced by the sampling error of the perturbation
of the observations. Therefore, the state covariance error is analytically approximated by
the DEnKF, instead of statistically sampled as by the traditional EnKF. However, the
deterministic methods use an approximation in determining the Kalman gain, which can
counteract the sampling error. The results of experiment 1 on the small scale network
suggested that the DEnKF was more accurate than the EnKF.

Hypothesis 2.5. In a large traffic network, the localized ensemble based methods
are more accurate than the global methods.

In the theoretical analysis, it was identified that the localized methods benefit in two
ways over the global methods. The first way is that the spurious (‘fake’) correlations,
that are imposed due to the estimation of the state covariance by means of the ensemble,
between two elements of the state or observations that are physically distant are removed.
This will eliminate wrongly updating the state. The second way is that localization will
increase the effective ensemble size: by splitting the ensemble into several parts one can
find more combinations of ensemble members to fit the observations.

Overall

Hypothesis 2.6. A reasonable accuracy can be achieved in a limited computation
time.

It is expected that a reasonable accuracy can be achieved using an ensemble based method.
The local methods are the most probable methods to achieve this goal, as the theoretical
benefits of these methods over the global methods in terms of accuracy are significant.

7.4.2 Experiment design

Reference situation

As in the first experiment, a reference situation is designed. The geographical description
of the network including the detectors is based on the real highway network of Rotterdam.
However, the traffic flows (i.e. the demand patterns, turn fractions and fundamental
diagram parameters) are fictive.

The network description is based on the Dutch Regional Model (NRM). From the NRM
the speed limit, number of lanes and the geographical location of the roads was extracted.
The network description was then altered to better fit the use in this research. The main
changes were:
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• The dedicated truck lane on the A16 Northbound was merged with the lanes for
other traffic, as the used traffic model doesn’t consider truck traffic explicitly. Keep-
ing the truck lane in the model would need a estimation of the portion of truck traffic
for the turn fraction at that point.

• Some changes were made in the location of the (subsequent) merges and diverges in
order to maintain a suitable distance between the merges and diverges. The larger
distance was needed in order to make a larger time step possible that complies with
the CFL condition. In this way, the minimal model time step was increased to 2.5
seconds.

• Some onramps and off-ramps were changed to delete bottlenecks at the on-ramps
or off-ramps. It isn’t the goal of this research to estimate the traffic state at these
specific on and off-ramps. As the traffic characteristics at these locations isn’t
specified or calibrated correctly, and these bottlenecks could influence the whole
traffic state tremendously, the bottlenecks were removed.

The detector locations were extracted from the Nationale WegenBank (NWB) via Regi-
olab Delft. The detector locations were automatically coupled to the links in the model.
A total of 592 detector locations are used.

For all links, the fundamental diagram of Smulders was used with the fundamental dia-
gram parameters were randomly chosen with small deviations around vcri = 22.22 m/s,
kcri = 0.025 veh

m·lane and kjam = 0.125 veh
m·lane and vfree the speed limit of that link. The

demand patterns at the inflow nodes were chosen with a similar shape of the demand pat-
terns in Figure 7.4, with the values and time instants where the shape changes randomly
varied. The inflow of traffic at on-ramps was chosen as 50% of the traffic coming out of
the main highway.

The turn fractions were based on the ratio of lanes per outward link. The ratio of traffic
taking off-ramps was randomly chosen closely to 15%.

Assimilation design

For the assimilation models, the reference case is perturbed to serve as prior knowledge
for the assimilation models. The inflows are perturbed with a standard deviation of about
16% of the values in the reference case, and the turn fractions are perturbed with 10% of
the reference values.

All six assimilation methods of the previous experiment are considered in this experiment.
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Figure 7.9: An overview of the median computation times of an assimilation time step of
the different implementations. Figure 7.9a depicts a situation where an ensemble size of
N = 20 is used. In figure 7.9b the ensemble size is N = 50 is used.

7.4.3 Results experiment 2: highway network Rotterdam using
synthetic data

Computational speed

In figure 7.9 the median computation times per assimilation time step for the different
implementations are given. It is chosen to depict the median values, as the mean com-
putation times suffered from severely outlying values. Both the computation times for
an ensemble size of 20 (see figure 7.9a) and an ensemble size of 50 (see figure 7.9b) are
given. The depicted computation times include the computation times of the prediction
part of the algorithm. As hypothesized, the computation time spent is approximately
linear. Furthermore, the median computation time that is needed for extra functions is
displayed. This “Other” category consists of time spent at other tasks, e.g. initializing
the assimilation algorithm, updating the graphical user interface, calculating performance
indicators and saving data.

Hypothesis 2.1. In a large traffic network, the SMW formulations provides
significant benefits over the traditional formulations in terms of computational
speed without loss of accuracy. The SMW formulation provides a large increase in
the computation speed for the global methods: the median computation times of the
traditional implementations are almost 4 times as high as the SMW implementations for
a ensemble size of 20.

For the state localized methods, the SMW formulations induced an extra overhead, which
resulted in a slower computation when the SMW formulation was used instead of a tra-
ditional formulation.
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Hypothesis 2.2. In a large traffic network, parallelization of the state local-
ized methods provides significant benefits over single-threaded formulations
in terms of computational speed without loss of accuracy. As can be seen in
figure 7.9, parallelization provides a quite substantial increase in the computational speed.
Depending on the implementation, the correction step is computed about 30% faster.

Hypothesis 2.3. In a large traffic network, the computation of localized ensem-
ble based methods is faster than the computation of global methods. Surpris-
ingly, the global methods are the fastest methods. This is caused by the large improvement
made by the SMW implementation. Moreover, the overhead induced by the selection of
the right state-observation combinations most likely plays a role in the computation time
of the localized schemes.

Accuracy

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 0.0477 0.3264 5.1230 0.5090 114212194

EnKF local state 5 0.0085 0.0548 1.2257 0.0224 10774534

EnKF local observation 5 0.0114 0.0758 1.4757 0.0390 14360733

DEnKF global 2 0.0436 0.3236 4.6697 0.4909 101884872

DEnKF local state 5 0.0025 0.0284 0.4127 0.0085 2187272

DEnKF local observation 5 0.0030 0.0327 0.4837 0.0057 2853298

No Assimilation - 0.0518 0.3917 5.6012 0.5141 135456313

Table 7.4: Mean performance of state estimation using different assimilation schemes.

In table 7.4 an overview is given of the mean performance of the different assimilation
methods over three different starting points of the demand and turn fractions (which is
input as prior knowledge). The table indicates the best of 10 different sets of (assimilation)
parameters such as the initial errors and covariance inflation. The ensemble size was set
as N = 20, and the localization radii were set to rc = 20, ri,tf = 60.

Increasing the ensemble size increases the accuracy, however the pattern of which method
performs best doesn’t change. The chosen localization radii was not optimal: the lo-
calized methods performed better when the localization radius of the inflows and turn
fractions were decreased. In terms of the comparison of the assimilation methods, when
the localization radii were chosen optimally the same pattern occurs as in the table above,
although the differences in accuracy between the methods are very small. The state based
approaches and the deterministic approaches are however less sensitive to non-optimal
chosen parameters.

Hypothesis 2.4. In a large traffic network, the DEnKF methods perform better
than the EnKF methods. On the basis of the performance indicators and in table 7.4
and the space-time plots in figure 7.10, the DEnKF methods perform slightly better than
the EnKF methods. However, the difference in accuracy is small. As the calibration of
the methods is executed quite crudely, it isn’t guaranteed that the difference in accuracy
isn’t caused by the choice of assimilation parameters.
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Figure 7.10: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.

Hypothesis 2.5. In a large traffic network, the localized ensemble based meth-
ods are more accurate than the global methods. Based on the performance in
this experiment, the localized methods perform far better than the global methods. The
global methods are not useful for this application, as a severe mismatch between the es-
timated and true location of the congestion exists. This result is in line with the theory:
the global methods are not suitable for a large application as this. The observation based
localization performs slightly worse than the state based localization.

Overall

Hypothesis 2.6. A reasonable accuracy can be achieved in a limited compu-
tation time. In figure 7.11 the computation time is compared with the accuracy (in
terms of the RMSE of the density) of the different assimilation methods.

The local approaches definitely perform better than the global approaches. Although the
global methods have a faster computation time, the accuracies of the global methods are
not even close to the accuracy that other methods easily reach. In comparison to the error
of doing nothing, the global methods do not perform very well. The DEnKF methods
consistently perform better than their stochastic counterparts.

On basis of this graph, the state based localized DEnKF performs best.
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Figure 7.11: The RMSE of the density of the cells, against the computation time of 2
hours of data. The stars indicate the used ensemble size: from left to right ensemble sizes
of 10, 20, 30, 40 and 50 are used

Conclusion and discussion experiment 2

The main goal of this experiment was to investigate if the proposed framework could
achieve reasonable results in terms of computation time and accuracy on a large network
scale. Six different ensemble based methods were tested: the traditional EnKF and the
DEnKF were both used in a global, state localized and observation localized context.

In terms of computation time, it is possible to run the ensemble based algorithms in more
than 10× real-time on a mid-end household computer, while using a reasonable ensem-
ble size. The global methods have the fastest computation times due to the Sherman-
Morrison-Woodbury reformulation. The localized methods were somewhat slower, as the
overhead induced by the localization was of significant impact. The observation based lo-
calization is slower than the state based localization, as the state based localized algorithm
can be (easily) parallelized.

In terms of accuracy, the localized methods perform far better than the global methods
ceteris paribus. This is in line with the theoretical considerations, as the localization
increases the effective ensemble size. The observation based localized methods perform
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slightly worse than the state based localized methods. This can be caused by the addi-
tional approximation involved in the observation based scheme.

From this experiment the preferred localization scheme can be deduced. Although the
computational speed of the global scheme is higher, the accuracy of the global scheme
is too bad to be useful. The accuracy of observation based localization is found to be
slightly lower than the state based localization on both theoretical and empirical results.
Moreover, the computational speed of the observation based localized scheme is in practice
lower than the state based method due to the lack of parallelization. Therefore it is
concluded that the state based localized methods perform best.

The DEnKF seems to score slightly better than the traditional EnKF in the empirical
results. However, the choice between the traditional method and the deterministic method
can’t be made yet. The theoretical benefits are unclear, as the avoided sampling error
by the DEnKF is countered with an (analytical) approximation of the posterior state
covariance. The improved accuracy of the DEnKF can be caused by external factors as
the limited calibration. Moreover, it is not clear if the DEnKF still performs better when
considering other more realistic situations, such structural mismatch between the true
and assimilation system model, large errors in observations and non-recurrent events.

7.5 Experiment 3: sensitivity to observation config-

urations

In experiment 2, six different assimilation methods were tested on a large-scale network
on basis of accuracy and computational speed. It was found that the state localized assim-
ilation methods performed much better than the global methods and slightly better than
the observation localized methods. This conclusion was drawn on basis of the accuracy -
computational speed ratio: the state localized approaches were more accurate when given
the same computation time.

Although in the previous experiments the DEnKF approach performed better than the
traditional EnKF approach, the question remains if this is the case in different circum-
stances as this conclusion doesn’t have a solid theoretical basis. For example, this con-
clusion possibly doesn’t hold in situations with a limited number of observations. This
experiment investigates the sensitivity of the estimation accuracy with respect to the
configuration of the used observations.

7.5.1 Goal and hypotheses of experiment 3

By configurations is meant:

• Detector locations.

• Number of detectors.

• Measured variables.



7.5. EXPERIMENT 3: SENSITIVITY TO OBSERVATION CONFIGURATIONS 111

• Errors in measurements.

This leads to the following hypotheses.

Hypothesis 3.1. The use of less detectors leads to less accurate estimation results.

The detectors in the Rotterdam region are very densely placed: in average a detector is
placed every 450 meter. In the future, the number of detectors will possibly decrease to
a decrease in available budget. It is preferable if an assimilation method isn’t sensitive to
the number of detectors. It is expected that a smaller number of detectors will lead to less
accurate results, as the amount of (non-conflicting) information fed into the assimilation
algorithm is decreased.

Hypothesis 3.2. The spread of detectors over different links leads to more accu-
rate estimation results compared to more detectors on the same
link.

It can be beneficial to place the detectors correctly, e.g. assuring detectors are present
between on-ramps and off-ramps. This decreases the degrees of freedom of the state to
the observations, as the detector values are less dependent on each other.

Hypothesis 3.3. Observing both velocity and flow benefits the estimation accu-
racy over observing only one of these variables.

By measuring both velocity and flow, one can better identify the right state. For example
a flow value corresponds to two density values: one in the free flow branch and one in
the congested branch of the fundamental diagram. By using the speed observations, this
choice can be made.

Hypothesis 3.4. Large random errors in the observation values leads to less ac-
curate estimation results.

Large errors in the observation values corresponds to less certainty in the observed values.
This means that the additional information added by the observation to the state is
relatively small.

Hypothesis 3.5. The state based DEnKF performs better than the state based
traditional EnKF in all these observation configurations.

In experiment 2, the state based DEnKF performed slightly better than the state based
traditional EnKF. The question remains if this also holds in this experiment. One can
expect that due to the more extreme configurations (less, reliable and worse spread ob-
servations) the difference between the prior state and the posterior state becomes larger.
As the DEnKF is based on the approximation that this difference is small, the question
remains if the DEnKF is still preferable in this situation.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.12: The six different detector location configurations:
Figure (a) is configuration 1 (real detector locations).
Figure (b) is configuration 2 (intermediate subset of real detector locations)
Figure (c) is configuration 3 (minimal coverage of links by real detectors)
Figure (d) is configuration 4 (same number of detectors as (b), evenly spaced)
Figure (e) is configuration 5 (same number of detectors as (c), evenly spaced)
Figure (f) is configuration 6 (very small number of evenly spaced detectors)
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7.5.2 Experiment design

Detector locations

In table 7.5 the six different detector location configurations are shown. Two types of
configurations are used: the first group consists of the configurations that use the real
detector locations, whereas the configurations in the second group use (fictional) detector
locations that are evenly spaced.

Configuration 1 is the configuration where the detectors are located as in the real Rotter-
dam network. This detector network is quite dense, as 592 detectors are placed within a
264 km network. This configuration is used as the base case for the other configurations.
Configuration 3 is the “minimal coverage of links” configuration: for every link which has
1 or more detectors in the first configuration, only 1 detector is chosen for that link. The
term link is here defined as an uninterrupted (by on- or off-ramps) road stretch that has
similar characteristics (e.g. number of lanes or speed limit). Configuration 3 thus always
has a detector on a link if that link has a detector in the real network. Configuration 2
is an intermediate configuration that lies in the middle between configuration 1 and 3 in
terms of the number of detectors.

The second group of detector location configurations consists of configurations with evenly
spaced detectors. These configurations are generated by placing detectors after a certain
spacing interval. In order to ensure a fair comparison with the other configurations, only
links that have detectors in the real network are considered. This way it is prevented
that a lot of detectors are placed on on- and off-ramps that are not available in the real
network. Note that, in contrast to configurations 2 and 3, some links that have detectors
originally don’t have detectors in these detector location configurations. This is a crucial
difference, as the estimation of inflows and turn fractions will become a lot harder as the
influence of these variables can’t be separated by the filter. Configuration 4 and 5 are
generated for comparison with configuration 2 and 3 as they have the same number of
detectors. Configuration 6 is used as a extreme case, with detectors spaced 2000 meters.

Group Configuration Configuration ID Detectors [#]

Real detector locations

All detectors 1 592

Intermediate number of detectors 2 410

Minimal coverage of links 3 227

Evenly spaced locations

Intermediate number of detectors 4 410

Small number of detectors 5 227

2000 m spaced detectors 6 111

Table 7.5: Overview characteristics used detector location configurations

Measured variables and random errors

The detectors have three measurement options: they can observe the flow, velocity or
both. In this experiment/prototype, the omission of e.g. the velocity measurements is
modeled by setting the associated observation errors in the matrix R to a very large
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number (≈ 1.80 · 10308, which corresponds to the maximum value of a double precision
floating point number). The reason for this is the ease of implementation. However, a
disadvantage is the higher computation time in comparison to just omitting the measure-
ment. This way, the computation time of selecting only one observation variable can’t be
measured.

Two settings of the random errors are used: the setting used in the previous experiments
of 2.25 m2/s2 and 0.0016 veh2/s2, and an increased random error of 22.5 m2/s2 and 0.016
veh2/s2.

Experiment configuration

The same reference case is used as in the previous experiments. The state based EnKF
and state based DEnKF are tested, using calibrated parameters found in the previous
experiment..

7.5.3 Results of experiment 3

The results of all cases can be found in appendix D.

Q & V Q V

Real locations Evenly spaced Real locations Evenly spaced Real locations Evenly spaced

# Detectors EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF

592 0.0023 0.0021 - - 0.0034 0.0027 - - 0.0082 0.0078 - -

410 0.0029 0.0025 0.0038 0.0026 0.0053 0.0028 0.0108 0.0046 0.0105 0.0096 0.0094 0.0102

227 0.0084 0.0089 0.0072 0.0054 0.0098 0.0100 0.0135 0.0082 0.0146 0.0152 0.0156 0.0162

111 - - 0.0172 0.0197 - - 0.0266 0.0293 - - 0.0223 0.0206

Table 7.6: Overview performances using a small observation error

Q & V Q V

Real locations Evenly spaced Real locations Evenly spaced Real locations Evenly spaced

# Detectors EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF

592 0.0047 0.0051 - - 0.0075 0.0067 - - 0.0133 0.0126 - -

410 0.0069 0.0065 0.0067 0.0070 0.0103 0.0096 0.0115 0.0110 0.0143 0.0143 0.0137 0.0140

227 0.0122 0.0107 0.0125 0.0111 0.0246 0.0227 0.0188 0.0197 0.0187 0.0188 0.0206 0.0198

111 - - 0.0200 0.0177 - - 0.0299 0.0320 - - 0.0263 0.0243

Table 7.7: Overview performances using a large observation error

Hypothesis 3.1. The use of less detectors leads to less accurate estimation
results. The results suggest that better performances are reached when more detectors
are used.
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Hypothesis 3.2. The spread of detectors over different links leads to more
accurate estimation results compared to more detectors on the same link.
The impact of the spacing of the detectors is not clear. The evenly spaced detectors were
expected to perform worse than the detectors placed at real locations, as more variation
in the observed values were expected when using the real locations. This conclusion seems
to hold when lots of detectors are available. However, when relatively few detectors are
selected, the results are not clear: the performance of the evenly spaced detectors was for
some configurations worse, but for other configuration better.

Hypothesis 3.3. Observing both velocity and flow benefits the estimation
accuracy over observing only one of these variables. Observing both velocity
and flow leads to better results than observing only one of these variables. In terms of the
comparison of observing only the velocity and only observing the flow, this experiment
gives no good answer. This experiment suggests that it is better to use only the flow
observations than only the velocity observations, except when very few measurements
are available. This is probably caused by the setting of the observations errors: the
flow observations were assumed to be relatively much more reliable than the velocity
observations.

However, also theoretical arguments can be given for the found pattern: due to the shape
of the fundamental diagram of the flow, a relatively large uncertainty in flow corresponds
to only a small uncertainty in density. This is contrary to the velocity situation, where
a large uncertainty in velocity corresponds to a large uncertainty in density. For the
estimation of the density, the flow observations are thus more suitable.

For situations where only a few observations are available, little confidence is put in the
state and the ensemble is widely spread. In this case, the speed observations may be better
as the speed-density relation is “more linear” than the flow-density relation. Therefore,
the update of the state will be more accurate. Moreover, the linearisation through widely
spread flow observations can become nearly horizontal, which means that the flow error
corresponds to a very large density error. In that case the flow observations add no value
to the estimation of the density.

Hypothesis 3.4. Large random errors in the observation values leads to less
accurate estimation results. As hypothesized, larger errors in the observations corre-
spond to worse estimation performance. The main patterns in performance of the different
configurations stay the same for the higher observation errors.

Hypothesis 3.5. The state based DEnKF performs better than the state based
traditional EnKF in all these observation configurations. In most cases, this
hypothesis seems to hold, as the DEnKF has a lower value of the RMSE of the density.
However, in some cases, e.g. when a small number of observations is used, the DEnKF
has a higher error than the EnKF. This situation is further analysed.

Although the RMSE of the density is higher, the general shape of the space-time plots in
figure 7.13 seem to indicate that the DEnKF assimilation seems to perform far better than
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the EnKF method. The congestion pattern of the DEnKF better approximates the true
congestion pattern, where as the congestion pattern of the EnKF has more resemblance
with the no-assimilation congestion pattern.

The DEnKF suffers from quite severe oscillations in estimated density. This causes the
performance to be quite low. These oscillations can be caused by several effects:

1. Due to the lack of observations, the ensemble is widely spread and the inaccuracies
produced by the non-linearity of the process model as described in subsection 5.2.3
are high and will produce “artificial updates”. Moreover, the wide ensemble spread
will cause the linearisation of the fundamental diagram to be inaccurate. This effect
was mainly found in the first update steps.

2. The state is overcorrected every update due to the lack of confidence in the model
state. This effect was found in the situation at hand: the speeds and flows around
an observation were close to each other, in contrast to the inflow of an on-ramp
nearby. A difference between the predicted observation and the observed value thus
leads to a large update of the inflow, which gave a large effect on the traffic state in
following time steps.

3. Possibly the approximation on which the DEnKF is based fails as the difference
between the prior state and the true state is too large.

This issue could be possibly fixed by:

1. Better calibration. For example changing the initial error values of the state vari-
ables. This way the ensemble spread is small and hopefully stay small.

2. Changing the localization. As the number of observations decreases, the localiza-
tion scheme can have some negative influence on the accuracy. By localizing the
assimilation scheme with the use of a few observations, the update of a state element
is governed by only one or few observations. Therefore, the update of the state is
very dependent on that observation. By setting other localization parameters or
smoother localization the (negative) influence of the localization will be contained.
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Figure 7.13: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.

7.6 Experiment 4: performance in non-recurrent con-

ditions

One of the main applications of the estimation and prediction tool is the application in
non-recurrent conditions, as the traffic operator is most interested to use the tool in these
conditions.

7.6.1 Goal and hypotheses of experiment 4

One would want to have the algorithm adaptable to non-recurrent and unpredictable
conditions. Examples of these unpredictable conditions are accidents and malfunctioning
of infrastructure. These conditions or events indicate a sudden end of a trend of the
system model: suddenly congestion appears that could not be predicted moments before.

If the algorithm puts too much confidence in its own state and associated process model,
the input of conflicting observations due to the unpredicted conditions are possibly ig-
nored. The algorithm identifies the changed observations as measurement noise instead
of changing the state.

Hypothesis 4.1. More information available to the assimilation model leads to
better assimilation results
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One major factor in the estimation of the state in these events is the amount of information
about the event that is available and supplied to the assimilation model. One can think
about information about the number of lanes and associated capacity decrease at an
incident location, or even changed routing information.

Hypothesis 4.2. In non-recurrent conditions, the state based DEnKF estimates
the state more accurately than the state based EnKF.

Based on the previous experiments, the state based DEnKF performs better than the
state based traditional EnKF. The question remains if this is also the case in the case
of non-recurrent conditions. As the approximation that is the basis of the DEnKF only
holds in case of relatively small updates, the accuracy of the DEnKF could possibly be
hampered by the large corrections that need to be made in the non-recurrent events.

7.6.2 Experiment design

Reference case

As an example of a unpredictable condition the malfunctioning of the Van Brienenoord
bridge is used. This bridge is one of the most used bridges in the Netherlands. In 2014
the bridge malfunctioned multiple times, which caused the Van Brienenoord bridge to fail
its closing procedure. (OmroepWest, 2014)

The following scenario is chosen:

At a certain point in time, the bridge opens. The procedure of opening and closing
takes about 15 minutes. The north-to-south connection is then clear to travel, however
the south-to-north connection is stuck and will remain closed for traffic for another 45
minutes. In the first 15 minutes during the normal closing time, only the traffic near the
bridge will take the off-ramp as to divert from the open bridge. The traffic further away
from the bridge will not change its behaviour, as no indication exists that something is
wrong.

After the initial 15 minutes, the traffic is notified that the bridge is unavailable. Two
major diversion routes exists: one through the urban roads via the Maastunnel, and one
through the Beneluxtunnel on the A4. The reference case is modified in such a way that
these diversion routes are more extensively used.

Assimilation case

The malfunctioning of the bridge can be incorporated in three ways:

1. No input to the assimilated models. In this scenario, the events that occur are
not incorporated into the assimilated models. It is unlikely that this approach
gives reasonable results, as the assimilation method can’t change the state in a
satisfactory manner: i.e. the capacity isn’t part of the state, so it can’t be changed
by the assimilation algorithm.
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Figure 7.14: Timeline of the bridge closing scenario

2. Only the closing of the bridge is incorporated in the model. This means that the
capacity on the bridge is set to zero, and the rest of the network is unchanged. The
assimilation method should figure out the changes in turn fractions on its own. The
time duration of the obstruction should be known.

3. The closing of the bridge is incorporated, with addition of a rough estimate of change
in turn fractions. This rough estimate can be based on previous experiences with
such diversion routes. The time duration of the obstruction should be known.

7.6.3 Results of experiment 4

Input Method Set RMSE K MAPE K RMSE V MAPE V TRE

1: no information

EnKF local state 9 0.0661 0.2704 6.1951 0.4973 139614831

DEnKF local state 9 0.0657 0.2658 6.1432 0.4712 138116751

No Assimilation - 0.0761 0.6048 7.4234 0.6051 226681093

2: road closing

EnKF local state 6 0.0362 0.2545 3.3011 0.1458 42582966

DEnKF local state 9 0.0320 0.1940 3.1072 0.1217 41283309

No Assimilation - 0.0594 0.5898 5.5823 0.2937 132230278

3: road closing + estimate
route diversions

EnKF local state 5 0.0116 0.0628 1.5086 0.0344 12896963

DEnKF local state 9 0.0079 0.0415 1.0791 0.0217 7181606

No Assimilation - 0.0497 0.4232 5.0643 0.2925 113967932

Table 7.8: Overview performance of different scenarios. Each scenario adds more infor-
mation to the assimilation model.

Hypothesis 4.1. More information available to the assimilation model leads to
better assimilation results In table 7.8 an overview is given of the performances in
the three described different scenarios. It is obvious that the addition of more (consistent)
information leads to better estimation results.

The first scenario performs very bad. This was expected, as no capacity estimation
procedure is used in the data assimilation algorithm. Therefore the only way to fit the
zero capacity caused by the closed bridge by setting the turn fraction upstream to 100%
the other way. This way the congestion upstream of the closed bridge is not estimated at
all, which is of course not useful in practice.
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(a) (b)

Figure 7.15: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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(a) (b)

Figure 7.16: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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(a) (b)

Figure 7.17: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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The second scenario, which has the closing of the bridge as input, performs much better.
Due to the sudden change in turn fractions the congestion upstream of the closed bridge
is not estimated correctly. It seems that once the congestion has set in, it is hard for the
algorithm to estimate the density correctly and has a preference for changing the inflows
and turn fractions correctly.

The third scenario performs the best. The east route is estimated almost perfectly, and
in the western diversion route the congestion is somewhat underestimated.

Hypothesis 4.2. In non-recurrent conditions, the state based DEnKF estimates
the state more accurately than the state based EnKF. In all three scenarios, the
DEnKF performs better than the EnKF. In scenario 1, the differences are small: the
performance indicators only differ a few percent. The DEnKF scores about 10% better
than the EnKF in the second scenario, whereas in the third scenario the performance
indicators are more than 30% better.

7.7 Experiment 5: imperfect system model

The previous experiments assumed that a perfect fit exists between the true model that
generates the observations and the assimilation model. In a realistic case, this assumption
is clearly unfeasible. In this experiment the influence of an imperfect system model on
the performance is investigated. In particular, the assimilation model assumes different
fundamental relations on the links than the true model.

7.7.1 Goal and hypotheses of experiment 5

In this experiment the critical density and critical speed of the links are varied. This
means that the links have different capacity in the true model than in the assimilation
model, which influences the traffic flow considerably. One is interested in the performance
of the data assimilation.

It is not expected that the density will be estimated exactly right, as the assimilation
model considers different density-velocity and density-flow relations. More important is
the correct estimation of the main congestion pattern: does the data assimilation estimate
the congestion at the right location in space-time, despite the different flow characteristics
due to the different link capacities?

Hypothesis 5.1. In an imperfect model context, the main congestion patterns
can be estimated reasonably accurate

Hypothesis 5.2. The inclusion of fundamental diagram parameters in the esti-
mation state increases the accuracy of the estimation procedure
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7.7.2 Experiment design

Three assimilation scenarios are used, in which the composition of the state is varied.
The first scenario uses the same state composition as in the other experiments, i.e. the
data assimilation algorithm estimates the cell densities, inflows and turn fractions. The
second scenario includes the critical velocity in the state. This way the capacities of the
links in the assimilation model are estimated, while maintaining an imperfect fit between
the true model and the assimilation model. The third scenario includes both the critical
velocity and the critical density in the state. Now all varied parameters are part of the
state, so a perfect fit is possible.

In order to limit the time used for this experiment, only 5 different assimilation parameter
sets were used for calibration. These 5 sets were based on the parameters that worked well
in previous experiments, with some randomized parameters included for the estimation
of the fundamental diagram parameters.

7.7.3 Results experiment 5

Composition state Method Set RMSE K MAPE K RMSE V MAPE V TRE

No fundamental diagram
parameters

EnKF local state 4 0.0283 0.1747 3.3509 0.1533 62394438

DEnKF local state 5 0.0289 0.1695 3.3941 0.1908 63070574

Critical velocity included
EnKF local state 2 0.0245 0.1361 3.0031 0.1529 53701263

DEnKF local state 2 0.0191 0.1059 2.4597 0.1041 40672343

Critical velocity and
density included

EnKF local state 1 0.0178 0.1008 2.3298 0.0941 46080528

DEnKF local state 1 0.0130 0.0824 1.8989 0.0580 40378330

No Assimilation - 0.0565 0.5410 6.1955 0.4688 177779229

Table 7.9: Overview performance of different scenarios. Each scenario adds more estima-
tion freedom to the assimilation model.

Hypothesis 5.1. In an imperfect model context, the main congestion patterns
can be estimated reasonably accurate. In the scenario without capacity estimation,
there is quite a large error in the estimated density. Aside from the structural error in
density in the congested parts (due to the different observation-state function), also some
differences exist in the location of the congestion, as can be seen in figure 7.18. The
data assimilation algorithm thus had some trouble in correcting the density to prevent
estimating congestion at incorrect locations.

Hypothesis 5.2. The inclusion of fundamental diagram parameters in the esti-
mation state increases the accuracy of the estimation procedure. The estimated
state when the capacity estimation was included is much more accurate. Some structural
errors in the density of the congestion were present, but the location of the congested area
was estimated quite well. The inclusion of both the critical speed as the critical density
performed the best.
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(a) (b)

Figure 7.18: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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(a) (b)

Figure 7.19: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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(a) (b)

Figure 7.20: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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The state localized DEnKF performed better than the state localized EnKF in average.
However, the calibration procedure was very roughly done, so a definitive conclusion is
hard to draw based on these results.

7.8 Experiment 6: performance of short-term pre-

dictions

The main goal of the investigated tool is to get a reasonable prediction in both recurrent
and non-recurrent situations. Therefore predictions are evaluated from both the cases in
experiment 2 as experiment 4.

7.8.1 Goal and hypotheses of experiment 6

The goal of this experiment is to get some sense in the possibility to get a reasonable
prediction result. In order to get a reasonable prediction, it is imperative to estimate
the current and future turn fractions and inflow correctly, as the future states are mainly
dependent on these variables instead of the current cell densities.

The predictions should work in both recurrent as non-recurrent conditions.

Hypothesis 6.1. It is possible to provide reasonable prediction results in recurrent
conditions.

Hypothesis 6.2. It is possible to provide reasonable prediction results in non-
recurrent conditions.

Given the previous experiments, the predictions should provide reasonable results in both
recurrent and non-recurrent conditions, provided that the input of the length of the ex-
ternal is correct.

Hypothesis 6.3. The state localized DEnKF will provide better prediction results
than the state localized EnKF in recurrent conditions.

Hypothesis 6.4. The state localized DEnKF will provide better prediction results
than the state localized EnKF in non-recurrent conditions.

In the previous experiments the state localized DEnKF was more accurate than the state
localized EnKF. It is hypothesized that the prediction, that is mainly dependent on the
correct estimation of the turn fractions and inflows, is also more accurate when the de-
terministic method is used instead of the traditional stochastic method.

7.8.2 Experiment design

This experiment is based on experiments 2 and 4, which treat the estimation results in
recurrent and non-recurrent conditions.
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In the recurrent conditions, a prediction is started at t = 15min. The performance
indicators are computed over different intervals: the used intervals are 5 minutes, 15
minutes, 30 minutes and 60 minutes. In the non-recurrent conditions, the prediction is
started t = 45min. This is 15 minutes after the malfunctioning of the northbound bridge.
It is assumed that the begin and end time of the closing of the bridge is known in advance.
The same intervals for the performance indicators are used.

Figure 7.21: Timeline of the bridge closing scenario, including the prediction horizon.

7.8.3 Results of experiment 6

Conditions Method RMSE K MAPE K RMSE V MAPE V TRE

Recurrent

EnKF local state 0.0077 0.0247 0.8989 0.0133 3071263

DEnKF local state 0.0059 0.0161 0.7258 0.0089 2030633

No Assimilation 0.0613 0.4970 6.7079 0.5611 102550038

Non-recurrent, input: no
additional information

EnKF local state 0.0827 0.2553 7.5415 0.4387 45457102

DEnKF local state 0.0827 0.2898 7.6492 0.4327 47425832

No Assimilation 0.0980 0.9341 9.2221 0.6263 81339046

Non-recurrent, input: bridge
closing

EnKF local state 0.0544 0.4205 4.9494 0.3381 46578061

DEnKF local state 0.0508 0.3264 4.8755 0.3522 47505969

No Assimilation 0.0752 0.8341 6.9248 0.4866 96564293

Non-recurrent, input: bridge
closing and route choice estimate

EnKF local state 0.0229 0.1579 2.6364 0.0914 16326713

DEnKF local state 0.0213 0.1085 2.5781 0.0923 15443111

No Assimilation 0.0629 0.6179 6.2565 0.4588 82464884

Table 7.10: Overview performance of different scenarios. Each scenario adds more esti-
mation freedom to the assimilation model.

Hypothesis 6.1. It is possible to provide reasonable prediction results in re-
current conditions. The predictions in recurrent conditions were very accurate. This
means that the turn fractions and inflows were estimated very well, which resulted in a
very accurate prediction of the congestion. This result is very dependent on the input of
the boundary condition: the exact begin and end of the peak period was known to the
assimilation model

Hypothesis 6.2. It is possible to provide reasonable prediction results in non-
recurrent conditions. Just as in the estimation results in experiment 4, the accuracy
of the predictions differ on the amount of information put into the assimilation model.
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(a) (b)

Figure 7.22: Time-space diagrams of two routes using different assimilation methods in
recurrent conditions. The horizontal axes depict time in seconds and the vertical axes
space in meters. Figure (a) describes the density of the cells (in veh

m
); Figure (b) describes

the difference in density between the truth situation and the assimilated situations.
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(a) (b)

Figure 7.23: Time-space diagrams of two routes using different assimilation methods. The
used scenario is a scenario of non-recurrent conditions where the closing of the bridge and
an approximation of the turn fractions where used as input. The horizontal axes depict
time in seconds and the vertical axes space in meters. Figure (a) describes the density of
the cells (in veh

m
); Figure (b) describes the difference in density between the truth situation

and the assimilated situations.
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If the bridge closing isn’t put into the assimilation model, the traffic prediction performs
very bad. The other scenarios have both quite some error in the prediction. This is most
likely caused by a relatively slow response in the estimation of the turn fractions.

Hypothesis 6.3. The state localized DEnKF will provide better prediction
results than the state localized EnKF in recurrent conditions. The performance
values of the state based localized DEnKF are up to 20% than the results using the state
localized EnKF in the tested recurrent conditions. Based on the space-time plots, this
difference is very small as both methods perform very well.

Hypothesis 6.4. The state localized DEnKF will provide better prediction
results than the state localized EnKF in non-recurrent conditions. As in the
recurrent conditions, the deterministic scheme performs slightly better than its stochastic
counterpart in non-recurrent conditions.

7.9 Conclusions and discussion experiments

In this section, the six experiments of the previous sections are summarized, and the main
conclusions from these experiments are drawn.

In chapter 9, the main assumptions underlying these experiments and the consequences
of these assumptions are reviewed.

7.9.1 Main results of experiments

This chapter contains six different experiments.

The first experiment is a verification experiment on a small scale network. The perfor-
mance of the ensemble based assimilation methods was quite good in terms of estimation
and prediction accuracy. The deterministic scheme and the localization had no or very
limited influence on the accuracy in this small network.

The second experiment is the base experiment for estimation in a large scale network.
In this experiment, it is shown that the localized schemes performed well in reasonable
computation time (40× real-time). This experiment indicates that the global methods
performed very bad in comparison to the localized methods: no accurate estimation is
found using a global method. The deterministic schemes performs slightly better than
the traditional schemes.

The third experiment investigates the sensitivity to changes in observation configurations.
An observation configuration is comprised of the number of detectors, detector locations,
the measured traffic variables and the measurement errors. The results agree with the
adage “inclusion of more (reliable) information leads to higher accuracy”. Moreover,
more theoretical insight is gained about the relation between the shape of the observation
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functions and the uncertainty of the state. When the value of the state is uncertain, and
thus the ensemble spread is high, the linearised flow-density relation is nearly horizontal.
In this horizontal linearisation, a fixed flow uncertainty correspond to very uncertainty
density error, which adds almost no information.

The fourth experiment handles the state estimation in non-recurrent conditions. A case
is chosen of the closing of a bridge. It is identified that adding of information about the
(possible consequences of the) bridge closing is crucial for the estimation accuracy.

The fifth experiment investigates the issues arising with in an imperfect model context.
In this experiment, a structural mismatch between the “true model” and the assimilation
is introduced by setting the fundamental diagram on the links differently. These changed
FD parameters induces quite some error. Inclusion of on-line capacity estimation by the
inclusion of the FD parameters in the state increased the accuracy of the state estimation
considerably, although the results were not very good yet.

The sixth experiment investigates the prediction capabilities in recurrent and non-recurrent
conditions. The accuracy of the predictions is quite good, especially in the recurrent con-
ditions, when the pattern of the future boundary conditions are known. No in-depth
analysis of the sensitivity of these boundary conditions is made.

7.9.2 Performance of the three refinements of the EnKF

In this section, the conclusions about the three refinements derived in section 5.3 are
drawn on basis of the previous experiments.

Sherman-Woodbury-Morrison formula

From the theoretical analysis the Sherman-Woodbury-Morrison formula (SMW) was found
to decrease the computation time of the global methods considerably, without changing
the results of the assimilation methods. For the state based localized methods, this (the-
oretical) effect is far smaller.

In these experiments the SMW formula decreases the computation time using the global
methods considerably. In these cases, the median computation time of the correction step
is decreased by around 80%. The SMW formula increases the computation time when
applied to the state localized methods, and thus isn’t useful in these cases. In chapter 6,
it was already verified that the SMW implementation doesn’t lead to difference in results.

Deterministic EnKF

In the theoretical analysis it is found that the deterministic EnKF by Sakov and Oke
(2008) should perform slightly better than the traditional EnKF, as the posterior co-
variance is analytically approximated instead of statistically. The DEnKF its thus less
sensitive to random sampling and a small ensemble. The question remains if the assump-
tion underlying the approximation the DEnKF holds in this model.
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In almost all experiments the DEnKF methods perform slightly better than the traditional
EnKF methods: the estimation was up to 20% more accurate. The DEnKF doesn’t impose
a substantial increase on the computation time.

Localization

The localization approaches should increase the accuracy of the assimilation methods, as
the spurious correlations between physically distant model elements are omitted. More-
over, the effective ensemble is increased. Two localization approaches are tested in these
experiments: the state based localization, where the state elements are localized, and
the observation based localization, where the observations are localized. The computa-
tion time of the localized approaches should be lower than the computation time of the
(unimproved) global methods.

A very large difference in accuracy is found when applied to large scale networks. The
global methods ware not useful for application in large scale networks: the global methods
score only marginally better than the case where no assimilation method is applied.

The state based localized methods are found to be both (slightly) faster and (slightly)
more accurate than the observation based localized methods. Therefore, the choice is
made for the state based localized methods instead of the observation based methods.

7.9.3 Comparison computational speed of localized DEnKF

After all these experiments, the question remains if the localized (D)EnKF is a feasible
research alternative to the localized Extended Kalman Filter (EKF) by Van Hinsbergen
et al. (2012). In table 7.11 the localized EKF of Van Hinsbergen et al. (2012) and the
localized (D)EnKF of this research are compared in terms of their computational speed.
Although the localized DEnKF is twice as fast, even though the considered network is
2.4× as large in terms of cells and 3.1× as large in terms of measurements, definitive
conclusions about the relative computational speed of the localized DEnKF cannot be
made yet. The most important reason is that the accuracy of the localized DEnKF is not
assessed yet using real data. If the localized DEnKF only can yield similar results as the
L-EKF when a large ensemble size is chosen, the computational speed deteriorates. Other
reasons for the difficulty in comparing are the different hardware used in the tests and the
generalization of the computational speed of the (possibly) suboptimal implementations
to the computational speed of the algorithms.

The localized DEnKF of this research provides a feasible research alternative for network-
scale state estimation in terms of computational speed compared to the localized EKF.
It will be very interesting how the localized DEnKF compares to the localized EKF when
real data is used.
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Localized EKF Localized (D)EnKF

Reference
Van Hinsbergen et al.
(2012), 75% of detectors
used,

This thesis, N = 20

Hardware
3.0 GHz dual-core, 2 GB
RAM

2.6 GHz quad-core i5-
3230M, 8 GB RAM

Length network 272 km 264 km

Model time step 5 s 2 s

Number of cells 1911 4656

Number of detectors in
network

531 592

Number of used mea-
surements

398 1184

Computational speed ≈ 20× real-time ≈ 40× real-time

Table 7.11: Comparison computational speed L-EKF and L-(D)EnKF.
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Part III

Conclusions and recommendations
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Chapter 8

Conclusions

In this chapter the research questions as posed in the first chapter are answered.

8.1 Main research questions

Question 1: What architecture of a short-term prediction tool will be useful for
the current and near-future Dutch operational traffic management practice?
In section 3.4 an overview of the proposed architecture is given. Here the main important
components are described.

Following subquestions 1a and 1b, the architecture uses a model-based approach for pre-
dicting the traffic state. The main functionality is split into two parts: the estimation and
prediction components. The estimation component first preprocesses the observational
data to reduce the measurement error. The processed data is then used in a Kalman filter
approach, together with a macroscopic traffic model. The prediction component uses the
estimated state to predict the future traffic state by means of the macroscopic model.

Question 2: Could a monitoring and short-term prediction tool be capable
of achieving a sufficient accuracy within the computation time available in a
real-time setting? In this research a prototype is developed that tests advanced data
assimilation methods using synthetic observational data and a quite simple macroscopic
traffic model.

In this setting, the prototype delivered promising results. The prototype was able estimate
the traffic state accurately while maintaining a computational speed of 40× real time, if
the prototype used a perfect model of the traffic dynamics. When the prototype had
imperfect knowledge of the real traffic dynamics, the accuracy dropped. Further research
can investigate ways to alleviate the impact of imperfect knowledge of the real traffic
dynamics.
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8.2 Research subquestions

Question 1a: What functional, performance and stakeholder requirements are
imposed on a monitoring and prediction tool? The requirements were derived in
section 2.2 using a combination of use cases, previous research and a concise stakeholder
analysis. An precise overview of the requirements is given in that section. The most
important requirements are also described here.

One of the most important requirements is that the system should be able to estimate the
traffic state in both recurrent and non-recurrent situations. The non-recurrent situations
are the situations where a monitoring and prediction tool is needed the most as the traffic
manager has no or little experience with these situations.

Another important requirement is that it should be able to incorporate control scenar-
ios into the system. This requirement makes it possible to see the influence of control
scenarios, which makes the transition to an optimization control approach possible in
the future. Moreover, by comparing the network performance in both controlled and
uncontrolled conditions, one could get a grasp of the added value of operational traffic
management. By making the value of operational traffic management clear, the costs of
operational traffic management could be better legitimized.

Question 1b: Which estimation and prediction paradigm suits these require-
ments best? Two main paradigms were identified: a purely statistical approach (also
referred to as a data driven or non-parametric approach) and a simulation based approach
(also referred to as model based or parametric approach).

On basis of theoretical considerations, the choice was made for a simulation based ap-
proach. This is caused by the fact that the simulation based approach is based on pre-
defined knowledge of traffic behaviour instead of purely historical data. Unseen circum-
stances such as non-recurrent conditions or control measures thus can be incorporated.

In practice, the statistical methods of the data driven approach can be used in calibrating
the simulation model to represent the real traffic situation as good as possible.

Question 2a: Based on the chosen estimation and prediction paradigm, how
should the real-time observations be optimally used in the estimation of the
traffic situation? In the model-based approach, a data assimilation method combines
real-time observations with a traffic model. In the architecture it was found that a Kalman
Filter approach would work best in combination with a macroscopic traffic model.

In this thesis, the Ensemble Kalman Filter (EnKF) was analysed as feasible data assim-
ilation tool. In comparison to the Extended Kalman Filter (EKF, commonly used in
combination with macroscopic traffic models), the EnKF (commonly used in other fields
such as meteorological models) has some theoretical advantages such better handling of
non-linearity and lower computational needs.

From literature, three main improvements to the traditional EnKF were identified. The
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first improvement is the Sherman-Morrison-Woodbury reformulation, which speeds up the
estimation of the state considerably without change in results. The second improvement
is avoiding the sampling errors of the (stochastic) EnKF by adopting the deterministic
EnKF (DEnKF) by Sakov and Oke (2008). The third improvement is localization of the
EnKF, which restricts the relation between model elements (cells and observations) that
are physically distant in real-life. The localization improves the accuracy as it removes
spurious (i.e. fake) correlations and increases the effective ensemble size.

Question 2b: Based on the chosen estimation and prediction paradigm, is a
monitoring and short-term prediction tool capable of achieving a sufficient
accuracy faster than real-time using synthetic observations? A prototype was
built with the macroscopic LWR model and the EnKF methods. An identical twin ex-
periment was performed, where the observation data was generated by the same model.
The case of the road network of Rotterdam is used, which consists of 260 km road.

The local methods performed very well, while maintaining a computational speed of 40×
real time. No settings were found where the global methods performed reasonably well.
In all experiments tested, the state localized DEnKF performed slightly better than the
state localized EnKF.

Question 2c: Based on the chosen estimation and prediction paradigm, how
sensitive is a monitoring and short-term prediction tool to imperfect knowl-
edge of the real system? The estimation component is tested using less (reliable)
observations, non-recurrent conditions and structural differences in (the fundamental di-
agram of) the assimilation model compared to the “true model”.

Only in an extreme cases of the observation configurations, the performance of the assim-
ilation methods began to seriously deteriorate.

A case of the closing of a bridge was used as case of non-recurrent conditions. The
introduction of non-recurrent conditions were quite influential on the performance of as-
similation methods. Only if the assimilation model had additional knowledge about the
closing of the bridge, the assimilation methods gave reasonable results.

When structural differences exists between the assimilation model and the true model,
the estimated state was quite different than the true state. When some sort of capacity
estimation is introduced, the performance increases considerably.
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Chapter 9

Discussion and recommendations

9.1 Discussion

In this section results and conclusions of this thesis are critically reviewed. This section
is split into two parts, which correspond to the two main subjects of this thesis.

9.1.1 Discussion of architecture

1. The assumption is made of a centralized approach using a operational traffic man-
agement centre. The future trends can also lead to a more distributed control.

2. The architecture scopes mainly on functional requirements. Other aspects are also
important in implementation, for example security.

9.1.2 Discussion of results of prototype experiments

1. The experiment setup assumed a perfect fit of the assimilation model and the true
model in terms of model structure. Therefore the accuracy of the assimilation model
is far higher than feasible in reality.

2. In the large network experiments, only a limited set of 3 cases was examined. More-
over, the calibration of the assimilation methods were roughly done. Therefore the
ability to generalize the experimental results to conclusions about the assimilation
methods is relatively hard. However, the experimental results, together with theo-
retical knowledge, can serve as indication for further research.

For example the choice between the DEnKF and the traditional EnKF can’t be made
yet. The limited calibration of the assimilation methods doesn’t guarantee that
the optimal performance of the methods are compared. However, the performance
using only limited calibration possibly indicates the robustness of the methods to
the calibration of the parameters.
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3. The use of a relatively simple traffic model instead of a complex traffic model possi-
bly increases the accuracy of the data assimilation method, as it is easier to fit the
simple model right. This is caused by a smaller number of parameters that need to
be fit. In complex traffic models also parameters that are more “non-linear” with
respect to the observed speed and flow play a role.

4. The simple model may not emphasize the benefits of the EnKF in comparison to the
EKF, as the state space is relatively smooth. In this smooth state space, the strictly
local EKF approach performs relatively well. In more non-linear state spaces the
non-local approach of the EnKF may perform relatively better.

5. The relatively low performance of the prototype in the imperfect system knowledge
cases may be amplified by the simple traffic model. The simple traffic model in-
creases the convergence of the cell densities, as the density is the only parameter in
the state that corresponds to a cell. As an example, in congested cells the densities
are all equal for all ensemble members as the density of the congested cells are only
dependent on the capacity downstream. As the cell densities are all the same for
the whole ensemble, the data assimilation algorithm can’t change the value of the
cell densities.

9.2 Recommendations

The recommendations for the following steps are split into three parts. The first subsection
covers the steps to take in further developing the prototype. The second subsection covers
future research directions that are not directly related to the development of the current
prototype. The last subsection covers recommendations for the practice of operational
traffic management.

9.2.1 Further development of prototype

1. Investigate additive error instead of multiplicative error. As is discussed, the esti-
mation of density using the simple LWR model and synthetic observations suffers
from strong convergence of the cell densities. This implies that a lot of confidence
is put on the cell densities by the data assimilation algorithm. This overconfidence
in the cell densities leads to the cell densities to be unadaptive to contradicting
observations. This can be seen in the several experiments using the imperfect sys-
tem knowledge: the location of the congestion is estimated wrong. The inclusion
of multiplicative errors (by means of covariance inflation) is not sufficient in solving
this problem. A change to additive errors may be more successful.

2. More complex traffic model, multi-class The prototype uses the (standard) LWR
traffic model, which is a fairly simple traffic model. Moreover, this traffic model
doesn’t incorporate some congestion phenomena such as the emergence of stop-
and-go waves and the capacity drop. Using more complex traffic models such as
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multi-class models with dynamic pce values can better represent the real traffic
dynamics.

3. Other coordinate systems. Other coordinate systems such as the Lagrangian ap-
proach have some advantages over the used Eulerian coordinate system. An example
of these advantages is the less numerical diffusion caused by the discretization.

4. Handling non-linearity of observations. In the prototype, the non-linearity of the
observation functions is solved by the linearising procedure of the EnKF. Some
research propose to incorporate the observations in the system state of the EnKF,
which could lead to better results. A disadvantage is that the system state becomes
very large, which will slow down the estimation procedure.

9.2.2 Recommendations for further research

1. Validation of the prototype. In this research the prototype is only subjected to
synthetic data, generated from an identical macroscopic traffic model. In order to
make the following steps to eventual implementation of the traffic state estimation
and prediction in an operational traffic management context possible, more research
is needed about the behaviour and results using more realistic data. The first step
can be to use data generated from microscopic traffic models. The second step could
use real data.

2. Covariance localization. In this thesis local analysis is used as localization method.
Further research can also focus covariance localization, which is another commonly
used localization technique. The local analysis technique was chosen mostly

3. Parameter estimation. Further research can focus on the way of parameter esti-
mation using the EnKF. One can for example investigate if the inclusion of the
fundamental diagram parameters in the state leads to good results. Instead of joint
estimation of both parameters and state, one could also use dual estimation, in which
the (fundamental diagram) parameters are estimated on a broader spatiotemporal
discretization.

4. Estimation of shockwave position. The used data assimilation method focuses on the
estimation of the amplitude of the values in the state vector, for example the density
at a certain location. However, one of the main interests is the correct estimation of
the position of congestion and shockwaves. This is illustrated in figure 9.1. In figure
9.1a the traditional approach is used, where the value of the density is estimated.
The mean of the ensemble indicates the mean of the individual cell values. The
result is a road stretch where an intermediate velocity is estimated. In 9.1b the
position of the congestion is of the shockwave is estimated. Instead of averaging the
velocity values on the road stretch where the ensemble members differ, an average
trajectory is chosen in terms of the location of the congestion. This second method
clearly corresponds better to the physical traffic dynamics.

This estimation of position can be incorporated by using a Lagrangian coordinate
scheme. However, the estimation of position can also be incorporated in the data
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(a) (b)

Figure 9.1: These figures plots the velocity of a fictional road stretch. The two green lines
indicate the possible trajectories of two ensemble members. The blue line represents the
“mean” trajectory of the ensemble.
In figure (a) the mean trajectory is formed by the average of the velocity on every part
of the road stretch.
In figure (b) the mean trajectory is formed by the average position of the start of the
congestion.

assimilation approach. Further information on adapting the ensemble based Kalman
Filters to maintain physical states and coherent features such as shockwaves can be
found in Ravela, Emanuel, and McLaughlin (2007), Beezley and Mandel (2008) and
Johns and Mandel (2008).

9.2.3 Recommendations for the practice

1. Integrate state estimation and prediction. The previous practical experience in traffic
state prediction mainly focuses on the prediction part. The estimation component
is only treated as necessary part for prediction instead of an interesting component
per se. Here it is proposed to integrate the state estimation and prediction. The
first reason is the increased trust by the users of the prediction system, when it is
shown that the current situation is estimated correctly. The second reason is that
due to the future changes in measuring equipment (less cameras, more data from
individual vehicles), the implicit state estimation by the traffic operator will become
a problem by itself.

2. Consider other stakeholders such as policy makers. The previous practical expe-
rience with traffic prediction in the Netherlands focused not only on the technical
side, but also on the perspective of the traffic operator. This is a good development,
as the success of a traffic prediction tool is very dependent on the usability of the
tool. However, the traffic operators are not the only stakeholders. Other stakehold-
ers to consider are policy makers that need to approve additional investments in
tools for traffic operators. In principle, the prediction tool can be used for “what-if”
modeling, and thereby clarify the added value of the actions by the traffic operator.

3. Use model-based prediction approach. This research proposes the use of a model-
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based prediction approach. This choice was made due to the better handling of non-
recurrent conditions and modeling and selecting the appropriate control measures
than a purely data-driven approach.
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Appendix A

Computational complexity of EnKF
implementations

The analysis of Mandel (2006) is used as guideline for the analysis of the computational
complexity of the data assimilation schemes. Six different assimilation schemes are con-
sidered.

A.1 Straightforward implementation

Firstly the computational complexities of the assimilation schemes using a straightfor-
ward implementation are analysed. The inverse operations are done by using a Choleski-
decomposition.

As the computation of the matrices X, HX, A and HA is necessary for all schemes, these
computations are omitted from this analysis.

total # computation operation size cost

1 D = O + ε matrix add m×N O(mN)

1 Y = D −HX matrix add m×N O(mN)

1 P = R + 1
N−1(HA)(HA)ᵀ matrix multiply m×N ×m O(m2N)

1 LLᵀ = P Choleski m O(m3)

1 M = P−1Y solution m×m×N O(m2N)

1 Z = (HA)ᵀM matrix multiply N ×m×N O(mN2)

1 Xa = X + 1
N−1AZ matrix multiply n×N ×N O(nN2)

costs: O(m3 +m2N +mN2 + nN2)

Table A.1: Computational complexity of traditional EnKF (straightforward implementa-
tion)
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total # computation operation size cost

1 D = O + ε matrix add m×N O(mN)

for all m observations:

m Y = D −HX matrix add 1×N O(N)

m P = R + 1
N−1(HA)(HA)ᵀ matrix multiply 1×N × 1 O(N)

m LLᵀ = P Choleski 1 O(1)

m M = P−1Y solution 1× 1×N O(N)

m Z = (HA)ᵀM matrix multiply N × 1×N O(N2)

m ∆X = 1
N−1AZ matrix multiply nl ×N ×N O(nlN

2)

for all na affected state variables with detector:

m · na HX(na) = HXb(na) + β1∆X linear regression 2×N × 1 O(N)

1 Xa = X + ∆X matrix add n×N O(nN)

costs: O(mnlN
2 + nN)

Table A.2: Computational complexity of observation based localized EnKF (straightfor-
ward implementation)

The total complexity O(mnlN
2+nN) is derived using the facts that nl ≥ na andN,m, n ≥

1.

The total complexity O(m3
l n+m2

l nN +mlnN
2) is derived using the facts that ml ≥ 1.
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total # computation operation size cost

1 D = O + ε matrix add m×N O(mN)

for all n state variables:

n Y = D −HX matrix add ml ×N O(mlN)

n P = R + 1
N−1(HA)(HA)ᵀ matrix multiply ml ×N ×ml O(m2

lN)

n LLᵀ = P Choleski ml O(m3
l )

n M = P−1Y solution ml ×ml ×N O(m2
lN)

n Z = (HA)ᵀM matrix multiply N ×ml ×N O(mlN
2)

n ∆X = 1
N−1AZ matrix multiply 1×N ×N O(N2)

1 Xa = X + ∆X matrix add n×N O(nN)

costs: O(m3
l n+m2

l nN +mlnN
2)

Table A.3: Computational complexity of state based localized EnKF (straightforward
implementation)

The deterministic methods have a similar complexity as the stochastic methods. However
the first step of perturbing the observations D = O + ε is unnecessary, the deterministic
methods compute the mean values of HX and X. These computations of the mean values
are of complexity O(mN) and O(nN) as HX = 1

N
HX · eN×1 and X = 1

N
X · eN×1 with

eN×1 a N -by-1 matrix of ones. The computation of the Kalman gain is the same in the
deterministic methods and the shift to correct mean state is of complexity O(nN2). These
operations don’t increase the complexity of the previous methods.

A.2 Implementation using Sherman-Morrison-Woodbury

formula

Mandel (2006) proposes to use the Sherman-Morrison-Woodbury formula in order to cope
with a large number of observations m. Hager (1989) defines the Sherman-Morrison-
Woodbury formula as : if A and I + V A−1U are invertible, then A + UV is invertible
and

(A+ UV )−1 = A−1 − A−1U
(
I + V A−1U

)−1
V A−1.

With respect to the application in this research, we can choose:

A = R, U =
1

N − 1
HA, V = (HA)ᵀ.

The Sherman-Morrison-Woodbury formula strongly depends on the (cheap) inversion of
R. In the context of this research R is often assumed diagonal (or easy to decompose),
which makes the formula very suitable. In the following analyses, R is assumed diagonal.
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Using the formula above, the inversion of P can be rewrote as

P−1 =

(
R +

1

N − 1
(HA)(HA)ᵀ

)−1
(A.1)

= R−1 −R−1 1

N − 1
(HA)

(
I + (HA)ᵀR−1

1

N − 1
(HA)

)−1
(HA)ᵀR−1 (A.2)

= R−1

[
I − 1

N − 1
(HA)

(
I + (HA)ᵀR−1

1

N − 1
(HA)

)−1
(HA)ᵀR−1

]
. (A.3)

The complexity of the traditional EnKF using this method was analysed by Mandel (2006).
Note that Mandel (2006) made a small mistake in his equations: in his algorithm in table
A.4 the matrix Y is mistakenly replaced with the matrix I in the equation M = . . . .

total # computation operation size cost

1 D = O + ε matrix add m×N O(mN)

1 Y = D −HX matrix add m×N O(mN)

1 T = (HA)ᵀR−1Y matrix multiply N ×m×N O(mN2)

1 Q = I + (HA)ᵀR−1 1
N−1(HA) matrix multiply N ×m×N O(mN2)

1 LLᵀ = Q Choleski N O(N3)

1 W = Q−1T solution N ×N ×N O(N3)

1 M = R−1
[
Y − 1

N−1(HA)W
]

matrix multiply m×N ×N O(mN2)

1 Z = (HA)ᵀM matrix multiply N ×m×N O(mN2)

1 Xa = X + 1
N−1AZ matrix multiply n×N ×N O(nN2)

costs: O(N3 +mN2 + nN2)

Table A.4: Computational complexity of traditional EnKF (using Sherman-Morrison-
Woodbury formula)

The complexity O(N3+mN2+nN2) is now reduced to a linear complexity for the number
of observations m.
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total # computation operation size cost

1 D = O + ε matrix add m×N O(mN)

for all n state variables:

n Y = D −HX matrix add ml ×N O(mlN)

n T = (HA)ᵀR−1Y matrix multiply N ×ml ×N O(mlN
2)

n Q = I + (HA)ᵀR−1 1
N−1(HA) matrix multiply N ×ml ×N O(mlN

2)

n LLᵀ = Q Choleski N O(N3)

n W = Q−1T solution N ×N ×N O(N3)

n M = R−1
[
I − 1

N−1(HA)W
]

matrix multiply ml ×N ×N O(mlN
2)

n Z = (HA)ᵀM matrix multiply N ×ml ×N O(mlN
2)

n ∆X = 1
N−1AZ matrix multiply 1×N ×N O(N2)

1 Xa = X + ∆X matrix multiply n×N O(nN)

costs: O(nN3 +mlnN
2)

Table A.5: Computational complexity of state based localised EnKF (using Sherman-
Morrison-Woodbury formula)

Note that it isn’t useful to use the Sherman-Morrison-Woodbury formula for a observation

based localized EnKF, as in this case P−1 =
(
R + 1

N−1(HA)(HA)ᵀ
)−1

is already cheap
to compute as P is a scalar.

As in the straightforward implementation, the deterministic methods using the Sherman-
Morrison-Woodbury formula have the same complexity as the stochastic methods. The
same reasoning as in the previous paragraph applies.

A.3 Conclusion theoretical analysis of computational

complexity

Assimilation method Implementation Complexity

(D)EnKF global Straightforward O(m3 +m2N +mN2 + nN2)

(D)EnKF local state Straightforward O(m3
l n+m2

l nN +mlnN
2)

(D)EnKF local observation Straightforward O(mnlN
2 + nN)

(D)EnKF global Sherman-Morrison-Woodbury O(N3 +mN2 + nN2)

(D)EnKF local state Sherman-Morrison-Woodbury O(nN3 +mlnN
2)

(D)EnKF local observation Sherman-Morrison-Woodbury -

Table A.6: Computational complexity
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If m > N , the complexity of the Sherman-Morrison-Woodbury implementation of the
global method is lower than the straightforward method. For the state localized methods,
the complexity of the Sherman-Morrison-Woodbury implementation is lower if ml > N .



Appendix B

Results experiment 1: small toy
network

In this chapter the results of the first simulation experiment are given. The first simulation
experiment consists of testing the data assimilation methods on a small toy network using
synthetic data. A description of the experiment design is given in section 7.3.1.

This experiment consists of 4 subexperiments:

• Experiment 1a: first calibration of assimilation schemes.

• Experiment 1b: extension with coviariance inflation.

• Experiment 1c: sensitivity to ensemble size.

• Experiment 1d: sensitivity to localization radius.

B.1 Experiment 1a: first calibration of assimilation

methods

The goal of experiment 1a is to find a reasonable values for the base assimilation param-
eters in order for the data assimilation methods to be compared. In order to limit the
computation time of the simulation, only ten different sets of initial errors of the state pa-
rameters (density, inflow and turn fraction) are used. The inflation factors are taken into
account in experiment 1b. The parameters sets are randomly generated using a Monte
Carlo approach, as permutations of the parameters is not feasible due to the high number
of parameters and long computation time. The assimilation parameter sets are displayed
in table B.1

As determining the best assimilation parameter set is not straightforward as there are
many indicators, a definition of the best parameter set is needed. For each assimilation
scheme and indicator, the performance relative to the best assimilation parameter set
is determined by the ratio between the values of the indicators. By multiplicating the
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Parameter set Initial error K Initial error I Initial error TF Inflation factor K Inflation factor I Inflation factor TF

1 0.0075 0.0857 0.3327 1.0000 1.0000 1.0000

2 0.0099 0.0278 0.1700 1.0000 1.0000 1.0000

3 0.0076 0.1359 0.2686 1.0000 1.0000 1.0000

4 0.0036 0.1262 0.3561 1.0000 1.0000 1.0000

5 0.0015 0.1673 0.2914 1.0000 1.0000 1.0000

6 0.0090 0.2348 0.4230 1.0000 1.0000 1.0000

7 0.0075 0.1996 0.4350 1.0000 1.0000 1.0000

8 0.0067 0.0204 0.2821 1.0000 1.0000 1.0000

9 0.0066 0.2495 0.3833 1.0000 1.0000 1.0000

10 0.0059 0.0944 0.3178 1.0000 1.0000 1.0000

Table B.1: Overview used assimilation parameter sets

ratios for all the indicators, the total ratio is determined for each parameter set. The best
parameter set is then defined as the parameter set with the lowest total ratio.

B.1.1 Accuracy state estimation

In this paragraph, the accuracies of the state estimation of the different schemes are
presented for both the whole spatiotemporal region (table B.2) and the region split into
different traffic regimes (table B.3). The ensemble based schemes all provide reasonable

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 0.0046 0.0204 0.9012 0.0100 157139

EnKF local state 5 0.0051 0.0225 1.0020 0.0116 171721

EnKF local observation 5 0.0055 0.0261 1.0763 0.0147 199762

DEnKF global 10 0.0045 0.0201 0.8901 0.0101 154162

DEnKF local state 10 0.0044 0.0202 0.8718 0.0096 148865

DEnKF local observation 5 0.0050 0.0235 0.9866 0.0126 177815

No Assimilation - 0.0403 0.8721 7.6055 0.3921 6288372

Table B.2: Accuracies of the different assimilation schemes.

results, with small errors compared to the “No Assimilation” method.

The DEnKF methods have lower error than the EnKF methods: the global DEnKF scores
1-3% better than the global EnKF. The state based localized DEnKF scores between 12-
22% better than its EnKF counterpart. The observation based localized DEnKF has
9-15% better accuracy than the its stochastic counterpart.

For the EnKF, the state based and observation based localized method perform 9-16 %
and 19-45% worse than the global method. For the DEnKF, the state based method
performs similarly to the global method. The observation based method performs 10 - 24
% worse.

However mutually large relative differences exist in the assimilation schemes, all assimi-
lation schemes perform reasonably well. The mean errors of the density and velocity are
circa 2-2.7% and 1-1.5% respectively for all assimilation schemes.

The traffic state dependent results are according to expectation. In free flow the densities
and velocities are low and high respectively. Therefore a small RMSE in density corre-
sponds with a relatively high MAPE in density, and a high RMSE in velocity corresponds
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Free flow Congested

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global 5 0.0029 0.0213 0.6287 0.0027 0.0077 0.0171 1.4074 0.0360

EnKF local state 5 0.0033 0.0235 0.7131 0.0030 0.0083 0.0186 1.5159 0.0424

EnKF local observation 5 0.0034 0.0274 0.7068 0.0034 0.0094 0.0215 1.7364 0.0552

DEnKF global 10 0.0027 0.0210 0.6005 0.0026 0.0076 0.0170 1.4165 0.0369

DEnKF local state 10 0.0028 0.0212 0.6052 0.0026 0.0074 0.0165 1.3729 0.0346

DEnKF local observation 5 0.0032 0.0247 0.6749 0.0031 0.0084 0.0191 1.5698 0.0467

No Assimilation - 0.0322 1.0257 6.1112 0.1121 0.0493 0.3257 8.9809 1.3949

Table B.3: Accuracies of the different assimilation schemes, split into different state con-
ditions.

with a low MAPE in velocity. Vice versa holds for the congested traffic state. Noteworthy
is that the assimilation performs worse in the congested region.

In order to get a better grasp of the accuracy, time-space plots of the first network
parameter set are given in figure B.1. In table B.4 the associated error statistics are
shown for this network parameter set.

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 0.0032 0.0167 0.6464 0.0058 102694

EnKF local state 5 0.0041 0.0181 0.8450 0.0089 137324

EnKF local observation 5 0.0034 0.0165 0.6934 0.0068 101672

DEnKF global 10 0.0059 0.0271 0.9921 0.0082 153035

DEnKF local state 10 0.0061 0.0279 1.0364 0.0090 158320

DEnKF local observation 5 0.0042 0.0212 0.8197 0.0077 128064

No Assimilation - 0.0583 2.0211 10.6156 0.2718 11069269

Table B.4: Error statistics of network parameter set 1, which corresponds to the timespace
plots.

Note that in this specific case the DEnKF methods perform worse than the EnKF meth-
ods. This is coincedental with the use of a certain network parameter set. Most likely the
used assimilation parameter set 10 is less suitable for this network parameter set, as the
global DEnKF and state localized DEnKF perform worse than average, while the other
methods perform better than average.
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Figure B.1: Time-space diagrams of the three routes using network parameter set 1 and
the different assimilation methods. The horizontal axes depict time in seconds and the
vertical axes space in meters. Figure (a) describes the density of the cells (in veh

m
); Figure

(b) describes the difference in density between the truth situation and the assimilated
situations.

B.1.2 Stability state estimation

In this subsection the stability of the data assimilation methods to differences in net-
work parameters is discussed. The DEnKF methods seem somewhat less sensitive to

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 0.0065 0.0249 1.3261 0.0165 222426

EnKF local state 5 0.0075 0.0358 1.4919 0.0178 265240

EnKF local observation 5 0.0088 0.0382 1.7148 0.0321 345092

DEnKF global 10 0.0069 0.0271 1.4077 0.0137 233378

DEnKF local state 10 0.0061 0.0279 1.1915 0.0124 214710

DEnKF local observation 5 0.0075 0.0360 1.4977 0.0237 263107

No Assimilation - 0.0658 2.0211 12.6103 1.0419 13253298

Table B.5: 90th percentile of performance indicators for different network parameters

differences in the network parameters, although the differences are small. When the 90th
percentile values, given in tables B.5 and B.6, are compared to the mean values given in
tables B.2 and B.3, the 90th percentile values are generally still low. This means that the
data assimilation performs well over a whole range of network parameters.
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Free flow Congested

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global 5 0.0044 0.0263 0.9136 0.0039 0.0106 0.0268 1.7474 0.0535

EnKF local state 5 0.0061 0.0407 1.3273 0.0053 0.0121 0.0263 2.3290 0.0685

EnKF local observation 5 0.0063 0.0416 1.2997 0.0052 0.0166 0.0409 3.2456 0.1361

DEnKF global 10 0.0046 0.0299 0.9893 0.0035 0.0101 0.0202 2.0537 0.0560

DEnKF local state 10 0.0047 0.0305 0.9839 0.0035 0.0091 0.0195 1.8335 0.0501

DEnKF local observation 5 0.0052 0.0388 1.1776 0.0048 0.0133 0.0283 2.5831 0.0918

No Assimilation - 0.0632 2.5356 11.8669 0.2839 0.1004 0.7493 18.4556 4.0744

Table B.6: 90th percentile of performance indicators for different network parameters in
different traffic conditions

B.1.3 Accuracy state prediction

In this subsection the accuracy of the predictions made. Each simulation run, a 1 hour
prediction is made at at t = 1200s. These predictions are here compared to the truth
data.

∆t Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 5 0.0034 0.0181 0.6531 0.0129 5882

EnKF local state 5 5 0.0036 0.0194 0.6776 0.0153 6341

EnKF local observation 5 5 0.0037 0.0214 0.7119 0.0170 6628

DEnKF global 5 10 0.0034 0.0180 0.6707 0.0114 5757

DEnKF local state 5 10 0.0036 0.0179 0.7073 0.0123 6081

DEnKF local observation 5 5 0.0044 0.0208 0.8537 0.0190 8509

No Assimilation 5 - 0.0372 0.5519 6.7786 0.2834 209733

EnKF global 15 5 0.0063 0.0252 1.2616 0.0250 40982

EnKF local state 15 5 0.0066 0.0271 1.3294 0.0287 44716

EnKF local observation 15 5 0.0068 0.0285 1.3723 0.0313 45667

DEnKF global 15 10 0.0060 0.0240 1.2183 0.0213 37665

DEnKF local state 15 10 0.0061 0.0239 1.2453 0.0226 39117

DEnKF local observation 15 5 0.0069 0.0275 1.3910 0.0329 48930

No Assimilation 15 - 0.0464 0.7117 8.5217 0.5018 913764

EnKF global 30 5 0.0100 0.0393 1.9420 0.0420 126705

EnKF local state 30 5 0.0107 0.0430 2.0750 0.0488 140500

EnKF local observation 30 5 0.0116 0.0448 2.2221 0.0596 155313

DEnKF global 30 10 0.0097 0.0360 1.8856 0.0392 120713

DEnKF local state 30 10 0.0095 0.0351 1.8476 0.0383 118237

DEnKF local observation 30 5 0.0105 0.0396 2.0339 0.0551 146593

No Assimilation 30 - 0.0523 0.8244 9.5366 0.7991 2177844

EnKF global 60 5 0.0089 0.0381 1.7161 0.0361 202935

EnKF local state 60 5 0.0095 0.0422 1.8350 0.0420 224135

EnKF local observation 60 5 0.0102 0.0448 1.9597 0.0522 253996

DEnKF global 60 10 0.0087 0.0351 1.6721 0.0362 196201

DEnKF local state 60 10 0.0084 0.0338 1.6237 0.0345 189838

DEnKF local observation 60 5 0.0092 0.0392 1.7885 0.0471 235334

No Assimilation 60 - 0.0506 1.1004 9.3514 0.6772 4439910

Table B.7: Mean accuracy of predictions made ∆t ahead.

The accuracy of the predictions made are following a similar pattern as the state esti-
mation accuracy in terms of the performance of the different assimilation methods. Note
that the prediction error is significantly higher than the state estimation error. This is
logical in the sense that less information is used.

The values of the indicators for different values of ∆t are in general hard to compare, as
they are computed over different time intervals.
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Free flow Congested

∆t Set RMSE
K

MAPE
K

RMSE
V

MAPE
V

RMSE
K

MAPE
K

RMSE
V

MAPE
V

EnKF global 5 5 0.0010 0.0154 0.1858 0.0022 0.0102 0.0438 1.9276 0.1144

EnKF local state 5 5 0.0010 0.0165 0.1921 0.0024 0.0108 0.0478 2.0018 0.1390

EnKF local observation 5 5 0.0009 0.0182 0.1544 0.0025 0.0115 0.0519 2.1726 0.1551

DEnKF global 5 10 0.0011 0.0152 0.2044 0.0023 0.0103 0.0449 1.9522 0.0982

DEnKF local state 5 10 0.0010 0.0149 0.1863 0.0022 0.0110 0.0472 2.1124 0.1094

DEnKF local
observation

5 5 0.0012 0.0166 0.2405 0.0025 0.0134 0.0605 2.5061 0.1764

No Assimilation 5 - 0.0276 0.5690 5.1601 0.0990 0.0607 0.3885 10.1660 2.0393

EnKF global 15 5 0.0025 0.0222 0.5959 0.0041 0.0120 0.0360 2.2845 0.1013

EnKF local state 15 5 0.0028 0.0239 0.6811 0.0045 0.0126 0.0390 2.3614 0.1172

EnKF local observation 15 5 0.0023 0.0250 0.5377 0.0043 0.0135 0.0416 2.5920 0.1296

DEnKF global 15 10 0.0023 0.0212 0.5245 0.0039 0.0114 0.0342 2.2265 0.0847

DEnKF local state 15 10 0.0023 0.0206 0.5336 0.0038 0.0119 0.0358 2.2983 0.0910

DEnKF local
observation

15 5 0.0025 0.0231 0.5735 0.0043 0.0133 0.0436 2.5258 0.1374

No Assimilation 15 - 0.0347 0.8169 6.6786 0.1397 0.0574 0.3273 9.7247 1.8247

EnKF global 30 5 0.0061 0.0446 1.2729 0.0074 0.0134 0.0304 2.4770 0.1001

EnKF local state 30 5 0.0065 0.0489 1.4185 0.0082 0.0141 0.0330 2.5673 0.1170

EnKF local observation 30 5 0.0059 0.0489 1.1982 0.0077 0.0161 0.0378 3.0122 0.1465

DEnKF global 30 10 0.0055 0.0392 1.1323 0.0065 0.0133 0.0307 2.5214 0.0940

DEnKF local state 30 10 0.0055 0.0380 1.1343 0.0064 0.0130 0.0303 2.4723 0.0919

DEnKF local
observation

30 5 0.0052 0.0420 1.0988 0.0070 0.0145 0.0356 2.7244 0.1358

No Assimilation 30 - 0.0425 1.1433 7.8945 0.1731 0.0541 0.2892 9.5671 1.8497

EnKF global 60 5 0.0059 0.0442 1.2120 0.0062 0.0110 0.0293 2.0228 0.0799

EnKF local state 60 5 0.0064 0.0487 1.3455 0.0069 0.0115 0.0327 2.0942 0.0934

EnKF local observation 60 5 0.0058 0.0494 1.1463 0.0066 0.0132 0.0380 2.4682 0.1189

DEnKF global 60 10 0.0053 0.0387 1.0657 0.0054 0.0112 0.0299 2.0973 0.0813

DEnKF local state 60 10 0.0052 0.0372 1.0563 0.0052 0.0108 0.0288 2.0357 0.0775

DEnKF local
observation

60 5 0.0050 0.0422 1.0344 0.0058 0.0121 0.0347 2.2639 0.1075

No Assimilation 60 - 0.0446 1.6368 8.2461 0.1790 0.0487 0.3145 8.8152 1.4072

Table B.8: Mean accuracy of predictions made ∆t ahead, in different traffic conditions.

In order to get a better grasp of the accuracy, time-space plots using the first network
parameter set are given in figure B.2. In table B.9 the associated error statistics are shown
for this network parameter set.

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 0.0035 0.0091 0.7202 0.0074 69012

EnKF local state 5 0.0034 0.0100 0.7813 0.0074 79949

EnKF local observation 5 0.0019 0.0055 0.4273 0.0051 49358

DEnKF global 10 0.0094 0.0495 1.6835 0.0188 189166

DEnKF local state 10 0.0089 0.0449 1.5459 0.0162 169665

DEnKF local observation 5 0.0038 0.0110 0.8497 0.0064 75833

No Assimilation - 0.0624 2.0323 10.7008 0.2888 4910930

Table B.9: Error statistics of ∆t = 60 prediction using network parameter set 1.

Again, the EnKF and observation localized DEnKF score very good for this case. In
average, all methods score similar to the global and state localized DEnKF as in the
time-space plots above.
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Figure B.2: The predicted time-space diagrams of the three routes using network param-
eter set 1 and the different assimilation methods. The white line indicates the instant the
1 hour prediction is made. The horizontal axes depict time in seconds and the vertical
axes space in meters. Figure (a) describes the predicted density of the cells (in veh

m
); Fig-

ure (b) describes the difference in density between the truth situation and the predicted
assimilated situations.
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B.1.4 Stability state prediction

∆t Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 5 0.0075 0.0317 1.4139 0.0296 13111

EnKF local state 5 5 0.0091 0.0357 1.6796 0.0416 16389

EnKF local observation 5 5 0.0096 0.0427 1.7518 0.0468 17444

DEnKF global 5 10 0.0070 0.0321 1.3289 0.0292 12278

DEnKF local state 5 10 0.0072 0.0335 1.3707 0.0283 12514

DEnKF local observation 5 5 0.0085 0.0433 1.5812 0.0363 15097

No Assimilation 5 - 0.0655 1.4805 11.9941 0.5585 488877

EnKF global 15 5 0.0114 0.0424 2.3112 0.0506 74811

EnKF local state 15 5 0.0141 0.0434 2.6208 0.0846 104381

EnKF local observation 15 5 0.0135 0.0587 2.5655 0.0858 98959

DEnKF global 15 10 0.0103 0.0387 2.0481 0.0530 71395

DEnKF local state 15 10 0.0108 0.0394 2.0914 0.0482 72926

DEnKF local observation 15 5 0.0127 0.0497 2.5649 0.0586 86415

No Assimilation 15 - 0.0719 1.7008 12.9181 1.1972 1673325

EnKF global 30 5 0.0149 0.0624 2.7548 0.0916 207198

EnKF local state 30 5 0.0183 0.0656 3.5480 0.1230 290350

EnKF local observation 30 5 0.0201 0.0840 3.9773 0.1536 341854

DEnKF global 30 10 0.0149 0.0512 2.8529 0.0698 192775

DEnKF local state 30 10 0.0149 0.0512 2.8855 0.0704 199804

DEnKF local observation 30 5 0.0193 0.0566 3.6663 0.1177 303411

No Assimilation 30 - 0.0881 1.5604 16.1832 2.2034 5267326

EnKF global 60 5 0.0121 0.0557 2.3574 0.0702 322085

EnKF local state 60 5 0.0150 0.0633 2.9122 0.0888 415512

EnKF local observation 60 5 0.0173 0.0759 3.3363 0.1216 524103

DEnKF global 60 10 0.0130 0.0495 2.4185 0.0669 297238

DEnKF local state 60 10 0.0129 0.0449 2.4284 0.0666 308144

DEnKF local observation 60 5 0.0163 0.0581 3.1309 0.0975 508397

No Assimilation 60 - 0.0910 2.5630 17.4110 1.9735 12493669

Table B.10: 90th percentile of predicted performance indicators for different network
parameters

The predictions are also quite insensitive to changes in the network parameters. The
DEnKF approaches perform slightly better than the EnKF approaches.
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Free flow Congested

∆t Set RMSE
K

MAPE
K

RMSE
V

MAPE
V

RMSE
K

MAPE
K

RMSE
V

MAPE
V

EnKF global 5 5 0.0022 0.0259 0.5503 0.0049 0.0241 0.0949 4.5714 0.2896

EnKF local state 5 5 0.0019 0.0306 0.4791 0.0046 0.0294 0.1160 5.4324 0.4017

EnKF local observation 5 5 0.0020 0.0345 0.4892 0.0052 0.0309 0.1280 5.6637 0.4515

DEnKF global 5 10 0.0029 0.0254 0.7249 0.0045 0.0225 0.0958 4.2933 0.2784

DEnKF local state 5 10 0.0025 0.0265 0.6209 0.0043 0.0234 0.0952 4.4415 0.2844

DEnKF local
observation

5 5 0.0029 0.0343 0.6986 0.0049 0.0275 0.1089 5.1221 0.3609

No Assimilation 5 - 0.0678 1.5645 12.0917 0.2996 0.1167 0.8097 20.1281 4.8637

EnKF global 15 5 0.0063 0.0436 1.4969 0.0087 0.0217 0.0621 4.0988 0.2216

EnKF local state 15 5 0.0046 0.0409 1.1720 0.0081 0.0297 0.0898 5.3966 0.3766

EnKF local observation 15 5 0.0047 0.0500 1.2041 0.0091 0.0290 0.0916 5.4473 0.3795

DEnKF global 15 10 0.0062 0.0366 1.4883 0.0092 0.0219 0.0663 4.2876 0.2358

DEnKF local state 15 10 0.0055 0.0364 1.3428 0.0082 0.0209 0.0645 4.0642 0.2168

DEnKF local
observation

15 5 0.0052 0.0438 1.2968 0.0097 0.0236 0.0708 4.4595 0.2623

No Assimilation 15 - 0.0743 2.0859 13.8605 0.3622 0.1169 0.7657 19.4871 4.8002

EnKF global 30 5 0.0111 0.0760 2.1504 0.0127 0.0223 0.0478 3.9704 0.2387

EnKF local state 30 5 0.0121 0.0823 2.5502 0.0132 0.0247 0.0604 4.4211 0.3106

EnKF local observation 30 5 0.0116 0.0948 2.2662 0.0165 0.0293 0.0743 5.3909 0.4016

DEnKF global 30 10 0.0094 0.0619 1.8950 0.0114 0.0197 0.0453 3.9804 0.1698

DEnKF local state 30 10 0.0095 0.0588 1.7974 0.0115 0.0205 0.0462 4.0307 0.1742

DEnKF local
observation

30 5 0.0108 0.0681 2.1952 0.0125 0.0257 0.0596 4.7760 0.3073

No Assimilation 30 - 0.0776 2.3532 13.8852 0.3627 0.1105 0.7237 19.2940 5.3071

EnKF global 60 5 0.0102 0.0702 2.1792 0.0108 0.0169 0.0491 3.2338 0.1692

EnKF local state 60 5 0.0121 0.0858 2.5114 0.0119 0.0200 0.0595 3.7968 0.2108

EnKF local observation 60 5 0.0108 0.0818 2.1586 0.0113 0.0236 0.0702 4.5048 0.2935

DEnKF global 60 10 0.0087 0.0570 1.5490 0.0076 0.0172 0.0478 3.3069 0.1540

DEnKF local state 60 10 0.0083 0.0558 1.5805 0.0079 0.0176 0.0489 3.2981 0.1525

DEnKF local
observation

60 5 0.0104 0.0762 2.0115 0.0105 0.0209 0.0707 4.0127 0.2352

No Assimilation 60 - 0.0818 3.7911 16.3488 0.3904 0.1012 0.7421 18.5181 4.2048

Table B.11: 90th percentile of predicted performance indicators for different network
parameters in different traffic conditions
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B.2 Experiment 1b: extension with covariance infla-

tion

In experiment 1b, the influence of different inflation factors is investigated. The covari-
ance inflation is used in order to diminish overconfidence in the model that can occur in
ensemble based approaches.

For this experiment, the two best parameter sets (set 5 and 10 of table B.1) are taken
with different inflation factors, that are randomly sampled. The used parameter sets are
displayed in table B.12.

Parameter set Initial error K Initial error I Initial error TF Inflation factor K Inflation factor I Inflation factor TF

1 0.0015 0.1673 0.2914 1.0000 1.0000 1.0000

2 0.0015 0.1673 0.2914 1.0149 1.0336 1.0138

3 0.0015 0.1673 0.2914 1.0038 1.0183 1.0324

4 0.0015 0.1673 0.2914 1.0050 1.0494 1.0362

5 0.0015 0.1673 0.2914 1.0132 1.0418 1.0138

6 0.0059 0.0944 0.3178 1.0000 1.0000 1.0000

7 0.0059 0.0944 0.3178 1.0149 1.0336 1.0138

8 0.0059 0.0944 0.3178 1.0038 1.0183 1.0324

9 0.0059 0.0944 0.3178 1.0050 1.0494 1.0362

10 0.0059 0.0944 0.3178 1.0132 1.0418 1.0138

Table B.12: Overview used assimilation parameters in experiment 1b

B.2.1 Accuracy state estimation

The inclusion of different inflation factors only results in performance gains for the
(stochastic) EnKF methods. This is logical, given the fact that the DEnKF approaches
have a ’built-in’ inflation due to the overestimation of the covariance. The average perfor-

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 3 0.0045 0.0212 0.8952 0.0104 159424

EnKF local state 2 0.0048 0.0229 0.9523 0.0113 178441

EnKF local observation 10 0.0055 0.0300 1.1020 0.0133 224706

DEnKF global 6 0.0045 0.0201 0.8901 0.0101 154162

DEnKF local state 6 0.0044 0.0202 0.8718 0.0096 148865

DEnKF local observation 1 0.0050 0.0235 0.9866 0.0126 177815

No Assimilation - 0.0403 0.8721 7.6055 0.3921 6288372

Table B.13: Overview performance indicators including covariance inflation. .

mance indicator is 3% worse for the global EnKF than the global DEnKF. The localized
EnKFs score relatively even worse: the state based EnKF and observation based EnKF
score respectively 14% and 16% higher.

Again time-space plots of the first network parameter set are constructed, see figure B.3.
In table B.15 the associated error statistics are shown for this network parameter set.

The accuracies of the state estimation didn’t change much by inclusion the covariance
inflation.
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Free flow Congested

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global 3 0.0028 0.0223 0.6186 0.0028 0.0076 0.0174 1.3987 0.0379

EnKF local state 2 0.0031 0.0241 0.6746 0.0030 0.0080 0.0184 1.4788 0.0411

EnKF local observation 10 0.0037 0.0324 0.8128 0.0039 0.0090 0.0215 1.6884 0.0471

DEnKF global 6 0.0027 0.0210 0.6005 0.0026 0.0076 0.0170 1.4165 0.0369

DEnKF local state 6 0.0028 0.0212 0.6052 0.0026 0.0074 0.0165 1.3729 0.0346

DEnKF local observation 1 0.0032 0.0247 0.6749 0.0031 0.0084 0.0191 1.5698 0.0467

No Assimilation - 0.0322 1.0257 6.1112 0.1121 0.0493 0.3257 8.9809 1.3949

Table B.14: Overview performance indicators in different traffic states including covari-
ance inflation.

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 3 0.0052 0.0237 0.9427 0.0079 149838

EnKF local state 2 0.0065 0.0280 1.2266 0.0149 225113

EnKF local observation 10 0.0065 0.0298 1.2345 0.0154 234721

DEnKF global 6 0.0059 0.0271 0.9921 0.0082 153035

DEnKF local state 6 0.0061 0.0279 1.0364 0.0090 158320

DEnKF local observation 1 0.0042 0.0212 0.8197 0.0077 128064

No Assimilation - 0.0583 2.0211 10.6156 0.2718 11069269

Table B.15: Error statistics of network parameter set 1, which corresponds to the times-
pace plots in figure B.3.
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Figure B.3: Time-space diagrams of the three routes using network parameter set 1 and
the different assimilation methods. The horizontal axes depict time in seconds and the
vertical axes space in meters. Figure (a) describes the density of the cells (in veh

m
); Figure

(b) describes the difference in density between the truth situation and the assimilated
situations.
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B.2.2 Stability state estimation

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 3 0.0075 0.0290 1.5104 0.0137 272294

EnKF local state 2 0.0078 0.0280 1.5715 0.0159 261144

EnKF local observation 10 0.0080 0.0438 1.6310 0.0181 298924

DEnKF global 6 0.0069 0.0271 1.4077 0.0137 233378

DEnKF local state 6 0.0061 0.0279 1.1915 0.0124 214710

DEnKF local observation 1 0.0075 0.0360 1.4977 0.0237 263107

No Assimilation - 0.0658 2.0211 12.6103 1.0419 13253298

Table B.16: 90th percentile of performance indicators for different network parameters.

Free flow Congested

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global 3 0.0057 0.0321 1.2313 0.0041 0.0099 0.0252 2.0270 0.0545

EnKF local state 2 0.0048 0.0294 0.9643 0.0038 0.0109 0.0240 2.1896 0.0628

EnKF local observation 10 0.0060 0.0488 1.2440 0.0054 0.0115 0.0263 2.3265 0.0700

DEnKF global 6 0.0046 0.0299 0.9893 0.0035 0.0101 0.0202 2.0537 0.0560

DEnKF local state 6 0.0047 0.0305 0.9839 0.0035 0.0091 0.0195 1.8335 0.0501

DEnKF local observation 1 0.0052 0.0388 1.1776 0.0048 0.0133 0.0283 2.5831 0.0918

No Assimilation - 0.0632 2.5356 11.8669 0.2839 0.1004 0.7493 18.4556 4.0744

Table B.17: 90th percentile of performance indicators for different network parameters,
in different traffic conditions.

The DEnKF seems more stable with respect to changes in initial network parameters
than the EnKF approaches. For both the EnKF and the DEnKF the observation based
localized approach seems to be the least stable method.

B.2.3 Accuracy state prediction

The accuracy of the predictions are slightly better for the assimilation methods where the
covariance inflation is used.

In order to get a better grasp of the accuracy, time-space plots using the first network
parameter set are given in figure B.4. In table B.20 the associated error statistics are
shown for this network parameter set.
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Figure B.4: The predicted time-space diagrams of the three routes using network param-
eter set 1 and the different assimilation methods. The white line indicates the instant the
1 hour prediction is made. The horizontal axes depict time in seconds and the vertical
axes space in meters. Figure (a) describes the predicted density of the cells (in veh

m
); Fig-

ure (b) describes the difference in density between the truth situation and the predicted
assimilated situations.
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∆t Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 3 0.0031 0.0167 0.6120 0.0105 5183

EnKF local state 5 2 0.0026 0.0177 0.5075 0.0104 4229

EnKF local observation 5 10 0.0029 0.0197 0.5683 0.0113 4669

DEnKF global 5 6 0.0034 0.0180 0.6707 0.0114 5757

DEnKF local state 5 6 0.0036 0.0179 0.7073 0.0123 6081

DEnKF local observation 5 1 0.0044 0.0208 0.8537 0.0190 8509

No Assimilation 5 - 0.0372 0.5519 6.7786 0.2834 209733

EnKF global 15 3 0.0058 0.0229 1.1764 0.0208 36287

EnKF local state 15 2 0.0055 0.0239 1.1307 0.0200 33965

EnKF local observation 15 10 0.0064 0.0278 1.3144 0.0246 41349

DEnKF global 15 6 0.0060 0.0240 1.2183 0.0213 37665

DEnKF local state 15 6 0.0061 0.0239 1.2453 0.0226 39117

DEnKF local observation 15 1 0.0069 0.0275 1.3910 0.0329 48930

No Assimilation 15 - 0.0464 0.7117 8.5217 0.5018 913764

EnKF global 30 3 0.0089 0.0340 1.7656 0.0363 112706

EnKF local state 30 2 0.0100 0.0391 1.9379 0.0420 124388

EnKF local observation 30 10 0.0107 0.0441 2.0755 0.0499 141622

DEnKF global 30 6 0.0097 0.0360 1.8856 0.0392 120713

DEnKF local state 30 6 0.0095 0.0351 1.8476 0.0383 118237

DEnKF local observation 30 1 0.0105 0.0396 2.0339 0.0551 146593

No Assimilation 30 - 0.0523 0.8244 9.5366 0.7991 2177844

EnKF global 60 3 0.0079 0.0326 1.5453 0.0317 180327

EnKF local state 60 2 0.0090 0.0392 1.7443 0.0389 211683

EnKF local observation 60 10 0.0095 0.0436 1.8278 0.0449 227761

DEnKF global 60 6 0.0087 0.0351 1.6721 0.0362 196201

DEnKF local state 60 6 0.0084 0.0338 1.6237 0.0345 189838

DEnKF local observation 60 1 0.0092 0.0392 1.7885 0.0471 235334

No Assimilation 60 - 0.0506 1.1004 9.3514 0.6772 4439910

Table B.18: Mean accuracy of predictions made ∆t ahead.

Free flow Congested

∆t Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global 5 3 0.0009 0.0143 0.1671 0.0020 0.0094 0.0401 1.8153 0.0914

EnKF local state 5 2 0.0007 0.0157 0.1329 0.0021 0.0080 0.0361 1.5314 0.0887

EnKF local observation 5 10 0.0009 0.0176 0.1626 0.0024 0.0089 0.0400 1.6915 0.0954

DEnKF global 5 6 0.0011 0.0152 0.2044 0.0023 0.0103 0.0449 1.9522 0.0982

DEnKF local state 5 6 0.0010 0.0149 0.1863 0.0022 0.0110 0.0472 2.1124 0.1094

DEnKF local observation 5 1 0.0012 0.0166 0.2405 0.0025 0.0134 0.0605 2.5061 0.1764

No Assimilation 5 - 0.0276 0.5690 5.1601 0.0990 0.0607 0.3885 10.1660 2.0393

EnKF global 15 3 0.0022 0.0201 0.5108 0.0037 0.0112 0.0331 2.1732 0.0835

EnKF local state 15 2 0.0022 0.0219 0.5503 0.0038 0.0105 0.0312 2.0513 0.0790

EnKF local observation 15 10 0.0027 0.0255 0.6547 0.0048 0.0121 0.0362 2.3412 0.0970

DEnKF global 15 6 0.0023 0.0212 0.5245 0.0039 0.0114 0.0342 2.2265 0.0847

DEnKF local state 15 6 0.0023 0.0206 0.5336 0.0038 0.0119 0.0358 2.2983 0.0910

DEnKF local observation 15 1 0.0025 0.0231 0.5735 0.0043 0.0133 0.0436 2.5258 0.1374

No Assimilation 15 - 0.0347 0.8169 6.6786 0.1397 0.0574 0.3273 9.7247 1.8247

EnKF global 30 3 0.0052 0.0375 1.1214 0.0064 0.0122 0.0280 2.3338 0.0864

EnKF local state 30 2 0.0058 0.0445 1.2193 0.0072 0.0134 0.0300 2.4754 0.1005

EnKF local observation 30 10 0.0063 0.0506 1.3127 0.0081 0.0144 0.0332 2.7213 0.1201

DEnKF global 30 6 0.0055 0.0392 1.1323 0.0065 0.0133 0.0307 2.5214 0.0940

DEnKF local state 30 6 0.0055 0.0380 1.1343 0.0064 0.0130 0.0303 2.4723 0.0919

DEnKF local observation 30 1 0.0052 0.0420 1.0988 0.0070 0.0145 0.0356 2.7244 0.1358

No Assimilation 30 - 0.0425 1.1433 7.8945 0.1731 0.0541 0.2892 9.5671 1.8497

EnKF global 60 3 0.0049 0.0367 1.0505 0.0052 0.0101 0.0266 1.9082 0.0705

EnKF local state 60 2 0.0056 0.0446 1.1600 0.0061 0.0113 0.0312 2.0833 0.0869

EnKF local observation 60 10 0.0061 0.0505 1.2349 0.0067 0.0119 0.0335 2.2288 0.1010

DEnKF global 60 6 0.0053 0.0387 1.0657 0.0054 0.0112 0.0299 2.0973 0.0813

DEnKF local state 60 6 0.0052 0.0372 1.0563 0.0052 0.0108 0.0288 2.0357 0.0775

DEnKF local observation 60 1 0.0050 0.0422 1.0344 0.0058 0.0121 0.0347 2.2639 0.1075

No Assimilation 60 - 0.0446 1.6368 8.2461 0.1790 0.0487 0.3145 8.8152 1.4072

Table B.19: Mean accuracy of predictions made ∆t ahead, in different traffic conditions.
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Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 3 0.0037 0.0099 0.8283 0.0066 70853

EnKF local state 2 0.0043 0.0147 0.9303 0.0082 90825

EnKF local observation 10 0.0029 0.0088 0.6457 0.0066 59280

DEnKF global 6 0.0094 0.0495 1.6835 0.0188 189166

DEnKF local state 6 0.0089 0.0449 1.5459 0.0162 169665

DEnKF local observation 1 0.0038 0.0110 0.8497 0.0064 75833

No Assimilation - 0.0624 2.0323 10.7008 0.2888 4910930

Table B.20: Error statistics of t = 60 prediction using network parameter set 1
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B.2.4 Stability state prediction

The predictions are slightly more insensitive to network parameter variation.

∆t Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 3 0.0067 0.0321 1.2876 0.0256 11500

EnKF local state 5 2 0.0060 0.0374 1.1676 0.0222 10208

EnKF local observation 5 10 0.0059 0.0317 1.1440 0.0232 10097

DEnKF global 5 6 0.0070 0.0321 1.3289 0.0292 12278

DEnKF local state 5 6 0.0072 0.0335 1.3707 0.0283 12514

DEnKF local observation 5 1 0.0085 0.0433 1.5812 0.0363 15097

No Assimilation 5 - 0.0655 1.4805 11.9941 0.5585 488877

EnKF global 15 3 0.0099 0.0414 1.9808 0.0353 69476

EnKF local state 15 2 0.0115 0.0443 2.3313 0.0399 75781

EnKF local observation 15 10 0.0115 0.0533 2.3540 0.0458 87765

DEnKF global 15 6 0.0103 0.0387 2.0481 0.0530 71395

DEnKF local state 15 6 0.0108 0.0394 2.0914 0.0482 72926

DEnKF local observation 15 1 0.0127 0.0497 2.5649 0.0586 86415

No Assimilation 15 - 0.0719 1.7008 12.9181 1.1972 1673325

EnKF global 30 3 0.0136 0.0463 2.5130 0.0833 174750

EnKF local state 30 2 0.0169 0.0595 3.0855 0.1064 251022

EnKF local observation 30 10 0.0178 0.0854 3.3945 0.0932 277099

DEnKF global 30 6 0.0149 0.0512 2.8529 0.0698 192775

DEnKF local state 30 6 0.0149 0.0512 2.8855 0.0704 199804

DEnKF local observation 30 1 0.0193 0.0566 3.6663 0.1177 303411

No Assimilation 30 - 0.0881 1.5604 16.1832 2.2034 5267326

EnKF global 60 3 0.0115 0.0461 2.2127 0.0625 315574

EnKF local state 60 2 0.0142 0.0626 2.7020 0.0955 449045

EnKF local observation 60 10 0.0154 0.0863 2.8185 0.0912 366084

DEnKF global 60 6 0.0130 0.0495 2.4185 0.0669 297238

DEnKF local state 60 6 0.0129 0.0449 2.4284 0.0666 308144

DEnKF local observation 60 1 0.0163 0.0581 3.1309 0.0975 508397

No Assimilation 60 - 0.0910 2.5630 17.4110 1.9735 12493669

Table B.21: 90th percentile of predicted performance indicators for different network
parameters
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Free flow Congested

∆t Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global 5 3 0.0024 0.0282 0.5752 0.0047 0.0215 0.0830 4.1590 0.2381

EnKF local state 5 2 0.0014 0.0329 0.3537 0.0041 0.0194 0.0798 3.7797 0.2150

EnKF local observation 5 10 0.0016 0.0315 0.3737 0.0045 0.0190 0.0818 3.6977 0.2172

DEnKF global 5 6 0.0029 0.0254 0.7249 0.0045 0.0225 0.0958 4.2933 0.2784

DEnKF local state 5 6 0.0025 0.0265 0.6209 0.0043 0.0234 0.0952 4.4415 0.2844

DEnKF local observation 5 1 0.0029 0.0343 0.6986 0.0049 0.0275 0.1089 5.1221 0.3609

No Assimilation 5 - 0.0678 1.5645 12.0917 0.2996 0.1167 0.8097 20.1281 4.8637

EnKF global 15 3 0.0047 0.0425 1.1885 0.0086 0.0170 0.0530 3.3673 0.1553

EnKF local state 15 2 0.0040 0.0373 1.0423 0.0063 0.0188 0.0554 3.5669 0.1677

EnKF local observation 15 10 0.0076 0.0559 1.7455 0.0122 0.0203 0.0601 3.7992 0.1881

DEnKF global 15 6 0.0062 0.0366 1.4883 0.0092 0.0219 0.0663 4.2876 0.2358

DEnKF local state 15 6 0.0055 0.0364 1.3428 0.0082 0.0209 0.0645 4.0642 0.2168

DEnKF local observation 15 1 0.0052 0.0438 1.2968 0.0097 0.0236 0.0708 4.4595 0.2623

No Assimilation 15 - 0.0743 2.0859 13.8605 0.3622 0.1169 0.7657 19.4871 4.8002

EnKF global 30 3 0.0086 0.0489 1.9110 0.0119 0.0219 0.0474 3.7646 0.2148

EnKF local state 30 2 0.0108 0.0803 2.3865 0.0136 0.0247 0.0519 4.5100 0.2724

EnKF local observation 30 10 0.0137 0.1121 2.6910 0.0167 0.0236 0.0564 4.7257 0.2394

DEnKF global 30 6 0.0094 0.0619 1.8950 0.0114 0.0197 0.0453 3.9804 0.1698

DEnKF local state 30 6 0.0095 0.0588 1.7974 0.0115 0.0205 0.0462 4.0307 0.1742

DEnKF local observation 30 1 0.0108 0.0681 2.1952 0.0125 0.0257 0.0596 4.7760 0.3073

No Assimilation 30 - 0.0776 2.3532 13.8852 0.3627 0.1105 0.7237 19.2940 5.3071

EnKF global 60 3 0.0084 0.0532 1.5724 0.0074 0.0165 0.0464 2.9981 0.1475

EnKF local state 60 2 0.0111 0.0841 2.3977 0.0126 0.0208 0.0607 3.9431 0.2280

EnKF local observation 60 10 0.0135 0.1167 2.7441 0.0137 0.0202 0.0570 3.9119 0.2185

DEnKF global 60 6 0.0087 0.0570 1.5490 0.0076 0.0172 0.0478 3.3069 0.1540

DEnKF local state 60 6 0.0083 0.0558 1.5805 0.0079 0.0176 0.0489 3.2981 0.1525

DEnKF local observation 60 1 0.0104 0.0762 2.0115 0.0105 0.0209 0.0707 4.0127 0.2352

No Assimilation 60 - 0.0818 3.7911 16.3488 0.3904 0.1012 0.7421 18.5181 4.2048

Table B.22: 90th percentile of predicted performance indicators for different network
parameters in different traffic conditions
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B.3 Experiment 1c: sensitivity to ensemble size

Experiment 1c investigates the influence of the smaller ensemble size on the performance
of the different assimilation schemes. Therefore the assimilation schemes are simulated
using the best parameter sets of experiment 1b 7 different choices of ensemble sizes are
simulated: ranging from 40 to 5 ensemble members. The ensemble size is expected to
heavily influence the accuracy and computation time.

B.3.1 Independence assimilation parameters and ensemble size

In this subsection, the relation between the assimilation parameters (initial errors and
covariance inflation factors) and the ensemble size is investigated. The question is if the
assimilation parameters that are found to be performing best for a particular ensemble
size, also perform best for other ensemble sizes. If this assumption is true, the sensitivity
of the performance to the ensemble size can be done using only the assimilation parameter
set previously found best.

This independence is investigated by simulating with N ∈ [40, 28, 20, 14, 10, 7, 5], 5 net-
work parameter sets and 10 assimilation parameter sets. The mean accuracy over the 5
network parameter sets using the best assimilation parameter set withN = 20 is compared
with the best performances using the other parameter sets.

It can be concluded that the best parameter set performs well for other ensemble sizes
when the performance for that ensemble size is similar. Large differences between the
performance of the fixed parameter set and the best parameter set only occur when the
performance is (relatively) bad. Therefore the results using the fixed parameter set for
other ensemble sizes can be interpreted qualitatively.

B.3.2 Accuracy state estimation

Multiple notable observations can be made using the results above.

Firstly, selecting a larger ensemble size than 20 doesn’t seem to increase the accuracy
(significantly).

Secondly, the observation based localized approaches perform worse for smaller ensemble
sizes than the state based localized approaches. This corresponds with the fact that the
linear approximation used in the observation based approach becomes worse for smaller
ensembles.

Thirdly, for small ensembles the DEnKF approaches perform very good compared to the
EnKF approaches. This can be explained by the fact that the working of the DEnKF
doesn’t depend on (stochastic) perturbation of observations. For small ensembles, the
EnKF approaches rely too much on the randomly chosen values of the observations.

Again time-space plots of the first network parameter set are constructed for a large
ensemble size (N = 40) and a small ensemble size(N = 5), see figure B.5. To make the
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N RMSE K MAPE K RMSE V MAPE V TRE

EnKF global

40 0.0044 0.0205 0.8837 0.0101 165170

28 0.0044 0.0202 0.8709 0.0103 162444

20 0.0045 0.0210 0.8874 0.0104 160090

14 0.0045 0.0209 0.9035 0.0096 155534

10 0.0059 0.0279 1.1505 0.0156 226846

7 0.0078 0.0467 1.4821 0.0230 342009

5 0.0141 0.1190 2.6506 0.0652 845091

EnKF local state

40 0.0048 0.0236 0.9596 0.0112 195937

28 0.0047 0.0235 0.9509 0.0109 187811

20 0.0047 0.0225 0.9360 0.0111 176635

14 0.0049 0.0235 0.9944 0.0109 180553

10 0.0064 0.0323 1.2352 0.0154 237666

7 0.0069 0.0373 1.3111 0.0192 267200

5 0.0142 0.1199 2.6293 0.0594 785093

EnKF local observation

40 0.0051 0.0299 1.0380 0.0124 234865

28 0.0051 0.0294 1.0305 0.0122 227274

20 0.0054 0.0297 1.0863 0.0131 222800

14 0.0057 0.0318 1.1189 0.0145 228576

10 0.0080 0.0494 1.5621 0.0362 448481

7 0.0111 0.0799 2.0629 0.0421 514216

5 0.0228 0.2523 4.2611 0.1877 2112256

DEnKF global

40 0.0042 0.0194 0.8543 0.0093 146203

28 0.0042 0.0193 0.8555 0.0093 148258

20 0.0044 0.0198 0.8848 0.0100 155215

14 0.0043 0.0194 0.8649 0.0099 151179

10 0.0043 0.0198 0.8557 0.0093 146348

7 0.0049 0.0225 0.9595 0.0109 165585

5 0.0049 0.0224 0.9663 0.0122 167680

DEnKF local state

40 0.0042 0.0198 0.8508 0.0092 146210

28 0.0043 0.0198 0.8640 0.0095 148318

20 0.0043 0.0200 0.8714 0.0095 150140

14 0.0043 0.0196 0.8678 0.0099 150322

10 0.0044 0.0199 0.8703 0.0098 149591

7 0.0050 0.0234 0.9892 0.0116 175337

5 0.0049 0.0230 0.9700 0.0113 171653

DEnKF local observation

40 0.0048 0.0232 0.9619 0.0109 167147

28 0.0048 0.0229 0.9655 0.0109 167034

20 0.0051 0.0239 1.0016 0.0127 180857

14 0.0057 0.0285 1.1300 0.0175 231043

10 0.0058 0.0285 1.1638 0.0186 237207

7 0.0075 0.0399 1.4560 0.0280 341417

5 0.0153 0.1253 2.9488 0.1327 1352679

No Assimilation - 0.0403 0.8721 7.6055 0.3921 6288372

Table B.23: Performance of data assimilation methods for smaller sample sizes

distinction in output of the different methods more clear, the differences between the truth
density and the assimilated density is shown in figure B.6 for both the large and small
ensemble size. In table B.25 the associated error statistics are shown for this network
parameter set.
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Figure B.5: Time-space diagrams of the three routes using network parameter set 1 and
the different assimilation methods. The horizontal axes depict time in seconds and the
vertical axes space in meters. Figure (a) describes the density of the cells (in veh

m
) using

40 ensemble members; Figure (b) describes the density of the cells (in veh
m

) using only 5
ensemble members.
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Free flow Congested

N RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global

40 0.0027 0.0214 0.6071 0.0027 0.0075 0.0173 1.3882 0.0369

28 0.0026 0.0210 0.5868 0.0026 0.0076 0.0173 1.3916 0.0378

20 0.0028 0.0220 0.6077 0.0027 0.0076 0.0173 1.3981 0.0379

14 0.0030 0.0221 0.6618 0.0028 0.0074 0.0166 1.3625 0.0340

10 0.0036 0.0291 0.7467 0.0037 0.0097 0.0235 1.8062 0.0582

7 0.0057 0.0512 1.1231 0.0062 0.0112 0.0308 2.0214 0.0831

5 0.0095 0.1314 1.7446 0.0144 0.0205 0.0748 3.8697 0.2470

EnKF local state

40 0.0032 0.0249 0.7173 0.0032 0.0078 0.0188 1.4387 0.0401

28 0.0032 0.0249 0.7210 0.0031 0.0077 0.0185 1.3956 0.0386

20 0.0030 0.0238 0.6651 0.0030 0.0079 0.0181 1.4479 0.0401

14 0.0034 0.0251 0.7552 0.0032 0.0079 0.0178 1.4438 0.0386

10 0.0047 0.0348 0.9750 0.0043 0.0096 0.0235 1.7066 0.0549

7 0.0050 0.0402 1.0041 0.0048 0.0103 0.0268 1.8266 0.0704

5 0.0105 0.1338 1.9173 0.0143 0.0199 0.0704 3.7219 0.2206

EnKF local observation

40 0.0035 0.0326 0.8018 0.0039 0.0083 0.0205 1.5441 0.0428

28 0.0035 0.0320 0.7885 0.0038 0.0083 0.0202 1.5413 0.0420

20 0.0037 0.0321 0.8047 0.0039 0.0088 0.0212 1.6571 0.0460

14 0.0038 0.0345 0.8061 0.0041 0.0094 0.0222 1.7540 0.0517

10 0.0049 0.0514 1.0106 0.0064 0.0129 0.0423 2.3962 0.1428

7 0.0081 0.0884 1.5316 0.0096 0.0165 0.0498 3.0011 0.1584

5 0.0140 0.2727 2.5022 0.0290 0.0339 0.1800 6.3995 0.7560

DEnKF global

40 0.0026 0.0204 0.5830 0.0025 0.0072 0.0159 1.3438 0.0334

28 0.0026 0.0202 0.5831 0.0025 0.0073 0.0162 1.3546 0.0336

20 0.0027 0.0207 0.5945 0.0026 0.0076 0.0169 1.4135 0.0367

14 0.0026 0.0202 0.5783 0.0025 0.0075 0.0166 1.3860 0.0365

10 0.0027 0.0208 0.5913 0.0026 0.0073 0.0162 1.3506 0.0335

7 0.0032 0.0238 0.6918 0.0030 0.0081 0.0178 1.4777 0.0394

5 0.0029 0.0234 0.6344 0.0029 0.0085 0.0190 1.5733 0.0455

DEnKF local state

40 0.0027 0.0210 0.6018 0.0026 0.0071 0.0157 1.3054 0.0326

28 0.0027 0.0208 0.6000 0.0026 0.0073 0.0163 1.3513 0.0342

20 0.0027 0.0210 0.6075 0.0026 0.0073 0.0163 1.3634 0.0342

14 0.0026 0.0204 0.5864 0.0025 0.0075 0.0165 1.3855 0.0362

10 0.0027 0.0209 0.5956 0.0026 0.0075 0.0165 1.3792 0.0354

7 0.0033 0.0247 0.7093 0.0031 0.0083 0.0186 1.5298 0.0419

5 0.0031 0.0243 0.6692 0.0030 0.0083 0.0182 1.5245 0.0412

DEnKF local observation

40 0.0033 0.0248 0.7039 0.0032 0.0078 0.0176 1.4210 0.0386

28 0.0032 0.0244 0.6933 0.0031 0.0079 0.0176 1.4556 0.0389

20 0.0033 0.0252 0.6946 0.0032 0.0084 0.0191 1.5701 0.0466

14 0.0036 0.0297 0.7560 0.0038 0.0093 0.0241 1.7334 0.0667

10 0.0037 0.0295 0.7910 0.0038 0.0096 0.0249 1.7931 0.0717

7 0.0047 0.0416 0.9685 0.0054 0.0120 0.0340 2.1911 0.1089

5 0.0080 0.1252 1.5483 0.0153 0.0255 0.1254 4.7741 0.5530

No Assimilation - 0.0322 1.0257 6.1112 0.1121 0.0493 0.3257 8.9809 1.3949

Table B.24: Performance of data assimilation methods for smaller sample sizes in different
traffic states

N RMSE K MAPE K RMSE V MAPE V TRE

EnKF global
40 0.0032 0.0167 0.6870 0.0065 153002

5 0.0100 0.0665 1.7089 0.0172 374228

EnKF local state
40 0.0039 0.0209 0.8214 0.0088 189177

5 0.0134 0.1101 2.4672 0.0272 613993

EnKF local observation
40 0.0039 0.0228 0.8279 0.0095 190745

5 0.0294 0.4876 5.6389 0.1006 2831002

DEnKF global
40 0.0042 0.0194 0.8822 0.0063 181404

5 0.0081 0.0416 1.6054 0.0125 315861

DEnKF local state
40 0.0046 0.0213 0.9660 0.0065 173310

5 0.0088 0.0495 1.7747 0.0141 378365

DEnKF local observation
40 0.0077 0.0409 1.5231 0.0103 268033

5 0.0042 0.0247 0.8495 0.0075 151605

No Assimilation - 0.0583 2.0211 10.6156 0.2718 11069269

Table B.25: Error statistics of ∆t = 60 prediction using network parameter set 1.
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Figure B.6: Time-space diagrams of the differences of the densities between the truth
data and the assimilated data on the three routes using network parameter set 1 and
the different assimilation methods. The horizontal axes depict time in seconds and the
vertical axes space in meters. Figure (a) describes the difference in density using 40
ensemble members; Figure (b) ddescribes the difference in density using only 5 ensemble
members.
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B.3.3 Stability state estimation

N RMSE K MAPE K RMSE V MAPE V TRE

EnKF global

40 0.0072 0.0287 1.4226 0.0143 251357

28 0.0062 0.0276 1.2187 0.0138 221314

20 0.0075 0.0290 1.5104 0.0137 272294

14 0.0061 0.0269 1.2260 0.0121 198560

10 0.0103 0.0524 2.0387 0.0212 413797

7 0.0155 0.1071 2.7924 0.0501 808128

5 0.0247 0.3417 4.6569 0.1406 1735351

EnKF local state

40 0.0079 0.0341 1.5919 0.0150 313095

28 0.0081 0.0292 1.6214 0.0144 312863

20 0.0078 0.0270 1.5715 0.0159 261144

14 0.0068 0.0340 1.3871 0.0183 233597

10 0.0091 0.0564 1.7727 0.0233 357010

7 0.0115 0.0778 1.9943 0.0338 486012

5 0.0203 0.2236 3.8918 0.1152 1280035

EnKF local observation

40 0.0077 0.0418 1.5441 0.0149 348831

28 0.0080 0.0398 1.6052 0.0147 336130

20 0.0080 0.0438 1.6310 0.0181 298924

14 0.0080 0.0422 1.5464 0.0247 306899

10 0.0140 0.1241 2.5448 0.0438 647037

7 0.0166 0.1525 2.8832 0.0884 837752

5 0.0367 0.5951 7.3219 0.3653 5274355

DEnKF global

40 0.0059 0.0274 1.2232 0.0131 202107

28 0.0054 0.0242 1.1280 0.0127 190965

20 0.0069 0.0240 1.4077 0.0137 233378

14 0.0072 0.0240 1.3993 0.0135 240394

10 0.0061 0.0292 1.2641 0.0135 203439

7 0.0073 0.0334 1.4405 0.0197 271518

5 0.0081 0.0317 1.5648 0.0253 311468

DEnKF local state

40 0.0062 0.0282 1.2488 0.0120 219761

28 0.0064 0.0245 1.2696 0.0119 206733

20 0.0059 0.0249 1.1915 0.0124 214710

14 0.0070 0.0245 1.3854 0.0148 239448

10 0.0063 0.0268 1.2690 0.0156 224935

7 0.0079 0.0356 1.5822 0.0203 295769

5 0.0063 0.0311 1.2832 0.0183 247999

DEnKF local observation

40 0.0075 0.0349 1.5184 0.0185 268033

28 0.0067 0.0364 1.3685 0.0186 245155

20 0.0075 0.0360 1.4977 0.0237 263107

14 0.0097 0.0621 1.8934 0.0249 349264

10 0.0088 0.0430 1.7591 0.0280 325597

7 0.0134 0.0815 2.5420 0.0634 602751

5 0.0339 0.3468 6.5976 0.3303 3362490

No Assimilation - 0.0658 2.0211 12.6103 1.0419 13253298

Table B.26: 90th percentile of performance indicators for different ensemble sizes
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Free flow Congested

N RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global

40 0.0055 0.0310 1.1652 0.0042 0.0099 0.0219 1.9785 0.0575

28 0.0051 0.0302 1.1146 0.0039 0.0096 0.0219 1.9254 0.0538

20 0.0057 0.0321 1.2313 0.0041 0.0099 0.0252 2.0270 0.0545

14 0.0056 0.0295 1.2350 0.0041 0.0092 0.0204 1.8844 0.0464

10 0.0088 0.0584 1.7478 0.0076 0.0131 0.0341 2.4410 0.0839

7 0.0126 0.1259 2.0602 0.0151 0.0185 0.0546 3.4393 0.1757

5 0.0257 0.4045 4.8723 0.0446 0.0370 0.1370 7.2168 0.6218

EnKF local state

40 0.0060 0.0376 1.3061 0.0051 0.0100 0.0254 1.8444 0.0559

28 0.0051 0.0318 1.1367 0.0041 0.0096 0.0251 1.7227 0.0568

20 0.0042 0.0294 0.9643 0.0038 0.0109 0.0225 2.1896 0.0628

14 0.0066 0.0384 1.4111 0.0051 0.0123 0.0239 2.5200 0.0743

10 0.0088 0.0644 1.8279 0.0076 0.0135 0.0280 2.5473 0.0959

7 0.0101 0.0912 1.7884 0.0094 0.0152 0.0440 2.7691 0.1105

5 0.0205 0.2563 4.0484 0.0307 0.0333 0.1318 6.5245 0.5001

EnKF local observation

40 0.0066 0.0471 1.4175 0.0060 0.0104 0.0250 1.9271 0.0569

28 0.0053 0.0444 1.1657 0.0055 0.0102 0.0243 1.9704 0.0529

20 0.0060 0.0488 1.2440 0.0054 0.0115 0.0263 2.3265 0.0700

14 0.0060 0.0470 1.1921 0.0060 0.0138 0.0327 2.6563 0.1002

10 0.0100 0.1375 2.0335 0.0168 0.0200 0.0450 3.8936 0.1815

7 0.0150 0.1732 2.8414 0.0198 0.0271 0.0935 5.1004 0.3634

5 0.0315 0.6467 6.1724 0.0757 0.0604 0.3258 11.6936 1.6370

DEnKF global

40 0.0046 0.0304 1.0228 0.0039 0.0096 0.0204 1.9644 0.0529

28 0.0040 0.0258 0.9425 0.0033 0.0095 0.0188 1.9110 0.0510

20 0.0044 0.0264 0.9893 0.0033 0.0101 0.0202 2.0537 0.0560

14 0.0042 0.0251 0.9580 0.0033 0.0095 0.0227 1.8937 0.0544

10 0.0053 0.0331 1.0121 0.0043 0.0099 0.0202 1.9882 0.0547

7 0.0054 0.0370 1.1092 0.0049 0.0120 0.0261 2.3001 0.0795

5 0.0049 0.0336 1.0132 0.0040 0.0140 0.0316 2.6708 0.1048

DEnKF local state

40 0.0048 0.0317 1.0744 0.0042 0.0097 0.0210 1.8640 0.0468

28 0.0045 0.0269 1.0536 0.0035 0.0096 0.0204 1.7434 0.0475

20 0.0045 0.0275 1.0403 0.0035 0.0091 0.0195 1.8335 0.0501

14 0.0042 0.0271 0.9451 0.0034 0.0101 0.0240 1.9804 0.0597

10 0.0047 0.0299 0.9843 0.0038 0.0111 0.0238 2.2045 0.0627

7 0.0070 0.0408 1.4973 0.0055 0.0125 0.0258 2.3703 0.0817

5 0.0053 0.0352 1.1917 0.0043 0.0115 0.0241 2.1730 0.0707

DEnKF local observation

40 0.0060 0.0391 1.3482 0.0055 0.0125 0.0266 2.4403 0.0752

28 0.0063 0.0409 1.4014 0.0056 0.0120 0.0272 2.2956 0.0742

20 0.0055 0.0388 1.2226 0.0048 0.0133 0.0283 2.5831 0.0918

14 0.0066 0.0579 1.4139 0.0069 0.0143 0.0312 2.7689 0.1061

10 0.0068 0.0488 1.4506 0.0066 0.0145 0.0301 2.6527 0.1123

7 0.0112 0.0922 2.2005 0.0116 0.0236 0.0732 4.5559 0.2715

5 0.0195 0.2491 3.5740 0.0281 0.0568 0.2993 11.0656 1.4778

No Assimilation - 0.0632 2.5356 11.8669 0.2839 0.1004 0.7493 18.4556 4.0744

Table B.27: 90th percentile of performance indicators for different ensemble sizes, in
different traffic conditions
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B.3.4 Accuracy state prediction

In order to limit the data presented, the accuracy of the predictions for different ensemble
sizes isnt split into different traffic conditions. The mean accuracies of the predicted states
for different prediction horizons follow the same pattern as described in experiment 1a
and 1b. The prediction accuracies also follow the same pattern as the state estimation
accuracies.

RMSE K MAPE K

N ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60 ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60

EnKF global

40 0.0032 0.0059 0.0091 0.0082 0.0165 0.0229 0.0360 0.0354

28 0.0035 0.0063 0.0097 0.0086 0.0181 0.0251 0.0394 0.0387

20 0.0030 0.0058 0.0091 0.0081 0.0171 0.0233 0.0357 0.0347

14 0.0037 0.0067 0.0104 0.0093 0.0197 0.0278 0.0442 0.0437

10 0.0051 0.0089 0.0126 0.0111 0.0268 0.0375 0.0583 0.0583

7 0.0062 0.0104 0.0151 0.0137 0.0388 0.0537 0.0853 0.0912

5 0.0107 0.0162 0.0216 0.0197 0.0698 0.0944 0.1412 0.1656

EnKF local state

40 0.0030 0.0058 0.0095 0.0085 0.0178 0.0243 0.0384 0.0382

28 0.0032 0.0062 0.0101 0.0091 0.0181 0.0255 0.0421 0.0421

20 0.0026 0.0055 0.0101 0.0091 0.0177 0.0239 0.0393 0.0395

14 0.0032 0.0063 0.0109 0.0098 0.0193 0.0263 0.0437 0.0445

10 0.0042 0.0087 0.0135 0.0121 0.0267 0.0392 0.0643 0.0648

7 0.0049 0.0091 0.0143 0.0130 0.0307 0.0429 0.0771 0.0827

5 0.0105 0.0160 0.0224 0.0206 0.0692 0.0929 0.1505 0.1773

EnKF local observation

40 0.0039 0.0071 0.0100 0.0088 0.0190 0.0263 0.0391 0.0382

28 0.0038 0.0070 0.0104 0.0092 0.0193 0.0267 0.0406 0.0398

20 0.0030 0.0066 0.0108 0.0096 0.0201 0.0282 0.0445 0.0440

14 0.0045 0.0081 0.0132 0.0115 0.0254 0.0341 0.0541 0.0536

10 0.0080 0.0132 0.0182 0.0162 0.0502 0.0709 0.1040 0.1076

7 0.0086 0.0138 0.0208 0.0191 0.0576 0.0765 0.1372 0.1555

5 0.0186 0.0261 0.0333 0.0320 0.1543 0.2017 0.2962 0.3858

DEnKF global

40 0.0033 0.0060 0.0099 0.0088 0.0177 0.0236 0.0360 0.0352

28 0.0034 0.0060 0.0098 0.0087 0.0176 0.0238 0.0355 0.0345

20 0.0033 0.0060 0.0097 0.0086 0.0177 0.0237 0.0356 0.0347

14 0.0034 0.0060 0.0098 0.0087 0.0179 0.0242 0.0352 0.0343

10 0.0038 0.0066 0.0104 0.0093 0.0192 0.0260 0.0397 0.0390

7 0.0035 0.0067 0.0115 0.0103 0.0210 0.0289 0.0471 0.0465

5 0.0034 0.0065 0.0116 0.0103 0.0213 0.0288 0.0484 0.0488

DEnKF local state

40 0.0035 0.0063 0.0101 0.0090 0.0181 0.0243 0.0371 0.0362

28 0.0033 0.0061 0.0099 0.0088 0.0178 0.0240 0.0363 0.0353

20 0.0035 0.0061 0.0095 0.0084 0.0178 0.0239 0.0354 0.0343

14 0.0039 0.0068 0.0100 0.0088 0.0189 0.0256 0.0362 0.0348

10 0.0040 0.0068 0.0103 0.0091 0.0196 0.0263 0.0382 0.0370

7 0.0035 0.0065 0.0114 0.0101 0.0211 0.0283 0.0461 0.0457

5 0.0034 0.0066 0.0116 0.0103 0.0217 0.0293 0.0476 0.0478

DEnKF local observation

40 0.0039 0.0071 0.0114 0.0102 0.0214 0.0300 0.0487 0.0491

28 0.0039 0.0068 0.0110 0.0099 0.0210 0.0289 0.0457 0.0461

20 0.0044 0.0070 0.0109 0.0096 0.0214 0.0286 0.0430 0.0432

14 0.0044 0.0074 0.0114 0.0101 0.0239 0.0332 0.0491 0.0492

10 0.0035 0.0066 0.0112 0.0101 0.0227 0.0308 0.0477 0.0480

7 0.0053 0.0090 0.0129 0.0115 0.0311 0.0446 0.0690 0.0704

5 0.0138 0.0197 0.0246 0.0227 0.1148 0.1511 0.1925 0.2264

No Assimilation - 0.0372 0.0464 0.0523 0.0506 0.5519 0.7117 0.8244 1.1004

Table B.28: Accuracy of predicted density for the assimilation schemes, ensemble sizes N
and prediction horizons ∆t.
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RMSE V MAPE V

N ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60 ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60

EnKF global

40 0.6252 1.1930 1.8118 1.5982 0.0106 0.0209 0.0348 0.0312

28 0.6806 1.2803 1.8902 1.6711 0.0120 0.0237 0.0381 0.0333

20 0.5949 1.1789 1.8095 1.5952 0.0106 0.0213 0.0372 0.0327

14 0.7120 1.3604 2.0293 1.8069 0.0137 0.0267 0.0434 0.0379

10 0.9588 1.7400 2.4396 2.1405 0.0236 0.0456 0.0678 0.0544

7 1.1547 2.0076 2.8737 2.5849 0.0317 0.0587 0.0899 0.0738

5 1.9329 3.0457 4.0723 3.6904 0.0687 0.1239 0.1865 0.1469

EnKF local state

40 0.5891 1.1924 1.8374 1.6436 0.0104 0.0205 0.0367 0.0334

28 0.6119 1.2634 1.9523 1.7529 0.0123 0.0239 0.0415 0.0370

20 0.4967 1.1344 1.9518 1.7605 0.0104 0.0205 0.0427 0.0394

14 0.6182 1.2847 2.1116 1.9038 0.0135 0.0254 0.0484 0.0443

10 0.8106 1.7492 2.6306 2.3354 0.0191 0.0381 0.0660 0.0569

7 0.9279 1.8014 2.7650 2.4842 0.0249 0.0468 0.0781 0.0656

5 1.9085 3.0189 4.1770 3.8250 0.0662 0.1196 0.1855 0.1476

EnKF local observation

40 0.7609 1.4102 1.9477 1.7019 0.0143 0.0283 0.0428 0.0365

28 0.7380 1.4090 2.0479 1.7877 0.0158 0.0294 0.0471 0.0412

20 0.5822 1.3441 2.1058 1.8509 0.0116 0.0256 0.0510 0.0455

14 0.8592 1.6298 2.5187 2.1880 0.0213 0.0400 0.0743 0.0633

10 1.4866 2.5364 3.4766 3.0831 0.0412 0.0829 0.1371 0.1140

7 1.5594 2.6279 3.8390 3.5185 0.0518 0.0858 0.1387 0.1155

5 3.3330 4.8034 6.2136 5.9750 0.1572 0.2880 0.4520 0.3649

DEnKF global

40 0.6474 1.2225 1.9411 1.7175 0.0112 0.0212 0.0401 0.0369

28 0.6591 1.2310 1.9192 1.6927 0.0118 0.0224 0.0405 0.0367

20 0.6511 1.2168 1.8873 1.6725 0.0113 0.0216 0.0395 0.0364

14 0.6654 1.2355 1.9087 1.6924 0.0109 0.0207 0.0396 0.0366

10 0.7442 1.3371 2.0219 1.7890 0.0132 0.0245 0.0427 0.0383

7 0.6808 1.3628 2.2014 1.9583 0.0142 0.0270 0.0504 0.0446

5 0.6357 1.3077 2.2041 1.9610 0.0165 0.0308 0.0568 0.0483

DEnKF local state

40 0.6851 1.2787 1.9734 1.7456 0.0128 0.0236 0.0414 0.0378

28 0.6492 1.2496 1.9395 1.7108 0.0124 0.0233 0.0414 0.0375

20 0.6861 1.2485 1.8669 1.6427 0.0123 0.0228 0.0387 0.0349

14 0.7556 1.3755 1.9747 1.7213 0.0145 0.0268 0.0452 0.0395

10 0.7768 1.3613 2.0057 1.7662 0.0153 0.0278 0.0457 0.0399

7 0.6767 1.3199 2.1595 1.9129 0.0154 0.0280 0.0522 0.0449

5 0.6394 1.3296 2.2203 1.9678 0.0175 0.0320 0.0584 0.0493

DEnKF local observation

40 0.7619 1.4383 2.2077 1.9793 0.0150 0.0279 0.0486 0.0444

28 0.7523 1.3720 2.1267 1.9160 0.0150 0.0266 0.0482 0.0438

20 0.8478 1.4071 2.1048 1.8693 0.0192 0.0331 0.0556 0.0482

14 0.8415 1.4784 2.2032 1.9588 0.0199 0.0361 0.0621 0.0522

10 0.6556 1.3393 2.1678 1.9459 0.0170 0.0322 0.0588 0.0510

7 0.9822 1.7664 2.4986 2.2163 0.0264 0.0493 0.0744 0.0606

5 2.4899 3.6624 4.6324 4.3013 0.0983 0.1870 0.3110 0.2536

No Assimilation - 6.7786 8.5217 9.5366 9.3514 0.2834 0.5018 0.7991 0.6772

Table B.29: Accuracy of predicted velocity for the assimilation schemes, ensemble sizes
N and prediction horizons ∆t.
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TRE

N ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60

EnKF global

40 5341 36822 115758 184892

28 5948 40526 122243 196336

20 5010 36495 115804 187744

14 6326 45060 135726 220593

10 9961 65327 183372 292942

7 13710 86000 239136 407667

5 27837 157881 421634 744613

EnKF local state

40 4843 36182 118003 198664

28 5280 39652 128879 214309

20 4112 34180 125356 213286

14 5353 40608 139173 233309

10 7758 60516 191328 312004

7 9856 66299 217184 361851

5 26316 151149 421038 749754

EnKF local observation

40 6473 45231 128640 205315

28 6617 45378 137256 218942

20 4781 42342 143606 230605

14 8223 57102 185491 292299

10 18202 115352 323930 568621

7 19507 113172 345605 620034

5 66062 340178 926974 1885837

DEnKF global

40 5496 37219 123353 196138

28 5666 38443 122957 194193

20 5576 37630 121537 195904

14 5557 37955 120075 193816

10 6384 42225 130305 210485

7 6080 44707 146600 236255

5 6285 44998 151900 248428

DEnKF local state

40 5883 39776 126740 201118

28 5595 39112 124402 197123

20 5886 39227 120054 191724

14 6686 44249 130390 204449

10 6970 44913 132034 211710

7 6307 44010 144628 234690

5 6431 46080 153825 249889

DEnKF local observation

40 6761 47052 150543 244814

28 6882 44961 145144 241085

20 8436 49384 151558 246701

14 8545 54542 164773 272728

10 6749 48085 155981 263049

7 11215 71882 203783 336541

5 48625 254725 663017 1280792

No Assimilation - 209733 913764 2177844 4439910

Table B.30: Accuracy of predicted traffic regime error for the assimilation schemes, en-
semble sizes N and prediction horizons ∆t.
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Again time-space plots of predictions made using the first network parameter set are
constructed for a large ensemble size (N = 40) and a small ensemble size(N = 5), see
figure B.7. To make the distinction in output of the different methods more clear, the
differences between the truth density and the predicted assimilation density is shown in
figure B.8 for both the large and small ensemble size. In table B.31 the associated error
statistics are shown for this network parameter set.

N RMSE K MAPE K RMSE V MAPE V TRE

EnKF global
40 0.0090 0.0454 1.8473 0.0252 197850

5 0.0149 0.1247 2.6586 0.0396 383065

EnKF local state
40 0.0089 0.0433 1.8403 0.0294 209965

5 0.0214 0.2333 4.0550 0.0762 705570

EnKF local observation
40 0.0070 0.0197 1.4153 0.0291 136330

5 0.0398 0.7036 7.6706 0.1727 2286860

DEnKF global
40 0.0089 0.0443 1.7972 0.0245 190292

5 0.0155 0.1186 3.0468 0.0495 406988

DEnKF local state
40 0.0099 0.0534 1.9617 0.0254 205813

5 0.0170 0.1447 3.3801 0.0530 494696

DEnKF local observation
40 0.0151 0.1121 2.9737 0.0482 395668

5 0.0077 0.0356 1.5435 0.0152 141181

No Assimilation - 0.0624 2.0323 10.7008 0.2888 4910930

Table B.31: Error statistics of ∆t = 60 prediction using network parameter set 1.
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Figure B.7: Time-space diagrams of the three routes using network parameter set 1 and
the different assimilation methods. The horizontal axes depict time in seconds and the
vertical axes space in meters. Figure (a) describes the density of the cells (in veh

m
) using

40 ensemble members; Figure (b) describes the density of the cells (in veh
m

) using only 5
ensemble members.
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Figure B.8: Time-space diagrams of the differences of the densities between the truth
data and the assimilated data on the three routes using network parameter set 1 and
the different assimilation methods. The horizontal axes depict time in seconds and the
vertical axes space in meters. Figure (a) describes the difference in density using 40
ensemble members; Figure (b) ddescribes the difference in density using only 5 ensemble
members.
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B.3.5 Stability state prediction

RMSE K MAPE K

N ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60 ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60

EnKF global

40 0.0068 0.0099 0.0136 0.0113 0.0301 0.0358 0.0472 0.0488

28 0.0080 0.0116 0.0140 0.0123 0.0334 0.0440 0.0596 0.0552

20 0.0067 0.0099 0.0136 0.0115 0.0321 0.0414 0.0563 0.0574

14 0.0076 0.0120 0.0168 0.0148 0.0367 0.0561 0.0794 0.0755

10 0.0146 0.0189 0.0212 0.0175 0.0496 0.0725 0.1361 0.1436

7 0.0192 0.0235 0.0253 0.0223 0.0634 0.0909 0.1863 0.2581

5 0.0241 0.0314 0.0326 0.0327 0.1186 0.2117 0.3792 0.5019

EnKF local state

40 0.0063 0.0094 0.0137 0.0121 0.0335 0.0410 0.0768 0.0768

28 0.0081 0.0118 0.0170 0.0149 0.0336 0.0453 0.0943 0.0937

20 0.0060 0.0115 0.0169 0.0142 0.0374 0.0443 0.0595 0.0626

14 0.0093 0.0125 0.0165 0.0154 0.0348 0.0520 0.1032 0.1125

10 0.0072 0.0135 0.0216 0.0177 0.0441 0.0599 0.1137 0.1222

7 0.0143 0.0177 0.0240 0.0219 0.0519 0.0770 0.1621 0.1795

5 0.0233 0.0298 0.0314 0.0295 0.1075 0.1570 0.3238 0.4237

EnKF local observation

40 0.0081 0.0118 0.0154 0.0136 0.0268 0.0482 0.0636 0.0665

28 0.0080 0.0130 0.0178 0.0154 0.0351 0.0440 0.0906 0.0899

20 0.0059 0.0115 0.0178 0.0154 0.0317 0.0533 0.0854 0.0863

14 0.0119 0.0138 0.0190 0.0169 0.0414 0.0606 0.1090 0.1103

10 0.0194 0.0265 0.0278 0.0246 0.0865 0.1251 0.2579 0.2587

7 0.0190 0.0232 0.0278 0.0278 0.0842 0.1175 0.2812 0.3876

5 0.0349 0.0442 0.0472 0.0495 0.4614 0.5296 0.6741 0.7036

DEnKF global

40 0.0059 0.0108 0.0144 0.0124 0.0286 0.0426 0.0482 0.0443

28 0.0069 0.0108 0.0147 0.0130 0.0298 0.0442 0.0491 0.0489

20 0.0070 0.0103 0.0149 0.0130 0.0321 0.0387 0.0512 0.0437

14 0.0065 0.0101 0.0143 0.0125 0.0322 0.0497 0.0537 0.0446

10 0.0070 0.0101 0.0150 0.0134 0.0294 0.0455 0.0759 0.0755

7 0.0069 0.0106 0.0164 0.0145 0.0307 0.0506 0.0812 0.0777

5 0.0065 0.0104 0.0171 0.0166 0.0413 0.0566 0.0885 0.0923

DEnKF local state

40 0.0069 0.0109 0.0151 0.0130 0.0319 0.0370 0.0518 0.0534

28 0.0066 0.0111 0.0157 0.0133 0.0327 0.0391 0.0524 0.0544

20 0.0072 0.0108 0.0149 0.0129 0.0335 0.0394 0.0543 0.0526

14 0.0076 0.0109 0.0165 0.0138 0.0354 0.0453 0.0572 0.0522

10 0.0080 0.0110 0.0174 0.0147 0.0329 0.0469 0.0662 0.0673

7 0.0062 0.0101 0.0176 0.0157 0.0344 0.0484 0.0942 0.1003

5 0.0061 0.0111 0.0174 0.0170 0.0350 0.0607 0.0844 0.0848

DEnKF local observation

40 0.0101 0.0140 0.0161 0.0141 0.0348 0.0467 0.0918 0.0985

28 0.0067 0.0118 0.0170 0.0157 0.0374 0.0513 0.0692 0.0749

20 0.0085 0.0127 0.0193 0.0163 0.0433 0.0497 0.0853 0.0834

14 0.0079 0.0132 0.0187 0.0175 0.0462 0.0850 0.1275 0.1179

10 0.0066 0.0113 0.0198 0.0181 0.0451 0.0643 0.1005 0.1066

7 0.0134 0.0221 0.0248 0.0252 0.0769 0.1158 0.1222 0.1323

5 0.0351 0.0485 0.0504 0.0552 0.2837 0.3384 0.5754 0.8168

No Assimilation - 0.0655 0.0719 0.0881 0.0910 1.4805 1.7008 1.5604 2.5630

Table B.32: 90th percentile of predicted performance of density for different ensemble
sizes
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RMSE V MAPE V

N ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60 ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60

EnKF global

40 1.3019 1.9138 2.5375 2.1211 0.0242 0.0413 0.0625 0.0576

28 1.4992 2.1732 2.6222 2.2406 0.0326 0.0602 0.0696 0.0629

20 1.2876 1.9808 2.5130 2.2127 0.0256 0.0353 0.0833 0.0625

14 1.4255 2.3043 3.1790 2.9267 0.0305 0.0685 0.0951 0.0731

10 2.6170 3.3649 4.1573 3.4519 0.0888 0.1501 0.1501 0.0875

7 3.3402 4.4066 4.9409 4.1975 0.1343 0.2187 0.2915 0.2150

5 4.2395 5.4929 6.2374 5.8223 0.2297 0.3970 0.4618 0.3068

EnKF local state

40 1.2126 1.7848 2.6993 2.3705 0.0228 0.0348 0.0672 0.0653

28 1.5039 2.3475 3.2719 2.8502 0.0348 0.0556 0.0874 0.0762

20 1.1676 2.3313 3.0855 2.7020 0.0222 0.0399 0.1064 0.0955

14 1.7250 2.3325 3.2571 2.9399 0.0411 0.0719 0.1064 0.0899

10 1.3737 2.7079 4.2527 3.3906 0.0282 0.0587 0.1249 0.1123

7 2.5562 3.2830 4.5230 3.7362 0.0897 0.1409 0.2138 0.1607

5 4.1239 5.3270 6.0282 5.2069 0.2267 0.3795 0.4749 0.3530

EnKF local observation

40 1.5129 2.2294 2.9735 2.4823 0.0332 0.0528 0.0906 0.0701

28 1.4886 2.4323 3.5501 3.0016 0.0327 0.0781 0.1067 0.0797

20 1.1440 2.3540 3.3945 2.8185 0.0232 0.0458 0.0932 0.0912

14 2.1672 2.5970 3.7515 3.3515 0.0662 0.0871 0.1628 0.1246

10 3.4443 4.7690 5.3385 4.4953 0.1264 0.2647 0.3818 0.2818

7 3.3675 4.2337 5.2182 4.4509 0.1595 0.2442 0.3555 0.2665

5 6.3880 8.1199 9.0173 8.7159 0.3820 0.6824 0.9440 0.6764

DEnKF global

40 1.1420 2.0273 2.8132 2.3574 0.0198 0.0367 0.0728 0.0680

28 1.3125 2.0298 2.7816 2.3854 0.0263 0.0486 0.0698 0.0686

20 1.3289 2.0481 2.8529 2.4185 0.0292 0.0530 0.0698 0.0669

14 1.2558 2.0415 2.7591 2.3593 0.0186 0.0334 0.0793 0.0655

10 1.3351 2.0721 2.8115 2.4743 0.0267 0.0468 0.0780 0.0660

7 1.3262 2.0998 3.0869 2.7280 0.0233 0.0373 0.0919 0.0839

5 1.2606 2.0936 3.2267 3.0564 0.0135 0.0345 0.1077 0.1018

DEnKF local state

40 1.3150 2.2072 2.8574 2.4377 0.0286 0.0516 0.0841 0.0692

28 1.2660 2.2199 2.8770 2.5242 0.0272 0.0491 0.0720 0.0698

20 1.3707 2.0914 2.8855 2.4284 0.0283 0.0482 0.0704 0.0666

14 1.4401 2.1994 3.0429 2.6244 0.0290 0.0502 0.0723 0.0644

10 1.5030 2.1198 3.2464 2.8009 0.0317 0.0564 0.0769 0.0652

7 1.1930 2.0501 3.3966 2.8696 0.0242 0.0412 0.0866 0.0819

5 1.1861 2.2510 3.5125 3.3507 0.0139 0.0344 0.1162 0.1088

DEnKF local observation

40 1.8477 2.5874 3.1715 2.7002 0.0493 0.0895 0.1252 0.0966

28 1.2824 2.2118 3.1537 3.0944 0.0292 0.0515 0.0949 0.0854

20 1.5812 2.5649 3.6663 3.1309 0.0363 0.0586 0.1177 0.0975

14 1.4979 2.5471 3.5625 3.4409 0.0310 0.0618 0.1211 0.0985

10 1.2716 2.3305 3.9772 3.4030 0.0163 0.0529 0.1119 0.1020

7 2.4234 3.9403 4.7426 4.8027 0.0768 0.1676 0.2137 0.1569

5 6.0812 8.5670 9.8305 10.6942 0.3131 0.5735 0.7952 0.4983

No Assimilation - 11.9941 12.9181 16.1832 17.4110 0.5585 1.1972 2.2034 1.9735

Table B.33: 90th percentile of predicted performance of velocity for different ensemble
sizes
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TRE

N ∆t = 5 ∆t = 15 ∆t = 30 ∆t = 60

EnKF global

40 11931 65629 173751 272501

28 14167 78377 181859 284856

20 11500 69476 174750 315574

14 13111 86214 248416 387649

10 32583 152855 388471 530446

7 49167 247567 550145 757384

5 75222 367255 801172 1471456

EnKF local state

40 10611 58194 184996 335428

28 14250 78742 260631 371273

20 10208 75781 251022 449045

14 17028 87097 244706 427201

10 12528 95956 368176 538542

7 31264 145256 431882 626911

5 72222 343372 755884 1274662

EnKF local observation

40 14167 81267 213091 286844

28 13889 92016 270132 459933

20 10097 87765 277099 366084

14 23917 102260 333017 473029

10 52250 279349 600824 945976

7 50306 230232 576457 995298

5 143414 712136 1716134 3767262

DEnKF global

40 10250 69661 199116 296702

28 11792 69586 193775 307665

20 12278 71395 192775 297238

14 11319 71629 196712 304937

10 12278 71237 212791 321291

7 11889 74083 236265 367446

5 11319 69427 234965 456446

DEnKF local state

40 11889 71166 208877 313829

28 11417 72393 221709 312504

20 12514 72926 199804 308144

14 13458 71922 243333 400554

10 14153 69203 256901 429199

7 10472 65252 262536 398746

5 10681 75458 278280 494696

DEnKF local observation

40 18611 100994 255258 395668

28 11542 80511 237738 437685

20 15097 86415 303411 508397

14 13958 96808 300936 496985

10 11222 82371 337549 528733

7 28722 202856 429393 924455

5 150972 855497 1859637 4111976

No Assimilation - 488877 1673325 5267326 12493669

Table B.34: 90th percentile of predicted performance of traffic regime error for different
ensemble sizes
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B.3.6 Computation time

All simulation runs were timed from beginning to end. In this analysis a few simulation
runs were omitted as they were clear outliers in terms of computation time. In table B.35
the mean computation times are displayed.

N=40 N=28 N=20 N=14 N=10 N=7 N=5

EnKF global 1693 1362 1039 834 732 617 611

EnKF local state 1760 1332 1149 900 849 649 634

EnKF local observation 1944 1518 1215 973 819 735 687

DEnKF global 2055 1552 1279 1031 863 754 622

DEnKF local state 1918 1485 1187 965 822 729 678

DEnKF local observation 2292 1818 1443 1147 920 842 793

Mean 1944 1511 1219 975 834 721 671

Table B.35: The mean computation times [ms] for different assimilation schemes and
different ensemble sizes.

A two-way analysis of variance (ANOVA) was performed, see figure B.36.

Source SS df MS F Prob>F

DA method 3.484 · 105 5 6.968 · 104 2.407 0.0351

Ensemble size 1.641 · 108 1 1.643 · 108 5677.1 0

DA method · Ensemble size 2.257 · 106 5 4.513 · 105 15.592 1.022 · 10−14

Error 2.518 · 107 870 2.894 · 104

Total 2.017 · 108 881

Table B.36: ANOVA table.

This test indicated that the ensemble size, the assimilation method and the interaction
between these two are of significant influence on the computation times (p < 0.05). The
most variance is explained by the ensemble size, but the difference in assimilation methods
and its interaction are also of significant influence. The fit of the model R2 = 0.875 is
satisfactory.

From this analysis a regression model for the computation times can be constructed:

CT
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EnKF state
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DEnKF global
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This regression model is plot in figure B.9.
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Figure B.9: The predicted computation times of each assimilation method for different
ensemble sizes (lines) and the associated data points from table B.35 (dots)

B.3.7 Conclusion experiment 1c: influence of ensemble size

For smaller ensembles, the DEnKF performs very well in comparison with the EnKF.
Moreover, the ensemble size has a significant influence on the computation time of the
simulation runs. The observation based local analysis performs quite bad for smaller
ensemble sizes. The question remains if the observation based DEnKF also performs
badly in larger networks: a larger network may need a larger ensemble size per se, and the
computational advantage of the DEnKF-O over the DEnKF-S may become a significant
factor.
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B.4 Experiment 1d: sensitivity to localization radius

In experiment 1d, the sensitiviy of the results to changes in the localization radius is
investigated. As in the previous experiments the DEnKF methods performed best, the
EnKF methods are omitted in this experiment.

B.4.1 Accuracy state estimation

DEnKF DEnKF local state with radius factor: DEnKF local observation with radius factor:

nl global 5 4 3 2 1 5 4 3 2 1

RMSE K

20 0.0044 0.0043 0.0043 0.0043 0.0043 0.0065 0.0051 0.0051 0.0051 0.0051 0.0076

14 0.0044 0.0044 0.0044 0.0044 0.0053 0.0126 0.0068 0.0068 0.0068 0.0054 0.0160

10 0.0044 0.0045 0.0045 0.0054 0.0064 0.0117 0.0075 0.0075 0.0053 0.0065 0.0147

7 0.0044 0.0045 0.0053 0.0065 0.0122 0.0118 0.0057 0.0061 0.0066 0.0162 0.0153

5 0.0044 0.0054 0.0068 0.0115 0.0113 0.0113 0.0073 0.0067 0.0167 0.0157 0.0157

MAPE K

20 0.0198 0.0200 0.0200 0.0200 0.0200 0.0371 0.0239 0.0239 0.0239 0.0239 0.0453

14 0.0198 0.0207 0.0207 0.0207 0.0251 0.1371 0.0374 0.0374 0.0374 0.0258 0.2357

10 0.0198 0.0212 0.0212 0.0253 0.0364 0.1402 0.0341 0.0341 0.0255 0.0372 0.2059

7 0.0198 0.0219 0.0261 0.0375 0.1345 0.1421 0.0267 0.0294 0.0381 0.1867 0.1999

5 0.0198 0.0264 0.0382 0.1335 0.1461 0.1461 0.0347 0.0396 0.1903 0.2118 0.2118

RMSE V

20 0.8848 0.8714 0.8714 0.8714 0.8714 1.3153 1.0016 1.0016 1.0016 1.0016 1.5205

14 0.8848 0.8975 0.8975 0.8975 1.0583 2.4930 1.3313 1.3313 1.3313 1.0889 3.1413

10 0.8848 0.9071 0.9071 1.0775 1.2967 2.3274 1.4742 1.4742 1.0572 1.3144 2.8969

7 0.8848 0.8991 1.0629 1.3130 2.4134 2.3410 1.1240 1.2137 1.3320 3.2164 3.0219

5 0.8848 1.0912 1.3647 2.3073 2.2635 2.2635 1.4319 1.3476 3.3460 3.0898 3.0898

MAPE V

20 0.0100 0.0095 0.0095 0.0095 0.0095 0.0163 0.0127 0.0127 0.0127 0.0127 0.0313

14 0.0100 0.0099 0.0099 0.0099 0.0129 0.0728 0.0264 0.0264 0.0264 0.0138 0.1146

10 0.0100 0.0099 0.0099 0.0134 0.0163 0.0581 0.0370 0.0370 0.0138 0.0159 0.0959

7 0.0100 0.0103 0.0132 0.0170 0.0587 0.0598 0.0153 0.0178 0.0161 0.1256 0.1084

5 0.0100 0.0141 0.0195 0.0577 0.0581 0.0581 0.0256 0.0174 0.1421 0.1132 0.1132

TRE

20 155215 150140 150140 150140 150140 327537 180857 180857 180857 180857 461136

14 155215 151620 151620 151620 196492 872399 328690 328690 328690 201257 1288512

10 155215 143490 143490 189834 268469 704351 372838 372838 186188 282706 1004243

7 155215 143780 184529 259310 705032 686750 195443 223767 270372 1193670 1081801

5 155215 188331 274985 676346 685744 685744 302368 278829 1324996 1147202 1147202

Table B.37: Accuracy of estimated state using different ensemble sizes and different lo-
calization widths.

Firstly the accuracy of the state localized DEnKF is further analysed. In table B.37
some large differences in the accuracy come forward when the radius and radius factor
are decreased. However, these differences are clearly not linear to the radius or radius
factor.

In order to fully understand these results, the used network (see figure 7.3) has to be
investigated in-depth. In table B.38 the number of cells between the detectors and the
inflows and turns are displayed.

Inflow 1 Inflow 2 Turn 1

Detector 0 22 30 15

Detector 1 12 11 5

Detector 2 24 16 17

Detector 3 34 37 27

Table B.38: Distances between detectors and inflows and turns in number of cells



B.4. EXPERIMENT 1D: SENSITIVITY TO LOCALIZATION RADIUS 193

The used combinations of radii and radius factors can be divided into several regimes:

(A) Every detector observes every inflow and turn;

(B) Every detector observes every inflow and turn, except D3I2;

(C) Every detector observes every inflow and turn, except D0I2, D3I1 and D3I2;

(D) Detector 0 to 2 observe every inflow and turn except D0I2, Detector 3 observes no
inflow or turns;

(E) Detector 0 observes T1, Detector 1 observes all inflows and turns, Detector 2 ob-
serves I2 and T1 and Detector 3 observes no inflows or turns;

(F) Detector 0 observes T1, Detector 1 observes all inflows and turns and Detector 2
and 3 observe no inflows or turns;

(G) Detector 1 observes T1, the other detectors don’t observe any inflows or turns.

nl
Radius factor:

5 4 3 2 1

20 A A A A E

14 A A A C F

10 A A C E G

7 B C E F G

5 D E F G G

Table B.39: Regimes of combinations of radius nl and radius factor.

For the state localized DEnKF, regime A and B provide similar results. It seems that
within these regimes, the performance slightly decreases when the radius nl is lowered.
Regimes C and D perform reasonably similar: both about 30% worse than regime A and
B. Regime E is again about 20% worse than regime C and D. Regimes F and G are the
worst with a very bad performance in comparison with the other regimes.

The performance primarily seems to decrease when a detector doesn’t observe an inflow
anymore. However this conclusion is hard to prove using only this data set. For the state
based approach, the performance increases when more detectors are available for each
inflow or turn fraction.

For the observation based DEnKF, the separation between the different regimes are less
clear. Regimes A, B, C, D and E all have a similar (but varying) performance. In
contrast to the state based approach, in this approach a larger radius or radius factor
doesn’t generally imply that the the performance is better. This can be caused by the
approximation of the observations: the observations are (linearly) approximated when an
overlap occurs. When many overlaps occur, too many approximations will be made which
could hamper the performance.

The sensitivity of the performance to the localization radius seems quite large in compar-
ison to the state based DEnKF. A possible explanation for this is that in the update step
of the observation based localization, the measurements of other observations need to be
updated by means of an approximation when there is an overlap. When the localization
radius is relatively small, no overlaps occur so the other observations are not updated.
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Therefore the cells in the neighbourhood of the other observations are updated using the
original values for the observations, which can result in overcorrection. This problem has
a large connection with the assumption that only one cell corresponds to the observed
value at a detector.

B.4.2 Stability state estimation

DEnKF DEnKF local state with radius factor: DEnKF local observation with radius factor:

nl global 5 4 3 2 1 5 4 3 2 1

RMSE K

20 0.0069 0.0059 0.0059 0.0059 0.0059 0.0083 0.0075 0.0075 0.0075 0.0075 0.0099

14 0.0069 0.0062 0.0062 0.0062 0.0076 0.0157 0.0155 0.0155 0.0155 0.0084 0.0211

10 0.0069 0.0060 0.0060 0.0077 0.0081 0.0155 0.0174 0.0174 0.0085 0.0081 0.0193

7 0.0069 0.0062 0.0079 0.0082 0.0156 0.0144 0.0080 0.0096 0.0083 0.0249 0.0190

5 0.0069 0.0079 0.0091 0.0132 0.0139 0.0139 0.0115 0.0089 0.0258 0.0213 0.0213

MAPE K

20 0.0240 0.0249 0.0249 0.0249 0.0249 0.0524 0.0360 0.0360 0.0360 0.0360 0.0600

14 0.0240 0.0264 0.0264 0.0264 0.0405 0.2315 0.0634 0.0634 0.0634 0.0376 0.3138

10 0.0240 0.0300 0.0300 0.0391 0.0506 0.1976 0.0660 0.0660 0.0368 0.0538 0.2535

7 0.0240 0.0261 0.0428 0.0547 0.2201 0.2104 0.0411 0.0469 0.0486 0.2614 0.2494

5 0.0240 0.0425 0.0513 0.1973 0.1904 0.1904 0.0675 0.0476 0.2659 0.2956 0.2956

RMSE V

20 1.4077 1.1915 1.1915 1.1915 1.1915 1.6368 1.4977 1.4977 1.4977 1.4977 1.9211

14 1.4077 1.2626 1.2626 1.2626 1.5621 3.1000 2.9711 2.9711 2.9711 1.6577 4.2486

10 1.4077 1.2087 1.2087 1.5227 1.6506 3.0567 3.3399 3.3399 1.6622 1.6503 3.9507

7 1.4077 1.2715 1.6157 1.6733 3.0363 2.8688 1.6182 1.7994 1.6799 4.7036 3.8635

5 1.4077 1.6189 1.7802 2.5895 2.8167 2.8167 2.3102 1.6968 5.0845 4.1359 4.1359

MAPE V

20 0.0137 0.0124 0.0124 0.0124 0.0124 0.0269 0.0237 0.0237 0.0237 0.0237 0.0294

14 0.0137 0.0126 0.0126 0.0126 0.0232 0.0946 0.0721 0.0721 0.0721 0.0219 0.1649

10 0.0137 0.0126 0.0126 0.0221 0.0244 0.0861 0.1384 0.1384 0.0259 0.0237 0.1550

7 0.0137 0.0161 0.0232 0.0263 0.0785 0.0842 0.0283 0.0354 0.0207 0.2185 0.1845

5 0.0137 0.0250 0.0304 0.0842 0.0875 0.0875 0.0539 0.0265 0.2945 0.2234 0.2234

TRE

20 233378 214710 214710 214710 214710 399173 263107 263107 263107 263107 521188

14 233378 240618 240618 240618 303222 983837 924778 924778 924778 288389 1883467

10 233378 218544 218544 282305 365750 1053676 1165279 1165279 309690 388010 1583180

7 233378 200750 312806 360913 942967 946618 321193 358842 348017 1986125 1369980

5 233378 296304 423820 791065 848582 848582 560845 356484 2370612 1660613 1660613

Table B.40: 90th percentile of state estimation performance

The same patterns as for the accuracy of the state estimation occur. The observations
based approach is less stable than the state based approach.

B.4.3 Accuracy state prediction

The same patterns occur for the state prediction as for the state estimation.
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DEnKF DEnKF local state with radius factor: DEnKF local observation with radius factor:

nl global 5 4 3 2 1 5 4 3 2 1

RMSE K

20 0.0086 0.0084 0.0084 0.0084 0.0084 0.0151 0.0096 0.0096 0.0096 0.0096 0.0171

14 0.0086 0.0086 0.0086 0.0086 0.0105 0.0333 0.0109 0.0109 0.0109 0.0114 0.0331

10 0.0086 0.0087 0.0087 0.0110 0.0142 0.0366 0.0125 0.0125 0.0114 0.0141 0.0368

7 0.0086 0.0094 0.0106 0.0146 0.0339 0.0370 0.0114 0.0139 0.0139 0.0325 0.0365

5 0.0086 0.0106 0.0148 0.0342 0.0375 0.0375 0.0150 0.0142 0.0331 0.0371 0.0371

MAPE K

20 0.0347 0.0343 0.0343 0.0343 0.0343 0.1069 0.0432 0.0432 0.0432 0.0432 0.1495

14 0.0347 0.0349 0.0349 0.0349 0.0467 0.5534 0.0578 0.0578 0.0578 0.0534 0.3909

10 0.0347 0.0354 0.0354 0.0508 0.0924 0.6940 0.0567 0.0567 0.0491 0.1095 0.6271

7 0.0347 0.0380 0.0474 0.0944 0.5565 0.6978 0.0495 0.0711 0.1026 0.3937 0.6258

5 0.0347 0.0467 0.0959 0.5673 0.7110 0.7110 0.0852 0.1050 0.4143 0.6442 0.6442

RMSE V

20 1.6725 1.6427 1.6427 1.6427 1.6427 2.8859 1.8693 1.8693 1.8693 1.8693 3.2831

14 1.6725 1.6695 1.6695 1.6695 2.0526 6.4926 2.0681 2.0681 2.0681 2.2239 6.4192

10 1.6725 1.7079 1.7079 2.1376 2.7202 7.1430 2.3768 2.3768 2.2230 2.7127 7.0864

7 1.6725 1.8265 2.0664 2.7811 6.6048 7.2130 2.2063 2.7234 2.6634 6.3241 7.0445

5 1.6725 2.0654 2.8393 6.6695 7.3020 7.3020 2.9316 2.7331 6.4534 7.1492 7.1492

MAPE V

20 0.0364 0.0349 0.0349 0.0349 0.0349 0.0756 0.0482 0.0482 0.0482 0.0482 0.0935

14 0.0364 0.0363 0.0363 0.0363 0.0488 0.3448 0.0614 0.0614 0.0614 0.0564 0.4578

10 0.0364 0.0369 0.0369 0.0507 0.0730 0.3501 0.0849 0.0849 0.0616 0.0625 0.4119

7 0.0364 0.0425 0.0490 0.0773 0.3582 0.3554 0.0634 0.0882 0.0601 0.4372 0.4060

5 0.0364 0.0495 0.0807 0.3621 0.3613 0.3613 0.1016 0.0624 0.4392 0.4096 0.4096

TRE

20 195904 191724 191724 191724 191724 469230 246701 246701 246701 246701 607616

14 195904 194474 194474 194474 259792 2213021 306758 306758 306758 296424 2246879

10 195904 198294 198294 273579 428852 2506488 374520 374520 303473 445228 2599604

7 195904 219055 262871 447861 2266436 2531014 305432 420744 427252 2186335 2559799

5 195904 262881 460369 2307801 2578959 2578959 489928 438357 2238870 2609961 2609961

Table B.41: Predictions 60 minutes ahead

B.4.4 Stability state prediction

The same patterns occur for the state prediction as for the state estimation.
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DEnKF DEnKF local state with radius factor: DEnKF local observation with radius factor:

nl global 5 4 3 2 1 5 4 3 2 1

RMSE K

20 0.0130 0.0129 0.0129 0.0129 0.0129 0.0197 0.0163 0.0163 0.0163 0.0163 0.0268

14 0.0130 0.0134 0.0134 0.0134 0.0150 0.0610 0.0205 0.0205 0.0205 0.0168 0.0599

10 0.0130 0.0133 0.0133 0.0163 0.0194 0.0609 0.0231 0.0231 0.0166 0.0252 0.0645

7 0.0130 0.0134 0.0155 0.0205 0.0619 0.0608 0.0194 0.0221 0.0250 0.0588 0.0644

5 0.0130 0.0155 0.0210 0.0624 0.0612 0.0612 0.0254 0.0244 0.0598 0.0651 0.0651

MAPE K

20 0.0437 0.0526 0.0526 0.0526 0.0526 0.1720 0.0834 0.0834 0.0834 0.0834 0.2675

14 0.0437 0.0600 0.0600 0.0600 0.0918 1.7255 0.0722 0.0722 0.0722 0.0960 1.1692

10 0.0437 0.0606 0.0606 0.0973 0.1691 2.0116 0.1129 0.1129 0.0775 0.2728 1.9249

7 0.0437 0.0627 0.0908 0.1677 1.7316 2.0086 0.0819 0.1384 0.1926 1.0765 1.8963

5 0.0437 0.0869 0.1726 1.7670 2.0330 2.0330 0.1635 0.1934 1.1181 1.9362 1.9362

RMSE V

20 2.4185 2.4284 2.4284 2.4284 2.4284 3.6136 3.1309 3.1309 3.1309 3.1309 5.1588

14 2.4185 2.4624 2.4624 2.4624 2.9757 11.6000 3.9553 3.9553 3.9553 3.2307 11.6715

10 2.4185 2.4343 2.4343 2.9381 3.5775 11.8819 4.4138 4.4138 3.2534 4.8925 12.1523

7 2.4185 2.6575 3.0437 3.6368 11.7476 11.8626 3.8094 4.2313 4.8129 11.4445 12.1494

5 2.4185 3.0400 3.7557 11.8284 11.9494 11.9494 4.8769 4.6976 11.6362 12.2691 12.2691

MAPE V

20 0.0669 0.0666 0.0666 0.0666 0.0666 0.1534 0.0975 0.0975 0.0975 0.0975 0.1812

14 0.0669 0.0661 0.0661 0.0661 0.1124 0.6380 0.1380 0.1380 0.1380 0.1129 1.1555

10 0.0669 0.0722 0.0722 0.1043 0.1354 0.6904 0.2827 0.2827 0.1307 0.1171 1.0709

7 0.0669 0.0732 0.1181 0.1522 0.7776 0.6747 0.2045 0.2585 0.1157 0.9920 1.0398

5 0.0669 0.1210 0.1589 0.7906 0.6965 0.6965 0.2713 0.1219 0.9756 1.0240 1.0240

TRE

20 297238 308144 308144 308144 308144 608147 508397 508397 508397 508397 1110512

14 297238 309713 309713 309713 396938 6166871 758251 758251 758251 552523 5399789

10 297238 295064 295064 424153 610386 5327480 958091 958091 483024 1179413 6302862

7 297238 348675 411226 647406 6135846 5451998 730998 884287 1012410 4797566 6325246

5 297238 416985 671452 6165453 5539748 5539748 1161242 1083051 4969152 6384236 6384236

Table B.42: 90th percentile of state prediction performance



Appendix C

Results experiment 2: Rotterdam
highway network using synthetic
data

In this chapter the results of the second simulation experiment are given. The second
simulation experiment consists of testing the data assimilation methods on case study of
the Rotterdam highway network, using synthetic data. A description of the experiment
design is given in section 7.4.2.

This experiment consists of 4 subexperiments:

• Experiment 2a: ...

C.1 Experiment 2a: choice of implementation

The goal of experiment 2a is to determine which implementatioin is to be used for the
further experiments.

Formulation Kalman gain Sequence of update

Method Traditional Sherman-Morrison-Woodbury Sequential Parallel

EnKF global X X X
EnKF local state X X X X

EnKF local observation X X
DEnKF global X X X

DEnKF local state X X X X
DEnKF local observation X X

Table C.1: Possible implementations for each assimilation method

Therefore, the global (D)EnKF has 2 possible implementations, the state localized (D)EnKF
has 4 possible implementations and the observation localized (D)EnKF has only 1 imple-
mentation.

197
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In order to test the computation speeds of the implementations, every possible imple-
mentation is run using the same assimilation and network parameters. If it is assumed
that the computation speeds don’t depend on the used parameters, the conditions for
each implementation are similar. The model runs consist of 120 update steps, which are
independently timed. The Rotterdam case study is used as example, with an ensemble
size of N = 20. In figure C.1 an overview is given of the computation times of the dif-
ferent implementations by means of a box plot (Tukey, 1977). See Cox (2009) for more
information about the interpretations and variations of the box plot.
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EnKF global trad.

EnKF global SMW
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Box plot of computation times using different implementations

Computation time per update step [ms]

Figure C.1: Box plot of the computation times of the update steps of the different imple-
mentations with ensemble size N = 20.

The Tukey convention of the box plot is used: the red line indicates the median value.
The (blue) box is bounded by the 25th and 75th percentile. The ends of the whiskers
indicate lowest and highest data points within 1.5 times the interquartile range. The +
symbols indicate the outliers.

Notable is that a lot of outliers occur in the computation time. This can be explained by
the use of the CPU by other applications during the simulation runs. Another reason for
the outliers could be the garbage collection methods by the Java runtime, which ensures
that variables in the memory are cleared when not in use. These outliers seem to be quite
random and not per se restricted to certain implementations.

A few conclusions can be drawn from this data:

• For the global methods, the Sherman-Morrison-Woodbury implementation seem to
decrease the computation time significantly.

• Parallelization considerably speeds up the computation of the state based localized
methods.

• The most notable observations is that the SMW implementation leads to a increase
of the computation speed of the state localized methods instead of a decrease. Theo-
retically, the SMW implementation would imply a small decrease of the computation
time. However, the extra overhead in the implementation of the SMW formulation
thus leads to worsening in the computation time.
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• When comparing the unimproved (traditional and sequential) formulations, the ob-
servation localized methods score best, followed by the state based localized methods
and the global methods. However, with the several improvements, the observation
based method now is the slowest. The global method, which was the slowest of the
unimproved methods, is the fastest of the improved methods.

In order to investigate the performance for a larger ensemble, the same experiment is
done using an ensemble of size 50. In figure C.2 the computation times of N = 20 and
N = 50 are compared, with the outliers omitted. For N = 50 the same patterns arise as
for N = 20. Notable is that the performance of the SMW implementations of the state
localized methods worsens more than the other implementations.
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Figure C.2: Box plots of the computation times of the update steps of the different
implementations with ensemble size N = 20 (blue) and ensemble size N = 50 (black),
without outliers.

In figure C.3 the median computation times per assimilation time step for the different
implementations are given. Both the computation times for an ensemble size of 20 (see
figure C.3a) and an ensemble size of 50 (see figure C.3b) are given. The depicted com-
putation times include the computation times of the prediction part of the algorithm.
As hypothesised, the computation time spent is approximately linear. Furthermore, the
median computation time that is needed for extra functions is displayed. This “Other”
category consists of time spent at other tasks, e.g. initializing the assimilation algorithm,
updating the graphical user interface, calculating performance indicators and saving data.

Note that all preferred implementations are computed quite faster than real-time (60
seconds).

Conclusions

For the global methods, it is beneficial to use the SMW implementation when a large
network is considered with a large ensemble size.
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Figure C.3: An overview of the median computation times of an assimilation time step
of the different implementations. Figure C.3a depicts a situation where an ensemble size
of N = 20 is used. In figure C.3b the ensemble size is N = 50 is used.

On a network of this size, the SMW implementation surprisingly causes an increase in
computation time of a state localized method instead of the theoretical (small) decrease.
This can be explained by the extra overhead the SMW implementation causes.

The chosen implementations are:

• EnKF global SMW

• EnKF local state traditional parallel

• EnKF local observation

• DEnKF global SMW

• DEnKF local state traditional parallel

• DEnKF local observation

C.2 Experiment 2b: calibration state estimation Rot-

terdam network

• 1 Reference case with associated (perturbed) observations

• 3 different starting points of demand and turn fractions of assimilation cases

• 10 different assimilation parameter sets (errors)

• 6 different assimilation methods

• Assimilation cases have the same FD as reference case

• Ensemble size, localization radii and observation errors are fixed.
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Parameter set Initial error K Initial error I Initial error TF Inflation factor K Inflation factor I Inflation factor TF

1 0.0112 0.0726 0.0710 1.0120 1.0198 1.0021

2 0.0148 0.0247 0.0307 1.0201 1.0066 1.0102

3 0.0112 0.1142 0.0551 1.0107 1.0062 1.0054

4 0.0051 0.1061 0.0768 1.0047 1.0170 1.0025

5 0.0017 0.1402 0.0608 1.0252 1.0282 1.0001

6 0.0135 0.1960 0.0933 1.0091 1.0283 1.0252

7 0.0111 0.1669 0.0963 1.0044 1.0270 1.0224

8 0.0099 0.0186 0.0584 1.0270 1.0051 1.0031

9 0.0096 0.2082 0.0835 1.0300 1.0055 1.0269

10 0.0086 0.0799 0.0673 1.0162 1.0144 1.0014

Table C.2: Used parameters

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global 5 0.0477 0.3264 5.1230 0.5090 114212194

EnKF local state 5 0.0085 0.0548 1.2257 0.0224 10774534

EnKF local observation 5 0.0114 0.0758 1.4757 0.0390 14360733

DEnKF global 2 0.0436 0.3236 4.6697 0.4909 101884872

DEnKF local state 5 0.0025 0.0284 0.4127 0.0085 2187272

DEnKF local observation 5 0.0030 0.0327 0.4837 0.0057 2853298

No Assimilation - 0.0518 0.3917 5.6012 0.5141 135456313

Table C.3: Mean performance of state estimation using different assimilation schemes.

Global methods, very bad! State based somewhat better than observation based Deter-
ministic better than stochastic

All local methods are satisfactory.
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Free flow Congested

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global 5 0.0243 0.2974 2.7702 0.0261 0.1084 0.4915 11.4678 3.2954

EnKF local state 5 0.0047 0.0580 0.6111 0.0032 0.0191 0.0367 2.8212 0.1329

EnKF local observation 5 0.0078 0.0800 0.8709 0.0047 0.0228 0.0521 3.2058 0.2372

DEnKF global 2 0.0220 0.3137 2.4237 0.0228 0.1002 0.3801 10.6447 3.1920

DEnKF local state 5 0.0013 0.0311 0.2127 0.0013 0.0056 0.0126 0.9368 0.0499

DEnKF local observation 5 0.0018 0.0358 0.2975 0.0016 0.0064 0.0148 1.0345 0.0292

No Assimilation - 0.0345 0.3789 3.8581 0.0404 0.1053 0.4644 11.1985 3.2480

Table C.4: Mean performance of state estimation using different assimilation schemes, in
different conditions.

Case RMSE K MAPE K RMSE V MAPE V TRE

EnKF global

1 0.0478 0.2851 5.1755 0.6074 109272003

2 0.0560 0.4083 5.9539 0.7098 145599447

3 0.0392 0.2858 4.2394 0.2097 87765132

EnKF local state

1 0.0100 0.0719 1.4968 0.0255 15071567

2 0.0089 0.0523 1.2666 0.0212 11941889

3 0.0067 0.0401 0.9138 0.0204 5310147

EnKF local observation

1 0.0117 0.0729 1.4663 0.0541 12814324

2 0.0143 0.0906 1.8482 0.0425 22100830

3 0.0082 0.0639 1.1127 0.0204 8167047

DEnKF global

1 0.0459 0.3494 4.9243 0.5418 109326652

2 0.0461 0.3262 4.8109 0.5847 105978489

3 0.0387 0.2952 4.2740 0.3462 90349474

DEnKF local state

1 0.0036 0.0321 0.5955 0.0184 3174495

2 0.0021 0.0269 0.3404 0.0041 1742862

3 0.0018 0.0260 0.3023 0.0030 1644460

DEnKF local observation

1 0.0029 0.0313 0.4554 0.0052 2787886

2 0.0027 0.0346 0.4918 0.0060 2713625

3 0.0033 0.0321 0.5041 0.0060 3058382

No Assimilation

1 0.0526 0.3941 5.7509 0.5568 133934639

2 0.0562 0.3870 5.8537 0.6445 149370575

3 0.0466 0.3939 5.1988 0.3412 123063726

Table C.5: Accuracies of assimilation methods with different starting points of network
parameters.
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Free flow Congested

Case RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global

1 0.0184 0.2370 2.1762 0.0201 0.1162 0.5593 12.4112 3.9968

2 0.0286 0.3812 3.3045 0.0330 0.1285 0.5626 13.3045 4.6155

3 0.0260 0.2741 2.8300 0.0253 0.0805 0.3526 8.6876 1.2737

EnKF local state

1 0.0062 0.0767 0.8751 0.0046 0.0213 0.0445 3.2788 0.1459

2 0.0044 0.0545 0.5729 0.0029 0.0207 0.0403 2.9946 0.1271

3 0.0034 0.0427 0.3852 0.0021 0.0153 0.0254 2.1903 0.1257

EnKF local observation

1 0.0068 0.0768 0.7540 0.0045 0.0257 0.0506 3.3579 0.3405

2 0.0102 0.0947 1.0798 0.0058 0.0278 0.0673 4.0496 0.2545

3 0.0063 0.0683 0.7787 0.0038 0.0151 0.0385 2.2098 0.1165

DEnKF global

1 0.0242 0.3369 2.6417 0.0247 0.1044 0.4207 11.1316 3.5257

2 0.0204 0.3240 2.1677 0.0216 0.1096 0.3385 11.3840 3.8343

3 0.0214 0.2802 2.4618 0.0222 0.0866 0.3810 9.4186 2.2160

DEnKF local state

1 0.0017 0.0349 0.2737 0.0016 0.0084 0.0166 1.4032 0.1158

2 0.0009 0.0299 0.1537 0.0012 0.0049 0.0103 0.8052 0.0207

3 0.0012 0.0287 0.2107 0.0012 0.0036 0.0110 0.6021 0.0132

DEnKF local observation

1 0.0018 0.0341 0.3073 0.0016 0.0061 0.0151 0.9268 0.0259

2 0.0018 0.0381 0.2945 0.0017 0.0055 0.0144 1.0662 0.0305

3 0.0017 0.0352 0.2907 0.0016 0.0076 0.0150 1.1104 0.0313

No Assimilation

1 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

2 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

3 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table C.6: Accuracies of assimilation methods with different starting points of network
parameters, in different conditions
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Figure C.4: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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C.3 Experiment 2c: sensitivity ensemble size

• 1 Reference case with associated (perturbed) observations

• 3 different starting points of demand and turn fractions of assimilation cases

• 1 assimilation parameter sets (the best of subexperiment 1)

• 6 different assimilation methods

• 5 different ensemble sizes: 10,20,30,40,50

• Assimilation cases have the same FD as reference case

• Localization radii are fixed.

N Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF global

10 2 0.0543 0.4455 5.7098 0.6125 143903759

20 1 0.0482 0.3290 5.1768 0.5187 116000394

30 2 0.0470 0.3631 5.1229 0.5622 118294980

40 1 0.0433 0.3156 4.6228 0.4435 97657076

50 1 0.0417 0.2861 4.5144 0.4604 94713912

EnKF local state

10 1 0.0244 0.1660 2.8339 0.1201 40910646

20 1 0.0084 0.0562 1.2918 0.0251 11433559

30 1 0.0043 0.0352 0.6970 0.0135 5103842

40 1 0.0031 0.0281 0.4570 0.0053 2817719

50 1 0.0028 0.0253 0.3898 0.0040 2143909

EnKF local observation

10 1 0.0272 0.1920 3.1573 0.1859 48161062

20 1 0.0119 0.0766 1.5591 0.0428 14708694

30 1 0.0054 0.0419 0.7453 0.0106 5177401

40 1 0.0030 0.0317 0.4736 0.0064 2863424

50 1 0.0026 0.0284 0.4078 0.0043 2415152

DEnKF global

10 1 0.0484 0.3674 5.2126 0.5436 124181491

20 1 0.0436 0.3239 4.6765 0.4906 102182421

30 1 0.0383 0.2930 4.1722 0.4276 82132596

40 2 0.0351 0.2638 3.7738 0.2651 71283286

50 2 0.0266 0.2022 3.2520 0.2494 54127793

DEnKF local state

10 1 0.0194 0.1118 2.3205 0.1375 29367324

20 1 0.0026 0.0281 0.4338 0.0092 2315058

30 1 0.0019 0.0212 0.3029 0.0032 1695104

40 2 0.0018 0.0261 0.2893 0.0031 1733597

50 2 0.0017 0.0252 0.2807 0.0030 1643540

DEnKF local observation

10 1 0.0166 0.1127 2.0300 0.1032 23094629

20 1 0.0027 0.0320 0.4705 0.0077 2607992

30 1 0.0021 0.0252 0.3595 0.0044 1912091

40 1 0.0019 0.0235 0.3344 0.0042 1833469

50 1 0.0020 0.0229 0.3441 0.0042 1897710

No Assimilation - - 0.0518 0.3917 5.6012 0.5141 135456313

Table C.7: Mean performance of state estimation using different assimilation schemes, for
different ensemble sizes.

For all methods, bigger ensemble leads to more accurate estimation results.

In figure C.5, the accuracy of the assimilation process is plotted with the computation
time of the different assimilation methods. Note that for all methods with the chosen
parameters, the computation time is far faster than real time (CT � 7200). However,
the global methods perform very bad in comparison with the other methods. As an
example: the global DEnKF can have a similar accuracy as the observation based local
EnKF, however the computation time is three times as long.
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Free flow Congested

N Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF global

10 2 0.0320 0.4411 3.5329 0.0379 0.1175 0.4706 12.1283 3.9289

20 1 0.0248 0.3002 2.8122 0.0266 0.1095 0.4931 11.5666 3.3586

30 2 0.0261 0.3550 2.8870 0.0294 0.1049 0.4095 11.3404 3.6370

40 1 0.0247 0.3013 2.7972 0.0266 0.0955 0.3973 9.9232 2.8491

50 1 0.0212 0.2776 2.5627 0.0251 0.0934 0.3343 9.7699 2.9722

EnKF local state

10 1 0.0181 0.1743 2.0199 0.0127 0.0450 0.1188 5.5070 0.7400

20 1 0.0047 0.0593 0.6643 0.0033 0.0186 0.0387 2.9512 0.1512

30 1 0.0019 0.0376 0.2776 0.0018 0.0102 0.0219 1.6727 0.0815

40 1 0.0022 0.0307 0.2712 0.0014 0.0059 0.0134 0.9940 0.0279

50 1 0.0020 0.0276 0.2509 0.0012 0.0053 0.0117 0.8065 0.0200

EnKF local observation

10 1 0.0172 0.1996 2.0840 0.0142 0.0568 0.1484 6.4847 1.1771

20 1 0.0081 0.0811 0.9515 0.0048 0.0238 0.0506 3.3232 0.2619

30 1 0.0033 0.0452 0.4675 0.0022 0.0114 0.0233 1.5653 0.0590

40 1 0.0018 0.0347 0.2608 0.0015 0.0065 0.0144 1.0553 0.0348

50 1 0.0015 0.0313 0.2546 0.0013 0.0058 0.0122 0.8611 0.0211

DEnKF global

10 1 0.0259 0.3549 2.9830 0.0299 0.1088 0.4386 11.4451 3.5081

20 1 0.0220 0.3139 2.4281 0.0229 0.1002 0.3806 10.6589 3.1899

30 1 0.0169 0.2832 2.0631 0.0190 0.0907 0.3484 9.6160 2.7856

40 2 0.0186 0.2618 2.2409 0.0194 0.0794 0.2752 8.1446 1.6830

50 2 0.0127 0.1979 1.7629 0.0146 0.0615 0.2264 7.2916 1.6042

DEnKF local state

10 1 0.0116 0.1161 1.3524 0.0075 0.0418 0.0877 5.0809 0.8881

20 1 0.0012 0.0308 0.2046 0.0013 0.0059 0.0127 1.0158 0.0551

30 1 0.0011 0.0231 0.1775 0.0010 0.0041 0.0101 0.6615 0.0164

40 2 0.0010 0.0288 0.1627 0.0010 0.0039 0.0107 0.6418 0.0151

50 2 0.0009 0.0279 0.1546 0.0009 0.0037 0.0100 0.6267 0.0148

DEnKF local observation

10 1 0.0111 0.1189 1.3252 0.0078 0.0333 0.0771 4.1951 0.6536

20 1 0.0016 0.0350 0.2716 0.0016 0.0059 0.0150 1.0293 0.0432

30 1 0.0012 0.0275 0.2099 0.0012 0.0046 0.0123 0.7798 0.0228

40 1 0.0010 0.0255 0.1697 0.0010 0.0043 0.0118 0.7670 0.0222

50 1 0.0011 0.0250 0.1762 0.0010 0.0045 0.0114 0.7887 0.0223

No Assimilation - - 0.0345 0.3789 3.8581 0.0404 0.1053 0.4644 11.1985 3.2480

Table C.8: Mean performance of state estimation using different assimilation schemes, in
different conditions, for different ensemble sizes.

The state based methods perform have a better accuracy/speed ratio than the observation
based methods. The same holds for the deterministic methods in comparison to the
stochastic methods.
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Figure C.5: The RMSE of the density of the cells, against the computation time of 2
hours of data. The stars indicate the used ensemble size: from left to right ensemble sizes
of 10, 20, 30, 40 and 50 are used

C.4 Experiment 2d: sensitivity to localization width

• 1 Reference case with associated (perturbed) observations

• 3 different starting points of demand and turn fractions of assimilation cases

• 1 assimilation parameter sets (the best of subexperiment 1)

• 6 different assimilation methods

• 3 different localization widths for densities

• 3 different localization widths for inflows and turn fractions.

• Assimilation cases have the same FD as reference case

• Ensemble size is fixed at 20.
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EnKF state, radius factor: EnKF obs, radius factor: DEnKF state, radius factor: DEnKF obs, radius factor:

nl 1 2 3 1 2 3 1 2 3 1 2 3

RMSE K

10 0.0067 0.0027 0.0027 0.0066 0.0026 0.0025 0.0060 0.0022 0.0020 0.0147 0.0023 0.0021

20 0.0024 0.0029 0.0088 0.0027 0.0040 0.0107 0.0027 0.0017 0.0025 0.0026 0.0019 0.0027

30 0.0021 0.0082 0.0184 0.0023 0.0084 0.0225 0.0018 0.0024 0.0100 0.0018 0.0021 0.0094

MAPE K

10 0.0961 0.0299 0.0284 0.1022 0.0313 0.0314 0.0992 0.0278 0.0226 0.1419 0.0297 0.0250

20 0.0290 0.0297 0.0567 0.0314 0.0360 0.0722 0.0308 0.0218 0.0282 0.0325 0.0232 0.0309

30 0.0252 0.0511 0.1189 0.0281 0.0609 0.1496 0.0210 0.0272 0.0696 0.0218 0.0273 0.0669

RMSE V

10 1.2249 0.4052 0.3870 1.2254 0.4031 0.3924 1.2238 0.3508 0.3275 1.7811 0.3654 0.3297

20 0.3826 0.4005 1.2592 0.4091 0.5236 1.4137 0.3838 0.2934 0.4621 0.3882 0.2960 0.4334

30 0.3322 1.1324 2.2456 0.3806 1.0679 2.5706 0.3127 0.4370 1.3854 0.3142 0.3901 1.3159

MAPE V

10 0.0225 0.0047 0.0049 0.0210 0.0049 0.0053 0.0162 0.0041 0.0035 0.0513 0.0043 0.0038

20 0.0045 0.0052 0.0222 0.0054 0.0078 0.0360 0.0039 0.0032 0.0098 0.0041 0.0032 0.0052

30 0.0037 0.0193 0.0738 0.0045 0.0272 0.1235 0.0033 0.0079 0.0543 0.0032 0.0053 0.0485

TRE

10 14.7068 3.3739 2.8947 14.9003 3.2025 2.8497 14.6740 2.4707 2.1277 23.9640 2.4639 2.1446

20 3.1622 2.5395 11.3281 3.3960 3.1961 12.9109 3.5258 1.7562 2.3973 3.0793 1.8638 2.5691

30 2.6921 9.8036 27.6192 3.1280 8.3253 33.4395 2.4071 2.4637 10.0169 2.3709 2.3322 10.2004

Table C.9: Mean performance of state estimation using different assimilation schemes, for
different ensemble sizes.
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Appendix D

Results experiment 3: Influence of
different detector settings

D.1 Experiment 3: sensitivity to observations

In table D.1 the six different detector location configurations are shown. Two types of
configurations are used: the first group consists of the configurations that use the real
detector locations, whereas the configurations in the second group use (fictional) detector
locations that are evenly spaced.

Configuration 1 is the configuration where the detectors are located as in the real Rotter-
dam network. This detector network is quite dense, as 592 detectors are placed within a
264 km network. This configuration is used as the base case for the other configurations.
Configuration 3 is the “minimal coverage of links” configuration: for every link which has
1 or more detectors in the first configuration, only 1 detector is chosen for that link. The
term link is here defined as an uninterrupted (by on- or off-ramps) road stretch that has
similar characteristics (e.g. number of lanes or speed limit). Configuration 3 thus always
has a detector on a link if that link has a detector in the real network. Configuration 2
is an intermediate configuration that lies in the middle between configuration 1 and 3 in
terms of the number of detectors.

The second group of detector location configurations consists of configurations with evenly
spaced detectors. These configurations are generated by placing detectors after a certain
spacing interval. In order to ensure a fair comparison with the other configurations, only
links that have detectors in the real network are considered. This way it is prevented
that a lot of detectors are placed on on- and off-ramps that are not available in the real
network. Note that, in contrast to configurations 2 and 3, some links that have detectors
originally don’t have detectors in these detector location configurations. This is a crucial
difference, as the estimation of inflows and turn fractions will become a lot harder as the
influence of these variables can’t be separated by the filter. Configuration 4 and 5 are
generated for comparison with configuration 2 and 3 as they have the same number of
detectors. Configuration 6 is used as a extreme case, with detectors spaced 2000 meters.
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(a) (b)

(c) (d)

(e) (f)

Figure D.1: Detector locations
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Group Configuration Configuration ID Detectors [#]

Real detector locations

All detectors 1 592

Intermediate number of detectors 2 410

Minimal coverage of links 3 227

Evenly spaced locations

Intermediate number of detectors 4 410

Small number of detectors 5 227

2000 m spaced detectors 6 111

Table D.1: Overview characteristics used detector location configurations

D.2 Configuration 1: real detector locations

D.2.1 Speed and flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0024 0.0275 0.4027 0.0046 3106493

DEnKF local state 0.0019 0.0216 0.3407 0.0037 2257610

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0020 0.0240 0.3489 0.0044 3531257

DEnKF local state 0.0021 0.0205 0.3086 0.0030 2638310

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0024 0.0225 0.2796 0.0027 3091956

DEnKF local state 0.0022 0.0203 0.3157 0.0034 2323439

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.2: Performance of assimilation methods with real detector locations, using both
speed and flow observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0018 0.0302 0.2761 0.0013 0.0048 0.0122 0.8112 0.0238

DEnKF local state 0.0013 0.0236 0.2284 0.0010 0.0039 0.0104 0.6962 0.0191

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0010 0.0263 0.1834 0.0011 0.0045 0.0111 0.7937 0.0234

DEnKF local state 0.0011 0.0224 0.1996 0.0009 0.0048 0.0102 0.6442 0.0152

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0019 0.0248 0.2052 0.0011 0.0045 0.0096 0.5349 0.0123

DEnKF local state 0.0016 0.0220 0.1929 0.0009 0.0045 0.0105 0.6783 0.0180

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.3: State dependent performance of assimilation methods with real detector loca-
tions, using both speed and flow observations and small observation errors.

Large observation error
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0048 0.0549 0.7466 0.0126 7833726

DEnKF local state 0.0054 0.0539 0.7801 0.0138 6990064

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0047 0.0540 0.8030 0.0162 8803691

DEnKF local state 0.0047 0.0497 0.7052 0.0102 8484744

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0046 0.0529 0.6782 0.0104 7636221

DEnKF local state 0.0051 0.0475 0.6983 0.0111 6603334

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.4: Performance of assimilation methods with real detector locations, using both
speed and flow observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0030 0.0589 0.5178 0.0031 0.0103 0.0319 1.4923 0.0671

DEnKF local state 0.0038 0.0577 0.5632 0.0031 0.0107 0.0319 1.5134 0.0753

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0033 0.0584 0.5510 0.0030 0.0093 0.0284 1.6167 0.0924

DEnKF local state 0.0029 0.0536 0.5584 0.0029 0.0102 0.0276 1.2521 0.0520

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0033 0.0572 0.5195 0.0032 0.0089 0.0288 1.2477 0.0524

DEnKF local state 0.0039 0.0508 0.5192 0.0028 0.0095 0.0285 1.3213 0.0587

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.5: State dependent performance of assimilation methods with real detector loca-
tions, using both speed and flow observations and large observation errors.

D.2.2 Only flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0046 0.0308 0.6791 0.0074 5586573

DEnKF local state 0.0031 0.0232 0.4746 0.0047 2858375

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0028 0.0254 0.5287 0.0052 5408176

DEnKF local state 0.0024 0.0208 0.3396 0.0034 2801924

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0027 0.0228 0.3261 0.0029 3491764

DEnKF local state 0.0028 0.0214 0.3939 0.0038 3463504

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.6: Performance of assimilation methods with real detector locations, using only
flow observations and small observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0024 0.0327 0.3584 0.0016 0.0104 0.0197 1.5432 0.0407

DEnKF local state 0.0020 0.0249 0.3089 0.0012 0.0064 0.0132 0.9871 0.0253

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0010 0.0271 0.1505 0.0012 0.0068 0.0157 1.3274 0.0287

DEnKF local state 0.0010 0.0225 0.1973 0.0010 0.0057 0.0113 0.7458 0.0176

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0020 0.0249 0.2509 0.0012 0.0051 0.0106 0.5974 0.0131

DEnKF local state 0.0019 0.0231 0.2936 0.0011 0.0056 0.0119 0.7440 0.0196

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.7: State dependent performance of assimilation methods with real detector loca-
tions, using only flow observations and small observation errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0103 0.0913 1.5082 0.0188 18889043

DEnKF local state 0.0066 0.0615 0.9583 0.0154 10528026

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0052 0.0582 0.8382 0.0112 10869302

DEnKF local state 0.0061 0.0525 0.8815 0.0161 11266964

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0070 0.0581 0.9399 0.0252 12047286

DEnKF local state 0.0074 0.0548 0.9720 0.0143 10733439

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.8: Performance of assimilation methods with real detector locations, using only
flow observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0096 0.0979 1.4382 0.0078 0.0136 0.0536 1.8611 0.0821

DEnKF local state 0.0049 0.0652 0.7473 0.0040 0.0126 0.0404 1.7308 0.0813

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0037 0.0629 0.6771 0.0036 0.0102 0.0314 1.4533 0.0548

DEnKF local state 0.0035 0.0557 0.6150 0.0033 0.0134 0.0342 1.7548 0.0900

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0052 0.0621 0.7175 0.0040 0.0134 0.0353 1.7352 0.1475

DEnKF local state 0.0059 0.0583 0.7892 0.0039 0.0129 0.0345 1.6740 0.0738

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.9: State dependent performance of assimilation methods with real detector loca-
tions, using only flow observations and large observation errors.

D.2.3 Only speed assimilation

Small observation error
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0085 0.1146 1.2068 0.0261 12872308

DEnKF local state 0.0078 0.1045 1.0196 0.0196 12358986

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0078 0.1063 1.0226 0.0181 12396285

DEnKF local state 0.0078 0.1136 1.1509 0.0204 12951073

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0081 0.1055 1.2749 0.0315 15413353

DEnKF local state 0.0078 0.0972 1.1659 0.0281 13435865

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.10: Performance of assimilation methods with real detector locations, using only
speed observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0058 0.1243 0.9523 0.0076 0.0174 0.0590 2.1510 0.1329

DEnKF local state 0.0049 0.1129 0.7707 0.0065 0.0166 0.0563 1.9003 0.0949

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0065 0.1163 0.9095 0.0069 0.0129 0.0493 1.5190 0.0827

DEnKF local state 0.0065 0.1244 1.0134 0.0073 0.0130 0.0519 1.7442 0.0959

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0058 0.1138 0.8982 0.0072 0.0160 0.0584 2.5200 0.1718

DEnKF local state 0.0050 0.1035 0.8026 0.0063 0.0164 0.0615 2.3424 0.1542

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.11: State dependent performance of assimilation methods with real detector
locations, using only speed observations and small observation errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0148 0.1946 1.8983 0.0605 27718366

DEnKF local state 0.0125 0.1902 1.7523 0.0476 24880895

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0126 0.2028 1.7747 0.0379 25109941

DEnKF local state 0.0127 0.2100 1.8399 0.0490 27196944

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0126 0.1829 1.8917 0.0587 31196658

DEnKF local state 0.0127 0.1721 1.7491 0.0569 28809627

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.12: Performance of assimilation methods with real detector locations, using only
speed observations and large observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0114 0.2107 1.5449 0.0140 0.0270 0.1030 3.2596 0.3289

DEnKF local state 0.0083 0.2071 1.5160 0.0138 0.0255 0.0942 2.7438 0.2427

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0098 0.2224 1.5641 0.0144 0.0227 0.0915 2.6847 0.1740

DEnKF local state 0.0095 0.2302 1.6027 0.0147 0.0239 0.0951 2.8458 0.2470

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0081 0.1973 1.4973 0.0131 0.0264 0.1013 3.3605 0.3219

DEnKF local state 0.0078 0.1846 1.2733 0.0128 0.0271 0.1012 3.3703 0.3118

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.13: State dependent performance of assimilation methods with real detector
locations, using only speed observations and large observation errors.

D.2.4 Conclusion

D.3 Configuration 2

D.3.1 Speed and flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0029 0.0298 0.5168 0.0051 3523115

DEnKF local state 0.0021 0.0245 0.4063 0.0049 2437837

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0029 0.0270 0.5254 0.0073 3799421

DEnKF local state 0.0029 0.0235 0.4097 0.0049 3048493

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0029 0.0269 0.4803 0.0070 4809561

DEnKF local state 0.0024 0.0237 0.3630 0.0038 3085778

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.14: Performance of assimilation methods with reduced number of real detectors,
using both speed and flow observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0024 0.0324 0.4470 0.0017 0.0050 0.0147 0.8096 0.0246

DEnKF local state 0.0012 0.0264 0.2761 0.0012 0.0046 0.0133 0.8231 0.0265

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0014 0.0292 0.3273 0.0014 0.0067 0.0147 1.1183 0.0418

DEnKF local state 0.0011 0.0254 0.2451 0.0011 0.0070 0.0122 0.8887 0.0268

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0014 0.0290 0.2479 0.0014 0.0067 0.0151 1.0987 0.0397

DEnKF local state 0.0012 0.0256 0.2338 0.0012 0.0055 0.0126 0.7594 0.0188

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.15: State dependent performance of assimilation methods with reduced number
of real detectors, using both speed and flow observations and small observation errors.
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Figure D.2: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.

T
ru

th

2000 4000 6000

1

2

3

x 10
4

N
o

as
s.

2000 4000 6000

1

2

3

x 10
4

E
nK

F
st

at
e,

 Q
&

V

2000 4000 6000

1

2

3

x 10
4

D
E

nK
F

st
at

e,
 Q

&
V

2000 4000 6000

1

2

3

x 10
4

E
nK

F
st

at
e,

 Q

2000 4000 6000

1

2

3

x 10
4

D
E

nK
F

st
at

e,
 Q

2000 4000 6000

1

2

3

x 10
4

E
nK

F
st

at
e,

 V

2000 4000 6000

1

2

3

x 10
4

D
E

nK
F

st
at

e,
 V

 

 

2000 4000 6000

1

2

3

x 10
4

0

0.1

0.2

0.3

0.4

0.5

(a)

T
ru

th

2000 4000 6000

1

2

3

x 10
4

N
o

as
s.

2000 4000 6000

1

2

3

x 10
4

E
nK

F
st

at
e,

 Q
&

V

2000 4000 6000

1

2

3

x 10
4

D
E

nK
F

st
at

e,
 Q

&
V

2000 4000 6000

1

2

3

x 10
4

E
nK

F
st

at
e,

 Q

2000 4000 6000

1

2

3

x 10
4

D
E

nK
F

st
at

e,
 Q

2000 4000 6000

1

2

3

x 10
4

E
nK

F
st

at
e,

 V

2000 4000 6000

1

2

3

x 10
4

D
E

nK
F

st
at

e,
 V

 

 

2000 4000 6000

1

2

3

x 10
4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

(b)

Figure D.3: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0074 0.0731 1.1180 0.0151 11516288

DEnKF local state 0.0062 0.0630 0.9567 0.0165 9347188

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0062 0.0694 1.0755 0.0190 10425859

DEnKF local state 0.0061 0.0585 0.8910 0.0145 8110801

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0070 0.0619 0.9686 0.0219 11281007

DEnKF local state 0.0073 0.0618 0.9501 0.0143 10409766

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.16: Performance of assimilation methods with reduced number of real detectors,
using both speed and flow observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0061 0.0793 1.0247 0.0055 0.0125 0.0374 1.5506 0.0706

DEnKF local state 0.0036 0.0675 0.7493 0.0040 0.0137 0.0371 1.7197 0.0885

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0046 0.0744 0.8924 0.0044 0.0118 0.0404 1.7987 0.1032

DEnKF local state 0.0035 0.0629 0.6997 0.0037 0.0134 0.0330 1.5966 0.0766

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0035 0.0662 0.5833 0.0039 0.0163 0.0374 2.0949 0.1257

DEnKF local state 0.0055 0.0664 0.7901 0.0041 0.0134 0.0355 1.5841 0.0733

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.17: State dependent performance of assimilation methods with reduced number
of real detectors, using both speed and flow observations and large observation errors.

D.3.2 Only flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0035 0.0306 0.6003 0.0054 4745027

DEnKF local state 0.0024 0.0253 0.4660 0.0055 3076508

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0050 0.0327 0.7786 0.0136 5997944

DEnKF local state 0.0030 0.0241 0.4631 0.0054 3515690

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0074 0.0348 1.0909 0.0211 9368765

DEnKF local state 0.0030 0.0241 0.4529 0.0053 3640832

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.18: Performance of assimilation methods with reduced number of real detectors,
using only flow observations and small observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0031 0.0333 0.5597 0.0021 0.0049 0.0154 0.7951 0.0246

DEnKF local state 0.0015 0.0271 0.3379 0.0013 0.0052 0.0146 0.9008 0.0294

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0035 0.0353 0.6069 0.0021 0.0098 0.0181 1.4068 0.0799

DEnKF local state 0.0015 0.0259 0.2936 0.0012 0.0070 0.0138 0.9768 0.0296

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0030 0.0354 0.4888 0.0020 0.0179 0.0317 2.5845 0.1312

DEnKF local state 0.0014 0.0258 0.2560 0.0012 0.0071 0.0143 1.0052 0.0290

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.19: MyTableCaption

Table D.20: State dependent performance of assimilation methods with reduced number
of real detectors, using only flow observations and small observation errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0124 0.0912 1.5812 0.0240 18856586

DEnKF local state 0.0106 0.0803 1.3687 0.0215 15967044

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0084 0.0765 1.3098 0.0293 14313633

DEnKF local state 0.0091 0.0667 1.3079 0.0239 15753947

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0101 0.0857 1.5800 0.0336 18588991

DEnKF local state 0.0090 0.0708 1.1877 0.0186 14609426

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.21: Performance of assimilation methods with reduced number of real detectors,
using only flow observations and large observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0108 0.0986 1.4369 0.0075 0.0190 0.0486 2.2394 0.1190

DEnKF local state 0.0094 0.0866 1.2241 0.0062 0.0159 0.0439 2.0091 0.1099

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0057 0.0797 1.0326 0.0052 0.0171 0.0581 2.3373 0.1686

DEnKF local state 0.0049 0.0662 0.8569 0.0045 0.0207 0.0697 2.7102 0.1362

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0075 0.0864 1.2306 0.0062 0.0191 0.0820 2.8575 0.1920

DEnKF local state 0.0070 0.0717 0.9491 0.0049 0.0164 0.0659 2.0864 0.0977

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.22: State dependent performance of assimilation methods with reduced number
of real detectors, using only flow observations and large observation errors.

D.3.3 Only speed assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0113 0.1464 1.6038 0.0286 18163174

DEnKF local state 0.0094 0.1265 1.3040 0.0256 14810870

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0089 0.1234 1.2127 0.0202 15023922

DEnKF local state 0.0097 0.1325 1.3634 0.0215 16602634

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0113 0.1378 1.5472 0.0370 20094402

DEnKF local state 0.0095 0.1162 1.1606 0.0230 13894116

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.23: Performance of assimilation methods with reduced number of real detectors,
using only speed observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0092 0.1614 1.4191 0.0105 0.0195 0.0612 2.4071 0.1330

DEnKF local state 0.0069 0.1377 1.0766 0.0086 0.0182 0.0625 2.1966 0.1235

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0061 0.1337 1.0362 0.0081 0.0179 0.0650 1.9394 0.0904

DEnKF local state 0.0079 0.1445 1.2282 0.0092 0.0168 0.0643 1.9700 0.0926

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0074 0.1495 1.2204 0.0094 0.0235 0.0711 2.7593 0.1965

DEnKF local state 0.0062 0.1260 0.9565 0.0078 0.0198 0.0601 1.9600 0.1107

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.24: State dependent performance of assimilation methods with reduced number
of real detectors, using only speed observations and small observation errors.

Large observation error
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0150 0.2267 2.0957 0.0565 30468565

DEnKF local state 0.0150 0.2168 1.9567 0.0546 27009798

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0129 0.1906 1.7546 0.0419 26419343

DEnKF local state 0.0138 0.2099 1.9036 0.0442 28972440

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0150 0.1990 1.9460 0.0530 31633241

DEnKF local state 0.0141 0.2149 1.8697 0.0489 31483581

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.25: Performance of assimilation methods with reduced number of real detectors,
using only speed observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0113 0.2489 1.8601 0.0173 0.0283 0.1000 3.1258 0.2824

DEnKF local state 0.0109 0.2360 1.6769 0.0163 0.0288 0.1069 3.1139 0.2757

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0095 0.2066 1.4886 0.0140 0.0245 0.0999 2.8385 0.2030

DEnKF local state 0.0108 0.2280 1.7183 0.0158 0.0249 0.1070 2.7381 0.2077

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0096 0.2162 1.6511 0.0154 0.0315 0.1010 3.1479 0.2700

DEnKF local state 0.0103 0.2363 1.6584 0.0167 0.0273 0.0929 2.7921 0.2346

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.26: State dependent performance of assimilation methods with reduced number
of real detectors, using only speed observations and large observation errors.

D.3.4 Conclusion
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Figure D.4: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Figure D.5: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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D.4 Configuration 3

D.4.1 Speed and flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0055 0.0428 0.7342 0.0093 7414086

DEnKF local state 0.0087 0.0722 0.9995 0.0174 12752311

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0047 0.0378 0.6408 0.0080 6759711

DEnKF local state 0.0118 0.0794 1.3340 0.0139 12669260

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0149 0.0902 1.7793 0.0189 13360356

DEnKF local state 0.0063 0.0518 0.7683 0.0095 7645739

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.27: Performance of assimilation methods with minimal number of real detectors,
using both speed and flow observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0026 0.0457 0.4334 0.0025 0.0130 0.0258 1.6018 0.0481

DEnKF local state 0.0061 0.0728 0.6838 0.0046 0.0170 0.0689 2.0166 0.0908

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0023 0.0399 0.3686 0.0022 0.0108 0.0260 1.4128 0.0415

DEnKF local state 0.0067 0.0668 0.7549 0.0046 0.0260 0.1510 2.9597 0.0670

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0073 0.0633 0.9987 0.0050 0.0347 0.2435 3.9599 0.0991

DEnKF local state 0.0047 0.0544 0.5151 0.0032 0.0118 0.0367 1.5702 0.0462

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.28: State dependent performance of assimilation methods with minimal number
of real detectors, using both speed and flow observations and small observation errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0100 0.0919 1.3046 0.0284 16947663

DEnKF local state 0.0106 0.0882 1.2576 0.0281 16700174

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0100 0.1016 1.3532 0.0227 17675184

DEnKF local state 0.0102 0.0981 1.3060 0.0218 19360485

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0168 0.1199 1.9742 0.0470 22923522

DEnKF local state 0.0115 0.0926 1.4150 0.0263 17728190

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.29: Performance of assimilation methods with minimal number of real detectors,
using both speed and flow observations and large observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0051 0.0976 0.9175 0.0061 0.0229 0.0594 2.5817 0.1568

DEnKF local state 0.0050 0.0923 0.7628 0.0059 0.0248 0.0653 2.7112 0.1566

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0074 0.1100 1.1178 0.0074 0.0188 0.0538 2.2776 0.1107

DEnKF local state 0.0084 0.1035 1.0931 0.0072 0.0171 0.0678 2.1571 0.1065

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0094 0.1094 1.2986 0.0087 0.0373 0.1797 4.0816 0.2678

DEnKF local state 0.0078 0.0943 1.0322 0.0069 0.0233 0.0831 2.7217 0.1384

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.30: State dependent performance of assimilation methods with minimal number
of real detectors, using both speed and flow observations and large observation errors.

D.4.2 Only flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0059 0.0436 0.7882 0.0132 8669243

DEnKF local state 0.0104 0.0770 1.2705 0.0170 15955191

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0049 0.0402 0.7453 0.0100 7790551

DEnKF local state 0.0119 0.0774 1.3608 0.0162 14300309

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0185 0.1134 2.2135 0.0224 20419089

DEnKF local state 0.0077 0.0571 1.0302 0.0119 10578128

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.31: Performance of assimilation methods with minimal number of real detectors,
using only flow observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0036 0.0464 0.5301 0.0028 0.0127 0.0278 1.6076 0.0733

DEnKF local state 0.0068 0.0742 0.8395 0.0052 0.0216 0.0933 2.6196 0.0851

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0026 0.0422 0.4741 0.0025 0.0111 0.0287 1.5697 0.0537

DEnKF local state 0.0063 0.0671 0.7721 0.0047 0.0269 0.1361 3.0164 0.0822

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0130 0.0863 1.6686 0.0084 0.0367 0.2681 4.1361 0.1031

DEnKF local state 0.0060 0.0599 0.8038 0.0038 0.0140 0.0414 1.8596 0.0582

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.32: State dependent performance of assimilation methods with minimal number
of real detectors, using only flow observations and small observation errors.

Large observation error
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0180 0.1487 2.2232 0.0349 36025317

DEnKF local state 0.0127 0.1101 1.6447 0.0329 32286523

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0299 0.1560 3.5819 0.1807 77196262

DEnKF local state 0.0195 0.1868 2.5450 0.0403 52288872

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0259 0.1961 3.1062 0.1055 48280510

DEnKF local state 0.0359 0.2670 4.1444 0.3419 81311503

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.33: Performance of assimilation methods with minimal number of real detectors,
using only flow observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0153 0.1543 1.9689 0.0128 0.0293 0.1170 3.3309 0.1621

DEnKF local state 0.0092 0.1152 1.3048 0.0098 0.0246 0.0811 2.9140 0.1662

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0101 0.1434 1.4857 0.0114 0.0738 0.2278 8.6102 1.1581

DEnKF local state 0.0189 0.2041 2.4983 0.0196 0.0224 0.0878 2.7996 0.1594

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0200 0.1764 2.5073 0.0177 0.0474 0.3083 5.3895 0.6120

DEnKF local state 0.0247 0.2511 3.0799 0.0255 0.0722 0.3578 7.8459 2.1679

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.34: State dependent performance of assimilation methods with minimal number
of real detectors, using only flow observations and large observation errors.

D.4.3 Only speed assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0143 0.1706 1.7254 0.0382 23378507

DEnKF local state 0.0138 0.1731 1.6620 0.0392 21633084

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0150 0.1750 1.8817 0.0374 27508590

DEnKF local state 0.0153 0.1701 1.8508 0.0370 26482888

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0145 0.1588 1.6767 0.0409 25289338

DEnKF local state 0.0164 0.1782 2.0026 0.0427 31158391

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.35: Performance of assimilation methods with minimal number of real detectors,
using only speed observations and small observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0110 0.1851 1.3749 0.0115 0.0263 0.0879 3.0409 0.1920

DEnKF local state 0.0110 0.1876 1.3808 0.0119 0.0243 0.0900 2.7752 0.1968

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0135 0.1908 1.6920 0.0132 0.0220 0.0848 2.7301 0.1769

DEnKF local state 0.0138 0.1849 1.6620 0.0131 0.0220 0.0861 2.6930 0.1752

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0118 0.1714 1.4068 0.0120 0.0249 0.0873 2.7593 0.2076

DEnKF local state 0.0126 0.1926 1.7581 0.0143 0.0301 0.0964 3.0525 0.2064

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.36: State dependent performance of assimilation methods with minimal number
of real detectors, using only speed observations and small observation errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0192 0.2488 2.4282 0.0722 39412928

DEnKF local state 0.0182 0.2576 2.3359 0.0677 36956800

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0179 0.2469 2.3283 0.0577 42381495

DEnKF local state 0.0185 0.2732 2.4347 0.0754 43893962

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0190 0.2548 2.4400 0.0638 45990504

DEnKF local state 0.0198 0.2426 2.3793 0.0808 42951488

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.37: Performance of assimilation methods with minimal number of real detectors,
using only speed observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0135 0.2695 1.9990 0.0191 0.0383 0.1306 4.1066 0.3782

DEnKF local state 0.0136 0.2795 1.9750 0.0195 0.0343 0.1328 3.7994 0.3459

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0146 0.2698 2.0939 0.0201 0.0305 0.1159 3.3767 0.2747

DEnKF local state 0.0150 0.2985 2.1916 0.0219 0.0318 0.1294 3.5240 0.3839

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0142 0.2775 2.2126 0.0209 0.0356 0.1251 3.4729 0.3112

DEnKF local state 0.0143 0.2609 1.9649 0.0197 0.0386 0.1382 4.0064 0.4336

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.38: State dependent performance of assimilation methods with minimal number
of real detectors, using only speed observations and large observation errors.

D.4.4 Conclusion
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Figure D.6: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Figure D.7: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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D.5 Configuration 4

D.5.1 Speed and flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0034 0.0332 0.5587 0.0068 4090177

DEnKF local state 0.0026 0.0273 0.4734 0.0053 3181143

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0024 0.0320 0.4239 0.0052 2469544

DEnKF local state 0.0026 0.0286 0.4706 0.0052 2289139

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0056 0.0377 0.8288 0.0091 6755608

DEnKF local state 0.0026 0.0294 0.3683 0.0038 2597196

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.39: Performance of assimilation methods with intermediate number of evenly
spaced detectors, using both speed and flow observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0018 0.0358 0.3148 0.0017 0.0077 0.0186 1.2415 0.0361

DEnKF local state 0.0014 0.0294 0.3248 0.0014 0.0058 0.0149 0.9532 0.0278

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0014 0.0354 0.2829 0.0016 0.0054 0.0123 0.8688 0.0261

DEnKF local state 0.0017 0.0310 0.3671 0.0014 0.0055 0.0146 0.8497 0.0271

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0017 0.0396 0.2658 0.0018 0.0139 0.0266 2.0600 0.0515

DEnKF local state 0.0016 0.0317 0.2518 0.0014 0.0054 0.0167 0.7433 0.0175

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.40: State dependent performance of assimilation methods with intermediate
number of evenly spaced detectors, using both speed and flow observations and small
observation errors.

Large observation error
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0063 0.0707 0.9297 0.0133 9633952

DEnKF local state 0.0072 0.0648 1.0860 0.0179 13018304

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0067 0.0661 0.9924 0.0187 9620898

DEnKF local state 0.0063 0.0624 0.9119 0.0161 7570882

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0072 0.0736 1.1940 0.0253 12486917

DEnKF local state 0.0075 0.0671 1.1343 0.0246 11580689

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.41: Performance of assimilation methods with intermediate number of evenly
spaced detectors, using both speed and flow observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0043 0.0764 0.7608 0.0046 0.0127 0.0381 1.5848 0.0639

DEnKF local state 0.0034 0.0682 0.6622 0.0042 0.0167 0.0456 2.3356 0.0970

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0040 0.0705 0.6965 0.0040 0.0147 0.0412 1.9670 0.1035

DEnKF local state 0.0040 0.0663 0.6699 0.0038 0.0133 0.0402 1.7438 0.0875

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0049 0.0779 0.8374 0.0046 0.0145 0.0490 2.3678 0.1447

DEnKF local state 0.0057 0.0708 0.7668 0.0043 0.0137 0.0464 2.3063 0.1416

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.42: State dependent performance of assimilation methods with intermediate
number of evenly spaced detectors, using both speed and flow observations and large
observation errors.

D.5.2 Only flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0075 0.0401 1.1057 0.0141 10713812

DEnKF local state 0.0074 0.0346 1.1530 0.0162 11172054

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0034 0.0340 0.5545 0.0065 3927584

DEnKF local state 0.0032 0.0289 0.5444 0.0059 2874676

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0216 0.0623 2.4837 0.2576 28466110

DEnKF local state 0.0032 0.0311 0.4552 0.0044 3130965

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.43: Performance of assimilation methods with intermediate number of evenly
spaced detectors, using only flow observations and small observation errors.



D.5. CONFIGURATION 4 229

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0029 0.0410 0.4684 0.0022 0.0183 0.0346 2.6480 0.0824

DEnKF local state 0.0018 0.0346 0.3523 0.0018 0.0186 0.0342 2.8783 0.0994

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0019 0.0372 0.3773 0.0019 0.0077 0.0153 1.1226 0.0332

DEnKF local state 0.0018 0.0310 0.3984 0.0015 0.0072 0.0168 1.0443 0.0319

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0044 0.0574 0.5810 0.0027 0.0551 0.0902 6.3102 1.7285

DEnKF local state 0.0020 0.0332 0.3210 0.0015 0.0068 0.0190 0.8993 0.0208

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.44: State dependent performance of assimilation methods with intermediate
number of evenly spaced detectors, using only flow observations and small observation
errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0083 0.0746 1.0990 0.0199 14490243

DEnKF local state 0.0081 0.0690 1.1388 0.0195 14676830

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0132 0.0921 1.5628 0.0237 18764531

DEnKF local state 0.0088 0.0709 1.2026 0.0222 15487226

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0130 0.0913 1.7483 0.0874 21019022

DEnKF local state 0.0163 0.1045 2.1564 0.0430 30561251

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.45: Performance of assimilation methods with intermediate number of evenly
spaced detectors, using only flow observations and large observation errors.



230APPENDIX D. RESULTS EXPERIMENT 3: INFLUENCEOF DIFFERENTDETECTOR SETTINGS

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0048 0.0789 0.7966 0.0053 0.0181 0.0500 2.1250 0.1041

DEnKF local state 0.0048 0.0730 0.8241 0.0050 0.0177 0.0465 2.2049 0.1030

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0125 0.0997 1.3637 0.0072 0.0169 0.0487 2.4093 0.1190

DEnKF local state 0.0060 0.0740 0.8727 0.0051 0.0177 0.0531 2.3231 0.1209

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0073 0.0957 1.0953 0.0059 0.0289 0.0668 3.7112 0.5574

DEnKF local state 0.0151 0.1094 1.8329 0.0106 0.0219 0.0762 3.4782 0.2304

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.46: State dependent performance of assimilation methods with intermediate
number of evenly spaced detectors, using only flow observations and large observation
errors.

D.5.3 Only speed assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0086 0.1147 1.2200 0.0275 14773132

DEnKF local state 0.0098 0.1323 1.3498 0.0259 14870924

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0089 0.1197 1.2656 0.0286 15304167

DEnKF local state 0.0095 0.1209 1.2238 0.0273 14582607

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0106 0.1398 1.5750 0.0494 18977507

DEnKF local state 0.0114 0.1426 1.6497 0.0419 20037061

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.47: Performance of assimilation methods with intermediate number of evenly
spaced detectors, using only speed observations and small observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0061 0.1233 0.9167 0.0076 0.0171 0.0656 2.2866 0.1426

DEnKF local state 0.0078 0.1436 1.1722 0.0091 0.0174 0.0677 2.0992 0.1229

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0062 0.1291 0.9300 0.0077 0.0176 0.0663 2.4193 0.1488

DEnKF local state 0.0076 0.1308 0.9678 0.0079 0.0166 0.0649 2.1761 0.1394

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0077 0.1493 1.1991 0.0093 0.0202 0.0859 2.9152 0.2807

DEnKF local state 0.0097 0.1553 1.3493 0.0102 0.0181 0.0699 2.8146 0.2245

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.48: State dependent performance of assimilation methods with intermediate
number of evenly spaced detectors, using only speed observations and small observation
errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0141 0.1929 1.8926 0.0570 30107138

DEnKF local state 0.0138 0.2136 1.9397 0.0469 29035105

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0129 0.1903 1.7307 0.0382 25491069

DEnKF local state 0.0134 0.2087 1.9004 0.0502 30310067

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0141 0.2076 1.9545 0.0560 31459652

DEnKF local state 0.0147 0.2073 1.9788 0.0642 30977550

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.49: Performance of assimilation methods with intermediate number of evenly
spaced detectors, using only speed observations and large observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0102 0.2085 1.5004 0.0140 0.0271 0.1041 3.3558 0.3049

DEnKF local state 0.0098 0.2312 1.7016 0.0157 0.0272 0.1132 2.9607 0.2268

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0099 0.2086 1.5847 0.0143 0.0239 0.0859 2.4060 0.1760

DEnKF local state 0.0103 0.2273 1.6836 0.0157 0.0245 0.1025 2.8453 0.2492

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0114 0.2271 1.6515 0.0150 0.0243 0.0965 3.1820 0.2924

DEnKF local state 0.0107 0.2229 1.5725 0.0150 0.0281 0.1180 3.4989 0.3479

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.50: State dependent performance of assimilation methods with intermediate
number of evenly spaced detectors, using only speed observations and large observation
errors.

D.5.4 Conclusion
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Figure D.8: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Figure D.9: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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D.6 Configuration 5

D.6.1 Speed and flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0049 0.0563 0.8080 0.0106 6523768

DEnKF local state 0.0058 0.0608 0.8472 0.0115 6805036

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0060 0.0485 0.9677 0.0141 7889805

DEnKF local state 0.0041 0.0471 0.6497 0.0080 4848986

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0107 0.0723 1.1662 0.0141 10694505

DEnKF local state 0.0063 0.0527 0.8305 0.0127 7694043

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.51: Performance of assimilation methods with small number of evenly spaced
detectors, using both speed and flow observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0035 0.0614 0.7416 0.0034 0.0095 0.0267 1.1168 0.0521

DEnKF local state 0.0039 0.0669 0.7495 0.0036 0.0119 0.0263 1.2720 0.0571

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0029 0.0520 0.5947 0.0026 0.0139 0.0284 2.0737 0.0802

DEnKF local state 0.0026 0.0516 0.5066 0.0025 0.0087 0.0218 1.1736 0.0394

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0095 0.0798 1.0878 0.0051 0.0157 0.0294 1.5427 0.0659

DEnKF local state 0.0052 0.0570 0.7065 0.0033 0.0107 0.0285 1.3379 0.0670

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.52: State dependent performance of assimilation methods with small number of
evenly spaced detectors, using both speed and flow observations and small observation
errors.

Large observation error
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0127 0.1198 1.6756 0.0317 23203052

DEnKF local state 0.0109 0.1200 1.5055 0.0263 19850893

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0118 0.1068 1.7051 0.0336 24801899

DEnKF local state 0.0093 0.0969 1.2556 0.0222 15178623

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0129 0.1017 1.5860 0.0573 20747688

DEnKF local state 0.0130 0.1118 1.6629 0.0485 22170776

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.53: Performance of assimilation methods with small number of evenly spaced
detectors, using both speed and flow observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0095 0.1296 1.4235 0.0092 0.0240 0.0638 2.7048 0.1616

DEnKF local state 0.0071 0.1308 1.3222 0.0083 0.0225 0.0582 2.2929 0.1305

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0064 0.1131 1.1424 0.0072 0.0266 0.0705 3.4864 0.1860

DEnKF local state 0.0064 0.1054 1.0617 0.0065 0.0188 0.0488 2.0418 0.1126

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0078 0.1072 1.0933 0.0073 0.0278 0.0701 3.1835 0.3461

DEnKF local state 0.0096 0.1205 1.3454 0.0085 0.0247 0.0619 2.8772 0.2793

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.54: State dependent performance of assimilation methods with small number of
evenly spaced detectors, using both speed and flow observations and large observation
errors.

D.6.2 Only flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0116 0.0661 1.3693 0.0787 11428845

DEnKF local state 0.0069 0.0640 1.0157 0.0170 9169975

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0175 0.0879 2.1593 0.1477 26025505

DEnKF local state 0.0103 0.0613 1.0959 0.0118 9197549

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0115 0.0839 1.3228 0.0174 13599066

DEnKF local state 0.0075 0.0597 0.9114 0.0139 8912262

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.55: Performance of assimilation methods with small number of evenly spaced
detectors, using only flow observations and small observation errors.



236APPENDIX D. RESULTS EXPERIMENT 3: INFLUENCEOF DIFFERENTDETECTOR SETTINGS

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0048 0.0710 0.8384 0.0040 0.0278 0.0384 2.9393 0.5100

DEnKF local state 0.0043 0.0701 0.8350 0.0039 0.0146 0.0290 1.7212 0.0925

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0070 0.0890 1.0523 0.0049 0.0422 0.0817 5.0181 0.9723

DEnKF local state 0.0101 0.0676 1.0242 0.0039 0.0114 0.0259 1.4414 0.0575

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0108 0.0929 1.2480 0.0062 0.0147 0.0327 1.6909 0.0817

DEnKF local state 0.0054 0.0643 0.7606 0.0038 0.0147 0.0329 1.5118 0.0722

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.56: State dependent performance of assimilation methods with small number of
evenly spaced detectors, using only flow observations and small observation errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0194 0.1343 2.2364 0.1014 35306432

DEnKF local state 0.0220 0.1830 2.6651 0.0630 48875954

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0180 0.1355 2.3137 0.0488 39647265

DEnKF local state 0.0184 0.1388 2.0196 0.0307 32532815

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0190 0.1452 2.3070 0.0550 33162642

DEnKF local state 0.0185 0.1459 2.3720 0.0865 36147707

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.57: Performance of assimilation methods with small number of evenly spaced
detectors, using only flow observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0130 0.1424 1.6558 0.0115 0.0396 0.0884 4.2477 0.6202

DEnKF local state 0.0137 0.1946 2.0257 0.0139 0.0470 0.1167 4.9411 0.3464

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0124 0.1393 1.5663 0.0098 0.0361 0.1138 4.6998 0.2737

DEnKF local state 0.0173 0.1491 1.8664 0.0125 0.0240 0.0804 2.7413 0.1357

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0132 0.1410 1.6732 0.0118 0.0380 0.1693 4.4587 0.3044

DEnKF local state 0.0122 0.1393 1.6697 0.0119 0.0383 0.1835 4.6913 0.5173

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.58: State dependent performance of assimilation methods with small number of
evenly spaced detectors, using only flow observations and large observation errors.

D.6.3 Only speed assimilation

Small observation error
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0159 0.1989 2.0796 0.0595 34143116

DEnKF local state 0.0166 0.2149 2.1794 0.0576 33306501

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0141 0.1746 1.7845 0.0375 26990324

DEnKF local state 0.0150 0.1835 1.9797 0.0445 30096409

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0169 0.1650 1.9894 0.0612 28782108

DEnKF local state 0.0168 0.1944 2.2218 0.0576 35458799

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.59: Performance of assimilation methods with small number of evenly spaced
detectors, using only speed observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0131 0.2183 1.7922 0.0155 0.0270 0.0881 3.2783 0.3133

DEnKF local state 0.0121 0.2365 1.8810 0.0155 0.0320 0.0918 3.4269 0.3011

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0107 0.1914 1.5293 0.0129 0.0262 0.0791 2.8399 0.1794

DEnKF local state 0.0114 0.2010 1.6900 0.0142 0.0278 0.0839 3.1707 0.2193

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0091 0.1767 1.5337 0.0124 0.0381 0.0981 3.6363 0.3431

DEnKF local state 0.0131 0.2121 1.9570 0.0155 0.0303 0.0934 3.3646 0.3008

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.60: State dependent performance of assimilation methods with small number of
evenly spaced detectors, using only speed observations and small observation errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0197 0.2604 2.4876 0.0733 42025601

DEnKF local state 0.0206 0.2583 2.4715 0.0908 43436822

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0224 0.3216 2.9424 0.0803 56817490

DEnKF local state 0.0201 0.2747 2.4857 0.0689 41937085

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0199 0.2452 2.3862 0.0772 42642263

DEnKF local state 0.0186 0.2359 2.2281 0.0719 40642283

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.61: Performance of assimilation methods with small number of evenly spaced
detectors, using only speed observations and large observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0133 0.2833 2.1317 0.0201 0.0401 0.1294 3.9592 0.3802

DEnKF local state 0.0137 0.2800 2.0497 0.0201 0.0425 0.1343 4.1369 0.4989

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0175 0.3534 2.7078 0.0267 0.0402 0.1402 4.0381 0.3900

DEnKF local state 0.0149 0.3007 2.2623 0.0220 0.0384 0.1262 3.5071 0.3397

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0145 0.2661 2.0730 0.0201 0.0381 0.1262 3.7088 0.4067

DEnKF local state 0.0119 0.2546 1.8493 0.0188 0.0391 0.1295 3.7254 0.3783

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.62: State dependent performance of assimilation methods with small number of
evenly spaced detectors, using only speed observations and large observation errors.

D.6.4 Conclusion
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Figure D.10: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Figure D.11: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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D.7 Configuration 6

D.7.1 Speed and flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0251 0.1991 3.1768 0.1254 53404100

DEnKF local state 0.0164 0.2020 2.1993 0.0557 33120758

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0100 0.1264 1.4434 0.0247 19071135

DEnKF local state 0.0249 0.2392 3.2897 0.1211 61862846

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0165 0.1500 2.0087 0.0371 27398160

DEnKF local state 0.0177 0.2210 2.2203 0.0405 32894725

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.63: Performance of assimilation methods with detectors evenly spaced every
2000m, using both speed and flow observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0109 0.2037 2.0788 0.0139 0.0598 0.1725 6.5874 0.7694

DEnKF local state 0.0120 0.2108 1.6711 0.0131 0.0314 0.1516 4.0785 0.3014

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0075 0.1241 1.1206 0.0079 0.0186 0.1399 2.6192 0.1217

DEnKF local state 0.0152 0.2385 2.0523 0.0159 0.0534 0.2436 6.9979 0.7283

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0152 0.1543 1.7752 0.0123 0.0229 0.1253 3.0224 0.1804

DEnKF local state 0.0160 0.2368 2.0168 0.0157 0.0251 0.1306 3.1472 0.1836

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.64: State dependent performance of assimilation methods with detectors evenly
spaced every 2000m, using both speed and flow observations and small observation errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0233 0.2118 2.7860 0.1046 48193601

DEnKF local state 0.0150 0.2111 2.2759 0.0500 41932748

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0188 0.2046 2.3357 0.0491 39334476

DEnKF local state 0.0163 0.1977 2.0943 0.0438 35266752

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0180 0.1948 2.3220 0.0553 42622104

DEnKF local state 0.0219 0.2138 2.5641 0.0614 45490394

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.65: Performance of assimilation methods with detectors evenly spaced every
2000m, using both speed and flow observations and large observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0121 0.2144 1.9988 0.0161 0.0532 0.1967 5.4314 0.6156

DEnKF local state 0.0113 0.2172 1.8800 0.0156 0.0280 0.1761 3.8310 0.2485

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0164 0.2105 2.1334 0.0168 0.0292 0.1711 3.2673 0.2356

DEnKF local state 0.0136 0.2046 1.8260 0.0146 0.0270 0.1583 3.2336 0.2123

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0149 0.2044 1.9916 0.0159 0.0301 0.1401 3.6904 0.2828

DEnKF local state 0.0200 0.2257 2.2627 0.0181 0.0308 0.1464 3.8694 0.3115

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.66: State dependent performance of assimilation methods with detectors evenly
spaced every 2000m, using both speed and flow observations and large observation errors.

D.7.2 Only flow assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0297 0.2379 3.6874 0.1809 66509787

DEnKF local state 0.0261 0.2397 2.9979 0.0975 59283243

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0228 0.1620 2.8038 0.0999 47217785

DEnKF local state 0.0267 0.2329 3.3305 0.1231 67503012

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0273 0.2498 3.2739 0.1150 55900690

DEnKF local state 0.0352 0.2854 3.9732 0.4022 87531703

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.67: Performance of assimilation methods with detectors evenly spaced every
2000m, using only flow observations and small observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0160 0.2353 2.4663 0.0181 0.0670 0.2532 7.5472 1.1202

DEnKF local state 0.0143 0.2511 1.9450 0.0159 0.0586 0.1749 6.2466 0.5684

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0086 0.1544 1.4245 0.0097 0.0557 0.2054 6.4434 0.6207

DEnKF local state 0.0146 0.2318 1.9403 0.0153 0.0601 0.2392 7.3061 0.7453

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0257 0.2639 3.0147 0.0232 0.0352 0.1694 4.4859 0.6443

DEnKF local state 0.0204 0.2917 2.5969 0.0261 0.0772 0.2496 8.2443 2.5728

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.68: State dependent performance of assimilation methods with detectors evenly
spaced every 2000m, using only flow observations and small observation errors.

Large observation error
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0275 0.2707 3.2830 0.1450 65256046

DEnKF local state 0.0335 0.4282 4.1402 0.0907 105273547

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0376 0.4051 4.3297 0.1180 105583281

DEnKF local state 0.0371 0.4597 4.5977 0.1422 117270739

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0246 0.2817 3.1517 0.0729 65095596

DEnKF local state 0.0253 0.2742 3.1854 0.0744 75665173

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.69: Performance of assimilation methods with detectors evenly spaced every
2000m, using only flow observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0146 0.2771 2.3945 0.0207 0.0623 0.2346 6.3158 0.8625

DEnKF local state 0.0311 0.4657 3.9792 0.0409 0.0446 0.2144 4.9684 0.3782

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0356 0.4363 4.0619 0.0392 0.0474 0.2275 5.6316 0.5726

DEnKF local state 0.0329 0.4915 4.0191 0.0390 0.0555 0.2781 7.0647 0.7382

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0217 0.2992 2.8292 0.0245 0.0375 0.1817 4.5898 0.3523

DEnKF local state 0.0226 0.2872 2.8442 0.0278 0.0373 0.2001 4.6923 0.3430

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.70: State dependent performance of assimilation methods with detectors evenly
spaced every 2000m, using only flow observations and large observation errors.

D.7.3 Only speed assimilation

Small observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0205 0.3227 2.8643 0.0619 55505515

DEnKF local state 0.0215 0.3179 2.8910 0.0703 57128276

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0209 0.2651 2.5251 0.0666 44138687

DEnKF local state 0.0200 0.2936 2.6288 0.0591 48830405

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0255 0.3487 3.3281 0.0900 70355595

DEnKF local state 0.0204 0.3069 2.7908 0.0671 54873735

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.71: Performance of assimilation methods with detectors evenly spaced every
2000m, using only speed observations and small observation errors.
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Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0187 0.3457 2.7294 0.0261 0.0288 0.1914 3.5438 0.2680

DEnKF local state 0.0187 0.3383 2.6668 0.0261 0.0332 0.2015 3.9433 0.3259

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0147 0.2803 2.2260 0.0202 0.0415 0.1785 3.8180 0.3339

DEnKF local state 0.0178 0.3130 2.4637 0.0230 0.0294 0.1830 3.4296 0.2671

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0237 0.3767 3.0519 0.0299 0.0343 0.1887 4.6094 0.4367

DEnKF local state 0.0181 0.3308 2.6462 0.0251 0.0308 0.1708 3.5106 0.3093

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.72: State dependent performance of assimilation methods with detectors evenly
spaced every 2000m, using only speed observations and small observation errors.

Large observation error

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0276 0.4078 3.6169 0.1147 82695670

DEnKF local state 0.0241 0.3889 3.1908 0.0955 70158837

No Assimilation 0.0526 0.3941 5.7509 0.5568 133934639

Case 2

EnKF local state 0.0238 0.3835 3.1820 0.0872 70959165

DEnKF local state 0.0242 0.3894 3.2167 0.1059 72990294

No Assimilation 0.0562 0.3870 5.8537 0.6445 149370575

Case 3

EnKF local state 0.0274 0.4187 3.6590 0.1213 89215925

DEnKF local state 0.0246 0.3787 3.2005 0.1114 80023030

No Assimilation 0.0466 0.3939 5.1988 0.3412 123063726

Table D.73: Performance of assimilation methods with detectors evenly spaced every
2000m, using only speed observations and large observation errors.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0227 0.4309 3.1361 0.0343 0.0468 0.2758 5.6409 0.5787

DEnKF local state 0.0201 0.4167 2.8674 0.0320 0.0401 0.2304 4.6355 0.4619

No Assimilation 0.0331 0.3653 3.8016 0.0374 0.1113 0.5584 11.8546 3.5543

Case 2

EnKF local state 0.0204 0.4058 2.8928 0.0329 0.0380 0.2562 4.5016 0.4011

DEnKF local state 0.0203 0.4123 2.8738 0.0329 0.0397 0.2589 4.7330 0.5273

No Assimilation 0.0328 0.3845 3.7383 0.0424 0.1232 0.4009 12.3032 4.1190

Case 3

EnKF local state 0.0227 0.4466 3.1956 0.0364 0.0459 0.2598 5.6318 0.6117

DEnKF local state 0.0196 0.4035 2.8228 0.0321 0.0434 0.2377 4.8344 0.5695

No Assimilation 0.0375 0.3869 4.0345 0.0415 0.0812 0.4341 9.4377 2.0706

Table D.74: State dependent performance of assimilation methods with detectors evenly
spaced every 2000m, using only speed observations and large observation errors.

D.7.4 Conclusion
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Figure D.12: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Figure D.13: Time-space diagrams of a route using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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D.8 Synthesis

In tables D.75 and D.76 the results are summarized. Table D.75 compares the results of
the different detector location configurations and the different observed variables using a
small observation error. Table D.75 compares the same methods, using a large observation
error.

Q & V Q V

Real locations Evenly spaced Real locations Evenly spaced Real locations Evenly spaced

# Detectors EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF

592 0.0023 0.0021 - - 0.0034 0.0027 - - 0.0082 0.0078 - -

410 0.0029 0.0025 0.0038 0.0026 0.0053 0.0028 0.0108 0.0046 0.0105 0.0096 0.0094 0.0102

227 0.0084 0.0089 0.0072 0.0054 0.0098 0.0100 0.0135 0.0082 0.0146 0.0152 0.0156 0.0162

111 - - 0.0172 0.0197 - - 0.0266 0.0293 - - 0.0223 0.0206

Table D.75: Overview performances using a small observation error

The main pattern is that the inclusion of more information leads to better assimilation.

Spacing

The impact of spacing the detectors evenly or placing more detectors at strategic locations
is not clear. The evenly spaced detectors were expected to perform worse than the real
locations, as more variation in results were expected. This conclusion seems to hold when
lots of detectors are available. However, when on large links only a few detectors are
selected, the results are not clear: sometimes the unevenly spaced detectors performed
better, sometimes the evenly spaced detectors.

Number of detectors

All results suggest the same (obvious) result: when more detectors are used, better per-
formances are reached.

Measured variables

The data assimilation methods perform best, when both the flow and speed are observed,

Almost all runs indicate that the assimilation of only the flow performs better than only
using the speed measurements. Only the case where very few measurements were available
the V option performed better than the Q option.

This can be caused by a number of factors:

1. The setting of the observation errors. The observation covariance errors for the
“small error” experiment were set to Rv = 2.25 m2/s2 and Rq = 0.0016 veh2/s2. As
an example, if a two-lane road stretch is considered with density k = 0.0135 veh/(m·
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(a) (b)

Figure D.14: Influence of uncertainty of measurements Rq and Rv on the update of
the density. The red lines indicate the regions of 1 standard deviation away from an
observation. The green lines indicate the bounds of these regions in order to form δ. The
uncertainty δ is larger for speed observations than for flow observations

lane), the measured speed and flows are respectively v = 24.77 m/s and q =
0.669 veh/s (using the fundamental diagram of Smulders with kc = 0.025, vc =
22.22, vl = 27.77), both

√
Rv and

√
Rq are around 6% of the measured value. How-

ever, when considering a 5-lane road stretch, a density of k = 0.0135 veh/(m · lane)
yields the same speed, but a flow of q = 1.673 veh/s. As the flow scales linearly
with the number of lanes, the flow measurements on a road with more lanes become
more reliable.

2. The flow function is steeper. Therefore a relatively large uncertainty in flow corre-
sponds to only a small uncertainty in density. This is beneficial for the estimation of
the density. This is in contrast to the situation of the using the speed observations:
a large uncertainty in speed corresponds to a large uncertainty in density. This can
be seen in figure D.14.

3. When few observations are in scope and little confidence exists in the model (i.e. the
ensemble spread is large), speed observations may be better as it is “more linear”
when considering larger updates. Moreover, when the ensemble spread is very large,
the linearisation through the flow observations can become nearly horizontal, which
means that the update of the density is large.

Assimilation method

The DEnKF seems to perform slightly better in most cases than the traditional EnKF on
basis of the RMSE values. However, for example for small number of observations, the
DEnKF has a higher error than the EnKF.

In that case the general shape, as seen in the space-time plots of figure D.12, produced
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by the DEnKF assimilations seem to be far better than the plots produced by the EnKF
methods. The DEnKF better replicates the congestion pattern of the reference case,
whereas the congestion patterns produced by the EnKF are more alike the no assimilation
case. However, the DEnKF (and the EnKF in lesser extent) suffers from severe oscillations
in traffic state. This can be caused by several effects:

1. The lack of observations cause the ensemble to remain widely spread as little con-
fidence can be put into the model. Therefore the inaccuracies produced by the
non-linearity of the process model, as described in subsection 5.2.3, are high and
will produce “artificial” updates. In deeper analysis, these “artificial” updates were
found mostly in the beginning of the assimilation. Moreover, the wide ensemble
spread will cause the linearisation of the observation function (fundamental dia-
gram) to become inaccurate.

2. The wide ensemble spread caused by the lack of observations will cause the large
updates to the state, as little confidence is put into the model state. This causes the
state to be overcorrected every update: the state oscillates around the true state.
This effect was found in the situation at hand: the speeds and flows around an
observation were close to eachother, in contrast to the state surrounding that ob-
servation (e.g. the inflow of an onramp nearby). A difference between the predicted
speed and the observed speed thus lead to a large update of the inflow, which gave
a large effect on the traffic state in further timesteps.

3. Possibly the approximation that is the basis of the DEnKF fails as the prior state
is too far from the true state.

This issue could be possibly fixed by:

1. Better calibration. For example the (initial) error values could be changed. This
way, the ensemble spread is small when initialized and therefore will not be spread
too much.

2. Localization. One way to change the localization is to change the localization radius.
By narrowing the localization radius, the connection between the update of the state
and the measured value is narrowed. This decreases the wrong updating of the traffic
state (e.g. the inflow at an onramp). Moreover, the current localization technique is
not smooth: a detector or cell lies inside or outside the localization radius. Smoother
localization techniques, which include the distance from the cell to the detector will
most likely perform better.

Q & V Q V

Real locations Evenly spaced Real locations Evenly spaced Real locations Evenly spaced

# Detectors EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF EnKF DEnKF

592 0.0047 0.0051 - - 0.0075 0.0067 - - 0.0133 0.0126 - -

410 0.0069 0.0065 0.0067 0.0070 0.0103 0.0096 0.0115 0.0110 0.0143 0.0143 0.0137 0.0140

227 0.0122 0.0107 0.0125 0.0111 0.0246 0.0227 0.0188 0.0197 0.0187 0.0188 0.0206 0.0198

111 - - 0.0200 0.0177 - - 0.0299 0.0320 - - 0.0263 0.0243

Table D.76: Overview performances using a large observation error
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Appendix E

Results experiment 4: performance
in non-recurrent conditions

E.1 Experiment 4: performance in non-recurrent con-

ditions

Three scenarios

1. Do nothing

2. Incorporate bridge closing

3. Incorporate bridge closing and estimate of changed route choice

TF before closing TF during closing Estimation in case 1 Estimation in case 2 Estimation in case 3

19.4% 41,9% 46,2% 33,5% 45,3%

39.7% 76,7% 77,0% 78,6% 76,4%

34.9% 21,2% 26,5% 22,5% 16,9%

53.6% 69,8% 76,2% 63,0% 68,3%

38.7% 55,8% 64,9% 63,0% 57,2%

71.5% 55,6% 42,9% 60,1% 52,5%

70.0% 82,4% 77,7% 84,4% 86,7%

62.8% 77,2% 63,5% 82,9% 69,8%

43.9% 61,0% 47,4% 50,4% 54,5%

49.3% 66,1% 53,5% 69,4% 49,6%

29.0% 24,6% 25,3% 27,7% 32,7%

Table E.1: Overview of the used parameters in this experiment.

E.2 Scenario 1: no additional information included

249
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(a) (b)

Figure E.1: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state 9 0.0661 0.2704 6.1951 0.4973 139614831

DEnKF local state 9 0.0657 0.2658 6.1432 0.4712 138116751

No Assimilation - 0.0761 0.6048 7.4234 0.6051 226681093

Table E.2: Mean performance of state estimation using different assimilation schemes of
scenario 1.

Free flow Congested

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state 9 0.0119 0.2328 1.2106 0.0139 0.1767 0.4996 16.5153 4.3055

DEnKF local state 9 0.0140 0.2302 1.5429 0.0145 0.1744 0.4826 16.1822 4.0698

No Assimilation - 0.0318 0.5769 3.7371 0.0475 0.1901 0.7750 17.7766 4.9978

Table E.3: State dependent mean performance of state estimation using different assimi-
lation schemes of scenario 1.

Method RMSE K MAPE K RMSE V MAPE V TRE

Case1

EnKF local state 0.0653 0.2931 6.1083 0.4819 136100992

DEnKF local state 0.0643 0.2403 6.0821 0.4833 134515763

No Assimilation 0.0758 0.5945 7.5264 0.6095 230144169

Case2

EnKF local state 0.0669 0.2601 6.3013 0.5168 144235848

DEnKF local state 0.0666 0.2893 6.1826 0.4784 138878454

No Assimilation 0.0770 0.5494 7.3760 0.6203 218721831

Case3

EnKF local state 0.0661 0.2581 6.1756 0.4930 138507652

DEnKF local state 0.0662 0.2677 6.1649 0.4521 140956036

No Assimilation 0.0755 0.6707 7.3678 0.5855 231177278

Table E.4: Performance of state estimation using different assimilation schemes of scenario
1.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case1

EnKF local state 0.0149 0.2622 1.2688 0.0138 0.1731 0.4809 16.2491 4.1701

DEnKF local state 0.0107 0.2002 1.1835 0.0127 0.1722 0.4846 16.2177 4.1906

No Assimilation 0.0303 0.5442 3.8103 0.0486 0.1908 0.9008 18.0050 5.0283

Case2

EnKF local state 0.0100 0.2181 1.1221 0.0139 0.1797 0.5159 16.8484 4.4793

DEnKF local state 0.0191 0.2586 1.6551 0.0148 0.1741 0.4767 16.2349 4.1307

No Assimilation 0.0307 0.5284 3.4462 0.0445 0.1939 0.6772 18.0134 5.1564

Case3

EnKF local state 0.0108 0.2181 1.2408 0.0140 0.1772 0.5019 16.4485 4.2671

DEnKF local state 0.0121 0.2318 1.7900 0.0160 0.1768 0.4865 16.0939 3.8881

No Assimilation 0.0343 0.6581 3.9549 0.0494 0.1856 0.7471 17.3114 4.8088

Table E.5: State dependent performance of state estimation using different assimilation
schemes of scenario 1.
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E.3 Scenario 2: inclusion of bridge closing

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state 6 0.0362 0.2545 3.3011 0.1458 42582966

DEnKF local state 9 0.0320 0.1940 3.1072 0.1217 41283309

No Assimilation - 0.0594 0.5898 5.5823 0.2937 132230278

Table E.6: Mean performance of state estimation using different assimilation schemes of
scenario 2.

Free flow Congested

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state 6 0.0278 0.2750 2.2774 0.0150 0.0688 0.1298 6.8635 1.1767

DEnKF local state 9 0.0251 0.2071 2.1490 0.0126 0.0591 0.1145 6.4412 0.9812

No Assimilation - 0.0465 0.6316 4.1331 0.0432 0.1093 0.3350 10.9128 2.2673

Table E.7: State dependent mean performance of state estimation using different assimi-
lation schemes of scenario 2.

Method RMSE K MAPE K RMSE V MAPE V TRE

Case1

EnKF local state 0.0360 0.2292 3.2814 0.1570 42827756

DEnKF local state 0.0308 0.1776 2.9155 0.1196 36922907

No Assimilation 0.0533 0.4382 5.2685 0.2822 120399220

Case2

EnKF local state 0.0370 0.2623 3.3465 0.1426 42974218

DEnKF local state 0.0329 0.2230 3.3729 0.1295 47770920

No Assimilation 0.0580 0.5262 5.5709 0.3292 134090004

Case3

EnKF local state 0.0356 0.2720 3.2753 0.1378 41946924

DEnKF local state 0.0322 0.1816 3.0333 0.1161 39156101

No Assimilation 0.0669 0.8050 5.9076 0.2696 142201610

Table E.8: Performance of state estimation using different assimilation schemes of scenario
2.
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(a) (b)

Figure E.2: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.



254APPENDIX E. RESULTS EXPERIMENT 4: PERFORMANCE IN NON-RECURRENT CONDITIONS

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case1

EnKF local state 0.0271 0.2468 2.1626 0.0143 0.0699 0.1219 7.0319 1.2814

DEnKF local state 0.0239 0.1887 1.8649 0.0106 0.0576 0.1097 6.3556 0.9782

No Assimilation 0.0380 0.4510 3.7399 0.0373 0.1083 0.3601 10.7335 2.2118

Case2

EnKF local state 0.0287 0.2836 2.3432 0.0154 0.0698 0.1325 6.8886 1.1452

DEnKF local state 0.0263 0.2402 2.4725 0.0152 0.0595 0.1178 6.6933 1.0297

No Assimilation 0.0427 0.5560 3.8016 0.0415 0.1147 0.3445 11.6766 2.5956

Case3

EnKF local state 0.0276 0.2945 2.3263 0.0152 0.0668 0.1351 6.6699 1.1037

DEnKF local state 0.0252 0.1924 2.1094 0.0121 0.0601 0.1159 6.2747 0.9358

No Assimilation 0.0587 0.8878 4.8578 0.0507 0.1049 0.3005 10.3283 1.9945

Table E.9: State dependent performance of state estimation using different assimilation
schemes of scenario 2.

E.4 Scenario 3: inclusion of bridge closing and esti-

mation of route choice

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state 5 0.0116 0.0628 1.5086 0.0344 12896963

DEnKF local state 9 0.0079 0.0415 1.0791 0.0217 7181606

No Assimilation - 0.0497 0.4232 5.0643 0.2925 113967932

Table E.10: Mean performance of state estimation using different assimilation schemes of
scenario 3.

Free flow Congested

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state 5 0.0070 0.0662 0.8948 0.0038 0.0261 0.0419 3.4090 0.2750

DEnKF local state 9 0.0032 0.0427 0.4901 0.0023 0.0199 0.0342 2.6437 0.1749

No Assimilation - 0.0315 0.4409 3.3292 0.0326 0.1070 0.3153 10.8533 2.3398

Table E.11: State dependent mean performance of state estimation using different assim-
ilation schemes of scenario 3.
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(a) (b)

Figure E.3: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case1

EnKF local state 0.0163 0.0830 1.7948 0.0464 14488837

DEnKF local state 0.0106 0.0481 1.3057 0.0274 9191618

No Assimilation 0.0487 0.4132 5.3812 0.3627 125043746

Case2

EnKF local state 0.0061 0.0424 0.8410 0.0119 5975256

DEnKF local state 0.0030 0.0330 0.5523 0.0069 2788779

No Assimilation 0.0528 0.3963 5.1251 0.2833 118245728

Case3

EnKF local state 0.0125 0.0631 1.8898 0.0448 18226796

DEnKF local state 0.0102 0.0434 1.3792 0.0308 9564420

No Assimilation 0.0476 0.4600 4.6868 0.2314 98614323

Table E.12: Performance of state estimation using different assimilation schemes of sce-
nario 3.

Free flow Congested

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case1

EnKF local state 0.0098 0.0887 1.0890 0.0047 0.0367 0.0478 4.0183 0.3751

DEnKF local state 0.0046 0.0502 0.5628 0.0026 0.0264 0.0355 3.2436 0.2232

No Assimilation 0.0268 0.4194 3.3638 0.0326 0.1134 0.3755 11.8739 2.9638

Case2

EnKF local state 0.0042 0.0458 0.5416 0.0026 0.0125 0.0216 1.8264 0.0850

DEnKF local state 0.0019 0.0354 0.3335 0.0017 0.0067 0.0185 1.2393 0.0485

No Assimilation 0.0292 0.4109 3.2984 0.0363 0.1227 0.3071 11.1347 2.2294

Case3

EnKF local state 0.0069 0.0642 1.0536 0.0042 0.0291 0.0561 4.3821 0.3647

DEnKF local state 0.0031 0.0426 0.5741 0.0026 0.0265 0.0484 3.4480 0.2529

No Assimilation 0.0385 0.4923 3.3255 0.0290 0.0849 0.2633 9.5514 1.8262

Table E.13: State dependent performance of state estimation using different assimilation
schemes of scenario 3.

E.5 Synthesis

Scenario Method Set RMSE K MAPE K RMSE V MAPE V TRE

Scenario 1

EnKF local state 9 0.0661 0.2704 6.1951 0.4973 139614831

DEnKF local state 9 0.0657 0.2658 6.1432 0.4712 138116751

No Assimilation - 0.0761 0.6048 7.4234 0.6051 226681093

Scenario 2

EnKF local state 6 0.0362 0.2545 3.3011 0.1458 42582966

DEnKF local state 9 0.0320 0.1940 3.1072 0.1217 41283309

No Assimilation - 0.0594 0.5898 5.5823 0.2937 132230278

Scenario 3

EnKF local state 5 0.0116 0.0628 1.5086 0.0344 12896963

DEnKF local state 9 0.0079 0.0415 1.0791 0.0217 7181606

No Assimilation - 0.0497 0.4232 5.0643 0.2925 113967932

Table E.14: Overview performance of different scenarios. Each scenario adds more infor-
mation to the assimilation model.
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Results experiment 5: imperfect
system model

F.1 Design experiment 5: imperfect system model

The previous experiments assumed that a perfect fit exists between the true model that
generates the observations and the assimilation model. In this experiment the influence of
an imperfect system model is investigated. In particular, the assimilation model assumes
different fundamental relations on the links than the true model. Specifically the critical
density and speed are varied. This means that the links have different capacity in the
true model than in the assimilation model.

Three assimilation scenarios are used, in which the composition of the state is varied.
The first scenario uses the same state composition as in the other experiments, i.e. the
data assimilation algorithm estimates the cell densities, inflows and turn fractions. The
second scenario includes the critical velocity in the state. This way the capacities of the
links in the assimilation model are estimated, while maintaining an imperfect fit between
the true model and the assimilation model. The third scenario includes both the critical
velocity and the critical density in the state. Now all varied parameters are part of the
state, so a perfect fit is possible.

F.2 Scenario 1: no fundamental diagram parameters

in state

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state 4 0.0283 0.1747 3.3509 0.1533 62394438

DEnKF local state 5 0.0289 0.1695 3.3941 0.1908 63070574

No Assimilation - 0.0565 0.5410 6.1955 0.4688 177779229

Table F.1: Mean performance of state estimation using different assimilation schemes of
scenario 1.
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(a) (b)

Figure F.1: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state 4 0.0205 0.1712 2.6268 0.0426 0.0582 0.1984 6.3646 0.9079

DEnKF local state 5 0.0185 0.1635 2.4768 0.0413 0.0645 0.2096 6.9242 1.2107

No Assimilation - 0.0452 0.5602 5.1167 0.0816 0.1026 0.4124 10.8805 3.1092

Table F.2: State dependent mean performance of state estimation using different assimi-
lation schemes of scenario 1.

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0251 0.1545 2.8682 0.0917 50515272

DEnKF local state 0.0260 0.1537 2.8632 0.1101 46584628

No Assimilation 0.0538 0.4214 5.9512 0.5900 170014001

Case 2

EnKF local state 0.0308 0.1934 3.6721 0.1875 68754245

DEnKF local state 0.0334 0.1968 3.9573 0.2926 75934311

No Assimilation 0.0603 0.6269 6.4435 0.5528 175157091

Case 3

EnKF local state 0.0291 0.1763 3.5124 0.1806 67913796

DEnKF local state 0.0274 0.1579 3.3618 0.1698 66692783

No Assimilation 0.0553 0.5747 6.1916 0.2635 188166594

Table F.3: Performance of state estimation using different assimilation schemes of scenario
1.

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0192 0.1519 2.3907 0.0396 0.0490 0.1714 5.0350 0.4467

DEnKF local state 0.0191 0.1500 2.2884 0.0382 0.0527 0.1783 5.3280 0.6004

No Assimilation 0.0370 0.4233 4.3307 0.0675 0.1153 0.4088 12.2078 4.1534

Case 2

EnKF local state 0.0214 0.1927 2.8939 0.0487 0.0653 0.1984 6.9517 1.1345

DEnKF local state 0.0197 0.1932 2.7991 0.0479 0.0779 0.2216 8.3078 1.9608

No Assimilation 0.0476 0.6473 5.4364 0.0875 0.1140 0.4904 11.0950 3.7260

Case 3

EnKF local state 0.0209 0.1689 2.5959 0.0395 0.0603 0.2255 7.1071 1.1427

DEnKF local state 0.0166 0.1473 2.3429 0.0377 0.0630 0.2288 7.1367 1.0710

No Assimilation 0.0510 0.6100 5.5829 0.0898 0.0786 0.3381 9.3387 1.4483

Table F.4: State dependent performance of state estimation using different assimilation
schemes of scenario 1.
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F.3 Scenario 2: inclusion of critical velocity in state

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state 2 0.0245 0.1361 3.0031 0.1529 53701263

DEnKF local state 2 0.0191 0.1059 2.4597 0.1041 40672343

No Assimilation - 0.0565 0.5410 6.1955 0.4688 177779229

Table F.5: Mean performance of state estimation using different assimilation schemes of
scenario 2.

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state 2 0.0146 0.1292 2.1565 0.0343 0.0570 0.1824 6.2274 0.9612

DEnKF local state 2 0.0110 0.0999 1.8295 0.0297 0.0450 0.1461 4.9431 0.6115

No Assimilation - 0.0452 0.5602 5.1167 0.0816 0.1026 0.4124 10.8805 3.1092

Table F.6: State dependent mean performance of state estimation using different assimi-
lation schemes of scenario 2.

Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0196 0.1111 2.4372 0.0950 37216819

DEnKF local state 0.0177 0.0873 2.1889 0.0988 29694897

No Assimilation 0.0538 0.4214 5.9512 0.5900 170014001

Case 2

EnKF local state 0.0261 0.1352 3.1243 0.1777 56216030

DEnKF local state 0.0204 0.1186 2.6804 0.1115 44660734

No Assimilation 0.0603 0.6269 6.4435 0.5528 175157091

Case 3

EnKF local state 0.0278 0.1619 3.4478 0.1859 67670940

DEnKF local state 0.0193 0.1117 2.5098 0.1021 47661399

No Assimilation 0.0553 0.5747 6.1916 0.2635 188166594

Table F.7: Performance of state estimation using different assimilation schemes of scenario
2.
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(a) (b)

Figure F.2: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0115 0.1060 1.8087 0.0314 0.0461 0.1458 4.9128 0.5283

DEnKF local state 0.0091 0.0814 1.5586 0.0276 0.0434 0.1270 4.5712 0.5840

No Assimilation 0.0370 0.4233 4.3307 0.0675 0.1153 0.4088 12.2078 4.1534

Case 2

EnKF local state 0.0153 0.1290 2.2229 0.0359 0.0612 0.1770 6.5290 1.1451

DEnKF local state 0.0120 0.1137 2.0688 0.0321 0.0477 0.1519 5.1954 0.6529

No Assimilation 0.0476 0.6473 5.4364 0.0875 0.1140 0.4904 11.0950 3.7260

Case 3

EnKF local state 0.0171 0.1526 2.4377 0.0357 0.0636 0.2243 7.2403 1.2102

DEnKF local state 0.0119 0.1046 1.8612 0.0294 0.0441 0.1594 5.0626 0.5978

No Assimilation 0.0510 0.6100 5.5829 0.0898 0.0786 0.3381 9.3387 1.4483

Table F.8: State dependent performance of state estimation using different assimilation
schemes of scenario 2.

F.4 Scenario 3: inclusion of critical velocity and den-

sity in state

Set RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state 1 0.0178 0.1008 2.3298 0.0941 46080528

DEnKF local state 1 0.0130 0.0824 1.8989 0.0580 40378330

No Assimilation - 0.0565 0.5410 6.1955 0.4688 177779229

Table F.9: Mean performance of state estimation using different assimilation schemes of
scenario 3.

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state 1 0.0108 0.0968 1.7865 0.0294 0.0408 0.1281 4.5398 0.5350

DEnKF local state 1 0.0079 0.0798 1.5310 0.0258 0.0296 0.0994 3.4495 0.2771

No Assimilation - 0.0452 0.5602 5.1167 0.0816 0.1026 0.4124 10.8805 3.1092

Table F.10: State dependent mean performance of state estimation using different assim-
ilation schemes of scenario 3.
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(a) (b)

Figure F.3: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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Method RMSE K MAPE K RMSE V MAPE V TRE

Case 1

EnKF local state 0.0191 0.1233 2.5212 0.1019 52498528

DEnKF local state 0.0123 0.0757 1.8031 0.0617 32579468

No Assimilation 0.0538 0.4214 5.9512 0.5900 170014001

Case 2

EnKF local state 0.0162 0.0854 2.1184 0.0723 45210878

DEnKF local state 0.0124 0.0873 1.7954 0.0479 40280667

No Assimilation 0.0603 0.6269 6.4435 0.5528 175157091

Case 3

EnKF local state 0.0180 0.0938 2.3497 0.1081 40532179

DEnKF local state 0.0142 0.0841 2.0982 0.0643 48274856

No Assimilation 0.0553 0.5747 6.1916 0.2635 188166594

Table F.11: Performance of state estimation using different assimilation schemes of sce-
nario 3.

Method RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

Case 1

EnKF local state 0.0192 0.1519 2.3907 0.0396 0.0490 0.1714 5.0350 0.4467

DEnKF local state 0.0191 0.1500 2.2884 0.0382 0.0527 0.1783 5.3280 0.6004

Case 2

EnKF local state 0.0214 0.1927 2.8939 0.0487 0.0653 0.1984 6.9517 1.1345

DEnKF local state 0.0197 0.1932 2.7991 0.0479 0.0779 0.2216 8.3078 1.9608

Case 3

EnKF local state 0.0105 0.0878 1.7262 0.0273 0.0421 0.1343 4.7804 0.6595

DEnKF local state 0.0069 0.0789 1.5239 0.0255 0.0353 0.1194 4.3112 0.3288

No Assimilation 0.0510 0.6100 5.5829 0.0898 0.0786 0.3381 9.3387 1.4483

Table F.12: State dependent performance of state estimation using different assimilation
schemes of scenario 3.



Appendix G

Results experiment 6: performance
of short-term predictions

G.1 Prediction in recurrent conditions

∆t RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state

5

0.0026 0.0153 0.4082 0.0043 111093

DEnKF local state 0.0023 0.0122 0.3806 0.0036 107775

No Assimilation 0.0489 0.3339 5.9865 0.3259 8599885

EnKF local state

15

0.0039 0.0169 0.5585 0.0056 456776

DEnKF local state 0.0033 0.0131 0.5149 0.0046 447045

No Assimilation 0.0520 0.3886 6.3902 0.3764 28818603

EnKF local state

30

0.0050 0.0199 0.6983 0.0078 1001030

DEnKF local state 0.0045 0.0151 0.6317 0.0057 943922

No Assimilation 0.0547 0.4466 6.5445 0.4269 55531925

EnKF local state

60

0.0077 0.0247 0.8989 0.0133 3071263

DEnKF local state 0.0059 0.0161 0.7258 0.0089 2030633

No Assimilation 0.0613 0.4970 6.7079 0.5611 102550038

Table G.1: Performance of state prediction using different assimilation schemes in recur-
rent conditions for different prediction horizions.

∆t RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state

5

0.0017 0.0166 0.3098 0.0014 0.0048 0.0097 0.6908 0.0174

DEnKF local state 0.0016 0.0131 0.2903 0.0012 0.0042 0.0081 0.6415 0.0141

No Assimilation 0.0339 0.3363 4.1159 0.0527 0.0885 0.3234 10.8892 1.5285

EnKF local state

15

0.0029 0.0184 0.4455 0.0015 0.0064 0.0114 0.8690 0.0218

DEnKF local state 0.0024 0.0140 0.3884 0.0013 0.0057 0.0095 0.8404 0.0175

No Assimilation 0.0365 0.4039 4.4595 0.0575 0.0901 0.3277 11.1325 1.6457

EnKF local state

30

0.0038 0.0215 0.5707 0.0017 0.0083 0.0134 1.0521 0.0319

DEnKF local state 0.0032 0.0163 0.5080 0.0015 0.0076 0.0101 0.9738 0.0223

No Assimilation 0.0386 0.4756 4.6555 0.0584 0.0942 0.3307 11.2600 1.8972

EnKF local state

60

0.0064 0.0261 0.7274 0.0022 0.0115 0.0186 1.4244 0.0622

DEnKF local state 0.0040 0.0169 0.5082 0.0014 0.0107 0.0123 1.2951 0.0421

No Assimilation 0.0438 0.5339 4.9495 0.0603 0.1071 0.3342 11.5796 2.7670

Table G.2: State dependent performance of state prediction using different assimilation
schemes in recurrent conditions for different prediction horizions.
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(a) (b)

Figure G.1: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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(a) (b)

Figure G.2: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.

G.2 Prediction in non-recurrent conditions

G.2.1 Scenario 1: no additional information included
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∆t RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state

5

0.0727 0.2117 6.5926 0.3500 6440905

DEnKF local state 0.0724 0.2028 6.5958 0.3396 6445100

No Assimilation 0.0840 0.6680 8.0846 0.5078 11827674

EnKF local state

15

0.0768 0.2279 6.9311 0.3713 19961568

DEnKF local state 0.0770 0.2468 7.0256 0.3663 20713144

No Assimilation 0.0912 0.7740 8.6047 0.5610 37713331

EnKF local state

30

0.0827 0.2553 7.5415 0.4387 45457102

DEnKF local state 0.0827 0.2898 7.6492 0.4327 47425832

No Assimilation 0.0980 0.9341 9.2221 0.6263 81339046

EnKF local state

60

0.0833 0.3536 7.8216 0.8440 107417826

DEnKF local state 0.0839 0.3934 8.0054 0.8445 114586443

No Assimilation 0.0953 0.8274 9.2169 0.9785 168333819

Table G.3: Performance of state prediction using different assimilation schemes in non-
recurrent conditions for different prediction horizions, scenario 1.

∆t RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state

5

0.0081 0.1654 1.2936 0.0135 0.1831 0.4547 16.4013 2.7485

DEnKF local state 0.0095 0.1567 1.6404 0.0138 0.1818 0.4445 16.2293 2.6614

No Assimilation 0.0362 0.6572 4.3975 0.0685 0.1951 0.7246 17.7069 3.6392

EnKF local state

15

0.0081 0.1808 1.4238 0.0137 0.1854 0.4508 16.5030 2.7075

DEnKF local state 0.0123 0.2040 2.1227 0.0174 0.1847 0.4493 16.3544 2.6450

No Assimilation 0.0407 0.7772 4.6846 0.0701 0.2020 0.7587 18.1004 3.7665

EnKF local state

30

0.0091 0.2012 1.5981 0.0142 0.1930 0.4902 17.3482 3.0896

DEnKF local state 0.0147 0.2435 2.4135 0.0194 0.1914 0.4906 17.1829 3.0138

No Assimilation 0.0432 0.9545 4.9607 0.0715 0.2105 0.8456 18.8754 4.0907

EnKF local state

60

0.0153 0.3036 1.7251 0.0213 0.1905 0.5636 17.7640 5.4648

DEnKF local state 0.0207 0.3531 2.6822 0.0283 0.1896 0.5630 17.6888 5.4288

No Assimilation 0.0411 0.8219 4.8168 0.0690 0.2033 0.8509 18.8348 6.0868

Table G.4: State dependent performance of state prediction using different assimilation
schemes in non-recurrent conditions for different prediction horizions, scenario 1.

G.2.2 Scenario 2: inclusion of bridge closing
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(a) (b)

Figure G.3: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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∆t RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state

5

0.0413 0.2260 3.5995 0.1469 2432174

DEnKF local state 0.0373 0.1412 3.0918 0.1141 1860175

No Assimilation 0.0614 0.6443 6.1597 0.3314 7354723

EnKF local state

15

0.0448 0.3242 4.0038 0.1929 7684909

DEnKF local state 0.0412 0.2235 3.5221 0.1520 6066034

No Assimilation 0.0687 0.7694 6.5911 0.4120 22884060

EnKF local state

30

0.0524 0.4517 4.7165 0.2948 19238984

DEnKF local state 0.0482 0.3519 4.3890 0.2636 17038006

No Assimilation 0.0748 0.8989 6.9933 0.5118 47630425

EnKF local state

60

0.0544 0.4205 4.9494 0.3381 46578061

DEnKF local state 0.0508 0.3264 4.8755 0.3522 47505969

No Assimilation 0.0752 0.8341 6.9248 0.4866 96564293

Table G.5: Performance of state prediction using different assimilation schemes in non-
recurrent conditions for different prediction horizions, scenario 2.

Set RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state

5

0.0329 0.2438 2.3619 0.0155 0.0714 0.1328 7.2377 1.0840

DEnKF local state 0.0307 0.1473 1.9241 0.0095 0.0617 0.1095 6.4207 0.8596

No Assimilation 0.0462 0.7051 4.7003 0.0597 0.1110 0.3255 11.0066 2.2675

EnKF local state

15

0.0349 0.3658 2.8735 0.0190 0.0765 0.1276 7.3319 1.3289

DEnKF local state 0.0321 0.2485 2.5239 0.0137 0.0704 0.1058 6.4686 1.0553

No Assimilation 0.0507 0.8597 5.0210 0.0634 0.1223 0.3428 11.4092 2.6893

EnKF local state

30

0.0402 0.5194 3.4021 0.0244 0.0886 0.1584 8.3783 1.9837

DEnKF local state 0.0376 0.4003 3.1626 0.0200 0.0802 0.1419 7.8041 1.7852

No Assimilation 0.0551 1.0233 5.2377 0.0639 0.1299 0.3596 11.9950 3.3089

EnKF local state

60

0.0410 0.4736 3.3382 0.0260 0.0922 0.1969 9.0997 2.0909

DEnKF local state 0.0358 0.3565 3.0413 0.0219 0.0910 0.1999 9.3408 2.2073

No Assimilation 0.0598 0.9469 5.1423 0.0607 0.1200 0.3594 11.8494 2.8787

Table G.6: State dependent performance of state prediction using different assimilation
schemes in non-recurrent conditions for different prediction horizions, scenario 2.

G.2.3 Scenario 3: inclusion of bridge closing and estimation of
route choice
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(a) (b)

Figure G.4: Time-space diagrams of two routes using different assimilation methods. The
horizontal axes depict time in seconds and the vertical axes space in meters. Figure (a)
describes the density of the cells (in veh

m
); Figure (b) describes the difference in density

between the truth situation and the assimilated situations.
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∆t RMSE K MAPE K RMSE V MAPE V TRE

EnKF local state

5

0.0116 0.0657 1.7809 0.0414 835184

DEnKF local state 0.0091 0.0396 1.4595 0.0348 584787

No Assimilation 0.0464 0.3261 5.2867 0.2662 5499043

EnKF local state

15

0.0161 0.0830 1.9898 0.0523 2520007

DEnKF local state 0.0133 0.0466 1.6671 0.0482 1808162

No Assimilation 0.0512 0.3674 5.5944 0.3022 17348641

EnKF local state

30

0.0184 0.1141 2.2943 0.0710 6008428

DEnKF local state 0.0164 0.0649 2.1182 0.0693 5194434

No Assimilation 0.0554 0.4471 5.9202 0.3291 36281337

EnKF local state

60

0.0229 0.1579 2.6364 0.0914 16326713

DEnKF local state 0.0213 0.1085 2.5781 0.0923 15443111

No Assimilation 0.0629 0.6179 6.2565 0.4588 82464884

Table G.7: Performance of state prediction using different assimilation schemes in non-
recurrent conditions for different prediction horizions, scenario 3.

∆tt RMSE K MAPE K RMSE V MAPE V RMSE K MAPE K RMSE V MAPE V

EnKF local state

5

0.0074 0.0690 1.1468 0.0064 0.0239 0.0485 3.6342 0.2911

DEnKF local state 0.0052 0.0384 0.8317 0.0037 0.0194 0.0460 3.1393 0.2569

No Assimilation 0.0302 0.3332 3.7395 0.0426 0.0932 0.2888 10.1423 1.8600

EnKF local state

15

0.0084 0.0903 1.3759 0.0071 0.0342 0.0484 3.7448 0.3476

DEnKF local state 0.0060 0.0468 1.0786 0.0045 0.0294 0.0457 3.2547 0.3337

No Assimilation 0.0321 0.3814 3.9225 0.0436 0.1007 0.3011 10.3925 1.9909

EnKF local state

30

0.0108 0.1275 1.5510 0.0073 0.0363 0.0562 4.2526 0.4687

DEnKF local state 0.0089 0.0673 1.3878 0.0055 0.0333 0.0549 3.9797 0.4676

No Assimilation 0.0348 0.4807 4.1240 0.0440 0.1049 0.3013 10.7125 2.1087

EnKF local state

60

0.0166 0.1792 1.8160 0.0091 0.0402 0.0683 4.7873 0.5538

DEnKF local state 0.0126 0.1180 1.7038 0.0078 0.0414 0.0685 4.7867 0.5668

No Assimilation 0.0410 0.6873 4.2266 0.0459 0.1152 0.3258 11.4737 2.7779

Table G.8: State dependent performance of state prediction using different assimilation
schemes in non-recurrent conditions for different prediction horizions, scenario 3.
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