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Abstract

A phenomenon that compromises the health of city inhabitants is the urban heat island (UHI) effect.

This effect is mainly driven by thermal radiation and designates the typically higher air temperature

in cities compared to the surrounding rural areas. Over 55% of the world’s population lives in cities,

and with this percentage set to rise to more than 65% by 2050, it is vital to model the urban climate to

be able to mitigate the UHI-effect. In this study, the surface energy balance (SEB) is modeled in urban

environments using a one-way coupled RANS 𝑘 − 𝜖 approach in order to gain fundamental insights into

the influence of thermal radiation on the UHI-effect. The SEB model is built mechanism-by-mechanism,

adding in different physical mechanisms one at a time and validating the model at each step with

literature- or theoretical values.

The SEB model showed a good agreement with experimentally found values for the effect of surface

irregularity of an urban structure on the absorption and reflection of incident solar radiation. A good

agreement was also found with theoretical values for the longwave radiation and conductive heat

flux part of the SEB model. Subsequently, a study was done on a 2D street canyon to compare the

model with literature results. This study showed a good agreement for the radiative fluxes, but a lesser

agreement for the conductive- and sensible heat fluxes. A more complex scenario of an intersection

between buildings was studied. It was shown that the longwave trapping effect is highly correlated

with building height. Finally, the effect of wall heating on flow characteristics in a 2D street canyon was

examined. For homogeneously heated walls, the SEB model showed a relatively good agreement with

literature results. A study was also done with non-homogeneously heated walls. This study showed

less realistic results and should be further investigated in further research.
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1
Introduction

1.1. Motivation
Inhabitants of cities are exposed to a variety of health risks due air-, water- and soil pollution,

overcrowding, noise and poor housing (Vardoulakis et al., 2016). In addition to those risks, there is

a mechanism that compromises the health of city inhabitants more indirectly, namely the urban heat

island (UHI) effect. The UHI-effect designates the typically higher air temperature in cities compared to

the surrounding rural areas, see figure 1.1. This comparatively high air temperature is mainly caused

by a lack of water surfaces, limited vegetation and a large amount of heat absorption by buildings.

Tan et al. (2010) showed that the UHI-effect intensifies heat waves, which, in turn, has a measurable

increase in hospitalizations and mortality rate (Pyrgou and Santamouris, 2018). Over 55% of the world’s

population lives in cities, and with this percentage set to rise to 68% by 2050 (WHO, 2022), it is vital to

model the urban climate to be able to mitigate these health risks.

Figure 1.1: A schematic image of the urban heat island effect. The curved line indicates high- (red) and low (blue) temperatures.

It can be seen that in urban environments the temperature is higher compared to rural areas (GOSmartBricks, 2022).

The key driver behind the UHI-effect is thermal radiation, which can be divided into two sorts: shortwave-

and longwave radiation. Shortwave radiation mainly comes from the sun and is absorbed and reflected

by buildings, pavements and other surfaces. Surfaces in cities, compared to that of rural areas, generally

have a low level of reflectivity (Wang et al., 2007). Albedo is the measure of surface reflectivity, it

designates the fraction of the amount of reflected radiation and the total incoming radiation on a surface.

A lower albedo in cities therefore means that less radiation is reflected and more is absorbed compared

to rural areas. The surfaces subsequently heat up and emit longwave radiation, which is then absorbed

and reflected by other surfaces. This phenomenon is also referred to as longwave trapping. Besides

1



2 Chapter 1. Introduction

radiation, other physical mechanisms are at play in the dispersion of heat in cities. These include the

conductive heat flux, which resembles heat transfer through building walls, streets and soil, the sensible

heat flux, which designates heat transfer due to convection, and the latent heat flux, which concerns

heat transfer due to the evaporation of water.

It is important to model the complex interaction of thermal radiation and other heat fluxes between

surfaces to understand the UHI-effect, and to subsequently be able to (re-)design future urban environ-

ments. Field experiments can also be done to gain a better understanding of the UHI-effect, however,

they are tedious to perform and entail high costs. Therefore, it is more efficient to use simulation

methods, as they are generally lower in cost and more straightforward in execution.

In this study, the effect of thermal radiation and different heat fluxes on the surface temperature will

be studied to get fundamental insights into the UHI-effect. This will be done by modeling the surface

energy balance and, subsequently, comparing the current model with literature studies and values.

Finally, the model will be used to study the effect of different parameters, such as the wind speed or

building height, on the surface temperature in urban environments.

1.2. Literature background
Several observational studies have been done to study the UHI-effect. Núñez and Oke (1977) studied

the energy exchanges occurring in an urban street canyon. They used field measurements conducted in

a specially instrumented street canyon. Kolokotroni et al. (2006) used air temperature measurements

carried out in London in 1999-2000 to quantify the London UHI-intensity. They studied the effect of

increased air temperature in London on the effectiveness of stack night ventilation strategies for office

buildings. Although the use of field measurements to study the UHI-effect is praised for its simplicity, it

also has its downsides, as they are generally expensive. On top of that, in order to filter out noise like

pedestrians and cars, the field measurements must be particularly extensive, which makes them very

time-consuming.

For those reasons are the conduction of small-scale model experiments, in some cases, more favorable.

Aida (1982) carried out a small-scale model experiment to examine the effect of surface irregularity

of an urban structure on the anomalous absorption of incident solar radiation. On top of that, Aida

observed the albedo change as a function of the solar zenith angle throughout the year in different urban

geometries. Kanda et al. (2005) performed an outdoor small-scale model experiment to evaluate their

numerical model. They performed a similar model experiment as Aida, but covered a wider range of

surface geometries and seasons. Small-scale model experiments can provide detailed information about

certain model parameters that the researchers are interested in. For example, Aida’s experiment isolated

the effect of surface properties on the effective albedo of certain urban geometries. The main drawback

of using small-scale model experiments is that it’s sometimes difficult to translate the experiment to a

real world problem. Besides that, similar to field experiments, this is a time-consuming business.

Numerical studies on the UHI-effect have become increasingly popular with the rise of computational

power. One of the simpler and computationally cheaper studies in this field is the energy balance

budget for a building canyon, as suggested by Oke (1982). Oke uses a conservation of energy approach

for a specific control volume to model the UHI-effect. In this model, the velocity field and turbulence

are parameterized such that it is incorporated as heat fluxes in the energy balance. The energy balance

budget method is computationally cheap and relatively simple. The decoupling of the velocity field and

temperature field, however, makes the model weak in modeling the sensible/latent heat fluxes.

Approaches that do couple the temperature- and velocity fields are methods based on computational

fluid dynamics (CFD). The CFD-based approaches that study the urban climate can be differentiated into

meso-scale models and micro-scale models. An example of a meso-scale model is HARMONIE, a weather

model of KNMI (2012). Meso-scale models, such as HARMONIE, typically have a range from 1 to several

hundreds of kilometers and maintain a resolution of roughly 2-3 km. These meso-scale approaches

model the urban boundary layer by assigning surface roughness numbers based on the urban geome-

try. Therefore, detailed information about what happens inside the urban boundary layer is not available.
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Contrary to meso-scale models, micro-scale models give more insight into what happens inside the

urban boundary layer. Micro-scale models solve the temperature equation and transport equations

directly. Besides that, urban geometries, such as buildings and trees, can be modeled in more detail. In

simulation methods based on Reynolds Average Navier-Stokes (RANS), the full range of turbulence

scales is modeled. RANS models are inherently steady-state and come with low computational costs. Ex-

amples of simulation methods based on RANS that are capable of modeling the urban climate are MIMO

(Ehrhard et al., 2000) and MITRAS (Schlünzen et al., 2003). Although both MIMO and MITRAS solve the

velocity- and temperature field, the models do not solve the surface energy balance explicitly. Both mod-

els are focused on the dispersion of air pollutants and solving the velocity fields around urban geometries.

Simulation methods that resolve a large amount of the turbulence scales are methods based on large

eddy simulation (LES). uDALES (Grylls et al., 2021) is one of those methods. uDALES is a very

high-resolution (1-2 m), building-resolving, large eddy simulation code for the urban micro-climate.

uDALES solves the surface energy balance per urban facet and models the multi-reflective behavior of

radiation. The precision of LES-based methods comes at a cost, since the computational expenses of a

LES code are often high compared to other methods.

1.3. Objective and scope of the study
The goal of this study is to model the surface energy balance (SEB) at micro-scale to obtain fundamental

insights into the UHI-effect. This will be done by building a SEB model mechanism-by-mechanism,

adding in different physical mechanisms one at a time. After every step, the model is validated

quantitatively and qualitatively. After validation, the model will be used to simulate the diurnal pattern

of the surface temperature in different geometries and under different conditions.

In chapter 2, the theory behind this study will be explained. In chapter 3, the numerical methods will

be explained, which includes all discretization methods. After that, in chapter 4, a brief overview will

be given of the numerical implementation. In chapter 5, the results and discussions will be presented.

Lastly, in chapter 6, the final conclusions and recommendations will be given.





2
Theory

In this chapter, the physical and mathematical background will be given that is needed for the

understanding of all physical mechanisms at play in this study. First, the governing equations will be

discussed. Secondly, the surface energy balance modeling will be discussed. And lastly, turbulence

modeling will be discussed.

2.1. Governing equations
The governing equations in this study consist of the conservation of mass equation, the conservation of

momentum equation, the conservation of energy equation, and the surface energy balance. The equations

in this section are given in the Cartesian coordinate system designated by the triplet 𝑥𝑖 = (𝑥, 𝑦, 𝑧).
Besides that, Einstein notation is used to describe the equations in a succinct fashion.

2.1.1. Conservation of mass
The conservation of mass is given by the continuity equation, which states that the mass flow rate of a

fluid entering a specified volume must be equal to the mass flow rate exiting the same specified volume

plus the accumulation of mass within the specified volume. The continuity equation is given as follows:

𝜕𝜌̂

𝜕𝑡
+ 𝜕

𝜕𝑥𝑖

(
𝜌̂𝑈̂𝑖

)
= 0, (2.1)

where 𝜌̂ is the density of the fluid, 𝑡 represents time and 𝑈̂𝑖 stands for the instantaneous velocity. In the

case of an incompressible fluid, i.e., where the density is constant over time and space, the continuity

equation can be written as:

𝜕𝑈̂𝑖

𝜕𝑥𝑖
= 0. (2.2)

2.1.2. Conservation of momentum
The conservation of momentum is given by the Navier-Stokes equation, which states that the total

momentum of a system remains constant unless acted upon by an external force. This equation can be

mathematically expressed as:

𝜌̂
𝜕𝑈̂𝑖

𝜕𝑡︸︷︷︸
time rate of change

+ 𝜌̂𝑈̂ 𝑗
𝜕𝑈̂𝑖

𝜕𝑥 𝑗︸   ︷︷   ︸
convection

= − 𝜕𝑃̂

𝜕𝑥𝑖︸︷︷︸
pressure gradient

+ 𝜕

𝜕𝑥 𝑗

[
𝜇
(𝜕𝑈̂𝑖

𝜕𝑥 𝑗
+

𝜕𝑈̂ 𝑗

𝜕𝑥𝑖

)]
︸                     ︷︷                     ︸

diffusion

− 𝜌̂𝑔𝑖𝛽
(
𝑇̂ − 𝑇𝑟𝑒 𝑓

)
︸            ︷︷            ︸

buoyancy term

, (2.3)

where 𝑃 represents the pressure and 𝜇 is the dynamic viscosity. Besides that, 𝑔𝑖 represents the

acceleration of gravity, 𝛽 is the thermal expansion coefficient of air and 𝑇𝑟𝑒 𝑓 is the reference temperature.
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2.1.3. Conservation of energy
The conservation of energy is one of the most fundamental equations in nature. Since energy must be

conserved, a balance over a control volume can be derived. This is given by the following equation:

𝜌̂𝑐𝑝

(
𝜕𝑇̂

𝜕𝑡
+ 𝑈̂ 𝑗

𝜕𝑇̂

𝜕𝑥 𝑗

)
=

𝜕

𝜕𝑥 𝑗

(
𝜆
𝜕𝑇̂

𝜕𝑥 𝑗

)
− 𝜌̂

𝜕𝜃𝑢′
𝑗

𝜕𝑥 𝑗
, (2.4)

where 𝑇̂ represents the instantaneous temperature, 𝜆 the thermal conductivity, 𝑐𝑝 the heat capacity and

𝜃𝑢′
𝑗
represents the turbulent heat flux.

2.1.4. Surface energy balance
The surface energy balance (SEB) is an equation consisting of a balance between several forms of

incoming- and outgoing energy fluxes striking or exiting a surface. The SEB describes the flow of

energy from and to a surface and, therefore, also determines the temperature of the surface in question.

Following the notation of Grylls et al. (2021), the SEB can be expressed as follows:

𝑑𝑄

𝑑𝑡
= (𝐿↓ − 𝐿↑) + (𝐾↓ − 𝐾↑) − (𝐻 + 𝐸 + 𝐺) + 𝑂, (2.5)

where 𝑄 stands for the stored heat, (𝐾↓, 𝐾↑) for the incoming and outgoing shortwave radiation,

respectively, (𝐿↓, 𝐿↑) for the incoming and outgoing longwave radiation, respectively. Besides that, 𝐻
represents the turbulent sensible heat flux, 𝐸 for the turbulent latent heat flux, 𝐺 for the ground heat

flux, and 𝑂 for other fluxes such as, for example, the anthropogenic heat flux. All terms have the units

of Watts per square meter (W m
−2

). The latent heat flux, 𝐸, and the other heat flux, 𝑂, are outside the

scope of this study. Besides that, this study is modeling in steady-state. Due to the omission of these

fluxes and the modeling in steady-state, this leads to the following governing equation for the SEB in

this study:

(𝐿↓ − 𝐿↑) + (𝐾↓ − 𝐾↑) − (𝐻 + 𝐺) = 0. (2.6)

2.2. Surface energy balance modeling
The surface energy balance (SEB) consists of several forms of incoming- and outgoing energy fluxes, as

was explained in section 2.1.4. In this section, the modeling of the SEB will be discussed.

A key component of the SEB is thermal radiation. In radiative heat transfer studies, surface areas

are commonly referred to as facets, each with different (thermal) properties. It must be noted that

in modeling the SEB, a set of assumptions has been made. These assumptions include that (1) no

wavelength dependency is acknowledged to the radiation except the distinction between longwave- and

shortwave radiation, (2) the radiosity across a facet is uniform, (3) that each facet is isothermal, (4) facets

are ’grey’ in the longwave regime (𝛼 = 𝜀) and (5) that reflections and emitted radiation are diffusive (no

specular reflections).

In the upcoming sections, the modeling of the different energy fluxes included in the SEB will be

discussed. First, the view factor modeling will be discussed. This is a geometric relation between

different facets used to model the radiative exchanges between facets.

2.2.1. View factor
In radiative heat transfer, the view factor 𝜓𝑖 𝑗 is defined as the fraction of radiation leaving facet 𝑖 with

surface area 𝐴𝑖 and striking facet 𝑗 with surface area 𝐴 𝑗 and lies, therefore, per definition between 0 and

1. A frequently used formula for the view factor of a facet with area 𝐴𝑖 on a facet with area 𝐴 𝑗 is stated

as follows:

𝜓𝑖 𝑗 =
1

𝐴𝑖

ˆ
𝐴𝑖

ˆ
𝐴𝑗

cos𝜂𝑖 cos𝜂 𝑗

𝜋𝑆2

𝑑

𝑑𝐴 𝑗𝑑𝐴𝑖 . (2.7)
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(a) (b)

Figure 2.1: Schematics showing the relevant geometric quantities for the view factor in (a) area integral form and (b) contour

integral form.

In equation 2.7, 𝜂 is the angle to the normal of the two respective facets and 𝑆𝑑 is the distance between

the two facets. The geometric quantities from equation 2.7 are schematically presented in figure 2.1a.

Sparrow and Cess (1963) showed that the view factor between two surface areas can also be expressed

in a double contour integral form. This form is commonly referred to as the contour integration formula

and is described in the following equation:

𝜓𝑖 𝑗 =
1

2𝜋𝐴𝑖

˛
𝐶𝑖

˛
𝐶 𝑗

ln 𝑆𝑑 𝑑®𝑟𝑖 · 𝑑®𝑟 𝑗 . (2.8)

The geometric quantities of this equation are schematically shown in figure 2.1b. A significant amount

of computational time can be saved by using equation 2.8 in view factor calculations instead of equation

2.7, since the integration is over two lines instead of over two areas. Therefore, the contour integration

formula is used to calculate the view factor in this study.

It must be noted that evaluating equation 2.8 cannot be done when two areas share a common edge,

since ln 𝑆𝑑 diverges. Ambirajan and Venkateshan (1993) have provided an analytical contribution to the

overall view factor in the case of a shared edge. This analytical contribution is defined as follows:

Δ𝜓𝑖 𝑗 =
𝐿2

𝑠

2𝜋

(
3

2

− ln 𝐿𝑠

)
, (2.9)

where 𝐿𝑠 stands for the length of the shared edge. Besides the case of two shared edges, Grylls et al.

(2021) distinguished three important exceptions to be taken into account when evaluating the view

factor of a geometry using equation 2.8.

(i) The first exception is that of two planes that cannot see each other given their orientation and

location. For example, a west-facing facet cannot see another west-facing facet, and a west-facing

facet cannot see a facet that is located east of it.

(ii) The second exception occurs when two facets intersect. This problem can be dealt with adequately

by cropping the intersected facet such that no intersection occurs. In this study, however,

intersecting facets are not considered for the sake of simplicity.

(iii) The third exception occurs when the view of one facet on another facet is blocked, for example,

by other facets or objects such as trees. This exception is the most tenacious to deal with and no

straightforward solution exists. Therefore, Grylls et al. (2021) provide a more pragmatic approach

to this problem by determining a percentage that designates how much a facet sees the other. This

is, subsequently, multiplied by the unobstructed view factor.
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At last, after all the view factors have been calculated, the view factor of facet 𝑖 on the sky, 𝜓𝑖 ,sky
, can

be determined. This value can easily be calculated by considering that radiation leaving a surface

is conserved and that the sum of the view factor of surface area 𝐴𝑖 on all other surfaces is unity:∑𝑛
𝑗=1

𝜓𝑖 𝑗 = 1. This means that 𝜓𝑖 ,sky
can be determined as follows:

𝜓𝑖 ,sky
= 1 −

𝑛∑
𝑗=1

𝜓𝑖 𝑗 , (2.10)

with 𝑛 the total number of facets in the computational domain.

2.2.2. Shortwave radiation
Shortwave radiation is ultimately the driving force behind the surface energy balance. This class

of radiation represents the incoming ultraviolet and visible energy fluxes from the sun. Under the

assumption that there is no transmission of radiation through the surface, the net shortwave radiation 𝐾
(W m

−2
) for a facet 𝑖 is given as:

𝐾𝑖 = 𝐾
↓
𝑖
− 𝐾↑

𝑖
, (2.11)

where 𝐾↓
designates the incoming shortwave radiation and 𝐾↑

the outgoing shortwave radiation. Since

there is no transmission, the outgoing radiation can be expressed in terms of the incoming radiation

with the help of the albedo factor 𝛼. This results in the following:

𝐾𝑖 = (1 − 𝛼𝑖)𝐾↓
𝑖
, (2.12)

where 𝛼𝑖 is the albedo factor of facet 𝑖. According to Oke et al. (2017), the incoming shortwave radiation

can be divided into three sorts: the diffusive shortwave radiation from the sky, 𝐷, the direct shortwave

radiation coming from the sun, 𝑆, and the reflected shortwave radiation, 𝑅, coming from other surfaces.

This gives the following equation:

𝐾
↓
𝑖
= 𝐷𝑖 + 𝑆𝑖 + 𝑅𝑖 . (2.13)

The diffusive radiation striking each facet is determined by multiplying the sky view factor, 𝜓𝑖 ,sky
, with

𝐷
sky

, the total diffusive sky radiation:

𝐷𝑖 = 𝜓𝑖 ,sky
𝐷

sky
. (2.14)

Figure 2.2: A schematic representation of the two solar angles: the solar zenith angle, 𝜃𝑠 , and the solar azimuthal angle, 𝜙𝑠 . Here,

𝑁 designates true north.

In order to compute the direct shortwave radiation, 𝑆, different parameters need to be taken into account.

These parameters include the solar azimuthal angle, 𝜙𝑠 , and the solar zenith angle, 𝜃𝑠 , which give

the position of the sun with respect to the earth surface. These angles are schematically depicted in

figure 2.2. Besides that, the facet’s azimuthal angle, 𝜙𝑖 , the facet’s zenith angle, 𝜃𝑖 , and the sun-lit

factor, 𝑓𝑒 ,𝑖 , must be taken into account. The solar angles are taken from the site of National Oceanic and
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Atmospheric Administration (NOAA, 2023). The direct shortwave radiation on a facet 𝑖 is given as (Wu,

1995):

𝑆𝑖 = 𝐼 cos (𝜃𝑠 − 𝜃𝑖) cos (|𝜙𝑠 − 𝜙𝑖 |) 𝑓𝑒 ,𝑖 , (2.15)

where 𝐼 represents the solar irradiance on a given time and geographic location on Earth. Both 𝐼 and

𝐷𝑠𝑘𝑦 are model inputs based on ASHRAE (2001). The sun-lit factor, 𝑓𝑒 ,𝑖 , is determined with a similar

approach to the blocking percentage calculation in the view factor. For each facet, it is determined

whether the path between the facet and the sun is blocked by another facet. This is determined for the

four vertices and the central node of each facet. Each vertex contributes 12.5 % to 𝑓𝑒 ,𝑖 and the central

node contributes 50 % to 𝑓𝑒 ,𝑖 (Grylls et al., 2021). This way, if none of the paths are blocked, the sun-lit

factor is equal to 1.

Reflected radiation from the environment must be taken into consideration when determining the

in- and outgoing shortwave radiation. These reflections are considered Lambertian and are modeled

through an iterative approach, with each iteration resembling a reflection. This iterative approach is

schematically given in figure 2.3 and can be summarized as follows. The first step is making an initial

guess of the outgoing radiation of each facet, 𝐾
↑
𝑖 ,0

. Subsequently, in step two, the reflected radiation

striking each facet after one reflection, 𝑅𝑖 ,0, is computed. This is added to the total incoming radiation

on each facet in step three. In step four, the 𝑛-th reflection of each facet is determined and in step five

the reflected radiation striking each facet is determined and added to the total incoming radiation of

each facet. This results in a looping procedure that stops when the convergence criterion 𝜖𝑐 is met,

which is set at 0.1 %.

Figure 2.3: A schematic representation of the iterative procedure to compute the total reflected shortwave radiation. Here, 𝐾
represents the total shortwave radiation, 𝑅 represents the reflected radiation, 𝜓 signifies the view factor and 𝜖𝑐 is the convergence

criterion.

2.2.3. Longwave radiation
Longwave radiation represents the infrared part of thermal radiation. The net longwave radiation

striking facet 𝑖 is expressed as follows:

𝐿𝑖 = 𝜁𝑖
(
𝜓

sky,𝑖𝐿
↓
sky

+ 𝐿↓
env,𝑖

+ 𝐿↓
R,𝑖

)
− 𝐿↑

𝑖
, (2.16)

where 𝜁𝑖 is the longwave absorptivity, 𝐿
↓
sky

represents the incoming longwave radiation coming from the

sky, 𝐿
↓
env,𝑖

is the incoming longwave radiation from other facets, 𝐿
↓
R,𝑖

represents the incoming reflected

longwave radiation and 𝐿
↑
𝑖

presents the outgoing longwave radiation. Following Grylls et al. (2021),

𝐿
↓
R,𝑖

is neglected and set to zero in this study, since, for many building materials, the absorptivity is

generally close to unity. The outgoing longwave radiation, 𝐿
↑
𝑖
, depends on the surface temperature 𝑇𝑠,𝑖

according to the Stefan-Boltzmann law:

𝐿
↑
𝑖
= 𝜎𝜀𝑖𝑇

4

𝑠,𝑖 , (2.17)
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with the Stefan-Boltzmann constant 𝜎 and the facet’s longwave emmisivity 𝜀𝑖 . The incoming longwave

radiation from other facets can also be expressed according to the Stefan-Boltzmann law:

𝐿
↓
env,𝑖

=

𝑝∑
𝑗=1

𝜓 𝑗𝑖𝜀𝑗𝑇
4

𝑠, 𝑗 , (2.18)

where 𝑝 represents the total number of facets. 𝐿
↓
sky

is given as a model input.

2.2.4. Conductive heat flux
The conductive heat flux at each facet, 𝐺𝑖 , is given by:

𝐺𝑖 = 𝜆𝑖
𝜕𝑇𝑠,𝑖
𝜕𝜉

(
𝜉 = 0

)
, (2.19)

where 𝜆𝑖 is the thermal conductivity of facet 𝑖, 𝑇𝑖 the temperature of the facet and 𝜉 the position vector

point into the surface. In the present study, it is assumed that each facet consists of one single layer of

building material with thickness 𝑑 and internal temperature, 𝑇∞,𝑖 , which is the temperature at depth 𝑑
and is given as model input. This results in the following discretized equation:

𝐺𝑖 = 𝜆
𝑇𝑠,𝑖 − 𝑇∞,𝑖

𝑑𝑖
. (2.20)

2.2.5. Sensible heat flux
The sensible heat flux represents the heat exchange between the surface and the surrounding medium

and is modeled with the use of the Simple Gradient Diffusion Hypothesis (SGDH):

𝜃𝑢′
𝑖
= − 𝜈𝑡

𝑃𝑟𝑡

𝜕𝑇

𝜕𝑥𝑖
, (2.21)

where 𝜃𝑢′
𝑖

is the turbulent heat flux, 𝜈𝑡 is the turbulent viscosity and 𝑃𝑟𝑡 is the turbulent Prandtl

number. The turbulent Prandtl number is set to 0.86 in accordance with Schrĳvers (2020) to acquire

stable solutions. The turbulent viscosity, 𝜈𝑡 , is calculated with the use of turbulence modeling. This will

be explained in the next section. The sensible heat flux can be expressed in terms of the turbulent heat

flux:

𝐻𝑖 = −𝜌𝑐𝑝𝜃𝑢′𝑖 , (2.22)

where 𝜌 is the density of the surrounding medium and 𝑐𝑝 is the specific heat of the surrounding

medium. The air temperature is kept constant in the current model’s one-way coupling approach.

Therefore, when the previous two equations are synthesized and the temperature gradient is linearized,

the following is acquired:

𝐻𝑖 = 𝜌𝑐𝑝
𝜈𝑡
𝑃𝑟𝑡

𝑇𝑠,𝑖 − 𝑇air

Δ𝑥
. (2.23)

In the equation above, 𝑇air represents the ambient air temperature and Δ𝑥 represents the distance

between the facet and point in the surrounding medium.

2.3. Turbulence modeling
Turbulence is a chaotic phenomenon that occurs in fluid flows. Turbulence modeling is the study

of mathematically representing turbulence in CFD simulations. There are three main approaches to

turbulence modeling: Reynolds-Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), and

Direct Numerical Simulation (DNS).

DNS is a simulation method that completely solves the Navier-Stokes equations without using turbulence

modeling. DNS is, therefore, computationally expensive as it requires resolving all of the turbulent

scales in the flow. DNS is particularly useful in fundamental studies of turbulence as it provides detailed

information on the flow field. The computational expenses, however, are generally too high and DNS is
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therefore mostly used in academic studies.

LES is a computational method that solves large-scale turbulent structures while modeling small-scale

structures. The small-scale turbulent structures are modeled using so-called sub-grid scale models. LES

is less computationally expensive compared to DNS while still achieving high accuracy in simulating

large-scale turbulent structures. Therefore, LES is particularly useful in situations where large-scale

structures are of primary interest, such as in acoustics or weather simulations.

RANS is a computational method that models all turbulence by time-averaging the Navier-Stokes

equations. RANS models are based on the assumption that instantaneous quantities, such as the velocity,

can be decomposed into a mean- and a fluctuating component. The mean component is computed

using the Reynolds-averaged equations, while the fluctuating component is modeled using turbulence

models. RANS is the least computationally expensive out of all three approaches, but it is less accurate

in capturing the details of the turbulent flow.

In this study, the RANS 𝑘 − 𝜖 model will be used. This method will be employed such that the surface

temperature can be coupled to a (turbulent) flow field. In the next subsections, the RANS 𝑘 − 𝜖 model

will be discussed in further detail.

2.3.1. Reynolds averaging
In the RANS approach, the conservation equations are statistically averaged before they are solved. An

instantaneous property can be decomposed into a mean- and fluctuating component. The instantaneous

velocity, 𝑈̂𝑖(𝑥𝑖 , 𝑡), can be decomposed as follows:

𝑈̂𝑖(𝑥𝑖 , 𝑡) = 𝑈𝑖(𝑥𝑖) + 𝑢′𝑖 (𝑥𝑖 , 𝑡), (2.24)

where𝑈𝑖(𝑥𝑖) is its mean component and 𝑢′
𝑖
(𝑥𝑖 , 𝑡) its fluctuating component. The mean component is

defined as:

𝑈𝑖(𝑥𝑖) = lim

𝑇→∞

ˆ 𝑇

0

𝑈̂𝑖(𝑥𝑖 , 𝑡)𝑑𝑡. (2.25)

It must be noted that the integration time must be sufficiently large compared to the turbulent time-scales.

With the decomposition in mind, the left-hand side of the Navier-Stokes equation (equation 2.3), after

Reynolds averaging, can be written as:

𝜌
𝜕𝑈𝑖

𝜕𝑡
+ 𝜌

𝜕𝑈̂𝑖𝑈̂ 𝑗

𝜕𝑥 𝑗
. (2.26)

The non-linear term in the equation above can be further expanded by applying Reynolds averaging.

This is done as follows:

𝑈̂𝑖𝑈̂ 𝑗 = (𝑈𝑖 + 𝑢′𝑖 )(𝑈 𝑗 + 𝑢′𝑗) = 𝑈𝑖𝑈 𝑗 +𝑈𝑖𝑢
′
𝑗
+ 𝑢′

𝑖
𝑈 𝑗 + 𝑢′𝑖𝑢

′
𝑗
= 𝑈𝑖𝑈 𝑗 + 𝑢′𝑖𝑢

′
𝑗
, (2.27)

where 𝑢′
𝑖
𝑢′
𝑗
is also known as the Reynolds stress.

The other terms in equation 2.3 can be expanded and expressed in a similar manner as done above. This

leads to the RANS equation:

𝜌
𝜕𝑈𝑖

𝜕𝑡
+ 𝜌𝑈 𝑗

𝜕𝑈𝑖

𝜕𝑥 𝑗
= − 𝜕𝑃

𝜕𝑥𝑖
+ 𝜕

𝜕𝑥 𝑗

[
𝜇

(
𝜕𝑈𝑖

𝜕𝑥 𝑗
+

𝜕𝑈 𝑗

𝜕𝑥𝑖

)
− 𝜌𝑢′

𝑖
𝑢′
𝑗

]
− 𝜌𝑔𝑖𝛽

(
𝑇 − 𝑇𝑟𝑒 𝑓

)
. (2.28)

The Reynolds stress, 𝑢′
𝑖
𝑢′
𝑗
, cannot be calculated directly and must therefore be modeled to close the

RANS equation. This will be explained in the next subsection.
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The Reynolds-averaged transport equation for energy is given as follows:

𝜌𝑐𝑝

(
𝜕𝑇

𝜕𝑡
+𝑈 𝑗

𝜕𝑇

𝜕𝑥 𝑗

)
=

𝜕

𝜕𝑥 𝑗

[
𝜆
𝜕𝑇

𝜕𝑥 𝑗
− 𝜌𝑐𝑝𝜃𝑢′𝑗

]
, (2.29)

where 𝜃𝑢′
𝑗
is modeled by the SGDH, as was discussed in the previous section.

2.3.2. The 𝑘-𝜖 turbulence model
The 𝑘-𝜖 turbulence model is a commonly used turbulence model based on the Boussinesq assumption.

This states that the turbulent stress tensor can be expressed in terms of the strain rate tensor in the

same fashion as Newtonian isotropic fluids, except that the viscosity is replaced by the turbulent eddy

viscosity. The model consists of two additional transport equations for the turbulent kinetic energy, 𝑘,
and the turbulent dissipation rate, 𝜖. The model states that the turbulent viscosity, 𝜈𝑡 , relates to the

shear components of the Reynolds stress in the following way:

𝑢′
𝑖
𝑢′
𝑗
= −𝜈𝑡

(
𝜕𝑈𝑖

𝜕𝑥 𝑗
+

𝜕𝑈 𝑗

𝜕𝑥𝑖

)
+ 2

3

𝑘𝛿𝑖 𝑗 , (2.30)

where 𝛿𝑖 𝑗 stands for the Kronecker delta function. The turbulent kinetic energy, 𝑘, is defined as

𝑘 ≡ 1

2

𝑢′
𝑖
𝑢′
𝑗

(2.31)

and the turbulent viscosity, 𝜈𝑡 , is defined as

𝜈𝑡 = 𝐶𝜇𝑘𝜏 = 𝐶𝜇
𝑘2

𝜖
, (2.32)

where 𝜏 represents the turbulent timescale and is equal to
𝑘
𝜖 and 𝐶𝜇 is a model constant, given in

table 2.1. The transport equation for 𝑘 can then be found by subtracting equation 2.28 from equation

2.3, multiplying this by 𝑢′
𝑖
, and, subsequently Reynolds averaging. This gives the following transport

equation for 𝑘:

𝜕𝑘

𝜕𝑡︸︷︷︸
time rate of change

+ 𝑈 𝑗
𝜕𝑘

𝜕𝑥 𝑗︸ ︷︷ ︸
convection

=
𝜕

𝜕𝑥 𝑗

[(
𝜈 + 𝜈𝑡

𝜎𝑘

)
𝜕𝑘

𝜕𝑥 𝑗

]
︸                   ︷︷                   ︸

diffusion

+ 𝑃𝑘︸︷︷︸
production

− 𝜖︸︷︷︸
dissipation

− 𝑔𝑗𝛽𝜃𝑢′𝑗︸  ︷︷  ︸
sink/source

. (2.33)

In the equation above, 𝜎𝑘 is the eddy diffusivity, 𝑃𝑘 represents the production of turbulent kinetic energy

and 𝑆𝑘 is an external sink/source term. The production of turbulent kinetic energy is then given as

𝑃𝑘 = −𝑢′
𝑖
𝑢′
𝑗

𝜕𝑈𝑖

𝜕𝑥 𝑗
= 𝜈𝑡

(
𝜕𝑈𝑖

𝜕𝑥 𝑗
+

𝜕𝑈 𝑗

𝜕𝑥𝑖

)
𝜕𝑈𝑖

𝜕𝑥 𝑗
= 2𝜈𝑡𝑆𝑖 𝑗𝑆𝑖 𝑗 , (2.34)

where 𝑆𝑖 𝑗 is the symmetric strain rate tensor and is defined as:

𝑆𝑖 𝑗 =
1

2

(𝜕𝑈𝑖

𝜕𝑥 𝑗
+

𝜕𝑈 𝑗

𝜕𝑥𝑖

)
. (2.35)

The dissipation of turbulent kinetic energy is defined as:

𝜖 ≡ 𝜈

(
𝜕𝑢′

𝑖

𝜕𝑥 𝑗

)
2

. (2.36)

This leads to the following transport equation for 𝜖:

𝜕𝜖

𝜕𝑡︸︷︷︸
time rate of change

+ 𝑈 𝑗
𝜕𝜖

𝜕𝑥 𝑗︸ ︷︷ ︸
convection

=
𝜕

𝜕𝑥 𝑗

[(
𝜈 + 𝜈𝑡

𝜎𝜖

)
𝜕𝜖

𝜕𝑥 𝑗

]
︸                   ︷︷                   ︸

diffusion

+ 𝐶𝜖1

𝜖
𝑘
𝑃𝑘︸   ︷︷   ︸

production

− 𝐶𝜖2

𝜖2

𝑘︸︷︷︸
dissipation

+𝐶𝜖3𝑔𝑖𝛽𝜃𝑢′𝑖
𝜖
𝑘︸         ︷︷         ︸

sink/source

, (2.37)



2.3. Turbulence modeling 13

where 𝐶𝜖1, 𝐶𝜖2, 𝐶𝜖3 and 𝜎𝜖 are model coefficients and listed in table 2.1.

𝐶𝜇 𝐶𝜖1 𝐶𝜖2 𝐶𝜖3 𝜎𝑘 𝜎𝜖
0.09 1.44 1.92 1.44 1.0 1.3

Table 2.1: Model coefficients for the standard 𝑘-𝜖 model based on Launder and Sharma (1974).

2.3.3. Wall functions
In highly turbulent flow, velocity gradients near a surface may get very high, due to the thin viscous

sublayer in that region caused by the no-slip boundary condition. This would require a very fine mesh

in order to capture the turbulence in that region. In order to reduce the number of control volumes

needed, wall functions are used. Wall functions are used to describe the flow behavior in the near-wall

region, which is also known as the inner wall layer. This layer consists of three regions: a viscous

sublayer, a buffer zone, and a logarithmic layer.

Log-law
The velocity profile in the near-wall region for the log-law is based on several assumptions. The first

states that, in the viscous sublayer, the velocity does not depend on density, which is based on the fact

that viscous forces dominate in this region. The second assumption states that, in the logarithmic region,

inertial forces dominate and the velocity profile does not depend on the viscosity. After a dimensional

analysis, this leads to the following equation:

𝑈+ =

{
𝑦+ , 𝑦+ ≤ 11.63

1

𝜅 ln (𝐸𝑟𝑦+) 𝑦+ > 11.63

, (2.38)

where𝑈+
is the dimensionless velocity, given in equation 2.39, 𝜅 is the von Kármán constant (𝜅 = 0.41),

and 𝐸𝑟 represents the roughness constant, which is an experimentally determined constant.

𝑈+ =
𝑈

𝑈𝜏
(2.39)

In the equation above,𝑈𝜏 stands for the friction velocity, which is expressed as follows:

𝑈𝜏 =

√
𝜏𝑤
𝜌
, (2.40)

where 𝜏𝑤 is the wall shear stress. The dimensionless distance from the wall, 𝑦+, is defined as:

𝑦+ =
𝑦𝑈𝜏

𝜈
. (2.41)

Wall roughness
The roughness of a surface has a significant impact on the flow field. The log-law is derived with the

assumption of smooth walls and must therefore be extended to include rougher surfaces. This is done

by introducing the roughness length, 𝑒, which is expressed as follows (Pope, 2000):

𝑒∗ =
𝑈𝜏𝑒

𝜈
, (2.42)

where 𝑒∗ represents the dimensionless roughness length. With this in mind and assuming a rough wall

(𝑒∗ ≫ 1), the log-law velocity profile is given as

𝑈+ =
1

𝜅
ln

(𝐸𝑟
𝑒∗
𝑦+

)
, (2.43)

where 𝐸𝑟 has a value of 30. For smoother walls, the value of
𝐸𝑟
𝑒∗ can become unphysical. Therefore, to

prevent this behavior, the wall function is limited by the following:

𝑈+ =
1

𝜅
ln

[
min

(
𝐸,

𝐸𝑟

max(𝑒∗ , 0.1)
)
𝑦+

]
, (2.44)

where 𝐸 is the minimum roughness constant (𝐸 = 8.432) for a smooth wall.





3
Numerical methods

In order to model and solve the governing equations seen in the previous chapter, the equations must

be discretized. In this chapter, the numerical methods used in this study will be given. These methods

include the finite volume method, discretization schemes, and algorithms used to solve the system of

equations.

3.1. Finite volume method
The finite volume method (FVM) is a numerical technique used to solve partial differential equations. It

involves the subdividing of the total domain into a set of smaller control volumes and then solving the

governing equations for each control volume. The general conservation equation for a physical quantity

𝜙 is given by

𝜕(𝜌𝜙)
𝜕𝑡︸ ︷︷ ︸

time rate of change

+ ®∇ · (𝜌𝜙®𝑢)︸     ︷︷     ︸
convection

= ®∇ · (Γ®∇𝜙)︸     ︷︷     ︸
diffusion

+ 𝑆𝜙︸︷︷︸
source term

, (3.1)

where
®∇ represents the gradient operator, ®𝑢 the velocity and Γ the transport coefficient of 𝜙. The FVM

can be applied to the conservation equation above by integrating over the volume of a grid cell, 𝑉 . This

results in the following equation:

˚
𝑉

𝜕(𝜌𝜙)
𝜕𝑡

𝑑𝑉 +
˚

𝑉

®∇ · (𝜌𝜙®𝑢)𝑑𝑉 =

˚
𝑉

®∇ · (Γ®∇𝜙)𝑑𝑉,+
˚

𝑉

𝑆𝜙𝑑𝑉, (3.2)

where 𝑉 represents the volume of the grid cell. Gauss’ theorem is employed to express the volume

integral in terms of its fluxes on the boundaries of the control volume. Gauss’ theorem is stated as

follows: ˚
𝑉

®∇ · ®𝑓 𝑑𝑉 =

‹
𝐴𝑉

®𝑓 · 𝑑 ®𝐴, (3.3)

in which 𝐴𝑉 is the area and 𝑑 ®𝐴 the normal vector on this area. By applying Gauss’ theorem on equation

3.2, the following is obtained:

˚
𝑉

𝜕(𝜌𝜙)
𝜕𝑡

𝑑𝑉 +
‹
𝐴𝑉

(𝜌𝜙®𝑢) · 𝑑 ®𝐴 =

‹
𝐴𝑉

(Γ®∇𝜙) · 𝑑 ®𝐴 +
˚

𝑉

𝑆𝜙𝑑𝑉. (3.4)

In the equation above, two volume integrals have been replaced by surface integrals, which means that

the values on the faces of the control volume are needed. The differencing schemes that are used for

this are explained in the next section.

The volume integral of the sink/source term is approximated by taking the average value of this term in

the control volume and multiplying this with the value of the control volume, 𝑉𝑃 . This results in the

following: ˚
𝑉

𝑆𝜙𝑑𝑉 ≈ 𝑆𝜙,𝑃𝑉𝑃 , (3.5)

15
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where 𝑆𝜙,𝑃 is the average value of the source/sink term in the control volume.

The surface integrals are approximated by taking the sum of the normal fluxes on the respective part of

the total area and multiplying this with the area itself. This is mathematically described as follows:

‹
𝐴𝑉

®𝑓 · 𝑑 ®𝐴 ≈ 𝑓𝑛𝐴𝑛 − 𝑓𝑠𝐴𝑠 + 𝑓𝑒𝐴𝑒 − 𝑓𝑤𝐴𝑤 + 𝑓𝑡𝐴𝑡 − 𝑓𝑏𝐴𝑏 , (3.6)

where all subscripts resemble the cell faces in respective order: north, south, east, west, top, and bottom.

This is schematically depicted in figure 3.1.

(a) (b)

Figure 3.1: 2D (a) and 3D (b) schematic representation of the control volumes. The grey shaded area represents the control

volume at interest, 𝑉𝑃 . Note that cell face values are denoted with lowercase letters and cell center values with capital letters.

3.2. Discretization schemes
3.2.1. Upwind differencing scheme
The upwind differencing scheme (UDS) is a simple, unconditionally bounded, and first-order differenc-

ing scheme. It is called "upwind" because it projects upstream values onto the cell faces. This scheme is

particularly useful for simulating flows where convection is dominant and where there is a dominant

flow direction.

The UDS can be summarized as follows:

Φ𝑒 =

{
Φ𝑃 , if 𝑈 ≥ 0

Φ𝐸 , if 𝑈 < 0

, (3.7)

where Φ is the conserved quantity and the subscripts denote cell center and cell face values according to

figure 3.1. The scheme is also schematically depicted in figure 3.2.
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Figure 3.2: Schematic interpretation of the upwind differencing scheme (Hanjalić et al., 2007).

3.2.2. Central differencing scheme
The central differencing scheme (CDS) uses linear interpolations between the adjacent cells to estimate

the cell face values. This scheme is mathematically formulated as follows:

Φ𝑒 = 𝜆Φ𝐸 + (1 − 𝜆)Φ𝑃 , (3.8)

where 𝜆 designates the interpolation factor which takes into account the non-uniformity of the grid cells.

A schematic depiction of the other variables of CDS is given in figure 3.3. The CDS is easily applied

and has a fast convergence rate. Its main drawback, however, is that it shows non-physical behavior for

Péclet numbers greater than 2.

Figure 3.3: Schematic interpretation of the central differencing scheme (Hanjalić et al., 2007).

3.2.3. Gauss-Legendre quadrature
Gauss-Legendre quadrature is a method to approximate the integral of a function. This method is

effective and accurate for straight-edged contours (Rao and Sastri, 1996). Gauss-Legendre quadrature

approximates the integral of a function 𝑓 (𝑥) over the interval [-1, 1] as follows:

ˆ
1

−1

𝑓 (𝑥)𝑑𝑥 ≈
𝑛∑
𝑖=1

𝑤𝑖 𝑓 (𝑥𝑖). (3.9)

In the equation above, 𝑛 represents the quadrature order, 𝑤𝑖 resembles the quadrature weights and 𝑥𝑖
represents the roots of the 𝑛th

Legendre polynomial. The weights are defined by the following formula

(Abramowitz and Stegun, 1964):

𝑤𝑖 =
2

(1 − 𝑥2

𝑖
)(𝑃′

𝑛(𝑥𝑖))2
, (3.10)

where 𝑃𝑛(𝑥) represents the 𝑛th
order normalized Legendre polynomial. A change of interval must be

made to ensure that the Gauss-Legendre quadrature can be applied to all surfaces with contours in the

interval [a, b]: ˆ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 =
𝑏 − 𝑎

2

ˆ
1

−1

𝑓 (𝑏 − 𝑎
2

𝜉 + 𝑎 + 𝑏
2

)𝑑𝜉, (3.11)
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where 𝜉 resembles the transformed coordinate along the contour with the interval [-1, 1]. With this in

mind, the Gauss-Legendre quadrature for a line with interval [a, b] can be stated as follows:

ˆ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 ≈ 𝑏 − 𝑎
2

𝑛∑
𝑖=1

𝑤𝑖 𝑓 (
𝑏 − 𝑎

2

𝑥𝑖 +
𝑎 + 𝑏

2

). (3.12)

3.2.4. Trapezoidal rule
The trapezoidal rule is, just like the Gauss-Legendre quadrature, a method to approximate the integral

of a function. This method can be applied to the integral of a function 𝑓 (𝑥) over the interval [a, b] and is

stated as follows: ˆ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 ≈ (𝑏 − 𝑎) · 1

2

[
𝑓 (𝑎) + 𝑓 (𝑏)

]
. (3.13)

The accuracy of the trapezoidal rule method increases when the interval [a, b] is divided into smaller

sub-intervals. If the interval would be divided into𝑁 sub-intervals with each a lengthΔ𝑥, the trapezoidal

rule looks as follows: ˆ 𝑏

𝑎

𝑓 (𝑥)𝑑𝑥 ≈
𝑁∑
𝑘=1

𝑓 (𝑥𝑘−1) + 𝑓 (𝑥𝑘)
2

Δ𝑥𝑘 . (3.14)

In this equation, 𝑥𝑘−1 and 𝑘𝑘 represent the lower- and upper limit of the sub-interval with lengthΔ𝑥𝑘 . This

method is relatively simple and straightforward as compared to the Gauss-Legendre quadrature method.

However, the computational expenses of this method are generally higher than the Gauss-Legendre

method (Rao and Sastri, 1996).

3.3. System of equations
3.3.1. Solving linear equations
A set of linear equations is obtained for the CFD simulations after discretizing the equations. This set of

equations can be summarized in matrix notation:

𝐴 ®𝜙 = ®𝑞, (3.15)

where 𝐴 represents the discretized coefficient matrix,
®𝜙 is a vector containing variable values and ®𝑞 is a

vector that contains the discretized values of the sink/source terms. The unknowns,
®𝜙, are obtained

by employing the Strongly Implicit Procedure (SIP), also known as Stone’s method (Stone, 1968). This

method uses an incomplete LU decomposition to acquire an iterative solution.

3.3.2. SIMPLE algorithm
In order to solve the transport equations, the pressure field must be known. However, the pressure

distribution does not have its own equation. Therefore, it must be derived from the continuity equation

and the Navier-Stokes equations. In this study, the Semi-Implicit Method for Pressure-Linked Equations

(SIMPLE) is used to obtain information about the pressure distribution (Patankar, 1980).

The SIMPLE algorithm can be summarized as follows:

1. An initial guess is made for the pressure- and velocity fields.

2. The Navier-Stokes equations are solved for the intermediate velocity field using the guessed

pressure- and velocity fields of the previous step.

3. The corrected pressure field will be solved with the velocity field from the previous step.

4. The new velocity field will be solved with the corrected pressure field.

5. Steps 2-4 are repeated until the solution has converged.

3.3.3. Newton-Rhapson method
The Newton-Rhapson method, also known as Newton’s method, is an algorithm used to find the roots

of a (set of) function(s). This method is particularly useful in determining the roots of a set of non-linear
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functions, which is the case in the steady-state surface energy balance. The Newton-Rhapson method is

well described by Grosan and Abraham (2008) and can be explained as follows.

A system of nonlinear equations, 𝑓 , is defined as:

𝑓 (𝑥) =

𝑓1(𝑥)
...

𝑓𝑛(𝑥)

 ,
where 𝑥 = (𝑥1 , 𝑥2 , ..., 𝑥𝑛) and 𝑛 refers to the number of equations and variables. The system of equations

can be linearly approximated in a point 𝑥𝑘 , where 𝑘 stands for the number of iterations. The Jacobian

matrix 𝐽(𝑥𝑘) for 𝑓 (𝑥) can be expressed as:

𝐽 =


𝜕 𝑓1
𝜕𝑥1

. . .
𝜕 𝑓1
𝜕𝑥𝑛

...
. . .

...
𝜕 𝑓𝑛
𝜕𝑥1

. . .
𝜕 𝑓𝑛
𝜕𝑥𝑛


.

With the Jacobian known, 𝑓 can be linearly approximated:

𝑓 (𝑥0) = 𝑓 (𝑥𝑘 + 𝑡) ≈ 𝑓 (𝑥𝑘) + 𝐽(𝑥𝑘)𝑡 , (3.16)

where 𝑡 = 𝑥0 − 𝑥𝑘 is the deviation between the 𝑘-th approximation of the roots, 𝑥𝑘 , and the ‘true‘ roots

of 𝑓 , 𝑥0. A geometric interpretation of a linear approximation is shown in figure 3.4.

Figure 3.4: Geometric interpretation of a linear approximation of a function.

By setting the right hand side of equation 3.16 to zero, the following can be obtained:

𝐽(𝑥𝑘)𝑡 = − 𝑓 (𝑥𝑘). (3.17)

With this in mind, the Newton-Rhapson algorithm is described below.

1. Guess an approximate solution 𝑥0
.

2. Compute 𝐽(𝑥𝑘) and 𝑓 (𝑥𝑘).
3. Solve linear system 𝐽(𝑥𝑘)𝑡 = − 𝑓 (𝑥𝑘) for 𝑡.

4. Set 𝑥𝑘+1 = 𝑥𝑘 + 𝑡.
5. Set 𝑘 = 𝑘 + 1

6. Repeat steps 2-5 until the solution converges.

3.4. Scaling
In urban simulations, the numerical mesh typically contains large geometries, which can result in high

computational costs and inefficient solution methods. To address this issue, scaling can be utilized to
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reduce the size of the domain while preserving its original flow characteristics. However, scaling down

large geometries to smaller domains can pose challenges, particularly when dealing with governing

equations that do not scale linearly with size. In such cases, adjustments to the equations are necessary

to accurately represent the larger original equations.

In the present study, the equations are scaled to 𝒪(1) equations. This is done by scaling down the

domain height to 1 𝑚. This can be mathematically expressed as:

𝑥sc =
𝑥

𝐻𝑠
, (3.18)

where𝐻𝑠 represents the height of the domain and 𝑥sc the scaled domain. The scaling factor can therefore

be expressed as:

𝑓𝑠𝑐 =
1

𝐻𝑠
. (3.19)

In this study, the velocity variables are left as is; no scaling is applied to the velocity variables.

Consequently, for proper scaling, other variables need to be scaled in order for the Reynolds number

and the Grashof number to remain the same. The Reynolds number resembles the ratio between inertial

forces and viscous forces and is expressed as

𝑅𝑒 =
𝑈𝐿

𝜈
=
𝑈𝐿sc

𝜈sc

, (3.20)

where the viscosity is scaled as

𝜈sc = 𝑓𝑠𝑐 · 𝜈, (3.21)

and the length scale is scaled as

𝐿sc = 𝑓𝑠𝑐 · 𝐿. (3.22)

The Grashof number resembles the ratio between the buoyancy forces and viscous forces and is expressed

as

𝐺𝑟 =
𝐿3𝑔𝛽Δ𝑇

𝜈2

=
𝐿3

sc
𝑔𝛽scΔ𝑇

𝜈2

sc

, (3.23)

where the thermal expansion coefficient, 𝛽, is scaled as

𝛽sc = 𝑓𝑠𝑐 · 𝛽. (3.24)

Besides that, scaling must also be employed for the turbulent characteristics. This means that the ratio

between the length scales of the smallest eddies, 𝜂𝑒 , and the largest eddies, 𝑙𝑒 , must remain the same:

𝜂𝑒
𝑙𝑒

=

(𝜂𝑒
𝑙𝑒

)
sc

. (3.25)

The length scale of the smallest eddies is described by the Kolmogorov length scale:

𝜂𝑒 =
( 𝜈
𝜖

)
1/4

. (3.26)

The length scale of the largest eddies, also known as the integral length scale, can be expressed in terms

of the turbulent dissipation rate and the turbulent kinetic energy:

𝑙𝑒 =
𝑘3/2

𝜖
. (3.27)

This means that the ratio between the two turbulent length scales can be expressed as:

𝜂𝑒
𝑙𝑒

=
( 𝜈𝜖 )1/4

𝑘3/2

𝜖

=
𝑘3/2

(𝜈𝜖)3/4

=
𝑘3/2

(𝜈sc𝜖sc)3/4

, (3.28)

where the scaling of 𝜖 can be put as

𝜖sc =
𝜖
𝑓𝑠𝑐
. (3.29)
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3.5. Error rates
In this study, two different error rates are used to investigate the quantitative quality of the results.

These include the correlation coefficient, 𝜌𝑐 , and the Normalized Mean Absolute Error, NMAE. The

mathematical description of those error rates is discussed below.

The correlation coefficient is given as:

𝜌𝑐 =

∑(𝑥𝑖 − 𝑥̄)(𝑦𝑖 − 𝑦̄)√∑(𝑥𝑖 − 𝑥̄)2
√∑(𝑦𝑖 − 𝑦̄)2

, (3.30)

whereas the NMAE is given as

NMAE =
1

𝑁

∑
| (𝑦𝑖 − 𝑥𝑖)

𝑦𝑖
|. (3.31)

In these equations, 𝑥𝑖 and 𝑦𝑖 refer to the literature values and the modeled values, respectively. The

bars over these quantities indicate a sample mean over all 𝑁 numbers of that quantity. At last, the

summations indicate a sum of iterator 𝑖 over all 𝑁 quantities.





4
Numerical implementation

In this chapter, a brief overview of the numerical implementation shall be given. This includes an

overview of the SEB code used and built in this study and an overview of the coupling approach

between the SEB model and CFD.

4.1. Overview of the SEB code
In this study, simulations are done in order to give a virtual description of reality. An overview of the

code used in the simulations of the SEB model is given in figure 4.1. The code is written in Python

(2023) and all rectangular boxes represent functions within the code. The simulation process can be

divided into three stages: pre-processing, main-processing, and post-processing. The first two stages are

described in figure 4.1. The pre-processing stage consists of the formation of the grid and the calculation

of the view factor. The grid consists of the central points of all facets and their four vertex coordinates.

The inputs for the grid generation are the width,𝑊 , length, 𝐿, and height, 𝐻, of the buildings, and the

number of facets in all three directions, 𝑁𝑥 , 𝑁𝑦 and 𝑁𝑧 . Subsequently, with the grid generation, the

view factor matrix is calculated and stored. This completes the pre-processing stage.

The main-processing stage consists of three principal components. First, the shading factor (also

known as the sun-lit factor) is calculated. This requires the solar azimuthal angle and solar zenith

angle, which are given as model input and can be found online (NOAA, 2023). Next, the ingoing-

and outgoing shortwave radiation on each facet is calculated, which includes multiple reflections.

The solar irradiance, 𝐼, the diffusive sky radiation, 𝐷
sky

, the albedo, and the absorptivity are given

as inputs to the shortwave radiation computations and are based on ASHRAE (2001). This study

assumes clear-sky conditions and uses radiative properties that conform to materials such as concrete.

Finally, the surface temperatures are computed. This is done by taking the view factor, the shortwave

radiative fluxes, the conduction parameters and convection parameters. Again, the conduction pa-

rameters are based on values conforming to that of concrete. The convection parameters, however,

are based on CFD. The coupling process between CFD and the SEB model is described in the next section.

After the main-processing stage, the post-processing stage follows. This stage consists of analyzing

the data through plotting, error rates, or other types of tools. Besides that, in this stage the surface

temperatures are exported to CFD as surface boundary conditions. CFD data analysis is done in Tecplot

(2022), where, among others, different (3D or 2D) contour plots can be made.

23
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Figure 4.1: An overview of the SEB code. The blue area and boxes indicate the pre-processing stage and functions, respectively.

The red area and boxes indicate the main-processing stage and functions, respectively. The green highlighted boxes designate

input values and parameters.

4.2. Coupling between SEB model and CFD
In order to compute the surface temperatures, convection parameters are needed. Therefore, this

requires coupling between the SEB model and CFD. In this study, the in-house CFD code is used, which

is mainly written in Fortran (2021). A detailed overview of this code can be seen in the master thesis

of de Bruin (2022). Coupling is done in two ways (see figure 4.2). The first approach couples the two

by extracting the turbulent viscosity of the CFD simulation and giving it as input to the SEB model.

This method uses the nearest neighbor estimate to relate the CFD cells to the SEB facets. The second

approach couples the two by computing surface temperatures with the SEB model and giving it as

input to the CFD model. It must be noted that both approaches are one-way coupling approaches. This

means that one model influences the other, but not the other way around. The model could be extended

to two-way coupling by combining the two one-way coupling approaches.

SEB model Surface
temperatures CFD model

SEB model CFD model

2

1 Turbulent
viscosity

Figure 4.2: An overview of the two different one-way coupling approaches used in this study.



5
Results and Discussions

5.1. Case 1: Validation of the shortwave radiation model
The shortwave radiation model is validated with the experimental albedo data from Aida (1982).

In Aida’s famous experimental study, the effect of surface irregularity of an urban structure on the

anomalous absorption and reflection of incident solar radiation is examined. Specifically, the diurnal

variation of the effective albedo of three urban structures is studied. The effective albedo of an urban

structure is defined as the ratio between the incident radiation on the urban structure and the radiation

reflected by the urban structure. This, therefore, tells something about the reflectivity of an urban

structure. In the present model, the diurnal variation of the effective albedo is compared with Aida’s

measurements. Aida’s measurements were performed on the top of a building on the campus of

Yokohama National University in Japan. The global solar radiation and the reflected radiation from the

urban structures were observed by Aida with an accuracy of 95 %.

Besides comparison with Aida’s data, the current model is also compared to simulated data of Schrĳvers

(2020). Schrĳvers’ radiation model is based on the Monte Carlo method, which is significantly more

computationally expensive than the current model.

5.1.1. Simulation set-ups
The diurnal variation of the effective albedo is determined for two days: December 3

rd
, 1977, and June

15
th

, 1978. These dates correspond to the measurement dates of Aida. The sun’s azimuthal angle, 𝜙𝑠 ,
and the sun’s zenith angle, 𝜃𝑠 , of those specific days are extracted from the site of National Oceanic and

Atmospheric Administration (NOAA, 2023). These angles can be found in appendix C.

Figure 5.1: An overview of the geometric models used in the shortwave radiation model validation (Aida, 1982).

25
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The geometric models used by Aida and also in this study are schematically displayed in figure 5.1.

Geometric model 0 represents a flat surface, models 1 and 2 represent street canyons with different

orientations, and model 3 represents a patched block canyon. In the present study and Aida’s study,

the width of the canyon, 𝑊2, and the width of the building, 𝑊1, are equal, i.e., 𝑊1 = 𝑊2 = 𝑊 . In his

experiments, Aida used geometric model 0 as a reference case to study the diurnal variation of the

albedo factor of a flat surface. In this study, these diurnal varying values are used to determine the

effective albedo of geometric models 1, 2, and 3. Specifically, these values are used as albedo factor of

the roofs of the buildings in geometric models 1, 2, and 3, as is done in literature (Fortuniak (2008);

Arnfield (1988)). In table 5.1, relevant simulation parameters are given that are used for the December

and June simulations. The albedo factor of 0.40 corresponds to that of concrete and the values for the

solar irradiance and diffusion factor are taken from ASHRAE (2001). The diffusive sky radiation is then

defined as 𝐷
sky

= 𝐶 · 𝐼, where 𝐶 is the diffusion factor. The SEB model assumes clear-sky conditions,

which was also the case for Aida’s experiments.

Parameter December June

Albedo factor, 𝛼 (-) 0.40 0.40

Diffusion factor, 𝐶 (-) 0.057 0.177

Solar irradiance, 𝐼 (𝑊𝑚−2) 1417 1336

Table 5.1: Parameter values for the simulations done for the two days that are considered: 3
rd

of December 1977 and 15
th

of June

1978.

Parameter Model 1 Model 2 Model 3

Height over width ratio, 𝐻/𝑊 1 1 1

Length over width ratio, 𝐿/𝑊 100 100 1

Facet grid size, (𝑁𝑖 × 𝑁𝑗) 5×5 5×5 3×3

Gauss-Legendre order 150 150 50

Table 5.2: Parameter values for the simulations done for the two days that are considered: 3
rd

of December 1977 and 15
th

of June

1978. Here, the models 1, 2, and 3 refer to the used geometric models.

The pre-processing parameters for the different geometric models are given in table 5.2. It must be

noted that the length-over-width ratio is high for geometric models 1 and 2. This is done to mimic an

infinite canyon and, subsequently, to reduce edge effects, such as an increased sky-view factor near the

edges of the canyon. The values for the facet grid size and Gauss-Legendre order were determined after

a parametric study. More on this in the discussion in the next section.

In the model 3 case, extra walls are placed around the domain to mimic the infinite 3D canyon which is

used by Aida. This type of geometry is shown in figure 5.2 and is based on Grylls et al. (2021). The walls

are placed at the same distance, 𝑊 , from the buildings and have a height, 𝐻, equal to the buildings’

heights.
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Figure 5.2: An overview of the geometry of model 3 used in this study. The walls around the domain have the same height as the

buildings.

5.1.2. Results
In this section, the simulation results obtained with the aforementioned parameter values are compared

to experimental values for geometric models 1, 2, and 3. Besides that, different parametric studies have

been done. These include a study of the convergence of the shortwave radiation after many reflections,

a study of the effect of the number of slices in the vertical direction on the albedo factor, a view factor

convergence and validation study, and a validation study of the sun-lit factor. First, the simulation

results for the effective albedo will be discussed.

Effective albedo
In this subsection, the simulation results for the effective albedo are compared to measurement values

of geometric models 1, 2, and 3, which are schematically displayed in figure 5.1. Besides experimental

data of Aida (1982), the simulation results of Schrĳvers (2020) are also included in the validation of

model 3. These results are obtained from a Monte-Carlo-based radiation model. The results for all

three geometric models are presented in figure 5.3. In all figures, the experimental results for geometric

model 0 and a fit through these results are given. This is done to showcase the diurnal variability of the

albedo factor of a flat surface. The quantitative results are given in table 5.3.

Qualitatively speaking, the simulation results for model 1 and model 2 are in good agreement with the

experimental data. This can be backed up with quantitative measures, such as the correlation coefficient,

𝜌𝑐 , and the Normalized Mean Absolute Error (NMAE), which are given in table 5.3. The early morning

and late afternoon results for both model 1 and model 2 in December, however, slightly deviate from

the experimental results.

The results for model 3 are in lesser agreement with the experimental values, as compared to models

1 and 2. The model 3 results show a decent qualitative similarity with experimental values, but the

quantitative results, however, do not show good agreement with experimental results. The results do not

show a good correlation with the experimental data and the average error falls outside the measurement

uncertainty. The results of the present study do seem to slightly outperform the Monte-Carlo-based

results of Schrĳvers. Especially considering that the computational time of Monte-Carlo-based simula-

tions is significantly longer than non-Monte-Carlo-based computations.
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(a) Model 1 (December 3
rd

, 1977). (b) Model 1 (June 15
th

, 1978).

(c) Model 2 (December 3
rd

, 1977). (d) Model 2 (June 15
th

, 1978).

(e) Model 3 (December 3
rd

, 1977). (f) Model 3 (June 15
th

, 1978).

Figure 5.3: Comparison of the simulated results with the experimental results of the effective albedo of geometric models 1-3. The

horizontal axis designates the time in hours relative to noon and the vertical axis designates the effective albedo factor. All error

bars resemble an error of 5 %. Note: Both Aida’s and Schrĳvers’ data are digitized.

Error rate Model 1 (Dec/Jun) Model 2 (Dec/Jun) Model 3 (Dec/Jun)

Correlation coefficient, 𝜌𝑐 (-) 0.98/0.88 0.98/0.92 0.62/-0.57

Normalized Mean Absolute Error (%) 4.47/5.44 4.76/2.50 5.2/6.9

Table 5.3: Quantitative comparison of simulated results and experimental results for geometric models 1-3.

One of the possible reasons for this deviation is the angular- and spectral dependence of the albedo factor.

For simplicity, in this study, the albedo factor inside the canyon is kept constant at 0.40. However, since

the albedo factor is dependent on the angle of the sun, as is seen from the model 0 experimental data,

this could lead to some deviations from the experimental values of the effective albedo. Besides that, the
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spectral dependency of the albedo factor is also not taken into account in this study. Since the spectral in-

tensities of the incident radiation may vary during the day, due to a different atmospheric decomposition.

Another possible reason behind the deviation of the simulated effective albedo is the uncertainty

in the experimental design of Aida. In Aida’s experiments, the incident- and reflected radiation is

measured by one upward-looking pyranometer and one downward-looking pyranometer. The position

of the downward-looking pyranometer was kept 0.3 𝑚 above the top of the blocks at the center in all

three models. Although Aida stated that about 95 % of the radiation is captured by the pyranometers, it

is not clearly stated from which specific area of the model setup this radiation is coming. This could

have led to a mismatch in the simulated effective albedo.

Besides the uncertainty in Aida’s results, the assumption that reflections are diffusive and that the

radiosity (radiant flux leaving a surface) is uniform across the facets could also have led to the deviation

from Aida’s results. In this study, reflections are assumed to be diffusive and no specular reflections are

taken into account. It could be that for certain sun positions the total amount of reflected radiation is

therefore higher or lower than the experimental value.

In the upcoming sections, the impact of other factors that play a role in determining the effective albedo

will be studied. First, the view factor convergence and validation will be discussed.

View factor convergence rate and validation
The view factor algorithm is tested for three geometries (cases) for which the analytical value for the

view factor is known. The analytical formulae and the geometries for the three cases are given in

appendix A. First, the Gauss-Legendre quadrature method is tested against the trapezoidal rule for its

accuracy and speed. The results for the view factor calculation of case 1 are shown in figure 5.4. The

results show the superiority of the Gauss-Legendre method over the trapezoidal method in speed and

accuracy. Although the trapezoidal method converges to the analytical value when the order increases,

the Gauss-Legendre method converges even faster with lower computational costs. The calculated

values for the other two cases show similar behavior and are given in table A.1.

(a) (b)

Figure 5.4: Two comparisons between the Gauss-Legendre method and the Trapezoidal method for calculating the view factor of

case 1 (see appendix A). In subfigure (a) the computation time is compared with the relative error for different orders of the two

methods. In subfigure (b) the value for the calculated view factor is set against the number of line segments used the analytical

value.

In figure 5.5, a view factor convergence study is presented. The maximum relative change in the view

factor is shown for increasing Gauss-Legendre order and for three different canyon 𝐿/𝑊 ratios. It can

be seen that for a low 𝐿/𝑊 , the view factor converges rather fast. However, for 𝐿/𝑊 = 100 the view

factor needs a high Gauss-Legendre order to converge. Therefore, in the model 1 experiment of Aida,

an order of 150 is chosen to make sure the view factor has converged.
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Figure 5.5: The maximum percentage change of the view factor is plotted against the Gauss-Legendre order for three different

𝐿/𝑊 ratios: 1, 10, and 100. The view factor of the north-south oriented street canyon (geometric model 1).

Effect of grid refinement
The effect of grid refinement on the effective albedo factor will be discussed in this subsection. This is

studied for model 1, the N-S oriented canyon, and for three different solar zenith angles: 10
◦
, 45

◦
, and

80
◦
. The solar azimuthal angle is kept constant at 90

◦
, such that the solar position is perpendicular

to the canyon. The results are presented in figure 5.6. In figure 5.6a, the effective albedo factor of the

canyon (roofs excluded) is given against the number of slices in the vertical direction. The number of

slices basically resembles the amount of grid cells in the vertical direction. In figure 5.6b, the percentage

change in the albedo factor is presented against the number of slices.

(a) (b)

Figure 5.6: Figure (a) shows the effective albedo of a north-south oriented street canyon versus the number of slices in the vertical

direction for three different solar zenith angles. Figure (b) shows the relative change in the albedo versus the number of slices for

three different zenith angles.

As can be seen from the figures above, the albedo factor converges asymptotically with an increase in

the number of slices. This shows that after approximately 5 grid cells in the vertical direction the albedo

factor has converged and further grid refinement has little effect on the outcome of the effective albedo.

This is in line with what is found by Fortuniak (2008).



5.1. Case 1: Validation of the shortwave radiation model 31

Sun-lit factor validation
The sun-lit factor validation is done by evaluating the sun-lit factor at four different times during the

day, each with a corresponding solar azimuthal- and zenith angle. The results are shown in figure 5.7.

In these plots, the sun-lit factor can be interpreted as a shadow with different intensities. The black color

resembles a full shading and white represents a fully sun-lit facet, i.e., no shading. The solar positions

correspond to the 21
st

of June in Amsterdam.

The results show realistic shadow patterns for the different times during the day. The shadows

rotate around the 𝑧-axis, which corresponds to the rotation of the sun during the day. Besides that,

the shadow length gets shorter around noon (figure 5.7c), which corresponds to a lower solar zenith

angle during the middle of the day. Overall, it can be said that the sun-lit factor correctly calculates the

shadows formed by objects, such as buildings.

(a) 𝜙𝑠 = 56
◦
, 𝜃𝑠 = 86

◦ (b) 𝜙𝑠 = 103
◦
, 𝜃𝑠 = 51

◦

(c) 𝜙𝑠 = 215
◦
, 𝜃𝑠 = 33

◦ (d) 𝜙𝑠 = 277
◦
, 𝜃𝑠 = 65

◦

Figure 5.7: Four images showing the sun-lit factor of each facet at different times during the day. The solar positions correspond

to the 21
st

of June in Amsterdam. The camera angle is set at an elevation angle of 22
◦

and an azimuthal angle of 169
◦

measured

clockwise from the positive y-axis. In these images, the positive y-axis represents the true north.
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Shortwave radiation convergence rate
In this subsection, the convergence rate of the shortwave radiation after multiple reflections is presented.

The incoming shortwave radiation on different facets after each reflection is presented in figure 5.8a.

All four different colors indicate a different type of facet (east-facing, west-facing, etc.). In figure 5.8b,

the fraction difference between each subsequent reflection is presented with the reflection criterion, 𝜖𝑐 ,
given as a dashed horizontal line. The parameters and their values used in this specific study are listed

in table 5.4.

(a) (b)

Figure 5.8: Figure (a) represents the incoming shortwave radiation after each reflection striking differently oriented facets. Figure

(b) shows the relative error in the shortwave radiation after each reflection. The dashed line resembles the convergence criterion,

𝜖𝑐 .

Parameter Value

Albedo factor, 𝛼 (-) 0.70

Diffusion factor, 𝐶 (-) 0.1

Solar irradiance, 𝐼 (𝑊𝑚−2) 500

Reflection convergence criterion, 𝜖𝑐 (%) 1

Sun azimuthal angle, 𝜙𝑠 (
◦
) 90

Sun zenith angle, 𝜃𝑠 (
◦
) 36

Table 5.4: Parameter values for the simulations done for evaluating the convergence rate for the shortwave radiation after

multiple reflections.

As can be seen from figure 5.8, the shortwave radiation striking each facet nicely converges after 5

reflections. This is in line with the number of reflections needed for convergence by Grylls et al. (2021),

which is in the range of 5-10.
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5.2. Case 2: Infinite street canyon
The infinite street canyon case is used to validate different parts of the SEB model. These parts

include the longwave radiation model, the conduction model, and the sensible heat flux model. The

results are compared with case study results of Schrĳvers (2020). In this case, the effect of different

height-over-width ratios (𝐻/𝑊) of the street canyon on different surface energy fluxes and the surface

temperature is investigated.

5.2.1. Simulation set-ups
Three different cases are considered for the evaluation of the different parts of the SEB model. These

include the case of radiative equilibrium (case 01), the case where the conductive heat flux is added (case

02), and the case where the sensible heat flux is also added (case 03). An overview of these cases is given

in table 5.5. For all three cases, different 𝐻/𝑊 ratios of an infinite street canyon are considered. The

geometry used in the SEB model is schematically shown in figure 5.9. In this figure, the red highlighted

area shows the slice that is taken from the 3D simulation to convert it to a 2D approximation. This

approximation can be done since the solar azimuthal angle is 270
◦
, which falls exactly in the 𝑥-𝑧 plane.

On the right-hand side of figure 5.9, the 2D case is schematically shown where each part of the canyon

has a specific number, which is later used in plotting.

Figure 5.9: A schematic representation of the geometry used in this case study. A slice (marked in red) is taken from the 3D

model to convert the results to 2D. The different parts of the slices are numbered according to the inset shown on the right. This

numbering is also used in the plots later in this section. In this case study, the positive y-axis represents the true north.

Case 𝐾 𝐿 𝐺 𝐻

01 + +

02 + + +

03 + + + +

Table 5.5: The three cases which are considered in this study. Case 01 represents the case in radiative equilibrium, case 02 is the

case where the conductive heat flux is added, and case 03 is the case where the sensible heat flux is also added to the equation.

In order to model the sensible heat flux, the SEB model is coupled with the in-house CFD code. The

CFD simulation set-up is shown in figure 5.10. The set-up consists of an array of 14 street canyons which

are placed a distance 𝑊 apart. Air with a constant and homogeneous velocity, 𝑈𝑖𝑛 , is given as input

to the domain. By using an array of obstacles, the most downwind street canyons experience a fully

developed flow pattern, which is similar to the case of Schrĳvers (2020). One-way coupling between the

SEB model and CFD model is done by extracting the turbulent viscosity profile from the street canyon

between block 12 and block 13. Subsequently, the turbulent viscosity profile is put into the sensible heat

flux part of the SEB.
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Figure 5.10: A schematic representation of the simulation set-up for the CFD simulations. For imaging purposes, the two dotted

lines indicate the part where obstacles 3-12 are left out.

In table 5.6, all geometric values are given for the three different 𝐻/𝑊 ratios. In this table, 𝑁𝑥 , 𝑁𝑦 , and

𝑁𝑧 indicate the number of facets along the different directions.

Parameter 𝐻/𝑊 = 0.5 𝐻/𝑊 = 1 𝐻/𝑊 = 2

Canyon width,𝑊 (𝑚) 50 25 25

Canyon length, 𝐿 (𝑚) 150 150 150

Canyon height, 𝐻 (𝑚) 25 25 50

Facet grid size (𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧) (10 × 1 × 10) (10 × 1 × 10) (10 × 1 × 10)

Table 5.6: Geometric values for the three different H/W ratios. The main distinguishing factor for the models is their

height-over-width ratio.

In table 5.7, all relevant parameter values used in this study are given, which match the parameter

values used in Schrĳvers’ study. The radiation intensities and solar angles correspond to solar noon in

Amsterdam, the Netherlands, on June 21
st

. An overview of the solar angles can be found in appendix C.

The conductive and radiative material properties correspond to typical values for brick and concrete

and are taken constant over all surface areas. The layer thickness, however, is different for street surfaces

and building surfaces. At this thickness, 𝑑, the temperature is kept at a constant temperature 𝑇∞. For

buildings, this can be interpreted as an extremely efficient air-conditioning unit able to maintain a

constant temperature at a specified distance. This results in energy generation or dissipation at distance

𝑑 inside the material.
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Radiation

Diffusive sky radiation, 𝐷
sky

84.2𝑊𝑚−2

Longwave absorptivity, 𝜁 0.95

Longwave emissivity, 𝜀 0.95

Longwave sky radiation, 𝐿
sky

325𝑊𝑚−2

Shortwave albedo factor, 𝛼 0.40

Solar azimuthal angle, 𝜙𝑠 270
◦

Solar irradiance, 𝐼 950𝑊𝑚−2

Solar zenith angle, 𝜃𝑠 28.9
◦

Heat conduction

Interior temperature, 𝑇∞ 293 𝐾

Thermal conductivity, 𝜆 0.72𝑊𝑚−1𝐾−1

Thickness building, 𝑑 0.25 𝑚
Thickness street, 𝑑 1 𝑚

Computational Fluid Dynamics

Air temperature, 𝑇𝑎 20
◦𝐶

Cell expansion factor 1.1

Inlet velocity,𝑈𝑖𝑛 4 𝑚𝑠−1

Minimal cell size (𝑥 × 𝑦 × 𝑧) = (1𝑚 × 1𝑚 × 1𝑚)

Maximum cell size (𝑥 × 𝑦 × 𝑧) = (25𝑚 × 25𝑚 × 25𝑚)

Table 5.7: All parameter values used in this case study if not stated otherwise. These values are based on Schrĳvers (2020).

5.2.2. Results
In this section, the simulation results of the current study will be compared to the simulations of

Schrĳvers (2020). These results include the surface energy fluxes, the surface temperatures, the effect of

grid refinement, and the diurnal variation of the surface energy fluxes and surface temperatures. First,

the results for the surface energy fluxes will be discussed.

Surface energy fluxes
The surface energy fluxes of case 01 will be discussed in this subsection for three different H/W ratios.

This case resembles a situation where only shortwave radiation and longwave radiation fluxes are

present in the surface energy balance. Four different energy fluxes are considered: the net shortwave

radiation, 𝐾, the diffusive longwave radiation, 𝐿
sky

, the environmental longwave radiation, 𝐿env, and

the outgoing longwave radiation, 𝐿↑. The results for the four different fluxes are given in figure 5.11.

The horizontal axes show five different regions which correspond to the inset shown in figure 5.11c and

on the right-hand side in figure 5.9. All the scaled distances represent normalized distances. The three

different colors represent the three different 𝐻/𝑊 ratios and the dashed line corresponds to Schrĳvers’

data. The correlation coefficient and NMAE are also computed for all energy fluxes. These values can

be found in appendix B.

Qualitatively speaking, the simulated surface fluxes are in good agreement with the results of Schrĳvers.

All results have a very similar shape as Schrĳvers’ data and show a high correlation, which is backed

up by the correlation coefficients found in appendix B. The 𝐻/𝑊 = 2 case, however, does show a

discrepancy, which is most evident in figure 5.11d. The possible reasons for this will be discussed

further in this section.

The NMAE values also show, in general, a good agreement with the results of Schrĳvers. For the

𝐻/𝑊 = 1 case, all NMAE values fall below 5.5 %. The 𝐻/𝑊 = 0.5 case shows similar results except for

the net shortwave radiation flux where the NMAE is 12 %. The 𝐻/𝑊 = 2 case underperforms in this

respect, with the NMAE for the net shortwave radiation at 12.3 % and for 𝐿
sky

at 13.7 %.
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(a) 𝐿
sky

. (b) 𝐿env.

(c) 𝐾. (d) 𝐿↑.

Figure 5.11: Comparison of the simulated surface energy fluxes and the results of Schrĳvers (2020) for three different 𝐻/𝑊 ratios

for case 01. In all plots, the vertical axis shows the energy fluxes in𝑊𝑚−2
and the horizontal axis shows the scaled distance,

which is in accordance with the inset in figure (c). Figure (a) shows the incoming longwave radiation from the sky, figure (b)

shows the environmental longwave radiation, figure (c) shows the net shortwave radiation, and figure (d) shows the outgoing

longwave radiation. Note: Schrĳvers’ data is digitized.

Although the digitization of Schrĳvers’ results has been done with much care, this could be a possible

reason for the deviation from Schrĳvers’ results. Besides that, since Schrĳvers did not provide an

average of his Monte Carlo simulations, the results were quite noisy. In the example of net shortwave

radiation on a flat surface, Schrĳvers’ results show a deviation of approximately 3-4 % from the mean.

The combination of digitization and noisiness of Schrĳvers’ results could therefore lead to the (small)

mismatch between the current study and Schrĳvers’.

Another possible reason for the deviation is the 2D approximation. Schrĳvers’ results are from a 2D

model where his results are taken from line elements. The current model, however, is fully 3D, and the

found values are therefore taken from surface area elements. A ramification of this is the mismatch

in boundary conditions. Schrĳvers employs periodic boundary conditions in the north and south

direction of the canyon. This means that radiation emitted or reflected by surfaces can only strike

other surfaces or leave the canyon through the top side of the canyon. In the current 3D model, no

periodic boundary conditions have been employed. This means that radiation can also leave the canyon

through the north and south side of the canyon. Besides that, the canyon has a finite length, which

also influences the temperatures inside the canyon. This is due to the change in geometric proportions

(𝐿/𝐻 or 𝐿/𝑊), which causes a change in the view factor. The mismatch in boundary conditions and

the finite canyon length could therefore be part of the drivers behind the deviation from Schrĳvers’ results.

A third possible reason behind the deviation from Schrĳvers’ results is the accuracy of Schrĳvers’ results

itself. The results of 𝐿↑, for example, show quite a mismatch in the 𝐻/𝑊 = 2 case. Schrĳvers’ results
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show a peak in the middle of the east wall, while the current study’s results show a peak at the beginning

of the east wall. If we take into account a solar zenith angle of 28.9
◦
, the sun-lit part of the east wall

begins at approximately 0.1H for the 𝐻/𝑊 = 2 case. This can be seen by the peak of 𝐾 in the east wall of

the current study’s results. With that in mind, it would seem reasonable that 𝐿↑ would also peak at the

same position. This is the case for the current study, but not for Schrĳvers’ results. Therefore, it could

very well be that Schrĳvers made a mistake in plotting or processing his data.

Surface temperatures
In this subsection, the simulated surface temperatures will be discussed and compared with Schrĳvers’

results for cases 01, 02, and 03. The results are shown in figure 5.12, where each subplot designates a

different 𝐻/𝑊 ratio. The black color indicates case 01, the blue color resembles case 02, and the red

color designates case 03. The dotted line is literature data from Schrĳvers (2020). The NMAE and

correlation coefficient of the surface temperatures are given in appendix B.

(a) 𝐻/𝑊 = 0.5. (b) 𝐻/𝑊 = 1.

(c) 𝐻/𝑊 = 2.

Figure 5.12: Comparison of the simulated temperatures of the current study and Schrĳvers’ simulations for the three cases. The

horizontal axis shows the scaled distance of the five different parts of the 2D canyon, which are schematically given in figure (a).

The black color indicates case 01, the blue color resembles case 02, and the red color designates case 03. Note: Schrĳvers’ data is
digitized.

The results for case 01 show a good qualitative agreement with Schrĳvers’ results. This is in line with

the results of the surface fluxes discussed in the previous subsection. Since 𝐿↑ is a function of 𝑇𝑠 , the

results for 𝑇𝑠 are directly linked to the results of 𝐿↑ in case 01. As was seen in the previous subsection,

the result for the 𝐻/𝑊 = 2 ratio shows the largest deviation from Schrĳvers, both qualitatively and

quantitatively. The possible reasons behind the deviation were discussed in the previous subsection.

The results for case 02 show a lesser agreement with Schrĳvers’ results. The results still acquire a

correlation of more than 0.75 and show a similar shape as Schrĳvers’ data. The values of the surface
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temperature, however, do give a larger deviation, which can be seen qualitatively and is also backed up

quantitatively by the NMAE values.

The most obvious reason for deviation in the results for case 02 is the difference in boundary conditions

for the conductive heat flux, 𝐺. In the current study, the boundary condition is modeled by assigning a

fixed interior temperature 𝑇∞ at a distance 𝑑 inside the material. Schrĳvers, however, employs a zero-flux

boundary condition at a distance 𝑑 inside the material. In his study, Schrĳvers did a comparison between

these two different boundary conditions and their effect on the surface temperature. This was done

in a case where, next to the conductive heat flux, the sensible heat flux was also added. These results

showed differences in surface temperatures between 1-30 𝐾. Since the results for case 01 showed a

good agreement and all conduction parameter values are similar to Schrĳvers’, it is very likely that the

mismatch is due to the difference in boundary conditions.

At first, the results for case 03 show a relatively good qualitative agreement for 𝐻/𝑊 = 0.5 and

𝐻/𝑊 = 2, but show a bad agreement with 𝐻/𝑊 = 1. The quantitative results, however, do show quite a

discrepancy between the current study’s results and Schrĳvers’. The NMAE values are all above 12 %

and the correlation coefficients are all below 0.9.

The mismatch in surface temperatures in case 03 could be due to the difference in the boundary

conditions of the conductive heat flux. As was seen above, the differences between literature surface

temperatures and this study’s surface temperatures for case 02 were quite significant. However, for case

03, the sensible heat flux is dominant. This can be seen from the surface energy fluxes plot (figure 5.17),

which will be discussed later. Therefore, the effect of the error in the conductive heat flux is not likely to

be the main driver behind the mismatch in case 03.

A likely possible driver behind the error in case 03 is the difference in coupling between CFD and

SEB; this study uses a simplified one-way coupling, whilst Schrĳvers uses a two-way coupled ap-

proach. The implementation of the sensible heat flux was highly simplified in this study by assuming a

constant surrounding air temperature. This can lead to an over-cooling of the surface temperatures

(or over-heating if𝑇𝑎 > 𝑇𝑠), which therefore explains the underestimation compared to Schrĳvers’ results.

A second likely possible driver is the method of computation of the temperature gradient in the sensible

heat flux. The gradient is computed by taking the difference between 𝑇𝑎 and 𝑇𝑠 and dividing this over

the wall distance. Here, 𝑇𝑎 is fixed and 𝑇𝑠 is solved for. The distance from the wall, however, over which

the gradient is taken is unclear. In this study, a constant wall distance of 0.5 𝑚 is assumed. This distance

corresponds to the cell size near the walls. This wall distance, however, does greatly influence the

surface temperatures. The dependency of the surface temperature on this wall distance could therefore

be one of the possible drivers behind the error in case 03.

A third possible driver is the method of extraction of 𝜈𝑡 from the CFD simulation to the SEB model. In

this case study, the near-surface values of 𝜈𝑡 are extracted and subsequently interpolated to match the

coordinates of the facets of the canyon. In this process, accuracy can be lost due to two reasons. First,

since the interpolation is an estimation, it can lead to inaccuracies. Second, the near-surface 𝜈𝑡 values

are taken from a finite distance from the wall which is equal to the cell size. This could also lead to

inaccuracies since there could be a variation of 𝜈𝑡 within the cell itself.

The most significant deviation from Schrĳvers for case 03 is found with 𝐻/𝑊 = 1. This shows large

differences in peak temperatures of about 30 𝐾. However, there does seem to be an inconsistency in

Schrĳvers’ results. The𝐻/𝑊 = 1 results for case 03 of Schrĳvers show a much larger surface temperature

profile than 𝐻/𝑊 = 0.5 and 𝐻/𝑊 = 2. This does physically not make sense, since all variables stay put

except the 𝐻/𝑊 ratio. Besides that, Schrĳvers’ results show unphysical behavior on the east wall of

𝐻/𝑊 = 1, where a sharp decrease in surface temperature is found. Schrĳvers explains that this is due to

a local very high 𝜈𝑡 . Therefore, it could be that Schrĳvers’ results for 𝐻/𝑊 = 1 are inaccurate and thus

lead to the deviation from the current study’s results.
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Effect of grid refinement
In this subsection, the effect of grid refinement on the surface temperature distribution will be discussed.

This will be discussed for cases 01 and 02 with 𝐻/𝑊 = 1. The canyon grid is refined in 5, 8, 10, and 15

horizontal and vertical slices. The surface temperatures for these four different cases are given in figure

5.13. This figure shows two surface temperature distributions for case 01 (a) and case 02 (b).

(a) Case 01. (b) Case 02.

Figure 5.13: Grid refinement study for 𝐻/𝑊 = 1. The plotting is done according to the inset shown in figure 5.9.

From the figures above it can be seen that for more than 8 slices, the surface temperature distribution

converges. This can be seen most evidently from the point separating the shaded part from the sun-lit

part of the canyon, which is around the middle of the street. Besides that, it can be seen that with a

higher amount of slices, the peak surface temperature converges to the corner of the street canyon. This

is in line with what is found by Schrĳvers (2020). The relative error between the surface temperatures

with more than 8 slices falls below 1 %, which is very little. Thus, the grid is sufficiently refined for

𝑁 ≥ 8.

Diurnal variation of the surface temperature
In this subsection, the diurnal variance of the surface temperature will be discussed. This is approximated

by simulating different times during the day since the current study’s model is inherently steady state.

This diurnal variance will be discussed for 𝐻/𝑊 = 1. The solar values correspond to the 21
st

of June in

Amsterdam with clear-sky conditions. The diurnal variation of the solar zenith angle is given in figure

5.14. In this figure, the dashed line indicates the time of solar noon, i.e., the time when the sun is at its

highest. Because the street canyon is a 2D approximation, the solar azimuthal angle must coincide with

the XZ-plane. Therefore, in the morning, the solar azimuthal angle is equal to 𝜋/2 and, in the afternoon,

the solar azimuthal angle is equal to 3𝜋/2.

Figure 5.14: A graph showing the relation between the solar zenith angle, 𝜃𝑠 , and time on the 21
st

of June in Amsterdam. Besides

that, the solar noon time is also given as a dashed line.
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The surface temperature across the canyon for four different times during the day is given in figure 5.15.

This includes case 01 (5.15a), case 02 (5.15b) and case 03 (5.15c). In these figures, the four different colors

indicate four different times during the day: 06:00 (black), 12:00 (green), 14:00 (red), and 18:00 (blue).

(a) Case 01. (b) Case 02.

(c) Case 03.

Figure 5.15: Surface temperature of the 2D canyon for four different times during the day, shown in the legend of figure (b). The

plotting is done according to the inset shown in figure 5.9. The three plots represent case 01 (a), case 02 (b), and case 03 (c). Note:
A different temperature scale is used for figure (c).

The three different cases, shown above, show a similar pattern for the different times during the

day. The most obvious difference between them is the magnitude of the surface temperatures; the

shapes look similar. Besides that, for 06:00, a sharp peak can be seen on the top of the west wall.

This is as expected since at this time the sun sits very low and is coming from the east. This results

in an almost complete shading of the canyon surfaces, which is also seen back in the surface temperatures.

The diurnal variation of the mean surface temperature per surface is given in figure 5.16 for cases 01-03.

The mean surface temperatures are given for the east- and west walls, roof, and street. Each color

indicates a different surface of the canyon, which can be seen in the legend of the figure.

The diurnal variation of the mean surface temperatures in case 01 is in line with what is physically

expected. For the average roof temperature, a cosine behavior is seen which follows the position of

the sun directly. The average street temperature shows a semi-cosine behavior with temperatures a

little lower than the roof temperatures. The heating of the street is mostly due to reflections of the

walls and environmental longwave radiation since the street is mostly shaded during the day. Even

though the street is not completely sun-lit at solar noon, the average temperature matches the roof

temperature. This is due to the longwave trapping effect: other hot surfaces heat the street with their

emitted longwave radiation. The east- and west walls show symmetric heating. This is as expected,

since at solar noon the solar azimuthal angle flips from 𝜋/2 to 3𝜋/2.
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(a) Case 01. (b) Case 02.

(c) Case 03.

Figure 5.16: Diurnal variation of the mean surface temperatures, 𝑇𝑠 , for cases 01-03, given per part of the street canyon. Black

indicates the average roof temperature, blue represents the west wall, red represents the red wall and green indicates the average

street temperature. Note: Different scales are used for the surface temperatures.

The diurnal variation of the mean surface temperatures in case 02 is similar to that of case 01. The

important distinction here lies in the difference between street temperature and roof temperature. Since

the temperatures of all walls are cooled by conduction, less longwave radiation is emitted to the street.

This explains the larger difference between roof temperature and street temperature in case 02 compared

to that of case 01.

Besides the roof temperature, all surface temperatures of case 03 show asymmetric diurnal variation.

When comparing the east- and west-wall temperatures, it can be seen that the west wall reaches

significantly higher temperatures than the east wall. This is caused by a lower near-wall turbulent

viscosity at the west wall and a higher near-wall turbulent viscosity at the east wall. Since the sensible

heat flux is dominant in case 03, this explains the large difference between the two. The average street

temperature also shows asymmetry, since the peak temperature does not coincide with solar noon. This

is explained by the fact that the street temperature is highly influenced by the wall temperatures. As the

sum of the east- and west-wall temperatures is higher before solar noon than it is after solar noon, the

street temperature is also higher before solar noon than after solar noon.

Diurnal variation of the surface energy fluxes
The surface energy fluxes across the canyon for case 03 and 𝐻/𝑊 = 1 are given in figure 5.17 for four

different times during the day. All colors indicate different energy fluxes, given in the legend below

the figure. Note that negative values for the surface fluxes designate energy fluxes leaving the surface,

whilst positive surface fluxes designate fluxes striking the surface.
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(a) 06:00; 𝜃𝑠 = 85.5◦ , 𝜙𝑠 = 90
◦
. (b) 12:00; 𝜃𝑠 = 35

◦ , 𝜙𝑠 = 90
◦
.

(c) 14:00; 𝜃𝑠 = 29
◦ , 𝜙𝑠 = 270

◦
. (d) 18:00; 𝜃𝑠 = 56

◦ , 𝜙𝑠 = 270
◦
.

Figure 5.17: A figure showing the surface fluxes in the 2D street canyon for case 03 at different times during the day. The different

colors indicate different surface fluxes, shown in the legend. The different times include 06:00 (a), 12:00 (b), 14:00 (c), and 18:00 (d).

The first thing to note is that the sum of all surface fluxes is equal to zero at all times. This is physically

correct, since, at the surface, all energy fluxes must balance out according to the SEB. The second thing

to note is that the conductive heat flux is almost negligibly small compared to the other energy fluxes.

This shows that under the conditions of case 03, thermal radiation and convection are dominant over

conduction. What can also be noted is that 𝐿env and 𝐿↑ are very similar across all four times during the

day and do not show a big variance. This can be explained by looking at figure 5.15c, where the surface

temperature across the canyon is given for the four times for case 03. There, the largest temperature

difference is approximately 14-15 𝐾, which results in differences in 𝐿↑ of around 90𝑊𝑚−2
. Therefore,

differences in 𝐿↑ seem very small in figure 5.17. This also results in little differences in 𝐿env, since this is

directly dependent on 𝐿↑.

The incoming radiation (𝐾 + 𝐿
sky

) is independent from the surface temperature. This only depends

on solar angles and intensities. The discussion on these fluxes is already done earlier in this section.

The sensible heat flux is strongly dependent on the turbulent viscosity and surface temperature. As

was seen in the diurnal variation of the mean surface temperatures, the turbulent viscosity is higher at

the east wall than at the west wall. This explains the slightly larger sensible heat flux at the east wall

at 12:00 compared to the sensible heat flux at the west wall at 14:00. Besides that, what stands out is

that the sensible heat flux seems to follow the mirrored shape of the incoming radiation. This makes

physical sense, since the main driver behind surface heating is the incoming radiation and the sensible

heat flux is stronger for higher surface temperatures.
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5.3. Case 3: Infinite parallel plates
The longwave radiation model and conduction model are also validated with a case where the analytical

solution is known. This case consists of two infinite parallel walls during nighttime. In this case,

longwave radiation and conduction are the only two physical mechanisms that are considered. In the

next section, more details will be discussed concerning the simulation set-up and parameters.

5.3.1. Simulation set-up
The simulation set-up is presented in figure 5.18. The figure shows two infinite walls with each a wall

temperature 𝑇, thickness 𝑑, emissivity 𝜀, inner temperature 𝑇∞, and longwave absorptivity 𝜁. With this

in mind, the steady-state energy surface balance over wall 1 is given by the following equation:

−𝜆𝑇1 − 𝑇∞,1
𝑑1

− 𝜀1𝜎𝑇
4

1
+ 𝜀2𝜁1𝜎𝑇

4

2
= 0, (5.1)

where 𝜎 is the Stefan-Boltzmann constant (𝜎 ≈ 5.67 × 10
−8𝑊𝑚−2𝐾−4

). For wall 2 the surface energy

balance is similar:

−𝜆𝑇2 − 𝑇∞,2
𝑑2

− 𝜀2𝜎𝑇
4

2
+ 𝜀1𝜁2𝜎𝑇

4

1
= 0. (5.2)

These equations can be solved for 𝑇1 and 𝑇2 to acquire the analytical solution. This is tested with

the simulated solution. Two tests are considered: One emissivity dependency test and one inner

temperature difference test. The parameters used in this study (if not stated otherwise) are given in

table 5.8.

Figure 5.18: A schematic presentation of two infinite parallel walls with temperatures 𝑇1 and 𝑇2, emissivities 𝜀1 and 𝜀2, wall

thicknesses 𝑑1 and 𝑑2, and internal temperatures 𝑇∞,1 and 𝑇∞,2.

Parameter 𝜀 dependency 𝑇 difference dependency

Emmisivity, 𝜀 (-) 0-1 0.95

Absorptivity, 𝜁 (-) 1 1

Wall thickness, 𝑑 (𝑚) 1 1

Inner wall temperature 1, 𝑇∞,1 (𝐾) 293 293

Inner wall temperature 2, 𝑇∞,2 (𝐾) 273 273-293

Table 5.8: Parameter values for the simulations done for the two tests in the infinite parallel wall case.

5.3.2. Results
The results for the two tests are given in figure 5.19. In figure 5.19a, the surface temperature is determined

for a varying emissivity. In figure 5.19b, the surface temperature is calculated for a varying temperature

difference between 𝑇∞,1 and 𝑇∞,2.
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The results for both the emissivity dependency test and temperature difference dependency test

have a very good correspondence with the analytically found values. A lower emissivity results in

a lower radiant heat flux, which, as physically expected, results in the temperature drawn towards

the inner wall temperature. Besides that, from figure 5.19b, it can be seen that a higher inner wall

temperature difference results in lower surface temperature. This makes sense since a higher temperature

difference results in stronger heat transportation from the warmer wall to the colder wall.

Overall, it can be said that the longwave radiation model and conduction model correctly describe the

physical mechanisms. The results are in good agreement with the analytical solutions.

(a) (b)

Figure 5.19: A comparison between the current model and the analytical solution for the infinite parallel wall case. Figure (a)

shows the dependency of the surface temperature of the two different infinite walls on the emissivity, where 𝜀1 = 𝜀2. Figure (b)

shows the surface temperature of each facet against the temperature difference between the two internal temperatures 𝑇∞,1 and

𝑇∞,2.
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5.4. Case 4: 3D street canyon
The 3D street canyon case is done to showcase the capabilities of the current model and give insights into

the distribution of the surface temperature and surface energy fluxes present in this kind of geometry.

Besides that, the results are compared to the results found in the infinite street canyon case (section 5.2)

such that there can be made a distinction between 2D- and 3D effects.

5.4.1. Simulation set-ups
The 3D street canyon consists of 4 buildings with height 𝐻 and width𝑊 with an intersection area in

between them. The simulations are done for three different 𝐻/𝑊 ratios: 𝐻/𝑊 = 0.5, 𝐻/𝑊 = 1 and

𝐻/𝑊 = 2. A schematic image of the simulation set-up of the SEB model is given in figure 5.20, where

also the position of the sun is given. Here, the street canyon width is equal to the width of the buildings,

𝑊 . The red highlighted area designates the street area which is later used in contour plotting. The

geometric quantities for the three different simulation set-ups are given in table 5.9. In total, 2624 facets

are used in this set-up. All relevant parameters for the SEB model are given in table 5.11. The solar

intensities are based on Schrĳvers (2020) and represent solar noon in Amsterdam on the 21
st

of June

under clear-sky conditions. The conductive and radiative material properties correspond to typical

values for brick and concrete and are taken constant over all surface areas.

Figure 5.20: A schematic overview of the simulation domain used in the SEB model. Here, the street canyon width is equal to the

building width,𝑊 . The red areas indicate the area used in the contour plots later in this section.

Parameter 𝐻/𝑊 = 0.5 𝐻/𝑊 = 1 𝐻/𝑊 = 2

Canyon width,𝑊 (𝑚) 50 25 25

Canyon length, 𝐿 (𝑚) 50 25 25

Canyon height, 𝐻 (𝑚) 25 25 50

Horizontal facet size (𝑙𝑥 × 𝑙𝑦) (6.25𝑚 × 6.25𝑚) (3.13𝑚 × 3.13𝑚) (3.13𝑚 × 3.13𝑚)

Vertical facet size (𝑙𝑥/𝑙𝑦 × 𝑙𝑧) (6.25𝑚 × 3.13𝑚) (3.13𝑚 × 3.13𝑚) (3.13𝑚 × 6.25𝑚)

Table 5.9: Geometric values for the three different H/W ratios. Here, 𝑙𝑥 represents the facet width in the 𝑥-direction, 𝑙𝑦
represents the facet length in the 𝑦-direction and 𝑙𝑧 represents the facet height in the 𝑧-direction.

To model the sensible heat flux, a CFD simulation is done. This simulation is done with the in-house

CFD model. A pragmatic approach is used to couple the CFD model with the SEB model. Values of

the turbulent viscosity are fed into the SEB model using a nearest neighbor algorithm. The algorithm

determines for each facet the nearest CFD cell. The value of the turbulent viscosity of that CFD cell

is then transposed onto the facet. The simulation set-up for the in-house CFD model is schematically
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given in figure 5.21. Air with a constant and homogeneous velocity,𝑈𝑖𝑛 , is given as input to the domain.

The temperature of the air is kept constant at 20
◦𝐶. An overview of the relevant parameters used for

the CFD model is given in table 5.11.

Figure 5.21: A schematic overview of the simulation set-up for the CFD model.

Different cases are considered in the computations of the surface temperatures. These cases are listed in

table 5.10. This is done to differentiate the effect and contribution of the different surface energy fluxes

to the surface temperature.

Case 𝐾 𝐿 𝐺 𝐻

01 + +

02 + + +

03 + + + +

Table 5.10: The three cases which are considered in this study. Case 01 represents the case in radiative equilibrium, case 02 is the

case where the conductive heat flux is added, and case 03 is the case where the sensible heat flux is also added to the equation.

Radiation

Diffusive sky radiation, 𝐷
sky

84.2𝑊𝑚−2

Longwave absorptivity, 𝜁 0.95

Longwave emissivity, 𝜀 0.95

Longwave sky radiation, 𝐿
sky

325𝑊𝑚−2

Shortwave albedo factor, 𝛼 0.40

Solar azimuthal angle, 𝜙𝑠 270
◦

Solar irradiance, 𝐼 950𝑊𝑚−2

Solar zenith angle, 𝜃𝑠 28.9
◦

Heat conduction

Interior temperature, 𝑇∞ 20
◦𝐶

Thermal conductivity, 𝜆 0.72𝑊𝑚−1𝐾−1

Thickness building, 𝑑 0.25 𝑚
Thickness street, 𝑑 1 𝑚

Computational Fluid Dynamics

Air temperature, 𝑇𝑎 20
◦𝐶

Cell expansion factor 1.1

Inlet velocity,𝑈𝑖𝑛 4 𝑚𝑠−1

Minimal cell size (𝑥 × 𝑦 × 𝑧) = (1𝑚 × 1𝑚 × 1𝑚)

Maximum cell size (𝑥 × 𝑦 × 𝑧) = (25𝑚 × 25𝑚 × 25𝑚)

Table 5.11: All parameter values used in this case study, which are based on Schrĳvers (2020).
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5.4.2. Results
In this section, the results will be discussed of the 3D street canyon case. First, contours of the street

temperature will be given for case 01 and case 03. Secondly, surface temperature profiles will be

discussed and compared to results found in the infinite street canyon case. After that, near-surface

turbulent viscosity contours will be presented. Then, the contours of all surface energy fluxes present in

case 03 will be discussed and the diurnal variation of the street temperatures. Lastly, a grid refinement

study and the effect of air velocity on the surface temperatures will be discussed.

Street temperature contours
In this subsection, the street temperature contours will be evaluated. The area of interest is highlighted

in red in figure 5.20. The street temperatures will be considered for cases 01 and 03. The contours of

case 02 are left out in this section but can be found in appendix D.3. The contours for case 01 are given

in figure 5.22 and the contours for case 03 are given in figure 5.23. In these figures, the horizontal-

and vertical axes designate the normalized 𝑥− and 𝑦−directions. Note that all plots in figure 5.22 have

different color bar ranges. The vertical dashed lines indicate where the area of the intersection resides.

The first thing that stands out is that all street temperature contour plots are symmetric along the

𝑦/𝐿 = 0.5 line. This is in line with what was physically expected since the geometry and all other param-

eter values are symmetric along this line. Therefore, this is a confirmation of the fidelity of the SEB model.

For case 01, the shape of the contour plots is different for each 𝐻/𝑊 ratio, especially at the intersection

area. For all three aspect ratios, the west side of the street is warmer than the east side. This difference

is most significant for 𝐻/𝑊 = 2. For 𝐻/𝑊 = 2, the sun-lit surface area of the two eastern buildings

is larger than for the other two aspect ratios. This results in a larger 𝐿env striking the west street area

compared to 𝐻/𝑊 = 1 and 𝐻/𝑊 = 0.5.

Besides the uneven heating of the street area, another thing that stands out is the great difference in

temperatures between the different 𝐻/𝑊 ratios. The larger the 𝐻/𝑊 ratio, the larger the temperature.

This is the result of the longwave trapping effect, where the longwave radiation gets trapped inside the

street canyon. This also explains the lower temperatures at the intersection area. Here, radiation can

leave the street canyon easier, since the sky view factor is greater in this area compared to the west-

and east-street areas. The difference in temperatures shows that the SEB model correctly describes and

models the longwave trapping effect.

For case 03, the shape of the contours are very similar for different 𝐻/𝑊 ratios. Besides that, the values

of the street temperatures are somewhat alike. At the upstream part of the street (west street area),

the temperatures are around 24
◦𝐶 and at the downstream part of the street (east street area), the

temperatures increase to approximately 28
◦𝐶. The fact that the contour shape and temperatures are

alike shows that the sensible heat flux is dominant under these conditions. The contour shape found in

case 01 is completely turned around in case 03.

Besides the difference in contour shapes between case 01 and case 03, the values for the street temperatures

also differ significantly. Case 01 shows temperatures between 87-105
◦𝐶. Note that these temperatures

are hypothetical temperatures, which follow directly from the balance between longwave- and short-

wave radiation fluxes. The surface temperatures are, however, in line with Garratt (1992) as stated by

Schrĳvers (2020). Garratt suggested that for dry and dark soils with low thermal conductivity surface

temperatures may occur of around 90-100
◦𝐶, considering a simplified form of the SEB. Besides that,

the ranges of street temperatures found in this study also correspond to values found by Schrĳvers (2020).

The temperature ranges for case 02 are about 15-20
◦𝐶 lower compared to case 01 (see appendix D.3).

Here, the conductive heat flux merely serves as a simple cooling mechanism and the shape of the

contours remains similar to those in case 01. When the sensible heat flux is added (case 03) the surface

temperatures drop by approximately 60
◦𝐶 compared to case 02. This is a significant decrease and shows,

again, that the sensible heat flux is the most dominant cooling mechanism under these conditions. This

can also be seen from the similarity between the contour shapes of the temperature and the turbulent

viscosity contours (figure 5.27), which will be discussed later on.
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Although the contour shapes and temperature ranges do seem convincing, there are some aspects to

take note of. The conduction modeling in the SEB model, for example, is highly simplified. First of all,

the current model assumes conduction to be linear. This is not always the case, especially when dealing

with different materials inside the conductive layer. Second, a set interior temperature at a distance

𝑑 inside the material is used as a boundary condition for the conductive heat flux. This leads to an

artificial heat source or sink inside the material. A more realistic approach is to use a zero-flux boundary

condition (Grylls et al. (2021); Suter (2019); Schrĳvers (2020)). Although this makes computations more

complex, it does make the model more realistic.

Another important thing to consider is the simplified modeling of the sensible heat flux. To model the

sensible heat flux, the turbulent viscosity values are transposed onto the facet via the nearest neighbor

algorithm. This may lead to inaccuracies when the facet sizes are significantly smaller or greater than

the CFD cell sizes. Besides that, the Simple Gradient Diffusion Hypothesis (SGDH) is used to model the

sensible heat flux. Other methods, such as the Generalized Gradient Diffusion Hypothesis (GGDH)

could lead to more accurate results. Chao (2010) showed that, for mean concentrations, GGDH is

preferred over SGDH. If the same holds for temperatures, it could lead to better results for this study as

well.

The third point of discussion is the one-way coupling approach between the CFD- and SEB models.

This approach assumes that the surrounding air is kept at a constant temperature and is not affected

by the warmer surfaces. The pitfall of one-way coupling is the over-cooling of the surfaces; the colder

surrounding air acts as a very efficient heat sink. Besides that, in modeling the sensible heat flux, the

temperature gradient between the air- and surface temperature is linearized. The linearization may lead

to inaccuracies since a distance must be specified over which the gradient is taken. In this study, this is

set to 0.5 𝑚, such that it matches the results of Schrĳvers in the infinite street canyon case. This value,

however, heavily influences the strength and magnitude of the sensible heat flux. Therefore, it is more

realistic to use a two-way coupled approach.
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(a) 𝐻/𝑊 = 0.5.

(b) 𝐻/𝑊 = 1.

(c) 𝐻/𝑊 = 2.

Figure 5.22: Contours of the street temperatures for case 01 at the street area highlighted in figure 5.20. The vertical dashed lines

separate the intersection area from the rest of the street area. Note: The color bar ranges differ per plot.
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(a) 𝐻/𝑊 = 0.5.

(b) 𝐻/𝑊 = 1.

(c) 𝐻/𝑊 = 2.

Figure 5.23: Contours of the street temperatures for case 03 at the street area highlighted in figure 5.20. The vertical dashed lines

separate the intersection area from the rest of the street area.
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Surface temperature profiles
In this subsection, six different surface temperature profiles will be presented and discussed. The

locations of these profiles are schematically depicted in figure 5.24. The profiles are numbered according

to the left-hand side of the figure. This numbering is later used in plotting. Profiles 1-3 are compared to

2D profiles, which were found in the infinite street canyon case, to showcase the difference between a

2D street canyon and a 3D street canyon.

Figure 5.24: A schematic overview of the profiles that are presented in this subsection. On the right, a top view of the geometry is

shown where buildings are shown in grey. The numbering on the left-hand side is used for plotting purposes later on in this

subsection.

Temperature profiles 1, 2, and 3 are given for 𝐻/𝑊 = 2 and case 01 and 03 in figure 5.25. In these figures,

the colors indicate the different profiles, as can be seen from the legend at the bottom. The dashed line

represents temperature profiles found in the infinite street canyon case. Plotting is done according to

the numbered inset shown at the bottom left in figure 5.24. The results for the other 𝐻/𝑊 ratios can be

found in appendix D.1.
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Figure 5.25: Street canyon temperature profiles for 𝐻/𝑊 = 2 and cases 01 and 03. The plotting is done according to the schematic

on the bottom left of figure 5.24. Note that some markers are left out for imaging purposes.
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For cases 01 and 03, the temperature profiles 1-3 deviate slightly from the 2D simulated profile. Profile 2

is the closest to the 2D profile for both cases 01 and 03. This makes sense since profile 2 represents the

temperature profile in the middle of the street canyon and is therefore closest to an infinite street canyon

approximation. Profile 1 has a street temperature of around 10
◦𝐶 lower than the 2D simulation due to

fewer surrounding buildings that irradiate this part of the street canyon. Profile 3 is, therefore, closer to

the 2D simulation, since there is more irradiance by other surfaces on that part of the street canyon.

Profile 1 in figure 5.25b shows a high peak at the bottom of the east wall compared to profiles 2 and 3.

This is caused by a smaller turbulent viscosity near the bottom of the southern part of the east wall

compared to that of the northern part of the east wall. Here, clearly, 3D turbulent effects are displayed;

the turbulent viscosity depends on 𝑥, 𝑦, and 𝑧, whereas for the infinite canyon case, it only depends on

𝑥 and 𝑧. Besides that, it must be noted that in the infinite street canyon case, an array of buildings was

used. In the 3D canyon case, merely one set of 4 buildings was used. With this difference in mind, the

temperature profiles in figure 5.25b look remarkably similar.

Street temperature profiles 4-6 are given for 𝐻/𝑊 = 2 and cases 01 and 03 in figure 5.26. Plotting is

done according to the numbered inset shown at the top left in figure 5.24. Again, the results for the

other 𝐻/𝑊 ratios can be found in appendix D.1.
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Figure 5.26: Street temperature profiles for 𝐻/𝑊 = 2 and cases 01 (a) and 03 (b). The plotting is done according to the schematic

on the top left of figure 5.24. Note that some markers are left out for imaging purposes.

Profiles 4 and 6 overlap perfectly for both case 01 and case 03. This showcases again the line symmetry

present in this configuration. In case 01, all profiles show a higher west street temperature compared to

the east street temperature. As was seen in the temperature contours (figure 5.22), this is physically

correct, since 𝐿env is larger at the western part of the street than at the eastern part of the street.

The intersection shows a lower temperature for all profiles in case 01. Profile 5 shows lower street

temperatures since it is further away from the building walls and therefore receives less longwave

radiation from other surfaces.

In the street temperature profiles of case 03 (figure 5.26b), the temperatures are higher at the east street

compared to the temperatures at the west street. This is the opposite of what is seen in case 01. The

lower street temperatures at the west street are a result of higher convective cooling at the west street

compared to the east street. This is due to a higher turbulent viscosity at the west street compared to the

east street, which can be seen from the turbulent viscosity contours in figure 5.27.

When case 01 is compared to case 03, it can be concluded that the convective cooling mechanism is very

dominant. The sensible heat flux cools down the surface temperatures to moderate temperatures of

20-35
◦𝐶. Besides that, the street temperatures in case 03 follow a different pattern compared to the

temperatures in case 01. This is also due to the higher sensible heat flux at the west street compared to

the east street.
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Turbulent viscosity contours
The (non-dimensional) turbulent viscosity contours are presented in figure 5.27. Here, the turbulent

viscosity refers to the near-surface turbulent viscosity. The turbulent viscosity was extracted from the

CFD simulations using the nearest neighbor algorithm. For each facet, the turbulent viscosity of the

nearest CFD cell was selected.

The turbulent viscosity contours of the different aspect ratios all have a similar shape. At the western

part of the street (upstream), 𝜈∗ is higher than at the eastern part of the street (downstream). The

non-dimensional turbulent viscosity for 𝐻/𝑊 = 2 shows slightly higher values compared to the other

two aspect ratios. It can be seen that there are lower values for 𝜈∗ at the top and bottom of the intersection

area of the 𝐻/𝑊 = 1 case. This is caused by a lower turbulent kinetic energy in that region and this

explains the higher surface temperatures in those areas for the 𝐻/𝑊 = 1 case (figure 5.23b).
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(a) 𝐻/𝑊 = 0.5.
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(c) 𝐻/𝑊 = 2.

Figure 5.27: Contours of the non-dimensional turbulent viscosity at the street area highlighted in figure 5.20, where

𝜈∗ = (𝜈𝑡 − 𝜈)/𝜈. The vertical dashed lines separate the intersection area from the rest of the street area.
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Surface energy flux contours
Here, a study is presented of the contribution of different surface energy fluxes to the surface temperatures.

Contours of the surface energy fluxes for case 03 and 𝐻/𝑊 = 1 are shown in figure 5.28. Note that 𝐻, 𝐿↑

and 𝐺 are energy fluxes leaving the surface and 𝐿env and 𝐾 + 𝐿
sky

are energy fluxes striking the surface.

It can be seen that all surface fluxes balance out, which is necessary in a steady-state simulation. The

surface energy flux contours show the subservience of the conductive heat flux to the other heat fluxes.

The conductive heat flux is in this case more than 10 times smaller than the sensible heat flux and the

other radiative fluxes, which makes it almost negligible. It can therefore, again, be concluded that the

sensible heat flux is the most dominant cooling mechanism in this case.

What can also be noted is the large difference in 𝐿env across the street. This explains the higher surface

temperatures near the building walls and the cooler temperatures at the intersection area, seen in figure

5.22. Therefore, figure 5.28b demonstrates the longwave trapping effect.

(a) 𝐺.

(b) 𝐿env.

(c) 𝐻.

Figure 5.28: Contours of the surface energy fluxes for case 03 and 𝐻/𝑊 = 1 at the street area highlighted in figure 5.20. The

vertical dashed lines separate the intersection area from the rest of the street area. Note that 𝐻, 𝐿↑ and 𝐺 are energy fluxes leaving

the surface and 𝐿env and 𝐾 + 𝐿
sky

are energy fluxes striking the surface.
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(d) 𝐿↑.

(e) 𝐾 + 𝐿
sky

.

Figure 5.28: Contours of the surface energy fluxes for case 03 and 𝐻/𝑊 = 1 at the street area highlighted in figure 5.20. The

vertical dashed lines separate the intersection area from the rest of the street area. Note that 𝐻, 𝐿↑ and 𝐺 are energy fluxes leaving

the surface and 𝐿env and 𝐾 + 𝐿
sky

are energy fluxes striking the surface.

Diurnal surface temperature variation
Contours of the diurnal variation of the street temperature at four different times during the day are

shown in figure 5.29. This includes 06:00 (a), 12:00 (b), 15:00 (c) and 21:00 (d). Again, the solar positions

conform to the 21
st

of June in Amsterdam. The figures resemble the street temperature at the red

highlighted area in figure 5.20. Besides that, 3D plots of the full simulated domain are given in appendix

D.3 for the same point of time. All parameters except the solar angles are kept constant over the different

points of time.

It is clear that shadowing has a great influence on the surface temperature. In figure 5.29a and 5.29d, a

large part of the street is shaded due to a high solar zenith angle (i.e., a low solar elevation angle). In

figure 5.29b and 5.29c, a smaller part of the street is shaded due to a low solar zenith angle. The effect of

shading is evident: effectively all shaded parts have temperatures between 18-20
◦𝐶. The non-shaded

parts of the street reach significantly higher temperatures of 24-34
◦𝐶.

In an experimental study done in Indonesia, Ibrahim et al. (2018) found that concrete pavements may

reach temperatures varying between 25-38
◦𝐶 during the day. In another experimental study done at the

University of California, Berkeley, Guan (2011) measured average brick pavers temperatures of around

37.3
◦𝐶 at solar noon. Although these experiments were done in different conditions compared to the

current model, it can be said that the street temperatures found in this study give realistic values. The

shaded street surface temperatures, however, are slightly lower than what was found in literature. This

may be caused by the difference in air temperature at the measurement site and in the simulation. The

study by Ibrahim et al. (2018) was done in Indonesia where maximum air temperatures were measured

at 32.5
◦𝐶, which is significantly higher than the air temperature of 20

◦𝐶 used in this study. Therefore,

this could have led to the difference in surface temperatures. Besides that, it was reported that the

experiments were done under low wind speed conditions. Although exact values are not given, this

could also lead to a deviation from the literature results.
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Figure 5.29: Contours of the street temperature at different times during the day for 𝐻/𝑊 = 1 and case 03 at the area highlighted

red in figure 5.20. The vertical dashed lines separate the intersection area from the rest of the street area.
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Effect of grid refinement
The effect of grid refinement of the SEB model is discussed in this section. The results are given in figure

5.30, where four different facet sizes are used to plot the surface temperature in case 03. Here, 𝐻/𝑊 = 1,

the solar azimuthal angle, 𝜙𝑠 , is equal to 136
◦

and solar zenith angle, 𝜃𝑠 , is 35
◦
. These solar angles

conform to 12:00 in Amsterdam on the 21
st

of June. From the figures, it may be concluded that from

𝑁 = 8, i.e., a facet size of 3.13 𝑚 × 3.13 𝑚, the surface temperature contour is sufficiently converged.

Therefore, this facet size is also used in this study.
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(b) 𝑁 = 6; facet size 4.17𝑚 × 4.17𝑚.
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(c) 𝑁 = 8; facet size 3.13𝑚 × 3.13𝑚.
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(d) 𝑁 = 10; facet size 2.5𝑚 × 2.5𝑚.

Figure 5.30: Four surface temperatures with different grid sizes for case 03 of the street area highlighted in figure 5.20. Here,

𝐻/𝑊 = 1, 𝜙𝑠 = 136
◦

and 𝜃𝑠 = 35
◦

. The vertical dashed lines separate the intersection area from the rest of the street area.



58 Chapter 5. Results and Discussions

Effect of air velocity
In this section, the effect of air velocity on surface temperatures is discussed. This has been done by

comparing three different inlet velocities,𝑈𝑖𝑛 : 1 𝑚/𝑠, 2 𝑚/𝑠, and 4 𝑚/𝑠. The results are given in figure

5.31. It is clear that for higher inlet velocities, the surface temperatures are lower. This makes physical

sense since less heat can be transported away from the surface with lower velocities of the surrounding

medium. Therefore, this parametric study strengthens the fidelity of the current model.
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Figure 5.31: Surface temperatures with different inlet velocities for case 03 of the street area highlighted in figure 5.20. The

vertical dashed lines separate the intersection area from the rest of the street area. Note: The color bar ranges differ per plot.
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5.5. Case 5: Effect of wall heating on flow characteristics
This case studies the effect of wall heating on flow characteristics in a 2D street canyon and is based on

the study of Cai (2012). In his study, Cai uses LES to model flow characteristics with different types

of wall heating and compares this with wind-tunnel experiments of Kovar-Panskus et al. (2002). Cai

distinguishes two heating scenarios: (1) the roof and the entire downstream wall are heated, called

‘the opposing case’, and (2) the roof and the entire upstream wall are heated, called ‘the assisting case’.

Besides that, this simulation was also done by Suter (2019) to validate his sensible heat flux model.

Although Cai and Suter use LES with periodic boundary conditions, it is attempted to reproduce their

results with the current model. The goal of this case study is to showcase the CFD model’s capabilities

to simulate flow under the influence of buoyancy. On top of that, the effect of non-homogeneous heated

walls is also studied, where wall boundary conditions are provided by the SEB model.

5.5.1. Simulation set-ups
The simulation set-up is similar to the infinite street canyon case (section 5.2) and is given in figure 5.32.

The simulation is completely done with the CFD model, i.e., the SEB model was not used. The SEB

model is merely used to provide the non-homogeneous boundary conditions in the second part of this

case. Only the walls of building 12 and building 13 are heated. This ensures that the flow is developed

before it reaches the heated walls. The assisting- and opposing cases are schematically given in figure

5.33. In the assisting case, the wall of building 12 and both roofs of building 12 and 13 are heated. In the

opposing case, the wall of building 13 and both roofs of building 12 and 13 are heated. All heated wall

temperatures are kept constant at 29
◦𝐶, which matches Cai (2012) and Suter (2019). The rest of the

walls are adiabatic. The inlet air has temperature, 𝑇𝑖𝑛 , of 20
◦𝐶 and has a constant and homogeneous

velocity,𝑈𝑖𝑛 , of 2.5 𝑚/𝑠. The building height 𝐻, building width𝑊 , and street width are all equal to 18

𝑚. The canyon length 𝐿 is set to 60 𝑚 to speed up the simulations. In this case, the focus lies on the

street canyon between building 12 and 13. Therefore, the velocity vector fields and temperature fields

between these two buildings will be discussed. All relevant simulation parameters are given in table

5.12. With this set-up, a 2D approximation is made by focusing on the plane 𝑦 = 𝐿/2 and therefore the

results can be compared to Cai and Suter.

Figure 5.32: A schematic representation of the simulation set-up. For imaging purposes, the two dashed lines indicate the part

where obstacles 3-12 are left out.

Simulation parameters

Inlet air temperature, 𝑇𝑖𝑛 20
◦𝐶

Heated wall temperature, 𝑇0 29
◦𝐶

Inlet velocity,𝑈𝑖𝑛 2.5 𝑚𝑠−1

Cell expansion factor 1.1

Minimal cell size (𝑥 × 𝑦 × 𝑧) = (0.3𝑚 × 1𝑚 × 0.3𝑚)

Maximum cell size (𝑥 × 𝑦 × 𝑧) = (25𝑚 × 25𝑚 × 25𝑚)

Table 5.12: All parameter values used in this case study if not stated otherwise.
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(a) Assisting case. (b) Opposing case.

Figure 5.33: A schematic overview of the assisting case (a) and the opposing case (b). The red lines indicate the walls that are

heated, the rest of the walls are left adiabatic. For imaging purposes, the figure only shows the street canyon between building 12

and building 13.

Besides the simulation set-up stated above, another simulation is done that couples the SEB model

and the CFD model. This simulation set-up is similar to the one stated above but only differs in the

temperature distribution of the walls. The heated walls, depicted as red lines in figure 5.33, are divided

into five line segments each. These line segments are given a temperature that is taken from the output

of the SEB model. This simulation is done to showcase the capabilities and prospects of coupling

between the SEB model and the CFD model. The parameters used in this case study for the SEB model

are given in table 5.13. In the opposing case, the solar azimuthal angle is at 270
◦
, and in the assisting

case it is at 90
◦
.

Radiation

Diffusive sky radiation, 𝐷
sky

84.2𝑊𝑚−2

Longwave absorptivity, 𝜁 0.95

Longwave emissivity, 𝜀 0.95

Longwave sky radiation, 𝐿
sky

325𝑊𝑚−2

Shortwave albedo factor, 𝛼 0.40

Solar irradiance, 𝐼 950𝑊𝑚−2

Solar zenith angle, 𝜃𝑠 50
◦

Heat conduction

Interior temperature, 𝑇∞ 20
◦𝐶

Thermal conductivity, 𝜆 0.72𝑊𝑚−1𝐾−1

Thickness building, 𝑑 0.25 𝑚
Thickness street, 𝑑 1 𝑚

Table 5.13: All parameter values used in this case study for the SEB model.

5.5.2. Results
The results for the velocity vector fields for both the assisting- and opposing cases are given in figure

5.34. The results for the temperature fields for the two cases are shown in figure 5.35. All results are

compared to vector fields found by the LES of Cai (2012). The results of Suter (2019) are left out in this

section. Note that the origin of the axes of Cai and the color bar used by Cai differ from those used in

this study.

The vector fields show good agreement with the vector fields of Cai (2012). It can be seen that in this

study’s results and Cai’s results the magnitude of the vectors is greater in the assisting case than in the

opposing case. Besides that, a small vortex is seen in the bottom right of the canyon in the opposing case

which matches the literature results. Also, it can be noted that the center vortex in the assisting case is

at location (𝑥/𝑊, 𝑧/𝐻) = (0.5, 0.5), which matches with Cai. The location of this vortex has shifted in

the opposing case to approximately (𝑥/𝑊, 𝑧/𝐻) = (0.57, 0.57). Although this location does not exactly
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match Cai’s results, it does shift in the same direction.

The temperature fields do not show good agreement with the temperature fields found by Cai (2012). It

can be observed that, for both the assisting- and opposing cases, the temperature values are lower than

the literature values. Besides that, the shape of the temperature fields is dissimilar. What the results of

the current study do have in common with literature values is the overheating of the opposing case

compared to the assisting case. It can be observed that the average air temperature inside the canyon is

higher in the opposing case than in the assisting case. This is in line with what is found by Cai.

The large differences between the temperature fields of the current study and Cai’s study is likely due to

a difference in boundary conditions. Cai (2012) and Suter (2019) use periodic boundary conditions in

their simulations, which are not used in this study. The use of periodic boundary conditions facilitates

constant heating of the street canyon; the hot air leaving the simulation domain is, again, fed into the

system. In the simulations of Cai (2012), the simulation is run for 20 turnover times. This results in

higher air temperatures inside and above the street canyon, which is also seen in the results of Cai

(figure 5.35).

A slight difference in the wall Richardson number could also have led to the mismatch in the results. The

wall Richardson number is used by Cai to provide the ratio between thermally generated kinetic energy

and wind-generated kinetic energy. It is defined as

𝑅𝑖𝑤 =
𝑔𝐻(𝑇𝑟 − 𝑇0)

𝑇𝑟𝑈
2

𝑟

,

where 𝑇𝑟 is the mean air temperature above roof level, 𝐻 is the wall height, 𝑔 is the acceleration of

gravity, 𝑇0 the heated wall temperature and𝑈𝑟 the mean wind speed at 2.5H above roof level. In this

case, 𝑇𝑟 = 𝑇𝑖𝑛 . In Cai’s simulations, 𝑅𝑖𝑤 = −1.27 is adopted. According to the formula above, this study

uses 𝑅𝑖𝑤 = −0.69. Although the difference between these two is small, it could have led to dissimilarities

in results.

This study’s grid makes use of the cell expansion factor, which increases cell sizes when further away

from the walls. The grid is thus inhomogeneous, which can also be seen from the difference in density

of the velocity vectors in figure 5.34a and 5.34b. The grid inhomogeneity could lead to an inaccuracy in

the location of the center vortex. In further research, it is therefore recommended to homogenize and

refine the grid in between the buildings.

To speed up the simulations, the length of the canyon, 𝐿, was set to 60 𝑚. This means that the

length-over-height ratio (𝐿/𝐻) of the canyon was 3.33. This is on the low side, considering Santamouris

et al. (1999), Giovannini et al. (2013) and Coronel and Álvarez (2001) found significant 3D effects on the

airflow in canyons with 𝐿/𝐻 ratios between 1.25-5.5. However, since the current simulation is set in a

complete 2D fashion (inlet velocity is only in 𝑥-direction), it could be argued that at 𝑦 = 𝐿/2 the 3D

effects are minimal. In further research, it is recommended to increase the canyon length to ensure the

2D approximation is accurate.
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(a) Assisting case current study. (b) Opposing case current study.

(c) Assisting case Cai (2012). (d) Opposing case Cai (2012).

Figure 5.34: An overview of the current study’s results for the vector fields (top row) and the results of Cai (2012) (bottom row).

The left column represents results of the assisting case and the right column represents results from the opposing case. The red

circles indicate the location of the vortices.
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(a) Assisting case current study. (b) Opposing case current study.

(c) Assisting case Cai. (d) Opposing case Cai.

Figure 5.35: The normalized temperature fields for the current study (top row) and Cai (2012) (bottom row). Here, the

normalized temperature is 𝑇𝑟𝑒 𝑓 = (𝑇 −𝑇0)/Δ𝑇, where Δ𝑇 is the temperature difference between the heated wall and air above roof

level. Note: A different range and type of color bar is used in Cai’s results.
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Coupling between SEB- and CFD model
In the previous section, the walls and roofs were kept at a constant and homogeneous temperature. In

this section, the walls and roofs will be kept at a constant but inhomogeneous temperature taken from

the output of the SEB model simulation. The assigned wall temperatures are shown in figure 5.36 for

both cases. Note that for the assisting case, only the west wall temperatures and roof temperatures are

used, the rest of the surfaces are kept adiabatic in the CFD simulations. For the opposing case only the

east wall temperatures and roof temperatures are used, the rest is again kept adiabatic. The results are

shown in figure 5.37.

What stands out from figure 5.37 is that the results of the velocity field of the assisting case for the

inhomogeneous heated walls are similar to the results of the homogeneous heated walls (see previous

section). The temperatures are, however, a significant amount higher, which is due to higher wall

temperatures of above 45
◦𝐶. The opposing case results for the inhomogeneous heated walls also show

higher temperatures compared to the homogeneous heated walls case. The velocity field shows multiple

vortices and shows a different pattern compared to the homogeneous case.

Both velocity vector fields show unphysical behavior near the walls. This is especially evident in

the opposing case, at the bottom right corner of the street canyon. The most likely reason for this

is the large differences in temperatures of the line segments. Each heated wall is divided into five

line segments, where to each line segment a temperature is provided from the SEB model. For the

current solar position and simulation parameters, the lower part of the heated wall is shaded. This

results in a temperature difference of approximately 20
◦𝐶 between the first line segment, which

is shaded, and the second line segment, which is sun-lit (see figure 5.36). The unphysical behav-

ior shows that there is a lot of room for improvement. Improvements can be made by refining the

grid of the SEB model and of the CFD model. Due to time constraints, this was not realizable in this study.

The temperature fields of the assisting- and opposing cases are quite different. The temperature field for

the assisting case shows that there is a significant amount of mixing in the street canyon, which is also

backed up by its velocity vector field. The temperature field of the opposing case shows a degree of

stratification, apart from the temperatures at the heated wall. The buoyancy forces, in this case, are

significantly more dominant compared to the homogeneous heated walls case. This could have led to a

partly stratified temperature field for the opposing case.

(a) (b)

Figure 5.36: The temperature profiles used as input to the CFD simulations plotted in figure (a). Note that only the parts of the

profile are used that coincide with the red highlighted parts in figure (b). The plotting is done according to the inset shown in the

bottom left.
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(a) Temperature field assisting case. (b) Temperature field opposing case.

(c) Velocity field assisting case. (d) Velocity field opposing case.

Figure 5.37: The normalized temperature fields (top row) and their velocity vector fields (bottom row) for the case of coupling

between SEB- and CFD model. Here, the normalized temperature is 𝑇𝑟𝑒 𝑓 = (𝑇 − 𝑇0)/Δ𝑇, where Δ𝑇 is 9
◦𝐶 and 𝑇0 is 20

◦𝐶. The

left column designates the assisting case results and the right column designates the opposing case results.

Stability of the solution
In this section, the stability of the solution of the non-homogeneous heated walls case will be discussed.

The motivation behind this is the unphysical behaviour that was seen in the previous results. The

stability check is done by running the simulation results of figure 5.37 for 15,000- and 30,000 iterations

longer. The results are shown in figure 5.38 for the assisting case and in figure 5.39 for the opposing case.
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(a) 15k iterations more. (b) 30k iterations more.

(c) 15k iterations more. (d) 30k iterations more.

Figure 5.38: The normalized temperature fields (top row) and velocity vector field (bottom row) for the assisting case and longer

iterations. Here, the normalized temperature is 𝑇𝑟𝑒 𝑓 = (𝑇 −𝑇0)/Δ𝑇, where Δ𝑇 is 9
◦𝐶 and 𝑇0 is 20

◦𝐶. The figures represent 15,000

- and 30,000 iterations more compared to figure 5.37.

The longer simulated assisting case results are similar to the results in figure 5.37. The velocity field

has a similar pattern with only one central vortex in the center of the canyon. The temperature field,

however, is slight different from the original result but its shape stays coherent. This shows that the

assisting case is quite stable.

The longer simulated opposing case results (figure 5.39) show quite the dissimilarity with the original

results (figure 5.37). The temperature fields are very dissimilar in shape but the values are similar.

Besides that, the velocity field shows a different pattern for the original case, the 15,000 iterations more
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case and the case of 30,000 iterations more. This lack of cohesion shows that the system is quite unstable

and may be inherently time-dependent. There does not seem to be a single solution to this system

and the solutions might be more dynamic. It is therefore recommended to simulate the problem in

time-dependent mode.

(a) 15k iterations more. (b) 30k iterations more.

(c) 15k iterations more. (d) 30k iterations more.

Figure 5.39: The normalized temperature fields (top row) and velocity vector field (bottom row) for the opposing case and longer

iterations. Here, the normalized temperature is 𝑇𝑟𝑒 𝑓 = (𝑇 −𝑇0)/Δ𝑇, where Δ𝑇 is 9
◦𝐶 and 𝑇0 is 20

◦𝐶. The figures represent 15,000

- and 30,000 iterations more compared to figure 5.37.





6
Conclusions and Recommendations

6.1. Summary and conclusions
The goal of this study was to model the surface energy balance at micro-scale in order to acquire

fundamental insights into the UHI-effect. A model has been built mechanism-by-mechanism, adding in

different physical mechanisms one at a time. After each step, the model is validated, both qualitatively

and quantitatively, with the help of various case studies found in literature. After validation, a more

complex scenario of a 3D street canyon is studied, where the effect of different heat fluxes on the surface

temperature is investigated. On top of that, the effect of wall heating on flow characteristics is also

studied. In this chapter, this study’s model will be referred to as the SEB model. The most significant

findings of this study are:

• The SEB model gives good qualitative and quantitative agreements with an experimental study

concerning the diurnal variation of the effective albedo of three urban structures. The model

correctly captures the multiple reflective behavior of shortwave radiation between buildings.

• The SEB model produces highly realistic shadow patterns around buildings with the use of the

sun-lit factor computation.

• The view factor algorithm used in this work is validated and showed very good agreement with

analytical values. The employed Gauss-Legendre quadrature achieves less than 0.1 % relative

error compared to the analytical values.

• The SEB model showed a good agreement for its longwave radiation and conduction modeling

when compared to theoretical values.

• A good agreement was found for the radiative surface fluxes between this work and a numerical

study from literature. The conductive heat flux and sensible heat flux showed a lesser agreement

with this numerical study.

• Although the SEB model is inherently steady-state, it can produce realistic diurnal patterns by

simulating different moments during the day.

• The longwave trapping effect between buildings is captured with high fidelity by the SEB model.

It was found that this effect is significantly enhanced by a larger building height-over-width ratio.

The SEB model can show on micro-scale in which parts this effect is the most severe within an

urban canyon.

• An agreement was found between the 3D street canyon temperature profiles and the 2D street

canyon temperature profiles. It can therefore be said that a 2D approximation is a realistic

69
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approximation for a street canyon.

• A good agreement was found for the effect of wall heating on flow characteristics between this

study and a numerical study from literature. The non-homogeneously heated walls case showed

incoherent behaviour for the opposing case which may be the result of the system being dynamic

and inherently time-dependent.

6.2. Recommendations
Based on the findings of this study, several recommendations can be made for future research. These

recommendations are listed below.

• Include other surface energy fluxes: In this work, only four surface energy fluxes are included and

modeled in the SEB model. The fluxes that are left out are, among others, the latent heat flux and

the anthropogenic heat flux. Including these two surface energy fluxes in the SEB model would

make the model more complete and realistic.

• Universal Thermal Climate Index: In future studies, it would be interesting to add an algorithm for

calculating the Universal Thermal Climate Index (UTCI). The UTCI is an index that quantifies the

thermal comfort of the human body under specific meteorological conditions. Studying the UTCI

with the current model would give more insight into the effect of specific heat fluxes on human

thermal comfort.

• Different urban geometries: Urban environments are usually quite heterogeneous, with buildings

of different sizes and shapes. It is therefore recommended to study different and more complex

geometries. Possible geometries are buildings with different heights, buildings with windows and

circular-shaped buildings.

• Improved model inputs: The SEB model’s inputs can be further enhanced by coupling the model

with an atmospheric weather model. The weather model can provide more detailed model inputs,

such as the solar irradiance and the diffusive sky radiation.

• Improve conduction modeling: This study has modeled conduction through linearization and by

using a constant interior temperature boundary condition. The model can be improved by

applying a zero-flux boundary condition and by dividing the interior into multiple layers, each

with different thermal properties.

• Validation with experimental studies: The sensible heat flux model and conductive heat flux model

of the SEB model have not been validated with experimental studies. The validation with

experimental studies from literature is therefore recommended to make the model more robust

and complete.

• Two-way coupling: In this study, the SEB- and CFD model have been coupled through a one-way

coupling approach. To make the model more complete and realistic, it is recommended to improve

the model by applying two-way coupling between the SEB- and CFD models.

• Time-dependent mode: In this study, the non-homogeneously heated walls case was simulated by

using a steady-state RANS approach. The results suggested that the system may be inherently

time-dependent. It is therefore recommended to do this case study with a time-dependent

approach. This can be done by using, for example, LES or T-RANS.
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A
View factors: Analytical solutions and

calculated values

Analytical solutions
For certain configurations of two planes 𝐴𝑖 and 𝐴 𝑗 , the analytical solution for the view factor 𝜓𝑖 𝑗 exists.

The three cases that are considered in this study are given in figure A.1. Case 1 represents two identical

rectangles with size 𝑧1 × 𝑦1 which are parallel to each other and separated by a distance 𝑥1. Case 2

represents two rectangles of size 𝑧1 × 𝑦1 and 𝑥1 × 𝑦1 with one shared edge. The last case, case 3, consists

of two rectangles with sizes 𝑦1 × 𝑧1 and 𝑥1 × 𝑦2 that have one shared vertex.

Figure A.1: A schematic overview of the three different test cases used to validate the view factor algorithm.

The analytical formulae for these three cases are stated below (Suter, 2019).

Case 1:
𝑎 =

𝑧1

𝑥1

, 𝑏 =
𝑦1

𝑥1

𝜓𝑖 𝑗 = 𝐹1(𝑥1 , 𝑦1 , 𝑧1)

=
2

𝜋𝑎𝑏

[
ln

√
(1 + 𝑎2)(1 + 𝑏2)

1 + 𝑎2 + 𝑏2

+ 𝑎
√

1 + 𝑏2
arctan

𝑎√
1 + 𝑏2

+ 𝑏
√

1 + 𝑎2
arctan

𝑏√
1 + 𝑎2

− 𝑎 arctan 𝑎 − 𝑏 arctan 𝑏

]
.

(A.1)

Case 2:
𝑎 =

𝑧1

𝑦1

, 𝑏 =
𝑥1

𝑦1

73



74 Appendix A. View factors: Analytical solutions and calculated values

𝜓𝑖 𝑗 = 𝐹2(𝑥1 , 𝑦1 , 𝑧1)

=
1

𝜋𝑎

[
𝑎 arctan

1

𝑎
+ 𝑏 arctan

1

𝑏
−
√
𝑎2 + 𝑏2

arctan

1√
𝑎2 + 𝑏2

+ 1

4

log

[
(1 + 𝑎2)(1 + 𝑏2

(1 + 𝑎2 + 𝑏2) ×
(
𝑎2(1 + 𝑎2 + 𝑏2)
(1 + 𝑎2)(𝑎2 + 𝑏2)

) 𝑎2

×
(
𝑏2(1 + 𝑎2 + 𝑏2)
(1 + 𝑏2)(𝑎2 + 𝑏2)

)𝑏2 ] ]
.

(A.2)

Case 3:
𝜓𝑖 𝑗 = 𝐹3(𝑥1 , 𝑦1 , 𝑦2 , 𝑧1)

=
1

2𝑥1𝑦1

[
(𝑦1 + 𝑦2)𝑥1𝐹2(𝑥1 , 𝑦1 + 𝑦2 , 𝑧1)

− 𝑥1𝑦1𝐹2(𝑥1 , 𝑦1 , 𝑧1) − 𝑥1𝑦1𝐹2(𝑥1 , 𝑦2 , 𝑧1)
]
.

(A.3)

View factor calculations
The calculated values for the three cases described in the previous section for the trapezoidal method

and Gauss-Legendre method are given in the table below.

𝜓𝑖 𝑗 Analyt.: 𝜓𝑝 GL: 𝜓𝑔 Trap.: 𝜓𝑡 𝜓𝑔/𝜓𝑐 − 1 𝜓𝑡/𝜓𝑐 − 1

Case 1 (𝑥
1
= 𝑦

1
= 𝑧

1
) 0.199825 0.199825 0.198980 0 % - 0.4 %

Case 1 (𝑥
1
= 𝑦

1
= 0.5𝑧

1
) 0.285875 0.285876 0.284004 0 % - 0.7 %

Case 2 (𝑥
1
= 𝑦

1
) 0.200044 0.200044 0.200764 0 % 0.4 %

Case 2 (𝑥
1
= 0.5𝑦

1
) 0.146187 0.146187 0.147445 0 % 0.9 %

Case 3 (𝑥
1
= 𝑦

1
= 𝑦

2
= 𝑧

1
) 0.0405922 0.0405572 0.0553735 - 0.1 % 27 %

Table A.1: A table comparing the Gauss-Legendre method (GL) and trapezoidal method (Trap.) for the calculation of the viewing

factor for different cases, which are shown in the previous section. Both methods are computed with order 6. For each of these

cases the analytical view factor is also given.



B
Quantitative results

Infinite street canyon case
The quantitative results for the infinite street canyon case are presented in this section. These results

include the correlation coefficient, 𝜌𝑐 , and the normalized mean absolute error (NMAE). Both the

correlation coefficient and the NMAE compare this study’s results with the results of Schrĳvers (2020).

𝐻/𝑊 = 0.5 𝐻/𝑊 = 1 𝐻/𝑊 = 2

Surface fluxes

𝐾 0.984 0.999 0.998

𝐿env 0.997 0.998 0.997

𝐿out 0.978 0.982 0.919

𝐿
sky

0.998 0.999 0.998

Surface temperatures

Case 01 0.973 0.988 0.953

Case 02 0.878 0.872 0.758

Case 03 0.893 0.550 0.0910

Table B.1: Correlation coefficient comparison of the four different energy fluxes in case 01, and the surface temperatures per case.

All values are given for the three 𝐻/𝑊 ratios.

𝐻/𝑊 = 0.5 𝐻/𝑊 = 1 𝐻/𝑊 = 2

Surface fluxes

𝐾 12.0 % 5.5 % 12.3 %

𝐿env 3.31 % 2.91 % 2.37 %

𝐿out 3.12 % 3.39 % 6.14 %

𝐿
sky

3.89 % 2.60 % 13.7 %

Surface temperatures

Case 01 4.12 % 2.55 % 6.06 %

Case 02 10.1 % 13.3 % 18.0 %

Case 03 12.4 % 26.7 % 15.2 %

Table B.2: NMAE comparison of the four different energy fluxes in case 01, and the surface temperatures per case. All values are

given for the three 𝐻/𝑊 ratios.
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C
Solar angles

The solar azimuthal angle, 𝜙𝑠 , and solar zenith angle, 𝜃𝑠 , used in this study as model input are given in

this chapter.

Yokohoma National University
The solar angles used for simulating December 3

rd
, 1977, and June 15

th
, 1978, at Yokohama National

University in Japan are given in the table below. Yokohoma National University is situated at the

geographic location: (lat; lon) = (35.47; 139.58). The dates and location correspond to the experimental

study of Aida (1982) and are used in validating the shortwave radiation model. All times shown in the

tables are local time.

Time (ℎ) 𝜃𝑠 (
◦
) 𝜙𝑠 (

◦
)

08:00 76 131

08:15 74 133

08:30 70 138

09:00 68 142

10:00 61 156

10:30 59 164

11:00 58 172

12:00 58 188

13:00 61 204

14:00 68 217

15:00 76 229

15:30 81 234

15:45 83 237

16:00 86 239

Table C.1: Solar angles on December 3
rd

, 1977.

Time (ℎ) 𝜃𝑠 (
◦
) 𝜙𝑠 (

◦
)

07:00 61 81

07:30 55 84

08:00 49 89

09:00 37 98

10:00 25 112

11:00 15 140

12:00 13 199

13:00 21 240

14:00 32 257

15:00 44 268

16:00 57 276

16:30 63 280

17:00 69 284

Table C.2: Solar angles on June 15
th

, 1978.
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Amsterdam

Time (ℎ) 𝜃𝑠 (
◦
) 𝜙𝑠 (

◦
)

05:30 89 50

06:00 86 56

07:00 78 68

08:00 69 79

09:00 60 90

10:00 51 103

11:00 42 118

12:00 35 136

13:00 30 161

13:30 29 175

14:00 29 189

15:00 33 215

16:00 39 236

17:00 47 252

18:00 56 265

19:00 65 277

20:00 74 288

21:00 83 299

22:00 89 311

Table C.3: Solar angles on June 21
st

, 2023, in Amsterdam.



D
3D street canyon

D.1. Temperature profiles
Street temperature profiles
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(b) 𝐻/𝑊 = 0.5, case 03.
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(c) 𝐻/𝑊 = 1, case 01.
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(d) 𝐻/𝑊 = 1, case 03.
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Figure D.1: Street temperature profiles plotting according to figure 5.24.
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Street canyon temperature profiles
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(a) 𝐻/𝑊 = 0.5, case 01.
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(b) 𝐻/𝑊 = 0.5, case 03.
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(c) 𝐻/𝑊 = 1, case 01.
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(d) 𝐻/𝑊 = 1, case 03.
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Figure D.2: Street canyon temperature profiles plotting according to figure 5.24.
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D.2. Street temperature contours

(a) 𝐻/𝑊 = 0.5.

(b) 𝐻/𝑊 = 1.

(c) 𝐻/𝑊 = 2.

Figure D.3: Contours of the street temperatures for case 02 at the intersection area highlighted in figure 5.20. The vertical dashed

lines separate the intersection area from the rest of the street area. Note: The colorbar ranges differ per plot.
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D.3. 3D plot surface temperatures

(a) 06:00; 𝜃𝑠 = 86
◦ , 𝜙𝑠 = 56

◦
. (b) 12:00; 𝜃𝑠 = 35

◦ , 𝜙𝑠 = 136
◦
.

(c) 15:00; 𝜃𝑠 = 33
◦ , 𝜙𝑠 = 215

◦
. (d) 21:00; 𝜃𝑠 = 83

◦ , 𝜙𝑠 = 299
◦
.
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Figure D.4: A figure showing the surface temperatures in the 3D street canyon for case 03 for different times during the day. The

different colors indicate different surface fluxes, shown in the legend. The different times include 06:00 (a), 12:00 (b), 14:00 (c) and

18:00 (d).
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