
Methods and Techniques for
the Design and

Implementation of
Domain-Specific Languages

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op woensdag 11 januari 2012 om 12:30 uur door

Zef HEMEL

doctorandus informatica
geboren te Groningen

Dit proefschrift is goedgekeurd door de promotor:

Prof. dr. A. van Deursen

Copromotor: Dr. E. Visser

Samenstelling promotiecommissie:

Rector Magnificus voorzitter
Prof. dr. A. van Deursen Delft University of Technology, promotor
Dr. E. Visser Delft University of Technology, copromotor
Prof. dr. h. c. ir. M. J. Plasmeijer Radboud University Nijmegen
Prof. dr. M. G. van den Brand Eindhoven University of Technology
Prof. dr. C. M. Jonker Delft University of Technology
Prof. dr. ir. G. J. P. M. Houben Delft University of Technology
Dr. W. R. Cook University of Texas at Austin

The work in this thesis has been carried out at the Delft University of Tech-
nology, under the auspices of the research school IPA (Institute for Program-
ming research and Algorithmics). The research was financially supported by
the Netherlands Organisation for Scientific Research (NWO)/Jacquard project
638.001.610, MoDSE: Model-Driven Software Evolution.

Copyright c© 2012 Zef Hemel

Printed and bound in The Netherlands by CPI Wöhrmann Print Service.

ISBN 978-90-8570-794-3

Preface

I vividly remember my application interview for this Ph.D. position, early
2007. A time when buses still stopped almost in front of “the tallest building
on campus” in Delft where the Software Engineering Research Group is situ-
ated. My Ph.D. supervisor to be, Eelco Visser, decided to try out a new style
of interviewing he had picked up during his postdoc in Portland, Oregon.
This style entailed about four hours of interviews with him, Arie and other
Ph.D. students in the group. The talks with Eelco were toughest, he asked
me challenging questions, including “so, are you any good?” Arie spent his
interviewing time laying out his vision for the group and its history. One
Ph.D. student I talked to, Ali Mesbah, was happy that there was somebody
applying with a web background; another, Martin Bravenboer, said I would
really enjoy working with Eelco Visser. After hours of interviews they offered
me the job with only one concern: “will you be able to focus on a single topic
for four years?”

Well, dear reader, you have the answer in your hands. It takes you on
a journey of four years of research, Zef-style. I worked on topics ranging
from workflow, intermediate languages, compiler implementation techniques
to design concerns related to languages for web applications and mobile ap-
plications. Yet, the questions I asked myself over the past four years have
remained the same: how do we make software development more productive
and more fun? How do we stop spending our programming time spelling out
the nitty gritty detail that we don’t care about? Domain-specific languages are
one way to accomplish that, and this little book contains my scribblings re-
lated to both designing and implementing such languages.

Even though the work is done, at least for me, I look forward to collaborat-
ing with the people in Delft in the future. I’m happy to work at Cloud9 IDE,
Inc. where I will apply much of what I have learned the past four years and I
look forward to do so in collaboration with the people in Delft. Industry has a
lot to learn from research — but research also has a lot to learn from industry.

A C K N O W L E D G E M E N T S

As support during this process I would like to thank a couple of people. First
and foremost, my supervisor and co-promotor Eelco Visser. He provided
guidance and taught me everything I needed to know about how to conduct
research and has been an inspiration throughout the process. Second, I would
like to thank my promotor, Arie van Deursen, for his help, feedback and guid-
ance along the way — whenever I felt insecure, he was reassuring. I would
also like to thank my reading committee for their valuable feedback and kind
words: William Cook, Rinus Plasmeijer, Mark van den Brand, Catholijn Jonker
and Geert-Jan Houben.

iii

Then, I would like to thank all my other colleagues at SERG, and especially
our coffee/tea/lunch group: Danny Groenewegen, Sander Vermolen, Sander
van der Burg, Maartje de Jonge, Rob Vermaas, Eelco Dolstra and Lennart
Kats (my bro’, who people always confused me with, for some unknown
reason). I would also like to thank Esther van Seters, who helped me with the
administrative side of finishing up this Ph.D.

I would like to thank Martin Bravenboer and Eelco Dolstra for the source
files that formed the basis for this thesis’ lay-out, and Alberto González Sánchez
for the inspiration for its cover. The photograph used for the cover was taken
by Trey Ratcliff and is entitled “Morning. Coffee. Yellowstone. Fog.”1 The
interpretation of how it relates to the thesis is left as an exercise to the reader.

I would like to thank my family, for their support throughout the years —
my parents in particular. And last, but surely not least, I would like to thank
my wife Justyna — without her I would likely not have done this Ph.D., she
supported me always.

Zef Hemel
December 8, 2011

Poznań, Poland

1http://www.flickr.com/photos/stuckincustoms/4885953697/

iv

http://www.flickr.com/photos/stuckincustoms/4885953697/

Contents

1 Introduction 1
1.1 Domain-Specific Languages . 1

1.2 DSLs and the Web . 3

1.3 WebDSL . 4

1.4 Problem statement . 4

1.5 Verification . 5

1.6 Coverage and Abstraction . 6

1.7 Compiler Modularity and Separation of Concerns 7

1.8 Retargetability . 9

1.9 An Integrated DSL for the Mobile Web 10

1.10 Research Method . 11

1.11 Origin of Chapters . 11

2 Static Consistency Checking of Web Applications with WebDSL 13
2.1 Introduction . 13

2.1.1 Causes of Late Failure . 14

2.1.2 Design for Consistency Checking 15

2.1.3 Contributions . 15

2.2 Failures in Web Applications . 16

2.2.1 Web Application Aspects 16

2.2.2 Moment of Failure . 18

2.2.3 Frameworks . 18

2.2.4 Case 1: Consistency of References to the Data Model . . 19

2.2.5 Case 2: Consistency of Links to Pages 20

2.2.6 Summary . 21

2.3 Framework Design and Fault Detection 21

2.3.1 Reflection and Run-time Code Manipulation 22

2.3.2 Linguistic Separation . 23

2.3.3 Limited Static Type Checking 24

2.3.4 Run-time consistency checking 25

2.3.5 Summary . 25

2.4 Designing for Static Verifiability 26

2.4.1 Data Model . 27

2.4.2 User interface . 27

2.4.3 Application Logic . 28

2.4.4 Access Control . 28

2.4.5 Verifiability versus Flexibility 29

2.5 Rule-Based Consistency Checking 30

2.5.1 Language Definition . 30

2.5.2 Static Consistency Checking 31

2.5.3 Stratego . 33

v

2.5.4 Name Resolution . 34

2.5.5 Type Analysis . 37

2.5.6 Consistency Checking . 38

2.5.7 Summary . 40

2.6 Discussion and Related Work . 40

2.6.1 Consistency Checking Capabilities Integrated Into Lan-
guages and Frameworks 40

2.6.2 External Consistency Checkers 43

2.6.3 Finding Faults by Unit Testing 44

2.6.4 Previous Work . 45

2.6.5 Future work . 45

2.7 Conclusion . 46

Postscript . 47

3 WebWorkFlow 49
3.1 Introduction . 49

3.1.1 Contributions . 51

3.1.2 Outline . 51

3.2 WebWorkFlow by Example . 52

3.3 Transforming Procedures . 56

3.4 Encoding Patterns . 61

3.5 Discussion . 62

3.6 Conclusion . 65

Postscript . 67

4 Code Generation by Model Transformation 69
4.1 Introduction . 69

4.1.1 Contributions . 70

4.1.2 Outline . 71

4.2 WebDSL . 72

4.2.1 Data Model . 72

4.2.2 User Interface . 72

4.2.3 Data Operations . 73

4.3 Implementing WebDSL by Code Generation 74

4.4 Code Generation by Term Rewriting 76

4.4.1 Representing Models and Code with Terms 78

4.4.2 Rewrite Rules . 79

4.4.3 Concrete Object Syntax 79

4.4.4 Rewriting versus Template Engines 80

4.4.5 Composing Generation Rules 81

4.5 Transforming Generated Code 82

4.5.1 Identifier Composition . 83

4.5.2 Partial Classes and Methods 83

4.5.3 Interface Extraction . 85

4.5.4 A Revised Pipeline . 85

4.6 Model-to-Model Transformations 85

vi

4.6.1 Modules . 86

4.6.2 Modular Data Models . 87

4.6.3 Template Definitions . 88

4.6.4 Deriving User Interface Elements from Types 88

4.6.5 Access Control . 88

4.6.6 Workflow . 90

4.7 Implementing Model-to-Model Transforms 90

4.7.1 Local-to-local . 91

4.7.2 Global-to-local . 91

4.7.3 Local-to-global . 92

4.8 Transformation Modularity and Extensibility 93

4.8.1 Staged Normalization . 94

4.8.2 Innermost Normalization 95

4.8.3 Normalization with Local-to-Global Rules 96

4.9 Combining Type Analysis and Transformation 97

4.9.1 Integrating Type Analysis and Transformation 98

4.9.2 Name Resolution . 100

4.9.3 Type Analysis . 102

4.9.4 Type Constraints . 102

4.9.5 Type Analysis during Transformation 102

4.10 Discussion . 104

4.10.1 Compilation by Normalization 104

4.10.2 Rewriting Tools . 105

4.10.3 Model Transformation . 105

4.10.4 Code Generation . 109

4.10.5 Web Application Generators 110

4.10.6 Evaluation . 110

4.10.7 Future Work . 111

4.11 Conclusion . 112

5 PIL 113
5.1 Introduction . 113

5.1.1 Contributions . 115

5.1.2 Outline . 115

5.2 Code Generator Architecture . 115

5.3 Retargeting a DSL Generator . 119

5.3.1 Adding a Backend to a Generator 119

5.3.2 Language Translation . 120

5.3.3 High-Level Intermediate Languages 121

5.3.4 Evaluation . 121

5.4 PIL: A Platform Independent Language 122

5.4.1 PIL: Object-Oriented Programming Essentials 123

5.4.2 PIL/G: Compositionality of Code Generation 124

5.4.3 Developing PIL Back-Ends 126

5.5 PIL/Platform Interaction . 126

5.5.1 API Wrapping . 127

Contents vii

5.5.2 Missing API on Some Platforms 128

5.5.3 Semantic Mismatches . 128

5.5.4 Platform-Specific Glue . 129

5.6 Discussion . 130

5.6.1 Future Work . 130

5.6.2 Related Work . 131

5.6.3 Conclusion . 133

Postscript . 135

6 Mobl 139
6.1 Introduction . 139

6.1.1 Contributions . 142

6.1.2 Outline . 142

6.2 Mobile Web Applications . 142

6.2.1 Technical Architecture . 143

6.2.2 Architectural Patterns . 144

6.2.3 No Integration . 145

6.2.4 No Abstraction . 145

6.2.5 Accidental Complexity . 146

6.3 Mobl Architecture . 146

6.3.1 Integration and Tooling 146

6.3.2 Model-View Pattern . 148

6.4 Data Model . 149

6.4.1 Data . 150

6.4.2 Logic . 151

6.4.3 Query . 153

6.4.4 A Task Manager Data Model 154

6.5 Reactive User Interfaces . 154

6.5.1 Declarative User Interfaces 157

6.5.2 Data Binding and Reactive Programming 157

6.5.3 Implementation . 158

6.5.4 Reusable Controls . 159

6.6 Navigation . 159

6.6.1 Multiple screens . 160

6.6.2 A Task Manager User Interface 161

6.7 Higher-Order Controls . 162

6.7.1 Tab Set . 163

6.7.2 Master-detail . 163

6.8 Styling . 166

6.8.1 Styling in Mobl . 168

6.8.2 Theming . 168

6.9 Discussion . 169

6.9.1 WebDSL . 171

6.9.2 Related work . 172

6.10 Conclusion . 173

Postscript . 175

viii

7 Conclusion 179
7.1 Summary of Contributions . 179

7.2 WebDSL and Mobl in Practice . 180

7.3 Research Questions . 180

7.4 Future Work . 182

7.4.1 Systematic approach . 182

7.4.2 Evaluation . 183

Bibliography 185

A Appendix: Consistency Checking in Web Application Frameworks 201
A.1 Data Model Consistency Checking 201

A.2 Consistency of Property Types 201

A.3 Consistency of Entity Relationships 202

A.3.1 Consistency of Data Validation 203

A.4 User Interface Consistency Checking 204

A.4.1 Usage of Valid Page Elements 204

A.4.2 User Interface Element Nesting 205

A.4.3 Consistency of References to the Data Model and to Pages206

A.4.4 Consistency of Action and Controller Binding 206

A.5 Logic Consistency Checking . 207

A.5.1 Consistency of Data Model References 207

A.5.2 Consistency of Redirects to Pages 208

A.5.3 Consistency of Data Binding 208

A.6 Access Control Consistency Checking 209

A.6.1 Consistency of Data Model References 209

Samenvatting 211

Curriculum Vitae 215

Titles in the IPA Dissertation Series 217

Contents ix

x

1
Introduction

The promise of model-driven engineering is to reduce the development and
maintenance effort of software by developing at a higher-level of abstrac-
tion through the use of domain-specific languages (DSLs). Domain-specific lan-
guages, as opposed to general-purpose languages, are software languages that
focus on a specific problem domain, e.g. insurance, database querying, gram-
mars or workflow.

The research in this thesis is conducted as part of the MoDSE (Model-
Driven Software Evolution) project. The goal of the MoDSE project is to
develop a systematic approach to model-driven software development using
domain-specific languages. This approach includes methods, techniques, and
underlying tool support. The group in which the research is conducted (the
Software Engineering Research Group at Delft University of Technology) is
building and evolving tools to simplify the development of domain-specific
languages, including SDF [Heering et al., 1989] and SGLR [Visser, 1997a] for
parsing, Stratego/XT [Visser, 2004, Bravenboer et al., 2008] for program trans-
formation and Spoofax [Kats and Visser, 2010a] for building IDE (Integrated
Development Environment) plug-ins for the developed languages.

The goal of the research is to explore the DSL design space and to de-
velop techniques to simplify the implementation of DSLs. The research is
conducted through case studies in DSL design, using tools developed as part
of the MoDSE project.

1.1 D O M A I N - S P E C I F I C L A N G U A G E S

Domain-specific languages have been in use for decades. In Unix there is
a long tradition of such “little languages” [Bentley, 1986], including sh and
bash (for shell scripting), lex and yacc (for lexical analysis and parsing), and
make (for automated software builds). Other examples of commonly used
DSLs in software engineering include XML to express structured data, XSLT
to transform XML documents, SQL (Structured Query Language) to query
relational databases, HTML to mark-up web documents, and CSS to style
HTML documents.

Advantages and properties of domain-specific languages have been studied
in literature [Mernik et al., 2005, van Deursen et al., 2000a, van Deursen and
Klint, 1998, Spinellis and Guruprasad, 1997, Spinellis, 2001] and offer many
opportunities:

• Concise, domain-specific notations. A DSL offers natural notations to more
succinctly express the programmer’s intention.

1

• Analysis and verification. The limited scope of a DSL enables a domain-
specific verification tool to analyze a DSL program and report domain-
specific warnings and error messages.

• Abstraction. A DSL can abstract from boilerplate code (low-level, repet-
itive code code, e.g. the initialization sequence of a library) that has to
be written by hand otherwise.

• Platform independence. DSLs can abstract from a particular platform or
implementation. Therefore, multiple implementations of a DSL can ex-
ist, e.g. an interpreter, a compiler that compiles the DSL to Java and a
compiler that compiles to C.

• Domain-specific tooling support. The limited application domain and higher
level of abstraction of a DSL enable better program understanding. Con-
sequently, there is an opportunity to offer better tooling as part of an
Integrated Development Environment (IDE).

In the current state of practice, especially in software development for the
web, mixing of general-purpose languages (such as C, Java, Python and Ruby)
and domain-specific languages is ubiquitous. For instance:

1. A Java program (GPL) that has a SQL (DSL) query embedded (in a
string) to retrieve data from a database;

2. A shell script (DSL) that invokes a number of GPL programs in se-
quence; and

3. A HTML document (DSL) that embeds JavaScript (GPL), which in turn
manipulates the web page (the HTML Document Object Model) when
the user clicks a button.

The examples of DSLs mentioned thus far are examples of external DSLs: lan-
guages that define their own custom syntax and semantics. Many modern
software frameworks use internal DSLs, a style of API design that uses tech-
niques such as fluent interfaces [Fowler, 2005] and meta-programming to give
the GPL the look and feel of a domain-specific language. For instance, the
EasyMock1 Java library uses fluent interfaces to implement an internal Java
DSL that looks like an English sentence:

EasyMock.expect(mockCollection.remove(null))
.andThrow(new NullPointerException())
.atLeastOnce();

Other well-known examples of internal DSLs include Ruby on Rails2 for
building web applications, Rake3 for building Ruby projects and JQuery4 for

1http://easymock.org
2http://www.rubyonrails.org
3http://rake.rubyforge.org
4http://www.jquery.com

2

http://easymock.org
http://www.rubyonrails.org
http://rake.rubyforge.org
http://www.jquery.com

manipulating the HTML Document Object Model. Languages such as Haskell
and the various Lisp dialects rely heavily on internal DSLs as well.

Internal DSLs are cheap to develop, because they do not require any knowl-
edge of parsing and compiler construction. However, their syntax and seman-
tics are limited by their host language. In addition, the amount of checking
that is performed on their programs at compile time is limited by the power
of the type system of the host language, and its error messages are typically
generic and difficult to interpret. Therefore, in this thesis, we focus primarily
on external DSLs.

1.2 D S L S A N D T H E W E B

Over the past years, many types of applications have moved to the web: ency-
clopedias, e-mail, word processing, book keeping — they all have web-based
versions today. The main advantage of developing for the web, compared
to building desktop applications, is deployment. A web application can be
accessed from anywhere in the world, from any platform, be it Windows on
a desktop, a Macintosh computer or a mobile device. There is no need to
install any software beyond a web browser, and new versions of software can
be deployed once to a web server and are immediately accessible for all users.

There is an abundance of libraries and frameworks available enabling de-
velopers to rapidly develop web applications. Most modern web web frame-
works have integrated many DSLs, both internal and external. For instance,
consider the Java-based Seam framework5. Applications developed using the
Seam framework use Java for application logic, the JavaServer Faces DSL (ex-
ternal DSL – an extension of HTML) to construct user interfaces, CSS for
styling the user interface (external DSL), Hibernate annotations on Java classes
to define the application’s data model (internal DSL), a policy language for
defining access control rules (external DSL) and various XML-based configu-
ration files (external DSLs).

While the Seam framework simplifies web development using Java, it in-
troduces some new problems:

• Code encoding protocols. Repetitive code that the used language cannot
abstract over, e.g. code required to setup application components (en-
coded using different languages) to work together.

• Verification. The composition of application components written using
different languages only happens at run-time. No reliable tools are avail-
able that verify the composed program, as e.g. a Java compiler does for
pure-Java programs. As a result, long compile, deploy and test cycles
are required to detect errors.

5http://seamframework.org

Chapter 1. Introduction 3

http://seamframework.org

1.3 W E B D S L

Due to the aforementioned problems, the web is an interesting domain to
invent a new domain-specific language for. Therefore, Visser [2008] devel-
oped a prototype of WebDSL, an external domain-specific language to rapidly
develop data-driven web applications. Rather than a collection of loosely
coupled DSLs, which are difficult to verify statically, WebDSL is a single syn-
tactically integrated language. While syntactically integrated, WebDSL still sup-
ports separation of concerns through a number of domain-specific sub-languages
for defining the various aspects of a web application, including user interfaces,
data models (to be persisted to a database) and actions to define application
logic.

WebDSL is a first case study in the design and implementation of domain-
specific languages as part of the MoDSE project. The syntax of WebDSL is
defined using SDF (Syntax Definition Formalism) [Heering et al., 1989] and
the compiler is implemented using Stratego/XT [Visser, 2004].

As discussed, DSLs are typically only used to develop aspects of an appli-
cation, for instance to query a database (SQL queries), to glue parts of an
application together (shell scripts), or to generate scaffolding code that needs
to be extended to build a complete application (Mod4J [Lussenburg et al.,
2010]). In contrast, WebDSL is designed to construct complete applications.
The WebDSL compiler translates programs into ready-to-deploy web applica-
tions and thus performs 100% code generation, i.e. the generated application
need not (and should not) be modified after generation.

WebDSL significantly reduces the amount of code required to build data-
driven web applications, by introducing more concise notations and auto-
matically generating required boilerplate code. Developer productivity is
further improved by the static verification of WebDSL applications, which
detects common inconsistencies in web applications, including non-existing
data model properties referenced in the user interface and internal links to
pages that do not exist.

1.4 P R O B L E M S TAT E M E N T

The original WebDSL as described by Visser [2008], was a proof of concept for
a systematic approach to the design and implementation of DSLs. The proto-
type implementation of WebDSL sparked a range of new research challenges
and opportunities:

• Application verification. WebDSL had a type checker that could verify
basic properties of its web applications, but many errors remained un-
detected by the checker — there were many opportunities to improve
verification of WebDSL applications and to support it in a scalable and
extensible manner in the compiler.

4

• Coverage. While WebDSL could be used to build basic web applications,
its coverage was limited, a large class of applications could not yet be
built.

• Abstraction. Many aspects of a web application still required too much
boilerplate code to be written by hand — there were opportunities to
develop better abstractions.

• Code generation. The code generation component of the WebDSL com-
piler was a large, monolithic piece of code that was difficult to maintain
and extend — there was an opportunity to refactor the compiler and
make it more extensible and to better separate compiler concerns.

• Portability. The WebDSL compiler generated code using the JBoss Seam
framework. The performance of generated applications was poor. There-
fore, the possibility to port the compiler to run on a different platform,
possibly multiple, needed to be investigated.

Clearly, the WebDSL project offered a fertile playground to explore both design
and implementation aspects of syntactically integrated DSLs. In addition, the
design approach taken to the web domain in WebDSL could lead to a series of
similarly designed languages for different domains. Thus, we formulate the
core research question of this thesis as follows:

C O R E R E S E A R C H Q U E S T I O N

How to design and implement statically verifiable and syntactically inte-
grated domain-specific languages?

The specific research challenges mentioned are addressed in the following
sections.

1.5 V E R I F I C AT I O N

The original WebDSL paper [Visser, 2008] describes the problem that faults
in JBoss Seam applications only manifest themselves at run time. However,
what is unclear is whether the problem of late failure is a problem of the Seam
framework specifically, or if it is a more widespread problem.

For frameworks that rely on dynamically typed languages, such as Ruby
on Rails (based on Ruby) and Django (based on Python) the lack of static ver-
ification is to be expected. These languages do not have compilers or type
checkers, so any error can only be detected through repeated systematic test-
ing. However, one may expect that web frameworks based on statically typed
languages, such as Lift (based on Scala) and the Seam framework (based on
Java) would benefit from static verification by the Scala and Java compilers.
However, at least in the case of the Seam framework, this is only partly true.

Chapter 1. Introduction 5

The use of frameworks involves adhering to numerous additional rules, con-
ventions and protocols that are specific to the framework’s domain — prop-
erties not verifiable by the Java compiler.

In addition, Seam web applications are not built using a single language;
numerous DSLs are used to define components of the application. While the
components interact frequently, these interactions are not statically verified.
Therefore, in practice, inconsistencies manifest at run-time as software fail-
ures. To investigate if the problems exposed by the Seam framework are more
widespead, to get a better understanding of the origin of these issues and to
come up with a solution, we formulate the following research question:

R E S E A R C H Q U E S T I O N 1

Is the lack of static verification a common problem in today’s web frame-
works? If so, how can that problem be remedied?

To answer this question, Chapter 2 surveys a number of state-of-practice web
frameworks (Ruby on Rails, Lift and Seam) by introducing errors and observ-
ing how and when these errors manifest as faults when the application is run.
Subsequently, we discuss an approach to language design that supports the
static verification of entire applications and demonstrate how this approach is
implemented in WebDSL using the Stratego transformation language.

1.6 C O V E R A G E A N D A B S T R A C T I O N

A risk of domain-specific languages is that their constructs are too high-level,
preventing good coverage of the domain. While such DSLs typically support
very concise solutions to a set of problems, they are rendered useless as soon
as variations of the problem have to be solved that the language does not
support.

A manifestation of this problem can be found in the context of workflow de-
scription languages. Workflow is concerned with the coordination of activities
performed by participants involving artifacts. For instance, a user registration
workflow involves filling in a registration form, e-mail verification and admin-
istrator approval; the process of academic paper reviewing involves bidding,
review submission, discussion and notification of authors. There are many
DSLs that support high-level definition of workflows, including UML activity
diagrams [Dumas and ter Hofstede, 2001], BPEL [Curbera et al., 2003], and
YAWL [van der Aalst and ter Hofstede, 2005]. While workflow languages
raise the level of abstraction from manually encoding to declarative descrip-
tions of workflows, they have no mechanism to deal with coverage issues, i.e.
what if a workflow follows a pattern that is not supported by the language?

This raises the issue of maintaining coverage while introducing abstractions
in a DSL:

6

Figure 1.1 Compiler transformation steps

R E S E A R C H Q U E S T I O N 2

How can the level of abstraction in a DSL be raised without reducing its
coverage?

Chapter 3 describes WebWorkFlow, an extension of WebDSL that adds concise
workflow constructs. To prevent reduced coverage of the resulting language,
workflows can be expressed at three levels of abstraction, enabling developers
to escape to a lower level for more flexibility.

1.7 C O M P I L E R M O D U L A R I T Y A N D S E PA R AT I O N O F C O N -
C E R N S

A DSL compiler typically compiles a program in roughly four steps (Fig-
ure 1.1):

1. During the parsing step, the textual representation of the program is
turned into a model of the program referred to as an abstract syntax
tree (AST), a tree-shaped data structure that forms a structured, abstract
representation of the program that can be easily analyzed.

Chapter 1. Introduction 7

2. The checking phase analyzes the resulting AST for consistency and re-
ports errors and warnings as needed.

3. Desugaring transformations are transformation that simplify the checked
AST. These transformations can be simple normalizations as well as
more complex transformations.

4. Code generation translates the core language AST that is produced by
the previous steps to the language of the target platform, typically a
general-purpose language e.g. Java or C.

Over the years, many students contributed to the WebDSL compiler and grew
it rapidly to over 30,000 lines of code. The code base has become increasingly
difficult to extend.

One of the code smells (indicators that code is not in a good state) in the
compiler are so-called “God rules”. Analogous to “God classes” [Deligiannis
et al., 2004] in object-oriented programming, “God rules” are large transfor-
mation rules in the compiler that dispatch numerous sub-rules that generate
parts of a single, monolithic artifact. As a result, separate aspects of the lan-
guage that are responsible to generate part of a single artifact have to be
invoked from a God rule — a typical case of mixing concerns within the com-
piler.

WebDSL internally annotates the AST with type information that is used
by transformation rules. However, as soon as the AST is transformed, those
type annotations are often invalid or disappear. Therefore, type analysis has
to be performed after every transformation iteration. As a result, the compiler
uses an increasingly long pipeline of stages that first perform a transforma-
tion, followed by a reanalysis of the entire AST. Not only is this inefficient, it
also requires the extension of the transformation pipeline every time a new
transformation is added to the compiler.

The described problems raise the following research question:

R E S E A R C H Q U E S T I O N 3

How to maintain separation of concerns and efficiently combine analysis
with transformation in a DSL compiler?

Chapter 4 introduces the code generation by model transformation approach to
building DSL code generators. The approach is based on the idea of gener-
ating code as a model (AST) rather than plain text, supporting further trans-
formation of code before being written to files. The chapter describes how
transformation of generated code can be used to improve separation of con-
cerns in the compiler. Part of the approach is a novel method combining type
analysis with transformations. The implementation of the code generation by
model transformation approach in the WebDSL compiler is described.

8

1.8 R E TA R G E TA B I L I T Y

The initial prototype of WebDSL generated code that uses the JBoss Seam
framework. The resulting applications had to be deployed on a Java Appli-
cation Server such as JBoss6. The time between invoking the WebDSL com-
piler and the application being available to test was usually multiple minutes.
In addition, once the application ran, it ran slowly. This was partly due to
the heavy-weight framework used and partly due to all the extra code that
needed to be generated to let the framework behave according to WebDSL
semantics [Groenewegen et al., 2008].

Therefore, we decided to replace the JBoss Seam back-end with two lighter-
weight back-ends: one targeting Java Servlets and one targeting Python run-
ning on Google AppEngine7. Both back-ends generate low-level code, rather
than relying on heavy-weight frameworks. In addition to resulting in better
performance, the new back-ends test whether WebDSL is a platform-independent
language, i.e. if it has an implicit dependency on the underlying platform.
Generally speaking, a DSL should abstract from the underlying platform and
thus be portable.

The two new back-ends enable users to develop WebDSL applications and
deploy on either a Java infrastructure or Google’s AppEngine infrastructure.
However, the two back-ends slow down the development of WebDSL. Every
language feature that requires changes in the back-end takes twice as much
work, because the change has to be implemented twice. In practice this does
not always happen and as a result, over time, the back-ends slowly diverge in
their feature sets.

While being developed for two quite different platforms, the two back-ends
are very similar in structure. Since neither of the back-ends rely heavily on
frameworks (besides object-relational mapper libraries), and essentially gen-
erate print statements that produce HTML code, the differences in generated
code are largely cosmetic.

To remedy similar issues, traditional compilers rely on intermediate lan-
guages to simplify retargeting compilers to multiple machine architectures [Steel,
1961, Richards, 1971, Peyton Jones et al., 1999, Benitez and Davidson, 1988,
George, 1997]. Instead of directly emitting machine instructions for each tar-
geted machine arcitecture, the compiler emits intermediate language instruc-
tions, which in turn are mapped to specific instructions for each machine
architecture. However, these intermediate languages are not easily reused in
DSL compilers. DSL compilers generate code at the level of software platforms
rather than machine architectures. A software platform consists of one or
more programming languages with a set of libraries and frameworks, deploy-
able on one or more operating systems. Targeting software platforms enables
compiler builders to implement DSLs more quickly than having to emit low-
level machine instructions. This raises the following question:

6http://jboss.com
7http://appengine.google.com

Chapter 1. Introduction 9

http://jboss.com
http://appengine.google.com

R E S E A R C H Q U E S T I O N 4

How can the implementation and maintenance effort of supporting mul-
tiple software platforms with DSLs be reduced?

Chapter 5 introduces PIL, a Platform Independent Language to be used as a
high-level intermediate language for DSL compilers to cheaply support mul-
tiple software platforms. Instead of generating target platform code directly,
it emits PIL code that is subsequently compiled to code for multiple platforms
by the PIL compiler. Consequently, only a single compiler back-end needs to
be built and maintained.

1.9 A N I N T E G R AT E D D S L F O R T H E M O B I L E W E B

In order to test the ideas and techniques developed in Chapter 2–5 we perform
a second case study by developing a language for a new domain. The domain
of mobile web applications is an obvious choice because it exposes many of the
same problems as the web in general.

The market for mobile touch devices such as the iPhone, iPad, Android and
BlackBerry devices is rapidly growing. At the time of writing, over a million of
these devices are sold every day8. These devices come with fast and modern
web browsers that enable its users to access the web from anywhere.

However, there are important restrictions to take into account when de-
veloping web applications for mobile devices. Mobile devices are used in
different contexts and have different features and constraints than the per-
sonal computers that are typically employed to access the web. For instance,
on mobile devices, Internet access is not always available, reliable or fast,
screen estate is limited, expected user interaction patterns are different, such
as touch controls and gestures such as tapping, swiping and pinching and
applications are expected to respond to changes in context, e.g. device orien-
tation and changes in location.

Due to the restricted screen size and limited forms of input (finger touches),
mobile applications use different user interface styles than regular web appli-
cations. For instance, the navigation through mobile user interfaces is typi-
cally hierarchical: At the top level are tabs, the roots of the hierarchy. Each
tab typically has a list of items the user can choose from. When the user
picks one, the current screen slides to the left, the new screen slides in from
the right. The user can then drill down further, or go back, effectively mov-
ing up and down a tree structure. The mobile web space is still young and
rapidly changing. There is a lot of innovation in user interface and interaction
patterns ongoing requiring mobile toolkits and frameworks to quickly adapt.

WebDSL is designed with a particular implementation in mind — stateless
server-side web applications — imposing restrictions on the language. For
instance, WebDSL applications are stateless and HTTP request-based. There-
fore, changes in data are only persisted and become visible after a request to

8http://mashable.com/2011/05/19/smartphone-sales-q1-2011-gartner/

10

http://mashable.com/2011/05/19/smartphone-sales-q1-2011-gartner/

the server has taken place. The expectation for mobile applications is different.
Mobile applications typically do not have “Save” buttons or form submits, in-
stead data is persisted continuously. Nevertheless, mobile web development
exposes many similar problems as regular web development including the
need to combine multiple loosely-coupled languages in a single application
(for instance HTML, CSS, SQL and JavaScript) and the boilerplate code that
needs to be written (such as cache manifest files). This raises the following
question:

R E S E A R C H Q U E S T I O N 5

How can the language design and implementation techniques developed
for WebDSL be applied to the mobile web domain?

Chapter 6 describes mobl, a new language to rapidly develop mobile web ap-
plications. Mobl implements a number of previously discussed techniques,
including design for static verification (Chapter 2), syntactic language exten-
sions (Chapter 3) and certain code generation by model transformation tech-
niques (Chapter 4).

1.10 R E S E A R C H M E T H O D

The MoDSE project aims to develop a systematic approach to model-driven
software development using DSLs by developing methods, techniques, and
tools that support DSL development. In order to evaluate the developed
methods, techniques and tools we apply them in practice. The development
of WebDSL and mobl contribute both toward the development of a systematic
approach to DSL design as well as evaluating the tools developed as part of
MoDSE (including SGLR, Stratego and Spoofax) in a real-world setting.

Developing languages beyond the level of prototypes enables them to be
used in practice, resulting in valuable feedback that supports our research.
Beside using them ourselves, we attempt to develop communities of users
around our DSLs that test the language and provide feedback to steer further
development.

In addition, we post preliminary research results on-line to obtain input
and share our findings with non-academics that would otherwise not read
our papers. For instance, the survey of the state of practice for Chapter 2 had
been posted online as a series of blog posts9 and generated a fair amount of
attention and input for the version prepared for publication.

1.11 O R I G I N O F C H A P T E R S

The core chapters (Chapter 2–6) in this dissertation are slight adaptations
of peer-reviewed papers at programming language and software engineering
conferences and journals. Since these papers were published independently,

9http://zef.me/2308/when-rails-fails

Chapter 1. Introduction 11

http://zef.me/2308/when-rails-fails

they can also be read independent of each other. Since all papers have their
own, individual contributions, there is some redundancy in the background
material, motivation, and examples. In addition, most chapters end with a
postscript section presenting our updated view on the chapter since publica-
tion, as well as putting it in a chronological perspective.

• Chapter 2 is an updated version of the Journal of Symbolic Computation
2011 paper Static Consistency Checking of Web Applications with WebDSL.
[Hemel et al., 2011]

• Chapter 3 is an updated version of the MODELS 2008 paper WebWork-
Flow: An Object-Oriented Workflow Modeling Language for Web Applications.
[Hemel et al., 2008b]

• Chapter 4 is an updated version of the Software and System Modeling
journal paper Code Generation by Model Transformation. A Case Study in
Transformation Modularity. [Hemel et al., 2010]

A previous version of this paper was presented at ICMT 2008 [Hemel
et al., 2008a].

• Chapter 5 is an updated version of the SLE 2009 paper PIL: A Platform
Independent Language for Retargetable DSLs. [Hemel and Visser, 2009]

• Chapter 6 is an updated version of the OOPSLA 2011 paper Declaratively
Programming the Mobile Web with Mobl. [Hemel and Visser, 2011]

Papers contributed to during this research, but not directly included in this
thesis are:

• The DSM 2008 paper When Frameworks Let You Down: Platform-Imposed
Constraints on the Design and Evolution of Domain-Specific Languages. [Groe-
newegen et al., 2008]

• The IEEE Software 2010 paper Separation of Concerns and Linguistic Inte-
gration in WebDSL. [Groenewegen et al., 2010]

12

2
Static Consistency Checking of Web
Applications with WebDSL

A B S T R A C T

Modern web application development frameworks provide web application
developers with high-level abstractions to improve their productivity. How-
ever, their support for static verification of applications is limited. Inconsistencies
in an application are often not detected statically, but appear as errors at run-
time. The reports about these errors are often obscure and hard to trace back
to the source of the inconsistency. A major part of this inadequate consis-
tency checking can be traced back to the lack of linguistic integration of these
frameworks. Parts of an application are defined with separate domain-specific
languages, which are not checked for consistency with the rest of the applica-
tion. Examples include regular expressions, query languages and XML-based
languages for definition of user interfaces. We give an overview and analysis
of typical problems arising in development with frameworks for web applica-
tion development, with Ruby on Rails, Lift and Seam as representatives.

To remedy these problems, in this chapter, we argue that domain-specific
languages should be designed from the ground up with static verification and
cross-aspect consistency checking in mind, providing linguistic integration of
domain-specific sub-languages. We show how this approach is applied in the
design of WebDSL, a domain-specific language for web applications, by exam-
ining how its compiler detects inconsistencies not caught by web frameworks,
providing accurate and clear error messages. Furthermore, we show how this
consistency analysis can be expressed with a declarative rule-based approach
using the Stratego transformation language.

2.1 I N T R O D U C T I O N

Web applications are complex software systems that combine many technical
concerns, such as database querying, input handling, user interface design,
and navigation. Web application frameworks are often used to simplify web
development and improve web developer productivity. A web framework
consists of a set of APIs built on a general-purpose programming language.
Popular web frameworks include JBoss Seam, Lift, Ruby on Rails, and Django.
These frameworks enable abstraction over many low-level details of normal
web application development, avoiding handwritten boilerplate code, thus
increasing developer productivity.

While web frameworks improve the clarity of the application and expres-
sivity of developers that use it, applications containing inconsistencies (faults)

13

often fail late, i.e. at run time or deployment time instead of at compile time.
Even inconsistencies in applications written using a framework based on a
statically typed language such as Java or Scala are often only revealed at de-
ployment time or at run time. The errors produced when the application fails
are often difficult to trace back to their origin and error messages are typically
not domain-specific, exposing framework implementation details.

2.1.1 Causes of Late Failure

Web frameworks use a combination of high-level APIs, meta-programming
techniques, and domain-specific languages to achieve higher developer ex-
pressivity. Meta-programming techniques used range from reflection in Scala
and Java-based frameworks to extension and adaptation of classes and ob-
jects at runtime in frameworks based on dynamically typed languages such
as Ruby and Python. Domain-specific languages (DSLs) are used for user in-
terface construction (ASP.NET, JSF), access control policies (rule files), pattern
matching (regular expression) and database queries (SQL, HQL).

Domain-specific languages, as used by web frameworks, are not linguisti-
cally integrated with the rest of the framework. Therefore, in practice, very few
consistency checks are performed on connections between the application as-
pects defined in different domain-specific languages, resulting in late failure.
Web frameworks based on statically typed general purpose languages can re-
port a limited class of application inconsistencies at compile-time. Modern
frameworks, such as JBoss Seam and Scala Lift, cannot identify all inconsis-
tencies during compilation, because the static checks they provide are limited
to the type checker of their host language (Java and Scala respectively). Other
errors, often inconsistencies between application components defined in sep-
arate DSLs, are only reported at deployment time or at run time, resulting in
the same issues web frameworks based on dynamically typed languages have.

Frameworks based on dynamically typed languages, such as Ruby on Rails
and Python’s Django only provide runtime consistency checks. Typically, con-
sistency in these frameworks is not explicitly checked, but rather manifests
itself when the faulty code is executed. Consequently, errors are not always
easily traced back to the source of the problem, and the messages are often
unclear and confusing, relating to the framework implementation and not the
actual web application. Many errors – not all – include a stack trace directing
the developer to the point in the source code (either the framework’s code or
the developer’s) where the failure occurred. Reported error messages often
expose underlying implementation details. For instance, when routing to a
non-existing controller in Ruby on Rails, an “uninitialized constant” error is
reported that refers to a name-mangled version of the application’s controller
name.

14

2.1.2 Design for Consistency Checking

One solution to late failure and bad error reporting is to build static verifiers
for existing web frameworks. However, developing verifiers is very compli-
cated because the framework was never intended to be statically verified.

In this chapter we propose a different solution: web languages should
be designed to enable static verification of its applications for consistency.
We show that linguistic integration of the languages is essential for effective
checking of consistency properties that span multiple aspects of the appli-
cation. Linguistic integration entails that different technical concerns, typi-
cally expressed using completely separate languages, are instead expressed
using a single language integrating the syntax and semantics of multiple sub-
languages as described by Visser [2007a].

We illustrate this approach with WebDSL, a web language integrating a
number of sub-languages for different concerns related to the construction
of web applications with a rich data model, such as a data modeling lan-
guage, a user interface language, an action language, and an access control
language. Based on linguistic integration, consistency properties that span
multiple technical domains can still be statically checked in WebDSL. Impor-
tant domain concepts, such as entities, pages and templates are first-class
language elements in WebDSL ensuring that error messages for consistency
violations are always expressed in a domain-specific manner, e.g. “entity not
found” rather than “undefined constant”.

2.1.3 Contributions

This chapter identifies early, accurate consistency checking of web applica-
tions as a problem. It is an important problem since it directly affects the
productivity of web developers: with better, more accurate static checks,
maintenance of source code can be simplified. Existing frameworks based
on general-purpose programming languages provide only a limited number
of consistency checks. External tools that provide additional checks are hard
to construct and maintain, especially when targeting linguistically separate
languages. We argue that only an integrated solution allows for an efficient
implementation of static consistency checking.

The contributions of this chapter are as follows:

1. An analysis of areas where consistency checks are typically lacking
within current web frameworks.

2. An analysis of the quality of failure of three state-of-the-practice web
frameworks.

3. A declarative, rule-based approach to linguistic integration and consis-
tency checking.

4. A demonstration of this approach with an implementation in the Strat-
ego transformation language of consistency checking for a (subset of)
WebDSL.

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 15

This chapter focuses on consistency checking, relating it to consistency
checks in other frameworks, providing a detailed description of the differ-
ent static checks performed by the language, showing novel, non-trivial ways
a web application can be checked, and describing the rule-based architecture
in which these checks are implemented.

We begin this chapter with a study of different classes of inconsistencies in
web applications, showing how these are checked and reported in major web
frameworks. In many cases, these consistency checks are lacking in accuracy
and in quality of the error reports. In Section 2.3 we analyze why this is the
case, looking at the implementation of the different frameworks. In Section 2.4
we explain how to address the discovered problems, and describe solutions
applied in WebDSL. In Section 2.5 we demonstrate how a static checker for a
subset of WebDSL can be implemented using rewrite rules in Stratego. Sec-
tion 2.6 handles discussion points and describes differences with previous
work.

2.2 FA I L U R E S I N W E B A P P L I C AT I O N S

Modern web applications comprise a number of aspects, often expressed us-
ing different domain-specific languages, e.g. HTML for user interfaces and
data models using annotated Java code. Our experience with mainstream web
development frameworks has been that faults, especially across aspect bound-
aries, manifest themselves late, e.g. only when the application is run and the
specific page is loaded, often resulting in developer annoyance and a decrease
in productivity. Not only do failures occur late, they are often difficult to trace
back to their origin and provided error messages are not domain-specific and
expose implementation details of the framework.

To analyze failures in web application frameworks, we have conducted an
experiment investigating the problems in fault manifestation and reporting
in the current state of practice. We evaluate four aspects of mainstream web
frameworks (data model, user interface, application logic and access control).
Through fault seeding we register when and how applications built using these
frameworks fail. Subsequently, the next section will examine the reasons of
failure and how they can be mitigated.

2.2.1 Web Application Aspects

Typical modern web applications comprise multiple aspects. Application as-
pects include the data model, user interface and business logic. To simplify
development, frameworks offer specialized languages and APIs for these as-
pects. For instance, user interfaces are defined using an extension of HTML,
data models are defined by annotating classes with persistence annotations,
and a rule language is used to declaratively specify access control rules. While
the use of specialized languages and APIs enable separation of concerns, the
application aspects are not completely independent. Each aspect contains

16

links to other application aspects. These inter-aspect links are an important
cause of the late detection of web application failures.

For our study we selected four common application aspects, which are
listed below. This list is not meant to be exhaustive, but we believe it is a
representative list of aspects that are typically covered by web application
frameworks. Other application aspects have similar issues. For each applica-
tion aspect we list some common internal and inter-aspect faults.

• Data model, web frameworks typically have APIs to define the data
model of the web application in a declarative manner. The data model
represents the data structures that need to be persisted. Common faults:

– Properties of non-existing types, the data model defines properties of
types that do not exist.

– Invalid inverse properties, inverse properties refer to non-existing
properties.

– Invalid data validation, rules to validate the values of data model
properties are invalid, e.g. the regular expression that checks the
zip code format contains a syntax error.

• User interface is typically defined using a separate DSL, usually an ex-
tension of HTML. Common faults:

– Invalid page elements, the use of tags and controls that do not exist
or are used incorrectly.

– Invalid element nesting, incorrectly nesting tags and controls in an
invalid manner, e.g. nesting list items outside a list.

– Invalid references to data model, the user interface often presents data
from the data model, references to the data model, e.g. entity prop-
erties, may be incorrect.

– Invalid links to pages, links to pages within the application do not
exist or are linked to with wrong parameters.

– Invalid links to actions, actions to be triggered, e.g. when pushing a
button, do not exist or are invoked incorrectly.

• Application logic defines the business logic of the application. Common
faults:

– Invalid references to data model, properties and types that do not exist.
– Invalid redirect from actions, the user is redirected to pages within

the application that do not exist.
– Invalid data binding, form data is bound to entities incorrectly.

• Access control defines who can access what parts of the application in
a declarative manner. Common faults:

– Invalid references to data model, access control rules link to non exist-
ing data model entities and properties

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 17

2.2.2 Moment of Failure

Application faults should manifest themselves as soon as possible; the sooner
the developer knows, the sooner he or she can resolve the problem. Thus,
the moment of manifestation is an important quality of fault detection in frame-
works. Once a fault has manifested itself, the developer has to resolve the
problem. Therefore, the retraceability of the problem to its source is impor-
tant; the location of the fault should be clearly indicated in the code. Once
the source of the problem has been pin-pointed, the reported error message
should indicate what the problem is in terms of the application domain and
should reveal as little about the underlying implementation as possible. For
instance, when a link to a non-existing page within the application is found,
the error should use domain terminology such as “page” and “link” rather
than “constant” or “method”.

Thus, we can determine the quality of fault detection in frameworks and
DSLs by considering three aspects:

1. The moment of manifestation, i.e. the moment the developer is presented
with an application inconsistency:

• compile time, detected during compilation of the application;

• deployment time, detected when the application is started or de-
ployed to an application server;

• runtime; detected at the server while the application is running, e.g.
when loading a page;

• or in the browser, when an error is only detected when a page is
loaded by the client (e.g. mistakes in Javascript, HTML etc.).

2. Is the error retraceable to its origin? Is a source code filename and line
number clearly indicated?

3. Clarity and specificity of error message. Are domain-specific terms used
in error messages, or do they uncover the underlying implementations?

2.2.3 Frameworks

We evaluate three mainstream, available web application frameworks that rep-
resent the state of the practice in web application development. We discuss
other web frameworks and languages in Section 2.6. We base our study on
parts of example applications and tutorials from the websites of the different
frameworks. We apply the technique of fault seeding by introducing small in-
consistencies in parts of the application (often in the form of simple typing
errors, simulating what happens when an application is changed or a devel-
oper makes a mistake) and observe how the errors manifest themselves.

The selected frameworks are:

18

• Ruby on Rails1, representing dynamically typed language frameworks.
We chose Rails as a representative of frameworks based on dynamic
languages. Other frameworks such as Django for Python are similar in
terms of implementation techniques and error handling.

• JBoss Seam2, a framework based on Java, combining a number of existing
Java technologies such as the Java Persistence API (JPA) and JavaServer
Faces (JSF). We selected JBoss as a representative of Java-based frame-
works. A comparable framework is Spring.

• Lift3, a web framework based on Scala, a highly expressive object-oriented
and functional programming language with a sophisticated type system.
Scala is a statically typed language with a very flexible syntax, distin-
guishing Lift from the two other categories.

In the remainder section we highlight two faults related to the data model
and the user interface. A full overview of the cases we studied is given in
Appendix A. We summarize our results in tables that rank the three quality
aspects of moment of manifestation, retraceability, and clarity (labeled M, R,
and C).

2.2.4 Case 1: Consistency of References to the Data Model

M R C
Rails Runtime + −
Seam Runtime − +
Lift Runtime + +

User interfaces are typically used to present data
from a database. Therefore user interface code
contains references to the data model, for in-
stance to show the value of a certain property,
or binding a control to a certain entity property.

In Ruby on Rails, references from the user interface to data model prop-
erties are constructed through embedded Ruby code. The following example
displays the value of the name property of the post entity, encoded to be
displayed in HTML:

<td><%=h post.name %></td>

Although references to undefined properties, such as post.nam instead of
post.name, are easily traced back to their source, the reported “undefined
method” message is not domain-specific and only reported at runtime.

In Seam, values of entity properties can be injected into a page using the
#{...} syntax:

Welcome #{user.name}

When invalid property names are used, a domain-specific runtime exception
is reported when the page is loaded (“Property ‘nam’ not found on type ...”),
but no indication of the source of the problem is supplied (see Figure 2.1).

1We evaluated version 2.3.4 of Ruby on Rails, http://www.rubyonrails.org/.
2We evaluated version 2.2.0.GA of Seam, http://www.jboss.com/products/seam.
3We evaluated version 1.0 of Lift, http://www.liftweb.net/.

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 19

http://www.rubyonrails.org/
http://www.jboss.com/products/seam
http://www.liftweb.net/

Figure 2.1 Seam exception when using an undefined property nam

In Lift, the name property of an entity user is referenced as follows:

<user:name>User name</user:name>

When misspelling name as nam, Lift gives a clear, domain-specific error (“no
such property”) and reports the line and column number of the error.

All of the tested frameworks report faults in references to the data model
only at runtime, when the specific page is loaded.

2.2.5 Case 2: Consistency of Links to Pages

M R C
Rails Runtime + −
Seam Browser − −
Lift Browser − −

Creating hyperlinks between pages is a funda-
mental part of the web. While broken links
to external websites are hard to avoid, broken
links within a single web applications should be
avoided and, at least in principle, be automati-
cally detected.

Ruby on Rails provides a link_to helper for user interfaces:

<%= link_to ’Edit’, edit_post_path(post) %>

The edit_post_path method that is called is generated on the fly by con-
vention, the convention taking the form of <action>_<controller>_path
(<args>). When the name of this method is constructed incorrectly, a generic
“undefined method” error is reported, with accurate code and line and col-
umn numbers. This means that the framework is able to detect broken, inter-
nal links before they are displayed to the user. However, the error message is
not domain-specific.

Seam uses a s:link tag to create links to arbitrary URLs. These URLs are
not checked by the framework:

<s:link id="register" view="/register.xhtml"
value="Register New User"/>

When the linked page does not exist, the user is presented with a “page not
found” error when the link is clicked.

20

Manifestation Retraceability Clarity

Category Ra Se Li Ra Se Li Ra Se Li
Data model
Properties of non-existing types R C C - + + - + +
Invalid inverse properties R D C - + + +/- + +
Invalid data validation R C/D C/D - +/- +/- - + +
User interface
Invalid page elements R R R + + - - + -
Invalid element nesting B B B - - - - - -
Invalid references to data model R R R + - + - + +
Invalid links to pages R B B + - - - - -
Invalid links to actions R R R - + - + - -
Application logic
Invalid references to data model R C C + + + - + +
Invalid redirect from actions R R R - - - - - -
Invalid data binding R NA NA - NA NA - NA NA
Access control
References to data model R R C + - + - - +
Ra = Ruby on Rails, Se = Seam, Li = Lift
B = Browser, C = Compile, D = Deploy
NA = Not applicable, R = Runtime

Figure 2.2 A summary of consistency checks in Ruby On Rails, JBoss Seam, and
Lift.

Lift does not have a special construct to define internal links, instead simple
 tags are used. Similar to Seam, links to non-existing pages
go undetected until they are clicked.

2.2.6 Summary

A summary of our results is shown in Figure 2.2. Rather than tally the spe-
cific scores of the individual frameworks, we conclude that there are many
cases where errors are not reported at the earliest possible opportunity, where
errors are not easily traceable to their source, and where error messages are
unclear or confusing. In the next section we discuss reasons in the design and
implementation of the frameworks that cause these deficiencies.

2.3 F R A M E W O R K D E S I G N A N D FA U LT D E T E C T I O N

In this section we analyze why faults in web applications manifest themselves
late in the development process and why failures often have poor retraceabil-
ity and clarity. The examples of web application inconsistencies in the pre-
vious section illustrate that there are many cases where inconsistencies lead
to late failure. They may only be reported or otherwise manifest themselves
once a definition is used, not when it is first compiled or interpreted. In many
cases, reported error messages are very generic, revealing details about the
implementation of the framework (i.e., revealing leaky abstractions). Error
messages also do not always show the origin of the error, as they are reported
in various ways and definitions are not directly checked.

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 21

The frameworks in our survey have been implemented using different pro-
gramming techniques and based on different programming languages. In the
following subsections we analyze different properties of the frameworks that
impact the manifestation of faults.

2.3.1 Reflection and Run-time Code Manipulation

Reflection and run-time code generation are common techniques for integra-
tion and deployment of components in web application frameworks. Based
on the dynamic language Ruby, Rails in particular makes heavy use of these
techniques to provide convenient, high-level abstractions. JBoss Seam makes
use of reflection techniques to process annotations, particularly to describe
the data model.

Ruby on Rails

As a typical example of how the dynamic programming approach of Ruby in-
teracts with how failure manifests itself, consider a one-to-many relationship
declaration in an entity:

has_many :comments

This declaration implies there is a Comment entity defined elsewhere. When
the property is used, the Rails framework simply takes the comments sym-
bol, strips off the s and capitalizes the first character. If no such entity is
defined, the developer will receive a “constant not defined” error related to
Comment, while the application code does not contain any reference to this
entity anywhere directly. These indirect error messages can be confusing to
the user of the framework. If entity declarations were instead verified directly
when the entity was declared, the error could be detected earlier, and would
be more easily traced back to the source. The dynamic programming ap-
proach taken by Ruby on Rails involves a trade-off between the performance
of not checking such properties and ease of use.

Many features of the Rails framework make use of methods which are
passed a map with named arguments. This way, arbitrary key/value pairs can
be used as arguments for these methods. When a key is mistyped or there is
no definition for such a key (as seen with :confirmation in Section A.4.4),
such faults remain undetected unless the contents of the map is explicitly
verified by the framework. In the current implementation of Rails, this is
often not the case.

JBoss Seam

After a JBoss seam application is compiled, framework-specific tools are used
to deploy it onto a server environment. Typically, application servers enable
web application verification code to be invoked while the application is be-
ing deployed. This provides frameworks with the opportunity to perform
additional checks that were not already performed by the compiler.

22

An example of a post-compilation time consistency check is Seam’s ver-
ification of entity classes and their annotations and embedded regular ex-
pressions. Any faults detected in the data model are reported by throwing
exceptions. Unfortunately, in practice this seems to cause a domino effect
of exceptions being thrown by various components of the application server.
This causes enormous stack traces to be recorded in the server logs, in which
it is very hard to find the originating error message. Still, by performing these
checks while the application is being deployed, Seam avoids run-time failures
resulting from certain classes of faults in the data model.

2.3.2 Linguistic Separation

The three frameworks each employ one base language: Java, Ruby, or Scala.
They also employ a number of other languages, such as XHTML, regular ex-
pressions, or query languages. These languages are linguistically separated
in the sense that the compiler for the base language is not aware of the def-
initions made in the other languages and whether or not they are consistent
and correct. Because the compiler cannot pick up these inconsistencies, they
can lead to failures as an application is running.

Conceptually, it is appealing to use different languages that each address
different technical concerns: each language can be more or less suited for that
particular domain. Unfortunately, as these languages have been designed and
have evolved separately, there can be redundancy and inconsistency among
them. The EL expression language used in JBoss Seam, for example, does not
support all features of standard Java expressions, yet it adds some features of
its own.

Separate languages also introduce a problem for programming tools, as
tools that support one language lack awareness of other languages that are
used in a web application. Editors and compilers generally only have a lim-
ited “view” of a web application, constrained by the boundaries of a particular
language. They do not check inside strings, determine the meaning of annota-
tions, or analyze accompanying XML or XHTML files. Consistency checking
for concerns that cross the boundaries of a language – understanding-in-the-
large of a web application – is very hard when different languages are used.
Only tools that are specialized to work with a particular set of languages and
frameworks (such as IntelliJ IDEA, discussed in Section 2.6.2) can check for
some of these consistency issues. However, as the different languages, frame-
works, and tools involved are developed by different groups of people, such
a solution is very hard to maintain and even harder to make complete.

Links and redirects in the three frameworks are constructed as simple URL
strings. Only in Rails, where links can be constructed using helper methods,
are internal links checked for correctness at run-time. The other frameworks
do not support any form of consistency checking: bad links only manifest
themselves when the user tries to follow them.

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 23

2.3.3 Limited Static Type Checking

Faults manifest themselves at a variety of different stages: at compile time,
deployment time, run time, or sometimes only in the browser. Failures early
in the development cycle typically require less effort to resolve. Faults that
are detected directly at compile time do not require failure-to-fault tracing or
running the application to be detected.

Seam and Lift benefit from their statically typed base languages with re-
spect to compile-time detection of faults, while Rails can only provide de-
velopers with feedback about faults at runtime. In our study we found that
there are a number of negative performance trade-offs when delaying checks
until run-time, and that accurately discovering and reporting the origin of er-
rors can be difficult. Still, there were many cases where the Seam and Lift
frameworks did not score much better at providing early feedback.

Since Rails is based on Ruby, there is no compilation step, and consistency
errors that are reported are always detected at run time. Still, we can dis-
tinguish between errors reported when a definition is interpreted and when
the definition is used. In many cases, errors are only reported when defini-
tions are used. In our experience, the framework performs very few checks
when definitions are made, before they are used elsewhere. When errors
are reported, the messages are usually generic Ruby messages (typically, a
NoMethodError).

Based on compiled, statically typed languages, Lift and Seam can report
many errors before an application is deployed. Errors detected by the Java
and Scala compiler always clearly indicate their origin. Using an IDE such as
Eclipse, compile-time errors can be conveniently marked in the source code
using a marker in the editor. Still, the reported error messages are always
generic Java or Scala error messages, as the compiler and IDE only follow the
static semantics of the host language. Because of this limitation, any language
features encoded in strings, such as embedded queries or regular expressions,
cannot be checked. Likewise, any references to other elements of an applica-
tion in the form of strings (such as in the Seam @OneToMany annotation)
cannot be statically checked. The Java and Scala host languages also do not
offer a way to statically constrain the placement of annotations on the right
elements of an application, or to avoid conflicting annotations.

A problem with relying on the static type system of the base language is
that the errors reported are not specific to the domain of web programming.
For instance, instead of reporting an error about an entity property, reported
errors may complain about the field of a class. Since Seam and Lift are frame-
works and not true languages on their own right, reporting domain-specific
error messages is very difficult. Only by the construction of extensions to
the already elaborate Java or Scala compilers would it be possible to check
such frameworks. Building such extensions is generally a difficult, labori-
ous undertaking, especially for frameworks that rely on reflection techniques
and linguistic separation. In Section 2.6.2 we discuss tools that follow this
approach in more detail.

24

2.3.4 Run-time consistency checking

Most faults not detected by the compiler or at deployment time are reported
at runtime. Some errors are reported directly when a definition is processed
by the runtime, others only in particular use cases of the application, man-
ifesting themselves only when a particular action is performed by the user.
Such delays in detection are detrimental for developer productivity and, as
regressions may go undetected when not covered by the test suite, the main-
tainability of an application.

From a framework implementation point of view, run-time consistency
checks – at least in principle – make it easy to report accurate, highly spe-
cific error messages. However, in practice, traceability of these errors is often
lacking, as source location information at run time is scarce, usually limited
to the point in the application where the check was performed. There are
often many framework calls in between the location of the error and the point
where the error is detected, resulting in runtime traces that can be misleading
or confusing. Our survey in Section 2.2 showed that the quality of runtime
error messages and their traceability varies widely and is typically worse than
for compile-time reported errors.

Seam and Lift perform static checks at compile-time using the standard
Java and Scala compilers and perform a limited set of consistency checks at
deployment time. This leaves it up to the runtime to perform the remainder
of the checks. Thorough, often domain-specific checks that are not performed
earlier are performed at run time. These checks guarantee the correctness of
any strings in annotations and of string-embedded languages. Both frame-
works run on the Java Virtual Machine and use the Java exception tracing
mechanism for reporting the origin of such errors. For run-time checks, some
of these reported origins relate to the usage sites of inconsistent definitions,
but as a last resort they are still helpful in determining the root cause of an
error.

Location information provided by exceptions is ineffective for checks that
are not performed at the definition site where an error is triggered. This
makes it particularly difficult to report accurate location information for er-
rors in annotations, which are heavily used especially in Seam. The Java
language provides few means to provide exact location information when the
annotations are reflected over at runtime. At most, a class and method name
can be provided in any annotation errors that are reported.

2.3.5 Summary

Providing accurate, static checks at compile-time avoids failures at deployment-
time or at run-time. Statically detected faults do not require failure-to-fault
tracing and can be reported directly inside an IDE. Still, there are many classes
of faults that are not statically detected by the frameworks in our survey. Rea-
sons for this include that they use reflection and run-time code manipulation
techniques, linguistically separated languages, and can only use static typing

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 25

UI Language for defining HTML user interfaces
Data models Language to define persistent data models
Action Simple language for defining application logic
Access control Access control rules for specifying the access control policy
Validation Data validation language
HQL Database query language
Workflow Language for defining workflows

Figure 2.3 WebDSL sublanguages

provided in the base language compiler. Instead, many faults are reported
at run time, introducing a (small) performance penalty and often resulting in
errors that are vague or hard to trace back to their originating fault.

2.4 D E S I G N I N G F O R S TAT I C V E R I F I A B I L I T Y

In the previous sections we demonstrated the problems of weak static verifi-
cation of web applications. We concluded that the cause of this weakness is in
the design of the programming languages and frameworks. Static verifiability
is an afterthought, delegated to third party tool developers or coped with by
test-driven design methodologies. Because static verifiability is not a criterion
during design, the resulting language will end up being hard to verify. Our
solution is designing a web programming language with static verifiability in
mind as exemplified in WebDSL.

WebDSL embraces the notion of having different, specialized languages to
address separate concerns. WebDSL provides specialized languages for data
modeling, user interface design, and basic data operations. However, through
linguistic integration, these different languages are combined into one large in-
tegrated language. Figure 2.3 illustrates the key domain-specific languages
that together form WebDSL. The languages are seamlessly integrated, follow
the same style of syntax and share common elements, and can be used to-
gether in one module, if required.

WebDSL and its sublanguages have been designed as statically checked
languages: the moment of detection of all consistency checks is at compile time.
In fact, using the new WebDSL Eclipse plug-in, errors are detected as the de-
veloper writes his code. As the checks are performed directly on the source
code, rather than on a deployed application, any reported errors directly re-
late to the source code, ensuring proper retraceability. Finally, since errors
relate to the domain-specific WebDSL language – and not a general-purpose
language with a web framework on top – all errors are domain-specific and
are explained in terms of the web application domain rather than in terms of
the underlying implementation.

For a general description of WebDSL, we refer the reader to our previous
work [Visser, 2008, Groenewegen and Visser, 2009], Chapter 4 and Chapter 3.
This section will highlight design decisions where static verifiability was taken
into account, in particular the categories from Figure 2.2 will be addressed.

26

Figure 2.4 Property type consistency

Figure 2.5 Inverse annotation

Figure 2.6 Data validation

2.4.1 Data Model

Data model entities are first-class language elements in WebDSL. They are de-
fined as uniquely named top-level elements. The properties of data model en-
tities are statically typed, they can refer to built-in simple types or to defined
entities. A shared, static type system across WebDSL sub-languages enables
static verification of the use of existing types and properties. Designing the
language with entities as first-class language elements enables reporting of
domain-specific error messages.

Figure 2.4 illustrates the editor feedback when a non-existing type is ref-
erenced in a property in WebDSL. Similarly, Figure 2.5 shows that this check
also holds for inverse relations. Figure 2.6 shows checking of references to
entity properties from validation rules.

2.4.2 User interface

User interfaces in WebDSL are defined using page template definitions. Like
data model entities, template definitions are declarative first-class language
elements in WebDSL. Templates can call other built-in or user-defined tem-
plates. Navigation between pages is expressed using navigate elements
which create links to other pages within the application. Rather than con-
structing links through string concatenation, links are defined as typed page
calls, for which can be verified that they exist and that the number and type
of their arguments are correct. Figure 2.7 shows how mistakes in template
calls and navigates are reported. Output elements form references to the data
model for displaying data (the output template name is overloaded for each
type). Figure 2.8 illustrates that such references are checked as well.

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 27

Figure 2.7 Template call and navigation

Figure 2.8 Template reference to data model

2.4.3 Application Logic

While the model-view-controller pattern is generally considered good style,
WebDSL does not impose the use of this pattern in the language. Instead,
WebDSL applications typically encapsulate small snippets of application logic
directly in user interface code as page actions. Larger pieces of logic can be de-
fined separately in functions. The sublanguage used in these page actions and
functions is a Java-like imperative language with a simple API, fully checked
by the WebDSL typechecker. Figure 2.9 shows a small template that will result
in a form with two input fields. Data binding is automatic, any input in the
form will update the data model before the action is executed. Redirecting
the user to a different page after an action has succeeded is done using the
built-in return construct. A return construct, similar to a navigate in the
user interface language, takes a page call as its argument.

The incorrect action reference sav is reported, as is the page reference
showUserTsks inside the action.

2.4.4 Access Control

The access control policy of a WebDSL application is defined in access control
rules. The access control language reuses the expression language (and its
checks) also used in the user interface and application logic. In addition,
the page signature syntax is the same as for defining pages, enabling the
verification that a rule in fact matches an existing page with correct signature.

Figure 2.10 shows how a missing property of the data model is reported.

28

Figure 2.9 Action logic

Figure 2.10 Access control

2.4.5 Verifiability versus Flexibility

Designing for verifiability requires a trade-off with flexibility. Verifiability
should be part of the language design considerations, but may impede cov-
erage, i.e. the range of programs that can be expressed. As an example,
consider verification of navigation in WebDSL. The interaction between page
definitions and navigate statements is verified by controlling the URLs that
are generated for pages, and thus required for links to those pages. That is,
a URL for a page consists of the name of the page followed by the (identi-
ties) of the arguments separated by slashes. For most applications that results
in nice readable URLs. If a developer wants to implement a more dynamic
scheme this can be realized by creating a single page definition that interprets
the URL parameters and dispatches to some appropriate template definitions.
However, this results in a loss in the effectiveness of static verification; navi-
gates become calls to the generic dispatch page, rather than to a specific page,
which requires the developer to deal with parameter encoding/decoding and
verifying consistency. For applications where such flexibility is a requirement,
the current WebDSL design is not optimal; it would be better to generalize the
current page/navigate paradigm to declaratively specify dispatch schemes
that are verifiable.

In practice, WebDSL’s verifiability does not impede coverage. The language
is used for several web applications that are in production. The largest and
most complex WebDSL application to date is researchr4. Researchr is a digital
library with over a million publication records, including BibTeX import and
export, bibliographies, reviewing, tagging, a reputation system, groups, and a
messaging system. Researchr’s data model consists of over a hundred entities

4http://researchr.org

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 29

http://researchr.org

(represented by 140 database tables) and the complete application consists of
about 18,000 lines of WebDSL code. The static consistency checking scales to
the size of the application, and is even a pre-condition for its maintainability;
making changes is not scary since consistency faults introduced are detected
at compile-time.

YellowGrass5 is a free web-based issue tracker. Internally we use it to track
WebDSL bugs and other projects within our group use it as well. The offi-
cial WebDSL website6 has been built using WebDSL. It features an editable
manual with revision control.

2.5 R U L E - B A S E D C O N S I S T E N C Y C H E C K I N G

In the previous sections we have argued that static consistency checks for a
linguistically integrated web programming language provide better and ear-
lier feedback to developers. In this section we show that this can be realized
using a high-level rule-based specification. We give a formal definition of
automatic consistency checking for a subset of WebDSL using rewrite rules
in Stratego [Bravenboer et al., 2008] following the style developed for type
checking introduced in Chapter 4. We give a brief introduction to Stratego
and the style of consistency checking employed in the chapter. The concrete
syntax of WebDSL is defined using SDF grammars [Visser, 1997b], but in this
chapter we focus only on the abstract syntax and semantics of the language.

2.5.1 Language Definition

We illustrate static consistency checking in WebDSL using a subset of the full
language focusing on the two examples from Section 2: references to the data
model in user interface templates, and consistency of references to user inter-
face templates and pages. Figure 2.11 defines the abstract syntax of the subset
of WebDSL we are considering using an algebraic signature, which consists
of typed term constructors corresponding to language constructs. Figure 2.12

illustrates the definition with the concrete and abstract syntax of a fragment
of a WebDSL program.

The data model of a WebDSL program is defined using entity declarations
(Entity), which consist of a name and a list of properties (Property), each
having a name and a type. Expressions are constants (StringLit), variables
(Var), or access to the values of properties of objects (PropertyAccess).

The user interface of a WebDSL program consists of template definitions
(TemplateDef), which have a name, list of parameters, and list of template
elements. The elements compose the output of the template from the objects
passed as parameters. This is mostly achieved by reference to other templates.
Some of these templates are primitives. For example, the output template
presents the value of an object, and the input template is used to create input
form elements.

5http://yellowgrass.org
6http://webdsl.org

30

http://yellowgrass.org
http://webdsl.org

signature
constructors
Module : ID * List(Definition) -> Module

// data model
: Entity -> Definition

Entity : ID * List(Property) -> Entity
Property : ID * Type -> Property
SimpleType : ID -> Type

StringLit : STRING -> Exp
Var : ID -> Exp
PropertyAccess : Exp * ID -> Exp

// user interface templates

: Template -> Definition
TemplateDef : List(Mod) * ID * List(Param) *

List(Element) -> Template
Page : Mod
Param : ID * Type -> Param

String : STRING -> Element
Navigate : PageRef * List(Element) -> Element
Call : TemplateRef * List(Element) -> Element
TemplateRef : ID * List(Exp) -> TemplateRef
PageRef : TemplateRef -> PageRef

Figure 2.11 Signature for NWL, a subset of WebDSL

Template page definitions have the Page modifier and produce a complete
web page. Non-page template definitions define partial pages that are used
to compose pages. There are two ways in which template definitions refer
to other template definitions. A template call (Call) inlines the body of a
referenced template in the calling template. A page reference (PageRef) is
used to produce a link to navigate to the corresponding template (which must
be a page definition).

2.5.2 Static Consistency Checking

The language is designed to support static consistency checking. References
to other elements of a program are explicitly encoded in the syntax of the lan-
guage. For example, instead of encoding an expression retrieving the value
of a property of an object as a string literal, the user interface language can
use expressions to produce such values. The identifiers used in these expres-
sions are typed and property accesses can be checked against the data model.
Similarly, references to user interface templates are explicit calls that can be
checked for existence of the called template and the proper typing of the ar-

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 31

module blogpost
entity Post {
title : String
text : WikiText
author : User

}
define page post(p : Post) {

header{ output(p.title) }
output(p.text)
navigate editpost(p) { "Edit" }

}

Module("blogpost",[
Entity("Post",
[Property("title", SimpleType("String")),
Property("text", SimpleType("WikiText")),
Property("author", SimpleType("User"))]

),
TemplateDef([Page()], "post", [Param("p",

SimpleType("Post"))],
[Call(TemplateRef("header"),

[Call(TemplateRef("output", [
PropertyAccess(Var("p"),
"title")]))]),

Call(TemplateRef("output", [PropertyAccess(Var("p"),
"text")])),

Navigate(PageRef(TemplateRef("editpost", [Var("p")])),
[String("Edit")])]

)
]

Figure 2.12 Concrete and abstract syntax for fragment of a WebDSL program.

guments passed; in contrast to the composition of URLs from strings (which
is akin to pointer manipulation in C).

The WebDSL compiler translates WebDSL programs to Java programs. Be-
fore code generation, the source code is statically checked for consistency
violations. WebDSL is also supported by an Eclipse editor plugin, which dis-
plays error messages and warnings in the editor, providing immediate feed-
back about consistency errors to the developer (see previous section). Code
generation and static checking in the compiler and in the Eclipse plugin are
implemented in the Stratego transformation language.

Static checking is divided into three parts. Name resolution determines
which identifier uses refer to which declarations. Type analysis computes types
(and other properties) of composite expressions. Consistency checking applies
constraints to sub-terms, producing error messages when violations are en-
countered. In the next subsection we give a brief introduction to Stratego. In
the following subsections, we discuss the definition of name resolution, type

32

analysis, and consistency checking.

2.5.3 Stratego

Stratego is a language for program transformation based on the paradigm of
term rewriting with programmable rewriting strategies introduced by Visser
et al. [1998]. Stratego transformations operate on first-order terms of the form

t ::= x // variables
| "..." // string literals
| i // integer constants
| c(t1,...,tn) // constructor applications
| [t1,...,tn] // lists of terms
| (t1,...,tn) // tuples of terms

Basic transformations are defined by means of conditional term rewrite rules of
the form

r : t1 -> t2 where s

with r the name of the rule, t1 and t2 first-order terms, and s a strategy
expression. A rule applies to a term when its left-hand side t1 matches the
term, and the condition s succeeds, resulting in the instantiation of the right-
hand side pattern t2. Otherwise the application fails.

In addition to checking applicability constraints, the condition of a rule can
perform computations the results of which are used in the right-hand side of
the rule. For example, in the rule schema

r : t1 -> t2 where t3 := <s> t4

the term t4 possibly containing variables from t1 is transformed by the appli-
cation of a strategy s and the result is matched against the pattern t3, possibly
binding variables, which may be used in the right-hand side t2.

More complex transformations can be created by composing rules using
strategies. A strategy is essentially a partial function from terms to terms. If
a strategy is not defined on a term it is said to fail. Failure arises from the
failure of rewrite rules to apply to terms. Strategies are composed from basic
combinators such as the identity transformation id, sequential composition
s1; s2 and deterministic choice s1 <+ s2. From these basic combinators
new combinators can be defined using (parametric) strategy definitions. For
example, the definitions

try(s) = s <+ id
repeat(s) = try(s <+ repeat(s))

define the combinator try(s) that attempts to apply a strategy s to a term,
and restore the term if s fails, and repeat(s) that applies a transformation
s as often as possible to a term. While the strategies above apply a transfor-
mation to the root of a term, term traversal strategies apply transformations to

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 33

sub-terms. The basis of term traversal strategies are one-level traversal opera-
tors such as all(s), which applies a strategy s to each direct sub-term of a
term. For example, the definitions

bottomup(s) = all(bottomup(s)); s
alltd(s) = s <+ all(alltd(s))

introduce the bottomup(s) strategy that applies s to each sub-term in a
bottom-up (post-order) fashion, while alltd(s) applies s to an outermost
frontier for which s succeeds.

Context-sensitive transformations can be expressed by means of dynamic
rewrite rules [Bravenboer et al., 2006b], which are instantiated at run-time, as
illustrated by the following schema:

r : t1 -> t2
where rules(dr : t3 -> t4)

The dynamic rule dr is defined when r is applied to a term matching t1. Any
variables that t3 and t4 share with t1 are then inherited by the instantiation
of dr (concrete examples follow below).

2.5.4 Name Resolution

In textual software languages, program units are identified by name — hence,
names are known as identifiers. Declarations introduce names and definitions
bind names to meanings — often declarations and definitions are combined in
one construct. Definitions are applied by invoking their name. In the language
of Figure 2.11 there are four kinds of identifiers. Entity declarations introduce
named entities. Properties identify the attributes of entities. Template defini-
tions identify user interface components. Template parameter names identify
their arguments. Corresponding to these declarations, we have the following
uses of identifiers. Type expressions are references to entities (and primitive
types). Variables are references to entity objects (or primitive values). Prop-
erty access expressions retrieve the value of a property of an object. Template
references invoke a template.

An important source of inconsistencies is the use of names that do not cor-
respond to definitions, or the use of names of existing definitions in the wrong
place or in the wrong way. Thus, the first task of a consistency checker is to
resolve the use of names, identifying for each application which declaration
it invokes. We distinghuish two types of identifiers, i.e. identifers with global
scope and identifiers with local scope. We can distinghuish further layers,
associating name spaces with modules, but we will ignore such layers here,
but note that they can be expressed with the same approach.

The rules in Figure 2.13 define name resolution for the top-level defini-
tions in our language, that is entity declarations and template definitions.
The declare-def rules introduce the dynamic rules EntityDeclaration and
Template, mapping identifiers to definitions. The EntityDeclaration rule
maps the name of an entity to the complete abstract syntax representation
of the corresponding entity declaration. Note that x@t denotes a simultane-

34

strategies

declare-all = alltd(declare-def); rename-all

rules

declare-def :
ent@Entity(x, prop*) -> Entity(x, prop*)
with rules(EntityDeclaration : x -> ent)

declaration-of :
SimpleType(x) -> <EntityDeclaration> x

declare-def :
def@TemplateDef(mod*, x, param*, elem*) ->
TemplateDef(mod*, x, param*, elem*)
with sig := <signature-of> def;

rules(
Template : x -> def
Template : sig -> def

)

signature-of :
TemplateDef(mod*, x, param*, elem*) ->
(x, <param-types>param*)

param-types :
TemplateDef(mod*, x, param*, elem*) ->
<param-types> param*

signature-of :
TemplateRef(x, e*) -> (x, t*)
where t* := <map(type-of)> e*

declaration-of :
ref@TemplateRef(x, e*) -> def
where def := <signature-of; Template> ref

Figure 2.13 Name resolution for top-level declarations

ous match to a variable (x) and a term pattern (t). The declaration-of

rule maps a type expression to the corresponding entity declaration, pro-
vided the EntityDeclaration rule is defined for the type name. If not, the
declaration-of rule simply fails. Note that the order in which rules are im-
portant: the rule that defines the EntityDeclaration rule has to be executed
before the declaration-of rule is executed.

Similarly, the Template dynamic rule maps the name of a template defini-
tion to its complete AST representation. Since non-page template definitions
can be overloaded there is also a mapping from the signature of a template

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 35

strategies

rename-all = alltd(rename)

rules

rename :
Param(x, t) -> Param(y, t)
with y := <rename-var>(x, t)

rename-var :
(x, t) -> y
with y := x<new>
with rules(

RenameId : x -> y
TypeOf : y -> t

)
rename :
Var(x) -> Var(y)
where y := <RenameId> x

rename :
TemplateDef(mod*, x, param1*, elem1*) ->
<declare-def> TemplateDef(mod*, x, param2*, elem2*)
with {| RenameId:

param2* := <rename-all> param1*;
elem2* := <rename-all> elem1* |}

Figure 2.14 Name resolution for local identifiers

to its definition. The signature of a template definition is a pair of its name
and the list of its parameter types. The declaration-of rule produces the
template definition corresponding to a template reference by computing its
signature. Computing the signature of a template reference requires type
analysis (type-of) to determine the type of the argument expressions. The
declare-all strategy applies the declare-def rules to all top-level defini-
tions, using the alltd strategy, thus creating dynamic rule mappings for each.

For the identifiers with global scope we have assumed that for each identi-
fier (or signature) there is a single declaration that corresponds to it. Identi-
fiers with local scope are different in that an identifier can be used in multiple
scopes, corresponding to different declarations. In the language of Figure 2.11,
the only local identifiers are the names of template parameters. The same pa-
rameter name can be used in multiple template definitions. To distinghuish
multiple uses of the same identifier, name resolution of locally scoped iden-
tifiers is implemented as a transformation that renames these identifiers to a
unique name.

Figure 2.14 defines the rename-all strategy defining renaming for our web

36

language, applying a top-down traversal looking for terms that it can apply
the rename transformation to. The rename rules transform identifier declara-
tions and uses to use unique names. The rule for Param renames a template
parameter to a unique name using the rename-var rule, which given an iden-
tifier x and a type t, creates a unique new name y, which is x with as anno-
tation a freshly created string. Thus, we create a new unique term, but retain
the original name of the identifier for use in error messages. Furthermore,
rename-var defines dynamic rule RenameId to rename the original identifier
to its new name, and TypeOf that maps the new identifier to its type t. The
rename rule for variables (Var) uses the RenameId rule to replace a variable x

with the corresponding unique name y.
To actually distinghuish identifiers defined in different scopes, the rename

rule for TemplateDef uses a dynamic rule scope ({|R:s|}) to limit the bind-
ings of the RenameId dynamic rule to the traversal of the template elements
in the body of the definition.

2.5.5 Type Analysis

After name resolution we can map identifiers to their declarations (or types).
Expressions compose new things (values, templates) from basic things (con-
stants) and the things represented by identifiers using composition operators.
Type analysis computes the type of such expressions so that we can determine
if these compositions are consistent with the internal or user-provided defini-
tion of operators. The language of Figure 2.11 has only simple expressions,
consisting of string literals, variables, and property access. The other kind of
expressions are the template Elements. Their composition is checked directly
by consistency checking rules below.

rules

type-of :
StringLit(x) -> SimpleType("String")

type-of :
Var(x) -> t
where t := <TypeOf> x

type-of :
PropertyAccess(e, f) -> t2
where t1 := <type-of> e
where ent := <declaration-of> t1
where Property(f, t2) := <lookup-property(|f)> ent

lookup-property(|f) :
Entity(x, prop*) -> <fetch-elem(?Property(f,_))> prop*

Figure 2.15 Type analysis

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 37

Figure 2.15 defines the type-of rule, which computes the types of expres-
sions. The type of a string literal is String; other constants are treated simi-
larly. The type of a variable is the type from its declaration, which we obtain
using the TypeOf rule. The type of a property access e.f is determined by
first computing the type t1 of e. The declaration of that type is some entity
ent, which should have a property f with type t2, which is the type of e.f.
Any of the steps in this computation may fail; e itself may not have a type,
the type t1 may not be declared, or the corresponding entity may not have a
property named f. In all these cases the application of type-of fails.

2.5.6 Consistency Checking

Name resolution and type analysis set the stage for definition of consistency
checking rules. The check rules in Figure 2.16 and Figure 2.17 define the
main constraints for our language, and produce an error message explaining
the failure to comply to a constraint. For brevity we have omitted rules that
check unique definitions, e.g. that a name can be used for at most entity, or
that an entity may not have two properties with the same name.

A constraint checking rule is a regular Stratego rule of the following general
form:

check :
context → (target, message)
where assumption
where assumption
where require(constraint)

The rule applies to some context, i.e. a subterm of the program we are check-
ing. The where clauses first test some (zero or more) assumptions about the
context. If these assumptions hold, the constraint is tested. If the constraint
fails, the check rule succeeds, i.e. an error has been detected — require is an
alias for not. If an error is found, the rule returns a pair of the target, a
subterm of context, and an appropriate error message. The analysis strat-
egy in Figure 2.16 defines the static consistency checking for our language. It
first applies the declare-all name resolution strategy to the program, and
then collects all consistency violations by applying the check rules using the
collect-all strategy. Note that check rules can be defined without depen-
dency on a particular traversal or order of application; all context information
needed to check the assumptions and constraint are provided by name reso-
lution and type analysis rules.

Rules 1–4 define definedness of types, variables, property access, and tem-
plate references. The remaining rules check further consistency properties of
template references. Rules 5–7 check the types and arity of the arguments of
template references. Rule 8 checks that links (PageRef) are to page definitions
and not to internal templates. Rule 9 gives a warning if a template inlines a
page definition. Rule 10 checks that the parameter of a call to the primitive
input template is an l-value, i.e. an assignable expression.

38

strategies

analysis = declare-all; collect-all(check)

rules

check : // 1
t@SimpleType(x) → (x, $[Type ’[x]’ is not defined])
where require(<is-simple-type> t)

check : // 2
e@Var(x) → (<id>, $[Variable ’[x]’ not declared])
where require(<type-of>e)

check : // 3
e1@PropertyAccess(e2, f) →
(f, $[[<pp>t] has no property ’[f]])
where t := <type-of> e2
where require(<type-of>e1)

check : // 4
TemplateRef(x, e*) →
(x, $[Reference to undefined template ’[x]’])
where not(<is-primitive-template> x)
where require(<Template> x)

check : // 5
ref@TemplateRef(x, e*) → errors
where not(<declaration-of>ref)
where def := <Template> x
where errors := <zip; filter(check-arg); not(?[])>

(e*, <param-types> def)

check-arg : // 6
(e, t) →(e, $[Argument of type ’[<pp>t]’ expected

(not of type ’[<pp>t2]’)])
where t2 := <type-of> e
where require(<eq>(t, t2))

check : // 7
ref@TemplateRef(x, e*) →
[(x, $[’[x]’ expects [l] arguments; [k] provided])]
where not(<declaration-of>ref)
where def := <Template> x
with k := <length>e*
with l := <param-types; length> def
where require(<eq>(k, l))

Figure 2.16 Consistency checking rules.

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 39

check : // 8
PageRef(ref@TemplateRef(x, e*)) →
[(x, $[Navigation to template (not a page)])]
where def := <declaration-of> ref
where require(<is-page-def> def)

constraint-warning : // 9
Call(ref@TemplateRef(x, e*), elem*) →
[(x, $[Page definition is used as template])]
where def := <declaration-of> ref
where require(not(<is-page-def> def))

check : // 10
Call(TemplateRef("input", [e]), []) →
(e, $[Argument of input should be variable or

property access])
where require(<is-lvalue> e)

is-lvalue = ?Var(_) <+ ?PropertyAccess(_,_)

Figure 2.17 Consistency checking rules (cont.)

Note that checking of terms is context-free, i.e. all occurrences are checked
irrespective of their context. For instance, the use of expressions as arguments
of template calls is covered by rules for expressions. It is not necessary to
define a rule checking that arguments to a template reference are well-typed
expressions; only the interaction between the expression and the template
reference needs to be checked.

2.5.7 Summary

We have illustrated how a language design that integrates sub-languages cov-
ering different (technical) domains allows checking of their consistent use. A
key property of the language design is to choose explicit representations of
elements, instead of programmatic encodings; e.g. explicit page references
instead of string manipulation to construct URLs make it possible to check
that only links to existing page definitions are created.

Given such a language design, the verification of the consistency of a web
application can be expressed using declarative consistency checking rules
comprising of name resolution, type analysis, and check rules composed by
strategies.

2.6 D I S C U S S I O N A N D R E L AT E D W O R K

2.6.1 Consistency Checking Capabilities Integrated Into Languages and Frameworks

Cooper et al. [2006] describe Links, another domain-specific language for the

40

web. Similar to WebDSL, it consists of a number of sublanguages that are
linguistically integrated and are compiled to a combination of server and
client-side code. Although the language is statically typed, the paper does
not describe static verification of Links applications.

Meijer et al. [2006] developed LINQ for the .NET platform. Language INte-
grated Query is an extension of C# and VB.NET that provide a generic query
syntax that aims to replace string-encoded SQL queries and other types of
query languages such as XPath for XML. LINQ queries are statically veri-
fied by the compiler. While LINQ is a good first step, other string encoded
languages remain on the .NET platform, such as regular expressions. Other
general purpose languages with powerful type systems are powerful enough
to add database query support as an internal DSL, type-checked by the host
language. Spiewak and Zhao [2009] demonstrate how this can be achieved
with Scala and Bringert et al. [2004] how it can be done with Haskell. How-
ever, error messages of the latter two frameworks are be expressed in terms
of Scala and Haskell type errors, rather than domain concepts.

Brabrand et al. [2002] introduced Bigwig, a domain-specific language for
developing interactive web applications, which they call web services. One
of the core ideas of Bigwig is that its services are session based. The services
are not viewed as a collection of pages but as sequences of interactions be-
tween client and server. Such an abstraction avoids the broken page link issue
discussed in Section 2.2, while limiting URL flexibility. The Bigwig compiler
provides a number of static guarantees. Particularly interesting are the guar-
antees about dynamically created documents. The compiler checks that input
fields always match the code that receives the input, i.e. each name prop-
erty of an <input> tag should be handled by server-side code [Sandholm and
Schwartzbach, 2000]. This particular problem does not apply to WebDSL, be-
cause such input names are generated by the compiler. Besides guarantees
for form inputs, Bigwig also guarantees that all documents being generated
dynamically are valid XHTML 1.0, as described by Brabrand et al. [2001].
WebDSL enforces consistency checks for many HTML elements, but not a
strict XHTML compliance, which is future work (see Section 2.6.5). The suc-
cessor to Bigwig, JWIG [Möller and Schwarz, 2009], does not add additional
types of analysis. The difference is that the analysis is applied in the context
of a Java embedding instead of an external DSL.

Thiemann [2002] describes WASH/CGI, a Haskell library to build web ap-
plications. The Haskell type system is used to statically verify certain ap-
plication properties, such as navigation links. This is easy to do, because
pages in WASH are just functions, and navigation links are function calls. We
downloaded WASH, but were not able to compile and test it. However, we
suspect that not all application code is checked statically. For instance, call-
back attributes contain Haskell expressions embedded in strings. In addition,
because the Haskell compiler does not know about domain-specific concepts
such as pages, the error messages will not be expressed in domain terminol-
ogy, but rather in terms of the Haskell type system.

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 41

In 1996 already Atkins et al. [1999] discussed the advantage of domain-
specific languages in terms of static verification of web applications. The
language they proposed, MAWL, enables the definition of form-based appli-
cations and performs static checks between the definition of views and the
application’s logic. However, Mawl is very limited in the aspects it covers, it
only covers logic and user interface definitions. It does not cover aspects such
as access control, data modeling, data validation and workflows with multiple
participants.

The WebDSL language we described is designed to generate full-featured
web applications from a single, high-level specification. In contrast, several
model-driven methodologies for creating web applications have been pro-
posed in recent years, including OOHDM [Schwabe et al., 1996], SHDM [Lima
and Schwabe, 2003], WebML [Ceri et al., 2000], UWE [Koch et al., 2001],
OOWS [Pastor et al., 2003], and Hera [Vdovjak et al., 2003]. Many of these
model-driven methodologies have evolved into tools that provide partial code
generation, for example UWE4JSF [Kroiss et al., 2009] for UWE, HyperDe
[Nunes and Schwabe, 2006] for SHDM, WebRatio [Brambilla et al., 2007b] for
WebML, OOWS [Valderas et al., 2007], and Hera-S [van der Sluijs et al., 2006]
for Hera. These solutions generate only a skeleton application that targets a
conventional web application platform. Developers can edit these, relying on
these frameworks (as discussed in Section 2.2) to perform consistency check-
ing for the application as a whole. The model-driven solutions used to design
the skeletal application can only perform partial consistency checking, and
are oblivious of any handwritten code added to it.

Comai et al. [2002] describe a tool for statically verifying consistency prop-
erties on XML-based WebML models. Although WebML is a visual language,
the models are stored in an XML-based textual representation. The tool can
be used to report erroneous patterns in those XML-based models. To verify
correctness of an application, syntactic and semantic checks are performed.
As WebML is a graph-based language, certain consistency properties are a
natural part of the syntax: for example, links to other pages in the application
can be checked by checking the syntax. The semantic checks discussed in
the paper are addressing issues specific to the WebML language. Like many
other model-driven approaches, WebML generates only skeletal applications,
and cannot perform full consistency checking once custom code is added to
an application.

In previous work Bravenboer et al. [2007] described StringBorg, a generic
approach to embedding a DSL in a host language, for instance by adding
SQL and regular expression support to Java. The host and embedded lan-
guage become linguistically integrated and therefore static verification can be
performed on the newly created combination of the languages. StringBorg is
a specialization of the MetaBorg approach of Bravenboer and Visser [2004] for
embedding languages using SDF grammars [Visser, 1997b], which has also
been used for the construction of WebDSL, as described by Visser [2007a].

42

2.6.2 External Consistency Checkers

For many frameworks, it is technically feasible to provide better consistency
checks and better feedback to developers than provided by the reference im-
plementations, as observed in Section 2.3. External third-party tools can some-
times improve consistency checking and feedback, often integrating into IDEs
and providing cross-language consistency checks not performed by the refer-
ence implementation.

JetBrains develops IDEs for a number of different languages. With IntelliJ
IDEA, they support the Java language, but also provide specialized support
for frameworks such as the JBoss Seam framework, Struts, and GWT [Jet-
Brains, 2009a]. The IDE provides features such as content completion and
error checking in JSP (Java Server Pages) definitions and provides consistency
checks and feedback not available with the reference implementation. An-
other JetBrains IDE is the Web IDE [JetBrains, 2009b], which provides sup-
port for a variety of languages that are commonly used together, including
PHP, HTML, CSS, JavaScript, and SQL. While it provides only limited static
checking for these languages, it provides an integrated environment for all
these languages together, even though they are independently developed and
maintained.

Tatlock et al. [2008] describe Quail, a tool for deep type checking of queries
embedded in strings. The tool specializes on the Java language and performs
safety checks of queries embedded in string literals, rather than introduc-
ing an embedded language. The authors showed that their tool can check
most types of queries constructed as strings, but a small category of runtime-
constructed (concatenated) strings remains unchecked. The embedded lan-
guage approach applied for WebDSL and StringBorg does not have this lim-
itation, but cannot be used with the embedded strings in the standard Java
language as it was not designed for those checks.

External consistency checker tools can improve consistency checks of frame-
works, and have one major advantage over the integrated consistency check-
ers discussed in Section 2.6.1 as well as those of WebDSL: they can be used
with existing, industry-accepted frameworks. However, as these checkers are
developed independently from the framework they analyze, they do have a
number of disadvantages in terms of completeness and correctness:

• Uncoordinated development by independent teams can lead to inconsistencies.
In addition to keeping up with the latest versions, maintaining correct-
ness and providing complete support is increasingly difficult as more
components developed by independent teams come into play.

• Thorough framework-level consistency checking is never complete. Whereas
our approach checks a single language, these tools check frameworks.
Frameworks can interact with other frameworks of external parties (e.g.,
a unit testing framework), new language features, and data types. The
tool vendor cannot anticipate all these interactions. As a result, some of

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 43

the more sophisticated consistency checks can only be implemented as
heuristics.

Furthermore, these independently developed checkers pose a number of chal-
lenges to their developers, requiring significantly more effort to develop and
maintain than built-in consistency checkers:

• The language and frameworks are complex. The complexity of the language
and frameworks make their analysis very complex. Domain specific lan-
guages are typically much smaller and simpler and consequently easier
to analyze.

• The source language and framework are not designed to enable checking. This
makes it considerably harder to implement many classes of consistency
checks. An example of this is the string-embedded queries of Java,
checked by Quail: only by a sophisticated data-flow analysis can these
queries be checked, and completeness cannot be guaranteed.

• Supporting and keeping up with multiple versions of languages and tools re-
quires considerable effort. These tools must support different, indepen-
dently developed versions of languages and frameworks, and combina-
tions thereof. This places a large burden with the tooling developers,
even if the goal is only to support the most recent versions.

• Reuse of the reference compilers and interpreters is very hard. It takes a lot
of effort to effectively reuse the reference compiler and interpreter im-
plementations (say, the Java compiler and JSF/XML processors). These
tools already implement components required for consistency checks,
but they have not been designed for reuse by external consistency check-
ers.

2.6.3 Finding Faults by Unit Testing

To manage the lack of static checking in web applications, unit testing is often
proposed as a way to check different consistency properties in web appli-
cations. However, while unit tests are a highly effective, indispensable way
of identifying regressions in an application, they do not provide the same
level of accuracy, completeness, and the swiftness of static consistency checks.
There are two approaches to unit testing: either strictly testing a single unit
of code, making heavy use of mock objects; or writing tests that cross more
than one unit of code (sometimes called cross-tests or integration tests). Strict
unit tests implicate one unit of code: if a test fails, the offending code is easily
identified. Writing strict, explicit unit tests for basic consistency properties is
laborious and impractical. Only cross-tests, testing more than one unit, are
effective at checking consistency between different modules. Still, these tests
are typically not complete in testing all consistency properties. They also do
not clearly implicate a particular piece of source code, like static checks or

44

even strict unit tests can do. By applying strict test-driven development it is
possible to implicate the most recent edit of an application as the cause of the
failure of a test, but not a particular line or statement.

Static consistency checks, more so than unit tests or other runtime checks,
excel at rapid and accurate error reporting. Found inconsistencies can be re-
ported before deploying or running an application, and are always associated
with a particular location in the source code. When used with an integrated
development environment (IDE), any constraint violations can be reported by
displaying error markers in the source code editor. This allows developers to
quickly adapt their code to fix mistakes, or can guide them through the pro-
cess of making larger changes, when the application may be in a state where
it cannot be deployed or executed.

2.6.4 Previous Work

Key abstractions provided by the WebDSL language are in the areas of data
modeling, user interface specification, and data operations. For a detailed
overview of higher-level abstractions, built on top of these core concepts, we
refer the reader to later chapters and earlier papers: Visser [2007a] and Chap-
ter 4 give an overview of the basic design and implementation of WebDSL,
Groenewegen and Visser [2008] described the access control language, Groe-
newegen and Visser [2009] described data validation, and Chapter 3 describes
the workflow language. In contrast to these earlier papers, the present chap-
ter focuses on consistency checking, showing how it compares to consistency
checking in other languages, and describing how consistency checking is im-
plemented.

Static consistency checking and IDE integration are a powerful combina-
tion: an IDE that supports a statically checked language can report any errors
directly in the editor. In previous work, Kats et al. [2009] and [Kats and Vis-
ser, 2010a] reported on the construction of IDE plugins for the Eclipse envi-
ronment using SDF [Visser, 1997b] and Stratego [Bravenboer et al., 2008], par-
ticularly focusing on the constructing of an IDE for WebDSL. In the present
chapter, we focus on the semantic checks of the WebDSL language and the
underlying semantic (Stratego) rules.

2.6.5 Future work

While the WebDSL compiler checks a lot of properties, it is not yet com-
plete. WebDSL applications are not currently guaranteed to produce vali-
dating HTML, for instance. This is something we intend to investigate. Also,
declarative rules could describe nesting restrictions of user-defined templates.

WebDSL is optimized for the construction of form-based interactive web
information systems. It is currently not very well suited for building applica-
tions that mainly rely on heavy client-side JavaScript work. Improving sup-
port in this area will provide an opportunity for verification of Rich Internet
Applications. We also intend to investigate how we can further simplify the

Chapter 2. Static Consistency Checking of Web Applications with WebDSL 45

definition of compilers with static verification in Stratego, e.g. by even more
declaratively defining scoping rules.

2.7 C O N C L U S I O N

In this chapter we demonstrated that timely, accurate and adequate error re-
porting is problematic in current state-of-practice web frameworks, such as
Ruby on Rails, Lift and Seam. While certain frameworks report some ap-
plication inconsistencies at compile-time, many are only discovered later, at
deployment or run time. The lack of consistency checking in otherwise stat-
ically checked languages can be contributed to the linguistic separation of
these frameworks. Aspects of the applications are defined in separate DSLs
whose consistency is not checked with the rest of the application.

In this chapter we argued that DSLs should be designed from the ground
up to enable static verification by linguistically integrating its sub-languages.
Based on static verification and linguistic integration, the WebDSL language
provides consistency checks that are reported at compile-time, can directly be
traced back to their source, and provide clear, domain-specific error messages.
We showed examples of error messages given by the WebDSL compiler. Sub-
sequently we detailed the architecture and implementation of a consistency
checker for a simplified version of the WebDSL language.

46

Postscript: Static Consistency Checking of
Web Applications with WebDSL

While “Static Consistency Checking of Web Applications with WebDSL” [Hemel
et al., 2010] was not the first paper we published, it does provide a strong mo-
tivation for the rest of the thesis, which is why it is the first core chapter. The
ability to statically verify an entire application is a quality of WebDSL and
mobl that should not be underestimated. In web and mobile development,
the use of dynamic languages is rapidly becoming the norm, greatly compli-
cating the ability to statically verify applications, resulting in late failure.

For a long time WebDSL’s compiler and verifier could only be run from the
command line. Although the compiler clearly reported file names and line
numbers alongside errors, such output does not make much of an impression
during demos. When Spoofax [Kats and Visser, 2010b] became stable enough,
Danny Groenewegen created an Eclipse plug-in for WebDSL, integrating the
type checker into the IDE. Using the plug-in, errors are highlighted as the
user types with accurate error messages, as demonstrated in Section 2.4. This
makes a big difference in user experience and error detection time, because
the compiler does not have to be explicitly called to run the static verification
process.

Before publishing this chapter as a paper, we published an early version of
Section 2.2 online as a series of blog posts7. The response, especially to the
criticism on Ruby on Rails, was intense. A small group of people acknowl-
edged the problem, although they did not feel the problem was big enough to
move away from Rails. However, a larger group simply rejected our claims.
We must be stupid to make such errors and not to be able to interpret the
“perfectly clear” error messages that the framework produced. At one point
we had to ban a person who proceeded to call us names on all subsequent
(unrelated) blog posts as well. Clearly, this was a sensitive issue. At times it
seemed like criticizing a web framework was like attacking a religion.

7http://zef.me/2308/when-rails-fails

47

http://zef.me/2308/when-rails-fails

48

3
WebWorkFlow: An Object-Oriented
Workflow Modeling Language for Web
Applications

A B S T R A C T

Workflow languages are designed for the high-level description of processes
and are typically not suitable for the generation of complete applications. In
this chapter, we present WebWorkFlow, an object-oriented workflow mod-
eling language for the high-level description of workflows in web applica-
tions. Workflow descriptions define procedures operating on domain objects.
Procedures are composed using sequential and concurrent process combina-
tors. WebWorkFlow is an embedded language, extending WebDSL, a domain-
specific language for web application development, with workflow abstrac-
tions. The extension is implemented by means of model-to-model transforma-
tions. Rather than providing an exclusive workflow language, WebWorkFlow
supports interaction with the underlying WebDSL language. WebWorkFlow
supports most of the basic workflow control patterns.

3.1 I N T R O D U C T I O N

Workflow is concernced with the coordination of activities performed by par-
ticipants involving artifacts [Hollingsworth, 1995, WfMC, 1999]. Workflow and
business process modeling languages such as UML activity diagrams [Du-
mas and ter Hofstede, 2001], BPEL [Curbera et al., 2003], and YAWL [van der
Aalst and ter Hofstede, 2005], are designed for the high-level description of
a wide variety of workflows or business processes ranging from the documen-
tation of the operating procedures for a factory, the administrative processes
involving (paper) documents of a business, or the procedures carried out by
medical staff with patients in a hospital. Thus, participants in a workflow
may be people, machines, or machines operated by people, and artifacts may
be electronic data or physical artifacts. A worklow description may be just
the documentation of a procedure to be carried out by humans, or it may be
the specification of an interactive automated process. If automated, a work-
flow may be coordinated by a central machine (e.g. a web server), or it may
consist of a network of collaborating (web) services. To cover this wide range
of applications, workflow languages are restricted to modeling processes and
not complete applications. That is, using a workflow engine for the execution
of a process definition requires external applications or code to implement
individual activities.

49

DM = data model, UI = user
interface, AC = access con-
trol, PE = procedure events,
WF = workflow

Figure 3.1 WebWorkFlow is
implemented as extension of
WebDSL

Web applications are concerned with
presenting information to, and obtain-
ing information from users interactively
through a web browser. There are many
types of web applications that contain
workflow elements, i.e. the coordination of
activities performed by participants. Con-
sider for instance the following three ex-
amples. (1) An issue tracker coordinating
the activities of the members of a project
through registration, assignment and mon-
itoring progress on issues. (2) A confer-
ence management system coordinating the
activities of authors, program chairs, pro-
gram committee members, external review-
ers, meeting planners, and attendees to
produce, review, select, and present a col-
lection of scientific publications. (3) A user
registration component, creating an ac-
count for a new user by subsequently reg-
istering, checking of credentials and con-
firming by email, involving a user and ad-
ministrator. Thus, workflow concepts can
be used as organizing principle for the en-
gineering of many web applications, sup-
porting the high-level implementation of
the administration and monitoring of a pro-
cess.

Rather than deriving an incomplete
skeleton or boilerplate application from a
process definition, a customized applica-
tion with workflow requires integration of
a workflow description language with a web engineering language.

In this chapter, we present WebWorkFlow, an object-oriented workflow
modeling language for the high-level description of workflows in web ap-
plications. WebWorkFlow is an embedded language [Bravenboer and Visser,
2004] extending WebDSL [Visser, 2008], a domain-specific language for web
application development, with workflow abstractions (Figure 3.1). From the
definition of procedures operating on objects, and a control flow description
to connect these procedures, complete custom web applications can be gener-
ated.

The WebWorkFlow generator is designed and built using a number of best
practices for domain-specific language engineering [Visser, 2008]. Rather than
providing an exclusive workflow language, WebWorkFlow supports interac-
tion with the underlying WebDSL language. This approach enables the use of
workflow abstractions where possible, and the use of the regular web mod-

50

eling facilities where needed. This practice is called language integration and
separation of concerns [Groenewegen and Visser, 2008].

The target language (WebDSL) is a subset of the source language. The high-
level language is more expressive (more concise models), but may not have
the same coverage. For example, process expressions support only structured
control-flow, while the underlying procedure event model supports unstruc-
tured control-flow. Thus, this approach makes it possible to use high-level
abstractions where possible, but allows escaping to the next lower level where
needed, thus increasing coverage of the language. This approach is called
compilation by normalization [Kats et al., 2008] and is sketched in Figure 3.1. At
the top level is WebWorkFlow, a rich DSL with sub-languages for data, user
interface, access control and workflow modeling. WebWorkFlow is translated
to lower-level procedural WebWorkFlow where workflow process descriptions
have been translated to procedure events. Procedures are translated to a com-
bination of data models, user interface elements and access control rules. This
chain of transformations continues until all that is left is core WebDSL, a rel-
atively low level model that can be easily mapped to the target platform, in
this case Java/SEAM.

3.1.1 Contributions

The contributions of this chapter are as follows:

1. The design of the WebWorkFlow language, a language enabling the con-
struction of complete applications involving one or more workflows.

2. A demonstration of how enabling access to multiple layers of abstraction
supports coverage.

3. An evaluation of the coverage of WebWorkFlow by demonstrating how
they can be used to implement a common set of workflow patterns.

3.1.2 Outline

The rest of this chapter is structured as follows. In the next section we in-
troduce WebWorkFlow procedures by means of an example. In Section 3.3
we describe our implementation approach, explaining the procedure event
model underlying the implementation of high-level process descriptions, the
transformation of process expressions to procedure events, and the transfor-
mation of procedures to WebDSL, building on its high-level data model, user
interface, and access control abstractions. In Section 3.4 we evaluate the cov-
erage of WebWorkflow by examing the encoding of the control-flow patterns
of van der Aalst et al. [2003]. In Section 3.5 we discuss the relation of Web-
WorkFlow to other process modeling approaches.

Chapter 3. WebWorkFlow 51

3.2 W E B W O R K F L O W B Y E X A M P L E

Workflows in WebWorkFlow are defined by means of workflow procedures that
operate on workflow objects. In this section we introduce the high-level lan-
guage constructs for defining objects and procedures, using as running exam-
ple a simple workflow for organizing ‘progress meetings’ between managers
and their employees. More precisely, rather than organizing the meeting it-
self, the workflow organizes the organization surrounding the meeting. Prior
to the meeting, the manager and employee provide their own view on the
progress of the employee. After the meeting the manager writes a report

about the meeting. The employee may approve the report or may provide
comments on the report, which may cause the manager to revise the report.
When the report is approved, the manager finalizes it. The complete Web-
WorkFlow implementation of this ProgressMeeting workflow is defined in
Figures 3.2 and 3.4.

Workflow Objects

WebWorkFlow is an object-oriented workflow language. Central to the defini-
tion of a workflow is a workflow object that accumulates the data produced
in the process and documents its progress. Typically, a workflow object is a
domain object in the domain model of the application. For example, in a con-
ference management system natural workflow objects are Paper and Review.
If the only purpose of a workflow is to schedule a number of steps with-
out a natural domain object, a special entity can be created to represent the
instances of the workflow.

entity User {
username :: String
password :: Secret
name :: String
manager → User
employees → Set<User>

}
entity ProgressMeeting {

employee → User
employeeView :: Text
managerView :: Text
report :: Text
approved :: Bool
comment :: Text

}

Figure 3.2 WebDSL data model for
progress meeting workflow

Workflow objects are instances of enti-
ties described using WebDSL data mod-
els [Visser, 2008]. Figure 3.2 describes
the data model for the progress meet-
ing workflow. A data model consists
of entity declarations such as User and
ProgressMeeting. An entity declaration
has properties, which associate data with
entity instances. A property has a name
and a type, which may be either a value
type indicated by :: (e.g. String, Text,
Secret) or a reference type, indicated by
->, referring to other entities or collections
of entities (e.g. Set<User>).

Workflow Procedures

A workflow in WebWorkFlow is formal-
ized by means of a procedure, which de-
scribes activities to be performed by one or more participants in a particular
order. A procedure may consist of a single step, or may be a composition of
procedures. A procedure may be automatic or may require a user to provide

52

input, which may require a simple button click or filling in a complete form.
Figure 3.4 defines the procedures for the progress meeting workflow. The
meeting procedure defines the overall process of the workflow by composing
the other procedures, which each define a single step. The screenshots on the
right of Figure 3.4 are snapshots from a workflow conducted by ‘Joe Manager’
and ‘Jane User’. The name in the menubar indicates the logged in user.

procedure f(x : A) {
who { who }
when { when }
view { elem* }
do { stat* }
process { pexp }

}

Figure 3.3 Procedures

Figure 3.3 defines the syntax of high-
level procedure definitions. Thus, a pro-
cedure definition has a name (f), exactly
one typed parameter (x:A) indicating the
workflow object to which the procedure
applies, and a number of optional clauses,
who, when, view, do, and process, which
are discussed below. In the next section,
the list of procedure clauses is extended
to cater for the definition of procedure events.

Actor The who clause determines which participants can apply the proce-
dure by means of an access control predicate, based on the declarative access
control model of WebDSL [Groenewegen and Visser, 2008]. The expression
is a constraint on the current session and the workflow object, and any ob-
jects reachable from those via properties. The session includes a pointer to
the principal, i.e. the logged in user associated with the session. For exam-
ple, the writeReport procedure requires that the principal corresponds to
p.employee.manager, that is, the manager of the employee for which the
meeting is organized.

Activation The when clause provides additional constraints on the applica-
bility of a procedure. This is used for enforcing the ordering of procedures, as
we will see in the next sections. However, in the high-level language, ordering
of procedures is achieved by means of process expressions. Thus, further util-
ity of the when clause is to test for preconditions on the workflow object. For
example, the finalizeReport procedure tests that the report has actually
been written by requiring that it is not the empty string, and that the report
has been approved. Another application of the when clause is to test timing
constraints, e.g. the deadline for a submitPaper procedure. A procedure is
only applicable when the actor and activation constraints are satisfied. Thus,
the page for applying a procedure and the links to that page are not accessible
if these constraints are not satisfied.

User interface The view clause defines the user interface for applying a pro-
cedure. This may be an arbitrary WebDSL page definition, allowing a com-
pletely customizable user interface. The page definition can display any rele-
vant information accessible through the workflow object and session, and will
typically display a form for user input required by the procedure. It is often
convenient and appropriate to derive a page definition from the data model.
The WebDSL derive construct

derive style from e for (p1,...,pn)

Chapter 3. WebWorkFlow 53

procedure meeting(p : ProgressMeeting) {
process {
(writeEmployeeView(p)

|AND| writeManagerView(p));
repeat {

writeReport(p);
(approveReport(p)

|XOR| commentReport(p))
} until finalizeReport(p)

}
}
procedure writeEmployeeView(

p : ProgressMeeting) {
who { principal = p.employee }
view {
derive procedurePage from p

for (view(employee), employeeView)
}

}
procedure writeManagerView(

p : ProgressMeeting) {
who { principal = p.employee.manager }
view {
derive procedurePage from p
for (view(employee), managerView)

}
}
procedure writeReport(p : ProgressMeeting) {

who { principal = p.employee.manager }
view {
derive procedurePage from p
for (view(employee), view(employeeView),

view(managerView), report)
}

}
procedure approveReport(p : ProgressMeeting){

who { principal = p.employee }
do { p.approved := true; }

}
procedure commentReport(p : ProgressMeeting){

who { principal = p.employee }
view {
derive procedurePage from p

for (view(employee), view(report),
commments)

}
do { email(commentNotification(p));
}

}
procedure finalizeReport(

p : ProgressMeeting) {
who { principal = p.employee.manager }
when { p.report != "" && p.approved }

}

(a) writeManagerView(p)

(b) approveReport(p) |XOR|
commentReport(p)

(c) commentReport(p)

(d) repeat{ writeReport(p)
... }

until finalizeReport(p)

Figure 3.4 Progress meeting workflow procedure with screenshots

provides a flexible mechanism for deriving a page from an entity declara-
tion [Hemel et al., 2008a]. The style argument declares the style of the page,
the expression e indicates the object and thus the type for which to gener-
ate the page, and the pi properties indicate which properties of the object
should be displayed (view) and which should be edited. The commentReport

procedure in Figure 3.4 demonstrates how a procedurePage can be gener-

54

extend entity ProgressMeeting {
meetings → Set<ProgressMeeting>

}
procedure meeting(p : ProgressMeeting) {

process {
employeeMeetings(p);
(employeeView(p) |AND| managerView(p));
... as before ...

}
}
procedure employeeMeetings(p : ProgressMeeting) {

who { principal = p.employee }
do {

for(u : User in p.employee.employeesList) {
p.meetings
.add(ProgressMeeting{employee := u})

}
}
process {

AND(q : ProgressMeeting in p.meetingsList) {
meeting(q)

}
}

}

Figure 3.5 Recursive workflow procedure.

ated for two view properties (employee and report) and one edit property
(comments).

Action The do clause describes the action taken when the procedure is ap-
plied. Actions can be described using a simple imperative language. For a
standard procedurePage the default action is to save the changes for the edit
fields in the form, and no further action is needed. Additional actions may
be taken to implement business logic, to send a notification email as in the
commentReport procedure, or to create sub-workflows as described below.

Process The process clause contains a process expression defining the com-
position of procedures to apply after invoking the containing procedure. For
example, the meeting procedure in Figure 3.4 defines the composition of the
individual steps in the ProgressMeeting workflow. Process expressions are
composed from procedure invocations with several combinators. The sequen-
tial composition e1 ; e2 of two expressions first applies e1 and then e2.
The parallel composition e1 |AND| e2 applies e1 and e2 in parallel waiting
for both to terminate. The iteration repeat{e} until f(o) applies e until
procedure f is applied. The parallel composition e1 |XOR| e2 enables the
application of e1 and e2, but cancels one if the other has terminated.

Chapter 3. WebWorkFlow 55

Recursive Procedures

The meeting example defines a workflow on a single workflow object
ProgressMeeting. However, there can be multiple instances of this work-
flow in different stages of execution in parallel. For each user there can be a
ProgressMeeting instance, or even several, say if an employee has more than
one manager, or one for each year of employment. Thus, a workflow instance
corresponds to an instance of the corresponding workflow object. Procedures
can instantiate new sub-workflows by invoking procedures on linked objects
(through properties). Such sub-workflows can also be recursive in the sense
that a procedure may call itself on another workflow object. The example in
Figure 3.5 illustrates recursion by extending the progress meeting example.
In this workflow users do not only have managers, they can also be managers.
Before evaluating the progress of a manager, all his or her own employees
should be evaluated first. Thus, the meeting workflow procedure is adapted
to invoke employeeMeetings(p). In the do clause, a ProgressMeeting object
is created and added to the set of meetings for each employee of the user.
Then, in the process clause, the meeting workflow is initiated for each em-
ployee meeting in parallel so that all employees can start working on their
employeeView simultaneously. The employeeMeetings procedure needs to
be finished (all reports approved and finalized) before the managers meeting
can proceed.

3.3 T R A N S F O R M I N G P R O C E D U R E S

In this section we explain how we implement the compilation by normal-
ization approach to realize WebWorkFlow. We describe how WebWorkFlow
procedures are implemented by means of model-to-model transformations to
the underlying WebDSL language. The conceptual design of WebWorkFlow
may suggest that it is an object-oriented language that can be directly trans-
lated to a regular object-oriented language such as Java. However, due to the
statelessness of the HTTP protocol, state has to be kept in between requests.
Traditionally, sessions have been used for this purpose, however sessions typ-
ically only last a few hours whereas a workflow can last years. Furthermore
sessions are bound to one particular user, whereas many users can participate
in a workflow. So rather than using sessions, the workflow state is persisted
in the database through extension of the application’s data model. Further-
more, page definitions are used to implement the user interface for applying
a procedure, and access control rules to regulate the applicability of a proce-
dure. The transformations rely on the data, user interface and access control
modeling languages of WebDSL.

Procedures to Pages

The basic idea for the implementation of a procedure is illustrated in Fig-
ure 3.6 with the transformation of procedure f(a:A){...}. To record the
state of a procedure, the workflow entity A is extended with a property with
the name of the procedure referring to a ProcedureStatus object.

56

procedure f(a : A) {
who { who }
when { when }
view { elem* }
do { stat* }

}

⇓

extend entity A {
f -> ProcedureStatus

}
entity ProcedureStatus {
enabled :: Bool
function enable() {

enabled := true;
}

}
define page f(a : A) {
elem*
action do() {

a.f.enabled := false;
stat*

}
}
access control rules {
rule page f(a : A) {

who && when &&
a.f.enabled

}
}

Figure 3.6 Transformation of pro-
cedure

The basic implementation of Procedure

Status provides an enabled property,
which indicates whether the procedure
may be applied, and an enable() function,
which can be used to set this property to
true.

The user interface for the procedure is
realized by means of a page definition with
the name of the procedure and the work-
flow object as argument. The view from
the procedure is used as specification of the
presentation and the do action is performed
on submit and disables the procedure by
resetting the enabled flag. Finally, an ac-
cess control rule uses the who and when ex-
pressions to regulate access to the proce-
dure. The enabled property of the status
object is used as an additional requirement
for applicability of the procedure.

Task Lists and Navigation

In addition to the basic page for applying
a procedure, further elements for the user
interface of an application can be derived
from procedure definitions. In particular, a
definition of a task list with links to pages
for applicable procedures for a particular
workflow object, or a list with all available
procedures for a particular user. The access
control mechanism of WebDSL ensures that
links in such work lists are only displayed if
the pages they point to are accessible. Thus, the user interface is dynamically
adapted to the state of the application. This is illustrated in Figure 3.4, where
links to applicable procedures can be seen in the sidebar.

Procedure Event Model procedure f(a : A) {
enabled { stat* }
who { who }
when { when }
view { elem* }
do { stat* }
done { stat* }
process { pexp }
processed { stat* }
disabled { stat* }

}

Figure 3.7 Procedure events

A procedure has a life cycle that starts
with the creation of the workflow object
it is associated with and ends with its de-
struction. WebWorkFlow provides an event
model for observing the changes in the life
cycle of a procedure. Observation of events
is realized using the following event han-
dling clauses in a procedure definition (Fig-
ure 3.7):

• enabled is triggered after a call of enable()

Chapter 3. WebWorkFlow 57

• disabled is triggered after a call of disable()

• done is triggered after the execution of the do clause

• processed is triggered after the procedure’s process has terminated; in
case a procedure has no process clause the processed event follows
directly after the done event.

To support modular subscription to the events of a procedure, the extend
procedure mechanism can be used to add additional statements to an event
handler. For example, the definition

extend procedure f(a : A) {
processed { stat* }

}

extends the processed event handler with the stat* statements.

Encoding Procedure Dependencies

The procedure event model provides a general mechanism for encoding a
wide variety of policies for ordering procedures. For example, the definition
extend procedure writeReport(p : ProgressMeeting){

processed {
p.approveReport.enable();
p.commentReport.enable();

}
}

enables the procedures approveReport and commentReport after the write-

Report procedure has terminated, which corresponds to a parallel split.

Process Expressions

While the procedure event handlers provide a flexible mechanism for com-
posing procedures, it is also a rather tedious mechanism. A large number
of procedure composition patterns can be captured using concise process ex-
pressions from which the correct event handling code can be generated auto-
matically. For example, the sequential composition of two procedures can be
encoded as in the writeReport definition above. That is, the sequential com-
position f(x); g(x) is encoded by calling x.g.enable() in the processed

clause of f. This direct enabling of the successor of a procedure works fine
provided that procedures are only called from one call site. Since workflow
procedures are intended for human consumption, it is generally not a good
idea to require the same activity in many different contexts. However, this
constraint is typically violated in the case of recursion, which requires an ini-
tial call and the actual recursive call.

Dealing with multiple call sites requires a more dynamic approach to se-
quencing of calls. In order to return control to the proper callee, it is necessary
to record the ‘return address’. The return address of a workflow procedure
call can be represented by the identity of the caller, i.e. its ProcedureStatus

58

entity ProcedureStatus {
caller → ProcedureStatus
returnstate :: Int
function enable(c : ProcedureStatus, r : Int) {
this.enabled := true;
this.caller := c;
this.returnstate := r;
this.enabled();

}
function disable() {

this.enabled := false;
this.disabled();

}
}

Figure 3.8 Re-definition of ProcedureStatus for recording return address of pro-
cedure call.

procedure f(a:A){ process{ g(a); h(a) } }

⇓

entity FStatus : ProcedureStatus {
a -> A
function next(state : Int) {
if(state = 0) { a.g.enable(this, 1); }
if(state = 1) { a.h.enable(this, 2); }
if(state = 2) { this.processed(); }

}
}
extend procedure f(a : A) {

enabled { this.next(0); }
processed {
this.caller.next(this.returnstate);

}
}

Figure 3.9 Sequential composition with state machine.

object, and its state. Figure 3.8 redefines ProcedureStatus with an enable

function taking the caller identity and its state as arguments.
To determine the next step to take after a procedure returns, a process ex-

pression is transformed to a finite state machine encoded by the next function
of the FStatus entity, which specializes ProcedureStatus for a procedure f.
To compute the state machine, all positions in the process expressions are
assigned a unique number. For each combinator there are special rules for
computing the transitions. We illustrate the computation with two examples,
sequential composition (Figure 3.9) and parallel split (Figure 3.10). Procedure
f in Figure 3.9 applies the sequential composition of g and h. It is transformed

Chapter 3. WebWorkFlow 59

procedure f(a : A) {
process {
p(a); [1]
((g1(a); e1*; h1(a) [3])
|AND| (g2(a); e2*; h2(a) [5]));

q(a)
}

}

⇓

extend entity A { count :: Int }
extend entity FStatus {

extend function next(state : Int) {
if(state = 1) {

a.g1.enable(this, 0);
a.g2.enable(this, 0);

}
if(state = 3 || state = 5) {

if(a.count = 1) {
a.count := 0;
a.q.enable(this, 0);

} else {
a.count := a.count + 1;

}
}

}
}

Figure 3.10 Implementation of the split and join transitions of the |AND| parallel
combinator.

to the next function in the FStatus entity declaration and an extension of the
procedure event handlers. When f is enabled, the transition from the start
state (0) is taken, which will lead to g being enabled with state 1. When the
next transition is taken from g, h is enabled with state 2. On return from h

the process is completed and the processed event handler is called, which
itself returns to the caller of f.

Figure 3.10 defines the implementation of the e1 |AND| e2 combinator,
which applies procesess e1 and e2 in parallel and waits for both to complete
before proceeding. The transformation assumes a normalized process expres-
sion in which the expression is preceded and succeeded by a simple procedure
call. This assumption is also made for the branches of the split. Expressions
that do not match this pattern (e.g. (e1 |AND| e2); (e3 |AND| e4) can be
transformed to this form by insertion of automatic identity procedures. Note
that the [i] expressions are state labels. When the split is reached (state 1),
the heads of the two branches are enabled. When the first of the branches
returns, the counter count is incremented. When the next branch returns the
counter is 1 and the continuation q is enabled.

60

3.4 E N C O D I N G PAT T E R N S

A lot of research has been conducted on the assessment of workflow lan-
guages. van der Aalst et al. [2003] describe an extensive set of workflow
patterns from the process perspective ranging from simple patterns such as
sequential execution to complicated patterns such as loops and cancellation
patterns. Recently, a revised version of these patterns was published [Russell
et al., 2006]. Patterns have also been devised for the resource perspective [ter
Hofstede et al., 2004] and the data perspective [Russell et al., 2005]. In this
chapter, we focus on the use of control patterns for evaluating workflow lan-
guages from the control perspective.

Pattern Support
1. Sequence +
2. Parallel split +
3. Synchronization +
4. Exclusive Choice +
5. Simple merge +
6. Multi choice +
7. Synchronizing merge +
8. Multi-merge +/-
9. Discriminator +
10. Arbitrary cycles +/-
11. Implicit termination -
12-15. Multiple instance patterns +
16. Deferred choice +
17. Interleaved parallel routing +/-
18. Milestone +/-
19. Cancel activity +
20. Cancel case +/-
21. Structured Loop +
22. Recursion +
23. Transient Trigger +
24. Persistent Trigger +

Figure 3.11 Control flow pattern coverage of
WebWorkFlow

Figure 3.11 shows the cover-
age of these patterns for Web-
WorkFlow. In this table + means
this pattern directly supported
by WebWorkFlow, +/- means it
is possible to implement through
a workaround, and - means the
pattern is not supported by Web-
WorkFlow. A number of pat-
terns that are particularly note-
worthy for WebWorkFlow are
patterns 10, 12-15 and 22.

Although arbitrary cycles (10)
are not often needed, they can
be implemented using the lower-
level procedure events
processed or done, in which an
arbitrary procedure can be en-
abled. This is an example of why
it useful to have a high-level pro-
cess description language, while
at the same time still having
access to a lower level of ab-
straction where not directly sup-
ported process features can be implemented.

Multiple instances (12-15) of procedures in WebWorkFlow are supported
through multiple instances of the objects they operate on. One instance of a
process can run on each object that the process is defined on. By creating new
object instances, any number of instances of a process can be created. Mul-
tiple instances without synchronization (pattern 12) can be implemented by
simply calling enable() on them, which instantiates them in a non-blocking
manner. Synchronizing on a number of instances (pattern 13 and 14) can be
realized by instantiating them using another process expression:
AND(a : A in o.aList){proc}. This construct can spawn a variable num-
ber of parallel instances of a process, with the same semantics as |AND|. Pat-

Chapter 3. WebWorkFlow 61

tern 15 (Multiple instances without a priori runtime knowledge) can be im-
plemented as follows:

multiproc(o).enable(); stopmultiproc(o)

In the done clause of multiproc, the procedure instantly re-enables itself us-
ing enable(), creates a new object, and starts a process with enable(). Fi-
nally, stopmultiproc disables multiproc through a call to
multiproc.disable(). To synchronize all processes created, a when clause
can be added to the stopmultiproc procedure, to require for all instances
that their processes are finished.

For recursion (22) we can distinguish three cases. First, tail recursion can be
implemented using repeat and while. Second, recursion on properties of the
object is supported by simply calling a procedure recursively on the property
(e.g. Figure 3.5). Recursive self calls on an object a from a process defined on
a are not supported. We have not yet found a use-case for non tail-recursive
self recursion, so it does not seem much of an issue. (But examples are most
welcome!)

Data patterns

Russell et al. [2005] discuss a number of workflow data patterns. WebWork-
Flow defines its processes directly on top of data entities. This gives the
procedures in the process direct access to the data entity and all the data that
is linked from it. Through this mechanism many of the data patterns are nat-
urally supported. WebWorkFlow is mostly lacking in data hiding, for which
it provides no explicit support. Lack of space prevents us from providing a
thorough evaluation of the data patterns that are supported by WebWorkFlow.

3.5 D I S C U S S I O N

During the design of WebWorkFlow a number of design decisions were made
that distinguish it from other workflow systems. We compare our approach
to other workflow approaches and discuss opportunities for future work.

Evaluation

Most workflow systems (YAWL, JBPM, BPEL) dynamically load a workflow
description and interpret it. The advantage of this approach is the ability to
adapt the workflow while the system is running. The workflow description
can then simply be reloaded. However, this ability is often limited to process
descriptions, which means that no new tasks or procedures can be defined
at runtime. In WebWorkFlow on the other hand, workflows are compiled to
WebDSL (which in in its turn compiles to Java/JSF). As a consequence, run-
time adaptations of the workflow process are not supported. However, the
compiled application is much more light-weight than an interpreted worfklow
management system.

The main concern of most workflow management systems is controlling the
process. User interfaces and the rest of the application are handled in separate

62

systems and are thus outside the scope of the workflow system. WebWork-
Flow is an embedded DSL in WebDSL and therefore integrates well with the
rest of WebDSL. This integration enables the developer to more easily develop
and generate complete user interfaces, automated tasks and control flow. At
the same time, it gives a maximum of flexibility as one can always resort to
a lower level of abstraction in case the ultimate abstraction layer does not
support a certain construction.

Following the tendency to design languages that are understandable by
both business analysts and technical developers, and the shift from workflow
to business process modeling, most workflow approaches use a graphical lan-
guage for specifying processes. WebWorkFlow is specifically aimed at web
developers and uses a textual language. The first reason to use a textual lan-
guage is because it is an embedded DSL within WebDSL, which is a textual
language. The second reason is that it turns out to be a very efficient and
expressive way of expressing workflows.

Related Work

The approach that is taken by Brambilla et al. [2007a], is that of adding work-
flow support to any domain model by performing a model transformation,
by which the original model is extended with the necessary domain model
elements to support workflow. WebWorkFlow applies these ideas to WebDSL.
WebWorkFlow is more expressive than the approach discussed by Brambilla,
because it does not cover nested sub-processes, which precludes recursion.
Brambilla et al. [2006] themselves applied these ideas to WebML , where they
describe how processes described in BPMN can be used to enact workflow
processes in WebML applications. The authors envision that their explicit de-
sign styles in the future could be automated to generate skeleton applications
based on process descriptions. WebWorkFlow realizes this vision; it does not
only generate a skeleton application, but a complete application that can be
customized at the model level to better suit application-specific needs.

YAWL is a graphical worklow language and system designed by Van der
Aalst and Ter Hofstede, authors of the work on workflow patterns [Russell
et al., 2006, ter Hofstede et al., 2004, Russell et al., 2005]. YAWL is designed
to support almost every workflow pattern. Its formalization is based on high-
level Petri nets [van der Aalst and ter Hofstede, 2005]. Although YAWL is
a graphical language, a lot of configuration needs to be done by setting pa-
rameters in property boxes. The process diagram does not always shows a
complete picture because so much information is hidden inside properties.
While YAWL is very expressive, it does not have the layered implementation
that WebWorkFlow has, which allows to use lower level constructs to imple-
ment workflows not directly supported by the workflow language.

Panta Rhei [Eder et al., 1997] is a web-based workflow system that inter-
prets workflows specified in a textual language. Workflow data in Panta Rhei
is persisted in a database, which, like in WebWorkFlow, makes it possible to
alter the execution of workflows at run-time by changing this data. A web
browser is used as interface to the user. Communication with other systems

Chapter 3. WebWorkFlow 63

is possible using an internal form representation, which remote systems must
be able to interpret. Panta Rhei also has support for timing and transactional
features, both of which are future work for WebWorkFlow.

iTasks [Plasmeijer et al., 2007] is an internal workflow DSL based on the
functional programming language Clean. iTasks shares many goals with Web-
WorkFlow, it enables workflows to be defined at a high level of abstraction,
it supports the creation of fully working applications based on the workflow
definition and avoids a lot of boiler plate code. However, the approach taken
is different. iTasks takes a functional programming approach to creating and
composing workflows, based on a small set of combinators. WebWorkFlow
takes the object-oriented approach of implementing processes like methods
on objects, resulting in a language that is more familiar to users accustomed
to the object-orient paradigm.

WebWork is a web-only implementation of the workflow management sys-
tem Meteor-2 [Miller et al., 1998]. It uses a graphical designer to specify a
workflow, from which HTML and CGI scripts are generated. Automated tasks
are performed using a socket connection with a web server and invoking CGI
programs. WebWork is not as expressive as BPEL or BPMN, as only some-
what more than half of the first 20 workflow pattern are supported [van der
Aalst et al., 2003]. Also, the use of CGI adds flexibility, but a custom task is
not easily constructed, as opposed to WebWorkFlow, where all code can be
specified in one language.

BPMN (Business Process Modeling Notation) is a business process mod-
eling notation language designed by the Business Process Modeling Initia-
tive [White, 2004] and now maintained by the Object Management Group
[Recker and Strategy, 2006]. Its goal is to provide a notation for describing
business processes understandable for both business analysts and technical
developers. WebWorkFlow on the other hand is much more technical and
mainly aimed at developers. In contrast to WebWorkFlow, BPMN is not di-
rectly executable. It is possible however, to derive executable workflow speci-
fications from workflows specified using a subset of BPMN.

Future Work

An interesting area of research for WebWorkFlow is making procedures acces-
sible through a web service interface (as opposed to the current HTML inter-
face) and accessing procedures of remote servers. WebWorkFlow could then
be used for web service orchestration, similar to BPEL. Because of the user-
initiated nature of WebDSL (and WebWorkFlow by extension), using timed
events is not yet possible. Conceivable applications of timing features are
scheduling tasks and using deadlines to automatically influence the execu-
tion of procedures.

As WebWorkFlow is used to generate a fully functional workflow system
instead of specifying a workflow that is interpreted by a WFMS, regener-
ating and deploying the workflow system could potentially break ongoing
workflows. This is a data model evolution problem and is future work. The
automatically generated navigation based on procedure definitions is useful,

64

but can still be enhanced. Process descriptions can be more fully utilized to
generate navigation. Although it is possible to disable (parts of) procedures
in the current version of the language, it is not straightforward to roll back
the state of an application when errors occur. A transaction system similar to
Panta Rhei might be helpful.

3.6 C O N C L U S I O N

In this chapter we introduced WebWorkFlow, an embedded DSL extending
WebDSL with object-oriented workflow abstractions. Based on the definition
of workflow procedures a full fledged executable application can be gener-
ated, including navigation and work lists. Following the ‘code generation by
model transformation’ (Chapter 4) approach, WebWorkFlow achieves great
flexibility and customizability by making the lower abstraction levels of the
procedure event model and WebDSL web application modeling accessible
next to the high-level workflow abstractions. WebWorkFlow covers most of
the workflow control patterns. The patterns that are not directly expressible
through the process expression language can often be implemented on the
procedure event level, demonstrating the advantages of building a (workflow)
language as an abstraction on a lower-level language.

Chapter 3. WebWorkFlow 65

66

Postscript: WebWorkFlow

Workflow seemed like an obvious addition to WebDSL, since little workflows
such as user registration seem to appear everywhere. However, in practice
WebWorkFlow has not seen a lot of use. In this postscript we discuss two
issues that came up during the design of WebWorkFlow that we did not an-
ticipate.

G E N E R AT E D U S E R I N T E R FA C E S

While WebWorkFlow solves the problem of concisely and flexibly defining
and enforcing workflows in web applications, it does not provide a satisfying
solution to building a user interface around this workflow. Workflows in
WebWorkFlow center around objects, but how should that idea manifest itself
in the user interface? As a solution we came up with the idea of using a
toolbox metaphor. When selecting an object in a vector graphics drawing
program, or a word processor, a toolbox appears that enables the user to
perform operations on it. In WebWorkFlow workflows the idea is similar: on
the page that represents the object, there is a list of tasks that appears along
the side of the object that shows tasks that can be performed at that time.
While useful from a prototyping perspective, these user interfaces are rarely
acceptable to be used in practice.

Another example of this issue, independent of the workflow component
of WebDSL, is the automatic derivation of view and edit (CRUD) pages for
entities. While a very useful feature for rapid prototyping, the generated user
interface is rarely the desired user interface. Similarly, the user interfaces
elements generated by WebWorkFlow work, but in practice they need to be
tweaked which is something that the language does not support well.

Many high-level extensions of WebDSL rely on the automatic generation of
templates and pages that can be used in the application. The question is how
to customize such generated templates from within the application. Minor
adjustments can be made with CSS styles, but beyond the trivial, styles are not
sufficient. Automatically generating user interfaces that are aesthetically pleasing
is difficult and we have not yet found a way to support this in WebDSL.

S T R I C T N E S S

Another issue that we found after developing WebWorkFlow is that it is, like
workflow tools in general, very strict. Web applications typically allow the
user to do many things simultaneously in arbitrary orders. Workflows are
intended to impose a specific order in which tasks have to be completed.
They work well in bureaucratic workflows, but this type of workflow is not so
common in the type of web applications that we typically build.

67

68

4
Code Generation by Model Transformation

A B S T R A C T

The realization of model-driven software development requires effective tech-
niques for implementing code generators for domain-specific languages. This
chapter identifies techniques for improving separation of concerns in the im-
plementation of generators. The core technique is code generation by model
transformation, that is, the generation of a structured representation (model)
of the target program instead of plain text. This approach enables the trans-
formation of code after generation, which in turn enables the extension of the
target language with features that allow better modularity in code generation
rules. The technique can also be applied to ‘internal code generation’ for the
translation of high-level extensions of a DSL to lower-level constructs within
the same DSL using model-to-model transformations.

This chapter refines our earlier description of code generation by model
transformation (as described by Hemel et al. [2008a]) with an improved

architecture for the composition of model-to-model normalization rules, solv-
ing the problem of combining type analysis and transformation. Instead of
coarse-grained stages that alternate between normalization and type analysis,
we have developed a new style of type analysis that can be integrated with
normalizing transformations in a fine-grained manner. The normalization
strategy has a simple extension interface and integrates non-local, context-
sensitive transformation rules.

We have applied the techniques in a realistic case study of domain-specific
language engineering, i.e. the code generator for WebDSL, using Stratego, a
high-level transformation language that integrates model-to-model, model-to-
code, and code-to-code transformations.

4.1 I N T R O D U C T I O N

Model-driven software development aims at improving productivity and main-
tainability of software by raising the level of abstraction from source code in a
general purpose language to high-level, domain-specific models such that de-
velopers can concentrate on application logic rather than the accidental com-
plexity of low-level implementation details as described by Stahl and Völter
[2005], Schmidt [2006], Kelly and Tolvanen [2008]. The essence of the ap-
proach is to shift the knowledge about these implementation details from the
minds of programmers to the templates of the code generators that automati-
cally translate models into implementations.

While model-driven software development should make developing end-
user applications easier, the effort of understanding and appropriately using

69

the implementation platforms is shifted to domain-specific language engineering,
that is, the design and implementation of domain-specific languages (DSLs).
DSLs must incorporate the implementation patterns of a complete application
domain rather than those sufficient for a single application, possibly amount-
ing to a significantly larger effort. This effort can be amortized by using a
language in many projects, and/or by reducing the cost of creating and main-
taining domain-specific languages and their generators. Thus, effective meth-
ods and techniques for domain-specific language engineering are crucial for
realizing model-driven software development. A DSL engineering approach
should not only reduce the effort of the initial creation of a DSL, but also the
effort needed for maintenance tasks such as the adaptation to a new imple-
mentation platform, or the extension with new abstractions.

As a realistic case study in the application of transformation techniques to
the systematic development of domain-specific languages for model-driven
software development, we are developing WebDSL, a domain-specific lan-
guage for modeling web applications with a rich data model. In earlier work
[Visser, 2008] we described the process of designing WebDSL, to contribute to
a method for systematic development of new DSLs.

In this chapter, we describe the techniques for improving separation of con-
cerns in the implementation of code generators for domain-specific languages,
based on our experience with the implementation of WebDSL. The core tech-
nique is code generation by model transformation, that is, the generation of a
structured representation (model) of the target program instead of plain text.
This approach enables the transformation of code after generation, which in
turn enables the extension of the target language with features that allow bet-
ter modularity in code generation rules. The technique can also be applied
to ‘internal code generation’ for the translation of high-level extensions of
a DSL to lower-level constructs within the same DSL using model-to-model
transformations.

This chapter refines our earlier description of the code generation by model
transformation approach [Hemel et al., 2008a] with an improved architecture
for the composition of model-to-model normalization rules. In particular, in
this earlier description we discussed the difficulty of combining type analysis
and rewriting. Instead of coarse-grained stages that alternate between nor-
malization and re-application of type analysis, we have developed a new style
of type analysis that can be integrated with normalizing transformations in a
fine-grained manner. The new normalization strategy has a simpler interface,
which makes it easier to extend with rules for new language extensions. Fur-
thermore, the strategy integrates non-local, context-sensitive transformation
rules for aspect weaving to support separation of concerns in WebDSL.

4.1.1 Contributions

The contributions of this chapter are as follows:

1. An approach to code generation that enables both modularity and sepa-
ration of concerns in code generators.

70

2. Techniques to combine transformation and type analysis in a compiler.

3. A description of how these techniques are applied in the WebDSL com-
piler.

4.1.2 Outline

In the next section we give a brief introduction to WebDSL. In Section 4.3 we
discuss the architecture of the implementation of WebDSL. The core of the
approach is based on code generation by term rewriting (Section 4.4), which em-
ploys term rewrite rules with concrete object syntax to transform DSL models
to code models. The implementation of the approach is based on Strate-
go/XT, a language and toolset for program transformation as described in
Visser [2004], Bravenboer et al. [2008]. Stratego is a high-level transformation
language that integrates model-to-model, model-to-code, and code-to-code
transformations. The language provides rewrite rules for the definition of basic
transformations, and programmable strategies for building complex transforma-
tions that control the application of rules.

The use of concrete object syntax [Visser, 2002] in the definition of transforma-
tion rules improves the readability of rules, guarantees syntactic correctness
of code patterns, and supports the subsequent transformation of generated
code. In Section 4.5 we show how this can be used to extend the target language
to make it better suited for code generation. For example, we have created an
extension of Java with identifier composition, interface extraction, and partial
classes and methods to simplify code generation rules.

The WebDSL language described in Section 4.2 provides basic abstractions
for data models, user interfaces, and actions. While this provides a signifi-
cant abstraction from the implementation platform, the language still requires
repetive code and does not provide optimal separation of concerns. In Sec-
tion 4.6 we discuss high-level abstractions for web applications that can be
expressed by transformation to the base language. We illustrate this using
examples of modules, modular data model definitions, user interface tem-
plates, high-level polytypic user-interface elements, declarative access control
rules [Groenewegen and Visser, 2008], and the workflow procedures described
in more detail in the previous chapter (Chapter 3), which can all be imple-
mented using model-to-model transformations.

The extended language is implemented by means of compilation by normal-
ization, a transformation process in which high-level constructs are gradually
transformed to constructs of the base language. The implementation of these
transformations often requires more than simple local-to-local rewrite rules.
Section 4.7 discusses the implementation of model-to-model transformations
using rewrite rules, and discusses techniques for realizing local-to-global and
global-to-local transformations such as needed for aspect weaving.

The implementation of the range of language extensions requires the com-
position of the model-to-model transformations that implement them. A nat-
ural approach is to stage the transformations according to level of abstraction,
that is, starting with the highest level constructs, gradually transform down

Chapter 4. Code Generation by Model Transformation 71

to the base language level. However, it turns out that interaction between
transformations makes staging of normalization rules cumbersome. In partic-
ular, the interaction between type analysis and normalization requires many
re-applications of type analysis in a staged setting. In Section 4.8 we present
an approach for combining model-to-model transformations into a single nor-
malization strategy that is modularly extensible with rules for new language
constructs. In Section 4.9 we present an approach for fine grained combina-
tion of type analysis and transformation, based on a refactoring of the type
analysis strategy.

4.2 W E B D S L

WebDSL is a textual domain-specific language for the implementation of web
applications with a rich data model. The language provides sublanguages
for the specification of data models, for the definition of custom pages for
viewing and editing objects in the data model, and for the manipulation of
data. Manipulation of data is defined by actions which are contained in pages.
This section describes each of these sublanguages using the implementation
of a small blogging application as illustration (Figures 4.1, 4.2, and 4.3).

4.2.1 Data Model

A data model specification introduces entity definitions (e.g., Blog, BlogEntry,
and User in Figure 4.11), consisting of properties with a name and a type. Types
of properties are either value types (indicated by ::) or associations to other
entities defined in the data model. Value types are basic data types such as
String1 and Date5, but also domain-specific types that carry additional func-
tionality. For example, the WikiText6 type implies the use of a wiki rendering
engine on display of a value of the type. Associations are composite (the ref-
erer owns the object, indicated by <>) or referential (the object may be shared,
indicated by ->). One-to-many and many-to-many relationships between en-
tities are defined through the use of the Set3 and List2 types. The inverse4

annotation on a property declares a relation with automatic synchronization
of two properties.

4.2.2 User Interface

Page definitions consist of the name of the page, the names and types of the
objects used as parameters, and a presentation of the data contained in the pa-
rameter objects. For example, the definition blog(b : Blog) in Figure 4.2
defines a page showing all blog entries for blog b. WebDSL provides basic
markup operators such as section8 and header9 for defining the structure of
a page. Data from the object parameters (and the objects they refer to) are
injected in the page by data access elements such as outputString7. Collec-

1The code examples in this chapter contain callouts to help the reader. These underlined
superscripts connect code fragments in the text to code fragments in the example.

72

entity Blog {
title :: String1 (name)
entries <> List2<BlogEntry>
authors -> Set3<User>

}
entity User {

username :: String
password :: Secret

}

entity BlogEntry {
blog -> Blog

(inverse4=Blog.entries)
title :: String (name)
author -> User
created :: Date5

content :: WikiText6

}

Figure 4.1 Blog data model

define page blog(b : Blog) {
title { outputString7(b.title) }
section8 {
header9 { outputString(b.title) }
for10(entry : BlogEntry in b.entries

order by entry.created desc) {
section {

header { outputString(entry.title) }
par { "by " outputString(entry.author)

"at " outputDate(entry.created) }
par { outputWikiText(entry.content) }
navigate(editBlogEntry(entry))11 { "Edit" }

}
}
navigate(createBlogEntry(b)) { "New Blog" }

}
}

Figure 4.2 Blog page definitions.

tions of data can be presented using the iterator construct for10, which can
filter and sort the elements of a collection. Navigation among pages is real-
ized using the navigate11 element, which takes a page with parameters and
a link text as arguments.

4.2.3 Data Operations

Data can be manipulated by declaring page actions. The sublanguage used
in these page actions is a Java-like imperative language with a simple API.
The createBlogEntry page in Figure 4.3 shows a page that allows the user
to create blog entries for a specific blog. Data input elements inside a form13,
such as inputString14, are used to enter information. The save16 action stores
the blog entry. Execution of an action can result in page navigation, initiated
by the return17 statement. An action15 element in a page is used to connect
a button with the caption in its first argument to the action call in its second
argument. This page also shows that pages can have variables to be used for
initialization of data, in this case the var be12 of type BlogEntry.

Chapter 4. Code Generation by Model Transformation 73

define page createBlogEntry(b : Blog) {
title { "Create Blog Entry for " outputString(b.title) }
var BlogEntry be12 := BlogEntry {
author := securityContext.principal
be.blog := b

}
section {
header { "Create Blog Entry for " outputString(b.title) }
form13 {

table {
row { "Title:" inputString(be.title)14 }
row { "Content:" inputWikiText(be.content) }

}
action15("Save", save())

}
}
action save16() {
be.created := now();
be.save();
return blog17(b);

}
}

Figure 4.3 Blog data manipulation.

4.3 I M P L E M E N T I N G W E B D S L B Y C O D E G E N E R AT I O N

The architecture of the WebDSL generator follows the four-level model orga-
nization presented by Bézivin [2005] as illustrated in Figure 4.4. At the M3
level we define the SDF metametamodel, which is the grammar of the Syn-
tax Definition Formalism SDF, which is defined in (and thus conforms to)
itself [Visser, 1997b]. At the M2 level we define the WebDSL metamodel, i.e.,
the grammar of WebDSL defined in SDF. At the M1 level we define WebDSL
models of web applications, consisting of entity and page definitions. At the
M0 level we define the web applications consisting of Java classes and XHTML
pages, which represent the models at the M1 level.

In the implementation of WebDSL that we have realized [Visser, 2008],
the M0 systems were initially based on the Java/Seam architecture, consist-
ing of high-level application frameworks, such as the Java Persistence API
(JPA) [DeMichiel and Keith, 2006b], JavaServer Faces (JSF) [Burns and Ki-
tain, 2006], and the Seam web framework [Kittoli, 2008]. Currently, alterna-
tive back-ends generating plain Java servlets [Coward and Yoshida, 2003] and
Python (for the Google AppEngine platform2), are under development. In
this chapter we will only consider the original Java/Seam back-end. The other
back-ends use similar techniques even if the details of the transformations are
different.

2http://code.google.com/appengine

74

http://code.google.com/appengine

Figure 4.4 Organization of models and artifacts of the WebDSL generator.

For each entity definition, a corresponding entity class is generated with
fields, accessors, and mutators for the properties of the entity, annotated for
object-relational mapping (ORM) according to the JPA. Figure 4.5 shows an
example transformation of a WebDSL entity Blog18 to a JPA entity Java class
Blog21. The title19 property is transformed to a class property title22,
the accessor getTitle23, and the mutator setTitle24. The second prop-
erty, entries20, also generates annotations to define static mapping to tables
(@OneToMany25) and dynamic behaviour such as save cascading
(@Cascade(SAVE_UPDATE)26).

For each page definition, a JSF XHTML page, an Enterprise JavaBeans
(EJB) [DeMichiel and Keith, 2006a] session bean, and the required interface
are generated. Figure 4.6 shows the WebDSL page definition editBlogEntry28

with its transformation to JSF and Java. The page’s arguments become prop-
erties of the session bean which make them available to the JSF Expression
Language (EL). In this example the WebDSL argument e27 is transformed to
the java property e34 which can be used in JSF EL expressions, e.g. to show
its title with editBlogEntry.e.title31. The connection to the correct session
bean is made by referring to the name specified in the @Name33 Java anno-
tation, in this case editBlogEntry. The save30 action defined in the page
becomes the save35 method of the session bean. The action can be executed
using the actionLink32 JSF element which is generated from the action29

call in the WebDSL page. Finally, an interface is generated for the session
bean which makes the methods available and specifies that the bean can be

Chapter 4. Code Generation by Model Transformation 75

entity Blog18 {
title19:: String
entries20<> List<BlogEntry>

}

⇓

@Entity public class Blog21 {
protected String _title22 = "";
public String getTitle()23 {
return _title;

}
public void setTitle(String value)24 {
_title = value;

}
@OneToMany25 @Cascade(SAVE_UPDATE)26

protected List<BlogEntry> _entries;
public List<BlogEntry> getEntries() {
return _entries;

}
public setEntries(List<BlogEntry> b) {
_entries = b;

}
}

Figure 4.5 Transformation of a WebDSL entity definition to a JPA class.

accessed locally36.
WebDSL is a textual, domain-specific language and its M2 metamodel is a

grammar describing the valid sentences of that language. From the grammar,
we automatically generate a parser that transforms the textual representation
of a model to an abstract syntax tree (AST). The AST conforms to a regular
tree grammar, another M2 metamodel that defines a set of valid trees, and
which is obtained automatically from the grammar. All subsequent transfor-
mations are applied to the AST corresponding to the textual representation
of the model. The WebDSL generator transforms high-level models into low-
level Java code and XML files. These target languages are also described by
a grammar and a derived abstract syntax definition. All transformations are
expressed in Stratego/XT [Bravenboer et al., 2008], which can apply transfor-
mations to any models with an abstract syntax definition.

In the following sections we discuss the organization of the generator as a
pipeline of model-to-model transformations, and the idioms used to realize
these transformations.

4.4 C O D E G E N E R AT I O N B Y T E R M R E W R I T I N G

Most model-driven engineering approaches accomplish code generation by
simply writing strings to text files. Sometimes template engines are used to

76

define page editBlogEntry(e27 : BlogEntry)28 {
form {

table {
row { "Title:" inputText(e.title) }
row { "Content:" inputWikiText(e.content) }
action("Save", save())29

}
}
action save()30 { e.save(); }

}

⇓

<html><body>
<h:form><table>
<tr><td><h:outputText value="Title: "/></td>

<td><h:inputText
value="#{editBlogEntry.e.title}"31/></td></tr>
<tr><td><h:outputText value="Content: "/></td><td>
<h:inputTextarea value="#{editBlogEntry.e.content}"/>

</td></tr></table>
<h:actionLink32 action="#{editBlogEntry.save()}"/>

</h:form>
</body></html>

@Stateful @Name("editBlogEntry")33

public class EditBlogEntryBean
implements EditBlogEntryBeanI {

@In @Out private BlogEntry e;34

public void setE(e) { this.e = e; }
public BlogEntry getE() { return this.e; }
public String save()35 { entityManager.persist(e); }

}

@Local36

public interface EditBlogEntryBeanI {
public void setE(e);
public BlogEntry getE();
public String save();

}

Figure 4.6 Transformation of a WebDSL page to a JSF page with a backing bean.

make this process easier. In contrast, in the code generation by model transfor-
mation approach, code generation is just another model transformation step.
Rather than printing strings to a file, source and target models are represented
by means of first-order terms, and code generation is expressed by means of
term rewriting. For the implementation of WebDSL we use Stratego [Visser,

Chapter 4. Code Generation by Model Transformation 77

2004, Bravenboer et al., 2008], a transformation language with a combination
of features that makes it suitable for code generation by model transformation.
This section explains code generation by term rewriting and compares it with
code generation using template engines as used in other MDE approaches.

4.4.1 Representing Models and Code with Terms

String template engines such as Velocity [The Apache Foundation, 2007],
StringTemplate [Parr, 2004], and xPand [Voelter and Groher, 2007] use tem-
plates to generate fragments of plain text, which cannot be checked statically
for syntactic correctness. Only after a complete output file has been gener-
ated for a particular input is it possible to determine if the generated code is
syntactically correct.

Stratego rewrite rules operate on a structured representation, using first-
order terms to represent models as a tree structure. Any patterns and frag-
ments using this representation can be statically checked for syntactic correct-
ness. For example, consider the following WebDSL entity declaration and its
term representation:

entity Blog {
ident :: String

}
⇒

Entity("Blog", [
Property("ident", SimpleSort("String"))

])

This term corresponds to a tree structure, with as root an Entity node, with
as children the term representations of the name and properties of the entity
declaration. Using the WebDSL meta-model, the structure of this tree can be
statically checked for well-formedness. Similarly, Java code can be represented
using a term representation. For example, consider the following (tiny) Java
class and its term representation:

@Entity
public class Blog {
public Blog()

}

⇓

ClassDec(
ClassDecHead(
[MarkerAnno(TypeName(Id("Entity"))), Public()]
, Id("Blog")
, None(), None(), None()),

ClassBody(
[ConstrDec(

ConstrDecHead([Public()],None(),Id("Blog"),[],None()),
ConstrBody(None(), []))]))

The essence of code generation by model transformation is to represent
both the input model and the generated code as structured terms. This re-

78

entity-to-class :
Entity(x, prop*) ->
ClassDec(
ClassDecHead(

[MarkerAnno(TypeName(Id("Entity"))), Public()], Id(x),
None(), None(), None()),

ClassBody(
[ConstrDec(ConstrDecHead([Public()],None(),Id(x),[],
None()),ConstrBody(None(),[]))]))

Figure 4.7 Rewrite rule generating Java code with abstract syntax.

quires meta-models for the source language (WebDSL) as well as for the tar-
get languages (Java and XML). Using structured representations for input and
output makes it possible to divide a large transformation into several, smaller
transformation steps. We elaborate on this technique in Section 4.5.

4.4.2 Rewrite Rules

The elementary operations of a transformation are rewrite rules of the form
L : p1 -> p2 where s. The name L of a rule can be used to invoke it in a
strategy. When applied, the left-hand side pattern p1 is matched against the
subject term, binding any variables in the pattern to corresponding sub-terms
of the subject term. When the match of p1 and the condition s succeed, the
subject term is replaced with the instantiation of the right-hand side pattern
p2. Rewrite rules are used for code generation by translating a fragment of
the source language on the left-hand side (represented as a term pattern) to
a fragment of the target language on the right-hand side (represented as a
term pattern). For example, the entity-to-class rewrite rule in Figure 4.7,
rewrites a WebDSL entity declaration to a Java class, using terms to specify
both the left-hand side and the right-hand side of the rule. The rewrite rule
rewrites the input entity to a class where the name x of the entity is used
as the name of the class and its constructor. For brevity, this rule does not
consider the inclusion of generated properties.

4.4.3 Concrete Object Syntax

While we will argue that it is useful to have a structured representation of
generated code, the right-hand side pattern of the rule in Figure 4.7 is not
very easy to produce or understand, due to the complexity of the abstract
syntax of Java. A language’s concrete syntax is usually more concise and more
familiar than its abstract syntax. Therefore, Stratego supports concrete object
syntax patterns [Visser, 2002] in the definition of transformation rules. That
is, textual patterns in the syntax of the language concerned that are compiled
to the corresponding structured representation pattern. This provides the
same level of readability as template engines, while guaranteeing syntactic
correctness of code patterns. For example, using concrete object syntax, the

Chapter 4. Code Generation by Model Transformation 79

entity-to-class :
|[entity x ent { prop* }]| ->
|[@Entity class x ent {

public x ent() { }
cbds*
...

}]|
where cbds* := <map(property-to-java)> prop*

...
property-to-java :

|[x :: srt]| ->
|[private t x field = e;

public t x get() { return x field; }
public void x set(t value) { x field = value; }]|

where t := <java-type> srt
; e := <initialization-expression> srt
; x field := <concat-strings> ["_", x]
; X := <capitalize> x
; x get := <concat-strings> ["get", X]
; x set := <concat-strings> ["set", X]

Figure 4.8 Rewrite rules for generating Java entity class from WebDSL entity dec-
laration.

entity-to-class rule in Figure 4.7 can be written as follows:

entity-to-class :
|[entity x { prop* }]| ->
|[@Entity public class x { public x() { } }]|

Note that x and prop* are recognized as meta-variables for identifiers and lists
of properties, respectively. In this chapter, we will indicate meta-variables
using italics, to distinguish them from identifiers in the subject language. The
implementation details are explained elsewhere [Visser, 2002] and are not in
the scope of this chapter.

A more realistic translation of entity declarations is defined in Figure 4.8.
Rule entity-to-class generates a Java class for an entity declaration. The
rule uses the auxiliary rule property-to-java to generate the class body
declarations (cbds2*) defining the field and accessors for a property of an
entity. Only the case of properties with value type is shown here.

4.4.4 Rewriting versus Template Engines

The table in Figure 4.9 summarizes the differences between the use of rewrit-
ing with concrete syntax and template engines such as Velocity [The Apache
Foundation, 2007] and xPand [Voelter and Groher, 2007] for code generation.
The approaches have in common that the concrete syntax of the target lan-
guage is used to define (parameterized) code fragments, which makes it easier
to define such fragments than with the use of abstract syntax. The approaches

80

Rewriting
+ use syntax of target language

+ pattern matching

- requires grammar

+ static syntactic checks

+ structured representation

+ automatic pretty-printing

+ transformation after genera-
tion

Template Engine
+ use syntax of target language

+ object accessors

+ flexible: no grammar needed

- no static syntactic checks

- generation of text

+/- use existing pretty-printers

- no transformation after genera-
tion

Figure 4.9 Comparison of rewriting with concrete syntax and textual template en-
gines.

use different methods to instantiate the holes in a code fragment. Rewriting
uses pattern matching and meta-variables, whereas template engines typically
use object accessors inside anti-quotations. This is mainly a difference in pro-
gramming style, which is not easy to compare. In order to parse code patterns
in concrete object syntax, a grammar of the target language is necessary. Since
template engines just produce text, they can be applied flexibly for different
languages. On the other hand, the lack of a grammar entails no syntactic
checks of the code patterns. Finally, the rewriting approach produces a struc-
tured representation, while template engines produce flat text. A structured
representation means that the target code can be pretty-printed automatically.
However, pretty-printers are available for mainstream languages, so this is
not necessarily a concern for the use of template engines. The main difference
that we are interested in for the purpose of this chapter is the fact that the
rewriting approach produces a structured representation of the target code,
which entails that further transformations can be applied, as we will see in
the following sections.

4.4.5 Composing Generation Rules

In Stratego, rewrite rules can be composed using programmable strategies that
control the application of individual rules [Visser et al., 1998, Bravenboer et al.,
2008]. Stratego provides a few basic combinators for composing transforma-
tions from rules. For example, the combinator s1 ; s2 produces the sequential
composition of the transformation strategies s1 and s2, and the combinator s1
<+ s2 produces the deterministic choice of s1 and s2. More complex strategies
can be constructed from these basic combinators. For example, the strategy
definitions

try(s) = s <+ id
repeat(s) = try(s; repeat(s))

Chapter 4. Code Generation by Model Transformation 81

are part of the Stratego Standard Library. The strategy try(s), tries to ap-
ply transformation s, but succeeds by producing the original term when s

fails. The strategy repeat(s), repeatedly applies a transformation s until it
fails. Traversal strategies are defined using generic traversal operators, and
can specify a visit sequence that works on any tree rather than for a particular
tree grammar. For example,

topdown(s) = s; all(topdown(s))

defines a strategy that applies a transformation s to all nodes in a tree during a
top-down traversal. An application-specific library can collect custom strategy
definitions.

Figure 4.10 shows a basic definition of the webdsl-to-seam transformation
strategy that transforms a WebDSL application consisting of a list of WebDSL
entity and page definitions to Java classes and JSF code. The strategy is a
pipeline of transformations that are applied in sequential order to the input
model. The typecheck transformation checks the consistency of declarations
and their uses and annotates identifiers with (a reference to) their declaration
or type. The generate-code transformation uses GenerateCode to map indi-
vidual WebDSL definitions to XML- or Java class models. The GenerateCode

strategy is defined using multiple definitions, which is a convenient way
to define an extensible composition of alternatives. Thus, the definition of
GenerateCode in Figure 4.10 is equivalent to

GenerateCode = entity-to-class + page-to-class

that is, the non-deterministic composition of the bodies of the definitions. The
non-deterministic composition s1 + s2 of two strategies entails that either
the composition s1 <+ s2 or the composition s2 <+ s1 is used. In other
words, the order in which the alternaves are tried is undefined.

Finally, the write-to-file strategy pretty-prints the Java class and XML
models, and writes them to a file.

4.5 T R A N S F O R M I N G G E N E R AT E D C O D E

Most programming languages are not designed as targets for code genera-
tion, which is manifest especially in the lack of composition operators for
program fragments of all kinds. For example, identifiers are typically just
strings of alphanumeric characters without operators for composing identi-
fiers from smaller strings. Similarly, classes and methods (in Java at least)

strategies
webdsl-to-seam = typecheck; generate-code; write-to-file
generate-code = map(GenerateCode)
GenerateCode = entity-to-class
GenerateCode = page-to-class

Figure 4.10 A basic code generation pipeline.

82

cannot be assembled from smaller class and method fragments. This lack of
compositionality in target languages is reflected in a corresponding lack of
compositionality in code generation rules, as is illustrated by the rules in Fig-
ure 4.8; a rule generating a Java class must produce all ingredients of that
class. Since rewrite rules produce a structured representation of the target
program, it is possible to apply further transformations to generated code. In
this section, we show three example extensions of the target language Java
with composition operators that enable better modularization of code gener-
ation rules.

4.5.1 Identifier Composition

Code generation often requires the creation of many new identifiers based
on identifiers in the source model. Since identifiers in Java (and most pro-
gramming languages) are simple alphanumeric strings, creation of identifiers
requires string manipulation and concatenation. For example, the generation
of a field, and a setter and getter method in the property-to-java rule in
Figure 4.8 requires three string concatenations and one string manipulation.
Even while this is straightforward code, it takes up quite a bit of real estate in
the generation rules, and it is repetitive boilerplate code. To avoid this prob-
lem we extended the Java language with the # operator, which composes its
two operand identifiers into a single identifier following Java’s naming con-
ventions. Thus, get#name becomes getName and _#name becomes _name.
The new version of the property-to-java rule from Figure 4.8 using this
feature is presented in Figure 4.11. The # operator is implemented by a trans-
formation that replaces composite identifiers by regular Java identifiers. The
Java extension and the transformation can be reused in all code generators
that produce Java code.

4.5.2 Partial Classes and Methods

Since its conception, the WebDSL generator has grown considerably. Initially,
the generator was constructed in a centralized fashion, with a single “God
rule” associated with each generated artifact. Much like a “God class”, an
anti-pattern in object-oriented programming, such a God rule dispatches a
large number of smaller transformation rules to generate a monolithic target

property-to-java :
|[x :: srt]| ->
|[private t _#x = e;

public t get#x() { return _#x; }
public void set#x(t value) { _#x = value; }

]|
where t := <java-type> srt

; e := <initialization-expression> srt

Figure 4.11 Code generation rule using identifier composition operator #.

Chapter 4. Code Generation by Model Transformation 83

artifact (e.g., a Java class). The entity-to-class rule in Figure 4.8 is a typical
starting point for growing such a God rule. As new language extensions are
added, these rules grow to a size that no longer fits on a single screen. Thus,
this pattern is a code smell that hinders the extensibility and maintainability
of the generator.

The employment of God rules is the result of the structure of the target
meta-model: Java does not support composition of classes. Other platforms,
such as C#, provide partial classes (but not partial methods), which allow
subdividing classes into smaller units. The lack of such a construct makes it
difficult to decompose rewrite rules that generate large classes. This platform
limitation can be resolved by extension of the target language with partial
classes and methods. Our extension uses Java’s annotation syntax to identify
partial classes and methods with the annotation @Partial. For example, Fig-
ure 4.12 shows a refactoring of the generation rules of Figure 4.8, in which
the entity-to-java and property-to-java rules independently generate
partial classes. Methods can be declared as partial using the same annotation:

@Partial void initialize() { stm* }

Since code patterns are no longer assembled by a God rule, partial code frag-
ments are emitted to a code repository using rules such as emit-java-class.
The code fragments are collected and assembled by the merge-partial-

classes strategy. Partial classes with the same name (within the same Java
package) are merged into a single Java class. Similarly, the bodies of par-
tial methods with the same name (in the same class) are merged into a sin-
gle method definition. The ordering of statements originating from different
partial methods is non-deterministic. Hence, the generator should make no
assumptions on such an ordering. However, there is a simple technique to

entity-to-java :
|[entity x ent { prop* }]| ->
<emit-java-class> |[
@Entity @Partial class x_ent {
public x ent() { }

}]|
property-to-java :

|[x :: srt]| ->
<emit-java-class> |[
@Partial class x ent {

private t _#x = e;
public t get#x() { return _#x; }
public void set#x(t value) { _#x = value; }

}]|
where x_ent := <entity>

; t := <java-type> srt
; e := <initialization-expression> srt

Figure 4.12 Generation rules emitting partial classes and methods.

84

enforce some order. If there are several classes of statements such that all
statements in one class should be executed before all statements in another
class, the partial method can be refactored into a regular method that calls for
each stage a partial method to which the statements of the various classes can
be added.

4.5.3 Interface Extraction

Seam and EJB require that each session bean implement an interface con-
taining all public methods of that bean. Generating code for these types of
interfaces is tedious, since it requires generation rules that shadow the gener-
ation rules for the regular class. Therefore, we extended Java to generate these
interfaces automatically. The @RequiresInterface annotation for a class
indicates that a separate interface should be derived from the class includ-
ing signatures of all its public methods. Again, the extension is implemented
by means of a (library) transformation that carries out the derivation of the
interface. Thus, for a page bean generated with the rule in Figure 4.13, a
corresponding interface x#PageBeanInterface is generated as well.

page-to-java-bean :
|[define page x(param*) {elem*}]| ->
<emit-java-class> |[

@RequiresInterface @Partial @Stateful
class x#PageBean {

@In EntityManager em;
...

}
]|

Figure 4.13 Annotating a generated class for interface extraction.

4.5.4 A Revised Pipeline

Figure 4.14 shows a revision of the generator pipeline presented in Figure 4.10,
incorporating the new code generation technique. Since the GenerateCode

rules apply not only to top-level definitions, the map strategy is no longer suf-
ficient. The new generate-code strategy uses the generic topdown strategy to
traverse the WebDSL model, applying the GenerateCode rules to each node
of the input model. The successful applications of GenerateCode contribute
to a repository of code fragments, which are assembled by merge-partial-

classes.

4.6 M O D E L - T O - M O D E L T R A N S F O R M AT I O N S

The WebDSL language as described in the preceding sections provides basic
abstractions for web applications. As the language evolved, we have added
new features to achieve higher levels of abstractions, providing better support

Chapter 4. Code Generation by Model Transformation 85

strategies
webdsl-to-seam =
typecheck; generate-code; merge-partial-classes;
write-to-file

generate-code = topdown(try(GenerateCode))
GenerateCode = entity-to-java
GenerateCode = property-to-java
GenerateCode = page-to-java
GenerateCode = parameter-to-java

Figure 4.14 Code generation pipeline with partial class generation and assembly.

for particular kinds of web applications and application domains. For some
of these abstractions, special support from the platform is needed. However,
many can be implemented by incremental model transformation steps, trans-
forming rich WebDSL models to more primitive WebDSL models that only
support the feature set of the WebDSL core language as described in Sec-
tion 4.2. The advantage of transforming higher level abstractions to low level
core models rather than generating implementation code from them directly
is that the domain-specific core language that has to be mapped to implemen-
tation target code remains small, increasing portability of the generator. The
development of the Servlet and Python back-ends for WebDSL took little time
because the WebDSL core language is relatively small.

This section discusses several examples of abstractions we have added to
WebDSL and implemented by means of model-to-model transformations. In
the next sections we discuss the issues that arise in the implementation of
such transformations and the techniques developed to address them. The
rationale for the introduction of a core language for WebDSL is discussed
more extensively in Visser [2008].

4.6.1 Modules

In the WebDSL core language all definitions of an application have to be de-
fined in a single file. This is not desirable, as it impairs maintainability and
reusability of applications. A simple module system defined as an exten-
sion of the core language addresses this problem. A module is a collection
of definitions and may import other modules. WebDSL modules are imple-
mented by means of a model-to-model transformation that replaces module
imports by the content of the imported module. This mechanism is similar to
the #include pragma of the C language. The crucial difference with the C
mechanism is that a WebDSL module is parsed before its abstract syntax tree
is included in the abstract syntax tree of the importing module. Thus, it is not
possible to rely on textual composition to compose WebDSL definitions, e.g.
using an import in the middle of a definition.

86

module usermanagement
entity User {
username :: String
password :: Secret

}
module blogentries

imports usermanagement
extend entity User {
entries -> Set<BlogEntry>

}

⇒

entity User
username :: String
password :: Secret
entries -> Set<BlogEntry>

Figure 4.15 Joining modular data model definitions

define main() {
top()
body()

}
define top() {

menubar ...
}
define page blog(b : Blog) {
main()
define body() {
section {

header {
output(b.name)

}
...

}
}

}

⇒

define page blog(b : Blog) {
menubar { ... }
section {

header {output(b.name)}
...

}
}

Figure 4.16 Inlining template calls.

4.6.2 Modular Data Models

To support separation of concerns it can be beneficial to spread entity declara-
tions over different modules that deal with various aspects of an application.
For example, for our blogging application we might want to reuse a separate,
generic user management module with a standard User data model. For the
purpose of the blogging application the User entity needs to have a set of blog
entries. Rather than directly implementing this aspect in the usermanagement
module, we define it in a separate module, using the extend entity con-
struct to extend the existing User entity. The transformation merges the entity
definition and its extensions, mapping it to a regular entity declaration in the
core WebDSL language, as illustrated in Figure 4.15.

Chapter 4. Code Generation by Model Transformation 87

4.6.3 Template Definitions

User-defined templates allow the developer to define reusable chunks of user
interface model. For example, the main() template in Figure 4.16 defines a
general set-up for pages (with menubar and page body) that is shared among
many pages of the application. Pages can call the main() template and locally
override parts of it. For instance, the blog page overrides the default body
template. Templates can be implemented by recursively inlining the contents
of their definitions into the page they are called from. Thus, in the blog page,
the main template call is replaced by a top and body template call, which are
subsequently replaced by a menubar and a section.

4.6.4 Deriving User Interface Elements from Types

The user interface elements to be used for input and output of entity prop-
erties depend on their type. For example, input of a String requires a sim-
ple text input field, input of a WikiText requires a larger text area, while
input of a Date requires a date picker. Thus, the core WebDSL language pro-
vides different input elements for different types. For example, for input
of the properties of a BlogEntry e, we would use inputString(e.title),
inputDate(e.created), and inputWikiText(e.content). Since the input
element to be used depends on the type of the property, we can simplify the
specification of inputs to just input(e), and derive the particular kind from
the type of the expression using a model-to-model transformation. Thus,
input(e.title) is transformed to inputString(e.title) and the call
input(e.created) to inputDate(e.created).

A recurring pattern in user interfaces are tabular forms for input of the
properties of an entity. Such forms can be derived from an entity declara-
tion by considering its properties. WebDSL provides a collection of derive
statements for deriving different page configurations from data model decla-
rations. For example, the derive editPage statement produces a complete
edit page for a particular entity, as illustrated in Figure 4.17.

4.6.5 Access Control

Most web applications need to adhere to a certain access control policy that
defines the permissions of the various users. Such a policy can be encoded
in the application using conditional checks defined in the protected resource,
such as a page. If access is not permitted the user is notified by a redirect to
an error page. This solution requires that access control checks are entangled
with template definitions, which makes the policy encoded in the application
hard to verify or modify. The WebDSL access control sublanguage [Groe-
newegen and Visser, 2008] supports definition of access control policies as a
separate concern. Access control rules are defined in a separate section (or
module) in the application, and are woven into the corresponding WebDSL
definitions during compilation.

88

define page editBlogEntry(e : BlogEntry) {
derive editPage from e

}

⇓

define page editBlogEntry(e : BlogEntry) {
section {

header{"Edit " output(e.title)}
form {

table {
row { "Title:" input(e.title) }
row { "Created:" input(e.created) }
row { "Content:" input(e.content) } }

action("Save", save())
action save() {
e.save();
return blogEntry(e); } } } }

Figure 4.17 Derivation of edit page based on data model.

The example in Figure 4.18 illustrates the weaving of access control rules.
The page editBlogEntry is protected by a rule that matches the signature of
the page (i.e. the name and type of arguments) and specifies the condition for
allowing access. The condition verifies that the currently logged in user, the
‘principal’, is the author of the blog entry. The condition is woven into the
page definition by a transformation, creating an init action which performs
the check and redirects if necessary. Such an action is executed before each
request to the page it is defined in.

define page editBlogEntry(e : BlogEntry) { section ... }

rule page editBlogEntry(be : BlogEntry) {
principal == be.author

}

⇓

define page editBlogEntry(e : BlogEntry) {
init {

if(!(principal == e.author)) {
redirect accessDenied(); }

}
section ...

}

Figure 4.18 Access control rule transformation.

Chapter 4. Code Generation by Model Transformation 89

4.6.6 Workflow

Another recurring aspect of web applications is workflow. Workflow is con-
cerned with the coordination of activities performed by participants involving
artifacts. Workflows can be encoded using low-level constructs in WebDSL
applications, however these encodings give little insight into the structure of
such workflows. Therefore, we have developed WebWorkFlow (see Chap-
ter 3), an extension of WebDSL supporting the definition of tasks on entities
and the order in which these have to be performed using process expressions.
Although the specifics of this extension are beyond the scope of this chapter,
it has also been implemented as a model-to-model transformation. Workflow
process descriptions are translated to procedures, which are then translated
to a combination of entity extensions, access control rules, actions, and page
and template definitions.

4.7 I M P L E M E N T I N G M O D E L - T O - M O D E L T R A N S F O R M S

In the previous section, we have illustrated how high-level abstractions can
be implemented by means of model-to-model transformations to the core lan-
guage. These transformations can be implemented by means of the same
techniques we employed for code generation in Section 4.3, i.e. rewrite rules
with concrete syntax and transformation of generated ‘code’. Using con-
crete syntax, it is feasible to handle large code templates, while its under-
lying structured representation enables cascading transformations after gen-
eration. Thus, Stratego unifies model-to-code and model-to-model transfor-
mation, avoiding the need for different languages for different types of trans-
formations.

van Wijngaarden and Visser [2003] give a classification of mechanisms for
program transformation, distinguishing the scope of a transformation (which
part of a program it affects or is affected by), its direction (whether it is trig-
gered by the source or the target), and the number of stages it requires. In
the WebDSL generator three classes of transformations are used that differ in
scope.

• local-to-local transformations, which locally transform one term to another

• global-to-local transformations, which retrieve information from the sur-
rounding (global) context to perform a local transformation

• local-to-global transformations, which retrieve information from a local
term for use in the surrounding context

In this section, we discuss the definition of transformations in these classes.
In the next section, we consider the composition of such transformations.

90

4.7.1 Local-to-local

Syntactic abstractions, also known as syntactic sugar, provide new language
constructs that support expression of functionality that is already provided
by the base language in a more compact manner. The implementation of such
abstractions can often be realized by means of simple local-to-local transfor-
mations.

A local-to-local rewrite replaces a model fragment with another fragment
without using or producing other parts of the model, as illustrated by the ex-
amples in Figure 4.19. The normalize-text rule normalizes applications of
the text construct with multiple arguments to a list of applications of text
with a single argument. More precisely, it splits off the first argument of a
multi-argument application. Repeated application of the rule ensures that
only singleton applications remain. For example, text(blog.title, ": ",

blog.author) is reduced to text(blog.title) text(": ")

text(blog.author). Similarly, the normalize-for rule rewrites an occur-
rence of the for statement without a where clause to one with the universally
valid where true clause. These normalizations ensure that later stages of the
code generator only need to deal with one syntactic variant, i.e., singleton
applications of text and for statements with a where clause.

4.7.2 Global-to-local

In a global-to-local transformation, model elements are locally transformed
using (global) context information. For example, a transformation may de-
pend on the types of identifiers declared elsewhere in the model. Similarly,
template calls can be implemented by inlining a template definition defined
in the global context.

As an example of a global-to-local transformation consider the derivation
of edit pages and input elements in Section 4.6.4, which is implemented by
the rewrite rules in Figure 4.20. The derive-edit-page rule transforms a
derive editPage from e element to a complete edit page, as illustrated in
Figure 4.17. The transformation is driven by the type of the expression e. The
type-of strategy computes the type of an expression based on declarations
of types and identifiers. Given a type expression, the entity-properties

strategy retrieves the list of properties of an entity type. For each property
a row is generated by the derive-edit-row rule. The return address of the

normalize-text :
|[text(e1,e2,e*)]| -> |[text(e1) text(e2,e*)]|

normalize-for :
|[for(x : srt in e1 order by e2) {elem*}]| ->
|[for(x : srt in e1 where true order by e2) { elem* }]|

Figure 4.19 Local-to-local syntactic normalization rules.

Chapter 4. Code Generation by Model Transformation 91

derive-edit-page :
|[derive editPage from e]| ->
|[section{

header{"Edit " srt " " text(e.name)}
form {

table { row* }
action("Save", save()) }

action save() { x.save(); return x_view(x); } }
]|
where prop* := <type-of; entity-properties> e

; row* := <map(derive-edit-row(|x))> prop*
; x_view := <type-of; view-page> e

derive-edit-row(|x) :
|[y relation srt]| -> |[row{x_text ": " input(x.y)}]|

derive-input :
|[input(e)]| -> |[inputString(e)]|
where SimpleSort("String") := <type-of> e

derive-input :
|[input(e)]| -> |[select(s : t, e)]|
where t := <type-of> e; <defined-entity> t

Figure 4.20 Rewrite rules to derive edit page elements

save() action is the view page declared for the entity type, which is obtained
with the view-page strategy.

The edit rows generated by this rule make use of a generic input element,
which is specialized with regard to its type by an appropriate derive-input

rule. For example, an input for type String, is specialized to an inputString

template, and an input for a defined entity type is specialized to a drop-down
menu (select) that allows selecting an object of that type.

4.7.3 Local-to-global

A local-to-global transformation can locally rewrite an element of the model,
while producing elements or information for use elsewhere in the global con-
text. This pattern can be used to implement the extend entity construct of
Figure 4.15, or similar aspect-oriented programming (AOP) constructs.

Normal rewrite rules in Stratego are context-free, that is, a rule locally trans-
forms a term to another term without access to the context in which the term
occurs. To express context-sensitive transformations, Stratego provides dynamic
rewrite rules [Bravenboer et al., 2006b]. Dynamic rules are defined at run-
time, and inherit information in the context of their definition. The global-to-
local strategy derive-entity makes use of strategies type-of and entity-

properties, which are implemented using dynamic rules to propagate con-
text information from declarations to uses, as we will see in Section 4.9.3.

92

extend-entity :
|[extend entity x { prop1* }]| -> RemoveMe()
where rules (

DynamicExtendEntity :+
|[entity x { prop2* }]| ->
|[entity x { prop2* prop1* }]|

)

Figure 4.21 Merging extended entities using a local-to-global transformation

Dynamic rules can also be used to implement local-to-global transforma-
tions, as illustrated in Figure 4.21, which defines a rewrite rule to implement
the extend entity construct. The extend-entity rule is an example of
a non-preserving local-to-global transformation. That is, the term is rewrit-
ten to a placeholder term RemoveMe(), which is removed from the model
in a later transformation step. In addition, the rule defines a dynamic rule
DynamicExtendEntity, which rewrites the base entity definition to include
the additional properties provided by the extend entity definition (as il-
lustrated in Section 4.6.2). The context-sensitivity of the dynamic rule stems
from the fact that it inherits the bindings to identifiers from its context. In
this case, the identifiers x and prop1* are bound by the left-hand side match
of extend-entity. Thus, the uses of x and prop1* in the definition of
DynamicExtendEntity refer to these terms. That is, the properties prop1*
are propagated from the extend entity declaration to the entity declaration for
x. The :+ in the definition of the dynamic rule indicates that there may be
multiple dynamic rule definitions with the same left-hand side, for the same
entity in this case. This allows the rule to support multiple extensions of the
same entity declaration.

4.8 T R A N S F O R M AT I O N M O D U L A R I T Y A N D E X T E N S I B I L -
I T Y

Separation of concerns is a key strategy in model-driven software develop-
ment. High-level, declarative models support separation of essential applica-
tion properties from the code patterns used to implement them, such that the
effort of development and maintenance of applications is drastically reduced.
Separation of concerns is also important for the maintainability and exten-
sibility of the implementation of domain-specific languages. Rapid extension
and adaptation of a DSL is important to keep up with evolving insights and
requirements.

The use of model-to-model desugaring transformations separates the im-
plementation of high-level abstractions from the implementation of lower-
level constructs. Rather than directly bridging the semantic gap between the
model and its implementation in one transformation step, the model is gradu-
ally transformed. This approach is called compilation by normalization [Kats
et al., 2008]. The code generator does not have to be aware of the presence

Chapter 4. Code Generation by Model Transformation 93

of high-level constructs. The front-end can use the base language, instead of
target language implementation patterns, to implement high-level constructs.
Thus, this vertical separation of concerns realizes information hiding between
compiler stages, and reduces the impact of extending the language.

webdsl-to-seam =
webdsl-to-core
; webdsl-core-to-seam

webdsl-to-core =
import-modules
; typecheck
; translate-workflow
; weave-access-control
; extend-entities
; derive-pages
; typecheck
; inline-templates
; derive-elements
; normalize-syntax

webdsl-core-to-seam =
generate-code
; merge-partial-classes
; write-to-file

Figure 4.22 Pipeline of analysis
and transformation stages.

Horizontal separation of concerns is infor-
mation hiding within a compiler stage,
designed to reduce the dependencies be-
tween transformations for different con-
structs. Again, it should be easy to add
transformations for new abstractions with-
out disrupting or otherwise affecting exist-
ing rules. For code generation, horizontal
separation of concerns is achieved by the
generation of partial artifacts, factoring out
the assembly of these artifacts into a sep-
arate transformation. The GenerateCode

rules can be extended without affecting ex-
isting rules. It is not necessary to locate an
existing ‘God rule’ and plug into its assem-
bly of a Java class.

In this section, we consider two architec-
tures for the application of normalization
rules from the perspective of extensibility.
In the staged approach rules are divided in
clusters, which are applied sequentially. In
the normalization approach all rules are ap-
plied simultaneously.

4.8.1 Staged Normalization

A natural approach to organize a DSL front-end is as a pipeline of trans-
formation stages that are associated with language extensions, as illustrated
in Figure 4.22. The webdsl-to-seam compiler is divided into two parts. The
front-end, webdsl-to-core, transforms applications in the extended WebDSL
language to WebDSL core. The back-end, webdsl-core-to-seam, uses the
partial class generation approach of Section 4.5. This pipeline model of the
transformation is similar to workflow descriptions in other model transfor-
mation solutions, such as openArchitectureWare [Efftinge and Friese, 2007].

The staging approach achieves a form of separation of concerns by combin-
ing transformations associated with a language extension in a single trans-
formation. However, the information hiding between stages is limited. Each
stage should eliminate the constructs of the language extension that it is as-
sociated with. After a stage for a particular extension has been applied, the
constructs from that extension can no longer be used. Thus, the position in the
pipeline determines which language constructs can be used in the generation
templates of that stage. Designing the transformations for a new language

94

extension requires an analysis of the order of the stages to determine which
language constructs can be used. Furthermore, adding an extension requires
modification of the central pipeline, hampering independent extensibility of
the language by third party developers. For WebDSL, which composes mul-
tiple sublanguages that focus on different aspects of web applications, this
phase ordering problem formed a continuous, although slight nuisance for
the authors of the various language extensions.

In addition to the presence of certain language constructs, transformation
stages may also depend on the results of analysis stages. For example, the
application of the derive-input rules requires type analysis to be applied
to the argument expressions of input elements. If such input elements are
generated by another stage, it may be necessary to perform an additional
typecheck stage. We consider the problem of the combination of analysis
and transformation in the next section. In this section we ignore the issue and
focus on an extensible architecture for normalization rules.

4.8.2 Innermost Normalization

webdsl-to-core =
import-modules
; typecheck
; desugar-top

desugar-top =
innermost(
normalize-text
<+ normalize-for
<+ derive-edit-page
<+ derive-input
<+ extend-entity
<+ ...

)

Figure 4.23 Pipeline with inner-
most normalization.

Desugaring rules translate high-level con-
structs into a combination of other constructs.
If the result of a desugaring rule would al-
ways be a term in the core language, there
would be no phase ordering problem. How-
ever, desugaring rules for high-level abstrac-
tions often rely on transformations for lower-
level abstractions that are not core language
constructs. For example, WebWorkFlow defi-
nitions are translated to a combination of en-
tity extensions, page definitions, and access
control rules, which need further desugaring
before the back-end can translate them. Thus,
we need to reduce the model to normal form
with respect to the set of desugaring rules.

In the staging approach we try to find an
ordering of desugaring rules that ensures that we reach this normal form.
However, this requires a dependency analysis on the rules, which is not guar-
anteed to produce a linear ordering, as illustrated by need to reapply type
analysis. The phase ordering problem can be avoided by applying all desug-
aring rules exhaustively using a fixpoint rewriting strategy. That is, any term
that is produced as result of a transformation rule, is inspected to see if other
transformation rules can be applied to it. (In Section 4.8.3 we discuss termi-
nation of this process for non-confluent rules.)

Figure 4.23 shows a reimplementation of the webdsl-to-core strategy. In-
stead of a sequential composition of desugaring stages, the innermost strat-
egy is used to simultaneously normalize a model with respect to a set of
desugaring rules. The innermost strategy takes as argument a transforma-

Chapter 4. Code Generation by Model Transformation 95

tion, typically a list of rules composed with deterministic choice (<+), which it
exhaustively applies to the subject term starting with innermost nodes. That
is, a term is only considered for transformation, after all its subterms have
been normalized. When a rule is applied to a term, the strategy subsequently
normalizes the newly produced term. Thus, right-hand sides of rules do not
have to be restricted to terms in normal form. As a result it is not necessary
to consider the order in which rules are applied.

desugar-top =
innermost(desugar)

desugar = normalize-text
desugar = normalize-for

desugar = derive-edit-page
desugar = derive-input

desugar = extend-entity

Figure 4.24 Extensible definition
of desugar.

To extend the new implementation of
webdsl-to-core with desugaring rules, is
simply a matter of adding rules to the
argument of innermost. However, this
still requires changing the definition of the
pipeline. Extensibility is further simplified
by Stratego’s rule extension facility. In-
stead of directly passing a composition of
rules to innermost, the strategy desugar

is passed, which is defined by an extensi-
ble set of clauses, in the same manner as
the extension of the GenerateCode strategy in Section 4.4.5. Defining rules in
this fashion allows different desugaring steps to be defined across different
modules, each extending the desugar definition, as illustrated in Figure 4.24.
This means that different desugaring rules can be modularly defined and im-
plicitly composed and evaluated, without the need for explicit staging. This
helps in separation of concerns, and is essential for the scalability of a gener-
ator specification.

4.8.3 Normalization with Local-to-Global Rules

Local-to-global transformations may define new dynamic rules that need to
be applied elsewhere in the tree. These could be elements of the model that
have already undergone normalization. To ensure that these elements are
again revisited by the desugar-top traversal, we extend the evaluation strat-
egy with additional logic to ensure that all elements of the tree are revisited.
Figure 4.25 shows an extended version of the desugar-top strategy that takes
this into account. Using an additional dynamic rule InnermostApplied, it
keeps track of whether there have been any rule applications in the current
traversal. Note that this rule does not have a left-hand side, and is simply
restricted to the values True() and False(), similar to a (scopeable) global
variable. If InnermostApplied is True(), desugar-top repeats the traversal
after the current pass is completed. This process repeats until no rules are ap-
plicable anymore, ensuring exhaustive application of both static and dynamic
rules.

A number of transformations in the WebDSL compiler directly relied on
the global staging approach used previously in the generator [Hemel et al.,
2008a]. These features depend on explicit ordering of rewrite rules to han-
dle non-confluent rewrite rules, or may be applied once or a limited number

96

desugar-top =
do-while(
rules (InnermostApplied := False())
; innermost(desugar; rules(InnermostApplied := True()))
, InnermostApplied => True()

)

Figure 4.25 Fixpoint iteration of innermost.

of times to ensure termination. Most rewrite rules reduce the input term to
a form closer to a normal form (e.g., core WebDSL). One such rule is the
local-to-global transformation rule extend-entity in Figure 4.21. It rewrites
a construct to a term that is removed in a different rule, thus ensuring ter-
mination of the transformation. However, it also defines a new dynamic rule
DynamicExtendEntity, which is a preserving global-to-local transformation.
Application of that rule results in a term that it can be applied to again, re-
sulting in an infinite sequence of applications.

In general, non-reducing rules can be controlled by explicitly specifying
termination criteria. For instance, an additional dynamic rule could be used
to indicate that a particular transformation has successfully completed for a
particular element. For dynamically defined global-to-local transformations,
however, Stratego offers a convenient feature to avoid this. For each dynamic
rule, an additional strategy is derived that applies the rule and then removes
its definition. We can invoke this strategy using the prefix ‘once-’, and inte-
grate it into the system as follows:

desugar = once-DynamicExtendEntity

For non-confluent rewrite rules, the order of their application affects their result.
Similar to non-reducing rules, dynamic rules can be used to register which
rules may be applied at what time. Using a dynamic rule to explicitly set and
check a rule that maintains a stage number, a given set of rewrite rules can be
explicitly and internally staged without requiring a global staging mechanism.

4.9 C O M B I N I N G T Y P E A N A LY S I S A N D T R A N S F O R M AT I O N

While the innermost strategy solves the extensibility problem of the staging
approach, it does not solve the interaction between type analysis and desug-
aring transformations. In this section, we analyze the interaction problem and
present a solution for the fine grained combination of analysis and transfor-
mation.

To understand the interaction between type analysis and transformation
consider the transformation of derive editPage in Section 4.7.2. For exam-
ple, given the entity definition

entity NewsItem { name :: String text :: Text }

type analysis annotates the identifier i in the page definition

Chapter 4. Code Generation by Model Transformation 97

typecheck-variable :
Var(x) -> Var(x){Type(t)}
where if not(t := <TypeOf> x) then

typecheck-error(|["Undeclared variable ", x,
" referenced"])

end
declare-page-argument :

|[x : srt]| -> |[x : srt]|
where if not(<TypeExists> srt) then

typecheck-error(|["Illegal type ", srt,
" for parameter ",x])

else
rules(TypeOf : x -> srt)

end

Figure 4.26 Rules of monolithic typechecker.

define page editNewsItem(i : NewsItem) {
derive editPage from i {NewsItem}

}

with its type NewsItem (indicated in italics). Given this type, the derive-edit-
page rule transforms the page definition to a page definition with a table and
rows (slightly simplified):

define page editNewsItem(i : NewsItem) {
table(){ row{ "Name: " input(i.name) }

row{ "Text: " input(i.text) } } }

After application of the derive-edit-page rule, the types of the expression
generated as arguments of the input statements are unknown. Another round
of type analysis is needed to determine the types of the expressions:

define page editNewsItem(i : NewsItem) {
table(){ row{ "Name: " input(i.name {String}) }

row{ "Text: " input(i.text {Text}) } } }

Given these types, the derive-input rules can normalize the input state-
ments:

define page editNewsItem(i : NewsItem) {
table(){ row{ "Name: " inputString(i.name {String}) }

row{ "Text: " inputText(i.text {Text}) } } }

Thus, after application of the derive-edit-page transformation, type analy-
sis is needed before the derive-input rules can be applied.

4.9.1 Integrating Type Analysis and Transformation

In the staged approach of Figure 4.22, desugaring transformations are inter-
leaved with invocations of typecheck in order to add type information to

98

newly generated terms. While the staging approach solves the problem of the
interaction between analysis and transformation, it does so at a cost to the ex-
tensibility of the compiler. Since performing type analysis to the entire model
after the application of each rewrite rule does not scale, the transformations
are divided into coarse grained stages. The transformation stages have to be
carefully composed such that type analysis is applied after the application of
transformations introducing new, untyped expressions. Fitting in new trans-
formations requires a careful analysis of all existing transformations.

If staging is not the answer to the interaction problem, maybe maintaining
a fully typed representation is a solution. That is, require all transformation
rules to produce a representation that includes all type and other analysis
information that is needed to perform further transformations. For example,
the derive-edit-row rule that is responsible for the generation of the input

statements above, can be rewritten to ensure it includes a type annotation in
its result:

derive-edit-row(|x) :
|[y relation srt]| -> |[row{x_text ": " input(e)}]|
where e-untyped := |[x.y]|

; e := <add-type-information(|srt)> e-untyped

With this modification, the rewrite rule now explicitly adds a type annotation
to the generated expression e. While this approach is effective, it requires ad-
ditional effort in the development of desugaring rules, and leads to rules that
are harder to read and maintain. Furthermore, this violates the principle of
separation of concerns by introducing logic related to type analysis in trans-
formation rules. For more complex rewrite rules, the amount of code for type
analysis can be significantly larger in size, and may require passing around
type information of the surrounding context.

typecheck =
rename-top
; check-constraints

Figure 4.27 Typechecker
composed from name
resolution and constraint
checks.

We considered two solutions to the combi-
nation of analysis and transformation. Staging
analysis and transformation is not extensible. In-
tegrating analysis in transformation rules breaks
separation of concerns. Is there a solution that
maintains separation of concerns, yet is extensi-
ble?

The typecheck strategy employed in Fig-
ure 4.22 is a monolithic traversal that combines three functions, as will be
later illustrated by the rules in Figure 4.29 through Figure 4.31: name reso-
lution, identifying the declaration to which an identifier is associated; type
analysis, assigning types to identifiers and expressions; and, error checking,
checking type correctness of expressions and other constructs and generating
error messages in case of violations. Factoring these three operations into
separate, independently applicable sets of rules, is the key to fine grained
combination of type analysis and transformation. Figure 4.27 shows the com-
position of typecheck as a name resolution phase (rename-top) and an error
checking phase (check-constraints). Type analysis is applied during error

Chapter 4. Code Generation by Model Transformation 99

define page editing(uu0 : User) {
form {
input(uu0.name)
var uu1 : Blog
input(uu1.title) } }

TypeOf: uu0 -> SimpleSort("User")
TypeOf: uu1 -> SimpleSort("Blog")
Rename: u -> uu1

Figure 4.28 Rename example

checking, but can now also be applied on demand during desugaring. We dis-
cuss these components and their application during normalization in the rest
of this section.

4.9.2 Name Resolution

In name resolution, renaming rules annotate identifiers with unique keys.
These are associated with the types of the referenced declaration, using a
dynamic rule TypeOf that rewrites the annotated expression to its declared
type. The annotations added are shared for identical identifiers, taking scop-
ing rules into account to ensure that identifiers with the same name in differ-
ent scopes get different keys.

Figure 4.29 shows two renaming rules, assigning unique keys to identifier
declarations37 and arguments of page definitions38. Each declared identifier is
annotated with a unique name by the add-naming-key rule41. A dynamic rule
Rename42 is then generated, which annotates all uses of the declared identifier
with the new key. To ensure that the rule is only applied in the lexical scope
of its declaration, the dynamic rule is scoped40. The TypeOf rule, on the other
hand, is not scoped. It binds the globally unique key to its associated type,
for use in the phases that follow after this analysis. The rename rule for page
definitions39 renames all formal arguments farg1* in a similar fashion as is
done for identifier declarations; it declares them as local identifiers in the
page’s scope.

The naming rules are applied in a top-down fashion by the rename-top

strategy, which is defined to apply alltd(rename). The alltd strategy tra-
verses the tree top-down and attempts to apply its strategy argument to each
node it traverses, when the application succeeds the traversal is stopped.

The example in Figure 4.28 illustrates the application of renaming rules.
The partial page definition on the left is being renamed, the traversal just
passed the last line shown. For the renamed identifiers, annotations are dis-
played in superscript. On the right the active dynamic rewrite rules at this
point in the traversal are listed. The identifier declaration uu1 has shadowed
the page argument uu0, thus there is only one active Rename rule.

100

rename-top = alltd(rename)

rename :37

|[var x : srt]| -> |[var y : srt]|
where y := <add-naming-key(|srt)> x

rename-page-arg :38

|[x : srt]| -> |[y : srt]|
where y := <add-naming-key(|srt)> x

rename :39

|[define page x(farg1*) { elem1* }]| ->
|[define page x(farg2*) { elem2* }]|
where {| Rename40

; farg2* := <map(rename-page-arg)> farg1*
; elem2* := <rename-top> elem1*
|}

rename = Rename

add-naming-key(|srt) :41

x -> y
where y := x {<newname> x}

; rules (
Rename : Var(x) -> Var(y)42

TypeOf : y -> srt
)

Figure 4.29 Name resolution rules.

type-of :
|[x]| -> srt
where srt := <TypeOf> x

type-of :
|[e.f]| -> srt2
where srt1 := <type-of> e

; srt2 := <type-of-property> (srt1, f)

type-of :
|[e1 + e2]| -> srt1
where srt1 := <type-of> e1

; srt2 := <type-of> e2
; <type-compatible> (srt1, srt2)

Figure 4.30 Type analysis rules.

Chapter 4. Code Generation by Model Transformation 101

constraint-error :
|[x]| -> ConstraintError(["Variable ", x, " not declared"])
where not(<type-of> |[x]|)

check-constraints = where(
collect-all(constraint-error)
; if not(?[]) then report-errors; <exit> 1 end

)

Figure 4.31 Constraint error rule and check constraints strategy.

4.9.3 Type Analysis

After name resolution, all identifiers in the model have a unique key, and an
associated TypeOf rule that can be used to acquire its type, without the need
for contextual (e.g., scoping) information about the identifier.

Context-sensitive transformations, such as those required for deriving page
elements from entity types, make use of the type information made available
by the name resolution phase. The type-of rules can be used to acquire the
type of complete expressions. Figure 4.30 shows the definition of several of
such rules. The first rule resolves the type of an identifier, which utilizes the
TypeOf dynamic rule. The second rule calculates the type of an object field
access, for instance user.name. It does so by first calculating the type of the
object expression (user) and then retrieving the type of the property (name)
of the object’s type. A third rule calculates the type of the addition of two
expressions, where it also checks that they are type compatible.

4.9.4 Type Constraints

One application of name resolution and type analysis is the static checking
of the type correctness of a model. The typecheck strategy checks the model
for any violations of type constraint rules. Type constraints can be simple
checks for types (e.g., conditions must be booleans), or more sophisticated
checks such as constraints on the nesting of user interface elements (e.g. all
input elements must be nested within a form). As an example, consider the
simple type constraint in Figure 4.31 stating that every identifier used needs
to be declared. Constraint rules typically specify a negative condition in their
where clause: this rule only produces an error if the constraint is violated. If
there are any constraint violations, the complete set of errors is reported to
the user and the compiler terminates, as shown in Figure 4.31. This style of
constraint checking rules was inspired by oAW Check language [Efftinge and
Völter, 2006].

4.9.5 Type Analysis during Transformation

Since type analysis has been separated from error checking and name reso-
lution, it can be used on the fly during transformation. Thus transformation

102

desugar-top =
do-while(
rules(InnermostApplied := False())
; innermost(

desugar
; {| Rename: rename-top |};
; rules(InnermostApplied := True())

)
, InnermostApplied => True()
)

Figure 4.32 Fixpoint iteration desugaring with incremental name resolution.

rules that depend on type information, such as the derive rules in Figure 4.20,
can use the type-of rules to compute the type of an expression without the
need for a re-application of type analysis to the entire model.

Moreover, the specification of the transformation rules need not be con-
cerned with name resolution. Figure 4.32 shows an extension of the desugar-
top strategy. Each sucessful application of desugar is followed by an ap-
plication of the rename-top rule, which adds unique keys to any identifiers
that have not yet been annotated. By adding a scope for the Rename dynamic
rule, the strategy ensures that any dynamic renaming rules derived from local
declarations do not “leak” out of the context of the generated code.

While the initial name resolution phase performs a global analysis, apply-
ing rename-top during the transformation phase is not a context-sensitive
operation. It only adds annotations to the generated fragment of code, with
regard to scopes defined in that fragment. For example, consider the desug-
aring rule of Figure 4.33. It introduces pattern matching by means of a case
statement into the language. To do so, among other things, it defines a fresh
variable x with a new name “c”. Processed by the rename-top strategy, this
name is given a new, unique key associated with the local type srt. Any
non-local definitions, such as identifier uses in the expression e, are left alone
by the transformation, as they must be defined in the context of the generated
fragment. However, as they are defined by the context, and not local to this
transformation, it is safe to assume that these identifiers are already annotated
with a unique key, copied from the left-hand side of the transformation rule.

Likewise, for the derive-edit-row global-to-local transformation of Sec-
tion 4.7.2, the generated fragment is already annotated and requires no addi-
tional effort from the rename-top operation. As an optimization, rename-top
can be cached to avoid inspection of (sub)terms that are already sufficiently
annotated.

Figure 4.34 illustrates the case statement desugaring with a concrete exam-
ple. The show page definition takes two arguments, a Blog b and a String s.
The content of the page depends on the type of view requested in s, realized
through a case statement. The case statement has been desugared on the right
and introduces a new identifier c0c00 which has been automatically renamed
after the application of the desugar rule which is called by desugar-top (see

Chapter 4. Code Generation by Model Transformation 103

desugar :
|[case(e) { alt* }]| -> |[{ var x : srt := e; stat }]|
where srt := <type-of> e

; x := <newname> "c"
; stat := <case-to-if(|x)> alt*

Figure 4.33 Desugaring rule for case statements.

define page show(bb0:Blog,
ss0:String) {

case(ss0.toLowerCase()) {
"all"{ showAll(bb0) }
...

TypeOf: bb0 ->
SimpleSort("Blog")

TypeOf: ss1 ->
SimpleSort("String")

⇒

define page show(bb0:Blog,
ss0:String) {

{var c0c00 : String :=
ss0.toLowerCase();

if(c0c00=="all"){
showAll(bb0) }

...

TypeOf: bb0 ->
SimpleSort("Blog")

TypeOf: ss1 ->
SimpleSort("String")

TypeOf: c0c00 ->
SimpleSort("String")

Figure 4.34 Case statement desugaring applied.

Figure 4.32). Through this mechanism analysis information is kept intact dur-
ing transformations.

4.10 D I S C U S S I O N

In this section we discuss related work, evaluate the code generation by model
transformation approach, and discuss future work.

4.10.1 Compilation by Normalization

Normalization of a rich language to a small core language is a well-known
design pattern in programming language design and implementation, made
popular in particular by the functional programming language Haskell [Pey-
ton Jones, 2003]. Haskell is a large and complex language with many ‘syntac-
tic abstractions’. These abstractions are translated by the compiler front-end
to a core language, close to the lambda calculus. Furthermore, the Glas-
gow Haskell Compiler (GHC) uses a transformation-based approach in its
optimizer that relies on the application of cascading (small) transformation
rules [Peyton Jones and Santos, 1998].

A difference with the approach in this chapter is that the core language in
GHC is not a subset of the input language. Using an Intermediate Repre-
sentation (IR) that is a subset of the source language is useful since it allows
the result of compilation to be fed into the front-end of the compiler. This

104

approach is for example taken by Kats et al. [2008] in the extension of Java
with inline bytecode, which can be used by code generators for DSLs to flex-
ibly combine (pre-compiled) bytecode and source code. The core language
design pattern has also been used in the design of Stratego [Bravenboer et al.,
2006b, 2008] and SDF [Visser, 1997b], the DSLs used for the transformation
and syntax definition of WebDSL.

An approach related to compilation by normalization is the nanopass com-
piler infrastructure of Sarkar et al. [2004], which advocates the design of com-
pilers as a long pipeline of very small stages in order to enhance the under-
standability of the compiler in an educational context. Each stage transforms
the program to an intermediate, more low-level form. In contrast, our ap-
proach does not employ a strict separation between the application of the
different stages, as doing so hinders compositionality of language features.
For normalization rules that are non-reducing or non-confluent, individual
rules may specify dependencies or restrict their application (discussed in Sec-
tion 4.8.3), without introducing a form of globally staged application.

4.10.2 Rewriting Tools

The main ingredients for code generation by model transformation are (1)
generation rules that generate structured representation instead of text, (2)
concrete object syntax to make generation rules readable and maintainable,
(3) integration of model-to-code, code-to-code, and model-to-model transfor-
mations, (4) incremental normalization of high-level models to low-level ones,
(5) extensible definition of transformations, and optionally (6) integration of
type analysis and transformation. In the WebDSL implementation and this
chapter we have used the rewriting-based Stratego/XT toolset, which sup-
ports all of these ingredients.

Examples of other rewriting-based languages are ASF+SDF [Klint, 1993]
and TXL [Cordy, 2006]. Both languages support the definition of transfor-
mations using concrete syntax and can be used to realize transformations on
models and code. However, these languages provide limited programmability
for strategies controlling the application of transformation rules. In contrast,
Tom [Balland et al., 2007] supports rewrite rules and strategies. Tom is im-
plemented as an extension of Java, using a preprocessor approach to map
the Tom language features to standard Java. The language only supports the
use of abstract syntax to specify patterns. Visser’s survey of strategies in
rule-based transformation strategies gives an overview of approaches to user
defined strategies [Visser, 2005].

4.10.3 Model Transformation

In this subsection we reflect on the different aspects of typical MDE systems,
and discuss how these compare to the approach presented in this chapter. We
first focus our discussion on the transformation of models; in Section 4.10.4
we discuss code generation techniques.

Chapter 4. Code Generation by Model Transformation 105

An overview of MDE Toolkits

Since the advent of model-driven engineering, several modeling methodolo-
gies and model transformation approaches have been introduced. A classifi-
cation of a number of such systems is given by Czarnecki and Helsen [2006].
Various MDE toolkits provide model transformation and code generation fa-
cilities, many of which are based on OMG’s MDA (openArchitectureWare
[Efftinge and Friese, 2007, Efftinge et al., 2007], AMMA [Kurtev et al., 2006],
AndroMDA [AndroMDA.org, 2007]). Each approach is bound to a particular
metamodeling language. A number of them share a standardized founda-
tion, such as MOF [Object Management Group (OMG), 2006], Ecore [Budin-
sky et al., 2003], or KM3 [Jouault and Bézivin, 2006]). Other MDE tools are
based on proprietary formats (DSL Tools [Cook et al., 2007], MetaEdit+ [Kelly
et al., 1996]).

The different MDE toolkits prescribe varying model transformation lan-
guages, such as ATL [Jouault and Kurtev, 2006], openArchitectureWare’s xTend
[Efftinge and Friese, 2007], and QVT [Bast et al., 2005]. The current crop of
MDE toolkits are characterized by using a separate language for code gen-
eration, such as TCS [Jouault et al., 2006], xPand [Voelter and Groher, 2007],
Velocity [The Apache Foundation, 2007]). In general, they also use a separate
language to define a sequence of transformations, or to combine model trans-
formations and code generation. Examples include openArchitectureWare’s
workflow language [Efftinge and Friese, 2007] and the Groovy scripting lan-
guage [AndroMDA.org, 2007], employed by AndroMDA.

Representation of Models

Using a common metamodeling language can improve interoperability be-
tween tools. A number of standardized metametamodels have been devel-
oped, such as MOF, Ecore, and KM3. In Stratego/XT, SDF grammars are used
as a corresponding notion. These are serialized using the ATerm format, and
may be used to interoperate with other tools based on the same technology,
such as ASF+SDF [Klint, 1993].

Using a common metamodeling language should not be considered a “sil-
ver bullet” for interoperability, however. In practice, metamodels designed
using different tools are often incompatible. Similarly, metamodels designed
using the same tool, for the same concrete syntax representation of a known
language, may lack compatibility. Only when using identical metamodels can
models be exchanged across tools. Alternatively, a well-defined (textual) con-
crete syntax representation may be used to exchange models between tools.

Model management can be based on any algebraic datastructure such as
trees, graphs, hypergraphs, or categories [Bézivin, 2006]. Most current MDE
toolkits are based on graphs, while Stratego/XT uses a tree-based representa-
tion.

Trees are acyclic, directed graphs. This nature allows them to be efficiently
stored using maximal sharing, ensuring a significant decrease in memory us-
age [van den Brand et al., 2000]. Based on maximal sharing, all identical sub-
trees occupy the same space in memory, allowing constant-time equality tests

106

between branches using pointers. Moreover, terms that are copied can simply
be copied as pointers, while modified terms can be efficiently reconstructed
(maintaining maximal sharing) rather than destructively updated. In contrast,
using destructive updates parts of the tree that may be shared or used in dif-
ferent contexts will be modified in-line. Any local rewrite is performed using
a destructive update, as is typical in graph-based rewriting.

Using a tree-based structure allows for simple, intuitive specifications of
traversals with clear termination criteria. For this reason, many graph-based
systems employ a spanning tree, imposing a tree structure on a graph. In
contrast, in Stratego the tree structure is the principal representation. By use
of dynamic rules, Stratego can conversely impose graph structures on trees.
This makes it possible to model context-sensitive information that cannot eas-
ily be expressed using mere trees. For example, a dynamic rule can be used to
resolve an identifier reference, essentially connecting the identifier node to the
declaration node. We described how dynamic rules can provide context infor-
mation for global-to-local and local-to-global transformations in Section 4.7.

An alternative approach to using dynamic rules to represent graphs as trees
is Balland and Brauner’s approach of using de Bruijn indices in terms imple-
mented in Tom. [Balland and Brauner, 2008] In this approach term paths are
used to point to terms. For instance in the term f(s(a, 1.1)), the path 1.1

will refer to a by first taking the first child of f and then the first child of s.
Relative paths can also be represented, such as f(s(a, -1.1)) in which -1

indicates going one term level up and navigating from there. Again, -1.1
refers to a. This approach works well in simple cases where little transforma-
tions are performed. In the case of a large number of much more complex
transformations, such as the transformations demonstrated in section 4.6, it
becomes tedious to keep such paths up to date during transformations.

Transformation Workflow

Stratego/XT does not employ a separate workflow language, but allows the
Stratego language itself to control the application of transformations. In con-
trast, other approaches use a separate language such as Groovy, or a dedicated
workflow language as is used in openArchitectureWare. For both examples, a
lack of linguistic integration results in a lack of static checking for the validity
and definedness of transformations that are specified.

Consistency management

Consistency management is an important issue in MDE [Mens and van Gorp,
2006]. In principle, models can be kept consistent as part of a transformation.
In practice however, doing so tends to make transformations much more com-
plex. In our approach we chose to separate the concern of typechecking from
the model transformation at hand. The drawback of this approach is that
models need to be reanalyzed after applying transformations. Incremental
analysis and transformation techniques are an important research topic.

By analyzing models before any transformations are performed, we detect
inconsistencies early and can report them to the developer. However, prob-

Chapter 4. Code Generation by Model Transformation 107

Mandatory requirement Supported
1. Language for querying models +
2. Language for transforming models +
3. Meta-models for languages in MOF 2.0 -
4. Expressive transformations +
5. Creation of views of meta-models +
6. Declarative transformations enabling incremental changes +/-
7. Meta-models specified in MOF 2.0 -
Optional requirement Supported
1. Bidirectional transformations -
2. Transformation traceability +/-
3. Generic transformation definitions +
4. Transactional transformations +/-
5. Other sources of data +
6. Model updates +

Figure 4.35 The Stratego/XT platform and the QVT RFP requirements

lems that occur while the system is running turn out to be difficult to trace
back to errors in the model. In the future, we intend to investigate the fea-
sibility of origin tracking [van Deursen et al., 1993] to achieve code-to-model
traceability.

Transformation languages such as ATL and xTend allow transformations to
be separated in modules, similar to Stratego. However, extensibility of trans-
formations is more difficult to realize, especially if transformation extensions
have to operate on the same modeling elements, which is forbidden in ATL,
for instance. In existing MDE toolkits, vertical modularity in transforma-
tions is often realized using a separate workflow language, such as the oAW
workflow language and Groovy in AndroMDA. Stratego not only integrates
model-to-model and model-to-code transformations, but also the overall gen-
erator workflow. Thus, a single transformation composition language is used
for micro and macro compositions.

QVT Request for Proposals

The Query/View/Transformation (QVT) request for proposals [Object Man-
agement Group (OMG), 2003] sparked much interest in the development and
comparison of different tools for model transformations. Figure 4.35 summa-
rizes the compliance of Stratego/XT as such a tool according to the mandatory
and optional requirements as specified by the OMG.

Outlining the mandatory requirements of Figure 4.35, Stratego/XT pro-
vides excellent support for specifying querying and transformations of mod-
els (1,2). In particular, it supports querying using a combination of traversal
and pattern matching specifications, and provides the APath library [Janssen,
2005] for XPath-like queries. Stratego/XT does not define the abstract syntax
of the query, view, and transformation languages in MOF 2.0 (3,7), but uses

108

ATerms instead, where SDF grammars define the meta-model. As Stratego
is implemented in itself, the abstract syntax of Stratego is itself also defined
in SDF. The present chapter demonstrates how the Stratego language is capa-
ble of expressing all information required to generate a target model from a
source model automatically, as required by (4). Stratego can be used to imple-
ment views through transformations (5). For example, a view of all names of
pages defined in a WebDSL model can be generated through a transformation
that collects all page names in the model. As meta-models are defined in SDF,
which can also be transformed using Stratego, views can also be constructed
at the meta-model level. Technically, it is possible to incrementally apply
changes to source code model into changes in a target model using Strat-
ego (6). However, this incrementality does not come for free, and requires
additional work in the implementation of the transformations.

Outlining the optional requirements of Figure 4.35, transformations cannot
be applied bi-directionally (1); reverse transformations have to be specified
separately. It does not provide traceability by default (2). However, with
additional runtime or library support limited traceability capabilities can be
added [Kats et al., 2009]. Support for reusing and extending generic trans-
formations is where Stratego really shines (3). Using strategies it is much
easier to reuse transformations and traversals than in approaches that do not
have such a notion. Although there is no notion of term inheritance; generic
transformations based on inheritance structures as suggested in the request
for proposals can be supported by emulating inheritance using strategies that
implement is-a behavior and accessor strategies that set and get properties
of terms generically. Stratego uses copy-on-write semantics for transforma-
tions, and allows rollback using the <+ operator (4). However, applying the
system in an asynchronous context is considered future work. Access is pro-
vided to other sources of data beyond the input model, such as file access and
execution of external programs (5). Stratego allows (non-destructive) updates
of models (6).

4.10.4 Code Generation

Some other approaches have generated partial artifacts through the use of par-
tial classes, which are then combined by the regular compiler for the target
language. Warmer and Kleppe [2006] describe experiences with such an ap-
proach. These approaches rely on the target language to support this features.
In our approach, code is treated as a model, while most MDE approaches gen-
erate code through the use of textual template engines, which produce plain
text, not amenable to further transformation. By treating generated code as
a model, it is possible to extend the target language and add convenient lan-
guage features such as partial classes and methods, and interface extraction.

Generation of partial artifacts has also been applied by Huang and Smarag-
dakis [2006] by use of Meta-AspectJ [Zook et al., 2004]. Rather than using a
full-fledged AOP (meta-)programming language, our approach makes use of
the standard Java syntax, with only a small semantic extension. By integra-

Chapter 4. Code Generation by Model Transformation 109

tion of this functionality in the generator, our approach is independent of the
capabilities of the target platform.

There have been other approaches that aspect weaving at the model level
rather than using this feature in the generated code [Suzuki and Yamamoto,
1999, Kulkarni and Reddy, 2008]. In contrast, in our approach we overlay
the feature of partial classes and methods directly on the output language.
This overlay definition can be used across different applications, i.e. other
code generators that produce Java code. In contrast, using the more typical
approach of strictly separating model transformation and code generation
(using templates), as applied in Suzuki and Yamamoto [1999], Kulkarni and
Reddy [2008], a very low-level, general-purpose model representation would
have to be used to achieve the same result.

Arnoldus et al. [2007] have developed Repleo, a template engine that takes
a similar approach to our CGMT approach in that it creates a new syntax,
mixing the target language with the template language. However, the focus
of Repleo is solely on the code generation aspect — it is a template language,
not a transformation language. Rather than using the transformation capa-
bilities of e.g. Stratego or ASF+SDF, Repleo provides its own small template
language, very similar to string-based template engines, except that Repleo
can guarantee that the resulting program is syntactically correct.

4.10.5 Web Application Generators

Many (visual) languages for modeling web applications have been developed,
including WebML [M. Brambilla and Matera, 2007], MIDAS [P. Cáceres, 2003],
OOWS [O. Pastor, 2003], Netsilon [Pierre-Alain Muller and Bézivin, 2005], and
UWE [A. Kraus and Koch, 2007]. UWE generates JSP (Java Server Pages) code
via a model representation conforming to a JSP metamodel. Netsilon uses an
intermediate language for code generation in order to increase retargetability
of the generator. The other approaches use textual, usually template-based
code generation. WebML interprets its models rather than generating code
from them.

Most approaches apply model transformations with the purpose of retar-
getability, or with the purpose of expressing “as many artifacts as possible
using models as this allows for processing these artifacts using model trans-
formations” [Voelter and Groher, 2007]. Only Netsilon actually models the
target source code (but then only XML).

4.10.6 Evaluation

Throughout this chapter we have demonstrated how generator concerns can
be better separated. We showed how transformation rules can be made more
concise and modularized by extending the target language. We discussed
several ways of combining type analysis with rewriting and introduced the
approach of three-phased type analysis and transformation, in which name

110

resolution, constraint checking, and rewriting can all be specified as strictly
separate concerns.

When additional language abstractions are introduced, they can take ad-
vantage of the open extension points provided by the generator. These exten-
sion points, as described in Section 4.8 allow the extension to easily plug into
the type analysis, model transformation and code generation subsystems. We
built a number of language extensions into the generator, most notably the
access control and workflow extensions, which are entirely built by plugging
into the extension points mentioned.

4.10.7 Future Work

A focal point of the present chapter has been to provide an extensible mecha-
nism for language specifications, using the Stratego language and specialized
strategic programming idioms and library support. In the future, we would
like to further investigate this area, in particular by providing specialized tool
and language support for such specifications. Stratego is, as a strategic pro-
gramming and term rewriting language, a very flexible platform for these
endeavors, but specialized tooling could simplify the implementation of these
idioms and provide additional static checks.

A number of other tools use attribute grammar to specify analyses, which
provide a high-level, declarative, and effective way to specify analysis on
trees [Paakki, 1995]. Modern attribute grammar systems such as Eli [Gray
et al., 1992], JastAdd [Ekman and Hedin, 2004], and Silver [Wyk et al., 2007]
offer many specialized features with respect to the analysis of software lan-
guages. More recently, Aster [Kats et al., 2009] used strategic programming
to abstract over common patterns in attribute equations. Specifications made
with these systems are highly modular and extensible. Unfortunately, they are
lacking in their support for transformations, particularly for context-sensitive
transformations that depend directly on the type analysis, and vice versa.
Ongoing work focuses on integrating the two paradigms: using the expres-
siveness of a strategic term rewriting system for transformations and the
high-level specification capabilities of attribute grammar systems for analy-
sis. Challenges in this area include the integration of analysis and transfor-
mation: as a tree changes through transformation, this should have a propor-
tionate effect on the attribute evaluation system. Normal attribute equations
are declarative definitions of immutable properties of nodes in the tree, and
may be memoized and computed on demand. In the context of a rewriting
system, where the tree is a mutable model that undergoes multiple transfor-
mations, these computation principles must be reconsidered. This also raises
the question of how control should be determined in a system that combines
attribute equations and rewrite rules. Different designs of explicit control, ea-
ger or on-demand evaluation, and other approaches can be taken, and have a
large impact on the effectiveness of such a system.

Chapter 4. Code Generation by Model Transformation 111

4.11 C O N C L U S I O N

In this chapter we described several techniques to improve separation of con-
cerns in DSL generators. The core technique is code generation by model trans-
formation. The key idea behind code generation by model transformation is to
represent both the source model and target code as terms. Current practice is
often to directly generate plain text code, using template engines. We demon-
strated that generating code by term rewriting has a number of advantages,
for instance the ability to ensure syntactical correctness of generated code and
the ability to perform further transformations on generated code. This en-
ables extension of the target language with features such as partial classes
and methods which greatly improve the modularity and size of rewrite rules.

We have shown how high level abstractions can be built on top of a rela-
tively small core DSL language. Abstractions are gradually transformed to
core DSL elements in a process of compilation by normalization. We have ar-
gued that the advantage of implementing such abstractions as model trans-
formations is that by keeping the core DSL small, the generator becomes more
portable, making it feasible to develop multiple generator back-ends.

Many transformations rely on the availability of contextual information,
such as type information. In previous work we discussed the difficulty keep-
ing type annotations up-to-date as a model is transformed. In this chapter,
we introduced a novel approach in which type analysis and rewriting are
combined while still keeping the analysis and rewriting generator concerns
separate. Repeatedly reanalyzing the entire model, the approach we previ-
ously took, is therefore no longer necessary.

112

5
PIL: A Platform Independent Language for
Retargetable DSLs

A B S T R A C T

Intermediate languages are used in compiler construction to simplify retar-
geting compilers to multiple machine architectures. In the implementation of
domain-specific languages (DSLs), compilers typically generate high-level source
code, rather than low-level machine instructions. DSL compilers target a soft-
ware platform, i.e. a programming language with a set of libraries, deployable
on one or more operating systems. DSLs enable targeting multiple software
platforms if its abstractions are platform independent. While transformations
from DSL to each targeted platform are often conceptually very similar, there
is little reuse between transformations due to syntactic and API differences
of the target platforms, making supporting multiple platforms expensive. In
this chapter, we discuss the design and implementation of PIL, a Platform In-
dependent Language, an intermediate language providing a layer of abstrac-
tion between DSL and target platform code, abstracting from syntactic and
API differences between platforms, thereby removing the need for platform-
specific transformations. We discuss the use of PIL in an implemementation
of WebDSL, a DSL for building web applications.

5.1 I N T R O D U C T I O N

Intermediate languages have been used in compiler construction since the
1960s [Steel, 1961] to improve the retargetability of compilers. Rather than
generating machine architecture specific instructions directly, compilers emit
machine-independent instructions written in a low-level intermediate lan-
guage, which is subsequently translated into machine-specific instructions by
machine-specific compiler back-ends.

In the context of model-driven engineering, research has been focusing on
the development of compilers for domain-specific languages. Domain-specific
languages (DSLs) raise the level of abstraction in software development by
providing constructs to express high-level concepts from which lower-level
implementations are generated. Ideally, compilers that implement the DSL are
reused to develop multiple applications for multiple customers. Rather than
generating executable machine code, DSL compilers typically generate source
code written in languages such as Java or Python. By generating source code
rather than machine instructions, DSL compilers abstract from the low-level
machine instructions that compilers typically produce. In addition, source

113

code is much simpler to generate and DSL compilers can therefore be devel-
oped much more efficiently.

Generating source code instead of machine instructions poses a new re-
targetability challenge at the level of software platforms. A software platform
consists of one or more programming languages with a set of libraries and
frameworks, deployable on one or more operating systems. Dozens of soft-
ware platforms compete and companies typically standardize on a single one
(e.g. Sun’s Java, Microsoft .NET or LAMP1). Consequently, DSL vendors have
to choose whether to generate code for a single software platform, or mul-
tiple software platforms. Ideally, a DSL compiler targets many platforms,
to maximize its potential customer base. Whereas encoding implementation
knowledge of domain-specific concepts in a compiler enables the reuse of this
knowledge between applications, there is little reuse between the different back-
ends of such a compiler, due to language and library discrepancies between
platforms. This lack of reuse causes significant maintenance problems. For
instance, the ANTLR parser generator [Parr and Quong, 1994] has code gen-
erator back-ends for over a dozen platforms. However, many of them are not
up-to-date with the latest ANTLR release. Similarly, WebDSL [Visser, 2008], a
DSL for data-intensive web applications, has back-ends for Java and Python,
but whenever a new feature is added to WebDSL, it needs to be implemented
and maintained in each back-end individually, in practice leading to incom-
patible platform back-ends.

Back-end maintenance is an even more prominent issue when back-ends
heavily rely on the target platform’s syntactic sugar and platform-specific
frameworks and libraries. Such platform features are designed to enable de-
velopers to be productive coding on that platform. When code is generated,
however, such productivity features are of less value. Specifically, these fea-
tures complicate the implementation of multiple back-ends with consistent
behavior, due to incompatible semantics across platforms. Thus, to fully con-
trol the behavior of generated code, and consequently the behavior of the DSL,
lower-level code is generated using only a subset of the target platform. Con-
versely, features that are beneficial to code generators are often lacking in pro-
gramming languages. Therefore, generating monolithic code artifacts, such as
complex classes, can result in large and complex code generation rules. Such
large rules can be circumvented by extending the target language with code
compositionality features such as partial classes and methods enabling small
code generation rules that emit smaller artifacts. Similarly, code generation
features such as identifier concatenation and expression blocks substantially
reduce the size of generation rules.

The lack of reuse between compiler back-ends could be circumvented by
performing automatic language translation, e.g. translating generated Java
code to Python, but this translation is expensive because of the complexity
of the Java language and its libraries. Efforts to port dynamic languages,
specifically Ruby and Python, to the CLR (IronPython, IronRuby) and JVM
(JRuby, Jython) so that software written in these languages is portable to these

1Linux, Apache, MySQL and Perl/Python/PHP

114

platforms, are also very complex, often incomplete and have performance
issues.

In this chapter we introduce the intermediate language PIL, a Platform In-
dependent Language providing a level of abstraction between DSL and soft-
ware platforms, abstracting from discrepancies between platforms, thereby
removing the need for platform-specific back-ends. In contrast to intermedi-
ate languages in traditional compiler construction, PIL operates on a higher
level of abstraction and has a concrete syntax, based on a subset of Java, lever-
aging the productivity advantages of generating source code over generating
machine instructions. PIL is designed as a small intermediate language, cap-
turing only essential object-oriented constructs and is therefore easier to port
to multiple platforms than Java, for instance. In addition, the design of a
language specifically targeted at code generators enables the development of
code-generation specific language features. PIL/G, a thin layer of abstraction
on top of PIL, provides some of such code generation such as partial classes,
partial methods, identifier concatenation and expression blocks. In the fu-
ture we also see opportunities to integrate DSL debugging support as part
of PIL/G. We realized an implementation of the Java and Python backends
of the WebDSL compiler using PIL, reducing the maintenance effort of these
back-ends.

5.1.1 Contributions

The contributions of this chapter are as follows:

1. The design of the PIL language, an intermediate language at the source
code level aimed at DSL compilers.

2. PIL/G, a collection of code generation-specific abstractions built on PIL.

3. An evaluation of our approach by implementing a Java and Python
back-end for WebDSL through the use of PIL.

5.1.2 Outline

In the next section we describe the typical architecture of a DSL generator
with a single back-end. In Section 3 we discuss several approaches to extend
this architecture to generate code for multiple platforms. Section 4 describes
PIL and its design and features. In Section 5 we discuss how PIL interacts
with platform-specific code. In Section 6 the applicability of PIL, future work
and related work is discussed.

5.2 C O D E G E N E R AT O R A R C H I T E C T U R E

In this section we describe the general architecture of a code generator gen-
erating code for a single platform. We examine how to cater for multiple plat-
forms in the next section. The initial single back-end generator architecture
is depicted in Figure 5.1. It is composed of two parts: the front-end, which

Chapter 5. PIL 115

parses, checks and desugars models described in the DSL, and the back-end,
which generates code from the model. We first give a brief overview of the
operation of the generator front-end, followed by a discussion of generator
back-ends.

The generator front-end The front-end of the generator is responsible for
parsing, checking and transforming a model to a simplified representation
from which a back-end produces executable code. Based on the grammar of
a DSL (which also defines the DSL’s meta-model), the parser produces an ab-
stract syntax tree (AST). The AST is subsequently checked for inconsistencies,
such as type errors and other deficiencies.

Figure 5.1 Code genera-
tor architecture

A set of model-to-model transformations, also
known as desugarings, transform the AST to a
simplified, core DSL model. Normalizing trans-
formations perform model simplification, such as
adding default values for omitted optional infor-
mation. More complex transformations transform
higher-level constructs to a reduced set of lower-
level constructs. For example, in WebDSL, access
control [Groenewegen and Visser, 2008] and work-
flow (Chapter 3) are implemented as abstractions
on top of the user interface, data model and action
sub-languages, implemented through a number of
model-to-model transformations. The result of the
front-end transformations is a fully checked, nor-
malized model represented in a reduced set of core
DSL constructs.

The generator back-end A generator back-end
generates code from a core DSL model produced
by the front-end. Intuitively, generating code that
uses a high-level framework seems an attractive,
productive option [Stahl et al., 2006, van Deursen
et al., 2000a]. However, in the long term, frame-
works often become too restrictive when more con-
trol is required over the exact execution of the gen-
erated application [Groenewegen et al., 2008]. Ini-

Figure 5.2 Platforms and their features

116

tially, the WebDSL compiler generated code for the JBoss Seam framework, a
high-level Java framework utilizing Enterprise Java Beans (EJBs) for the busi-
ness logic, Hibernate for models and JSF (Java Server Faces) for constructing
views. As the WebDSL language evolved, JSF in particular, became too re-
strictive. The WebDSL view models no longer were a good match for JSF.
Consequently, JSF and EJBs were replaced by plain Java servlets that contain
println statements printing HTML code.

There is mismatch in platform requirements between developers and code
generators. Many modern software platforms (e.g. Java, .NET, Ruby, Python
and PHP) are object-oriented at their core. Platforms typically try to differ-
entiate by adding features on top of that core (Figure 5.2), to improve the
expressivity for developers, e.g. syntactic sugar and high-level frameworks.
While improving developer productivity, these features limit flexibility, be-
cause they are only optimized for common use cases. By generating lower-
level code, the execution of the generated application can be more effectively
and flexibly controlled. In addition, because the object-oriented core of these
platforms is similar, generating code at this level also significantly improves
portability, which is discussed extensively in section 5.3. Although lower-level
code is more verbose, the code is not intended to be read or modified, so this
is not an issue.

@Partial
public class SomeClass {

private int a;

@Partial
public void init() {
a = 10;

}
}
// ...
@Partial
public class SomeClass {

private int b;

@Partial
public void init() {
b = 8;

}
}

Figure 5.3 Partial classes and
methods added to Java

Conversely, platform features that en-
able clean and concise code generation
rules are often absent from platforms.
Generation rules that generate large code
artifacts, typically become very long and
complex. Such “God rules” dispatch a
large number of smaller generation rules
to generate a monolithic target artifact
(e.g., a Java class). “God rules”, similar
to “God classes” in object-oriented pro-
gramming, are an anti-pattern and can be
avoided by the use of code composition-
ality features, specifically partial classes
and methods.

Partial classes are class fragments that
are combined at compile time by merg-
ing their contents. Similarly, partial
methods enable fragments of a method
to be distributed over multiple partial
classes. Partial methods are also merged
at compile-time. Some languages sup-
port partial classes, e.g. Smalltalk, Objective-C, C# 2.0, Common LISP (CLOS)
and Ruby, but many other languages do not support this feature, e.g. Java and
PHP. Partial methods are less common. C# 3.0’s partial method support is dif-
ferent than the partial methods just described; partial methods in C# are an
optimization feature for providing hooks into generated code. Partial classes

Chapter 5. PIL 117

define page blogEntry(e : BlogEntry) {
section {
header { outputString(e.title) }
outputText(e.content)

}
}

Figure 5.4 A simple page definition in WebDSL

in C#, typically generated by a code generator, can declare the signature of a
method as partial, meaning that if the method is implemented in another par-
tial class with the same name, typically defined by a programmer, it operates
as a regular method. However, if the method is not implemented in another
partial class, all calls to the partial method are removed.

In Chapter 4 we presented the code generation by model transformation ap-
proach. The key idea of this approach is to represent code as a model, en-
abling further transformation of generated code. Compositionality features
such as partial classes and methods can be implemented by extending the tar-
get language. Figure 5.3 shows an example of Java/G, Java extended with
partial classes and methods, marked with @Partial annotations (in Fig-
ure 5.1 the generalized form of this language is referred to as Platform/G).
The compiler’s transformation rules emit fragments of Java/G code, which
are subsequently merged and written to files.

As an example of a code generation rule, we illustrate how Java code is gen-
erated from WebDSL page definitions using the Stratego/XT transformation
toolset. WebDSL is a domain-specific language for data-intensive web appli-
cations [Visser, 2008]. It has sub-languages for the definition of data models,
user interfaces, access control, workflow and business logic. The WebDSL
page definition in Figure 5.4 defines a page blogEntry with an argument
of type BlogEntry. The view of the page defines a section, consisting of a
header with the title of the blog entry and its content. Figure 5.5 defines a
Stratego/XT rewrite rule page-to-java, which transforms a WebDSL page
to a Java class. When the left-hand side of the rule (before ->) is matched
its meta variables x page, farg*, elem* are bound to their corresponding val-
ues. The right-hand side of the rule defines the generated Java/G code. In
the where condition, individual page elements are mapped to Java statements
using the elem-to-java rule. The code pattern in the left and right-hand
side of the rule use the concrete syntax [Bravenboer and Visser, 2004] of the
source and target languages, respectively. Code enclosed in |[and]| quota-
tions is internally parsed by Stratego and turned into its AST representation.
Consequently, the page-to-java rule matches an AST representation of a page
definition and produces a Java/G AST, rather than textual code.

118

page-to-java :
|[define page x_page(farg*) { elem* }]| ->
|[package pages;

import javax.servlet.http.*;
import java.io.*;
@Partial
public class x_page extends Page {
public void renderPage(Request req, Response res) {
PrintWriter out = res.getWriter();
out.print("<html><head><title>"+getPageTitle()+

"</title></head>");
out.print("<body>");
stat_elem*
out.print("</body></html>");

}
}

]|
where stat_elem* := <map(elem-to-java)> elem*

Figure 5.5 Rewrite rule that transforms pages to Java classes

5.3 R E TA R G E T I N G A D S L G E N E R AT O R

In this section, we evaluate three approaches to extend the single platform
compiler architecture to support an additional platform. The first approach
is copying the existing back-end and porting the transformations to the new
target platform. A second approach is translating code generated by the already
present back-end to a new platform. As a third aproach, we argue that high-
level intermediate languages provide a better approach to supporting multiple
platforms in a DSL generator.

5.3.1 Adding a Backend to a Generator

Figure 5.7 Adding a backend
to a generator

The most intuitive approach to support an
additional target platform in a DSL imple-
mentation is copying an existing back-end
and porting it to generate code for the new
platform (Figure 5.7). Generalizing this ap-
proach, supporting N platforms requires N
back-end implementations. Figure 5.6 shows
how the page-to-java rule (Figure 5.5) has
been ported to generate Python code. A com-
parison of the Java and Python back-ends sug-
gest an additional advantage of generating
low-level code: the syntax and low-level APIs do not differ that much be-
tween platforms. The main changes that have to be made to port a back-end

Chapter 5. PIL 119

page-to-python :
|[define page x_page(farg*) { elem* }]| ->
|[@partial

class x_page(Page):
def renderPage(self, req, res):
out = res.writer
out.print("<html><head><title>"+pageTitle()+

"</title></head>")
out.print("<body>")
stat_elem*
out.print("</body></html>")]|

where stat_elem := <map(elem-to-python)> elem*

Figure 5.6 A Python version of the page-to-java rules (Figure 5.5)

are syntactic and relate to minor API differences. Although there is concep-
tual reuse between back-end generation rules, there is no code reuse between
them, resulting in large-scale code duplication. In addition, code duplica-
tion also occurs in the reimplementation of code compositionality features for
each back-end. Code duplication gives rise to maintenance problems. For
instance, when the DSL is changed, modifications have to be propagated to
all back-ends.

5.3.2 Language Translation

Figure 5.8 Language transla-
tion

Efforts to translate dynamic languages, specif-
ically Ruby and Python, to the CLR (Iron-
Python, IronRuby) and JVM (Jython, JRuby)
bytecode and Microsoft’s Java Language Con-
version Assistant to translate Java to C# code
appear an attractive option to build retar-
getable software. Since only one transforma-
tion from the DSL to one of these platforms
needs to be defined, this approach would solve
the code duplication issue in generator back-
ends. Figure 5.8 depicts this scenario. Trans-
formations that port code from one platform to another are reusable in mul-
tiple generators. In addition, code compositionality language extensions have
to be implemented only once and need not be ported. However, language
ports are problematic due to sheer language complexity, performance issues
and the fact that these languages and their platform libraries are not designed
to be portable across platforms. Consequently, this approach does not scale
well.

120

5.3.3 High-Level Intermediate Languages

Figure 5.9 High-level inter-
mediate language

Although not feasible in the general case, port-
ing a language (such as Java, Ruby or Python in
the previous section) to multiple platforms is at-
tractive, because multiple similar back-ends need
no longer be maintained. When generating code,
only a low-level subset of the platform is used.
Software platforms, at this level, are very similar.
Therefore, only a port of a subset of the platform
is sufficient to retarget a DSL.

One approach is to generate code for an exist-
ing platform, e.g. Java, and by convention only
use a subset of that platform. Translations to
other platforms are defined only for this subset.
The problem with this approach is the difficulty
to enforce it. In addition, as programming languages are typically not designed
to be easily translatable to other languages, there may be hurdles to do so. An
example of this is Java’s . (dot) operator, whose meaning at the syntactic level
is ambiguous and therefore requires type analysis to disambiguate, requiring
language translators to perform such analysis. An alternative approach is to
formalize a high-level intermediate language. Naturally, this intermediate lan-
guage can be based on the subset of an existing language, but it can also be
further simplified and extended with code generation features.

Typically, the most expensive transformation in a DSL compiler is the trans-
formation from the DSL to target platform code. This transformation is expen-
sive because of the large semantic gap between DSL and platform code. Thus,
the number of times that this transformation needs to be implemented should
be limited as much as possible. A well-known technique in compiler construc-
tion is the use of intermediate languages [Steel, 1961, UCSD, 1981]. By using
an intermediate language, the maintenance of the compiler is much improved,
since only one complex transformation from the DSL to the intermediate lan-
guage needs to be implemented and maintained. Furthermore, the semantic
gap between the intermediate language and the platform is very small, en-
abling implementations of the intermediate language for new platforms to be
developed with little effort. Such intermediate language implementations are
reusable in multiple DSL generators. Code compositionality features, as well
as other features convenient for code generation can be implemented as an
abstraction on top of the intermediate language, implemented as a transfor-
mation. The architecture of this scenario is depicted in Figure 5.9.

5.3.4 Evaluation

Figure 5.10 compares the costs of the three approaches to construct retar-
getable DSLs. As the transformation from the DSL to platform code is expen-
sive, the first approach, where N supported platforms require N back-end im-

Chapter 5. PIL 121

plementations, is not a desirable solution. In the second approach, language
translation, only one DSL to code transformation needs to be implemented.
However, the language translation C, although reusable in multiple compil-
ers, is very expensive to implement due to the high cost of implementing
full language translations. Using an intermediate language requires only one
transformation from the DSL to code written in the intermediate language.
Implementing translations from the intermediate language to Platform 1 and
2 (A′ and B′) is cheap because of the small size of the intermediate language.
In addition, these translations only need to be implemented once and are
reusable in multiple compilers. Therefore, a future DSL compiler is only re-
quired to implement the transformation from the DSL to the intermediate
language.

5.4 P I L : A P L AT F O R M I N D E P E N D E N T L A N G U A G E

Figure 5.11 The PIL architecture

We have developed PIL, a Platform In-
dependent Language designed for code
generation, abstracting from syntactic
differences between object-oriented lan-
guages, slight mismatches between com-
mon data types, and providing infras-
tructure to interact with underlying plat-
forms. In contrast to traditional interme-
diate languages as used in compiler con-
struction, PIL is used at a higher level of
abstraction and has a convenient concrete
syntax enabling source code generation
through the use of code generation rules. Compared to typical programmer-
oriented software platforms, PIL is slightly lower level and simpler, making
the language easier to port. The concrete syntax of PIL is derived from Java
and therefore familiar to Java developers. PIL/G adds a collection of code
generation specific abstractions to the small PIL base language, such as code

Figure 5.10 The scenarios and costs of transformation options

122

compositionality features. Due to space constraints this chapter will not dis-
cuss the full PIL language, for that we refer the reader to the PIL website2.

By generating PIL code, rather than e.g. Java or Python code, the cost of
targeting multiple platforms is greatly reduced. Any code generation toolset
can be used to generate textual PIL code, which is subsequently translated to
either Java or Python code by the PIL compiler (Figure 5.11). PIL can also be
linked to the generator directly as a library. Currently the PIL compiler library
can be linked into Stratego/XT programs, but we are working to enable usage
of the PIL library from other tools. The advantage of using PIL as a library
is that the overhead of parsing, pretty-printing and I/O can be eliminated by
handing an AST to the PIL library rather than a textual representation of the
PIL program. While the PIL compiler currently generates Java and Python
code, more platforms can be added. Adding a new PIL target platform is
cheap.

5.4.1 PIL: Object-Oriented Programming Essentials

Instead of providing a high-level platform targeted at developers, PIL provides
a relatively low-level language with a limited set of easy to port built-in data
types. At their core, the platforms many DSL generators target are based on
the object-oriented paradigm. PIL captures essential object-oriented features
and maps them to their specific incarnations on each platform. The concrete
syntax and semantics of PIL are based on Java, because it is well known and
statically typed. A dynamically typed intermediate language would compli-
cate the mapping to statically typed languages, whereas mapping a statically
typed language to a dynamically typed language is simple.

Since PIL is a language aimed at code generators rather than developers,
Java features not useful from a code generation perspective are discarded,
thereby reducing the size of the language and lowering the effort of porting
the language to new platforms.

From the Java language the following features are omitted:

• Visibility modifiers for classes, fields and methods (e.g. public, private,
protected): information hiding features serve no purpose in generated
code.

• Interface and abstract classes: can be replaced with classes with dummy
implementations of interface methods.

• Inner and anonymous classes: can be implemented as regular classes.

• Imports: are syntactic sugar for the use of fully qualified class names.

• Checked exceptions: are not supported by most other platforms

• Distinction between primitive and object types: in PIL everything is an
object. Nevertheless, the Java implementation of PIL does use primitive
types and boxes and unboxes as required.

2http://www.pil-lang.org

Chapter 5. PIL 123

http://www.pil-lang.org

• Type coercion (e.g. from int to long): can be made explicit by a code
generator.

• Enums: can be implemented using e.g. integers.

• Array syntax, e.g. byte[] a and new byte[] { ... }. In PIL an array
is a regular generic type: Array<Byte> and can be instantiated with
new Array<Byte>(...).

• The one public class per file restriction. This feature is of no use in the
context of code generation.

The Java syntax had to be slightly adjusted to make the language context
free. Java’s . (dot) operator, which is used in package names, static member
access, as well as instance member access requires type analysis to disam-
biguate. In PIL the dot operator is only used for instance member access. In
the context of package names, PIL uses ::. PIL has no static member sup-
port. Each language requires at least a minimal set of built-in data types, such
as integers, strings, characters, arrays and maps. PIL implementations map
each of these types to platform-specific implementations. Platform-specific
APIs not part of the built-in data types can be accessed through external class
declarations, which are further discussed in Section 5.5.

5.4.2 PIL/G: Compositionality of Code Generation

PIL is a small, easy to port language, but it lacks some features that greatly
simplify code generation. In section 5.2 we discussed that most general pur-
pose programming languages lack compositionality features such as partial
classes and methods, which enable concise and modular code generation
rules. PIL/G adds such compositionality features to PIL. Through a number
of model-to-model transformations the PIL/G model is normalized to regular
PIL and then mapped to platform code. In addition to partial classes and
methods, PIL/G also adds identifier concatenation and expression blocks.

Partial classes and methods Partial classes and methods enable small code
generation rules to emit pieces of code that together define a larger arte-
fact. Figure 5.12 shows two examples of PIL/G code that use partial classes
and methods. Normalization of PIL/G to PIL results in a single SomePage

class containing two fields (inputCounter and pageTitle) and one init()

method in which inputCounter and pageTitle are set. The order in which
partial methods’ code bodies are concatenated is not defined.

Identifier concatenation A common pattern in transformations is compos-
ing two or more identifiers into one. For instance, generating getters and set-
ters for a class property (Figure 5.13) requires repetitive invocation of helper
rules to render proper names for the getter and setter method. PIL/G adds
a special # identifier concatenation operator to achieve the same result in a
more concise manner, as demonstrated in Figure 5.14. The operator adheres
to the Java naming convention meaning that the concatenation of get and
name results in getName.

124

@partial
class page::SomePage

extends Page {
Int inputCounter;
@partial void init() {
inputCounter = 0;

}
}

@partial
class page::SomePage

extends Page {
String pageTitle;
@partial void init() {

pageTitle = "welcome";
}

}

Figure 5.12 Partial classes and methods

page-farg-to-pil :
|[x_prop : srt]| ->
|[t x_prop;

t x_get() {
return x_prop;

}
void x_set(t value) {
this.x_prop = value;

}]|
where x_get := <gen-getter>

x_prop
; x_set := <gen-setter>

x_prop
...

Figure 5.13 Transformation without iden-
tifier concatenation

page-farg-to-pil :
|[x_prop : srt]| ->
|[t x_prop;

t get#x_prop() {
return x_prop;

}
void set#x_prop(t value) {

this.x_prop = value;
}]|

where ...

Figure 5.14 Transformation with identi-
fier concatenation

var be : BlogEntry :=
BlogEntry blog := b

⇓
BlogEntry be =
{| BlogEntry e0 = new BlogEntry();

e0.setBlog(b);
| e0 |}

⇓
BlogEntry be = exprBlock0(b);
...
BlogEntry exprBlock0(Blog b) {
BlogEntry e0 = new BlogEntry();
e0.setBlog(b);
return e0;

}

Figure 5.15 Transformation from WebDSL en-
tity constructor expressions to PIL implementa-
tion

Expression blocks DSL con-
structs typically have a higher
expressivity than the target
platform language that imple-
ments them. Therefore, it
is common that an expres-
sion in the DSL requires mul-
tiple statements of implemen-
tation code. In WebDSL this
problem occurs while trans-
forming entity constructor ex-
pressions to PIL expressions.
Figure 5.15 shows the trans-
formation steps required to
implement a simple example,
in which an instance of the
BlogEntry entity is created,
initializing its blog property
with blog b, assigning the re-
sult to a new variable be. The implementation of this example in PIL requires

Chapter 5. PIL 125

a variable declaration statement with an initialization expression derived from
the entity constructor expression. In order to realize the entity construction,
two PIL statements are required: one statement to create an instance of the
BlogEntry class, and a second to set the blog property. Implementing such
a transformation is complex, requiring statement lifting. To simplify this type
of transformation, PIL/G provides expression block syntax [Bravenboer et al.,
2006a]: {| stat* | returnvalue |}, as demonstrated in the second trans-
formation step in Figure 5.15. During the PIL/G to PIL normalization, ex-
pression blocks are lifted to separate methods, receiving closure variables as
arguments.

5.4.3 Developing PIL Back-Ends

PIL back-ends can be developed for any language in which it is possible
to implement basic OOP features such as objects, classes with single inher-
itance, virtual method dispatch and garbage collection. Consequently many
advanced object-oriented features of the targeted languages remain unused,
but this is not an issue as long as the features that PIL requires of a language
are a subset of the features offered by the targeted language. Although PIL
assumes its target platform to provide garbage collection, it has no assump-
tions on how this is implemented. Therefore, it is possible to implement a
simple garbage collector as part of the back-end transformation. For instance,
a language such as Objective-C already provides reference counting using
a retain and release mechanism. The sequence of retain and releases
can be derived from the PIL code based on scopes and data flow analysis.
Depending on the targeted platform, implementing new PIL back-ends is rel-
atively cheap. A back-end implementation requires a grammar of the target
language specified in SDF and around 1200 lines of Stratego/XT code, much
of which can be based on existing back-ends.

5.5 P I L / P L AT F O R M I N T E R A C T I O N

PIL has a number of built-in data types such as integers, strings, lists and
maps. Any interaction with the platform beyond those is performed through
external class interfaces. For example, code generated from WebDSL models
accesses web request information provided by the web request API. Similarly,
code generated by a parser generator uses IO libraries to read a file to be
parsed. For data persistence, generated code often interacts with an object-
relational mapper framework such as Hibernate or SQLAlchemy.

Generated platform-specific code typically interacts directly with platform-
specific APIs. In contrast, when using PIL to target multiple platforms, direct
interaction with platform-specific APIs is not an option. The interfaces of APIs
of each supported platform need to be wrapped behind a single consistent PIL
interface with consistent behavior across platforms. This section discusses
three scenarios that demonstrate how platform interaction can be achieved in
a platform-independent manner. The section ends with an example of glue

126

external class webdsl::Request {
webdsl::Session getSession();
String getParameter(String name);

}

external class webdsl::Response {
webdsl::util::StringWriter getWriter();
void redirect(String url);
void setContentType(String ct);

}

Figure 5.16 Web request and response interface in PIL

package webdsl;

import javax.servlet.http.*;

public class Response {
private HttpServletResponse r;
public Response(HttpServletResponse r) {
this.r = r;

}
public String getParameter(String name) {
return r.getParameter(name);

}
// ...

}

Figure 5.17 Part of Java wrapper of Request interface

code that is often required to combine pieces of platform-specific code with
generated code in order to build a runnable application.

5.5.1 API Wrapping

APIs such as I/O, threading and networking libraries are typically available
and similar across platforms. For instance, the API to handle HTTP requests
looks slightly different on each platform, but behaves the same. On each
platform there is a method to retrieve a GET or POST parameter, get or set
a cookie and get access to sessions. Thus, these APIs can be wrapped be-
hind an interface, such as depicted in Figure 5.16 which shows PIL external

class declarations for a simple Web API. On the Java platform, this interface
is implemented using the Java Servlet APIs (Figure 5.17) and on the Python
platform it is implemented wrapping its CGI module. The external class

declaration as seen in Figure 5.16 exposes these classes to PIL code. After the
code is generated, the defined wrapper APIs and generated code are com-
bined and compiled by the platform compiler, or interpreted by a platform
interpreter.

Chapter 5. PIL 127

5.5.2 Missing API on Some Platforms

It can occur that a particular API is not available on one or more platforms. In
this scenario there are two options. The first is to simply not support the part
of the DSL that relies on the particular API on every platform. The second
option is to port an implementation of the API to the platforms where it is
not already available. The latter can be achieved in two ways, either by port-
ing the API to other platforms directly, or porting the framework to PIL and
generating platform implementations from that. Although PIL is intended to
be used as a code generation language, it can be used as a language to port
an API to as well. The advantage of using PIL over building custom ports for
each language, again, is that PIL implementations are portable.

Figure 5.18 ORM implemented in
PIL.

Because we could not find a suitable
object-relational mapper for Python that
is compatible with Hibernate, and be-
cause Hibernate did not suit our needs
entirely anyway, we implemented a sim-
ple ORM framework in PIL (Figure 5.18).
Although Hibernate’s implementation is
substantial, WebDSL only requires a frac-
tion of its features. A significant part of
Hibernate’s implementation is dedicated
to framework usability, such as its exten-
sive configuration and annotation sup-
port. Such features are of little value when code is generated. Therefore,
the ORM library we implemented in PIL, provides only the features and be-
havior that WebDSL requires. PIL makes the ORM framework very portable,
because each platform only requires the wrapping of a low-level database
API, enabling the execution of SQL queries (Figure 5.19).

5.5.3 Semantic Mismatches

Behavior of platform APIs sometimes differs slightly. In the case of an object-
relational mapping framework, for instance, the persist operation may have
slightly different behavior in one framework than it has in another. Frame-
work A may persist the object and all of the objects it references, while frame-
work B only persists the object itself. It is sometimes possible to hide these
differences in behavior in the API wrapper. In this particular case the wrap-
per of the framework B can traverse the object graph to explicitly persist each
object, emulating the behavior of framework A.

If changing semantics in the wrapper is not feasible, adapting the frame-
work could be an option. However, this requires a fork of the framework and
the maintenance effort that comes with it. Another solution in this case is
to reimplement the incompatible frameworks, either in PIL or in a platform-
specific manner, as described in Section 5.5.2.

128

external class pil::db::Database {
new(String hostName, String username, String password,

String database);
pil::db::Connection getConnection();
...

}

external class pil::db::Connection {
List<Result> query(String query, Array<Object> args);
void updateQuery(String query, Array<Object> args);
...

}

external class pil::db::Result {
Int getInt(Int index);
String getString(Int index);
Object getObject(Int index);
...

}

Figure 5.19 Low-level interface to database

page-to-register-pil :
|[define page x_page(farg*) { elem* }]| ->
<emit-pil> |[
@partial class WebApp {
@partial void initPages() {

allPages.put("x_page", page::x_page.class);
}

}]|

Figure 5.20 Transformation that emits a partial function registering the page class

5.5.4 Platform-Specific Glue

Code generated from a DSL often does not implement the entire applica-
tion. The canonical example of this are parser generators which only generate
parsers that are subsequently invoked from code written specifically for the
platform, or code generated from another DSL. Similarly, WebDSL generated
code is not invoked directly either, but compiled in conjunction with web
application glue code. WebDSL pages are translated to Page classes as illus-
trated in Figure 5.5. Additional code is emitted that registers the page class
in a global map during application initialization (Figure 5.20). For each web
application a singleton WebApp class is generated, whose initPages method
is extended for each page. Glue code, specific for each platform, instantiates
the generated WebApp class and retrieves the classes to instantiate based on
the request. An example of such glue code for Java is shown in Figure 5.21.

Chapter 5. PIL 129

public class DispatchServlet extends HttpServlet {
WebApp webApp = new WebApp();
public void doGet(HttpServletRequest request,

HttpServletResponse response) {
webApp.initPages();
Class pc = webApp.allPages.get(Utils.getPageName(request));
Page page = (Page)pc.newInstance();
page.renderPage(new webdsl.Request(request),

new webdsl.Response(response));
}

}

Figure 5.21 Instantiating PIL-generated Page objects from Java

5.6 D I S C U S S I O N

Applicability PIL is based on the assumption that the target platforms of
a DSL are based on an object-oriented language with little dependency on
unique platform-specific features. While not the case for every DSL, there
are many DSLs, other than WebDSL, for which this is true. Parser genera-
tors such as ANTLR and SDF and model transformation languages such as
Stratego/XT, ATL or QVT, are examples of these.

Costs of an intermediate language The use of an intermediate language al-
ways comes at a price. In the compiler, more transformation steps are re-
quired to produce platform code, although this overhead is limited because
of the simplicity of the transformation. Flexibility in target platforms is lim-
ited by PIL’s assumption that target platforms are based on the object-oriented
paradigm. Targeting C would therefore be difficult. Platform-specific perfor-
mance tuning can be implemented by tuning translations from PIL to platform
code or by moving performance critical code, code for which efficient imple-
mentations depend highly on the platform, to an external API that is called
from PIL code. In our implementation of back-ends for WebDSL using PIL,
such platform-specific optimizations were not required, however. Another
type of overhead occurs when experimenting with new language features.
When adding language features that require additions to the compiler back-
end, the solution domain is first explored by manually writing platform code.
Once the code works, it is generalized and ported to the compiler. However,
when PIL is used, platform code cannot be moved to the compiler as-is, it first
needs to be translated to PIL. An alternative option is to explore the solution
domain by writing PIL code, rather than platform code. Once the PIL code
works, it can be ported to the compiler.

5.6.1 Future Work

PIL has currently three platform back-ends: Java, Python and PHP5. In the
future we intend to add more, such as C#/.NET and Objective-C back-ends.
We used PIL to implement back-ends for WebDSL, but in the future we in-

130

tend to use it to implement back-ends for other DSLs as well. PIL has been
developed using Stratego/XT, a DSL for program transformation, which we
also want to port to other platforms. Currently there is a C and a partial
Java back-end, PIL could greatly simplify maintaining such back-ends. We in-
tend to also investigate if it is feasible to port the SGLR [Visser, 1997a] parser
implementation to PIL.

A problem with source code generation as implemented by many DSL com-
pilers is that debugging is very difficult, because the structure and line num-
bers of the resulting source code are typically very different than the original
DSL source. Techniques such as origin tracking [van Deursen et al., 1993] can
be used to keep track of position information during transformations. Wu
et al. [2008] describe a technique in which position information mappings
between source and target code are used by a wrapper around an already ex-
isting debugger for the target language. Another approach is by instrument-
ing generated code that communicates with an external generic debugger.
TIDE [van den Brand et al., 2005] takes this approach to simplify the pro-
cess of defining debuggers for languages built using ASF+SDF. This approach
also seems well-suited when implementing debugging support for multiple
platforms, since a consistent debugging interface can be implemented for all
platforms and no platform-supplied debugging support is required. Using
the TIDE approach, code needs to be instrumented with step calls that send
events to an external debugger with position information and the current en-
vironment. We see an opportunity for PIL/G to simplify adding debugging
support in this manner, for instance by adding a step abstraction to the lan-
guage that can easily be enabled or disabled.

5.6.2 Related Work

Intermediate languages Reusable intermediate languages for the purpose of
retargetability are not a new idea. In compiler construction they appeared as
early as 1960. UNCOL [Steel, 1961], the Universal Computer Oriented Lan-
guage, was developed in response to the increasing number of programming
languages required to target an increasing number of machine architectures.
M languages and N machines require M ∗ N compilers, whereas with an
UNCOL only M + N generators and translators are required. Unfortunately,
no truly universal UNCOL emerged to handle all languages and machines,
likely due to the large size of the instruction set required to generate effi-
cient machine code. Other proposed intermediate languages include BCPL’s
O-code [Richards, 1971], P-code [UCSD, 1981] and C-- [Peyton Jones et al.,
1999]. C-- is a more recent attempt to simplify machine code generation for
multiple machine architectures. Rather than a byte-code representation of the
intermediate language, C-- has a concrete syntax similar to C. Similar to PIL,
C-- is designed as a code generation language. Its focus is much more low-
level, however. It addresses a number of problematic areas of C, such as the
lack of garbage collection and the difficulty of implementing tail calls. Retar-
getability is achieved by plugging in one or more machine code generation

Chapter 5. PIL 131

back-ends, e.g. gcc, VPO [Benitez and Davidson, 1988] or MLRISC [George,
1997]. The mentioned intermediate languages all operate at the abstraction
level of machine architecture instructions. PIL by contrast is a much higher
level language. It unifies object oriented programming languages and their
platforms rather than machine architectures. What PIL adds on top of the
mentioned approaches is code generation specific features such as partial classes,
partial methods, identifier concatenation and expression blocks.

Union and intersection machines [Davidson and Fraser, 1984] represent fic-
tional machines with features roughly equivalent to the union or the inter-
section of features offered by typical target machines. They are used as a
basis from which intermediate language are derived. Union intermediate lan-
guages are good for generating efficient machine code, whereas the small size
of intersection intermediate languages, such as PIL, are easier to port.

Basil is a high-level intermediate language with two use cases: (1) a target
language for compilers for high-level languages and (2) a language to develop
run-time libraries to be used by generated code [Semenzato, 1993]. PIL, too, is
targeted at code generation and can be used to develop run-time libraries as
well. Basil can translated to C. A subset of Basil, pure Basil, can be translated
to LISP. In contrast to PIL, Basil is not an object oriented language and its pur-
pose is not to simplify retargeting compilers. Instead, it is designed to make
the semantic gap between source language and machine language smaller.
In addition, Basil allows its code to be annotated with position information,
which can be used for debugging.

ANTLR Code generation back-ends for the ANTLR [Parr and Quong, 1994]
parser generator are defined using StringTemplate, a template engine de-
signed for code generation. For each supported platform (currently over a
dozen) a number of code templates define the code to generate to implement
ANTLR’s features. As of version 3 of ANTLR, each back-end requires around
2800 lines of StringTemplate code. Whenever a new ANTLR version is re-
leased, the templates for each templates need to be adapted, resulting in a
number of platform back-ends being out of sync with the current ANTLR
version.

PIL could reduce ANTLR’s maintenance issues. A back-end for the PIL
compiler for one platform encompasses around 1100-1300 lines of Strate-
go/XT code. Note that these back-ends are reusable in multiple DSL com-
pilers as well. A single ANTLR to PIL transformation needs to be defined,
presumably also requiring about 2800 lines of code. In addition, custom code
needs to be written for each platform wrapping IO APIs. Once PIL back-
ends for each of ANTLR’s supported platforms are implemented, PIL could
reduce the 33,000 lines of code required to implement all ANTLR back-ends
significantly.

The Model-Driven Architecture OMG has defined the Model-Driven Archi-
tecture [Miller and Mukerji, 2003] in which platform-independent models
(PIMs), through an MDA mapping are transformed to platform-specific models
(PSMs). Whether this mapping should be performed manually or automati-

132

cally is not specified. In our approach the WebDSL model is a PIM and the
platform-specific code that is generated from that are PSMs. PIL acts as a thin
layer in-between PIM and PSMs. The separation of platform-independent
models from platform-specific models is essential when targeting multiple
platforms. For instance, DSLs that contain escapes to the underlying platform
are not platform-independent and can therefore not realistically be ported
to other platforms. The fact that we implemented WebDSL back-ends for two
different platforms (Java and Python), proves that WebDSL models are indeed
platform-independent.

Bezivin et al. [2004] demonstrate how MDA can be used to automatically
derive multiple PSMs from one PIM. They generate Java, web services and
JWSDP from UML and EDOC PIM models. Muller et al. [2003] apply the
MDA approach to generate web applications from visual UML-based mod-
els. Their code generator is written in Java and can generate either Java or
PHP code that communicates with either an Oracle, MySQL or PostgreSQL
database. The development of WebDSL so far has not focussed on support-
ing multiple database systems, but this is future research. We intend to in-
vestigate supporting not only SQL databases, but also alternative types of
databases such as Google’s BigTable [Chang et al., 2008]. Although PIL itself
does not solve the problem of targeting different types of database systems,
it can make the code to use these database systems portable across software
platforms.

5.6.3 Conclusion

In this chapter we explored a number of approaches to construct DSL com-
pilers targeting multiple software platforms. The ability to retarget DSLs is
enabled by the strict separation between platform-independent models and
platform-specific models. It is common practice to maintain separate com-
piler back-ends for each targeted platform. However, the maintenance of these
back-ends is costly because DSL to target platform transformations are expen-
sive to build and maintain. We argued that high-level intermediate languages
can improve the retargetability of DSLs by only having to define one trans-
formation from the DSL to the intermediate language. Subsequent mappings
from the intermediate language to target platforms are cheap to develop and
reusable in multiple DSL compilers.

We presented PIL, a Platform Independent Language, as an implementation
of such a high-level intermediate language. PIL is based on a subset of Java,
and is therefore a more familiar and easy to target language than traditional
low-level intermediate languages as commonly used in compiler construction.
PIL/G, a collection of abstractions built on PIL, adds features simplifying the
use of PIL as a code generation language, such as partial classes and methods,
identifier concatenation and expression blocks.

We validated our approach by implementing a PIL back-end generating
Java and Python code for the WebDSL compiler. Previously, these platforms
were supported through separate back-ends which led to large-scale code

Chapter 5. PIL 133

duplication. By using PIL, only one DSL to PIL transformation needs to be
maintained, as well as small platform-specific API wrappers for database and
HTTP request access.

134

Postscript: PIL

It is common practice to develop a DSL as a thin syntactic layer on top of
an existing framework [Stahl et al., 2006, van Deursen et al., 2000b]. This is
how WebDSL was developed initially, by building it on top of the JBoss Seam
framework. However, as development of the DSL and underlying framework
start to diverge, mapping the DSL onto the framework becomes increasingly
difficult [Groenewegen et al., 2008]. Therefore, as discussed in Section 1.8,
we redeveloped the WebDSL back-end to generate much lower-level code. At
this level of abstraction, the difference between platforms is largely cosmetic,
enabling the use of an intermediate language such as PIL.

As described, in the implementation of the Java and Python WebDSL back-
ends, one library was not replaced: the object-relational mapper (Hibernate,
in the case of the Java back-end). Hibernate is a complex piece of software that
was offered enough flexibility for WebDSL. However, when adapting WebDSL
to generate code through PIL, a solution had to be found for the ORM part,
which eventually we solved by implementing an ORM in PIL (as described
in Section 5.5.2). However, reimplementing a substantial library just to enable
retargetability of the DSL is definitely a trade off to be evaluated closely.

P I L A N D W E B D S L

In the case of WebDSL, the implementation of the PIL back-end for WebDSL
was never developed beyond a prototype. There were two reasons:

The first was the manual porting of libraries. We built a simple ORM library,
but it did not yet support all the features required, such a complex queries.
The effort to get it to that level was considerable. We also considered adding
other new features to WebDSL, such as search. For Java there is the excellent
Lucene3 library, but there is no such library available for e.g. Python or PHP.
Would the search feature simply not work on platforms other than Java, or
would we have to port Lucene to PIL as well?

The second reason was that when development of PIL started, we forked
the WebDSL Java back-end and slowly ported it to PIL. Subsequently, the
PIL and the WebDSL PIL back-end were developed in tandem. While we
developed PIL, colleagues kept developing the Java back-end, resulting in the
PIL back-end being completely out of sync with Java back-end by the time we
got basic WebDSL applications to compile using PIL. The Java back-end had
advanced a lot since the time the PIL back-end was branched (almost half a
year earlier).

We had a group meeting to discuss the future of the PIL back-end, trying to
decide if there was sufficient reason to move our development effort from the

3http://lucene.apache.org

135

http://lucene.apache.org

Java back-end and focus all of our effort on a new, up-to-date PIL back-end,
that would likely take a couple of months of full-time work to complete.

We decided to approach the problem from a commercial point of view.
Would the considerable effort pay off? Would WebDSL find more use if it
could also generate Python and PHP code? We concluded this was not really
the case. If a potential user was willing to invest in WebDSL, he would accept
having to run it in a Java environment. It is important to note that from
the end-user perspective, WebDSL applications are very portable. They are
accessible from any browser on any platform, it is only the server-side where
portability is an issue. We decided that adding a PHP and Python back-
end would not significantly increase our potential user base in the case of
WebDSL. Therefore, the effort it would take to port the current Java back-end
to PIL would not be worth it. We decided to discontinue the development of
the PIL back-end for WebDSL.

P I L A N D M O B I L E

In the mobile domain the portability problem was very apparent. In order
to develop a mobile application for multiple platforms one has to effectively
implement it completely separately for every platform — there was very little
overlap in the technology stacks used on the different software platforms.
Ostensibly, this seemed an ideal application of PIL: a mobile DSL that would
generate PIL, which in turn would be mapped to Objective-C for iPhone and
Java for Android.

PIL works well for many application aspects including application logic and
even data persistence (we had already built a PIL ORM library for WebDSL
that could be reused). However, there were two issues that let us decide not
to use PIL for a mobile DSL.

The first was user interface APIs. Apple’s iOS platform has a very differ-
ent API to create user interfaces than Android. Wrapping the existing UI
libraries for each platforms as a consistent PIL library would be a significant
undertaking. The goal of PIL is to reduce the amount of maintenance work to
be done for each platform back-end. However, the majority of maintenance
was likely to take place in user interface aspect of the language, still requir-
ing those changes to be made in the user interface library for each platform
individually, thereby reducing the advantage of using PIL significantly.

The second issue was Apple’s stringent rules about how iPhone applications
were to be built. One of the newly instated rules was that applications were
to be “originally written in Objective-C, C++, C or Javascript”, thereby effec-
tively forbidding applications to be generated from a DSL. In addition, Apple
refused to sell certain kinds of applications in its AppStore. In response,
Google started to develop web-based versions of some of its popular applica-
tions, including Google Voice (an application that had been rejected by Apple
because it “duplicated phone functionality”) and Gmail.

As a result, we decided to follow the path that Google chose and revised
our original plan: our mobile DSL, called mobl (Chapter 6), would generate

136

mobile web applications rather than native applications.

A P P L I C AT I O N A R E A S

While we did not end up using PIL for our mobile DSL, we are convinced PIL
still has applications. The reoccuring problem that led us not to use PIL for
either WebDSL or mobl was reusing existing libraries that were too large to
port to PIL or too hard to wrap consistently. However, there is a class of DSLs
that does not heavily rely on existing libraries, for instance parser generators,
which only need to read in a string and produce a parse tree or AST data
structure; or state machines, which receive simple signals and produce simple
events to communicate with the outside world.

Chapter 5. PIL 137

138

6
Declaratively Programming the Mobile Web
with Mobl

A B S T R A C T

A new generation of mobile touch devices, such as the iPhone, iPad and An-
droid devices, are equipped with powerful, modern browsers. However, reg-
ular websites are not optimized for the specific features and constraints of
these devices, such as limited screen estate, unreliable Internet access, touch-
based interaction patterns, and features such as GPS. While recent advances
in web technology enable web developers to build web applications that take
advantage of the unique properties of mobile devices, developing such appli-
cations exposes a number of problems, specifically: developers are required
to use many loosely coupled languages with limited tool support and applica-
tion code is often verbose and imperative. We introduce mobl, a new language
designed to declaratively construct mobile web applications. Mobl integrates
languages for user interface design, styling, data modeling, querying and
application logic into a single, unified language that is flexible, expressive,
enables early detection of errors, and has good IDE support.

6.1 I N T R O D U C T I O N

With the rapid growth in sales of modern smart phones and tablets, such
as iPhone, iPad, Android and BlackBerries, the web becomes available on an
increasing number of powerful mobile devices equipped with modern web
browsers. However, today’s websites are optimized for personal computer
browsers and environments, whereas mobile devices are used in different
contexts, and have different features and constraints than personal computers,
for instance:

• Internet access is not always available, reliable or fast;

• Screen estate is limited;

• Expected user interaction patterns are different, such as touch controls
and gestures such as tapping, swiping and pinching;

• Applications are expected to respond to changes in context, such as
holding the device in portrait or landscape mode, or changes in location.

Consequently, hundreds of thousands of custom native mobile applications
are being developed. Examples include communication applications (e-mail,
messaging), content viewers (books, articles, papers, RSS feeds, video, photos,

139

audio) and location-based services (wikihood, foursquare, loopt). While these
applications run locally on the device itself, a large class of these applications
are data-driven applications that communicate with one or more web services
to exchange data.

While iOS, Android, BlackBerry, WebOS, Windows Phone 7 and other plat-
forms are similar in terms of interaction, features and restrictions, their devel-
opment environments are quite different. iPhone and iPad applications are
developed using the Objective-C language; Android and BlackBerry applica-
tions are built using Java, but using very different APIs; WebOS applications
use HTML, CSS and JavaScript; Windows Phone 7 development is done using
.NET. Developing software that is portable to multiple platforms is difficult. In
addition, deployment is non-trivial; most platforms come with an application
marketplace, some of which require manual testing of submitted applications
by the marketplace provider before being published — a process that can
take many weeks — and applications can be rejected for seemingly arbitrary
reasons.

At the end of the 1990s, mobile phones started to gain access to the Inter-
net through WAP (Wireless Application Protocol). The development model
for WAP applications was very similar to the development of regular web
applications. Rather than sending HTML, a server would send WML (Wire-
less Markup Language) to the mobile phone. With the release of the original
iPhone in 2007, a new generation of smart phones and tablets started to be
released with more powerful browsers that support all modern web technolo-
gies. At the same time, advancements in HTML (HTML 5) and CSS (CSS 3)
started to enable the creation of web applications that offer a comparable ex-
perience to native applications, especially for data-driven applications, by sup-
porting application and data caching, detection of touch gestures and access
to geographical position information (GPS). The portability and deployment
advantages of web applications make the use of web technologies for building
mobile applications very attractive.

Similar to native applications, mobile web applications can now be devel-
oped that run completely disconnected from the server, requiring a different
development model than regular web applications. When a mobile web ap-
plication is first launched through the web browser, its application code is
cached on the device. The application can use local SQL databases to cache
data obtained from a server for offline use. When no Internet connection
is available, the mobile browser retrieves the application from its cache and
continues to operate. All application logic, written in JavaScript, resides on
the device rather than on the server as is the case in regular web applica-
tions. Communication with the server, similar to native applications, happens
by performing web service calls using AJAX (Asynchronous JavaScript and
XML). At the time of writing, HTML5 is well supported by the iPhone, iPad,
Android, WebOS and BlackBerry (6+) platforms.

While HTML5 makes it possible to develop offline-capable mobile web appli-
cations that are portable and easy to deploy, development of such applications
exposes a number of problems.

140

First of all, web development does not enforce a particular application ar-
chitecture; application concerns (such as data modeling, user interface and
application logic) can be mixed arbitrarily – an approach that does not scale
well. Therefore, a structured architecture is required to develop mobile web ap-
plications. A common architectural style in organizing user-facing software
is the Model-View-Controller (MVC) pattern [Gamma et al., 1995]. The MVC
pattern separates the Model (data, e.g. in a database) strictly from the View
(the user interface) by making the Controller responsible for communication
between the two. While the separation of View and Model is good, the MVC
pattern results in boiler plate code that needs to be written to glue the applica-
tion together.

Second, mobile web applications are built by mixing a number of loosely
coupled languages including HTML, CSS, JavaScript, SQL and a cache mani-
fest. While the use of domain-specific languages in web development support
a declarative programming model, they are not very well integrated. In Chap-
ter 2 we studied the current state of server-side web frameworks which, sim-
ilar to mobile web development, take advantage of multiple loosely-coupled
languages. The consequence of this design is the same both in mobile and
regular web development: lack of static analyses detecting inconsistencies re-
sults in late detection of failures. In addition, developers have come to expect
excellent IDE support for their languages, including in-line error highlight-
ing, reference resolving, outlines, code completion and refactoring support.
The dynamic nature and loose coupling of the web languages complicates the
construction of IDE support.

Third, web languages such as HTML and CSS do not support basic ab-
straction mechanisms, complicating the reuse of user interface elements. As a
result, HTML and CSS artifacts contain a lot of code duplication.

Fourth, JavaScript in the browser is a single-threaded environment, forc-
ing developers to use asynchronous APIs for performing expensive computa-
tions, including database queries and obtaining GPS coordinates. These asyn-
chronous APIs require the developer to write code in the unnatural continuation-
passing style, one example of accidental complexity in mobile web development.

In this chapter, we introduce mobl1, a high-level, declarative language for
programming mobile web applications, which addresses these problems. Mobl
is our second case study in the design and implementation of syntactically
integraded DSLs, DSLs that integrate sub-languages for multiple application
aspects, enabling static verification of the entire application. Previously, we
developed WebDSL, a DSL to develop data-driven web applications. While
covering a different domain, many ideas from WebDSL are reused in the de-
sign of mobl. Mobl integrates languages for user interface design, styling,
data modeling, query and application logic into a single, unified language.
The language is high-level since it avoids accidental complexity such as con-
tinuation passing style and supports the definition of reusable user interface
elements. The language is declarative since it ensures automatic updates of

1http://www.mobl-lang.org

Chapter 6. Mobl 141

the user interface through reactive programming and automatic persistence
of data in the client-side database.

Mobl implements the Model-View (MV) pattern, a variant of Model-View-
Controller where the role of Controller has been automated, data model-related
logic has been moved to the Model and user interface logic has been moved
to the View. The MV pattern reduces the amount of boilerplate code that needs
to be written compared to MVC.

The integration of the various concerns of mobile web programming into
a single language, enables consistency checking across concern boundaries,
ensuring early detection of many common errors by the mobl IDE (inte-
grated into Eclipse), which provides in-line error reporting, code completion
and reference resolving. The mobl compiler compiles mobl code into a pure
client-side web application, implemented using a combination of HTML, CSS,
JavaScript and application caching manifests. Mobl applications can be de-
ployed to any web server and are server-technology agnostic.

6.1.1 Contributions

The contributions of this chapter are as follows:

• An analysis of the mobile web application domain and how it it differs
from the regular web.

• The mobl language, a new language composing language features such
as transparent data persistence, declarative programming, reactive pro-
gramming and the continuation-passing style transformation into an in-
tegrated, verifiable language geared towards the mobile domain.

• A demonstration how mobl’s core abstractions can be used to build
high-level abstractions, such as tab sets and master-detail controls as
mobl libraries.

6.1.2 Outline

The rest of this chapter is organized as follows: Section 6.2 analyzes the mobile
domain and its problems. Section 6.3 describes the general architecture and
design principles of mobl. Subsequent sections discuss the various aspects
of mobile applications and how mobl supports them: data modeling (Sec-
tion 6.4), user interfaces (Section 6.5), navigation (Section 6.6), higher-order
controls (Section 6.7) and styling (Section 6.8). Section 6.9 discusses related
work and Section 6.10 concludes.

6.2 M O B I L E W E B A P P L I C AT I O N S

The design of a new language for mobile web application development re-
quires a thorough understanding of the mobile domain. This section dis-
cusses the architecture of traditional web applications and compares it to the

142

architecture of mobile web applications. Subsequently, we identify a number
of problems in the development of mobile web applications.

6.2.1 Technical Architecture

The traditional style of web applications, sometimes referred to as RESTful
web applications [Richardson and Ruby, 2007], are request-oriented. Objects
on the server have the life span of a single request, and are recreated as needed
on every request. Since making HTTP requests is relatively expensive, they
are used sparingly, when navigating to a new page, submitting a form or per-
forming an AJAX (Asynchronous Javascript and XML) call. The web appli-
cation server responds to requests from the client (browser). When a request
comes in, it is handled by a server written using, for instance, Java, .NET, PHP
or Ruby. The server communicates with a database to retrieve or manipulate
data, and eventually sends back HTML to the browser which renders it on the
user’s screen. A server handles multiple users and typically stores data for all
its users in a shared database. HTTP requests can also be sent by JavaScript
code on the web page, using AJAX calls. Based on the result of such a request,
the JavaScript may manipulate the HTML DOM (Document Object Model) to
make changes to the user interface without requiring an entire page reload. In
addition to performing AJAX calls, JavaScript is used for client-side validation
of user input in forms.

There are multiple approaches to developing mobile web applications. For
older, non-smart phones, processing power is the main bottleneck. Therefore,
several thin-client approaches exist [Lai et al., 2004, Kim et al., 2006] where all
processing happens on the server and phones are served with pre-rendered
pages. However, today’s modern smart phones have more powerful proces-
sors, thus client-side processing is no longer a bottleneck. Therefore, for these
devices applications can be developed in a range of styles. On one end of
the scale are web applications that are built similarly to regular web applica-
tions, except reducing the amount of data presented on a single page, to fit
the screen size of the mobile device. It is relatively easy to adjust a regular
web application to produce pages that are more friendly to the smaller screen
size of a mobile device. A drawback of this approach is that such applications
are not available without an Internet connection. In addition, Internet speeds
on mobile devices are on average a lot slower than on PCs, resulting in a bad
user experience.

At the other end of the spectrum are offline-capable mobile web applications
that, once accessed by the mobile browser, are cached locally. They may fetch
data from the server and cache it in a local database on the device as well.
The development model of this type of application is very similar to desktop
applications and native mobile applications and merely use web technologies
as an implementation means. All the application logic, written in JavaScript,
executes at the client, in the device’s browser. This enables much more re-
sponsive user interfaces, because a “click” no longer requires a HTTP request
be sent to the server. Events can therefore be processed much more granu-

Chapter 6. Mobl 143

Figure 6.1 Mobile web application technical architecture

larly than in RESTful-style web applications, and can respond immediately to
gestures and key presses. Like desktop applications, mobile web applications
are single-user applications that do not require user authentication and access
control. This type of application can be used without an Internet connection,
after the application and its data is loaded and cached locally. Internet latency
on mobile networks is also less problematic because fewer requests have to be
sent to the server.

Figure 6.1 shows the technical architecture of offline-capable mobile web
application. The user interface is defined using HTML (HyperText Markup
Language) and styled using CSS (Cascading StyleSheets). The runtime repre-
sentation of the user interface is the Document Object Model (DOM), which
can be manipulated at runtime using JavaScript. JavaScript acts as a glue lan-
guage, manipulating the DOM, calling web services and executing database
queries. The application’s data is stored in a SQLite database running locally
on the device. The database is accessed through an asynchronous JavaScript
API that supports the execution of SQL queries. All application resources
(such as HTML, CSS, JavaScript and images) are cached locally on the de-
vice using the HTML5 Application Cache. When an Internet connection is
available, the application can request data from, and push data to the server.

6.2.2 Architectural Patterns

There is no particular application architecture enforced in web development.
HTML, JavaScript and CSS can be mixed arbitrarily. While lowering the bar-
rier to entry, this unstructured web application development does not scale
well for larger applications. Therefore, a number of architectural patterns have
been developed for user facing applications. The most commonly used is the
Model-View-Controller (MVC) [Gamma et al., 1995] pattern, but alternatives
include Model-View-Presenter [Potel, 1996] and Model-View-ViewModel [Smith,
2009].

144

The Model-View-Controller pattern creates a strict separation between three
layers of the application:

1. The Model represents the data to be manipulated by the application,
e.g. persistent data objects.

2. The View defines a user interface, presenting (elements of) the Model.

3. The Controller responds to user events and adapts the View and Model
accordingly.

While developing WebDSL [Visser, 2007b], we studied MVC web frame-
works that are commonly used in web development. We observed that the
Controller is required to perform a mostly infrastructural role. It is respon-
sible for reading user input, applying requested changed to the Model, and
manipulating the View. It impedes the rapid development of applications:
minor changes, such as a new property in the Model that has to be editable
from the View, requires not only the adaptation of the Model and View, but
the Controller as well. Consequently, the use of the Model-View-Controller,
as well as similar patterns, result in a lot of boiler plate code that needs to be
written.

6.2.3 No Integration

In Chapter 2 work we surveyed the state of practice in web development. We
observed that web frameworks typically rely on a number of loosely-coupled
languages, e.g. Java, XML configuration files, SQL, HTML, CSS and Javascript.
Due to their loose coupling, these framework typically lack tools that can
statically verify applications to detect inconsistencies between components of
the applications defined using different languages, such as HTML pages that
link to non-existing Java controllers, or HTML elements that reference non-
existing CSS styles. As a result, errors materialize as runtime faults with
obscure error messages that are hard to trace back to their origin.

Mobile web development suffers from the same problem. It too relies on
the use of multiple languages, such as HTML for creating user interfaces, CSS
for styling, JavaScript for application logic, SQL for database querying and
caching manifests for application caching. In addition, since all web languages
are dynamically typed, accurate implementation of typical IDE features such
as code completion and reference resolving has become challenging. Conse-
quently, tool support for mobile web development is sub-optimal.

6.2.4 No Abstraction

HTML was architected to define the structure of an entire web page. It does
not support the definition of reusable HTML templates, or means to invoke
a template. Similarly, CSS’s support for abstraction is also limited. Using
CSS classes, styles can reused by attaching them to multiple HTML tags, but
no parameterization of these styles is supported to vary colors slightly, for

Chapter 6. Mobl 145

instance. SQL does not support abstraction either. A SQL query can only
be expressed as a whole, not in reusable parts. Although it is possible to
iteratively construct a query by concatenating strings, this is very error prone.

6.2.5 Accidental Complexity

JavaScript in the browser runs on a single thread that is shared with the page
renderer. Therefore, JavaScript calls that take a long time to complete can
freeze the browser. As Javascript does not allow developers to create threads,
many JavaScript APIs are defined as asynchronous APIs. Asynchronous com-
putations are computed on a separate thread (managed by the browser), and
call back to the Javascript thread when the computation completes. While
synchronous calls return the result of their computation as a return value,
asynchronous methods are passed a callback function (or continuation), which
is called with the result when the computation has finished. This style of
programming is called continuation passing style.

Asynchronous APIs have favorable performance characteristics, because
they do not block the user-interface thread. Nevertheless continuation-passing
style leads to verbose, difficult to read and maintain code. Effectively, de-
velopers have to adapt their programming style as a result of a low-level
performance-related issue.

6.3 M O B L A R C H I T E C T U R E

We have developed mobl. Mobl is a new statically typed, domain-specific lan-
guage designed specifically for the rapid development of data-driven mobile
web applications.

Mobl linguistically integrates all aspects of mobile application development
into a single, statically verifiable language. It enables separation of concerns by
supporting the separation of user interface and data model. It applies domain
abstraction to abstract from accidental complexity and irrelevant details of the
platform/domain. It supports user-defined abstractions by enabling users to
define reusable screens, controls and styles.

This section discusses the high-level aspects of the language and applica-
tion architecture. Subsequent sections give detailed descriptions of the sub-
languages that mobl comprises.

6.3.1 Integration and Tooling

HTML, JavaScript and CSS contain numerous cross-references. For instance,
CSS selectors rely on the structure of the HTML page and JavaScript is used
to manipulate the HTML DOM at run-time, e.g. by attaching or removing
CSS classes. Verifying that these cross references are correct, e.g. that a CSS
selector matches the right HTML tag and JavaScript attempts to manipulate
an existing DOM node, is typically done by running the program, resulting in
late failure. In addition, loose coupling of web languages makes implementing

146

Figure 6.2 Mobl application compilation and deployment

accurate IDE support difficult. Therefore, web development IDEs are not at
the level of languages such as Java and C#.

By contrast, mobl integrates the aspects of mobile applications into a sin-
gle, integrated language, rather than using several loosely-coupled languages.
Mobl consists of a number of integrated sub-languages for the definition of
data models, queries, user interfaces, styles and application logic. Language
elements are shared across the sub-languages. For instance, the expression
language used in application logic is reused in user interfaces, resulting in a
consistent language. This linguistic integration, previously also applied in the
implementation of WebDSL (Chapter 2), enables accurate end-to-end static
verification of applications, e.g. verifying that controls are invoked correctly,
invoked screens exist, the properties of data objects presented in the user in-
terface exist and are of the correct type, and queries filter based on existing
properties.

The mobl compiler compiles a mobl module to a combination of HTML,
JavaScript and CSS. As Figure 6.2 shows, the resulting compiled files can be
deployed to a web server along with any web services that the application
may use. A mobile device requests the HTML file, automatically fetching
the CSS and JavaScript resources. All application resources are cached in the
browser’s HTML5 application cache, allowing the application to be launched
even when no Internet connection is available. The application runs on the
device and has access to a local database, as well as other APIs including
Geo Location. The application may call a web service on the server pulling
or pushing data, presenting that data and optionally caching it locally in the
database.

The mobl IDE is implemented as an Eclipse plug-in using Spoofax [Kats
and Visser, 2010b]. As Figure 6.4 illustrates, it offers an outline view, in-line
highlighting of verification errors, reference resolving and code completion.
The mobl compiler is integrated into the IDE, and triggered on every save of
a mobl module. There is also a stand-alone compiler available.

Chapter 6. Mobl 147

Figure 6.3 Model-View pattern

Figure 6.4 The mobl Eclipse IDE

6.3.2 Model-View Pattern

While the Model-View-Controller pattern is a good organizational tool, it also
requires a considerable amount of boiler plate code to set up and to achieve
simple tasks. This boiler plate is largely caused by the Controller. In a typical
application, the Controller has the following responsibilities:

• Read data from the Model and send it to the View;

• Manipulate the Model based on forms defined in the View (user input);

• Persist changes in the Model to database;

• Activate and deactivate (parts of) Views;

• Communicate with external data sources, e.g. web services.

While the core of the application is encoded in the Model and the View, a
lots of plumbing code is required in the Controller, while most of the Con-
troller’s tasks are very common and infrastructural in nature. Therefore, mobl

148

implements the Model-View (Figure 6.3) architecture. The MV architecture
is an adaptation of the MVC pattern, automating the tasks of the Controller
rather than letting the developer encode them manually.

In the MVC architecture the Controller is responsible for instantiating Views
and populating them with data. In contrast, in the MV architecture Views are
the initiators. Views can be parameterized with one or more Model objects to
present, or they can send a request to the Model themselves to retrieve data.
Views are also responsible for handling user input events, such as button
clicks and responding to them, e.g. navigating to another View or calling a
method on the Model. The Model is automatically persisted to a database, no
explicit save operations are required. In addition, the Model communicates
with web services to synchronize and cache data. Data binding establishes
a direct connection between the Model and View, eliminating the need to
manually copying data from the Model to the View and vice versa.

6.4 D ATA M O D E L

The implementation of an application’s data model, as well as the manipula-
tion of data at run-time, is cumbersome in mobile web development because
of the lack of domain abstraction. This section details the underlying issues
and shows how mobl raises the level of abstraction by using declarative data
models, its imperative language and integrated query language. It concludes
with an example detailing the implementation of a data model for a simple
task manager application.

HTML5 data persistence Part of HTML5 is the Web SQL API2, enabling the
creation of local (SQLite) databases in a mobile device’s browser. The amount
of space available to a database varies from the device to device, but is typi-
cally around 5 megabytes. Therefore, the local database is perfectly suited to
store small amounts of data and cache data from remote resources.

Since the HTML5 database APIs are new, libraries and frameworks built
around them are still limited. Therefore, communicating with an HTML5

database is still done at the level of low-level SQL statements, which is not only
inconvenient for developers, but also more prone to security problems such as
SQL injection attacks. In addition, encoding queries in strings is error prone
because developers do not get the support from the IDE that they do get for
the rest of the language, including syntax checking, semantic checking and
code completion.

SQL queries do not compose well. It is difficult to pass a partial query to
a different part of the application where it can be extended, e.g by adding an
additional filter condition. Therefore, reuse of queries is limited to what can
easily be achieved using string concatenation.

Search Most mobile web applications require simple full-text search func-
tionality, allowing users to quickly search through local data. HTML5 does
not offer direct support for this. Therefore, custom solutions need to be built.

2http://www.w3.org/TR/webdatabase/

Chapter 6. Mobl 149

http://www.w3.org/TR/webdatabase/

Logic Database and web service related Javascript APIs are exposed as asyn-
chronous APIs. This requires the developer to write code in a continuation-
passing style. For instance, consider the following code written using (hypo-
thetical) synchronous JavaScript APIs:
var tasksJSON = httpRequest("/export");
tx.executeQuery("INSERT INTO Task ...");
alert("Done!");

Javascript’s asynchronous APIs, rather than returning the result as the result
of a function, are passed a callback function and return immediately. The ac-
tual execution occurs on a separate thread, managed by the browser. When
the computation finishes, the callback function is invoked with the result.
Therefore, the above code using asynchronous APIs has to be rewritten as
follows:
function completed() {
alert("Done!");

}
function receiveTasks(tasksJSON) {

tx.executeQuery("INSERT INTO Task ...",
completed);

}
var tasksJSON = httpRequest("/export",

receiveTasks);

As can be observed, the code in continuation-passing style is written in an
inverted order. While this asynchronous code leads to more responsive ap-
plications in the browser, it impedes developer productivity. It is a typical
example of accidental complexity.

6.4.1 Data

Mobl contains domain abstractions for declaratively defining persistent data
structures (entity definitions), abstracting from the underlying SQL database
that implements them. Persistence of data is handled by the mobl runtime
transparently.

The syntax of data models is detailed in Figure 6.5. Data model declarations
consist of zero or more entity definitions. Every entity has a name, zero or
more properties and associated functions expressing application logic related
to the entity. Each property has a name, type and optionally one or more
annotations. Its type can be of a scalar type (e.g. String, Num, DateTime or
Bool) as well as Collections of other entities.

A Collection represents a (virtual) collection of entity instances that can
be filtered, sorted, paged and manipulated. Collections are used to rep-
resent one-to-many and many-to-many relationships in models, but also to
query persistent data. In addition, the Collection abstraction is used for
full-text search. The (searchable) annotations on textual properties indicate
that the property should be included when performing full-text searches on
instances of this entity. These searches are performed through a EntityName.

150

Def ::= "entity" ID "{" EBD* "}"

EBD ::= ID ":" Type ("(" {Anno ","}* ")")?
| "static"? "function" ID

"(" {FArg ","}* ")" ":" Type
"{" Stat* "}"

Type ::= ID
| "Collection" "<" Type ">"
| "[" Type "]"
| "(" {Type ","}* ")"

Anno ::= "inverse:" ID
| "searchable"

FArg ::= ID ":" Type
| ID ":" Type "=" Exp

Figure 6.5 Data model syntax

search(phrase) call, which returns a Collection object representing the
search results. As with any Collection, the results can subsequently be fil-
tered and paged.

An (inverse: property) annotation on a property defines property as
the inverse property of this one. Properties declared as each other’s inverse
keep each other in sync and are used to declare one-to-one, one-to-many and
many-to-many relationships.

Outside data models, mobl also supports variables of other collection types,
including arrays and tuples. Arrays are declared using the [Type] notation
and tuple types using (T1, T2, T3) syntax.

Implementation We have developed a JavaScript object-relational mapper
(ORM) [Barry and Stanienda, 1998] library called persistence.js3 to handle
data persistence mobl. The library implements transparent data persistence,
querying and search. Data models defined in mobl are translated to calls to
persistence.js by the mobl compiler. A full-text search index (implementing
a simple stemming algorithm [Lovins, 1968]) is automatically maintained by
the ORM library.

6.4.2 Logic

Mobl’s imperative object-oriented sub-language enables programming in the
natural, synchronous style, abstracting from the accidental complexity of the
asynchronous programming style enforced by HTML5 JavaScript APIs.

Imperative code is written using a JavaScript-like [ECMA, 2009] syntax. The
language supports variable declarations, assignments, if-statements, for-each
and while loops, function and method calls, and various arithmetic expres-

3http://persistencejs.org

Chapter 6. Mobl 151

http://persistencejs.org

Stat ::= "var" ID "=" Exp ";"
| LVal "=" Exp ";"
| Exp ";"
| "if" "(" Exp ")" Stat ("else" Stat)?
| "foreach" "(" LVal "in" Exp ")"

"{" Stat* "}"
| "while" "(" Exp ")" "{" Stat* "}"

"{" Stat* "}"
| "return" Exp? ";"
| "screen" "return" Exp? ";"

LVal ::= ID
| Exp "." ID
| "(" LVal "," {LVal ","}* ")"

NamedExp ::= Exp
| ID "=" Exp

Exp ::= STRING | NUMBER | ID | "true"
| "false" | "null" | "this" | "!" Exp
| "(" Exp ")" | "[" {Exp ","}* "]"
| "(" Exp "," {Exp ","}* ")"
| ID "(" {NamedExp ","}* ")"
| Exp "." ID "(" {NamedExp ","}* ")"
| Exp "." ID | Exp Op Exp
| Exp "?" Exp ":" Exp | "{" Stat* "}"

Op ::= "||" | "&&" | "==" | "!=" | "<"
| "<=" | ">" | ">=" | "*" | "/"
| "%" | "+" | "-" | "++" | "--"

Figure 6.6 Imperative language syntax

Exp ::= Exp Filter+

Filter ::= "where" SetExp
| "order" "by" OrderExp
| "limit" Exp
| "offset" Exp

OrderExp ::= ID | ID "asc" | ID "desc"

SetExp ::= ID "==" Exp | ID "!=" Exp
| ID "<" Exp | ID "<=" Exp
| ID ">" Exp | ID ">=" Exp
| ID "in" Exp | ID "not" "in" Exp
| SetExp "&&" SetExp

Figure 6.7 Query syntax

152

sions. Its full syntax is defined in Figure 6.6. Mobl comes with an extensive
set of libraries4 containing reusable user interface elements, as well as APIs to
call web services, perform web searches and get contextual information such
as GPS location and device orientation.

At compile-time, the mobl compiler analyzes mobl imperative code to de-
termine whether it relies on asynchronous methods and functions. If so, it au-
tomatically performs the continuation-passing style transform [Plotkin, 1975],
turning code written in a synchronous style to the asynchronous style with
callback functions as illustrated in the beginning of this section.

6.4.3 Query

Mobl’s query language is linguistically integrated into the expression language
part of the imperative language defined in the previous sub-section. The
query abstraction is built on the Collection abstraction. Collections can be
instantiated by the user, but for each entity there is also an Entity.all()

collection defined, and for each one-to-many and many-to-many property
there is a collection object as well. The Collection type has methods for
filtering, sorting, paginating, aggregating and manipulating the collection.
For instance:
Task.all().filter("done", "=", true)

.order("due", false)

.limit(10)

This expression represents the top ten results of tasks that are not done, sorted
by due date in descending order. The disadvantage of encoding queries as
method calls is the lack of static checking of property names as well as its
verbose syntax. Therefore, mobl defines a thin syntactic layer, similar to
LINQ [Meijer et al., 2006] on these methods as defined in Figure 6.7. This
(optional) syntactic layer has the added advantage of enabling code comple-
tion support in the IDE. The same expression using the query syntax look as
follows:
Task.all() where done == true

order due desc
limit 10

Full-text search queries are formulated using an entity’s search(phrase)

method, returning a Collection representing search results, ordered by rele-
vance. Like any other Collection, results can be filtered and paginated.

These (virtual) query collections can be reused and extended by storing them
in variables and passing them to functions. The result of a query is only
calculated when required (e.g. when iterating over the result). Therefore,
it is possible to define a method on an entity that returns a filtered collec-
tion (using where clauses), which is subsequently called and paginated in the
user interface by adding limit and offset clauses to the method’s resulting
Collection object.

4http://docs.mobl-lang.org

Chapter 6. Mobl 153

http://docs.mobl-lang.org

Figure 6.8 Todo list data model

6.4.4 A Task Manager Data Model

To demonstrate the data modeling language, as well as model-related logic,
we describe the data model of a simple task manager (Figure 6.8). The mobl
implementation of this data model is listed in Figure 6.9. The data model
defines three entities: Task, Category and Tag. A task has a name, a done
property to keep track of whether the task has been completed or not, a due
date, a category it belongs to and a collection of tasks. Implicitly there is a
one-to-many relationship between Task and Category: a task belongs (points
to) a category, and a category has many tasks. The inverse annotations define
the inverse relationship so that a task is automatically added to a category’s
collection of tasks when the category property is set and vice versa.

The function postpone, defined on Task, postpones the task a number of
days, i.e. it moves the due date back. The static function (a function that is
called on the entity itself, not an instance) import takes two arguments: a
username and a password, and invokes a web service (located on the URI
/export) to import all tasks defined on the server for the given user and
cache them locally in the device’s database. Web service results, by default,
are returned as JSON5 objects, a lightweight notation to represent structured
data. The service returns an array of JSON objects, each representing a task.
The Task.fromSelectJSON method is used to convert a JSON object into a
Task object and cache it locally.

6.5 R E A C T I V E U S E R I N T E R FA C E S

In the current state of practice, web-based user interfaces are implemented
at a low-level of abstraction. A lot of UI-related code is the result of acci-
dental complexity. This section identifies the underlying problems and shows
how mobl solves them by introducing domain abstractions such as data binding
and reactive programming and by supporting user-defined abstractions such as
controls.

Coupling View and Model The interaction between (persistent) application
data and the user interface requires a lot of Controller boilerplate code. Data
values have to be copied into the user interface when it is first loaded and
stored back into data objects when certain events occur (e.g. when a “Save”

5http://json.org

154

http://json.org

entity Task {
name : String (searchable)
done : Bool
due : DateTime
category : Category (inverse: tasks)
tags : Collection<Tag>

(inverse: tasks)

function postpone(days : Num) {
this.due = DateTime.create(
this.due.getFullYear(),
this.due.getMonth(),
this.due.getDate() + days);

}
static function import(user : String,

pw : String) {
var tasksJSON =
httpRequest("/export?user="

+ user + "&pw=" + pw);
foreach(t in tasksJSON) {
add(Task.fromSelectJSON(t);

}
}

}
entity Category {
name : String
tasks : Collection<Task>

(inverse: category)
}
entity Tag {
name : String
tasks : Collection<Task> (inverse: tags)

}

Figure 6.9 Mobl implementation of data model

button is pushed). Similarly, changes to data often give rise to changes in
the user interface. For instance, when the user of a task manager application
creates a new task in the database, the screen that displays all tasks has to
be updated. Current frameworks require developers to encode this behavior
manually.

Adapting the user interface is done by traversing the DOM and manipulating
it in-place. These manipulations are imperative, e.g. “replace this node with
this new node” and “remove this node”.

Abstraction A HTML page defines the content and structure of a page. CSS
styles are used to apply styling to a HTML page (e.g. defining fonts, col-
ors, borders and positioning), based on the knowledge it has about the page
structure (using CSS selectors). A feature that both HTML and CSS do not

Chapter 6. Mobl 155

Def ::= Anno* "control" ID "(" {FArg ","}*
")" "{" SE* "}"

| Anno* "screen" ID "(" {FArg ","}*
")" ":" Type "{" SE* "}"

SE ::= "<" HTMLID HtmlArg* ">"
SE*

"</" HTMLID ">"
| Exp "(" {NamedExp ","}* ")"

"{" SE* "}"
| "var" ID "=" Exp
| "list" "(" ID "in" Exp ")"

"{" SE* "}"
| "when" "(" Exp ")" "{" SE* "}"

HtmlArg ::= ID "=" Exp
| "body" "=" Exp

NamedExp ::= Exp
| ID "=" Exp

Anno ::= "@when" Exp

Figure 6.10 User interface syntax

support are user-defined abstractions. Reuse of page and style fragments, e.g.
to reuse a calendar widget or a grid view control, is not supported by these
languages. It also lacks support to define such reusable components. Conse-
quently, JavaScript frameworks, such as jQTouch6 and jQuery Mobile7 attempt
to fix this reuse issue by inventing an encoding. For instance, a framework like
jQuery mobile may reinterpret a HTML tag <div class="calendar"/> as
a calendar control, dynamically adapting the DOM to implement it. Never-
theless, such mechanisms only allow use of controls built into the framework,
while definition of new controls has to be done using imperative JavaScript.
Other frameworks, such as GWT8 and Sencha Touch9 abstract from HTML
altogether with a Java (GWT) or JavaScript (Sencha) API to imperatively con-
struct user interfaces.

Neither of these approaches is perfect. Annotating HTML is declarative,
but uses an arcane encoding and attaching new meaning to HTML elements;
using JavaScript to build the UI is imperative and low-level.

156

6.5.1 Declarative User Interfaces

Mobl supports user-defined abstractions for user interfaces through two core
syntactic constructs: screens and controls. Screens take up the entire size
of the physical screen (hence the name) and are composed of controls, state
variables, conditionals and loops. Both screens and controls have a name, a set
of formal arguments and a body. Screens, in addition, have an optional return
type. The full syntax of user interfaces in mobl is detailed in Figure 6.10.

The body of screens and controls consist of local variable declarations,
HTML tags, control calls, conditionals (when, for conditionally rendering parts
of the user interface) and loops (list, for rendering UI fragments for every
item in a collection).

Local variables are used to store state relevant to the user interface. At the
lowest level, mobl embeds HTML tags to construct a DOM. As can be seen
from the syntax, HTML attributes in mobl cannot only contain strings, but
arbitrary mobl expressions (numbers, variables, calculations, function calls).

Controls are domain abstractions, abstracting from low-level HTML. Controls
are called by name with zero or more (optionally named) arguments and,
optionally, a control body (in-between { and }). Screen and control arguments
are passed by reference, enabling controls to write values back to the variables
and properties passed to them, which is an essential element to enable user-
defined abstractions, as will be demonstrated in the next sub-section.

6.5.2 Data Binding and Reactive Programming

Mobl user interfaces declare a View of the Model. Data binding establish a
direct connection between View and Model. The View is automatically up-
dated when the Model is changed, and the Model is updated when Model
properties are changed in the View.

The following fragment of user interface code demonstrates how this data
binding works using HTML tags:

var name = "John"
<input type="text" value=name/>

A local variable name is used to keep track of the user’s name. The <input>
HTML tag implements an input field and binds its value to the variable name.
Consequently, as the user types in the text field (on every key stroke), the
changed text box value is propagated back to the name variable.

The tag implements a label in the user interface, whose body (the
text that appears inside the label) is bound to the expression "Hello, " + name.
Consequently, when the user types in the input field, the name is adapted,

6http://jqtouch.com
7http://www.jquerymobile.com
8http://code.google.com/webtoolkit/
9http://www.sencha.com/products/touch/

Chapter 6. Mobl 157

http://jqtouch.com
http://www.jquerymobile.com
http://code.google.com/webtoolkit/
http://www.sencha.com/products/touch/

which, in turn, propagates to the whose body is updated to reflect
the new value of name.

Beside local variables and inline HTML, user interfaces use conditionals
and loops which expose similar reactive bahavior. The when construct condi-
tionally shows a part of the user interface as long as a certain condition holds,
i.e. when the condition’s value changes the when construct adapts the user
interface accordingly.

As an example, in the following example the validation error remains hid-
den while the length of name exceeds 3 characters in length and appears as
soon as the name is shorter than 3 characters:

var name = "John"
<input type="text" value=name/>
when(name.length < 3) {
<span body="Name should be at least three

characters"/>
}

The list construct iterates over a collection and renders its body for every
item in the collection. Similar to when, list automatically adapts to changes
in application state; it reacts to changes in the collection it iterates over, i.e. if
items are added or removed from the collection, it adapts the user interface
accordingly.

In summary, rather than imperatively manipulating the DOM to make
changes to the user interface, mobl’s user interfaces are reactive [Harel and
Pnueli, 1985] – their structure and content depend on application state and
adapts to changes automatically. As a result boiler plate code to implement
this behavior manually is eliminated.

6.5.3 Implementation

Mobl’s data binding establishes a direct connection between the value or an
attribute of an HTML node in the DOM (representing an HTML tag) and a
variable, property or expression in the Model. For variables and properties,
a two-way binding is established: when the DOM is modified (for instance,
when a user edits a text input field), this new value is propagated back into
the variable or property. When the value of a variable or property changes
this change is propagated back to the DOM. When a DOM node is bound to
a more complex mobl expression, a one-way connection is established: when-
ever the value of the expression changes, it is propagated to the DOM.

Changes are propagated by using the Observer Pattern [Gamma et al.,
1995]. Any piece of data in a mobl application is observable (including lo-
cal variables, control arguments and entity properties) and UI constructs sub-
scribe to change events of the observable values that they rely on. For instance,
a label that shows a user’s full name by concatenating its firstName with its
lastName property, will subscribe to both of these properties and rerender
itself whenever any of these two properties trigger a ’change’ event.

158

Similarly, a list loop that iterates over a search collection, as is the case in
Figure 6.13, subscribes to changes in the search collection. The search collec-
tion, in turn, keeps track of all Task objects and their name properties (which
has been marked as searchable) and on every change, reevaluate if they
match the search phrase or not.

6.5.4 Reusable Controls

Rather than requiring the duplication of the same HTML code in multiple
places, controls can be used to implement user-defined abstractions for user in-
terfaces. Control arguments are passed by reference, enabling constructing
controls that abstract from low-level HTML while maintaining data binding
semantics. Figure 6.11 demonstrates the implementation of the textField

and label controls. Using these definitions the previous code, using HTML
tags, can be reduced to the following, more clean and concise code, maintain-
ing the same behavior. Section 6.7 gives more complex examples of control
implementations.

var name = "John"
textField(name)
label("Hello, " + name)

Control arguments, as well as function and screen arguments, are passed in
order, or can be explicitly named. For instance, label("Hello") is equivalent
to label(s="Hello"). This proves particularly useful for optional arguments.

By annotating controls with a @when <exp> annotation it is possible to
implement multiple version of a control, deciding at run-time which imple-
mention to use, based on a run-time condition. An application of this will be
demonstrated in Section 6.7.2.

6.6 N AV I G AT I O N

Section 6.5 only considered the definition of single-screen interfaces. However,
a typical application requires multiple screens and navigation between them.

The ‘regular’ web is navigated by clicking hyperlinks, sending the user from
one web page to another. Browsing patterns can be random, and websites are
not always organized in a strictly hierarchical manner. We observe that in
mobile applications, navigation patterns are more stringent. Data-driven mo-

control textField(s : String) {
<input type="text" value=s/>

}
control label(s : String) {

}

Figure 6.11 Text field and label control implementation

Chapter 6. Mobl 159

screen prompt(question : String) : String {
var answer = ""
header(question) {

button("Done", onclick={
screen return answer;

})
}
textField(answer)

}

screen root() {
button("Ask", onclick={

alert("Hello " + prompt("First name")
+ " " + prompt("Last name"));

})
}

Figure 6.12 A screen with return type

bile applications typically organize information as trees. Some applications
present the top-level of the tree as tabs, enabling the user to quickly switch
between them. Deeper levels of information are presented in list views. When
the user selects a list item, the current screen slides to the left, and a new
one slides in from the right. Navigation between screens usually happens by
navigating deeper into the hierarchy or moving back to a higher level (using
the back button).

On iPhones and iPads, navigation is implemented using a stack of screens
where only the top of the stack is visible. When an item is selected, a new
screen, representing the item is pushed onto the stack and when the user
pushes the back button, the screen at the top is popped off the stack and the
previous screen appears. This screen stack has to be managed manually by the
developer, by pushing and popping screens.

6.6.1 Multiple screens

This stack-based navigation very closely matches the call stack of function
invocations in programming languages, a concept familiar to any program-
mer. Therefore, in mobl, screens are called as if they were functions and can
optionally return a value using screen return.

As an example, Figure 6.12 defines a prompt screen, which takes a question
as argument and returns the answer as result. The textField is bound to
a local answer variable, which is returned by the screen when the “Done”
button is clicked. The root screen contains a button, which, when clicked, in-
vokes the prompt screen twice: first asking for the first name, then for the last
name, then showing an alert pop-up box producing a greeting concatenating
the results from the two prompt screen calls.

160

screen root() {
var phrase = ""
header("Tasks") {

button("Add", onclick={ addTask(); })
}
searchBox(phrase)
group {

list(t in Task.search(phrase) limit 20){
item {

checkBox(t.done, label=t.name)
}

}
}

}
screen addTask() {
var t = Task()
header("Add") {

button("Done", onclick={
add(t);
screen return;

})
}
textField(t.name)
datePicker(t.due)

}

Figure 6.13 Tasks root screen with search

6.6.2 A Task Manager User Interface

Section 6.4.4 demonstrated how to define a data model for a task management
application. Figure 6.13 shows how to build a simple user interface for this
data model. When a mobl application launches, the root screen is loaded.
Figure 6.13 defines the main screen of the task manager application. The
screen shows a header, a search box and a group of at most 20 tasks that

Chapter 6. Mobl 161

match the search phrase. Each task has a check box that can be used to mark
the task as done.

The user interface is realized using a local user interface variable phrase

to keep track of the search phrase. The search box is bound to this variable.
The body of the group control contains a list construct that iterates over the
search collection representing all tasks that match phrase with a maximum
of 20 results. The body of the list construct instantiates an item control for
every task, containing a checkBox which is bound to the done property of the
task, as well as using the name property of the task for the checkbox label.

As the user types a search phrase in the search box, the changed search
phrase is written back to the phrase variable. The list construct iterates over
a collection that relies on the phrase variable. Therefore, it is recalculated as
well. As a result, the list of tasks updates as the user is typing in the search
phrase. Whenever new tasks are added to the database that match the search
phrase, the task list will automatically be updated as well.

When the “Add” button is pushed, the addTask screen activates. The
addTask screen uses a local variable t to keep a new task object whose name

property is bound to a textField control and whose due property is bound
to a datePicker control. The button control takes two arguments: a label to
put on the button, as well as a named argument onclick of type Callback.
Callbacks are snippets of imperative code, written using the same language
as described in Section 6.4.2, to be executed when a certain event occurs (in
this case an on click event). These snippets can be defined in-line in between
{ and }. When the user is done editting the name, he pushes the “Done”
button, which adds the t object to the database and returns the user to the
previous screen using a screen return.

6.7 H I G H E R - O R D E R C O N T R O L S

Mobl comes with a extensive library of reusable controls. These controls have
been implemented in mobl itself, concisely defined using its abstraction, data
binding and reactive programming features. Section 6.5 demonstrated how
simple controls such as textField and label can be implemented top of
HTML with data binding. This section will describe how higher-level con-
trols are implemented. Specifically, the tabSet and masterDetail controls
are described. The tabSet control is a higher-order control, taking other con-
trols as arguments. The masterDetail takes control arguments as well, but
in addition has two separate implementations: the ‘right’ implementation is
chosen at run-time based on the screen width.

To support higher-order controls, mobl has a set of types to represent con-
trols as values: Control, represents a control without arguments. Similarly,
Control1<Num> represents a control with one argument, of type Num. Con-
trol arguments are passed as arguments are instantiated as any other control.

162

6.7.1 Tab Set

Figure 6.14 demonstrates how the tabSet control is used. It defines two con-
trols: one for each tab. The root screen invokes the tabSet control with a list
of tuples where each tuple represents a single tab. The first element of the
tuple is the tab title (of type String), the second a reference to the control to
use for the body of the tab (of type Control, a control without arguments).
The defaultTab argument specifies the title of the tab to activate first. The
screenshots in Figure 6.14 show the result: a tab bar along the top and when
a tab is selected, the tab view changes to the selected tab’s body.

Implementation Figure 6.15 details the entire implementation of the tabSet

control. It takes two arguments: an array of tuples and the currently active
tab. The tab set implementation relies on a few styles (styling in mobl will be
discussed in Section 6.8) that are used with block controls. The block control
is a simple stylable container control. An activeTabButton block appears as
a selected tab, with rounded borders at the top. An inactiveTabButton block
is similar, but looks like an inactive tab. The visibleTab and invisibleTab

block respectively are visible and invisible. Thus, when a tab is not selected,
its control is still rendered, it is just hidden using styling.

The activeTab argument keeps track of the currently selected tab. When a
tab is selected, the activeTab variable is changed. Consequently, due to the
reactive semantics, the styles on the tabs are toggled (tab content gets visible
style, tab button gets selected style) and the new tab appears.

The list((tabName, tabControl) in tabs) { ... } notation uses tu-
ple syntax on the left-hand side. It binds the first value of each tuple in tabs

to tabName and the second to tabControl.

6.7.2 Master-detail

A common pattern in mobile user interfaces is the master-detail user interface
pattern. There are two common implementations of this pattern, based on
the available screen estate: On mobile devices with narrow screens, such as
phones, initially a list of items appears and after selecting one, its details
appear on a separate screen containing a back button to navigate back to the
list. On devices with wider displays, such as tablet devices, the list of items
appears along the left side of the screen and details of the selected items
appear along the right.

Figure 6.16 shows how the masterDetail is used and how it looks on
a narrow-screen device (first two screenshots) and on a wide screen (third
screenshot). Two controls are defined: taskItem is used in the list view and
taskDetail in the detail view. The root screen calls the master detail control
with a collection representing all tasks ordered by due date in descending
order, the taskItem and taskDetail controls.

Implementation Figure 6.17 shows the default implementation of the master

Detail control (used for devices with a narrow screen). It takes three argu-
ments: a collection of any type (? is syntactic sugar for the Dynamic type,

Chapter 6. Mobl 163

control tab1() {
header("Tab 1")
label("This is tab 1")

}
control tab2() {

header("Tab 2")
label("This is tab 2")

}
screen root() {
tabSet([("One", tab1), ("Two", tab2)],

defaultTab="One")
}

Figure 6.14 Using tabSet

control tabSet(tabs : [(String,Control)],
activeTab : String) {

list((tabName, tabControl) in tabs) {
block(onclick={ activeTab = tabName; },

style=activeTab==tabName ?
activeTabButton
: inactiveTabButton) {

label(tabName)
}

}
list((tabName, tabControl) in tabs) {

block(activeTab==tabName ?
visibleTab : invisibleTab) {

tabControl()
}

}
}

Figure 6.15 tabSet implementation

164

control taskItem(t : Task) {
checkBox(t.done, label=t.name)

}
control taskDetail(t : Task) {

textField(t.name)
datePicker(t.due)

}
screen root() {
header("Tasks")
masterDetail(Task.all() order by due desc,

taskItem, taskDetail)
}

Figure 6.16 Using the masterDetail control

representing dynamically typed values), a masterItem control that is used
for the list view and a detail control that is used to show the details of the
item. Both the masterItem and detail are controls that take an item from
the items collection as argument.

The control iterates over each item and renders an item control for it, using
the masterItem control to render the content of the item. When the item is
clicked, the detailScreen is called with both the item and the detail control
as arguments. The implementation of the detailScreen renders a header
control with a backButton, that, when click returns the user to the previous
screen. It calls the detail control, passed as an argument with the it argu-
ment to render the detail view.

Figure 6.18 shows an alternative implementation of the masterDetail con-
trol that is only used when the browser window’s inner width is larger than
500 pixels (expressed using the @when annotation), i.e. on wider screens. The
arguments match exactly with the previous implementation, but the control
body differs. A local variable current is used to keep track of the currently
selected item in the collection. It is initialized to the first item in the collec-
tion (the .one() method limits the collection to a single item, returning the
first one). The sideBarStyle is used to show a block to the left of the screen
containing the list of items. The style (color) used for the item depends on

Chapter 6. Mobl 165

control masterDetail(items : Collection<?>,
masterItem : Control1<?>,
detail : Control1<?>) {

group {
list(it in items) {
item(onclick={

detailScreen(it,detail);
}) {

masterItem(it)
}

}
}

}
screen detailScreen(it : ?,

detail : Control1<?>) {
header("Detail") {

backButton()
}
detail(it)

}

Figure 6.17 masterDetail implementation

whether it is selected or not. When the item is clicked, it is assigned as the
current item. The block styled with the mainContentStyle appears right of
the list and uses the detail control to render the currently selected item’s
details. The item rendered by the detail control automatically updates as
new values are assigned to current.

6.8 S T Y L I N G

Cascading Stylesheets (CSS) are used to define the look and feel of a mobile
web application. Styles are attached to HTML either automatically (using CSS
selectors) or explicitly by attaching class attributes to HTML tags. Neverthe-
less, stylesheets are source of code duplication due to its lack of support for
parameterization.

For instance, the following style can be attached to an HTML element to
implement rounded corners. Due to the current state of browser support for
the border-radius (a CSS3 feature), it uses browser-specific properties for
Webkit and Gecko-based browsers (two common rendering engines) to make
it work on all browsers:

.rounded-corners {
-moz-border-radius: 5px;
-webkit-border-radius: 5px;
border-radius: 5px;

}

166

@when window.innerWidth > 500
control masterDetail(items : Collection<?>,

masterItem : Control1<?>,
detail : Control1<?>) {

var current = items.one()
block(sideBarStyle) {

group {
list(it in items) {

item(style=current == it ? selectedItemStyle
: notSelectedItemStyle,

onclick={ current = it; }) {
masterItem(it)

}
}

}
}
block(mainContentStyle){

detail(current)
}

}

Figure 6.18 A wide-screen masterDetail

Def ::= "style" ID "{" StyleProp* "}"
| "style" "mixin" ID

"(" {StyleFarg ","}* ")"
"{" StyleProp* "}"

| "style" "$" ID "=" StyleVal

StyleProp ::= ID "=" StyleVal* ";"
| ID "(" {StyleVal ","}* ")" ";"

StyleVal ::= CSSSTYLEVALUE
| "$" ID
| "$" ID "." "r"
| "$" ID "." "g"
| "$" ID "." "b"
| StyleVal "+" StyleVal
| StyleVal "*" StyleVal
| StyleVal "-" StyleVal

Figure 6.19 Styling language syntax

However, whenever rounded corners are required with a radius other than 5

pixels, these three lines have to be duplicated and adapted.

Chapter 6. Mobl 167

6.8.1 Styling in Mobl

In order not to reinvent the wheel, mobl’s styling language reuses all of CSS3’s
styling properties [W3C, 2011]. In addition, it adds styling constants, cal-
culations based on these constants and style mixins. These additions were
inspired by Sass10, an extension of CSS that adds similar features.

Figure 6.19 defines the syntax for styles in mobl. At the HTML level, style
values are attached to the class attribute of tags. Typically, controls have
a style argument (of type Style) that is used to pass styles around. For
instance, the block control:

style largeStyle {
font-size: 100pt;

}
screen root() {
block(largeStyle) { label("Large text") }

}

6.8.2 Theming

Applications can easily be themed with custom colors by overriding style
constants used by the standard mobl library of controls. For this purpose,
mobl supports global style constants that can be referenced in styles. When
using RGB (Red-Green-Blue) colors, the individual color components can be
accessed to build new colors:

style $baseColor = rgb(72, 100, 180)
style $textButtonColor = rgb($baseColor.r-50,

$baseColor.g-50,
$baseColor.b-50)

style buttonStyle {
color: $buttonTextColor;
...

}

The controls that come with mobl all derive their colors from the $baseColor
constant. Therefore, simply overriding this constant and changing it to a dif-
ferent color, creates a new color theme based on the given base color. Fig-
ure 6.20 shows how buttons change with different $baseColor settings.

Parameterized styles are implemented using style mixins. Style mixins can
be used and parameterized in other styles. Figure 6.21 implements a parame-
terized version of a border radius style taking the border radius as argument.
The buttonStyle uses the mixin to realize a border radius of 5 pixels. Mobl
comes with a library of reusable style mixins, including border radius and
gradient mixins.

10http://sass-lang.com

168

http://sass-lang.com

Figure 6.20 Four sample theme derivations

style mixin borderRadiusMixin($radius) {
-moz-border-radius: $radius;
-webkit-border-radius: $radius;
border-radius: $radius;

}
style buttonStyle {

color: $buttonTextColor;
borderRadiusMixin(5px);
...

}

Figure 6.21 Style mixin example

6.9 D I S C U S S I O N

To evaluate the coverage of mobl we have built a number of applications us-
ing mobl, ranging from simple toy applications such as a todo list manager
and a tip calculator to more complex applications such as a twitter client, a
conference planner application and even simple graphical games and a col-
laborative drawing application. Mobl receives a lot of interest from indus-
try. Several companies are working on mobile applications built using mobl.
Together with our user community we grew a library of reusable controls,
ranging from basic, such as labels and buttons, to more complex, such as the
tab set, a master-detail, accordion, date picker and context menu controls.
The definitions of these controls are all declarative and concise. A member of
the community has also developed a framework (using mobl) to enable unit
testing of the data model and logic.

This section discusses the limitations of our approach and compares it to
related work.

Language Limitations While mobl’s type checker checks many program prop-
erties, it does not yet check everything. For instance, item controls controls
have to be nested within groups to be rendered properly. Mobl does not yet
support declaring such nesting requirements.

Data synchronization with web services currently has to be implemented
manually. In the future we intend to support transparent data synchronization
web services as part of the mobl language, thereby eliminating the custom
synchronization code that need to be written on an application-by-application
basis.

Chapter 6. Mobl 169

Mobile web applications generated by mobl are portable to any mobile plat-
form that supports HTML 5. However, the user interface does not adapt to
the look-and-feel of the platform, while mobl supports this variability using
@when annotations, we have not yet developed many platform-specific control
implementations.

Performance The performance of mobile web applications will always be
worse than native applications, just as web applications in general are slower
than native desktop applications. Nevertheless, by caching both the applica-
tion and its data locally and the recent performance improvements of (mobile)
browsers, performance of mobile web applications is very reasonable. While
performance has not been the primary focus of the mobl compiler thus far, it
is possible to produce an optimized build which eliminates all unused defi-
nitions from the generated JavaScript and CSS files. In addition, unnecessary
whitespace is removed and variables are renamed with shorter names to con-
siderably reduce the application’s download size.

Good Web Citizenship While mobl uses the web as a medium to deliver ap-
plications, and uses web technologies to run applications, a mobl application
is not built like a regular web application: a mobl application does not con-
sist of pages with unique URLs; breaks the browser’s back button; and is not
indexable by search engines. We intend to solve some of these issues. A work-
ing back button is relatively easy to implement. Full history support is much
more complex, requiring some type of encoding of the application state in the
URL of the application. Indexing mobile applications can be useful for some
data-driven applications. A tool such as CrawlJax [Mesbah et al., 2008] could
be used to generate a static, indexable version of the application.

Web Application Limitations While web applications have the advantage of
being portable, they have limitations too. HTML5 offers many JavaScript APIs
that give access to various device services, but their implementation in mo-
bile devices is not always complete. Access to audio and video services is
limited — it is possible to play an audio or video file, but only by launching
the dedicated audio or video player. Access to other device-specific features
such as bluetooth, the built-in compass, camera and local file storage are not
supported yet.

A way around these restrictions is a native/web hybrid approach. Phone-
Gap11 allows a developer to build applications using web technologies, and
expose additional native APIs including a file storage API and a camera API
through JavaScript, an approach that works nicely with mobl. Applications
built with PhoneGap can be deployed as native applications through e.g. the
Apple AppStore or Android Marketplace.

Web applications have limitations in user experience as well. It is very dif-
ficult to reproduce certain native application behaviors in web applications.
Inertia scrolling is one such behavior, where, after a finger flick on the screen,
the screen keeps scrolling for a while longer after the finger no longer touches

11http://www.phonegap.com

170

http://www.phonegap.com

the screen. There are a number of projects that attempt to emulate this be-
havior in the browser, but it has proven very difficult to do perfectly. Fixed
positioning is another behavior that is difficult to achieve in mobile browsers.
A control that has a fixed position, does not move when the rest of the screen
scrolls. A typical example is a screen header. A header is positioned at the
top of the screen and while the rest of the content scrolls, the header remains
fixed at the top.

6.9.1 WebDSL

In previous work we developed WebDSL [Visser, 2007b], a domain-specific
language for the development of RESTful web applications. From a WebDSL
program, the WebDSL compiler generates a Java web application, deployable
in any Java servlet container.

Mobl borrows many concepts from WebDSL. For instance, like WebDSL,
mobl is statically verifiable (see Chapter 2) and has similar constructs for the
definition of data models.

State and Event Handling Syntactically, the definition of WebDSL and mobl
user interfaces are similar, but their semantics differ when it comes to the
time of data binding. The unit of interaction within a WebDSL application is
a HTTP request, either executed using an AJAX call, a form submit or page
request. Pages are reconstructed on every request, instead of incrementally
updated as is the case in mobl. Incremental user interface updating is cheap
when maintaining state locally, while implementing incremental updates effi-
ciently in a client-server application requires application state to be maintained
on the server as well as client, which would require the storage of application
state for potentially thousands or millions of users.

Handling of events in mobl is more fine-grained than in WebDSL: when
editing a data object in WebDSL, changes are persisted only when the edit
form is submitted to the server, rather than instantaneously as is the case
with mobl applications. Since all interaction and persistence happens locally,
such continuous persistence is much cheaper to implement. Sending every
keystroke to the server would be very expensive.

Extension Mobl has a different philosophy than WebDSL when it comes to
language extension. WebDSL developed many abstractions as built-ins, in-
cluding built-in types, controls and functions. As a result, any modifications
or improvements to these constructs requires extension or adaptation of the
compiler. Mobl takes the approach of library extension. Rather than hard-
coding types and controls into the compiler, they are defined in libraries ei-
ther encoded in mobl itself, or through the native Javascript interface. The
advantage of this approach is that users can easily add new functionality to
mobl, without the need to know how its compiler works. This approach is
currently in process of being adopted in WebDSL as well.

Chapter 6. Mobl 171

6.9.2 Related work

DSLs for mobile development Behrens [2010] describes a domain-specific lan-
guage for creating native mobile applications, using a single language from
which both iPhone and Android applications can be generated. Similar to
mobl, the language comes with an IDE plug-in for Eclipse that supports error
high-lighting, code completion and reference resolving. Berhens’ language
has a number of high-level controls built into the language, including sec-
tions, detail views and cells. It can fetch its data from data providers. How-
ever, the DSL currently only supports data viewing and is not as flexible as
mobl; defining custom controls is not supported, for instance.

Kejriwal and Bedekar [2009] developed MobiDSL, an XML-based language
for developing mobile web applications. Unlike mobl, the application is exe-
cuted on the server and plain HTML is sent to the mobile device. MobiDSL
comes with a number of built-in controls, such as query views, page headers
and search requests that can be used to build pages. It is not possible to define
custom controls, nor is there specific IDE support available.

Google Web Toolkit is a tool that enables client-side web applications using
Java. The use of Java has the advantage of having excellent IDE support. A
GWT plug-in12 enables access to HTML 5 APIs such as geolocation and local
databases. Like mobl, GWT applications are compiled to a combination of
HTML, Javascript and CSS. However, user interfaces using GWT have to be
defined using verbose Java code. In addition, GWT does not provide data
binding or reactive programming support, therefore requiring a lot of boiler
plate code to bind the Model to the View.

Reactive User Interfaces Courtney and Elliott [2001] developed Fruit, a Haskell
framework that applies functional reactive programming [Nilsson et al., 2002,
Elliott and Hudak, 1997, Wan and Hudak, 2000] to user interfaces. It is based
on signals (streams of events) and signal transformers (functions that trans-
form streams of events). On top of these concepts, Fruit builds a purely func-
tional user interface library. Mobl’s user interfaces are also reactive, but not
based on pure functions. Concepts such as signals and signal transformers are
not exposed to the developer in mobl. Instead, events triggered by changes in
data or control events, result in updates to the user interface.

Meyerovich et al. [2009] describe FlapJax, a language for building AJAX
applications. Flapjax is also built on the concept of event streams: streams
of events that model, for instance, mouse movements, clicks and web service
responses. These streams can be filtered and merged to build responsive
user interfaces. Mobl takes a more traditional approach to event handling.
Events in mobl trigger event handler logic, which can modify application
state potentially resulting in user interface changes.

12http://code.google.com/p/gwt-mobile-webkit/

172

http://code.google.com/p/gwt-mobile-webkit/

6.10 C O N C L U S I O N

In this chapter we introduced mobl, a new language for developing mobile
web applications. Mobl linguistically integrates languages for data model def-
inition, user interface, styling and application logic. It introduces domain ab-
stractions to abstract from accidental complexity and irrelevant details of the
platform and domain. Mobl’s support for user-defined abstractions, data bind-
ing and reactive program enable the reusable implementation of both simple
controls (labels and button) and higher-level controls (tab sets and master-
detail). Mobl automates the tasks typically manually encoded in Controller
logic, thereby reducing the amount of boiler plate code that needs to be writ-
ten. Mobl has received a lot of interest from industry. A number of companies
have already committed to implement their mobile applications using mobl.

Chapter 6. Mobl 173

174

Postscript: Mobl

Mobl allowed us to develop a new language from scratch, applying lessons
learned in previous chapters to a new domain. In addition, it enabled us to
do a few things differently than in WebDSL based on lessons learned. Once a
language has been released and there is a body of programs written using it,
it becomes difficult to change fundamental design decisions. A new language
is a fresh start. Therefore, in this postscript we describe the design decisions
we made differently in mobl than in WebDSL. These are not specific to any
domain in particular, but general language design lessons learned.

N A M E S PA C I N G

WebDSL has no language support for namespaces, which is an issue as ap-
plications grow larger. In mobl, every module has its own namespace. Every
reference to screens, controls, styles, functions and types is fully qualified,
either explicitly or based on import statements.

S E PA R AT E C O M P I L AT I O N

WebDSL applications have to be compiled as a whole, rather than module
by module. Largely, this is due to the aspect weaving features (such as ac-
cess control and WebWorkFlow) that make separate compilation difficult to
implement. At the time of this writing there is a student working on this
problem, but the time between saving a WebDSL module and being able to
test it in the browser is still long. As other languages that are based on aspect
weaving (such as AspectJ13) show, there is performance overhead in compil-
ing languages that require aspect weaving. In the end it is a trade off between
compilation time and language features.

In mobl we have avoided aspect weaving and lengthy compilation. This is
partly supported by the domain: there is less need for features that require as-
pect weaving. In addition, mobl’s target platform does not require additional
compilation and deployment steps (like WebDSL produced code, which has
to be compiled by a Java compiler, archived into a .jar file and deployed to a
server). Mobl compiles applications on a module-by-module basis. Whenever
the user saves a module, it is immediately recompiled. A refresh in the mobile
browser enables the immediate testing of changes made.

13http://www.eclipse.org/aspectj/

175

http://www.eclipse.org/aspectj/

S Y N TA C T I C E X T E N S I O N V E R S U S L I B R A RY E X T E N S I O N

Traditionally, the way to add features to WebDSL has been to extend its syn-
tax and compiler. As a result, the WebDSL has grown to around 30,000 lines
of Stratego code. The addition of new types, or a new built-in templates re-
quires knowledge of compiler construction in general and WebDSL’s compiler
architecture in particular.

The approach in mobl has been different. The language itself is kept small,
and all controls, types etc. are defined in mobl libraries. As a result, at the
time of this writing, the mobl compiler is around 7,500 lines and the mobl
standard library consists of around 4,000 lines of mobl code. Naturally, mobl
is only about 1.5 years old and WebDSL about 4.5 years, so undoubtedly the
mobl compiler will increase in size over time. At the time of this writing,
WebDSL has started to adopt the use of libraries and many built-in templates
are now reimplemented as templates implemented in WebDSL.

While WebDSL supports modules, it does not yet have a practical infras-
tructure for easily reusing code. In practice, reuse is implemented by copying
WebDSL modules from one project to the next. Lack of namespacing support
makes reuse harder, because verbose name need to be chosen for templates
and function in order not to clash with existing code.

By contrast, every mobl release comes with a library of reusable controls,
screens, styles, types and functions in mobl source form. The directory con-
taining this standard library is added to the module search path of the mobl
compiler by default. When a one of the modules from the standard library
is imported, it is compiled and the generated files are placed in the project’s
output directory along with any resource files that the module depends on
(such as images and Javascript files).

P O RTA B I L I T Y

WebDSL applications can be accessed using any platform as long as it has
a browser and is therefore platform-independent from the end-user perspec-
tive. However, applications need to be installed in a server environment that
typically does impose a particular software platform. This is not the case for
mobl. Mobl applications are pure client-side web applications that run in any
HTML5 enabled web browser, only requiring a server to serve the application
files — something that any web server can do.

With this in mind, we created explicit dependencies on the underlying plat-
form, by supporting escapes to HTML and JavaScript. These escapes increase
the coverage of mobl, as any web feature not directly supported by mobl itself
can be used through embedding HTML or by invoking native Javascript.

Recently, a master student has been developing a back-end for mobl that
targets native iPad applications, rather than the web. Consequently, many of
the escapes that mobl offers to the underlying platform cannot be used in this
context. As a result, libraries that use web-specific features cannot be reused
with the iPad back-end. These libraries have to be largely redeveloped by

176

implementing them in Objective-C. However, potentially, libraries that build
on top of a set of controls that are consistently implemented in both the web
and iPad version, can be used to develop mobile applications that can both be
run in the browser as well as natively on the iPad.

Since mobl now has two back-ends we will likely see similar maintainability
problems we have seen in WebDSL (Chapter 5). Could PIL be applied to mobl
after all? While the iPad back-end is still in development and in a prototype
state, there are a few potential problems in applying PIL. First of all, there is
a considerable amount of custom written, platform-specific code that wraps
iPad user interface controls as mobl controls. In addition, there is a lot of
work put into emulating a lot of standard web browser behaviour using the
iPad APIs, such as positioning of controls, implementing certain elements of
the styling language and data persistence.

In addition, PIL works best when there are two or more back-ends whose
generated code has a very similar structure. However, this is not the case for
the current implementation of the back-ends. For instance, Javascript natively
supports closures, which are heavily relied on in the Javascript back-end im-
plementation; Objective-C does not support (mutable) closures and therefore
the back-end generates code to emulate them. The Javascript back-end relies
on asynchronous APIs and performs a continuation-passing style transfor-
mation. Most APIs on the iPad are not asynchronous and therefore do not
require such a complex transformation. Therefore, whether PIL will solve
maintenance problems remains to be seen.

Chapter 6. Mobl 177

178

7
Conclusion

The core research question of this thesis is “How to design and implement
statically verifiable and syntactically integrated domain-specific languages?”
While we do not yet have an all-encompassing answer this question, we did
study a number of aspects of the design and implementation of syntactically
integrated DSLs in this thesis. The lessons learned are valuable contributions
toward a systematic approach to DSL design and implementation.

We demonstrated that syntactic integration enables static verification of ap-
plications, supporting early error detection. Good coverage of a DSL can be
ensured by developing a core DSL at a relatively low-level as well as sup-
porting a native interface to be able to invoke underlying platform-specific
features. On top of the core language, layers of abstraction can be built that
enable programs to be written at a higher-level of abstraction, while still hav-
ing the option to escape to the lower-level of abstraction if required. We
developed and implemented techniques to manage the complexity of DSL
compilers, supporting both modularity and separation of concerns. In order
to more efficiently implement DSLs that target multiple software platforms,
we introduced PIL, a Platform Independent Language operating at the level
of software platforms.

To evaluate our techniques, we applied them in the design and implemen-
tation of WebDSL. To explore the replicability of the approach, we conducted
a second case study in DSL design: mobl, a language to rapidly develop mo-
bile web applications. Mobl applies many of the described techniques to the
domain of mobile web applications.

7.1 S U M M A RY O F C O N T R I B U T I O N S

Each of the chapters in this thesis have individual contributions. We summa-
rize the core contributions as follows:

• A declarative, rule-based approach to linguistic integration and consis-
tency checking (Chapter 2).

• The WebWorkFlow language, a flexible language enabling the construc-
tion of complete web applications involving workflows (Chapter 3).

• The Code Generation by Model Transformation approach to building DSL
compilers and its implementation in the WebDSL compiler (Chapter 4).

• The PIL language, a source code level intermediate language aimed at
DSL compilers that reduces the amount of work required to build and
maintain multiple DSL compiler back-ends (Chapter 5).

179

• The mobl language, a language to rapidly develop mobile web applica-
tions (Chapter 6).

7.2 W E B D S L A N D M O B L I N P R A C T I C E

WebDSL1 is used in the Model-Driven Engineering class taught by the soft-
ware engineering department. Students have to build a non-trivial web appli-
cation to learn about the advantages of developing software with DSLs. The
feedback from students has lead to many improvements in the WebDSL lan-
guage and tooling. In addition, WebDSL has been used to develop a number
of web applications used in production, most notably researchr.org2, an on-
line bibliography tool and YellowGrass3, a tag-based issue tracker that we use
to track bugs for all our projects.

Mobl4 has a growing community (90+ members on the mailing list at the
time of this writing) of industrial users that build applications, submit is-
sues, contribute to the mobl library and, occasionally, contribute fixes to the
compiler. The feedback gained from the user community is steering the devel-
opment of mobl. A number of companies (unrelated to our research group)
are developing commercial products using mobl. Mobl has been featured on
a number of web sites, including a feature article on InfoQ5.

7.3 R E S E A R C H Q U E S T I O N S

R E S E A R C H Q U E S T I O N 1

Is the lack of static verification a common problem in today’s web frame-
works? If so, how can that problem be remedied?

In Chapter 2 we surveyed a number of state-of-the-art web frameworks. We
introduced errors in programs developed using these frameworks and ob-
served how the errors become manifest. Indeed, the problem of late discovery
of faults is not specific to the Seam framework, but occurs in other frameworks
as well. Errors appeared only at run-time, often with obscure error messages
that are hard to trace back to their origin. We proposed to remedy these prob-
lems by designing a language in such a way that it integrates all application
aspects into a single, syntactically integrated language. Static analyses can
be implemented that verify various application properties involving different
application aspects, because the language shares a single type system.

We demonstrated how the static verification component of such a compiler
can be implemented by detailing the implementation of verification rules for
a subset of WebDSL using Stratego.

1http://webdsl.org
2http://researchr.org
3http://yellowgrass.org
4http://mobl-lang.org
5http://www.infoq.com/articles/Mobl

180

http://webdsl.org
http://researchr.org
http://yellowgrass.org
http://mobl-lang.org
http://www.infoq.com/articles/Mobl

R E S E A R C H Q U E S T I O N 2

How can the level of abstraction in a DSL be raised without reducing its
coverage?

By design, domain-specific languages cover only a limited class of appli-
cations — otherwise they would be considered general purpose languages.
However, within a domain there is a trade-off to be made between high cov-
erage using a lower-level language, and lower coverage using a higher-level
language. In Chapter 3 we demonstrated we can have the best of both worlds
by taking a lower-level language as core language, and layering higher-level
abstractions on top. We demonstrate this approach through the design of
WebWorkFlow, an extension of WebDSL that adds language-level workflow
constructs. Unlike other workflow languages it is not constructed as a sepa-
rate DSL, but builds on top of an existing, lower-level DSL (WebDSL). In Web-
WorkFlow, workflows can be defined at three levels: process-level, procedure-
level and pure WebDSL. Process-level descriptions are very high-level, sup-
porting the common workflow patterns such as sequential task execution and
loops. If this level is not flexible enough, parts of the workflow can be ex-
pressed using WebWorkFlow’s more flexible, but more verbose procedure ab-
straction. If procedures do not support sufficient flexibility, parts of workflows
can be expressed in plain WebDSL.

R E S E A R C H Q U E S T I O N 3

How to maintain separation of concerns and efficiently combine analysis
with transformation in a DSL compiler?

Chapter 4 described techniques for improving separation of concerns in the
implementation of code generators for domain-specific languages, based on
our experience with the implementation of WebDSL. The core technique em-
ployed is code generation by model transformation, that is, the generation of a
structured representation (model) of the target program instead of plain text.
This approach enables the transformation of code after generation, which in
turn enables the extension of the target language with features that allow
better modularity in code generation rules (such as partial classes, partial
methods and expression blocks). The technique can also be applied to imple-
ment syntactic extension of a DSL, through internal code generation, gradually
transforming high-level extensions of a DSL to lower-level constructs.

The mobl compiler still generates plain text source code. At the time of ini-
tial development, it was deemed the most pragmatic and productive solution
to quickly develop a compiler for the mobl language. However, over time the
compiler grew larger and started to suffer from similar problems as WebDSL.
Presently, there are plans to refactor the mobl compiler to use code generation
by model transformation as well.

Chapter 7. Conclusion 181

R E S E A R C H Q U E S T I O N 4

How to reduce the effort to maintain multiple platform back-ends in the
compiler?

Chapter 5 introduced PIL, a Platform Independent Language to be used as
a high-level intermediate language. Instead of generating code for each soft-
ware platform individually, a DSL compiler can generate PIL code, which
is subsequently mapped to target platform code. As a result, only a single
compiler back-end has to be maintained. Unlike traditional intermediate lan-
guages, PIL has a readable concrete syntax similar to Java. PIL is aimed as a
language to be used purely for code generation — it is a small, easy to port
language. PIL platform back-ends can be reused in multiple DSL compilers.
An extension of PIL, called PIL/G adds features specific to the domain of code
generation – similar features that are added in a more ad-hoc manner to Java in
Chapter 4, including partial classes and methods, identifier concatenation and
expression blocks. PIL is evaluated by the creation of a prototype back-end
for WebDSL, enabling the WebDSL compiler to generate code for Python as
well as the Java platform.

R E S E A R C H Q U E S T I O N 5

How can the language design and implementation techniques developed
for WebDSL be applied to the mobile web domain?

Chapter 6 described mobl, a new language to rapidly develop mobile web
applications. Mobl applies a number of design ideas previously developed
for WebDSL, including design for static verification (Chapter 2) and syntac-
tic language extensions (Chapter 3) to the mobile domain and adapts them
appropriately. While syntactic extensions are part of mobl, the primary way
to extend mobl is using libraries. Much of the functionality in mobl is im-
plemented in mobl itself, rather than being encoded into the compiler. As
a result, mobl can easily be extended by users to support new abstractions.
While the mobl compiler does not yet generate code using code generation by
model transformation techniques (Chapter 4), this is considered future work.
In the postscript of Chapter 5 we described our reasons not to use PIL for
mobl and instead use web technologies to achieve portability.

7.4 F U T U R E W O R K

7.4.1 Systematic approach

The goal of the MoDSE project is to develop a systematic approach to DSL
design and implementation. The case studies conducted as part of the work
for this thesis were steps toward that goal. Language design is difficult, the
design space is typically very large. While there is likely no algorithm to be

182

discovered that turns the description of a domain into an appropriate lan-
guage, we do believe more lessons can be extracted by performing more case
studies, also in domains completely separate from the web domain.

7.4.2 Evaluation

The evaluation of programming languages is difficult. Our approach to eval-
uation has been to identify specific problems and demonstrate how our lan-
guages solve those problems. However, we did not evaluate another impor-
tant feature of our DSLs: the significant reduction of the amount of code that
needs to be written to build an application. We have anecdotal evidence that
is the case, but we have not set up an experiment to investigate this.

Such an experiment could involve an expert familiar with some competing
web framework, e.g. Ruby on Rails. The developer would be asked to de-
velop a particular non-trivial application. Subsequently, the same application
would be developed using WebDSL and the number of lines required could
be compared. Ideally, this experiment would have to be repeated a number
of times for different applications, to avoid a bias toward a particular type of
web application.

Chapter 7. Conclusion 183

184

Bibliography

A. Kraus, A. K. and Koch, N. (2007). Model-driven generation of web appli-
cations in UWE. In Model-Driven Web Engineering (MDWE’07), Como, Italy.
(Cited on page 110.)

AndroMDA.org (2007). AndroMDA documentation. http://galaxy.
andromda.org. (Cited on page 106.)

Arnoldus, J., Bijpost, J., and van den Brand, M. (2007). Repleo: a syntax-
safe template engine. In Consel, C. and Lawall, J. L., editors, Generative
Programming and Component Engineering, 6th International Conference, GPCE
2007, pages 25–32, Salzburg, Austria. ACM. (Cited on page 110.)

Atkins, D. L., Ball, T., Bruns, G., and Cox, K. (1999). Mawl: A domain-specific
language for form-based services. IEEE Transactions on Software Engineering,
25(3):334–346. (Cited on page 42.)

Balland, E. and Brauner, P. (2008). Term-graph rewriting in Tom using rel-
ative positions. Electronic Notes in Theoretical Computer Science, 203(1):3 –
17. Proceedings of the Fourth International Workshop on Computing with
Terms and Graphs (TERMGRAPH 2007). (Cited on page 107.)

Balland, E., Brauner, P., Kopetz, R., Moreau, P., and Reilles, A. (2007). Tom:
Piggybacking rewriting on java. Lecture Notes in Computer Science, 4533:36–47.
(Cited on page 105.)

Barry, D. K. and Stanienda, T. (1998). Solving the java object storage problem.
computer, 31(11):33–40. (Cited on page 151.)

Bast, W., Belaunde, M., Blanc, X., Duddy, K., Griffin, C., Helsen, S., Lawley,
M., Murphree, M., Reddy, S., Sendall, S., Steel, J., Tratt, L., Venkatesh, R., and
Vojtisek, D. (2005). MOF QVT final adopted specification. OMG document
ptc/05-11-01. (Cited on page 106.)

Behrens, H. (2010). MDSD for the iPhone. In SPLASH ’10: Proceedings of Ob-
ject oriented programming systems languages and applications companion. (Cited
on page 172.)

Benitez, M. E. and Davidson, J. W. (1988). A portable global optimizer and
linker. SIGPLAN Not., 23(7):329–338. (Cited on pages 9 and 132.)

Bentley, J. (1986). Programming pearls: little languages. Commun. ACM, 29.
(Cited on page 1.)

Bézivin, J. (2005). On the unification power of models. Software and System
Modeling, 4(2):171–188. (Cited on page 74.)

185

http://galaxy.andromda.org
http://galaxy.andromda.org

Bézivin, J. (2006). Model driven engineering: An emerging technical space.
In Lämmel, R., Saraiva, J., and Visser, J., editors, GTTSE, volume 4143 of
Lecture Notes in Computer Science, pages 36–64. Springer. (Cited on page 106.)

Bezivin, J., Hammoudi, S., Lopes, D., and Jouault, J. (2004). Applying MDA
approach for web service platform. In EDOC ’04: Proceedings of the Enterprise
Distributed Object Computing Conference, Eighth IEEE International, pages 58–
70, Washington, DC, USA. IEEE Computer Society. (Cited on page 133.)

Brabrand, C., Moeller, A., and Schwartzbach, M. I. (2002). The <bigwig>
project. ACM Trans. Internet Techn., 2(2):79–114. (Cited on page 41.)

Brabrand, C., Mller, A., and Schwartzbach, M. I. (2001). Static validation
of dynamically generated html. In Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis For Software Tools and Engineering,
PASTE 01, Snowbird, Utah, USA, June 18-19, 2001, pages 38–45. ACM. (Cited
on page 41.)

Brambilla, M., Cabot, J., and Comai, S. (2007a). Automatic generation of
workflow-extended domain models. In Engels, G. et al., editors, Model Driven
Engineering Languages and Systems (MoDELS 2007), volume 4735 of LNCS,
pages 375–389. Springer. (Cited on page 63.)

Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I. (2006). Process mod-
eling in web applications. ACM Trans. Softw. Eng. Methodol., 15(4):360–409.
(Cited on page 63.)

Brambilla, M., Comai, S., Fraternali, P., and Matera, M. (2007b). Designing
web applications with WebML and WebRatio. Web Engineering: Modelling
and Implementing Web Applications, pages 221–260. (Cited on page 42.)

Bravenboer, M., de Groot, R., and Visser, E. (2006a). MetaBorg in action:
Examples of domain-specific language embedding and assimilation using
Stratego/XT. In Lämmel, R. and Saraiva, J., editors, Proceedings of the Sum-
mer School on Generative and Transformational Techniques in Software Engineering
(GTTSE 2005), volume 4143 of Lecture Notes in Computer Science, pages 297–
311, Braga, Portugal. Springer Verlag. (Cited on page 126.)

Bravenboer, M., Dolstra, E., and Visser, E. (2007). Preventing injection attacks
with syntax embeddings. A host and guest language independent approach.
In Lawall, J., editor, Generative Programming and Component Engineering (GPCE
2007), pages 3–12, New York, NY, USA. ACM. (Cited on page 42.)

Bravenboer, M., Kalleberg, K. T., Vermaas, R., and Visser, E. (2008). Strate-
go/XT 0.17. A language and toolset for program transformation. Science of
Computer Programming, 72(1-2):52–70. Special issue on experimental software
and toolkits. (Cited on pages 1, 30, 45, 71, 76, 78, 81, and 105.)

Bravenboer, M., van Dam, A., Olmos, K., and Visser, E. (2006b). Program
transformation with scoped dynamic rewrite rules. Fundamenta Informaticae,
69(1–2):123–178. (Cited on pages 34, 92, and 105.)

186

Bravenboer, M. and Visser, E. (2004). Concrete syntax for objects. Domain-
specific language embedding and assimilation without restrictions. In
Schmidt, D. C., editor, Proceedings of the 19th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA
2004), pages 365–383, Vancouver, Canada. ACM Press. (Cited on pages 42,
50, and 118.)

Bringert, B., Höckersten, A., Andersson, C., Andersson, M., Bergman, M.,
Blomqvist, V., and Martin, T. (2004). Student paper: Haskelldb improved. In
Haskell ’04: Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pages
108–115, New York, NY, USA. ACM. (Cited on page 41.)

Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., and Grose, T. J. (2003).
Eclipse Modeling Framework (The Eclipse Series). Addison-Wesley Professional.
(Cited on page 106.)

Burns, E. and Kitain, R., editors (2006). JavaServer Faces Specification. Version
1.2. Sun Microsystems. (Cited on page 74.)

Ceri, S., Fraternali, P., and Bongio, A. (2000). Web modeling language
(webml): a modeling language for designing web sites. Computer Networks,
33(1-6):137–157. (Cited on page 42.)

Chang, F., Dean, J., Ghemawat, S., Hsieh, W. C., Wallach, D. A., Burrows,
M., Chandra, T., Fikes, A., and Gruber, R. E. (2008). Bigtable: A distributed
storage system for structured data. ACM Trans. Comput. Syst., 26(2). (Cited
on page 133.)

Comai, S., Matera, M., and Maurino, A. (2002). A model and an xsl frame-
work for analyzing the quality of webml conceptual schemas. In Spaccapi-
etra, S., March, S. T., and Kambayashi, Y., editors, Conceptual Modeling - ER
2002, 21st International Conference on Conceptual Modeling, Tampere, Finland,
October 7-11, 2002, Proceedings, volume 2503 of Lecture Notes in Computer Sci-
ence, pages 339–350. Springer. (Cited on page 42.)

Cook, S., Jones, G., Kent, S., and Wills, A. C. (2007). Domain-Specific Develop-
ment with Visual Studio DSL Tools. Addison Wesley. (Cited on page 106.)

Cooper, E., Lindley, S., Wadler, P., and Yallop, J. (2006). Links: Web pro-
gramming without tiers. In de Boer, F. S., Bonsangue, M. M., Graf, S., and
de Roever, W. P., editors, Formal Methods for Components and Objects, 5th Inter-
national Symposium, FMCO 2006, Amsterdam, The Netherlands, November 7-10,
2006, Revised Lectures, volume 4709 of Lecture Notes in Computer Science, pages
266–296. Springer. (Cited on page 40.)

Cordy, J. (2006). The TXL source transformation language. Science of Computer
Programming, 61(3):190–210. (Cited on page 105.)

Courtney, A. and Elliott, C. (2001). Genuinely functional user interfaces. In
PLI. (Cited on page 172.)

Bibliography 187

Coward, D. and Yoshida, Y. (2003). Java Servlet Specification. Version 2.4. Sun
Microsystems. (Cited on page 74.)

Curbera, F., Goland, Y., Klein, J., Leymann, F., Thatte, and Weerawarana, S.
(2003). Business process execution language for web services, version 1.1.
Technical report, IBM. (Cited on pages 6 and 49.)

Czarnecki, K. and Helsen, S. (2006). Feature-based survey of model transfor-
mation approaches. IBM Systems Journal, 45(3):621–646. (Cited on page 106.)

Davidson, J. W. and Fraser, C. W. (1984). Code selection through object
code optimization. ACM Transactions on Programming Languages and Systems,
6(4):505–526. (Cited on page 132.)

Deligiannis, I. S., Stamelos, I., Angelis, L., Roumeliotis, M., and Shepperd,
M. J. (2004). A controlled experiment investigation of an object-oriented
design heuristic for maintainability. Journal of Systems and Software, 72(2):129–
143. (Cited on page 8.)

DeMichiel, L. and Keith, M., editors (2006a). JSR 220: Enterprise JavaBeans,
Version 3.0. EJB Core Contracts and Requirements. Sun Microsystems. (Cited on
page 75.)

DeMichiel, L. and Keith, M., editors (2006b). JSR 220: Enterprise JavaBeans,
Version 3.0. Java Persistence API. Sun Microsystems. (Cited on page 74.)

Dumas, M. and ter Hofstede, A. H. M. (2001). Uml activity diagrams as a
workflow specification language. In Proceedings of the 4th International Confer-
ence on The Unified Modeling Language, Modeling Languages, Concepts, and Tools
(UML 2001), pages 76–90, London, UK. Springer-Verlag. (Cited on pages 6

and 49.)

ECMA (2009). ECMA-262 ECMAScript language specification. http://
www.ecma-international.org/
publications/files/ECMA-ST/ECMA-262.pdf. (Cited on page 151.)

Eder, J., Groiss, H., and Liebhart, W. (1997). The Workflow Management Sys-
tem Panta Rhei. Advances in Workflow Management Systems and Interoperability.
Springer, Istanbul, Turkey, August, pages 129–144. (Cited on page 63.)

Efftinge, S. and Friese, P. (2007). openArchitectureWare. http://www.
eclipse.org/gmt/oaw. (Cited on pages 94 and 106.)

Efftinge, S., Friese, P., Haase, A., Kadura, C., Kolb, B., Moroff, D., Thoms,
K., and Völter, M. (2007). openArchitectureWare User Guide. Version 4.2.
www.openarchitectureware.org. (Cited on page 106.)

Efftinge, S. and Völter, M. (2006). oAW xText - a framework for textual DSLs.
In Modeling Symposium, Eclipse Summit. (Cited on page 102.)

188

http://www.ecma-international.org/
http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-262.pdf
http://www.eclipse.org/gmt/oaw
http://www.eclipse.org/gmt/oaw

Ekman, T. and Hedin, G. (2004). Rewritable reference attributed grammars.
In Odersky, M., editor, 18th European Conference Object-Oriented Programming
(ECOOP 2004), volume 3086 of Lecture Notes in Computer Science, pages 144–
169, Oslo, Norway. Springer. (Cited on page 111.)

Elliott, C. and Hudak, P. (1997). Functional reactive animation. In ICFP,
pages 263–273. (Cited on page 172.)

Fowler, M. (2005). Fluent interfaces. http://www.martinfowler.com/
bliki/FluentInterface.html. (Cited on page 2.)

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995). Design patterns: el-
ements of reusable object-oriented software. Addison-Wesley Professional. (Cited
on pages 141, 144, and 158.)

George, L. (1997). MLRISC: Customizable and reusable code generators.
Technical report, AT&T Bell Laboratories, Murray Hill, NJ. (Cited on pages 9

and 132.)

Gray, R. W., Levi, S. P., Heuring, V. P., Sloane, A. M., and Waite, W. M.
(1992). Eli: a complete, flexible compiler construction system. Commun.
ACM, 35(2):121–130. (Cited on page 111.)

Groenewegen, D. and Visser, E. (2008). Declarative access control for
WebDSL: Combining language integration and separation of concerns. In
Schwabe, D. and Curbera, F., editors, International Conference on Web En-
gineering (ICWE 2008). IEEE CS Press. (Cited on pages 45, 51, 53, 71, 88,
and 116.)

Groenewegen, D. M., Hemel, Z., Kats, L. C. L., and Visser, E. (2008). When
frameworks let you down. platform-imposed constraints on the design and
evolution of domain-specific languages. In Gray, J. et al., editors, Domain
Specific Modelling (DSM’08), pages 64–66. (Cited on pages 9, 12, 116, and 135.)

Groenewegen, D. M., Hemel, Z., and Visser, E. (2010). Separation of con-
cerns and linguistic integration in WebDSL. IEEE Software, 27(5). (Cited on
page 12.)

Groenewegen, D. M. and Visser, E. (2009). Integration of data validation and
user interface concerns in a dsl for web applications. In van den Brand, M.
and Gray, J., editors, Software Language Engineering, Second International Con-
ference, SLE 2009, Denver, USA, October, 2009. Revised Selected Papers, Lecture
Notes in Computer Science. Springer. (Cited on pages 26 and 45.)

Harel, D. and Pnueli, A. (1985). On the development of reactive systems.
Logics and models of concurrent systems. (Cited on page 158.)

Heering, J., Hendriks, P. R. H., Klint, P., and Rekers, J. (1989). The syntax
definition formalism SDF – reference manual. SIGPLAN Notices, 24(11):43–
75. (Cited on pages 1 and 4.)

Bibliography 189

http://www.martinfowler.com/bliki/FluentInterface.html
http://www.martinfowler.com/bliki/FluentInterface.html

Hemel, Z., Groenewegen, D. M., Kats, L. C. L., and Visser, E. (2011). Static
consistency checking of web applications with WebDSL. Journal of Symbolic
Computation, 46(2):150–182. (Cited on page 12.)

Hemel, Z., Kats, L. C. L., Groenewegen, D. M., and Visser, E. (2010). Code
generation by model transformation: a case study in transformation modu-
larity. Software and Systems Modeling, 9(3):375–402. (Cited on pages 12 and 47.)

Hemel, Z., Kats, L. C. L., and Visser, E. (2008a). Code generation by model
transformation. A case study in transformation modularity. In Gray, J.,
Pierantonio, A., and Vallecillo, A., editors, Theory and Practice of Model Trans-
formations. First International Conference on Model Transformation (ICMT 2008),
volume 5063 of Lecture Notes in Computer Science, pages 183–198, Heidelberg.
Springer. (Cited on pages 12, 54, 69, 70, and 96.)

Hemel, Z., Verhaaf, R., and Visser, E. (2008b). WebWorkFlow: An object-
oriented workflow modeling language for web applications. In Czarnecki,
K., editor, Model Driven Engineering Languages and Systems (MODELS 2008),
Lecture Notes in Computer Science. Springer. (to appear). (Cited on page 12.)

Hemel, Z. and Visser, E. (2009). PIL: A platform independent language for
retargetable DSLs. In van den Brand, M., Gasevic, D., and Gray, J., editors,
Software Language Engineering, Second International Conference, SLE 2009, vol-
ume 5969 of Lecture Notes in Computer Science, pages 224–243. Springer. (Cited
on page 12.)

Hemel, Z. and Visser, E. (2011). Declaratively programming the mobile web
with mobl. In Proceedings of the 26th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2011, Portland, Oregon, USA. ACM. (Cited on page 12.)

Hollingsworth, D. (1995). The Workflow Reference Model. Workflow Manage-
ment Coalition, Document Number TC00-1003 - Issue 1.1 edition. (Cited on
page 49.)

Huang, S. S. and Smaragdakis, Y. (2006). Easy language extension with Meta-
AspectJ. In ICSE ’06: Proceeding of the 28th international conference on Software
engineering, pages 865–868. ACM. (Cited on page 109.)

Janssen, N. (2005). Transformation tool composition. Master’s thesis, In-
stitute of Information and Computing Sciences Utrecht University, Utrecht,
The Netherlands. (Cited on page 108.)

JetBrains (2009a). Intellij idea. http://www.jetbrains.com/idea/.
(Cited on page 43.)

JetBrains (2009b). Web ide. http://www.jetbrains.com/webide. (Cited on
page 43.)

190

http://www.jetbrains.com/idea/

Jouault, F. and Bézivin, J. (2006). KM3: a DSL for metamodel specification.
In Formal Methods for Open Object-Based Distributed Systems, volume 4037 of
LNCS, pages 171–185, Bologna, Italy. Springer. (Cited on page 106.)

Jouault, F., Bézivin, J., and Kurtev, I. (2006). TCS: a DSL for the specification
of textual concrete syntaxes in model engineering. In Generative program-
ming and component engineering (GPCE’06), pages 249–254. ACM. (Cited on
page 106.)

Jouault, F. and Kurtev, I. (2006). Transforming models with ATL. In Satellite
Events at the MoDELS 2005 Conference, volume 3844 of LNCS, pages 128–138.
Springer. (Cited on page 106.)

Kats, L. C. L., Bravenboer, M., and Visser, E. (2008). Mixing source and
bytecode. A case for compilation by normalization. In Kiczales, G., edi-
tor, Proceedings of the 23rd ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications (OOPSLA 2008), Nashville,
Tenessee, USA. ACM Press. (Cited on pages 51, 93, and 105.)

Kats, L. C. L., Kalleberg, K. T., and Visser, E. (2009). Domain-specific lan-
guages for composable editor plugins. In Ekman, T. and Vinju, J., editors,
Proceedings of the Ninth Workshop on Language Descriptions, Tools, and Applica-
tions (LDTA 2009), Electronic Notes in Theoretical Computer Science. Elsevier
Science Publishers. (to appear). (Cited on pages 45, 109, and 111.)

Kats, L. C. L. and Visser, E. (2010a). The spoofax language workbench. rules
for declarative specification of languages and IDEs. In Rinard, M., editor,
Proceedings of the 25th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2010, October 17-
21, 2010, Reno, NV, USA. (to appear). (Cited on pages 1 and 45.)

Kats, L. C. L. and Visser, E. (2010b). The Spoofax language workbench: rules
for declarative specification of languages and IDEs. In OOPSLA, pages 444–
463. (Cited on pages 47 and 147.)

Kejriwal, A. A. and Bedekar, M. (2009). MobiDSL - a domain specific lan-
gauge for mobile web applications: developing applications for mobile plat-
form without web programming. In Proceedings of the 9th OOPSLA Workshop
on Domain Specific Modelling (DSM’09). (Cited on page 172.)

Kelly, S., Lyytinen, K., and Rossi, M. (1996). MetaEdit+: A fully configurable
multi-user and multi-tool CASE and CAME environment. In CAiSE, pages
1–21. (Cited on page 106.)

Kelly, S. and Tolvanen, J.-P. (2008). Domain-Specific Modeling. Enabling Full
Code Generation. John Wiley & Sons, Inc. (Cited on page 69.)

Kim, J., Baratto, R. A., and Nieh, J. (2006). pthinc: a thin-client architecture
for mobile wireless web. In WWW, pages 143–152. (Cited on page 143.)

Bibliography 191

Kittoli, S., editor (2008). Seam - Contextual Components. A Framework for Enter-
prise Java. Red Hat Middleware, LLC. (Cited on page 74.)

Klint, P. (1993). A meta-environment for generating programming environ-
ments. ACM Transactions on Software Engineering and Methodology, 2(2):176–
201. (Cited on pages 105 and 106.)

Koch, N., Kraus, A., and Hennicker, R. (2001). The authoring process of
the uml-based web engineering approach. In First International Workshop on
Web-Oriented Software Technology. (Cited on page 42.)

Kroiss, C., Koch, N., and Knapp, A. (2009). Uwe4jsf: A model-driven gener-
ation approach for web applications. In Gaedke, M., Grossniklaus, M., and
Daz, O., editors, Web Engineering, 9th International Conference, ICWE 2009, San
Sebastin, Spain, June 24-26, 2009, Proceedings, volume 5648 of Lecture Notes in
Computer Science, pages 493–496. Springer. (Cited on page 42.)

Kulkarni, V. and Reddy, S. (2008). An abstraction for reusable mdd com-
ponents: model-based generation of model-based code generators. In GPCE
’08: Proceedings of the 7th international conference on Generative programming and
component engineering, pages 181–184, New York, NY, USA. ACM. (Cited on
page 110.)

Kurtev, I., Bézivin, J., Jouault, F., and Valduriez, P. (2006). Model-based DSL
frameworks. In Companion to OOPSLA’06, pages 602–616. ACM. (Cited on
page 106.)

Lai, A. M., Nieh, J., Bohra, B., Nandikonda, V., Surana, A. P., and Varshneya,
S. (2004). Improving web browsing performance on wireless pdas using
thin-client computing. In WWW, pages 143–154. (Cited on page 143.)

Lima, F. and Schwabe, D. (2003). Modeling applications for the semantic
web. In Lovelle, J. M. C., Rodrguez, B. M. G., Aguilar, L. J., Gayo, J. E. L., and
del Puerto Paule Ruz, M., editors, Web Engineering, International Conference,
ICWE 2003, Oviedo, Spain, July 14-18, 2003, Proceedings, volume 2722 of Lecture
Notes in Computer Science, pages 417–426. Springer. (Cited on page 42.)

Lovins, J. B. (1968). Development of a stemming algorithm. Mechanical Trans-
lation and Computational Linguistics, 11:22–31. (Cited on page 151.)

Lussenburg, V., van der Storm, T., Vinju, J., and Warmer, J. (2010). Mod4j:
A qualitative case study of model-driven software development. In Model
Driven Engineering Languages and Systems, volume 6395 of Lecture Notes in
Computer Science, pages 346–360. Springer Berlin / Heidelberg. (Cited on
page 4.)

M. Brambilla, S. Comai, P. F. and Matera, M. (2007). Designing web applica-
tions with WebML and WebRatio. In Rossi, G. et al., editors, Web Engineering:
Modelling and Implementing Web Applications, Human-Computer Interaction
Series. Springer. (Cited on page 110.)

192

Meijer, E., Beckman, B., and Bierman, G. M. (2006). Linq: reconciling object,
relations and xml in the .net framework. In Chaudhuri, S., Hristidis, V., and
Polyzotis, N., editors, Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, Chicago, Illinois, USA, June 27-29, 2006, page 706.
ACM. (Cited on pages 41 and 153.)

Mens, T. and van Gorp, P. (2006). A taxonomy of model transformation. In
Graph and Model Transformation (GraMoT 2005), volume 152, pages 125–142.
(Cited on page 107.)

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and how to develop
domain-specific languages. ACM Computing Surveys, 37(4):316–344. (Cited
on page 1.)

Mesbah, A., Bozdag, E., and van Deursen, A. (2008). Crawling ajax by in-
ferring user interface state changes. In ICWE, pages 122–134. (Cited on
page 170.)

Meyerovich, L. A., Guha, A., Baskin, J. P., Cooper, G. H., Greenberg, M.,
Bromfield, A., and Krishnamurthi, S. (2009). Flapjax: a programming lan-
guage for ajax applications. In OOPSLA, pages 1–20. (Cited on page 172.)

Miller, J. and Mukerji, J. (2003). MDA guide version 1.0.1. (Cited on
page 132.)

Miller, J. A., Palaniswami, D., Sheth, A. P., Kochut, K. J., and Singh, H. (1998).
Webwork: Meteor2‘s web-based workflow management system. J. Intell. Inf.
Syst., 10(2):185–215. (Cited on page 64.)

Möller, A. and Schwarz, M. (2009). Jwig: Yet another framework for main-
tainable and secure web applications. In Filipe, J. and Cordeiro, J., editors,
WEBIST 2009 - Proceedings of the Fifth International Conference on Web Informa-
tion Systems and Technologies, Lisbon, Portugal, March 23-26, 2009, pages 47–53.
INSTICC Press. (Cited on page 41.)

Muller, P.-A., Studer, P., and Bézivin, J. (2003). Platform independent web
application modeling. In Stevens, P., Whittle, J., and Booch, G., editors, UML,
volume 2863 of Lecture Notes in Computer Science, pages 220–233. Springer.
(Cited on page 133.)

Nilsson, H., Courtney, A., and Peterson, J. (2002). Functional reactive pro-
gramming, continued. In Proceedings of the 2002 ACM SIGPLAN workshop on
Haskell. (Cited on page 172.)

Nunes, D. A. and Schwabe, D. (2006). Rapid prototyping of web applications
combining domain specific languages and model driven design. In Carr, L.,
Roure, D. D., Iyengar, A., Goble, C. A., and Dahlin, M., editors, Proceedings
of the 15th international conference on World Wide Web, WWW 2006, Edinburgh,
Scotland, UK, May 23-26, 2006, pages 889–890. ACM. (Cited on page 42.)

Bibliography 193

O. Pastor, J. Fons, V. P. (2003). OOWS: A method to develop web applications
from web-oriented conceptual models. In Web Oriented Software Technology
(IWWOST’03), pages 65–70. (Cited on page 110.)

Object Management Group (OMG) (2003). OMG/RFP/QVT MOF 2.0
query/views/transformations RFP. (Cited on page 108.)

Object Management Group (OMG) (2006). Meta object facility (MOF) core
specification. OMG available specification. Version 2.0. http://www.omg.
org. (Cited on page 106.)

P. Cáceres, E. Marcos, B. V. (2003). A MDA-Based approach for web infor-
mation system development. In Proceedings of Workshop in Software Model
Engineering. (Cited on page 110.)

Paakki, J. (1995). Attribute grammar paradigms - a high-level methodology
in language implementation. ACM Computing Surveys (CSUR), 27(2):196–255.
(Cited on page 111.)

Parr, T. J. (2004). Enforcing strict model-view separation in template engines.
In WWW ’04: Proceedings of the 13th international conference on World Wide Web,
pages 224–233, New York, NY, USA. ACM. (Cited on page 78.)

Parr, T. J. and Quong, R. W. (1994). ANTLR: A predicated-LL(k) parser
generator. Software Practice and Experience, 25:789–810. (Cited on pages 114

and 132.)

Pastor, O., Fons, J., and Pelechano, V. (2003). OOWS: A method to develop
web applications from web-oriented conceptual models. In Web Oriented
Software Technology (IWWOST’03), pages 65–70. (Cited on page 42.)

Peyton Jones, S., editor (2003). Haskell98 Language and Libraries. The Revised
Report. Cambridge University Press. (Cited on page 104.)

Peyton Jones, S., Ramsey, N., and Reig, F. (1999). C–: A portable assembly
language that supports garbage collection. In Nadathur, G., editor, PPDP,
volume 1702 of LNCS, pages 1–28. Springer. (Cited on pages 9 and 131.)

Peyton Jones, S. L. and Santos, A. L. M. (1998). A transformation-based
optimiser for Haskell. Science of Computer Programming, 32(1–3):3–47. (Cited
on page 104.)

Pierre-Alain Muller, Philippe Studer, F. F. and Bézivin, J. (2005). Platform in-
dependent web application modeling and development with Netsilon. Soft-
ware and Systems Modeling, 4(4):424–442. (Cited on page 110.)

Plasmeijer, R., Achten, P., and Koopman, P. W. M. (2007). itasks: executable
specifications of interactive work flow systems for the web. In Hinze, R.
and Ramsey, N., editors, Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007, Freiburg, Germany, October
1-3, 2007, pages 141–152. ACM. (Cited on page 64.)

194

http://www.omg.org
http://www.omg.org

Plotkin, G. D. (1975). Call-by-name, call-by-value and the lambda-calculus.
TCS, 1(2):125–159. (Cited on page 153.)

Potel, M. (1996). MVP: Model-View-Presenter the taligent programming
model for c++ and java. Taligent Inc. (Cited on page 144.)

Recker, J. and Strategy, M. (2006). Process Modeling in the 21 stCentury.
BPTrends, May, pages 1–8. (Cited on page 64.)

Richards, M. (1971). The portability of the BCPL compiler. Software - Practice
and Experience. (Cited on pages 9 and 131.)

Richardson, L. and Ruby, S. (2007). RESTful Web Services. O’Reilly. (Cited on
page 143.)

Russell, N., Arthur, van der Aalst, W. M. P., and Mulyar, N. (2006). Work-
flow control-flow patterns: A revised view. Technical report, BPMcenter.org.
(Cited on pages 61 and 63.)

Russell, N., ter Hofstede, A., Edmond, D., and van der Aalst, W. (2005).
Workflow Data Patterns. In Proc. of 24th Int. Conf. on Conceptual Modeling
(ER05), pages 353–368. (Cited on pages 61, 62, and 63.)

Sandholm, A. and Schwartzbach, M. I. (2000). A type system for dynamic
web documents. In POPL, pages 290–301. (Cited on page 41.)

Sarkar, D., Waddell, O., and Dybvig, R. K. (2004). A nanopass infrastructure
for compiler education. In ICFP ’04: Proceedings of the ninth ACM SIGPLAN
international conference on Functional programming, pages 201–212, New York,
NY, USA. ACM. (Cited on page 105.)

Schmidt, D. C. (2006). Model-driven engineering. IEEE Computer, 39(2):25–
31. (Cited on page 69.)

Schwabe, D., Rossi, G., and Barbosa, S. D. J. (1996). Systematic hypermedia
application design with oohdm. In Hypertext 96, The Seventh ACM Conference
on Hypertext, Washington DC, March 16-20, 1996, pages 116–128. ACM. (Cited
on page 42.)

Semenzato, L. (1993). The high-level intermediate language l. Technical Re-
port UCB/CSD-93-760, EECS Department, University of California, Berkeley.
(Cited on page 132.)

Smith, J. (2009). WPF Apps With The Model-View-ViewModel Design
Pattern. http://msdn.microsoft.com/en-us/magazine/dd419663.
aspx. (Cited on page 144.)

Spiewak, D. and Zhao, T. (2009). Scalaql: Language-integrated database
queries for scala. In van den Brand, M., Gasevic, D., and Gray, J., editors,
Second International Conference, SLE 2009, Denver, CO, USA, October 5-6, 2009,
Revised Selected Papers, Lecture Notes in Computer Science. Springer. (Cited
on page 41.)

Bibliography 195

http://msdn.microsoft.com/en-us/magazine/dd419663.aspx
http://msdn.microsoft.com/en-us/magazine/dd419663.aspx

Spinellis, D. (2001). Notable design patterns for domain-specific languages.
Journal of Systems and Software, 56(1):91–99. (Cited on page 1.)

Spinellis, D. and Guruprasad, V. (1997). Lightweight languages as soft-
ware engineering tools. In Proceedings of the Conference on Domain-Specific
Languages, October 15-17, 1997, Santa Barbara, California, USA, pages 67–76.
USENIX. (Cited on page 1.)

Stahl, T., Voelter, M., and Czarnecki, K. (2006). Model-Driven Software Devel-
opment: Technology, Engineering, Management. John Wiley & Sons. (Cited on
pages 116 and 135.)

Stahl, T. and Völter, M. (2005). Model-Driven Software Development. Wiley.
(Cited on page 69.)

Steel, Jr., T. B. (1961). A first version of UNCOL. In IRE-AIEE-ACM ’61
(Western): Papers presented at the May 9-11, 1961, western joint IRE-AIEE-ACM
computer conference, pages 371–378, New York, NY, USA. ACM. (Cited on
pages 9, 113, 121, and 131.)

Suzuki, J. and Yamamoto, Y. (1999). Extending UML with aspects: Aspect
support in the design phase. Lecture Notes in Computer Science, pages 299–299.
(Cited on page 110.)

Tatlock, Z., Tucker, C., Shuffelton, D., Jhala, R., and Lerner, S. (2008). Deep
typechecking and refactoring. In Harris, G. E., editor, Proceedings of the 23rd
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2008, October 19-23, 2008, Nashville, TN,
USA, pages 37–52. ACM. (Cited on page 43.)

ter Hofstede, A., Edmond, D., and van der Aalst, W. (2004). Workflow
resource patterns. BETA Working Paper Series, pages 216–232. (Cited on
pages 61 and 63.)

The Apache Foundation (2007). Velocity User Guide. http://velocity.
apache.org/engine/devel/user-guide.html. (Cited on pages 78, 80,
and 106.)

Thiemann, P. (2002). Wash/cgi: Server-side web scripting with sessions and
typed, compositional forms. In Krishnamurthi, S. and Ramakrishnan, C. R.,
editors, Practical Aspects of Declarative Languages, 4th International Symposium,
PADL 2002, Portland, OR, USA, January 19-20, 2002, Proceedings, volume 2257

of Lecture Notes in Computer Science, pages 192–208. Springer. (Cited on
page 41.)

UCSD (1981). UCSD p-System and UCSD PASCAL Users Manual. SofTech
Microsystems. (Cited on pages 121 and 131.)

Valderas, P., Pelechano, V., and Pastor, O. (2007). A transformational ap-
proach to produce web application prototypes from a web requirements
model. Int. J. Web Eng. Technol., 3(1):4–42. (Cited on page 42.)

196

http://velocity.apache.org/engine/devel/user-guide.html
http://velocity.apache.org/engine/devel/user-guide.html

van den Brand, M., Cornelissen, B., Olivier, P. A., and Vinju, J. J. (2005). Tide:
A generic debugging framework - tool demonstration. Electr. Notes Theor.
Comput. Sci., 141(4):161–165. (Cited on page 131.)

van den Brand, M. G. J., de Jong, H., Klint, P., and Olivier, P. (2000). Efficient
annotated terms. Software, Practice & Experience, 30(3):259–291. (Cited on
page 106.)

van der Aalst, W. M. P., Hofstede, A. H. M. T., Kiepuszewski, B., and Barros,
A. P. (2003). Workflow patterns. Distrib. Parallel Databases, 14(1):5–51. (Cited
on pages 51, 61, and 64.)

van der Aalst, W. M. P. and ter Hofstede, A. H. M. (2005). YAWL: yet another
workflow language. Information Systems, 30(4):245–275. (Cited on pages 6, 49,
and 63.)

van der Sluijs, K., Houben, G.-J., Broekstra, J., and Casteleyn, S. (2006). Hera-
s: web design using sesame. In Wolber, D., Calder, N., Brooks, C. H., and
Ginige, A., editors, Proceedings of the 6th International Conference on Web Engi-
neering, ICWE 2006, Palo Alto, California, USA, July 11-14, 2006, pages 337–344.
ACM. (Cited on page 42.)

van Deursen, A. and Klint, P. (1998). Little languages: little maintenance?
Journal of Software Maintenance, 10(2):75–92. (Cited on page 1.)

van Deursen, A., Klint, P., and Tip, F. (1993). Origin tracking. Journal of
Symbolic Computation, 15(5/6):523–545. (Cited on pages 108 and 131.)

van Deursen, A., Klint, P., and Visser, J. (2000a). Domain-specific languages:
an annotated bibliography. ACM SIGPLAN Notices, 35(6):26–36. (Cited on
pages 1 and 116.)

van Deursen, A., Klint, P., and Visser, J. (2000b). Domain-specific lan-
guages: An annotated bibliography. SIGPLAN Notices, 35(6):26–36. (Cited
on page 135.)

van Wijngaarden, J. and Visser, E. (2003). Program transformation mechan-
ics. a classification of mechanisms for program transformation with a survey
of existing transformation systems. Technical Report UU-CS-2003-048, Insti-
tute of Information and Computing Sciences, Utrecht University. (Cited on
page 90.)

Vdovjak, R., Frasincar, F., Houben, G.-J., and Barna, P. (2003). Engineering
semantic web information systems in hera. J. Web Eng., 2(1-2):3–26. (Cited
on page 42.)

Visser, E. (1997a). Scannerless generalized-LR parsing. Technical Report
P9707, Programming Research Group, University of Amsterdam. (Cited on
pages 1 and 131.)

Bibliography 197

Visser, E. (1997b). Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam. (Cited on pages 30, 42, 45, 74, and 105.)

Visser, E. (2002). Meta-programming with concrete object syntax. In Batory,
D., Consel, C., and Taha, W., editors, Generative Programming and Compo-
nent Engineering (GPCE’02), volume 2487 of Lecture Notes in Computer Science,
pages 299–315. Springer-Verlag. (Cited on pages 71, 79, and 80.)

Visser, E. (2004). Program transformation with Stratego/XT: Rules, strate-
gies, tools, and systems in StrategoXT-0.9. In Lengauer, C. et al., editors,
Domain-Specific Program Generation, volume 3016 of Lecture Notes in Computer
Science, pages 216–238. Spinger-Verlag. (Cited on pages 1, 4, 71, and 77.)

Visser, E. (2005). A survey of strategies in rule-based program transformation
systems. Journal of Symbolic Computation, 40(1):831–873. Special issue on
Reduction Strategies in Rewriting and Programming. (Cited on page 105.)

Visser, E. (2007a). Domain-specific language engineering. In Lämmel, R.,
Saraiva, J., and Visser, J., editors, Generative and Transformational Techniques in
Software Engineering (GTTSE 2007), pages 265–318, Braga, Portugal. Universi-
dade do Minho. International Summer School GTTSE 2007, Pre-Proceedings.
(Cited on pages 15, 42, and 45.)

Visser, E. (2007b). WebDSL: A case study in domain-specific language engi-
neering. In GTTSE, pages 291–373. (Cited on pages 145 and 171.)

Visser, E. (2008). WebDSL: A case study in domain-specific language engi-
neering. In Lammel, R., Saraiva, J., and Visser, J., editors, Generative and Trans-
formational Techniques in Software Engineering (GTTSE 2007), Lecture Notes in
Computer Science. Springer. (Cited on pages 4, 5, 26, 50, 52, 70, 74, 86, 114,
and 118.)

Visser, E., Benaissa, Z.-e.-A., and Tolmach, A. (1998). Building program op-
timizers with rewriting strategies. In Proceedings of the third ACM SIGPLAN
International Conference on Functional Programming (ICFP 1998), pages 13–26.
ACM Press. (Cited on pages 33 and 81.)

Voelter, M. and Groher, I. (2007). Handling variability in model transfor-
mations and generators. In Domain-Specific Modeling (DSM’07). (Cited on
pages 78, 80, 106, and 110.)

W3C (2011). CSS 3 working draft. http://www.w3.org/TR/
css3-roadmap. (Cited on page 168.)

Wan, Z. and Hudak, P. (2000). Functional reactive programming from first
principles. In PLDI, pages 242–252. (Cited on page 172.)

Warmer, J. and Kleppe, A. (2006). Building a flexible software factory using
partial domain specific models. In OOPSLA Int. Workshop on Domain-specific
modeling. (Cited on page 109.)

198

http://www.w3.org/TR/css3-roadmap
http://www.w3.org/TR/css3-roadmap

WfMC (1999). Terminology and glossary, 3rd edition. Document Number
WFMC-TC-1011, Workflow Management Coalition. (Cited on page 49.)

White, S. (2004). Introduction to BPMN. IBM Cooperation. (Cited on page 64.)

Wu, H., Gray, J., and Mernik, M. (2008). Grammar-driven generation of
domain-specific language debuggers. Softw., Pract. Exper., 38(10):1073–1103.
(Cited on page 131.)

Wyk, E. V., Krishnan, L., Bodin, D., and Schwerdfeger, A. (2007). At-
tribute grammar-based language extensions for Java. In Ernst, E., editor, 21st
European Conference on Object-Oriented Programming (ECOOP 2007), volume
4609 of Lecture Notes in Computer Science, pages 575–599, Berlin, Germany.
Springer. (Cited on page 111.)

Zook, D., Huang, S. S., and Smaragdakis, Y. (2004). Generating AspectJ pro-
grams with Meta-AspectJ. In Karsai, G. and Visser, E., editors, Generative
Programming and Component Engineering: Third International Conference, GPCE
2004, Vancouver, Canada, October 24-28, 2004. Proceedings, volume 3286 of Lec-
ture Notes in Computer Science, pages 1–18. Springer. (Cited on page 109.)

Bibliography 199

200

A
Appendix: Consistency Checking in Web
Application Frameworks

Appendix to Chapter 2.

A.1 D ATA M O D E L C O N S I S T E N C Y C H E C K I N G

Web applications typically store data in a database. To simplify data per-
sistence, the three frameworks abstract over database architectures, allowing
developers to define a data model consisting of entities with properties and re-
lationships between these entities. These can be one-to-one, one-to-many, or
many-to-many relationships. In this section we study consistency checks of
entity types, relations, and data validation constraints that may be specified
for the data model.

A.2 C O N S I S T E N C Y O F P R O P E RT Y T Y P E S

M R C
Rails Runtime − −
Seam Compile + +
Lift Compile + +

All three frameworks map their data models to
relational databases by default. In relational
databases, for each column in a table (i.e., each
entity property) an existing type (i.e., a primi-
tive type or the type of another entity) has to be
specified.

In Ruby on Rails, entities, their properties, and types are defined in database
migration scripts. Database migrations create the initial database and apply
data migrations as the application evolves. In the following example, we
define an migration that creates a posts table with three properties: name of
type string, title of type string, and content of type text:

create_table :posts do |t|
t.string :name
t.string :title
t.text :content

end

When a migration creates a property with an undefined type, (e.g. t.strin),
no column is generated in the table for the property, nor is an error reported
during the migration. The error is only detected when the property in ques-
tion is used somewhere else in the application. Depending on the use of the
property this may result in a range of errors, e.g. a NoMethodError is thrown
when rendering an input control for the :name property. The error in does not
lead back to the migration script in which this mistake was originally made,

201

the error is therefore not only unclear, it is also not easily retraceable to the
source of the problem.

In Seam and Lift, data models are defined as annotated Java/Scala classes,
where entity properties are defined as fields. Consequently, when undefined
property types are referenced, a compile-time error is reported by the Java or
Scala compiler. The exact location of the error is clearly marked, and the error
message – while not using the terms “entity” or “property” – is clear.

A.3 C O N S I S T E N C Y O F E N T I T Y R E L AT I O N S H I P S

M R C
Rails Runtime − +/−
Seam Deploy + +
Lift Compile + +

To define relationships between two entities
A and B, the data model must specify a prop-
erty of type B in A and an inverse property
that links entity B back to A. For instance, in
the context of an online discussion board, a
topic has many messages. A Topic entity would therefore define a messages

property, and a Message entity a topic property, modeling the inverse of the
relationship. This inverse property must explicitly specify the nature of this
relationship (one-to-one, etc.).

In Rails, inverse properties are declared using belongs_to, has_one,
has_many and has_and_belongs_to_many calls:

class Topic < ActiveRecord::Base
has_many :messages

end

This example defines a one-to-many relationship from topics to messages. It
implies there must be a Message entity, which has a field named topic_id,
referring back to this topic.

Rails enforces the convention of naming inverse properties by pluralizing
the entity they refer to: i.e., Message becomes :messages. When this conven-
tion is not followed, or when an entity is referred to that does not exist, no
error is reported when the database is initialized or migrated. However, when
the property is used, a NoMethodError is reported, tracing back the error to
wherever the property was used rather than the entity declaration that was
inconsistent.

In Seam, inverse columns are defined using the @OneToMany annotation
(in case of a one-to-many relationship) specifying the inverse property with
the mappedBy attribute:

@OneToMany(mappedBy="auction")
public Set<Bid> getAllBids() {

return allBids;
}

If the mappedBy property does not exist or is misspelled (e.g. as aauction

instead of auction), an exception occurs when the application is deployed.

202

While the actual error message tends to “drown” in an enormous stack trace,
the actual message reported is accurate and specific:

mappedBy reference an unknown target entity property:
org.jboss.seam.example.seambay.Bid.aauction in
org.jboss.seam.example.seambay.Auction.allBids

While no line number or filename is supplied, a class name and property is
supplied, which makes it relatively easy to find.

Lift has no support for persistent inverse properties. Instead, it allows in-
verse properties to be defined using a query:

def entries = Expense.findAll(By(Expense.account, this.id))

Any errors in the inverse property name (Expense.account in this case) are
found at compile time are easy to trace back to the origin of the problem. The
error message is generic, but clear.

A.3.1 Consistency of Data Validation

M R C
Rails Runtime − −
Seam Compile/Deploy +/− +
Lift Compile/Deploy +/− +

Most web frameworks allow devel-
opers to specify data validation con-
straints to validate user input. Exam-
ples of such constraints are constraints
on the length of the input, or requiring
a particular property to be set.

In Rails, validation constraints can be defined in entity classes. An example
is the validates_presence_of construct, which defines that a field must
be set:
class Post < ActiveRecord::Base

validates_presence_of :name
end

Constraint rules are not checked for validity but are still used in the user
interface of an edit form in the application and when the application attempts
to save an input. For example, if a presence constraint is specified for a non-
existent property nam, Rails simply reports that property has not been set (see
Figure A.1). As Rails fails to report an error directed to the developer about
this problem, the message does not provide location information of the source
of the problem and does not clearly state the underlying problem.

In Lift and Seam, property validation is defined using validator annotations
that are mostly checked at compile time. However, certain types of validators,
such as regular-expression validators require a regular expression to be en-
coded as a string. The following Seam example demonstrates this:

@Pattern(regex="ˆ\\w*$", message="not a valid username")
public String getUsername() {

return username;
}

A syntactically incorrect regular expression such as ˆ[\\w*$ is not detected

Chapter A. Appendix: Consistency Checking in Web Application Frameworks 203

Figure A.1 Ruby on Rails validation error

at compile time. Instead, it is detected when the application is deployed,
printing a long stack trace in which a PatternSyntaxException is reported.
While the regular expression in question is printed, no indication is given
about the location of the error.

A.4 U S E R I N T E R FA C E C O N S I S T E N C Y C H E C K I N G

The user interface of web applications is generally implemented using a com-
bination of HTML and CSS. All three frameworks leverage HTML directly
to create the user interface. They do extend HTML with additional tags or
escapes to the framework language. Proper (X)HTML has a strict syntax and
clearly defines how page elements (tags) can be nested. However, browsers
are very liberal when it comes to the interpretation of HTML. Therefore, faulty
HTML code can result in surprising interpretations. By checking the valid-
ity of page elements and element nesting before a page is sent to a browser,
interpretation problems can be avoided.

A.4.1 Usage of Valid Page Elements

M R C
Rails Runtime + −
Seam Runtime + +
Lift Runtime − −

While none of the frameworks check if used
HTML tags are valid, they typically do perform
checks on their own framework-specific exten-
sions to HTML. This section focuses on these
special page elements.

Rails’ default template language ERB does not use standard XML-style tags

204

Figure A.2 Lift exception when opening invalid tag

for defining dynamic page elements, but instead uses escapes to Ruby code.
The following code generates a link to another page:

<%= link_to "My Blog", posts_path %>

Using an undefined linkto page construct (instead of link_to) results in
an undefined method error, instead of reporting an invalid page element. As
Ruby simply checks for general errors instead of a domain-specific ones, a
conceptual mismatch arises when reporting such errors. Still, the error does
pinpoint exactly the line where the error occurs.

Seam uses XML tags to render controls and realize control flow within the
user interface. The following code renders a label.

<h:outputLabel id="UsernameLabel" for="username">
Login Name

</h:outputLabel>

When using an undefined page element, say h:outputLabe instead of
h:outputLabel, the following error is reported when the user interface is
loaded:
/home.xhtml @23,54 <h:outputLabe> Tag Library supports namespace:
http://java.sun.com/jsf/html, but no tag was defined for name:
outputLabe

While it is reported at run-time, the error provides a clear domain-specific
error message and clear location of source of the error.

Lift, like Seam, uses XML tags to define dynamic page elements and page
flow:
<lift:surround with="default" at="content">
<h2>Welcome to your project!</h2>
<p><lift:helloWorld.howdy /></p>

</lift:surround>

Using an undefined element lift:surrond instead of lift:surround can
result in confusing errors as illustrated in Figure A.2. The error appears when
the user interface is loaded, and cannot be traced back to its origin.

A.4.2 User Interface Element Nesting

Chapter A. Appendix: Consistency Checking in Web Application Frameworks 205

M R C
Rails Browser − −
Seam Browser − −
Lift Browser − −

While all three frameworks base their user inter-
face specifications on HTML, they do not check
HTML validity, i.e. the correctness of tags and
their nesting. For instance, when a <td> tag is
used outside a <table> tag, none of the frame-
works report an error. When the page is loaded in the browsers, the invalid
tag is simply ignored, a silent error. Unlike Rails, Lift and Seam do check
whether the defined user interface is a well-formed XML document.

A.4.3 Consistency of References to the Data Model and to Pages

We discuss consistency of references to data model entities and to other pages
in Section 2.2.4.

A.4.4 Consistency of Action and Controller Binding

M R C
Rails Runtime − +
Seam Runtime + −
Lift Runtime − −

To submit information in a form, a target con-
troller or action has to be specified to handle the
action. The three frameworks handle this in dif-
ferent ways.

Rails provides a convenient way to generate
a form at run-time that can be used to create or edit entities, using the
form_for construct:

<% form_for(@post) do |f| %>
...

<%= f.submit ’Update post’ %>
<% end %>

This construct does not explicitly specify an action that should be used when
the form is submitted. Instead, it follows the convention that entity controllers
should have a create action for creating an entity, and an update action to
edit it in case it already existed. An error is reported when submitting the
form for an object for which the controller defines no update action (perhaps
it provides a modify action instead). Rails then reports an unknown action
error: “No action responded to update. Actions: create, destroy, edit, index,
new, show, and modify.” Although no file or line number is provided, the
error message is domain-specific and helpful.

Rails provides additional options when binding a form to an action. One
option is the ability to let the user confirm the invocation of an action, e.g.
when clicking a “Destroy” link. To this end, the :confirm keyword is used.
However, when the :confirm keyword is mistyped (e.g., as :confirmation),
Rails does not detect this in any way. The keyword is simply ignored, resulting

206

in immediate deletion of the entry, without any confirmation:

<%= link_to ’Destroy’, post, :confirmation => ’Are you sure?’,
:method => :delete %>

In Seam, the commandButton element links a form to controller actions:

<h:commandButton id="change" value="Change"
action="#{changePassword.changePassword}"/>

As these elements are part of view templates, they are not checked at compile-
time. Possible errors, such as links to undefined actions, are only detected
at runtime, once the button is used. Using an undefined controller in the
action attribute results in a Seam Debug screen; when scrolling down the
actual exception can be seen:

Exception during request processing:
Caused by javax.servlet.ServletException with message:

"#{changePassword.changePasswor}:
javax.el.MethodNotFoundException:

/password.xhtml @37,91 action=
"#{changePassword.changePasswor}":

Method not found: Proxy to
jboss.j2ee:ear=jboss-seam-booking.ear,
jar=jboss-seam-booking.jar,name=ChangePasswordAction,
service=EJB3 implementing [interface
org.jboss.seam.example.booking.ChangePassword]
.changePasswor()"

The supplied MethodNotFoundException is hardly descriptive or domain-
specific, but the error be traced back to its origin as the filename and line and
column numbers are provided.

A.5 L O G I C C O N S I S T E N C Y C H E C K I N G

The logic of a web application is typically defined in controllers, sometimes
subdivided into actions. Like the user interface part of the web applications,
controllers contain references to other parts of the applications, such as the
user interface and data model. Consistency checking can ensure that these
references are valid and remain valid as an application is changed.

A.5.1 Consistency of Data Model References

M R C
Rails Runtime + −
Seam Compile + +
Lift Compile + +

Controllers use references to the data model to
persists data to the database, to read or write
properties, or to perform queries.

In Rails, references to undefined entity types
are reported as “uninitialized constant” errors
when the code is invoked at runtime. The error exposes implementation de-
tails of the framework and can be confusing to developers, especially since
the framework internally prefixes the entity name with the controller name.

Chapter A. Appendix: Consistency Checking in Web Application Frameworks 207

For instance, when an undefined entity E is referenced from controller C, the
following error is reported: “uninitialized constant C::E”. Still, the accompa-
nying stack trace refers back to the code in which the error occurred, so the
error can be traced back to its source. Nonexistent properties are reported in
a similar fashion, but identified as an “undefined method”.

In Seam and Lift, controllers are written in Java and Scala, which are stat-
ically checked at compile time. References to undefined entity types are re-
ported as “X cannot be resolved to a type”. And non-existing properties in
Scala are reported as “not a member of type X”.

A.5.2 Consistency of Redirects to Pages

M R C
Rails Runtime − −
Seam Runtime − −
Lift Runtime − −

Similar to links in views, it is also common for
controller code to redirect the user to a different
page or controller.

In Rails, redirecting the user to differ-
ent controllers and actions is done using
redirect_to:

redirect_to :action => "index"

When an incorrect action name is used, for example by using "home" in-
stead of "index", an unexpected error occurs when the controller is invoked:
“RecordNotFound” error: “Couldn’t find Post with ID=home.” Apparently,
when an action is not defined, the action name is interpreted as an entity
identifier in some cases. The error is reported as part of the show action of the
controller, but there is no reference to the location of the actual error.

In Seam, redirects to pages are performed by returning the URL as the
return value of an action:

return "/index.xhtml";

Lift has a redirectTo method for this purpose:

redirectTo("/index.html")

Similar to links in views, these redirects are not checked and specifying a
redirect to an undefined page simply result in “404 not found” errors for the
end-user.

A.5.3 Consistency of Data Binding

M R C
Rails Runtime − −
Seam N/A N/A N/A
Lift N/A N/A N/A

Forms can be used to create or modify en-
tities in the data base. By specifying a data
binding between form elements and entity
properties, frameworks can directly inter-
pret the results of a submitted form, creat-
ing or updating an entity.

208

Figure A.3 Rails reports validation errors when making errors in data binding

In Rails, data can be bound to entities by passing the map containing the
HTTP (POST/GET/PUT) request values to the constructor of a new object:

@post = Post.new(params[:post])

However, if a mistake is made in the expression, e.g. by inappropriately using
:get when the form was changed to use a POST request or simply mistyping
submit method, no error is reported. The result is that no data is bound to
the properties of @post at all, often resulting in a validation error and empty
input fields as can be seen in Figure A.3.

In Seam and Lift, controls are attached to an entity property and perform
data binding themselves, they retrieve the value from the property and write
back the value when a new value is entered. Therefore no data binding faults
are possible, other than referring to non-existing properties and entities (dis-
cussed in Section A.5.1).

A.6 A C C E S S C O N T R O L C O N S I S T E N C Y C H E C K I N G

Access control can be used to restrict parts of web application to authenticated
users. Access control rules that depend on the database (as they typically do)
contain data model references that should be checked for consistency. Some
frameworks allow access control rules to be defined separately from the user
interface and controllers. Any bindings to pages and actions should also be
checked for consistency. (We will not discuss these bindings here since they
are treated in very similar to bindings from other parts of the application.)

A.6.1 Consistency of Data Model References M R C
Rails Runtime + −
Seam Runtime - −
Lift Compile + +

Rails uses the before_filter construct to in-
voke a method before actions within a controller

Chapter A. Appendix: Consistency Checking in Web Application Frameworks 209

are invoked:
before_filter :authorize

def authorize
auth_user = User.find_by_id(session[:user_id])
unless auth_user && auth_user.age > 10

redirect_to(:controller => "accessDenied",
:action => "accessDenied")

end
end

Errors are found when the authorization method is invoked, and are reported
with clear indication of the source of the error.

In Seam, access control rules can be defined in a separate rule language:

rule CreateBlog
no-loop
activation-group "permissions"

when
mbr: Member()
acct: MemberAccount(member.memberId == mbr.memberId)
check: PermissionCheck(target.memberId == mbr.memberId,

action == "createBlog", granted == false)
then

check.grant();
end

This DSL is not verified at compile-time. When a property is referred to that
does not exist, e.g. target.memberid instead of target.memberId, the error
is reported at the level of the page, instead of in the rule file: “RuntimeDrool-
sException: Exception executing predicate target.memberid == mbr.memberId.”
A location in the source code is supplied, but this refers to the location where
the problem occurred, not the actual origin of the error: the rule file.

In Lift, access control rules are expressed using Scala expressions, in which
invalid references to the data model are detected at compile time.

210

Samenvatting

M E T H O D E N E N T E C H N I E K E N V O O R O N T W E R P E N
I M P L E M E N TAT I E VA N D O M E I N - S P E C I F I E K E TA L E N

– Zef Hemel –

Software-ontwikkeling komt neer op het vertalen van eisen van gebruikers
naar een computerprogramma — in weze machine-instructies gecodeerd als
1-en en 0-en, die het computerprogramma vormen dat voldoet aan de eisen
van de gebruiker. Deze vertaalslag hoeft echter niet in een keer gemaakt te
worden. Tussen gebruikerseisen en machine-instructies zijn in de loop de
jaren een aantal lagen van abstractie bedacht die het proces versimpelen.

Een programmeertaal is zo’n abstractielaag. Een programmeertaal is een
formele taal waarvan uitdrukkingen door een machinale vertaler (een compi-
ler), te vertalen zijn naar machine-instructies, en daarnaast goed leesbaar zijn
door de (getrainde) mens. Vergeleken met menselijke taal is een program-
meertaal veel beperkter en gestructureerder.

De afgelopen decennia zijn er veel programmeertalen in gebruik genomen,
waaronder C, C++, Java en Python. Dit zijn voorbeelden van algemeen toepas-
bare programmeertalen — programmeertalen die geschikt zijn om elk soort
software te bouwen: van tekstverwerker tot software voor kernreactoren. Ech-
ter, er is ook een ander soort taal: de domein-specifieke taal. Een domein-
specifieke taal is een programmeertaal die zich, zoals de naam al zegt, richt op
één specifiek domein. Zo’n taal is bijvoorbeeld zeer geschikt om bedrijfsadmi-
nistratiesoftware mee te maken, of webapplicaties, of software voor mobiele
telefoons.

Doordat de taal zich op een beperkter domein richt, kan de taal expressiever
gemaakt worden. Het expressiever maken van een taal zie je in de menselijke
taal terug in de vorm van vakjargon. In verschillende bedrijfstakken krijgen
complexe concepten een korte, bondige naam, die iedereen binnen het do-
mein kent. Door het gebruik van jargon wordt de communicatie efficiënter.
Dit is precies het idee achter domein-specifieke talen: door een kleine taal
te ontwikkelen, gebruik makend van het vakjargon van het domein, kun-
nen domeinexperts sneller software ontwikkelen. Omdat deze programma’s
compacter zijn worden er minder fouten gemaakt, en eventuele fouten kun-
nen sneller gevonden en duidelijker gerapporteerd worden omdat de vertaler
meer kennis heeft over het domein.

In dit onderzoek is bekeken hoe dergelijke domein-specifieke talen ontwor-
pen en geimplementeerd kunnen worden. Dit is gedaan aan de hand van
twee talen: WebDSL en Mobl.

211

O N T W E R P

Met name in het kader van webapplicatie ontwikkeling worden veel domein-
specifieke talen gebruikt, talen zoals HTML om de structuur van een webpa-
gina te definiëren en CSS om de lay-out van de pagina te beschrijven. Daar-
naast wordt er vaak gebruik gemaakt van een databank die bevraagd wordt
met nog een andere domein-specifieke taal: SQL. Deze wirwar van verschil-
lende talen zorgt ervoor dat het vinden van fouten lastig is en het systeem
in de praktijk continu getest moet worden — vaak met de hand — om fou-
ten te vinden. In Hoofdstuk 2 beschrijven we een alternatieve aanpak: de
geı̈ntegreerde domein-specifieke taal, waarin alle sub-talen die samen een
groter domein beschrijven, geı̈ntegreerd worden in een grote taal. We laten
we zien hoe hierdoor gehele programma’s, terwijl deze ontwikkeld worden,
automatisch geanalyseerd kunnen worden, waardoor fouten eerder zichtbaar
zijn.

WebDSL is zo’n geı̈ntegreerde taal gericht op het snel kunnen ontwikkelen
van webapplicaties waar data centraal staat. Voorbeelden variëren van een
facturatiesysteem tot een sociaal netwerk. WebDSL kent het jargon van het
webdomein, waardoor WebDSL programma’s door middel van concepten als
pagina’s, templates, om een pagina uit samen te stellen, en entiteiten, om de
datastructuur te definiëren, beschreven kunnen worden. Een domein waar
webapplicaties steeds vaker ingezet worden is bedrijfssoftware. Bedrijfssoft-
ware heeft het als doel het bedrijfsproces te ondersteunen. Dergelijke software
kan al met WebDSL beschreven worden, maar dit vereist nog betrekkelijk veel
code. Hoofdstuk 3 beschrijft daarom een uitbreiding van WebDSL, genaamd
WebWorkFlow, die extra jargon toevoegt om op een compacte manier pro-
cessen te beschrijven. Alhoewel er andere talen bestaan met hetzelfde doel,
ondersteunt WebWorkFlow de beschrijving van de gehele applicatie op een
flexibele manier.

I M P L E M E N TAT I E

Hoofdstuk 4 bekijkt hoe de vertaling van domein-specifieke code (bijvoor-
beeld WebDSL) naar uitvoerbare code (bijvoorbeeld Java) beschreven kan wor-
den. Hiervoor zijn een aantal technieken ontwikkeld waarbij door middel van
modeltransformatietechnieken een vertaler op een nette en schaalbare manier
gestructureerd kan worden.

Een van de voordelen van een domein-specifieke taal is dat deze software
kan beschrijven op een platform-onafhankelijke manier. Daardoor zou een
programma zowel naar, bijvoorbeeld, het Microsoft Windows platform als
het Macintosh platform vertaald kunnen worden. Hoofdstuk 5 beschrijft een
manier om code te vertalen naar veschillende platformen. Het beschrijft hoe
een vertaler zo gestructureerd worden dat het makkelijker wordt code voor
meerdere platformen tegelijk te genereren. De bedachte oplossing heet PIL,
een platform-onafhankelijke tussentaal, die als tussenstap dient.

212

E E N N I E U W D O M E I N

Ten slotte worden in Hoofdstuk 6 de ontwikkelde technieken en methoden
toegepast op een nieuw domein: het domein van applicaties voor moderne
smartphones, zoals de iPhone en Android telefoons. Dit domein kampt met
vergelijkbare problemen als het webdomein: applicaties worden gebouwd
met meerdere domein-specifieke talen die slecht geı̈ntegreerd zijn. Daarom
beschrijft dit hoofdstuk een nieuwe domein-specifieke taal: Mobl. Mobl leent
veel ideeën van WebDSL, maar werkt toch anders omdat de applicatie in zijn
geheel op een telefoon draait in plaats van een machine op het internet, daar-
naast heeft een mobiele telefoon veel beperkingen ten op zichte van een nor-
male computer, bijvoorbeeld een kleiner scherm en een onbetrouwbare inter-
net verbinding. Mobl lost deze problemen op door een aantal reeds bestaande
programmeerparadigma’s op een elegante manier te integreren.

R E S U LTA AT

Naast een aantal wetenschappelijke publicaties en nieuwe inzichten in het ont-
wikkelproces van domein-specifieke talen, heeft het onderzoek geresulteerd
in een substantiële bijdrage aan de ontwikkeling van WebDSL en in de nieuwe
taal Mobl. WebDSL wordt al gebruikt om een aantal nuttige web applicaties te
bouwen, zoals Researchr1 — een applicatie om bibliografie informatie mee te
beheren (o.a. gebruikt voor de bibliografie van dit proefschrift) — en Yellow-
Grass2 — een applicatie om softwareprojecten mee te beheren, o.a. gebruikt
voor veel projecten binnen de onderzoeksgroep. Mobl, een wat jonger project,
heeft inmiddels een enthousiaste groep van meer dan honderd gebruikers
vanuit de industrie. Meerdere bedrijven zijn bezig hun mobiele applicaties te
ontwikkelen met behulp van Mobl.

1http://researchr.org
2http://yellowgrass.org

Samenvatting 213

http://researchr.org
http://yellowgrass.org

214

Curriculum Vitae

Zef Hemel

22 june 1983
Born in Groningen

1995–2001
VWO diploma
Belcampo College in Groningen
Nature & Technology profile

2001–2005
B.Sc. in Computer Science
University of Groningen
Department of Mathematics and Computing Science

2005–2006
M.Sc. in Computer Science
Trinity College, Dublin
Department of Computer Science

2007–2011
Ph.D. in Computer Science
Delft University of Technology
Department of Software Technology

2011–present
Senior Developer
Cloud9 IDE, Inc.

215

216

Titles in the IPA Dissertation Series Since
2005

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Secu-
rity Protocols. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computational
Complexity of Evolving Systems. Fac-
ulty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of
Hybrid Systems. Faculty of Mathe-
matics and Computer Science and
Faculty of Mechanical Engineering,
TU/e. 2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty of
Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking
Timed Automata - Techniques and
Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-06

J. Ketema. Böhm-Like Trees for
Rewriting. Faculty of Sciences,
VUA. 2006-07

C.-B. Breunesse. On JML: top-
ics in tool-assisted verification of JML
programs. Faculty of Science,
Mathematics and Computer Science,
RU. 2006-08

B. Markvoort. Towards Hybrid Molec-
ular Simulations. Faculty of Biomedi-
cal Engineering, TU/e. 2006-09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adapta-
tion of Concerns in a Shared Data Space.
Faculty of Mathematics and Com-
puter Science, TU/e. 2006-11

L. Cheung. Reconciling Nondetermin-
istic and Probabilistic Choices. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Math-
ematics and Computer Science,
VUA. 2006-13

A.J. Mooij. Constructive formal meth-
ods and protocol standardization. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for
Hybrid Systems. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In Ser-
vice Discovery. Faculty of Electrical
Engineering, Mathematics & Com-
puter Science, UT. 2006-17

217

B. Gebremichael. Expressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising In-
terface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Semantics
and Verification of Security Protocols.
Faculty of Mathematics and Com-
puter Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Chan-
nels for Exogenous Coordination of Dis-
tributed Systems: Semantics, Imple-
mentation and Composition. Faculty of
Mathematics and Natural Sciences,
UL. 2006-21

H.A. de Jong. Flexible Heterogeneous
Software Systems. Faculty of Natu-
ral Sciences, Mathematics, and Com-
puter Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for stream-
ing DSP applications. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2007-02

M. van Veelen. Considerations on
Modeling for Early Detection of Ab-
normalities in Locally Autonomous Dis-
tributed Systems. Faculty of Math-
ematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applica-
tions of Process and Program Alge-
bra. Faculty of Natural Sciences,
Mathematics, and Computer Sci-
ence, UvA. 2007-04

L. Brandán Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Sharing
by Presentation. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Trčka. Silent Steps in Transition
Systems and Markov Chains. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-08

R. Brinkman. Searching in encrypted
data. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-09

A. van Weelden. Putting types
to good use. Faculty of Science,
Mathematics and Computer Science,
RU. 2007-10

J.A.R. Noppen. Imperfect Informa-
tion in Software Development Processes.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2007-11

R. Boumen. Integration and Test plans
for Complex Manufacturing Systems.
Faculty of Mechanical Engineering,
TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series of
Empirical Studies about the UML. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-14

T. van der Storm. Component-based
Configuration, Integration and Deliv-
ery. Faculty of Natural Sciences,

218

Mathematics, and Computer Sci-
ence,UvA. 2007-15

B.S. Graaf. Model-Driven Evolu-
tion of Software Architectures. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for
Reasoning with Binding. Faculty of
Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for Video
Streaming in Home Networks. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale:
Understanding the Electronic Voting
Controversy. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-
iomatic Crosscutting Concerns in Em-
bedded Systems. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2008-03

A.M. Marin. An Integrated System
to Manage Crosscutting Concerns in
Source Code. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Fac-
ulty of Mechanical Engineering,
TU/e. 2008-05

M. Bravenboer. Exercises in Free Syn-
tax: Syntax Definition, Parsing, and
Assimilation of Language Conglomer-
ates. Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Verifica-
tion of Optimistic Fair Exchange Proto-
cols. Faculty of Sciences, Division of
Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical En-
gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Com-
puter Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Speci-
fications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-

219

pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-15

E.M. Bortnik. Formal Methods
in Support of SMC Design. Fac-
ulty of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Perfor-
mance Analysis of Data-Independent
Stream Processing Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applications.
Faculty of Mathematics and Com-
puter Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-
structured Data, Theoretical and Exper-
imental Aspects of Pattern Evaluation.
Faculty of Mathematics and Natural
Sciences, UL. 2008-22

R. Brijder. Models of Natural Compu-
tation: Gene Assembly and Membrane
Systems. Faculty of Mathematics and
Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Devel-
opment. Faculty of Mathematics and
Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochas-
tic Time in Process Algebras for Per-
formance Evaluation. Faculty of
Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Pro-
visioning. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Vali-
dating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Systems.
Faculty of Mathematics and Com-
puter Science, TU/e. 2009-04

220

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Appli-
cations. Faculty of Electrical En-
gineering, Mathematics, and Com-
puter Science, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready
for Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Con-
text Sensitive Program Transformation.
Faculty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning
about Java programs in PVS using JML.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Stor-
age Devices. Integration in Energy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-
tems. Faculty of Electrical Engineer-

ing, Mathematics & Computer Sci-
ence, UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Dig-
ital Exchange. Faculty of Math-
ematics and Computer Science,
TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2009-17

C. Kaliszyk. Correctness and Avail-
ability: Building Computer Algebra on
top of Proof Assistants and making
Proof Assistants available over the Web.
Faculty of Science, Mathematics and
Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and
Analysis of Probabilistic Models.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2009-21

R. Li. Mixed-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics
and Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks.
Faculty of Science, UU. 2009-23

221

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty of
Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Fac-
ulty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2009-26

J.F.J. Laros. Metrics and Visualisa-
tion for Crime Analysis and Genomics.
Faculty of Mathematics and Natural
Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Electri-
cal Engineering, Mathematics, and
Computer Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking
Nondeterministic and Randomly Timed
Systems. Faculty of Electrical Engi-
neering, Mathematics & Computer
Science, UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division
of Mathematics and Computer Sci-
ence, VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented
Languages. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2010-04

Y. Wang. Epistemic Modelling and
Protocol Dynamics. Faculty of Sci-
ence, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices
and Probability in Model Checking
Timed Automata. Faculty of Science,
Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML
Modeling on the Quality of Software.
Faculty of Mathematics and Natural
Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of
Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2010-09

D. Costa. Formal Models for Compo-
nent Connectors. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Fac-
ulty of Mathematics and Natural
Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: For-
mal Analysis of Epidemic Protocols.
Faculty of Sciences, Department of
Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of
the Template Enigma: Software Code
Generation with Templates. Faculty of
Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2011-03

L. Astefanoaei. An Executable The-
ory of Multi-Agent Systems Refine-
ment. Faculty of Mathematics and
Natural Sciences, UL. 2011-04

J. Proença. Synchronous coordination
of distributed components. Faculty of
Mathematics and Natural Sciences,
UL. 2011-05

222

A. Moralı. IT Architecture-Based Con-
fidentiality Risk Assessment in Net-
works of Organizations. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-06

M. van der Bijl. On changing mod-
els in Model-Based Testing. Faculty of
Electrical Engineering, Mathematics
& Computer Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis
of Information Leakage in Probabilistic
and Nondeterministic Systems. Faculty
of Science, Mathematics and Com-
puter Science, RU. 2011-09

M. Atif. Formal Modeling and Verifi-
cation of Distributed Failure Detectors.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty of
Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management
for models: Generic methods for model
comparison and model co-evolution.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty of
Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition
Model: Achieving Naturalness in Run-
time Enforcement. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2011-14

M. Raffelsieper. Cell Libraries
and Verification. Faculty of Math-

ematics and Computer Science,
TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow
and Visibility on Triangulated Terrains.
Faculty of Mathematics and Com-
puter Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for
Quality of Service of Component Con-
nectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-17

R. Middelkoop. Capturing and
Exploiting Abstract Views of States
in OO Verification. Faculty of
Mathematics and Computer Science,
TU/e. 2011-18

M.F. van Amstel. Assessing and Im-
proving the Quality of Model Transfor-
mations. Faculty of Mathematics and
Computer Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,
Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection
for Programming Language Grammars.
Faculty of Science, UvA. 2011-21

M. Izadi. Model Checking of
Component Connectors. Faculty of
Mathematics and Natural Sciences,
UL. 2011-22

L.C.L. Kats. Building Blocks for
Language Workbenches. Faculty
of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2011-23

S. Kemper. Modelling and Analy-
sis of Real-Time Coordination Patterns.
Faculty of Mathematics and Natural
Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems.
Faculty of Mathematics and Natural
Sciences, UL. 2011-25

223

A. Khosravi. Optimal Geomet-
ric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2012-01

A. Middelkoop. Inference of Pro-
gram Properties with Attribute Gram-
mars, Revisited. Faculty of Science,
UU. 2012-02

Z. Hemel. Methods and Techniques
for the Design and Implementation
of Domain-Specific Languages. Fac-
ulty of Electrical Engineering, Math-
ematics, and Computer Science,
TUD. 2012-03

224

	Preface
	Contents
	Introduction
	Domain-Specific Languages
	DSLs and the Web
	WebDSL
	Problem statement
	Verification
	Coverage and Abstraction
	Compiler Modularity and Separation of Concerns
	Retargetability
	An Integrated DSL for the Mobile Web
	Research Method
	Origin of Chapters

	Static Consistency Checking of Web Applications with WebDSL
	Introduction
	Causes of Late Failure
	Design for Consistency Checking
	Contributions

	Failures in Web Applications
	Web Application Aspects
	Moment of Failure
	Frameworks
	Case 1: Consistency of References to the Data Model
	Case 2: Consistency of Links to Pages
	Summary

	Framework Design and Fault Detection
	Reflection and Run-time Code Manipulation
	Linguistic Separation
	Limited Static Type Checking
	Run-time consistency checking
	Summary

	Designing for Static Verifiability
	Data Model
	User interface
	Application Logic
	Access Control
	Verifiability versus Flexibility

	Rule-Based Consistency Checking
	Language Definition
	Static Consistency Checking
	Stratego
	Name Resolution
	Type Analysis
	Consistency Checking
	Summary

	Discussion and Related Work
	Consistency Checking Capabilities Integrated Into Languages and Frameworks
	External Consistency Checkers
	Finding Faults by Unit Testing
	Previous Work
	Future work

	Conclusion
	Postscript

	WebWorkFlow
	Introduction
	Contributions
	Outline

	WebWorkFlow by Example
	Transforming Procedures
	Encoding Patterns
	Discussion
	Conclusion
	Postscript

	Code Generation by Model Transformation
	Introduction
	Contributions
	Outline

	WebDSL
	Data Model
	User Interface
	Data Operations

	Implementing WebDSL by Code Generation
	Code Generation by Term Rewriting
	Representing Models and Code with Terms
	Rewrite Rules
	Concrete Object Syntax
	Rewriting versus Template Engines
	Composing Generation Rules

	Transforming Generated Code
	Identifier Composition
	Partial Classes and Methods
	Interface Extraction
	A Revised Pipeline

	Model-to-Model Transformations
	Modules
	Modular Data Models
	Template Definitions
	Deriving User Interface Elements from Types
	Access Control
	Workflow

	Implementing Model-to-Model Transforms
	Local-to-local
	Global-to-local
	Local-to-global

	Transformation Modularity and Extensibility
	Staged Normalization
	Innermost Normalization
	Normalization with Local-to-Global Rules

	Combining Type Analysis and Transformation
	Integrating Type Analysis and Transformation
	Name Resolution
	Type Analysis
	Type Constraints
	Type Analysis during Transformation

	Discussion
	Compilation by Normalization
	Rewriting Tools
	Model Transformation
	Code Generation
	Web Application Generators
	Evaluation
	Future Work

	Conclusion

	PIL
	Introduction
	Contributions
	Outline

	Code Generator Architecture
	Retargeting a DSL Generator
	Adding a Backend to a Generator
	Language Translation
	High-Level Intermediate Languages
	Evaluation

	PIL: A Platform Independent Language
	PIL: Object-Oriented Programming Essentials
	PIL/G: Compositionality of Code Generation
	Developing PIL Back-Ends

	PIL/Platform Interaction
	API Wrapping
	Missing API on Some Platforms
	Semantic Mismatches
	Platform-Specific Glue

	Discussion
	Future Work
	Related Work
	Conclusion

	Postscript

	Mobl
	Introduction
	Contributions
	Outline

	Mobile Web Applications
	Technical Architecture
	Architectural Patterns
	No Integration
	No Abstraction
	Accidental Complexity

	Mobl Architecture
	Integration and Tooling
	Model-View Pattern

	Data Model
	Data
	Logic
	Query
	A Task Manager Data Model

	Reactive User Interfaces
	Declarative User Interfaces
	Data Binding and Reactive Programming
	Implementation
	Reusable Controls

	Navigation
	Multiple screens
	A Task Manager User Interface

	Higher-Order Controls
	Tab Set
	Master-detail

	Styling
	Styling in Mobl
	Theming

	Discussion
	WebDSL
	Related work

	Conclusion
	Postscript

	Conclusion
	Summary of Contributions
	WebDSL and Mobl in Practice
	Research Questions
	Future Work
	Systematic approach
	Evaluation

	Bibliography
	Appendix: Consistency Checking in Web Application Frameworks
	Data Model Consistency Checking
	Consistency of Property Types
	Consistency of Entity Relationships
	Consistency of Data Validation

	User Interface Consistency Checking
	Usage of Valid Page Elements
	User Interface Element Nesting
	Consistency of References to the Data Model and to Pages
	Consistency of Action and Controller Binding

	Logic Consistency Checking
	Consistency of Data Model References
	Consistency of Redirects to Pages
	Consistency of Data Binding

	Access Control Consistency Checking
	Consistency of Data Model References

	Samenvatting
	Curriculum Vitae
	Titles in the IPA Dissertation Series

