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Abstract

Modelling-and-solving paradigms are widely used
to solve combinatorial problems, but comparisons
of these paradigms on identical problem instances
remain scarce and are often incomplete or biased.
As a results, finding the correct paradigm for a
given logic problem can be difficult. In this study,
we evaluate the performance of the Satisfiability
Modulo Theories (SMT) paradigm for solving Hi-
tori puzzles, as part of a larger effort to com-
pare modelling-and-solving paradigms. During the
evaluation, the running time of the solver will be
used as the primary performance statistic. Across
all evaluated encodings, a straightforward encod-
ing using linear integer arithmetic shows the best
and most stable performance. Alternative encod-
ings and redundant constraints generally do not im-
prove performance, often increasing encoding size
or adding unnecessary complexity. Results show
that solver runtime is dominated by puzzle size and
encoding size, with puzzle structure having little in-
fluence. These findings show that SMT is a suitable
paradigm for solving Hitori puzzles, as the rules
naturally translate into a compact encoding without
the need for added complexity or redundancy.

1 Introduction

Logic puzzles are more than just a relaxing pastime or a way
to keep your mind occupied, they provide structured chal-
lenges highly suitable for studying modelling-and-solving
paradigms. Many logic puzzles are at least NP-hard [14],
which means that even small changes in how the problem
is modelled can greatly affect the computational complex-
ity of the problem. For this reason, logic puzzles serve as
valuable benchmarks for analysing individual paradigms and
how modelling choices can influence solver performance, as
well as to provide a common basis for comparing paradigms
against each other.

Hitori is a logic puzzle played on an n x n grid of num-
bers. The goal of the game is to mark tiles as black such that
no number repeats in any row or column, no two black tiles
are adjacent and all remaining white tiles remain connected.
This puzzle is proven to be NP-complete [14], which makes
it a suitable benchmark for evaluating modelling-and-solving
paradigms and the impact of different modelling choices. Hi-
tori is one of many puzzles that can be modelled as a con-
straint satisfaction problem.

The most well-known constraint satisfaction problem is the
Boolean satisfiability problem, or SAT. A SAT-solver aims to
decide whether a formula over Boolean variables can eval-
uate to True by choosing True or False for its variables [6].
However, some problems require determining the satisfiabil-
ity of formulas in more expressive logic, with respect to some
background theory [4]. The research field concerned with the
satisfiability of such formulas is called Satisfiability Modulo
Theories (SMT). Because of its support for richer constraints

compared to SAT, SMT has become a powerful tool for mod-
elling problems such as theorem proving, scheduling, plan-
ning and more [11; 10; 4].

Even though SMT’s performance has been evaluated
in previous studies, direct comparisons between different
modelling-and-solving paradigms on the same problem are
uncommon and can be influenced by the modeller’s exper-
tise in one specific paradigm. To address this issue, a broader
effort is set up with the aim of creating proper comparisons
between modelling-and-solving paradigms.

As part of this effort, this study evaluates the SMT
paradigm by modelling and solving the Hitori puzzle. Our
goal is to understand how modelling choices affect the per-
formance of the solver and to characterize the strengths and
weaknesses of the SMT paradigm when applied to this prob-
lem.

To reach this goal, we build an SMT solver to solve the
Hitori puzzle and use it to evaluate the runtime performance,
characteristics and usability of the paradigm. We aim to an-
swer the following questions:

* How does the size of the SMT encoding and solving per-
formance scale with the increasing Hitori puzzle size?

* Which redundant constraints, including known Hitori
patterns and human-inspired strategies, improve solving
performance?

* How does the differing structure of puzzle instances in-
fluence the solving performance of SMT?

Z3 is an SMT solver developed by Microsoft Research, tar-
geted at solving problems arising from software verification
and analysis [9]. Z3 offers support for all theories required
for our solver, is well documented and supports many pro-
gramming languages, which makes it a suitable choice for
experimenting with different modelling approaches.

This report is structured as follows. We begin by review-
ing background knowledge relevant to our work. We dis-
cuss the Hitori puzzle and its constraints and introduce the
SMT paradigm with a high-level overview. We continue with
presenting several SMT encodings, redundant constraints and
method for filtering difficulty. Finally, we discuss our experi-
mental results and give an answer to our research questions.

2 Related work

In Solving, Generating and Classifying Hitori [24],
Wensveen takes a closer look at human solving strategies for
the puzzle and introduces several solving techniques. These
techniques were used to create a fully rule-based solver and
a solver based on 2-SAT. Whilst the thesis does not go ex-
periment much with solver performance and its scalability,
it does offer useful insights into different kinds of structural
constraints that show up in Hitori instances and provides pat-
terns and strategies that can be implemented as redundant
constraints.

A more implementation-oriented study is the thesis Hitori
Solver by Gander and Hofer [12]. In this work, the authors
combine a collection of patterns into a single multi-stage al-
gorithm. In addition to this algorithm, the thesis also explores



a logical approach by translating Hitori into a satisfiability
problem and solving it using a SAT-solver. Their experiments
show that the size of the SAT formula grows rapidly as puzzle
size grows, making this approach unsuitable for larger puz-
zles. This shows the effect of the size of the encoding and the
importance of carefully modelling expensive constraints like
connectivity.

Solving and generating puzzles with a connectivity con-
straint [23] by Van der Knijff, describes a more general view
on solving puzzles with connectivity constraints. The author
shows several SMT encodings for various logic puzzles, in-
cluding Hitori, and shows how connectivity can be solved
using a ranking-based approach. Whilst this work confirms
that Hitori can be modelled and solved using SMT, it does
not present any experimental results or performance statistics
and does not reflect on the practical use or modelling choices
for the SMT encoding.

Zanteman and Joosten also investigate related modelling
choices for graph properties in Latin Squares with Graph
Properties [26]. Although this work does not describe Hi-
tori directly, it explores SAT and SMT based encodings for
Latin squares with graph properties such as connectivity, trees
and Hamiltonicity. Latin squares share the row and column
uniqueness constraint and the graph structure with Hitori,
making several encodings transferable. The study compares
several SAT and SMT based encodings for various graph
properties and concludes that performance depends strongly
on the modelling choices and problem size.

Even though these studies demonstrate useful SMT encod-
ings, creating a full evaluation of SMT for a comparative
study remains difficult. Existing literature is sparse, often too
specific without exploring alternative encodings or lacks a de-
tailed experimental evaluation. As a result, important aspects
such as the impact of modelling approaches on solver perfor-
mance remain unclear. This paper aims to bridge this gap by
exploring multiple SMT encoding variants and evaluates the
effect of modelling choices on solving performance.

3 Background

In this section, we give relevant background on important top-
ics discussed during this study. We begin with a more detailed
look at the Hitori puzzle and then move on to a high-level
overview of SMT.

3.1 The Hitori puzzle

The Hitori puzzle is a Japanese logic puzzle played on an
n X n grid in which each tile initially contains an integer be-
tween 1 and n. Each tile in the grid can either be whifte and
show its corresponding number, or be marked black and elim-
inate its number from the grid. The task is to create a grid
where each number is unique in its row and column by elim-
inating numbers and satisfying three rules [21; 24]. Figure 1
shows an example of a Hitori puzzle instance before and after
solving.

Hitori rules
Hitori puzzles have three rules that enforce both local and
global structure in the grid. The rules control rows, columns,
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Figure 1: Example Hitori puzzle before (left) and after (right) solv-
ing, from Simon Tatham’s Portable Puzzle Collection [22].

neighbouring tiles and the overall connectivity of the solu-
tion, making Hitori a suitable puzzle for comparing different
modelling approaches. The rules are as follows:

* Uniqueness: All numbers are unique in both their row
and column.

* Adjacency: Black tiles are not allowed to be orthogo-
nally adjacent.

* Connectivity: White tiles must form a single orthogo-
nally connected component.

NP-completeness

Hearn and Demaine show that deciding whether a Hitori in-
stance has a valid solution is NP-complete using a reduc-
tion from Constraint Graph Satisfiability based on planar
AND/OR constraint graphs [14]. This result further moti-
vates the use of Hitori as a benchmark for this study, since
NP-complete problems are known to be heavily influenced
by modelling and encoding choices, especially as the prob-
lem size increases.

3.2 Satisfiability Modulo Theories

Propositional satisfiability (SAT) is the decision problem of
determining whether a formula has a satisfying assignment
or not. However, many applications require determining sat-
isfiability of formulas in more expressive logics [4]. Satis-
fiability Modulo Theories (SMT) addresses this by checking
the satisfiability of first-order formulas with respect to some
background theory [4; 11]. SMT extends SAT by allowing
constraints to be expressed directly using theories such as
arithmetic, arrays, bitvectors, and others, instead of encoding
everything as propositional variables [3; 10]. Modern SMT
solvers typically follow a structure in which a SAT solver
handles the Boolean structure while a dedicated theory solver
reasons about the theory-specific parts of the problem [4].

Theories in SMT

In SMT, a theory constrains the interpretation of the symbols
in a given vocabulary by determining the domain and opera-
tions available [4; 5]. For example, the theory of linear inte-
ger arithmetic includes integer variables together with oper-
ations such as +, —, and relations such as < or > [10]. For
an SMT formula to be consistent with a theory, the interpre-
tation of the symbols must satisfy all constraints imposed by
that theory [10]. SMT formulas are always interpreted with



respect to a background theory and satisfiability depends on
both the Boolean structure of the formula and the underlying
theory [4].

SMT solving strategies

The two most widely used approaches to SMT solving are
the eager and the lazy approaches. In the eager approach, an
SMT formula is translated into an equivalent Boolean for-
mula, encoding all theory specific constraints upfront [4].
This can be very efficient for theories that can be translated
into a compact Boolean formula. However, for more expres-
sive theories, this translation may grow exponentially, lead-
ing to formula blowups [18; 4]. Although fully eager solvers
are less common, modern SMT solvers do apply eager tech-
niques selectively. For example, bitvector constraints are of-
ten handled by a technique called bit-blasting, where they are
reduced to Boolean formulas over individual bits.

Modern SMT solvers most often use the lazy approach,
which avoids upfront translations by combining a SAT solver
with theory-specific decision procedures [4]. In the simplest
form, known as the offline approach, each atom in the input
formula ¢ is simply considered as a propositional variable,
forgetting about the theory and creating the propositional for-
mula ¢* [18]. This formula is fed to a SAT solver, which
either decides if apP is unsatisfiable, which means it is also
theory-unsatisfiable, or it returns a satisfying assignment ;1
[4]. The corresponding set of literals 4 is then checked by
a theory solver. If p is found to be theory-inconsistent, the
clause —p” is added to o and the SAT solver is restarted
on the resulting formula. This approach avoids creating large
SAT formulas and lets the solver check constraints only when
they become relevant, allowing them to scale better for a wide
range of theories [4; 18].

The DPLL(T) architecture

Modern SMT solvers extend the offline approach with sev-
eral additional mechanisms, allowing further cooperation be-
tween the SAT solver and the theory solvers [10]. These
mechanisms define the online variant of the lazy SMT ap-
proach and is often referred to as the DPLL(T) architecture,
which includes:

Early pruning [4; 18]. The theory-consistency can be
checked incrementally, while the assignment is still being
built by the SAT solver through a sequence of Boolean de-
cisions. If the assignment is theory-inconsistent, then all ex-
tensions are also inconsistent. This allows the solver to back-
track and avoid large amounts of unnecessary searches.

T-backjumping & T-learning [4]. If a theory conflict is
detected, the solver can backtrack directly to a point where
the assignment was still theory-consistent, rather then com-
pletely restarting the search [18]. The conflicting clause is
then added either temporarily or permanently to the SAT
solver.

T-propagation [4; 18]. Theory solvers can introduce new
literals that must hold based on the current assignment. These
literals are then propagated by the SAT solver in the same way
as Boolean implications.

4 Approach

This section provides an overview of the encodings and
strategies evaluated during this study. We describe the indi-
vidual encodings, the redundant constraints and the strategy
of finding difficult puzzles. We also give a brief overview of
the generator used to generate the evaluated puzzles.

4.1 Puzzle generator

All puzzles used during our evaluation have been generated
using a manually developed puzzle generator. To generate
new puzzles of any size n, we start by constructing a solution
grid that satisfies all Hitori rules. Once a valid solution is gen-
erated, we fill up the white tiles with numbers using recursive
backtracking, making sure that all numbers are unique in their
row or column. Numbers for black tiles are generated after-
wards, making sure to always copy a number already used in
its row or column. The completed puzzle is handed over to
a solver which checks for a unique solution. If the puzzle is
not solvable or the solution is not unique, the entire process
starts again. A proof of completeness for this generator can
be found in Appendix C.

4.2 SMT modelling Strategy

This section describes seven encodings that have been devel-
oped during this study. We start by giving an overview of the
initial encoding that was developed and describe how each of
the Hitori rules was modelled for this encoding. We then in-
troduce four alternative encodings derived from the initial en-
coding, each developed by reformulating a single Hitori con-
straint. Finally, we describe two encodings that make use of
alternative theories from the initial encoding.

In these encodings, we use the symbols black; ; and
white; ; to denote whether the tile (¢, j) is marked black or
white respectively. Consequently:

—\blacki,]— = white,-’j and ﬂwhitem- = blackm-
We further use the symbol neighbours; ; to represent the set

of orthogonally adjacent neighbours for the tile (¢,7) and
num; ; to represent the number of that tile.

Initial encoding

The initial encoding involved encoding the Hitori rules us-
ing linear integer arithmetic. This version takes inspiration
from the approach used by van der Knijff [23] and the Su-
doku solver implementation as described in Z3Py Guide [15].
Latin Squares with Graph Properties [26] also provided valu-
able insights on a ranking-based approach to graph connectiv-
1ty.

Uniqueness rule: A constraint for the uniqueness rule is
easily implemented as it is similar to that of Sudoku or Latin
square solvers. However, since we are not placing numbers
on the grid, simply checking for distinct numbers as is done
in the Z3Py Guide [15] or SAT/SMT by Example [25] is not
appropriate. Instead, we create a pairwise encoding by im-
posing the following constraints on each row 4:

Vie{0,...,n—1},
vjed{0,...,n—2},
Vke{l,...,.n—1}, j<k:

num; ; = num; j = black; ; V black; j.



The same constraints are added to each column by swapping
the indices accordingly.

Neighbour rule: To ensure that no orthogonally adjacent
tiles are both marked black, we add a constraint for each pair
of neighbouring tiles. To avoid adding redundant constraints,
we only consider each pair once for the forward tiles to the
right and below each tile:

Vi, je{0,...,n—1}:
i+1<n = —(black; ; Ablack; 1),
j+1<n = —(black; ; Ablack; ;1)

Connectivity rule: The connectivity rule is the most diffi-
cult rule to model. We follow the ranking-based connectivity
encoding as described by Van der Knijff and by Zantema and
Joosten [23; 26]. In this approach, each tile (¢, j) is assigned
an integer rank rk; ; according to the following rules:

» Exactly one white tile is marked as the root and is as-
signed rank 0.

o All tiles that are marked black have rank —1.

¢ All non-root white tiles must have a rank > 0.
Then, for all ¢,5 € {0,...,n — 1}:

white; ; A —root; ; = 3 (i, j') € neighbours, ; |

whitei/J/ A rkigj/ < I‘ki,j

Where root; ; denotes whether tile (¢, j) is the chosen root or
not.

This implementation creates a path such that for any white
tile, we will always be able to move to a neighbouring tile
with a lower rank until we end up at the root. A path like
this exists for all white tiles if and only if all white tiles are
connected in a single connected component, thus enforcing
the connectivity rule.

Alternative encodings

As an alternative to the pairwise encoding for the equality
constraint, we implemented a counting-based variant using
the AtM ost assertion, named qf_ia_alt_u. For each row i
we add the following constraint:

Vie{0,...,n—1}, Vo e {l,...,n}:
Z whitem— é 1

{j | num; ; = v}
The same constraint is added to each column by swapping the
indices accordingly.

We further experimented with a small rewrite of how we
keep track of the root tile in the ranking connectivity ap-
proach. In this encoding, named qf_ia_alt_c, we introduce
a grid of Boolean variables with root; ; indicating whether a
tile (4, 7) is the root. This allows us to refer to the root directly
in the constraints, rather than comparing indices.

An alternative to the connectivity approach was imple-
mented using a tree-based method inspired by Zantema and
Joosten [26], named qf_ia_tree_c. By creating a spanning
tree, we create a single connected component that satisfies the
connectivity constraint. We assign a depth dep, ; and orthog-
onally adjacent parents prnt; ; to each tile (i,7) and enforce
the following rules:

 Exactly one tile is marked as root.

 All tiles that are marked black have depth —1, the root
has depth 0 and no parent.

* Every non-root white tile (¢, j) has exactly one orthogo-
nally adjacent white parent with smaller depth:

V(i) 3=1 (¢',5') € pmt, ; : dep;, ;, < dep, ;

Lastly we implemented an encoding named
qf_ia_external, in which we only use the unique-
ness and adjacency constraints to find a candidate solution.
This candidate is checked for connectivity outside of the
solver using Breadth-First Search (BFS) and if connectivity
is not satisfied, a new constraint is added to block the current
candidate. The solver retries and repeats this process until a
valid solution is found.

Alternate theories!

To compare the effect of the underlaying theory on solv-
ing performance, we implemented a bitvector-based variant
called qf_bv. The neighbour and uniqueness constraints
are purely Boolean and therefore translate directly without
modification. However, The connectivity constraint makes
use of inequality operations such as < and must be rewrit-
ten in terms of bitvector comparisons. Replacing the inte-
ger ranks for bitvector ranks removes the use of the linear
integer arithmetic theory in our solver and enables the use of
bit-blasting, potentially improving performance due to the ea-
ger SAT-based solving properties of the bitvector theory [10;
4].

We also implemented a variant that uses only Boolean
logic, without any additional theories, called qf_bool. A
Boolean encoding is already been given in Hitori Solver [12],
where the authors show that this approach quickly becomes
inefficient for large puzzle sizes. For this reason, we imple-
mented an alternative Boolean encoding, only rewriting our
connectivity constraint.

With the gf_bool encoding, we aim to visit every white
tile within n2+1 steps using BFS, starting from a chosen root.
We mark a tile (4, j) as visited in step k by setting visitedy, ; ;
to True. The encoding is formulated as follows:

Vk<n?+1,Vij €{0,...,n—1}:
ViSitedk’i’j & ﬁblacki,j A\
(visitedy—1,;,; V 3 (p,q) € neighbours, ; : visitedy_1,5,¢)

The connectivity constraint is satisfied if all white tiles are
visited at k = n? + 1.

4.3 Redundant constraints

In an attempt to improve previous encodings, we imple-
mented a number of redundant constraints. These constraints
do not restrict the solver in any way, but aim to reduce the

'ChatGPT was used as a supportive tool for reflecting on alter-
nate theories and developing the bitvector encoding. More informa-
tion on the use of ChatGPT can be found in Section 6.2



Table 1: Overview of all redundant constraints implemented and evaluated in the SMT encoding.

Every white tile must have at least one orthogonally adjacent white neighbour.
A corner white tile may not be isolated by surrounding black tiles.
Three equal orthogonally adjacent tiles in a row or column force the middle tile to be white and

Two equal tiles with exactly one tile between them force the middle tile to be white.
Corner pattern with three equal tiles that forces a specific white/black assignment to prevent

A 2 x 2 block of equal tiles in a corner forces a specific white/black assignment to prevent

Border pattern on three stacked equal pairs that determine a number of forced white tiles.
Border pattern on two stacked equal pairs that determine a number of forced white tiles.
Prevents a white tile at the border from being isolated by surrounding black tiles.

Border Pattern that forces a black tile in order to avoid isolation of a white tile.

Every row and every column must have at least | 5 | white tiles.

Every row and every column must have at most [ % | black tiles.

An orthogonally adjacent equal pair forces all other occurrences of that value in the same row

An equal pair threatening to isolate a tile forces all other occurrences of that value in the same

Short Name Description
WN White Neighbours
cC Corner Close [13]
ST Sandwich Triple [13; 12]
the outer two tiles to be marked black.
SP Sandwich Pair [13]
TC Triple Corner [13; 12]
isolation.
QC Quad Corner [13; 12]
isolation.
TEP Triple Edge Pair [13; 12]
DEP Double Edge Pair [13; 12]
CE Close Edge [13]
FDE Force Double Edge [13] Border pattern that forces a tile to be white to avoid isolation.
BC Border Close [12]
LW Least Whites
MB Most Blacks
PI Pair Isolation [13; 12]
or column to be black.
CI Close Isolation [12]
row or column to be black.
WB White Bridges

Each pair of adjacent rows has at least one pair of vertically adjacent white tiles (and similarly

for columns).

size of the search space explored by the solver. Most con-
straints are based on common Hitori patterns and human solv-
ing strategies as described in Hiftori solver [12] and on Men-
neske.no, whilst some constraints aim to strengthen the con-
nectivity constraint.

Table 1 shows a summary of the names, abbreviations and
descriptions of all redundant constraints that were evaluated
for this study. All constraints were encoded directly in Z3 as
additional constraints using only Boolean assertions, mean-
ing that all constraints can be added to any encoding without
changing the underlying theory. A full overview of the redun-
dant constraints is found in Appendix D.

4.4 Puzzle difficulty

Instead of generating a large number of puzzles with differ-
ent structures, we measure the influence of puzzle structure
by filtering puzzles that are difficult for our solver to han-
dle. However, determining puzzle difficulty is a complicated
task. We used two methods to classify difficult puzzles. The
classifications resulting from these two methods are then used
to analyse whether and how puzzle structure differs between
difficult and non-difficult puzzle instances.

Our first filtering method relies on solver running time.
Runtime can be a unreliable statistic due to environmental
noise, but we reduce this by solving each puzzle several times
and combining the runtimes into a single value using the me-
dian runtime. We filter puzzles based on a threshold relative
to the median runtime and the interquartile range (IQR), such
that only puzzles with substantially longer runtimes are clas-
sified as difficult.

Our second approach relies on Z3’s internal statistics
to calculate an effort-score’ and filter using an IQR-based
threshold. These statistics are not specifically documented
in the Z3 documentation and thus must be handled with care.
However, prior community discussions® in combination with
the source code can be used to create a better understanding
of several statistics.

For each puzzle instance we compute a effort-score based
on a weighted sum of statistics. The statistics used are
branching decisions with weight 1.0, the number of conflicts
found in branches with a weight of 0.7 and the number of
propagations with weight 0.5. These three statistics all relate
to the DPLL(T) algorithm used by Z3 and show an indication
of the solving effort required to explore the search space.

The statistics and weights used in the effort-score have
been selected through analysing and exploring various op-
tions. We evaluated several statistics and analysed how these
differed in puzzles labelled as hard versus non-hard. In addi-
tion, we analysed several ratios between statistics, such as the
ratio of propagations per conflict. These ratios provided addi-
tional insights on the differences between hard and non-hard
puzzles and were used as a reference to adjust weights.

2ChatGPT was used as a supportive tool for suggesting candidate
statistics, weights and analysis approaches. All evaluations were
performed manually and the final weight distribution was decided
by us. More information on the use of ChatGPT can be found in
Section 6.2

3Community discussions on interpreting Z3 statistics:
https://stackoverflow.com/questions/18491922/,
https://stackoverflow.com/questions/45457131/,
https://stackoverflow.com/questions/17856574/



S Experimental Setup and Results

All encodings described in section 4.2 have been imple-
mented and evaluated using Python 3.13.2 and Z3’s Python
implementation using the z3-solver (4.15.4.0) package.
Test sets were generated using the collaborative generator and
consisted of 150 puzzles for each n € {5,...,25} for Sec-
tions 5.1 and 5.2, 5000 puzzles of n = 8 for Section 5.3 and
50 puzzles for each n € {5,10,15,...,50} for Section 5.4.

Several encoding variants as described in Section 4.2 have
been implemented and experimented with. We will be refer-
encing the redundant constraints by their abbreviations shown
in table 1. We further evaluate encodings implemented in sev-
eral SMT theories, which are in the theory of linear integer
arithmetic (qf_ia), the theory of bitvectors (qf_bv) and us-
ing only Boolean constraints (qf_bool). The evaluated alter-
native encodings are referenced by their name as described
in Section 4.2, which are qf_ia_alt_u, gf_ia_alt_c,
qf_ia_tree_cand qf_ia_external. The qf_ia encoding
is used as the baseline encoding for the experiments.

Runtime is the primary performance statistic used in the
experiments. Runtime is measured from solver initialization
up until a result is returned. To reduce the effect of environ-
mental noise, each encoding is run three times and the result-
ing median is used as its runtime value. To prevent extreme
runtime spikes, a timeout of 10 seconds was enforced on all
solvers. If a solver instance times out, we follow the PAR2
method, where a penalized average runtime of twice the time-
out value is used for the runtime of this instance.

5.1 Encoding size and performance

RQ1: How does the size of the SMT encoding and solving
performance scale with the increasing Hitori puzzle size?

For this question we experiment with all encodings and the
evaluated runtime and encoding size. To compare all encod-
ings equally, regardless of theory used, we create a consistent
theory-independent indicator for the encoding size by count-
ing the number of SMT variables and assertions created dur-
ing the initialization of the constraints. These statistics are
useable across theories and define the formula that Z3 must
parse, thus forming a useful representation of the encoding
size. Figure 2 shows the runtime and encoding size by puzzle
size for all encodings evaluated for this experiment.

For all encodings, runtime shows strong correlation with
encoding size, with Spearman’s correlation coefficients of
p > 0.98 for all solvers except qf_ia_external, which
shows a slightly lower p of 0.906. Across theories, qf_ia
shows the best runtime performance. At n = 25, qf_bv
shows a slow down of 8.72x compared to qf_ia, whilst
qf_bool is roughly 38.20x slower at n = 13 before it starts
timing out.

The qf_ia-based variants compare similarly or worse
compared to the qf_ia encoding. qf_ia_external shows
a large increase in runtime at lower puzzle sizes of up to
5.12x, but rapidly slows down before consistently timing out
atn = 21.

Variability is calculated using a relative IQR ((¢3 —
ql)/median) per puzzle size and averaged over all avail-
able sizes. For encodings that are not able to solve all sizes
within the timeout limit, the variability is calculated only
over sizes that it is able to solve. This means that vari-
ability for qf_bool is calculated up to n = 13 and for
qf_ia_external up ton = 21.

Even though qf_bool times out early, it shows the low-
est relative IQR of 0.0383 within its viable range. This is
followed by qf_ia and its variants, ranging from 0.0667 to
0.131. gf_bv shows a much larger variability of 0.304, while
gf_ia_external is the least stable with a relative IQR of
1.79.

To estimate growth by puzzle size, we fit a linear model to
the logarithm of the median runtimes as a function of puzzle
size: log(median runtime(n)) ~ a - n + b. All log median
runtimes show a strong linear fit with B2 > 0.96.

For LIA-based encodings, the baseline encoding shows the
slowest growth with a slope of a = 0.1469, closely followed
by qf_ia_alt_u (a = 0.1496). The variants qf_ia_alt_c
(0.1771) and qf_ia_tree_c (0.1736) show slightly steeper
growths with qf_ia_external showing the largest growth
with a slope of a = 0.4177. The encodings based on alter-
native theories show the worst scaling overall, with slopes of
a = 0.2294 for gf_bv and a = 0.4595 for qf_bool.

Discussion
The results indicate that runtime strongly correlates with en-
coding size, with only qf_bv and qf_ia_external show-
ing notable additional influences as well. The qf_bv encod-
ing likely suffers from additional overhead from the bitvector
theory, while qf_ia_external’s guessing-based approach
scales badly as search space grows. The gqf_ia encod-
ing shows the best and most stable performance across all
evaluated puzzle sizes, with the alternative variants showing
slightly worse scaling.

Overall, these results suggest that creating a compact en-
coding and aligning the underlying theory with the Hitori rule
structure provides the best solver performance.

5.2 Redundant constraints

RQ2: Which redundant constraints, including known Hitori
patterns and human-inspired strategies, improve solving per-
formance?

For this experiment we use 16 redundant constraints added
individually on top of the qf_ia encoding. We use the
Wilcoxon signed-rank test* to calculate p-values between
each constraint and the baseline for each tested puzzle size.
We then apply the Holm-Bonferroni* method with a = 0.05
for each constraint to identify which puzzle sizes show statis-
tically significant changes.

Using these methods, CE, WB, WN and LW are revealed to
significantly slow down the encoding for all evaluated puzzle
sizes. PI and SP are the only constraints showing significant

*ChatGPT was used as a supportive tool for evaluating statistical
methods to use in the experiments. All methods are manually veri-
fied to ensure suitability for the data and goals of this study. More
information on the use of ChatGPT can be found in Section 6.2
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Figure 2: Median runtimes and encoding sizes by puzzle size for all evaluated encodings

speed-ups compared to the baseline for sizes n > 18. All
other constraints show a mixture of either no significance or
a significant slowdown, but never a significant speed-up.

CE, WB, WN and LW also show the largest average increase in
encoding size by up to 12%. Most other constraint encodings
only show a slight increase in encoding size.

Even though statistically significant, the actual speed-ups
for PI and SP are minimal, with a median increase of 1.03 x
and 1.02x at n = 25.

When applied to the qf_ia_external encoding, MB, LW,
WN, CE and CC show significant speed-ups for almost all eval-
uated puzzle sizes. For LW, MB, WN, the median speed-up at
n = 25 are 15.2%, 14.7x and 34.7x respectively. The CE
and CC constraints show smaller, but still significant improve-
ments, with maximum speed-ups of 2.53x at n = 20 and
1.78x at n = 12. Other redundant constraints show either no
statistically significant effects or small but significant slow-
downs.

Discussion

Redundant constraints did not add much in terms of perfor-
mance for a complete encoding of the Hitori rules. While
these constraints aim to strengthen the existing encoding,
such constraints are already implied by the full rule set. As
a result, redundant constraints mainly increase encoding size
and generally decrease performance. However, when a spe-
cific Hitori rule is omitted, constraints targeting this missing
rule become highly effective. This indicates that truly redun-
dant constraints offer little benefit for strengthening encod-
ings, but such constraints can be used to compensate for miss-
ing structural information, in which case they are no longer
redundant.

Overall, these results show that SMT can effectively handle

the full Hitori rule set without requiring additional modelling
to increase performance.

5.3 Puzzle structure

RQ3: How does the differing structure of puzzle instances
influence the solving performance of SMT?

We classity difficult puzzles using two criteria according to
the approach described in section 4.4. Puzzles are identified
as outliers using an IQR-based threshold of Q3+ 1.5 - IQR.

Runtime-based filtering classifies 79 puzzles as hard out-
liers, whereas the effort-based method identified 140 hard
puzzles. Only 8 puzzles are classified as hard by both
runtime- and effort-based criteria.

The structural properties of puzzles in the runtime-hard and
effort-hard sets are compared against non-hard puzzles us-
ing the Mann-Whitney U test* and resulting p-values are cor-
rected using the Benjamini-Hochberg* method. Puzzle prop-
erties that are analysed are the number of black tiles in the
solution (BT), adjacent duplicates (AD), triple adjacent dupli-
cates (TAD), non-adjacent duplicates (NAD) and duplicates
in both row and column (RCD).

The runtime-hard set shows no significant differences
against the baseline set. The effort-hard set however, shows
significant differences for the NAD, RCD and BT properties.
The direction of these differences were all negative, indicat-
ing lower values for each of these properties. Table 2 shows
a summary of corresponding mean values and the correlation
between solver effort and runtime.

For all puzzles, Spearman’s correlation coefficient shows
weak to moderate correlation between solver effort and the
properties that differ significantly in the effort-based analysis.
Solver runtime shows no meaningful correlation with any of
the evaluated structural properties.



Table 2: Structural properties for baseline, effort-hard
and runtime-hard 8 x 8 puzzles, displaying the average
occurrences of structural properties and their correlation
coefficients with solver effort and runtime. Significant
differences are highlighted in bold

Mean occurrences Spearman’s p

Feature

baseline effort runtime effort runtime
BT 182 17.7 18.3 -0.328 0.001
AD 8.3 8.1 8.4 -0.007 0.018
TAD 0.2 0.3 0.4 -0.003 0.016
NAD 19.2 18.2 19.1 -0.126 0.005
RCD 15.0 14.2 14.8 -0.093 0.027

Discussion

Puzzle structure shows little correlation with solver runtime.
Although effort-based filtering is able to identify puzzles that
differ significantly in certain puzzle properties, the correla-
tion between these properties and the effort-score is weak.
Furthermore, puzzles identified using runtime-based filtering
show no meaningful correlation with any structural proper-
ties. This suggests that structural puzzle features are insuf-
ficient indicators of solving difficulty and have little impact
on solver performance compared to puzzle size and encoding
size.

5.4 Paradigm comparison

A benchmark was run to compare the runtime performance of
solvers based on several modelling-and-solving paradigms:
Logic Programming (Prolog), Integer Linear Programming
(Gurobi), Satisfiability Modulo Theories (Z3), Constraint
Satisfaction Problem (Pumpkin) and Answer Set Program-
ming (ASP). Figure 3 shows the median runtimes per puz-
zle size for each paradigm. Pumpkin and ASP achieve the
lowest runtime and scale well with large puzzle sizes. Z3
displays moderate runtime scaling, with runtime increasing
more rapidly with larger puzzle sizes. Prolog and Gurobi
show poor scalability, reaching the timeout limit for relatively
small puzzle sizes.

Discussion

While this benchmark provides a useful comparison, it should
be handled with care. A fully fair comparison between
paradigms is difficult, as the solvers not only differ in mod-
elling strategies but also in implementation languages and
specific functionalities. As a result, this benchmark should
be seen as an indication rather than a definitive ranking of
paradigms.

6 Responsible Research

This study does not involve human participants, personal data
or data collected from external sources as all puzzles and data
used in this study is generated by us. Because of this, ethical
questions related to privacy, consent or data collection are not
applicable. Instead, responsible research relevant to this study
are the reproducibility and the use of Large Language Models
(LLMs).
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Figure 3: Median runtimes by puzzle size for all solvers

6.1 Reproducibility

To ensure full reproducibility of our work, all source code
is publicly available in a GitHub repository®>. All group-
related work, such as the puzzle generator, can be found
in separate repository®. The main repository contains a
requirements.txt file specifying all packages and version
used during experimentation, allowing the creation of a pre-
cise copy of the experimental environment.

All scripts used in the experiments are included in the
source code. Solvers are initialised using a seed based on the
input command. This allows exact replicas of experiments to
be made by using the same command to run it.

6.2 LLM usage

LLMs were used during certain parts of this project as a sup-
porting tool. We used a paid version of ChatGPT, which al-
lowed access of GPT-5.1/5.2 Thinking.

ChatGPT was used as a sparring partner to obtain feedback
and reflect on ideas, to clarify concepts and suggest poten-
tial alternative directions. All responses generated by Chat-
GPT were carefully fact-checked using existing literature and
external sources. Suggestions made by ChatGPT were not
adopted without careful consideration and were evaluated us-
ing our own understanding before being explored further or
rejected.

ChatGPT was used to assist in writing parts of the text. A
draft text was used in the prompt to request feedback and sug-
gestions. No responses generated by ChatGPT were copied
into the main text. Instead, responses were carefully exam-
ined and used to iteratively improve the draft.

At no point was ChatGPT used to replace our own critical
thinking or decision-making. To make sure of this, we made
sure to formulate and experiment with our own ideas first,
before consulting ChatGPT. Appendix E describes the LLM
usage and prompts used during the study in more detail.

>https://github.com/RobinRietdijk/CSE3000Q2_SMT
®https://github.com/sappho3/Thesis-Hitori-shared/tree/
a2eb9006ef758783665ef2287a0dbf1f0d555641


https://github.com/RobinRietdijk/CSE3000Q2_SMT
https://github.com/sappho3/Thesis-Hitori-shared/tree/a2eb9006ef758783665ef2287a0dbf1f0d555641
https://github.com/sappho3/Thesis-Hitori-shared/tree/a2eb9006ef758783665ef2287a0dbf1f0d555641

7 Conclusion and Future Work

This study investigated the suitability of SMT for solving Hi-
tori puzzles by evaluating several encodings using Z3. The
goal was to evaluate how modelling choices, redundant con-
straints and puzzle structure impacted solver performance as
well as to analyse the strengths and weaknesses of SMT for
solving Hitori.

Overall, our findings show that SMT is a viable method for
solving Hitori puzzles of all evaluated sizes (up to n = 25).
The Hitori rules can be naturally expressed using their un-
derlying theories in SMT and a complete translation of these
rules requires no additional modelling to achieve stable per-
formance. Across all evaluated encodings, solving perfor-
mance was primarily influenced by encoding size and puzzle
size, with puzzle structure having little impact. The results
highlight the effectiveness of SMT in handling the base set of
Hitori rules and suggest that compact encodings implement-
ing these rules are most effective, without needing additional
modelling complexity or specific solving strategies. While
other solvers may achieve better performance, SMT offers a
strong balance between expressiveness, simplicity and solver
stability.

During this study, Z3 and its theory-specific configuration
options have not been explored due to scope limitations. Fu-
ture work could investigate the influence of these options on
the performance of the encodings used in this study. Addi-
tionally, evaluating our encodings using other SMT solvers
could provide further insight into the general SMT paradigm
and its behaviour.

Finally, since this work is part of a larger effort to-
wards making proper comparisons between constraint-
solving paradigms, future work includes studying and eval-
uating other paradigms on the same problem. These studies
can then be combined to make a systematic comparison be-
tween various modelling-and-solving paradigms.
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B Literature review

These are the unedited notes taken during the literature review
done at the start of the project. Two paradigms were chosen
to review and the aim was to find a number of useful sources,
create a high-level understanding of the paradigm, find re-
lated research, compare the paradigms and think of problems
to explore for both paradigms.

B.1 Logic Programming with Prolog

Logic programming works on the principle of using logic to
represent knowledge and using deduction to solve problems
by deriving logical consequences. Instead of writing explicit
algorithms, we create a database filled with facts and rules
about the problem, the knowledge base [17; 2; 20].

Relational Programming

Logic programs define relations, not functions like typical
programming. This means that we can query a statement
in any direction. Let’s say we have the relation Siblings(X,
Y) :- Mother(X, Z), Mother(Y, Z). We can query this re-
lation to solve for either X, Y or Z based on the given
facts. This principle is one of the core things that sepa-
rates logical programming from other paradigms. Because
predicates define relations instead of functions, the same
Prolog rule can be used to generate, search or validate a
query based on the way the variables are instantiated [1; 8;
201.

To derive an answer from a given query, logic program-
ming uses resolution through unification, a core concept in
LP [1; 19].

Unification

The problem of deciding whether an equation between terms
has a solution is called the unification problem. Unification
is used on resolution to match the selected goal with the head
of a clause and to determine the variable bindings needed to
further the derivation. In typical implementations, unification
runtime is near linear in terms of input size [1; 19].

Resolution

In order to infer an answer from a query, resolution is used.
There are different variations of resolution, but for Prolog,
the SLD-resolution principle is used. Resolution works by
negating the query and making it into a goal. During each step
of resolution, the program will try to unify the current goal to
either a fact, or the head of a rule in our knowledgebase. If the
goal is matched to a rule, a new (set of) subgoal(s) is created
and resolution will continue. Resolution finished if either the
set of goals is empty, proving the query, or if no rules apply
to the current subgoal, thus failing the query [19].

Resolution-based proof procedures can be implemented
in different ways: backwards reasoning approaches such as
SLD-resolution, used in Prolog, or forward reasoning ap-
proaches such as hyper-resolution.

SLD-Resolution is a complete proof procedure in theory,
but Prolog’s implementation has some major downsides. Pro-
log implements SLD-resolution using a leftmost selection
rule and depth-first search with backtracking. This choice of
implementation means that the solver can slow down runtime

by proceeding into a long path or even completely loop in an
infinite path.

Ordering of rules matters, making optimizing a solver a
tedious job as the knowledge base grows in size.

Closed World Assumption & Negation as failure

The Closed World Assumption is the principle that assumes
that every known possibility is listed and anything not prob-
able is false. This allows us to draw negative conclusions
based on the lack of evidence. However, this does not al-
ways work. We cannot always decide if we can use this
rule, since a ruleset might loop. This is why a somewhat
weaker version of CWA is often implemented. This weaker
version only assumes the opposite is derivable from a query
iff there exists a finite failed resolution tree. This is called
negation as failure and is one of the most important fea-
tures of modern day Prolog, as it makes it nonmonotonic.
Negation as failure extends the expressive power of logic
programming beyond Horn-clause monotonic reasoning [2;
19].

Prolog

Prolog is the first logic programming language, made by
Kowalski and Colmerauer. Modern day prolog uses a
straightforward case of logic programming where informa-
tion is expressed by means of Hornclauses and deduction is
performed by backwards reasoning embedded in resolution.
Prolog programs are simple just knowledge bases, collections
of rules and facts which describe some collection of relations
that we find interesting [17; 2; 8].
Prolog operates with the following execution strategy:

* Goal: The program evaluates the leftmost goal first using
SLD-resolution.

* Rule selection: Top to bottom
 Search Strategy: Depth-first search, backtracking

This means that Prolog is considered to be operationally in-
complete

The execution strategy means that the order of your facts
and rules matters. Using a different order can speed up or
slow down your runtime on specific problems, or make it loop
altogether. It is a good idea to experiment with this and to
experiment with different types of problem instances to check
the performance.

SWI-Prolog

SWI-Prolog is a well maintained open source implementa-
tion of Prolog. SWI-Prolog has a decent documentation avail-
able online, as well as a book to get you started on learning
SWI-Prolog. Because of its niche use and the unusual pro-
gramming style, the community is not as big as other popular
programming languages on forums like StackOverflow. This
could create some problems when trying to program in spe-
cific scenarios. However, due to its limited use space, you are
still able to find a decent amount of helpful sources for your
problem. unique features of other Prolog implementations
can be found in 4.



Table 1. Unique Features and Foci of Prolog Systems.

System Uniqueness
B-Prolog action rules, efficient CLP supporting many data structures
Ciao multi-paradigm,  module-level feature toggle, extensible language,

static+dynamic verification of assertions (types, modes), performance/s-
calabilty, language interfaces, parallelism

ECL'PS® focus on CLP, integration of MiniZinc and solvers, backward-compatible lan-

guage evolution of Prolog

GNU Prolog extensible CLP(FD) solver, lightweight compiled programs

JIProlog semantic intelligence / NLP applications
Scryer new Prolog in development, aims at full ISO conformance
SICStus commercial Prolog, focus on performance and stability, sophisticated constraint

system, advanced libraries, JIT compilation

SWI-Prolog general-purpose, focus on multi-threaded programming and support of protocols

(e.g., HTTP) and data formats (e.g., RDF, XML, JSON, etc.), slight divergence
from ISO, compatibility with YAP, ECL'PS® and XSB

tuProlog bi-directional multi-platform interoperability (JVM, .NET, Android, i0S), logic

XSB

YAP

programming as a library

commercial interests, tabled resolution, additional concepts (e.g., SLG resolu-
tion, HiLog programming)

focus on scalability, advanced indexing, language integrations (Python, R), in-
tegration of databases

Table 3. SWOT Analysis

Strengths (Section [4.1) ‘Weaknesses (Section [4.3)
o clean, simple language syntax and semantics . ically different from “traditional” pr
. bl sistent data structures, with “declarative” not a mainstream language
pointers (logic variables) o learning curve, beginners can easily write programs that
o arbitrary precision arithmetic loop or consume a huge amount of resources
o safety (garbage collection, no NullPointer exceptions, ...) | e static typing (see, however, [3.3.3)
o tail ion and last-call optimizati o data hiding (see, however, 3.3.1)
o efficient inference, pattern matching, and unification, | e object orientation (see, however, 4.5.4)
DCGs o limited portability (see [£.5.1)
o meta-programming, programs as data o packages: availability and management
o constraint solving (3.3.2), independence of the selection | ¢ IDEs and tools: limited in some
rule (coroutines (3:3.3)) areas (e.g., refactoring;
o indexing (3.3.3), efficient tabling (3.3.3) Ul development (usually conducted in a foreign language
o fast development, REPL (Read, Execute, Print, Loop), | via FLI (3:3.1))
debugging (3:34) o limited support for embedded or app development

o commercial (2.10.1) and open-source systems

o active developer community with constant new imple-
mentations, features, etc.
sophisticated tools: analyzers, partial

. luators, paral-

o successful applications
— program analysi
— domain-specific languags
— heterogeneous data integration
— natural language processing
— efficient inference (expert systems, theorem provers),

symbolic AT

o many books, courses and learning materials

Figure 4: A table showing the unique properties of the different Pro-
log implementations [16]

Pros and Cons of Prolog

Figure 5 shows a strengths, weaknesses, opportunities and
threat analysis of Prolog.

Pros

Since Prolog uses declarative semantics, it is quite easy
to read and understand the individual rules and facts. It
requires a different way of programming that for some
can be easier than the usual programming languages.

It allows for very compact and expressive models.

The relational programming model can be extremely
powerful for modeling constraints.

Due to Prolog’s declarative nature, it can be much easier
to directly translate otherwise complex constraints into
the knowledge base. A complex constraint can simply
become a single rule in the knowledge base.

Prolog allows for fast prototyping and debugging due to
their easy REPL.

Cons

Ordering of your knowledge base matters, which makes
optimizing a program tedious. This can also cause a
program to run worse on a different problem instance,
meaning the ordering can be different for each problem.

Performance can change drastically between different
instances of the same problem. This is because the
search order is fixed (leftmost goal, depth-first-search)
instead of guided by heuristics.

Prolog can loop indefinitely even though a correct solu-
tion could be available.

Because of the execution strategy of Prolog, large search
spaces are bad for performance

Opportunities (Section [4.2) Threats (Section 4.4)

o new application areas, addressing socictal challenges 4.2} | o ively small user base
— neuro-Symbolic AI d ity with limited i ons (e.g., on
— explainable AL verifiable A StackQverflow, reddit), see L]
— Big Data o active developer community with constant new imple-

. P " mentations, features, etc.

.
new features and developments o forther Brasmentation of Prolog implementations, see
— probabilistic reasoning AT

— embedding ASP (35.1) and SAT or SMT solving | e new programming languages

— parallelism (2.7, 3.33) (resurrecting 80s, 90s re-|o post-desktop world of JavaScript web-applications
search) o the perception that it is an “old” language

— full-fledged JIT compiler o wrong image due to “shallow” teaching of the language

Figure 5: SWOT analysis of Prolog [16]

Problems to explore
» Search spaces, it is likely that large puzzles will slow
performance, but how much is the impact and can we
reduce the amount of rules in order to increase perfor-
mance, without affecting accuracy.

* What will the effect of different types of puzzle instances
be? Will reordering the knowledgebase for an instance
increase its performance and how will this in turn affect
the performance on other instances.

* Prolog likely will not have a problem with puzzles with
multiple answers, but what will it actually be?

* Can we add constraints in order to help Prolog find the
correct answer faster or will this simply decrease perfor-
mance?

Puzzles in Prolog

Logic puzzles with Prolog

This article gives some examples of different puzzles solved
with Prolog. The puzzles don’t directly correlate with the
Singles puzzle, but the article gives nice examples of how the
modeling constraints into rules with appropriate examples. It
shows us how easy it can sometimes be to directly translate
the constraints of the puzzle into Prolog.

Encodings using just Prolog, no CLP

Using Prolog to solve logic puzzles

This article is not great to read, but it shows us how the Zebra
problem was encoded into pure Prolog, a nice change from
all the CLP. The same author also wrote an article about
solving 3 puzzles using CLP libraries.

Two fun ways to solve a logic puzzle
This is a very basic article that shows an encoding for a



puzzle using both baseline Prolog and Z3. It is nice to see the
encodings using different solvers side-to-side. Unfortunately,
the author mentions he is not too experienced with Prolog,
so it’s not likely to be a very usable source for making the
encoding.

Solving a Zebra Puzzle using Prolog

This article shows a very nice way of directly translating
puzzle constraints into basic Prolog facts and rules. Whilst
the puzzle is again not very relatable to our puzzle, I do like
to have a visual overview of how to do this process and how
a set of constraints and the corresponding knowledgebase
could look. It shows the thought process and allows me to
attempt a similar technique for the Singles puzzle.

The Lion and the Unicorn Meet PROLOG

This paper shows the use of Prolog to make a solution for a
puzzle that, in another puzzle, was solved using automatic
theory-proving techniques.

Grid placement puzzles

Sudoku with Prolog

This shows a short Sudoku encoding using CLP(FD) con-

straints. Sudoku is much more closely related to the Singles

puzzle for our assignment. Unfortunately there is not a lot

of information about why or how it works, but it shows us

what a puzzle solver in prolog using CLP can look like. More

solvers using CLP are available on the author’s github.
Luckily, a video by the same autor is available on youtube,

which goes much more in depth on the problem.

N-Queens in Prolog
The N-Queens puzzle is another puzzle that is very closely
related to Singles. Here, we must place a number of queens
on a grid such that none of the queens is under attack. This
encoding is again implemented using CLP(FD) constraints.
In the video, the author explains some optimization tech-
niques to keep in mind when making encodings for optimiz-
ing the search space, which can get quite big for grid puzzles.
This will help us to optimize our encoding for the Singles
puzzle as well, as we are also dealing with a grid puzzle and
placing objects with constraints.

Other useful encodings

A Pearl on SAT Solving in Prolog

This paper shows a construction of an DPLL algorithm in
prolog. Whilst I wont use this for making my encoding for
the Singles problem most likely, it does nicely show us some
of the strengths and weaknesses of Prolog compared to a
regular SAT solver. I might use these facts to reason about
the usability of my own encoding, such as why we would use
Prolog instead of SAT or SMT solvers.

Declaratively solving tricky Google Code Jam problems
with Prolog-based ECLiPSe CLP system

This paper again does not correlate with our puzzle program,
but it shows implementations and arguments for puzzles and
why Logic Programming could have some advantages in
some use cases. This could be used in my paper to properly
support the benefits for using LP.

Constraint Logic Programming approach to protein structure
prediction

This paper shows us that Prolog has wide use cases in
fields where it has not generally been applied to yet. It can
show us some more of the hidden strengths of using Prolog
and maybe even help us with our problem, by using those
strengths to our advantage.

A Prolog application for reasoning on maths puzzles
with diagrams

Shows another example of a problem where Prolog and
Logic Programming is a perfect fit where other solutions are
not. Could be nice to help establish the fact that Prolog has
its use. The paper is about employing a logic programming
to perform spatial reasoning on a puzzle diagram in order to
integrate the deriving knowledge into the solving process.

B.2 Satisfiability Modulo Theories with Z3

The research field concerned with the satisfiability of formu-
las with respect to some background theory is called Sat-
isfiability Modulo Theories, or SMT, for short. SMT ex-
tends boolean SAT solving by allowing the use of meaningful
constraints from arithmetic, arrays, bitvectors, and other do-
mains, instead of encoding everything as propositional vari-
ables. The defining characteristic of SMT is that satisfiability
is determined by implicitly or explicitly translating to SAT.
For this reason, early SMT solvers were often called SAT-
based decision procedures [3; 4].

The advantage SMT solvers are usually considered to have
over pure SAT solvers, which are also often used as verifi-
cation backends (e.g., for bounded model checking), is the
higher level of abstraction at which they can operate. By im-
plementing theories like arithmetic, arrays, and uninterpreted
functions directly, SMT solvers have the promise to provide
higher performance than SAT solvers working on encodings
of such structures to the bit level. [5]

Theories in SMT

In SMT, a theory is a set of first order formulas that define the
meaning of operations and relations. We do not write these
theories ourselves, but they describe mathematical concepts
such as the theory of linear integer arithmetic:

e Symbols:

— Integers

-+ - <<=
* Rules

— Transitivity: z < yAy< z=>z < 2
— Linearity: z + (y + 2) = (z +y) + 2
- etc.

Lazy and Eager SMT
Two of the most majorly successful approaches to SMT are
lazy and eager approaches.

Eager The eager approach translates the entire input state-
ment into a SAT instance up front. After encoding, a SAT
solver handles everything. The main allure of this approach



is that the translation imposes upfront all theory-specific con-
straints on the SAT solver’s search space, potentially solving
the input formula quickly; in addition, the translated formula
can be given to any off-the-shelf SAT solver. However, for
more expressive theories, the SAT encoding may become ex-
tremely large and inefficient.

* Can be extremely fast for certain problems.

* Easy to plug into high-performance SAT engines

* A single SAT solver does all the work solving.
But

 Certain structures can increase the SAT encoding drasti-
cally

e It is not well suited for mixed theories.

Lazy The lazy approach uses the DPLL(T) approach which
rewrites the input formula into 2 layers, a boolean layer and
a theory layer. For the boolean layer, all theory constraints
are replaced by boolean variables. The boolean skeleton
is converted to CNF and solved using a SAT solver. The
SAT solver proposes truth assignments, which are then in
turn checked by the theory solver for consistency in the
underlying theoretic constraints. If the truth assignment is
theory-inconsistent, the theory solver generates a conflict
set, which the SAT solver uses to prune the search [18;
51.

Some lazy solvers use eager techniques in specific use
cases, such as for dealing with bitvectors, as eager solving
techniques are fast in that subject.

Important features of a lazy SMT solver:

* Model generation - If the theory solver is invoked on a
theory-consistent set, it is able to produce a full model
giving concrete values for all variables. This can be use-
ful for, for instance, verification or debugging.

* Conflict set generation - When a theory solver detects
inconsistencies, it produces a theory lemma (a clause
explaining the conflict). This lemma is added to the
SAT solver and used to prune the search indefinitely.
This mechanism links semantic reasoning with syntac-
tic pruning.

 Incrementality - The theory solver remembers its com-
putation status from one assignment to another, If a
new assignment extends a previously checked consistent
set of constraints, the solver does not recompute from
scratch.

* Backtrackability - It is possible for a theory solver to
undo steps and return to a previous state in an efficient
manner.

e Deduction of unassigned literals (Theory propagation)
- Theory solvers can actively deduce new consequences
from the current set of constraints.

* Deduction of interface equalities - When multiple theo-
ries are used simultaneously, solvers need to share equal-
ities between them. Interface equalities communicate
shared constraints across theory solvers, enabling con-
sistent reasoning in combined theories.

Combining Theories

Often SMT solvers will need to reason over problems that use
multiple theories. This requires a theory combination, which
integrates separate theory solvers so that they can jointly de-
cide satisfiability. Not all theories combine well together and
may result in an undecidable theory, even if both theories are
decidable. The Nelson-Oppen framework allows for com-
bining theories under certain conditions. Z3 works around
this problem by using custom integrations, partial encodings
or restricting themselves to decidable fragments. In theory,
this problem can cause issues, though you are unlikely to en-
counter it when using Z3.
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The Z3 SMT solver is a solver using the lazy SMT approach
developed by Microsoft. Z3 is an efficient SMT solver with
specialized algorithms for solving background theories. It of-
fers a wide range of built-in theories and supports the latest
SMT-LIB language. SMT-LIB also holds a yearly competi-
tion called the SMT-COMP [9; 7].

Z3 is available in Python, making it very easy to install
using pip and use. It also has an online variant available.
There is documentation for the Python version available by
Microsoft, which also makes available some example pro-
grams with explanations about the problem.

Pros and Cons of SMT
Pros

¢ Highly expressive - Constraints can be written in a nat-
ural mathematical form. Compared to SAT this creates
a much easier developing cycle and makes them much
easier to understand, debug and verify.

* SMT combines both SAT and Theory solvers. The hy-
brid approach is what makes it very efficient in multiple
domains.

* SMT can generate fully satisfied concrete models.
Whilst SAT solvers can also do this, models generated
by SMT solvers can fill models with actual values, not
just boolean values.

* Because of its high expressiveness, many models map
easily to SMT.

Cons
* For pure boolean problems, SAT would be faster.

* Depending on the problem, performance might differ
greatly. Combining theories, large SAT assignments, or
generally hard theories can differ between problems and
cause large differences between problems.

¢ Some theories are undecidable.

* Encoding is very important and bad encodings perform
badly

SMT generally works better for problems with structured
constraints and is not ideal if the problem is purely boolean,
if theories are huge, if there are many SAT combinations or if
nonlinear arithmetic is needed.



Problems to explore
* Puzzle size will be an obvious question to explore, as
input size seems to be quite a factor with SMT. Can we
change the encoding to minimize runtime?

* I’'m interested in looking at puzzles with multiple possi-
ble solutions. Does a puzzle with multiple solutions run
faster or not?

* What is the effect of certain patterns of puzzles? Does
my encoding pick up on it? Does it run faster or slower?

* I want to experiment with different encodings without
redundancy. What would the difference be if we can
make a more compact encoding?

e | want to look into adding redundant constraints. If we
add some ‘helping’ constraints to a working encoding,
will it help the runtime by helping the SAT pruning?
What if the constraint adds an extra theory into the mix?
How many and which constraints work best?

Puzzles with SMT

SAT/SMT by Example

A collection of puzzles and problems solved using SAT and
SMT solvers. This can create a nice baseline in case we ever
need to better understand how to translate a set of constraints
into a working solver. It is a collection of problems and not
so much a tutorial/article, so referencing it might be more
difficult outside of our own development process.

Two fun ways to solve a logic puzzle

This is a very basic article that shows an encoding for a
puzzle using both baseline Prolog and Z3. It is nice to see the
encodings using different solvers side-to-side. Unfortunately,
the problem is not similar to our puzzle, but at least it gives a
view on the syntax and what an encoding could look like.

Jorian Woltjer z3 scripts

A collection of z3 solvers for solving various puzzles. This
includes the 8 queens and sudoku puzzles, which are closely
related to the Singles puzzle. Unfortunately there is no expla-
nation and reasoning for choices given at all, so this cannot
effectively be used as a source in our research except for
some inspiration and examples on how to solve other puzzles.

Solving SAT and SMT problems using Z3

This source gives some puzzles, but more importantly it also
shows us some of the practical and theoretical limitations of
SMT solvers.

Grid like or constraint puzzles

Coding Interview — Solve Sudokus Using Python and Z3
This article shows a nice tutorial of how to build a Z3 solver
for solving the Sudoku puzzle. It does unfortunately not go
into the details about why or how this works and is really just
a top-level tutorial, but it might still be useful for building
our own solver for the Singles puzzle.

Solving and generating puzzles with a connectivity con-
straint
This source just straight up gives an SMT solver for Hitori,

which is the Singles puzzle. Connectivity constraints are
the major part of our constraint set, so this source will be
extremely useful. We can also use this source to compare our
solver to that of the Hatori solver, check if there is different
design choices and reason as to why. Lastly, this gives an
explanation source on Hatori and a proof of NP completeness.

Latin squares with graph properties

This paper investigates how to encode graph properties
such as connectedness, tree structure or Hamiltonian as
requirements for a SAT/SMT solver. This paper talks about
adding graph properties to Latin squares, which is a partially
related to our Singles squares.

Other useful encodings and sources

An Algorithmic and SMT-Based Approach

This study shows a nice comparison between an algorithmic
approach to solve a puzzle and the SMT approach. Whilst
the SMT solver itself might not be that useful, having a study
on the actual advantage and comparison is very handy to
have and we could use this to expand our own reasoning on
the usability of SMT in problem solving.

Evaluating SAT and SMT Solvers on Large-Scale Su-
doku Puzzles

This article compares the performance of SMT solvers such
as Z3 and CVCS5 against an older SMT solver in DPLL(T)
and a SAT solver in DPLL on a 25x25 Sudoku puzzle. Such
comparisons add more insights into the strengths and reasons
for using SMT solvers. On top of this, this article gives a
nice summary of some of the concepts and gives a small
explanation of the Z3 implementation of a Sudoku solver.

Modeling constraint satisfaction problem with model
checker

Whilst this paper is not necessarily about Z3, it is used as the
comparison tool. This paper shows some more insights into
SAT and a comparison in performance, which can again be
used in our own study.

Reformulation of constraint models into SMT

This source aims to reformulate constraint models in SMT
instances in order to be solved by SMT solvers. The study
shows that SMT is competitive with state-of-the-art CSP and
WCSP solvers. Another comparison study, can be useful in
the paper, unfortunately not useful for making our encoding.

B.3 Comparing LP vs SMT

Since the foundations of Logic Programming and Satisfiabil-
ity Modulo Theories are vastly different, it can be difficult
to compare the two paradigms. The paradigms differ com-
pletely in their operational details, but we can try to compare
their core philosophies. Below are a couple of fields of com-
parison between the two.

Commonalities

Logic Programming and SMT are both declarative
modelling-and-solving paradigms. the user describes a
problem using formulas or rules, and the system automati-
cally searches for assignments that satisfy these descriptions.



Both are rooted in fragments of first-order logic, both aim to
find satisfying assignments, and both are commonly applied
to constraint satisfaction problems.

Differences

LP finds the solution to a query using proof search. a pro-
gram is a set of logical rules, and queries are answered by de-
riving them from the program using a proof procedure such
as resolution. LP can naturally express a recursive and rela-
tional structure and can be useful for describing concepts like
reachability or connectedness.

SMT treats computation as model finding. The user writes
a formula using background theories (e.g., linear arithmetic,
bit-vectors, arrays), and the solver decides satisfiability using
a combination of SAT solving and theory solving (DPLL(T)).
SMT provides strong support for numeric and structural the-
ories and offers robust global propagation.

LP focusses symbolic reasoning, relational definitions, and
inference, whereas SMT emphasises constraint specification
over theories and automatic model construction. Both are
declarative, but they differ in the direction of computation
(goal-directed vs model-directed), the naturalness of express-
ing certain types of constraints, and the underlying founda-
tions.

Expressiveness

The expressiveness or how easy it is to transform a constraint
into a solver format. This is important for the ease of use of
the paradigm, if it is difficult to translate the constraints, pro-
gramming and debugging a solver might take an incredible
amount of time and simple puzzles will be very difficult to
solve. Luckily, both LP and SMT are quite expressive. LP is
literally built on building relations between variables instead
of writing functions. This often makes transforming a con-
straint, which is a type of relation, quite easy. It is also not
that big of a problem using SMT. Since SMT uses theories on
top of a SAT solver, we do not have to rewrite the constraints
into a long boolean formula. Instead, we are still able to use
the appropriate theories to build the constraints. It’s not like
LP, but also not difficult.

Solver behaviour (Prolog vs Z3)
The behaviour of the solver and the way it resolves the prob-
lems is very important. Certain techniques are much better
suited for specific problem types and thus this often decides
whether we should use one solver over another. SMT solvers
often make use of a variant of DPLL; this algorithm has the
potential to be very inefficient on certain problems and large
datasets. LP uses resolution with unification, Prolog uses res-
olution with depth-first-search, which can be very inefficient
in certain encodings.

Understanding the underlying mechanisms of the different
paradigms and solvers allows us to make better decisions of
when to use a certain paradigm over the others.



C Generator Proof

This proof was initially constructed by Sappho de Nooij, Tom
Friederich and Lesley Smits, rewritten by Sophieke van Lue-
nen and reviewed by Robin Rietdijk

Below, we prove that our generator can generate any
single-solution Hitori puzzle, and nothing else. We do so in
two steps. In the first step we prove that we can generate
any valid solution topology. In the second step we prove that,
given a valid solution topology .S, we can generate any valid
Hitori puzzle that has that solution topology, and only that so-
lution topology. In the last step we put everything together to
prove the below theorem:

Theorem 1: Algorithm 1 is complete. That is, our genera-

tor can generate exactly only every uniquely-solvable puzzle
H.

Algorithm 1 Algorithm that exactly any valid Hitori instance
H

1: function GENERATEHITORIINSTANCE

2: Let S = GENERATESOLUTIONTOPOLOGY

3: return GENERATEHITORIINSTANCE(S)

4: end function

C.1 Generating any Solution Topology

A solution topology S is an n x n grid where each element
S;,; (with ¢, j € [1..n]) is marked or unmarked. Given a Hi-
tori instance [ with .S as its solution instance, having S; ; be
marked means the solution of H has tile H; ; marked. Sim-
ilarly, if S; ; is unmarked, the solution of H has tile H; ;
unmarked. A solution topology S is valid if it adheres to
the three constraints defined by the Hitori rules. On top of
this, since we only want uniquely-solvable Hitori instances,
the topologies we generate must be able to create uniquely-
solvable Hitori instances.

Lemma 1.1: A solution topology S with at least one
uniquely-solvable problem does not have an unmarked tile
that can be marked without violating the adjacency and con-
nectivity constraint.

Proof. We will use a proof by contradiction. Take an arbi-
trary uniquely-solvable puzzle P with solution topology S,
such that S has an unmarked cell ¢ that can be marked with-
out violating the adjacency and connectivity constraint. We
now construct a solution topology S’ which is identical to S
except that cell ¢ is marked. Marking ¢ does not violate the
adjacency or connectivity constraint (by the definition of P
and S). The uniqueness constraint is also not violated since
we do not change the numbers of unmarked cells or add an
unmarked cell. Therefore S’ is another valid solution topol-
ogy for P. This creates a contradiction as P was set to be
uniquely solvable.

Since the assumption leads to a contradiction, it must be
false. Therefore S cannot contain an unmarked cell that can
be marked without violating the adjacency and connectivity
constraint. O

Given Lemma C.1 our generator may not generate solution
topologies with unmarked tiles that can be marked without
violating the adjacency or connectivity constraints.

Algorithm 2 is a pseudo-code representation of the algo-
rithm with which we generate our solution topologies.

Algorithm 2 Algorithm that generates a solution topology S.

1: function GENERATESOLUTIONTOPOLOGY

2 Let S[1,...,n][1,...,n] be the two-dimensional ar-
ray of tiles, all unmarked
3: Let C be the collection of all coordinates in S
((1,1),(1,2),...(1,n),(2,1),...,(n,n)) in random or-
der
4:  for i = C[l] to C[n?] do
5: if no orthogonally adjacent tile is black then
6: S[i] = marked
7: if the unmarked tiles of S are disconnected
then
8: S[#] = unmarked
9: end if
10: end if
11: end for
12: return S

13: end function

Lemma 1.2: Algorithm 2 only generates valid solution
topologies.

Proof. For any marked tile that the algorithm places it checks
whether the adjacency or connectivity constraint are met.
If this is not the case, it rolls back the decision and moves
on. Since no numbers are generated in Algorithm 2 it cannot
break the uniqueness constraint.

Since our generator loops over every tile on the board and
checks whether it can be marked, and only leaves the tile un-
marked if it were to break the adjacency or connectivity
constraints, it cannot generate any solution topology with un-
marked tiles that could be marked without violating the adja-
cency or connectivity constraints. O

Lemma 1.3: Algorithm 2 can generate exactly only any
valid solution topology.

Proof. Algorithm 2 generates solution topologies by iterating
over the tiles in a random order. We will use this to show that
it can generate any valid solution topology.

Take any valid solution topology S with marked tiles m
and unmarked tiles u. Since the solution topology is valid,
none of the tiles in m violate the adjacency or connectivity
constraints. Since Algorithm 2 visits tiles in a random order,
there is a non-zero chance that it will first visit all the tiles in
m before visiting any tile in u. Since none of the tiles in m
violate the adjacency or connectivity constraints, all will be
marked by the algorithm.

Since S is a valid solution topology, no tiles in u could
be marked without breaking the adjacency or connectivity
constraints, thus when the algorithm visits the tiles in wu, it
will mark none of them. After having visited the last tile in u,
the algorithm will return solution topology S.



Now given that Lemma C.1 proves that Algorithm 2 can
only generate valid solution topologies, we have now proven
that the algorithm can generate exactly only any valid solution
topology. O

C.2 Generating any valid Hitori puzzle from S

A puzzle instance of Hitori H is an n x n grid of numbers
where each element H; ; € [1..n] with ¢, j € [1..n]. We only
consider H a valid instance if it has a single valid solution
topology S.

Algorithm 3 is a pseudo-code representation of our algo-
rithm for generating an instance H from a given solution
topology S. It consists of two subsequent algorithms, Algo-
rithm 4 which generates numbers for the tiles in H which cor-
respond to unmarked tiles in S, and Algorithm 5 which gen-
erates numbers for the tiles in H which correspond to marked
tiles in .S.

Algorithm 3 Algorithm that generates a Hitori instance H
from a solution topology S.

1: function GENERATEHITORIINSTANCEFROMS(S)
2: Let H[1,...,n][1,...,n] be a grid of Os

3 FILLUNMARKEDCELLS(H, S, n, 1)
4 FILLMARKEDCELLS(H, S, n, 1)

5: return H

6: end function

Algorithm 4 Algorithm that fills in the unmarked cells given
a partial Hitori instance H and a solution topology S.

1: function FILLUNMARKEDCELLS(H, S, n, k)

2. Leti=[%]
3: Letj=((k—1) modn)+1
4 if k > n? then
5: return true
6: else if S[i][j] == marked then return FILLUN-
MARKEDCELLS(H, S, n, k + 1)
7: else
8: Let row be the numbers used in the row of H[i][7]
9: Let col be the numbers used in the column of
H]illj
10: C=A{1,...,n}\ row\ col
11: if C =0 then
12: > We check if a conflict occurred
13: return false
14: > this is optimized by analyzing the conflict
and returning to the conflict’s cause
15: else
16: shuffle C'
17: HIi][j] = C[1]
18: > Assign H[i][j] the first element in C
19: end if
20: end if

return FILLUNMARKEDCELLS(H, S, n, k + 1)
21: end function

Algorithm 5 Algorithm that fills in the marked tiles of a par-
tial Hitori instance H.

1: function FILLMARKEDCELLS(H, S, n, k)
2 Leti=[%]

3 Letj = ((k—1) modn)+1

4 if k£ > n? then

5: return true

6 else if S[i][j] == unmarked then return FILL-
MARKEDCELLS(H, S, n,k + 1)

7: else

8: Let row be the numbers used in the row of H [i][7]

9: Let col be the numbers used in the column of
HIilj]

10: C = row U col

11: shuffle C

2 H) =]

13: > Assign H[i|[j] the first element in C

14: end if

return FILLMARKEDCELLS(H, S, n, k + 1)
15: end function

Lemma 1.4: Given a valid solution topology S, Algo-
rithm 4 can generate all valid combinations of numbers in
unmarked tiles.

Proof. Take any valid partial Hitori instance H correspond-
ing to solution topology S, which has numbers assigned to
all its unmarked tiles such that all of the assigned numbers
are unique in their row and column. We will now show that
our generator can create this partial Hitori instance.

Our generator iterates over all tiles in order, moving from
left to right, top to bottom. At each unmarked tile the genera-
tor will select a list C' of valid numbers to put in this tile. This
list consists of the numbers 1,2, ..., n excluding any number
that is already present in the row or column.

If a number is not in C, putting it in the given tile would
not result in a valid partial Hitori instance corresponding to
the solution topology S, as it would either break the unique-
ness constraint if it remains unmarked in the solution, or it
would break the adjacency or connectivity constraints if it
is marked (by the definition of .5).

Since C contains all valid numbers that the tile could re-
ceive, and Algorithm 4 selects a number at random, each pos-
sible valid number has a non-zero chance of being chosen,
including the corresponding value in H. Since this holds for
every unmarked tile that the algorithm visits, it can generate
H. As such, given a valid solution topology S, Algorithm 4
can generate all valid combinations of numbers in unmarked
tiles. O

Lemma 1.5: Given a valid solution topology S, Algorithm
4 can only generate valid combinations of numbers in un-
marked tiles.

Proof. Any invalid combination of numbers in unmarked
tiles has to contain two of the same numbers on a given row
or column. Since Algorithm 4 selects a number to give to
a tile from a list C' that contains every number from 1 to n
excluding any number that is already present in the row or



column, the generator cannot create an invalid combination
of numbers in unmarked tiles. ]

Lemma 1.6: Given a valid solution topology S, and a valid
partial Hitori instance H with numbers assigned to each un-
marked tile, Algorithm 5 can generate any valid combination
l of numbers for in the marked tiles.

Proof. For a combination of numbers for in the marked tiles
to be valid, each number in [ must already be present in the
row or column that [ will be assigned to. When assigning
numbers to tiles, Algorithm 5 will create a list C' which con-
sists of all numbers in the row and column of the given tile.

Furthermore, since all numbers in ! must be covered, as-
signing multiple tiles in [ with a new number that is not
present in their row and column is not a valid move: at least
one of those tiles will not have to be covered.

Algorithm 5 then randomly selects a number from C' and
assigns it to the given tile. Given that C' contains all valid
options for in the tile, and given that the number is chosen at
random from C', each number has a non-zero chance of being
selected for the tile. As such, Algorithm 5 can generate any
valid combination ! of numbers for in the marked tiles. O

Lemma 1.7: Given a valid solution topology S, and a valid
partial Hitori instance H with numbers assigned to each un-
marked tile, Algorithm 5 can generate only any valid combi-
nations | of numbers for in the marked tiles.

Proof. For a combination of numbers for in the marked tiles
to be invalid, at least one number in [ must not already be
present in the row or column that [ will be assigned to. Since
we pick a number at random from C, and C only contains
numbers from the tiles’ row and column, it is not possible for
the generator to pick an invalid number. As such, Algorithm
5 cannot generate an invalid combination of numbers for in
the marked tiles. O

Lemma 1.8: Given a valid solution topology S, Algorithm
3 can generate any valid puzzle instance H.

Proof. Lemma C.2 proves that, given any valid solution
topology S, we can generate all valid combinations of num-
bers for the unmarked tiles of a valid corresponding partial
Hitori instance H. Lemma C.2 proves that we can generate
nothing but valid combinations of numbers.

Lemma C.2 then proves that given a valid solution topol-
ogy S, and a valid partial Hitori instance H, we can generate
any valid combination of numbers for the marked tiles in H.
Lemma C.2 proves that we can only generate valid combina-
tions of numbers for the marked tiles in 1.

Since we can generate only exactly any valid combination
of unmarked tiles, and given any valid combination of un-
marked tiles we can generate only exactly any valid combi-
nation of marked tiles, we can generate any valid combination
of tiles to create a valid Hitori instance given a valid solution
topology S. 0

C.3 Proving Theorem C

Proof. Lemma C.1 has proven that our algorithm can gener-
ate exactly any valid solution topology S, and Lemma C.2 has
proven that, given any valid solution topology S we can gen-
erate exactly only any valid single-solution puzzle instance
H. These lemmas together prove that Algorithm 1 can gen-
erate exactly only every uniquely-solvable puzzle H. O



D Redundant constraint descriptions

In this appendix:
* black; ; denotes the cell (¢, j) being colored black.
* white, ; denotes the cell (¢, j) being colored white.

* symbol, ; denotes the value of the cell (i, j).

D.1 White Neighbours (WN)

This constraint is meant to reinforce the connectivity con-
straint. For every puzzle with n > 1:

Vi,j:  white; ; =
(] <nA whitei7j+1) \Y (Z <nA WhiteiJrLj) V
(] >1 /\whitei,j,l) \Y (Z >1A whitei,lﬁj)
D.2 Corner Close (CC)

[24] For every puzzle with n > 1, we cannot block the
connecticity of the corner cell. Formally, for every corner:
(Top-left corner)

blaCkOJ = _‘blaCkl’O,
blaCkLO = _‘blaCkQ’l,
(Top-right corner)
blaCkO’n,Q = ﬁblaCkLn,l,
blackl,n,l = _‘blaCk()yn,Q,
(Bottom-left corner)
black,,_2,0 = —black,_1 1,
black,,_1,1 = —black,_2,
(Bottom-right corner)

blackn_l,n_2 = _‘blaCkn_Qm_l,
blaCkn—Q,n—l = _‘blaCk7L—1,7L—27

D.3 Sandwich Triple (ST)

One of the human solving patterns decribed by Gander and
Hofer [12], and Wensveen [24] visualized in 6. This pattern
is applicable everywhere in puzzles of size n > 2 in both
columns and rows.

6 6 6 6
4 59 4 5
1 2 3 1 2

Figure 6: Pattern and implication

9
3

D.4 Sandwich Pair (SP)

[12; 24] Pattern that is similar to the Sandwich Triple, but now
the center tile has a different symbol than the sandwiching
tiles, visualized in 7. the sandwiched tile is always white.

- h~ O
N O1 O
w O O
- h~ O
N O 0
w ©O© O

Figure 7: Pattern and implication

D.5 Triple Corner (TC)

Another human solving pattern described by Gander and
Hofer [12], visualized in figure 8. This pattern is only ap-
plicable in corners of puzzles of size n > 1.

6 6 7
6 8 9 6
12 3 1

Figure 8: Pattern and implication

6 7
8 9
2 3

D.6 Quad Corner (QC)

Human solving pattern described by Gander and Hofer [12],
visualized in figure 9. This pattern is only applicable in cor-
ners of puzzles of size n > 2.

6 6 7 6 7
6 6 9 6 9
12 3 12 3

Figure 9: Pattern and implication

D.7 Triple Edge Pair (TEP)

Human solving pattern described by Gander and Hofer [12],
visualized in figure 10. This pattern is only applicable at bor-
ders of puzzles of size n > 3.

9166 7

~N = ©
N © &
- N O o»®

N W © N

1
7
4

W N oo
= N 0o
N W ©

Figure 10: Pattern and implication

D.8 Double Edge Pair (DEP)

Human solving pattern described by Gander and Hofer [12],
visualized in figure 11. This pattern is only applicable at bor-
ders of puzzles of size n > 3.



© h~N -
~N W N
o = N ™
N W ©
I RN
W N o
o = N ™
ON W ©

S 9 7

Figure 11: Pattern and implication

[13] also describes Triple Edge Pair, where the same pat-
tern is applied but for a 2x3 part. This can be generalized
”N-Edge Pair”.

D.9 Close Edge (CE)

If a white cell is threatened to be closed off, make sure it
won’t be. using [13]

D.10 Force Double Edge (FDE)

If a white cell is threatened to be closed off, make sure it
won’t be. using [13]

D.11 Border Close (BC)

Human solving pattern described by Gander and Hofer [12],
visualized in figure 12. This pattern is applicable only at bor-
ders in a puzzle of size n > 3.

cfffs 7 s cff5 7 8
8 6 775 8 6 7|5
354809 35489
91257 91257
4108 3 6 4108 3 6

Figure 12: Pattern and implication

D.12 Least Whites (LW)

Constraint to help the connectivity constraint by restricting
the placement of black and white cells in the grid. We enforce
the number of white cells in rows and columns by imposing
the following rules:

Vi €{0,...,n—1}: Z

j €{0,....n—1}
Vi €{0,....n=1}: >
i €{0,...,n—1}

D.13 Most Blacks (MB)

Constraint to help the connectivity constraint by restricting
the placement of black and white cells in the grid. We restrict
the number of black cells in rows and columns by imposing
the following rules:

Vi €{0,...,n—1}: Z

WhitCiJ‘ > \_%J

whitei‘,j 2 LSJ

black; ; < Lg J+1

Vi €{0,...,n=1}: >

i €{0,...,n—1}

D.14 Pair Isolation (PI)

Human solving pattern described by Gander and Hofer [12]
and Wesnveen [24], visualized in figure 13. This pattern is
applicable anywhere in a puzzle of size n > 3 for both rows
and columns.

34 2 89 34289
111 4 51 1145
6 2 57 8 6 2 57 8
9 87 6 5 9 8 7 6 5
4 3 816 4 3 81 6
Figure 13: Pattern and implication
D.15 Close Isolation (CI)

Human solving pattern described by Gander and Hofer [12],
visualized in figure 14. This pattern is applicable anywhere
in a puzzle of size n > 4 for both rows and columns.

Figure 14: Pattern and implication

D.16 White Bridges (WB)

This constraint is meant to reinforce the connectivity con-

straint by making sure white cells are connected in all

columns and rows. We introduce the following rules:

Vi € {O, e, — 2} : (3] : Whitei,j) A (E'j : Whitei+1,j) =
dj: (Whitem N Whitei+1,j)

Vi €{0,...,n—2}: (37 : white; ;) A (37 : white; ;41) =
dj: (whitej,i A\ whitej7i+1)



E Usage of Large Language Models

During this study, ChatGPT was used for feedback, reflect on
ideas, clarify concepts or to get suggestions for new directions
to explore. I used the paid model if ChatGPT, allowing the
use of GPT-5.1/5.2 Thinking. ChatGPT base style and tone
were used, with no changes to its characteristics or custom
instructions.

All chats were conducted within a single project, allow-
ing ChatGPT to use information from other chats within that
same project. The project was given a small instruction to
set the context of the project as follows: “’In this project, we
discuss parts of my thesis in solving Singles using Satisfia-
bility Modulo Theories. The Singles puzzle is also known
as Hitori. I am going to be using Python to implement my
encodings for solving Hitori in SMT. I will be creating SMT
encodings and explore with alternatives such as alternate the-
ories or other versions of the basic Hitori rules. My goal is to
evaluate SMT for solving Hitori solvers and find its usability,
strengths and weaknesses.”

Below is an overview of the conversations that were cre-
ated and used during this project. For each conversation, we
describe how it was used and what was concluded or used in
the project.

As ChatGPT tends to give long and repeating answers
which can be difficult to format, even to small prompts, some
prompts that were not relevant for the project, repeated infor-
mation or that implemented code have been left out. In all of
these cases a description of the left-out conversation is given
instead.

E.1 Conversation about alternative theories

In this conversation, our goal was to get inspiration and feed-
back on other SMT theories to explore for the project. Before
conculting ChatGPT, an initial encoding was already con-
structed and a possible encoding using bitvectors was being
looked at.

prompt I have implemented an SMT encoding into linear
integer arithmetic and am looking for alternative theories. I
was thinking of bitvectors because of bitblasting. What do
you think which theories would be best suited for this puz-
zle? For reference, here is my current implementation of LIA:
[Code implementation]

answer Short answer: for Singles/Hitori-style puzzles, LIA
is already the “natural” SMT theory. Anything else is either
equivalent-but-more-work or strictly worse in practice. If you
had to use something else, the only genuinely interesting al-
ternative is:

Equality with uninterpreted symbols (and maybe arrays):
Treat the cell values as an enumerated / uninterpreted sort
and keep everything else Boolean.

Let me unpack that in puzzle terms and compare options.

What structure your encoding actually needs Your Singles
encoding mainly uses:

¢ A small finite domain for each cell value: 1,...,n

» Equality/inequality on those values (for “no duplicates
in row/column”)

* Local Boolean constraints for black/white adjacency

* A global connectivity constraint (often encoded via in-
teger labels or flows)

Crucially: you’re not doing real number arithmetic, multi-
plication of decision variables, or anything non-linear. It’s
“nice” linear-ish stuff. That’s exactly what QF_LIA / UFLIA
is tailored for.

Candidate alternative theories and how well they fit 1. Bit-
vectors (QF_BV)

¢ Internally, QF_BYV is bit-blasted to SAT. You lose all the
high-level arithmetic reasoning that the LIA engine has
(like cutting planes, propagating bounds, etc.).

* Your constraints (equality checks, ordered ranges) are
very regular and arithmetic-y, which the LIA engine ex-
ploits. In BV, they become low-level bit constraints.

So: BV is semantically fine but not “better suited” for this
problem than LIA — usually the opposite.

2. Equality + Uninterpreted Functions / Enumerated Sorts
(QF_UF / ADTs) This is the one alternative that’s genuinely
interesting from a modelling perspective:

* Represent each symbol not as an Int but as an element of
a custom sort, e.g.: (declare-datatypes () ((Value vl v2
v3 ... vn))) Now each grid cell is a Value instead of an
Int.

e The “no duplicates in a row/column” constraints only
need equality, so they carry over directly: grid[i][j] =
grid[i][k] =; one of them must be black.

* You can then encode connectivity purely with Booleans
+ a reachability style encoding (e.g., BFS levels or
spanning-tree parent pointers where parents are posi-
tions, not values).

This pushes you towards a QF_UF + Bool + maybe arrays
setting instead of arithmetic. It doesn’t usually perform better
than LIA, but it’s:

¢ A clean fit if you want to emphasise “symbolic” reason-
ing rather than numeric.

* A nice way to contrast “numbers as arithmetic objects”
vs “numbers as opaque symbols” in your paper/poster.

Downside: you have to re-do your connectivity constraints
without integer labels / distances, which is nontrivial.

3. Arrays (QF_AUFLIA / QF_AUF) Using Array (Int, Int)
-;, Value/Int to represent the grid:

* This is mostly a representation change, not a theory
change.

* Arrays shine when you have updates or unknown posi-
tions. In Singles, positions are fixed and all cells are
variables anyway.

¢ You’ll still be in LIA (or UF) for indices/values, so it’s
not really “other than LIA” in spirit.

So: arrays don’t buy you much here.

4. Finite sets / multisets You could, in theory, encode each
row’s multiset of values as a finite set and assert no duplicates
by set cardinality tricks. In practice:



» 73’s finite sets are cool but relatively heavy.

* You’d still need LIA for cardinals or a bunch of auxiliary
Booleans.

This is more of a curiosity than “best suited”.

So what’s actually “best” if not LIA?

If you’re asking performance-wise: LIA (what you already
have) is the best suited SMT theory. If you want a concep-
tually different SMT encoding to talk about in your report/-
poster:

* Enumerated / uninterpreted values + Booleans

— Values: ADT or UF sort instead of Int.

— Constraints: only equality (no arithmetic), plus
Boolean constraints for adjacency & connectivity.

— Theory label: something like QF_UF (possibly with
arrays for the grid).

* Optionally, pure propositional (SAT)

— Not SMT anymore, but: encode each “cell has sym-
bol k” as a Boolean and push everything into CNF.

— Then you can compare your SMT LIA encoding to
a SAT version solved with e.g. kissat (if that fits the
project scope).

Practical suggestion for your project
Given where you are now, I’d frame it like this:

e Primary encoding: QF_LIA (integers + Booleans) —
main experiments.

* Secondary / exploratory encoding:

— Either a QF_BV attempt,

— Or a QF_UF / enumerated sort variant to show a
qualitatively different modelling style.

If you'd like, I can help sketch what the “values-as-
enumerated-sort” version would look like in Z3Py, including
how you’d do connectivity without integer labels.

description This prompt was followed by a discussion on
my implementation of the Bitvector encoding, cleaning up
and correcting some of the mistakes in the code. We used
small prompts such as “This is how i’ve implemented bitvec-
tors currrently, is this the correct way to do this?” followed by
a small code snipped of my implementation to get feedback
on the current implementation. This conversation resulted in
a complete Bitvector encoding implemented in code.

The next conversation continues relecting on alternate the-
ories to implement.

prompt I have implemented the basic constraints using
gf_lia and gf_bv. I am looking for alternate solvers. Should I
try more theories or maybe start looking for redundant con-
straints?

answer Short answer: I’d stop hunting for more theories
and start playing with redundant constraints + alternative en-
codings inside QF_LIA.

A bit more structured: 1. Alternate “theories” vs. better
encodings For Singles, your natural ingredients are:

* Integers in [1..n] for the grid

¢ Booleans for “cell is black/white”

* Linear constraints for uniqueness, adjacency, connectiv-

ity

That already fits QF_LIA very well. QF_BV is essen-
tially giving you fixed-width ints instead of unbounded ints;
it doesn’t magically give you a smarter solver, so seeing it get
slower on larger instances isn’t shocking — bitvector reason-
ing is often more low-level and less optimized for this kind of
“combinatorial integer + graph” structure.

Other Z3 theories (arrays, uninterpreted functions,
datatypes) don’t obviously match new structure in the puzzle,
so adding them usually just makes the logic more complex
for no gain.

So:

» Stick with QF_LIA as your main workhorse.
* Keep QF_BV as a comparison point.

* Don’t chase exotic mixed-theory encodings unless you
have a concrete idea for connectivity or something sim-
ilar that truly needs them.

If you want “alternate solvers”, that’s more like feeding the
same SMT-LIB encoding to cvc5, Yices, Boolector, etc.,
which is nice but optional.

2. Where the real wins usually are: redundant constraints
Some concrete ideas you can try now:

a) Stronger uniqueness constraints
Right now, you probably have pairwise implications like:

if grid[i][j] == grid[i][k] then at least one of (ij), (i,k) is
black.

This is correct, but weak. You could add cardinality-style
constraints: For each row r and value v, let S_r,v be the set of
cells with that value. Add: “At most one white” in S_r,v:

> —black;; <1
(i.) €S

Same for columns.

These are logically implied by your pairwise uniqueness
constraints but they prune search much earlier.

b) Simple bounds and counting constraints
Things that are obviously true but not explicitly encoded yet,
for example:

e Each row must have at least one white cell (otherwise
numbers can’t all be unique).

¢ Each column must have at least one white cell.

» Upper bounds on number of black cells in a row/column
(e.g. it can’t be all black, can’t be all but one black if
that would break connectivity).

You can experiment here: some bounds might not help, others
might give big speedups.

¢) Symmetry-breaking
Singles puzzles usually don’t have huge symmetry, but your
encoding might:

* If your puzzle is symmetric under flipping/rotation, you
can fix one or a few cells: e.g. “top-left cell is white” if
both choices are symmetric.

* Or a lexicographic ordering constraint on the first row/-
column of black/white bits.



Symmetry-breaking is classic “redundant but helpful” stuff.
d) Redundant connectivity information

If you encoded connectivity via some reachability / flow /

spanning-tree style constraints, you can often add redundant

things like:

e “The number of white cells is > size of any connected
component candidate” (component labelling).

¢ Local constraints that forbid small disconnected islands
that must be impossible given other rules.

Even simple extra constraints like “every white cell must have
at least one white neighbour (unless it’s the only white cell)”
can help tighten the connectivity model.

3. A practical plan from here If I were in your shoes, I'd
do:

* Freeze your
controlled).

baseline QF_LIA model (version-

¢ Implement one redundant-constraint idea at a time:

— Start with cardinality-style uniqueness constraints
(they’re easy and often powerful).

— Then add a simple symmetry-break (if applicable).

— Then experiment with one or two connectivity-
strengthening constraints.

* For each variant, run your benchmark set (e.g. 5x5,
10x10, 15x15, 20x20; maybe multiple instances per
size) and log:

— solve time

— number of conflicts / decisions (if you can query
them)

— maybe encoding size (clauses, assertions)

Only after you’ve squeezed a bit of juice out of redundant
constraints would I invest more time in new theories or exter-
nal solvers.

prompt So there is no point in looking at other theories?
Was it even useful to try bitvectors?

answer Short, honest answer:

No — there was no strong modelling reason to try bitvectors
for Singles.

Yes — it was still useful that you tried them.

Now the longer, more helpful breakdown:

Was there a point in trying bitvectors (QF_BV)?

Yes, from a research perspective. Even though BV isn’t
the “right” theory for this puzzle, comparing it to QF_LIA
still gives you:

1. A meaningful baseline comparison

Your report can now say something like:
“Although bitvectors are often efficient for low-level reason-
ing, our puzzle constraints require high-level arithmetic and
Boolean structure. BV encoding therefore produced larger/-
less structured constraints and scaled worse than linear inte-
ger arithmetic.”
That is a valid and publishable experimental observation.

2. Empirical insight

You’ve experimentally confirmed something important:
* BV — fixed-width integer arithmetic
* LIA — high-level symbolic integers + linear constraints

Since Singles constraints never require bit-level reasoning,
the BV solver essentially “bit-blasts” everything into SAT,
which explodes combinatorially as puzzle size increases.

That’s good insight and can be discussed in your method-
ology and results.

3. It clarifies what’s not worth pursuing

You now know:

* The puzzle doesn’t need modular arithmetic
* It doesn’t need overflow semantics
* It doesn’t benefit from bit-blasting

This is exactly what a research methodology aims to show:
You tested plausible alternatives and justified why you don’t
continue with them.

So:
Even if it didn’t help performance, it was still useful academ-
ically.

Is there a point in trying other theories?
For this puzzle: Not really.

Let’s check the likely candidates:
Arrays theory

Useful if:

* You want indexed reads/writes
* You have variable indices

* You want functional constraints

But your grid is fixed-sized and fully unrolled; arrays give no
real advantage.

Uninterpreted Functions (UF)

Useful if:
* You want abstraction
¢ You want to eliminate arithmetic detail

Not useful here, since Singles uses plain integers and
Booleans.
Datatypes / Algebraic data types
Overkill. Your grid isn’t an algebraic structure.
Non-linear arithmetic
Singles does not require multiplication of variables — so
don’t go there.
Quantifiers
These explode and are unnecessary — you already expand
constraints for every cell.
Strings
Obviously irrelevant.



Conclusion
Bitvectors:

* Not the right theory for this puzzle

* But still valuable to test

* You can use the results in your analysis section

* Now you can justify why QF_LIA is your main model
Other theories:

* No useful alternative theories for Singles

» All important rules fit naturally into integer linear arith-
metic + Booleans

Where you should go next:
* Better QF_LIA modelling
¢ Add redundant constraints
e Try alternative encodings of connectivity
* Try symmetry-breaking

* Possibly benchmark a second solver (like cvcS) using
SMT-LIB output

These are the things that actually produce performance
differences.

If you want, I can also:

* Suggest concrete redundant constraints for your current
encoding

* Look at your QF_BV code to see if it can be improved

* Help you structure the “Why QF_LIA? Why not BV?”
section for your paper

prompt A colleague mentioned possibly trying a fully
Boolean version, I think i might try that. Would something
like this even make sense in Z3?

answer Yes — a fully Boolean / SAT-style encoding can
absolutely make sense in Z3, and it’s a legit alternative model
to compare against QF_LIA/QF_BV.

In practice it often ends up being: QF_BOOL (pure propo-
sitional) or “mostly Boolean + pseudo-Boolean constraints”
(which Z3 still handles well).

When a fully Boolean encoding makes sense

It makes sense if you replace “cell value is an Int in [1..n]”
with Boolean indicator variables, e.g.:

¢ isBlack]r,c] : Bool

* hasVal[r,c,v] : Bool meaning “cell (r,c) is value v (and
white)”

Then you add constraints like:
» Exactly-one value per white cell
* Row/column uniqueness for each v
* No adjacent blacks
» Connectivity of whites (the hardest part)

This is basically the classic CSP — SAT compilation.

Pros

* All constraints become simple clauses / cardinality con-
straints.

* Uniqueness becomes very natural with “at most one”
constraints.

* Can scale surprisingly well because SAT engines are ex-
tremely optimized.

Cons

* Variable blow-up: O(n?) booleans for hasVal (n x n
cells xn values).

 Connectivity is non-trivial and can dominate the formula
size.

For typical puzzle sizes, it can still be very workable.

What about connectivity?
This is the make-or-break point.

Common Boolean-friendly ways:
1. Layered reachability (BFS layers)
¢ Boolean reach[k][r][c] = cell is reachable in < k
steps from a chosen root.

* Add propagation constraints from layer k to k+1 via
neighbors.

» Enforce every white cell is reachable by some layer.
« This is pure Boolean but can be large: k up to n?.
2. Spanning tree / parent pointers

* Give each white cell (except root) exactly one par-
ent among its neighbors.

* Add acyclicity / ranking constraints (often needs in-
tegers or bitvectors for ranks unless you do more
Boolean machinery).

* Without ranks, cycles are hard to forbid purely
propositionally.

3. Flow encoding

* Send flow from root through edges to cover all
white cells.

* Usually needs integers (even small bounded) or
pseudo-Boolean sums.

* If you allow a tiny bit of arithmetic, this can be very
strong.

If you insist on pure Bool, the BFS-layer approach is the
most straightforward.

“Fully Boolean” in Z3 specifically

73 is perfectly happy as a SAT solver when you stay in
Bool land. Two practical notes:

* If you use lots of “exactly-one / at-most-one” con-
straints, encode them smartly (sequential counters / car-
dinality networks) instead of naive pairwise ( a or b) for
every pair. Pairwise is easy but can explode in clauses.



e 73’s native handling of pseudo-Boolean (PbLe, PbEq)
can be quite decent. So even if you’re “fully Boolean”,
letting Z3 manage cardinalities through PB constraints
is often a win and still feels SAT-like.

What you’ll learn (and why it’s worth trying)
Trying this gives you a clean story in your results:

* QF_LIA: compact model, relies on arithmetic reasoning.

* SAT/QF_BOOL.: larger model, but potentially faster due
to SAT efficiency.

e The key differentiator becomes connectivity encoding
and cardinality encoding.

Even if it’s slower, it’s still informative (like your BV
experiment): it tells you whether arithmetic reasoning or
SAT-style search is better suited for this puzzle family.

Recommendation

If you do this, don’t try to go “perfectly pure” at all costs.
A very reasonable “Boolean” variant is:

¢ Booleans for values/blackness

e Pseudo-Boolean cardinality constraints for “exactly
one” and row/col uniqueness

* Connectivity via either BFS layers (pure Bool) or a
small bounded-int flow (still “mostly Boolean”, but of-
ten much stronger)

That will likely give you the best comparison.

If you paste how you currently encode connectivity in
QF_LIA, I can suggest the closest Boolean/SAT-style equiva-
lent that won’t explode unnecessarily.

conclusion As a result of this second conversation, we de-
cided to not look for more theories to explore aside from
bitvectors and booleans. Overal, ChatGPT helped us imple-
ment the bitvector encoding. It also provided possible theo-
ries to further look into, but also warned us to not expect great
results.

E.2 Conversation about puzzle difficulty

We consulted ChatGPT during the process of formulating a
method to determine difficulty using the Z3 solver. We had al-
ready experimented and researched Z3 statistics at this point,
but were not able to find a way to use these for filtering puz-
zles. The goal of this conversation was to find a more robust
measure and experiment with different approaches of filtering
puzzles using statistics.

prompt am looking for puzzles that are hard to solve for
my Z3 solver. Currently i am using runtime and conflicts as
my statistics to find these. I chose conflicts as i thought that
it would be a good representation of the size of the search
space, and because there just isnt too much documentation
on what the z3 statsitics mean. What do you think? And what
would you think is the best approach to tackle this? below is
the code i currently have to gather the statistics of the solver. 1
also have a function to gather some properties such as number
of pairs or triple pairs from the puzzles directly, i could use

this to examine puzzles that have been marked as an outlier
by this function. [code snippet]

answer Conflicts can be a useful “difficulty signal”, but in
73 it’s also a bit of a blunt instrument:

* “conflicts” is not a pure search-space size proxy. It’s
mainly counting how often the solver derives a contra-
diction and learns from it. That number depends heav-
ily on heuristics, preprocessing, restart policy, learned
clause quality, and which engine is active (SAT vs theory
reasoning). Two puzzles with the same “combinatorial
hardness” can show very different conflicts just because
the solver took different routes.

* Also, depending on your encoding, the top-level “con-
flicts” may not be the one you think you’re measuring
(Z3 exposes several SAT-specific counters).

What I'd use instead (and alongside conflicts) If you're trying

to find “hard for my encoding + Z3” instances, measure a

small bundle of stats and treat them as a profile:
SAT/CDCL-ish effort

* decisions (or sat_decisions if available): branching steps
* conflicts / sat_conflicts: contradiction+learning events

* propagations / sat_propagations: unit propagation vol-
ume

* restarts (if exposed): how turbulent the search was
Theory / arithmetic load (if you’re in QF_LIA etc.)

* anything like theory-specific counters if present (varies
a lot by version/build)

» wall time + decisions often tells you if the theory solver
is the bottleneck (high time with relatively low decisions
can indicate expensive theory reasoning)

Resource-style metrics

* rlimit-count (if you use it): “work done” in Z3’s internal
resource units (often more stable than time)

* memory (sometimes exposed), or at least track Python
RSS externally if you can

Practical “best approach” to find genuinely hard puzzles 1)
Make runs comparable (otherwise outliers are noisy)

* Fix aseed: s.set("random_seed”, k) (and keep k recorded
per run).

* Disable/standardize parallelism if applicable.

* Run > 5-10 repeats per puzzle (especially if you're go-
ing to use z-scores).

Then use median time/conflicts (or trimmed mean) instead of
mean; it’s much more robust.

2) Don’t z-score raw time/conflicts; use robust or log scal-
ing Time and conflicts are usually heavy-tailed. Your current
z-score approach is fine as a first pass, but you’ll get fewer
false “hard” flags if you do either:

* z-score on log(elapsed) and log(conflicts+1), or

e use a robust outlier score like MAD (median absolute
deviation)



3) Normalize within (solver, size) like you do — but also rank
For “hard benchmark selection”, I'd honestly do something
simple and stable:

* For each (solver, size), compute ranks for time and con-
flicts

* Define difficulty_score = rank_time + rank_conflicts (or
weighted) This avoids assuming normality and makes
your “hard set” stable.

4) Use puzzle features after you’ve found hard ones (exactly
what you suggested) Your idea to compute puzzle properties
(pairs, triplets, etc.) is the right next step:

* First: identify “hard” puzzles by runtime/effort stats

e Second: correlate hardness with features (pairs/triples,
duplicate density per row/

e col, symmetry, number of forced blacks, etc.) Third:
generate more by mutating puzzles toward those features

That will give you a story like: “hard instances tend to have
X structure; adding constraint Y reduces decisions/conflicts
particularly on those.”

Small improvements to your current function (without
changing the spirit)

* Use median instead of mean for elapsed and conflicts
aggregation across runs.

e If runs < 3, don’t label anything an outlier (too unsta-
ble).

e Consider printing which statistic keys exist for a
run, because Z3 stats differ a lot across settings;
e.g. dump sorted(stats.keys()) once per solver/con-
fig so you can decide whether you should switch to
sat_conflicts/sat_decisions etc.

If your goal is “hard puzzles for my solver”, the strongest
method Once you have a difficulty score, you can actively
search for hard instances:

* start from random valid puzzles

¢ apply small mutations (swap numbers, tweak a row/col,
regenerate with constraints)

* keep the mutation if difficulty_score increases
* repeat (hill-climb), or do a small genetic algorithm

That tends to find nastier instances than passive sampling, and
it gives you a reproducible benchmark generator.

If you paste a sample of rs[”’statistics] (just one dict) from
a run, I can tell you which exact counters you should priori-
tize for your Z3 build/encoding (e.g., whether you’re actually
seeing SAT-level sat_* stats or mainly theory ones).

prompt lest move on to the next part of extracting the
appropriate statistics and using them properly. Ive done
run_time and conflicts, but you didnt really agree. Id like your
opinion on what you think the statistics mean but id also like
to know on what sources you are basing this

answer Great, this is exactly the right moment in your
project to be critical about what the numbers actually mean.
I’ll structure this in three layers:

* What Z3 statistics conceptually measure (with sources)
* Which statistics are meaningful for “difficulty” and why
* How to use them properly in your analysis

I'll be explicit about where conflicts do and do not make
sense.

1. What Z3 statistics actually mean (with sources) Con-
flicts What they are In Z3 (and CDCL-based solvers gener-
ally), a conflict is detected when the current partial assign-
ment violates a clause or theory constraint, triggering:

* backtracking

* clause learning

* possibly a restart
What conflicts measure

e How often the solver reaches an inconsistent state that
requires learning.

* Roughly: how turbulent the search is, not how large the
search space is.

What conflicts do not measure
* They do not directly measure:

— number of explored assignments

— theoretical search-space size

— puzzle difficulty independent of solver heuristics
Sources

e Eén & Sorensson, “An Extensible SAT-solver”, SAT
2003 (MiniSAT) — canonical explanation of conflicts
and clause learning.

* Biere et al., Handbook of Satisfiability, 2009 — Chapter
on CDCL solvers.

¢ de Moura & Bjgrner, “Z3: An Efficient SMT Solver”,
TACAS 2008 — explains how SAT conflicts interact
with theory reasoning in Z3.

Decisions What they are

* A decision is a branching choice: the solver assigns a
value to a variable not forced by propagation.

Why decisions matter

* Decisions are the closest analogue to: “how many
branches did the solver actively choose to explore?”

Interpretation
* High decisions — wide or deep search

* Low decisions + high runtime — expensive theory rea-
soning

Sources
» Same as above; decisions are a core CDCL concept.

* Pipatsrisawat & Darwiche, “On the Power of Clause
Learning”, SAT 2009

Propagations What they are



 Forced assignments derived by unit clauses or theory
propagation.

Interpretation
» High propagations usually correlate with:

— dense constraint interaction
— strong constraint propagation

* Propagations alone are not a difficulty measure, but:
— propagations / decision is very informative
Sources
* Handbook of Satisfiability, CDCL chapters

e 73 internal documentation (limited, but consistent with
SAT literature)

Restarts What they are

 Solver abandons the current search path and restarts with
learned clauses.

Interpretation

e Many restarts — solver struggling to find a productive
search direction

 Often correlated with hardness for that encoding
Caveat

* Restart policies vary; absolute numbers are less mean-
ingful than relative ones.

rlimit-count (very important but underrated) What it is

e 7Z3’s internal resource counter, incremented for many
low-level operations.

Why it’s useful
¢ Much more stable than wall-clock time

¢ Often correlates better with “actual work™ than conflicts
alone

Source
¢ de Moura & Bjgrner, TACAS 2008 (mentioned briefly)

e 73 codebase comments (this is common knowledge
among Z3 users, but poorly documented)

2. Which statistics actually make sense for your goal Your
stated goal is: “Find puzzles that are hard to solve for my Z3
encoding.” That’s important — you’re not doing theoretical
hardness, you’re doing solver-relative hardness.

My opinion, clearly stated

* Conflicts alone are not sufficient
* Conflicts + decisions + runtime form a meaningful core
e rlimit-count (if available) is often better than conflicts
* Runtime alone is too noisy without control
A good minimal set If I had to pick four stats only:
1. elapsed time — user-visible difficulty
2. decisions — branching effort
3. conflicts — learning turbulence
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. rlimit-count — total solver effort

If you can only pick three: time + decisions + conflicts

3. How to use these statistics properly 3.1 Don’t interpret
raw values in isolation

Bad: “Puzzle A has more conflicts, therefore it’s harder.”

Better: “Puzzle A has significantly more decisions and
conflicts than the median puzzle of the same size.”

Best: “Puzzle A lies in the 95th percentile for decisions
and conflicts within its size class.”

3.2 Use ratios (this is important and often missed) These
derived metrics are much more informative:

* conflicts / decisions

* propagations / decision
* time / decision
Interpretation examples:

* High decisions, low conflicts — wide but consistent
search

* Low decisions, high time — theory-heavy reasoning

* High conflicts / decision — poor heuristic guidance
These ratios let you explain why a puzzle is hard, not just that
it is.

3.3 Difficulty is multi-dimensional — embrace that

Instead of asking: “Which puzzle is hardest?”
Ask:

* hardest by time?
* hardest by search effort?
* hardest by theory reasoning?

In your context, that’s a strength, not a weakness.

3.4 How I’d define “hard puzzle” in your project Very de-
fensible definition: A puzzle is considered hard for a solver
if it is an outlier with respect to solver effort (runtime, deci-
sions, and conflicts) within its size class, averaged over mul-
tiple seeded runs. That sentence is thesis-ready.

4. How this ties back to your puzzle-structure analysis
Once you identify hard puzzles:

* correlate difficulty with:

— number of duplicate pairs
— number of triplets
— symmetry
— forced black regions
* explain why certain patterns cause:

— more branching
— more conflicts
— slower propagation
This is where your work becomes interesting, not just empir-

ical.
5. Bottom line (very explicit)

* You were right to look at conflicts.
* You were wrong to trust them alone.

* Your current setup is very close to something publish-
able.



* Add decisions + (optionally) rlimit-count, and treat dif-
ficulty as a profile, not a scalar.

If you want, next we can:

* inspect one real statistics() dict and decide exactly which
keys to rely on, or

* design a single composite difficulty score that you can
justify academically.

prompt I can use all 5, time, decisisoin, conflicts, propaga-
tions and rmlimit, that no issue

answer Perfect — that’s actually an excellent position to be
in. With those five you can do something that’s both method-
ologically sound and easy to justify in writing.

I’ll now be very concrete and give you:

* How to interpret each of the 5 (precisely, in your context)
¢ Which combinations matter most

* How to turn them into a usable “difficulty” analysis

* How to present this cleanly in a thesis/poster

No hand-waving, and everything stays within SMT/SAT lit-
erature norms.

[Another repeat of interpretations]

Which combinations actually matter Core triplet (must-
have)

* decisions

» conflicts

* rlimit-count

These tell you:

* how wide the search was,

* how turbulent it was,

* how expensive it was overall.

Diagnostic ratios (extremely useful) These are where real
insight comes from:

« conflicts / decisions — heuristic quality
 propagations / decisions — propagation strength
* rlimit / decisions — cost per branch

e time / rlimit — machine-level overhead

You do not need all of them in the paper — but use them in
analysis.

3. How to define and use “difficulty” properly Step 1: Nor-
malize within (solver, size) You already do this — good. For
each metric m: z_m = (m — mean(m))/std(m) (or medi-
an/MAD if you want to be robust).

Step 2: Treat difficulty as a vector In-
stead of collapsing immediately: D(puzzle) =
(z_time, z_decisions, z_con flicts, z_prop, z_rlimit)

This lets you say things like:

* “hard due to search”
* “hard due to propagation”

* “hard due to theory overhead”

This is far more defensible than a single scalar.

Step 3 (optional but powerful): Composite score If you
do want one number, use something like: dif ficulty =
zqecisions + zcon flicts 4+ z.limit Why this works:

¢ decisions — search size
* conflicts — learning effort
* rlimit — total work
I would not include time in the composite (use it separately).

description ChatGPT followed by giving a code imple-
mentation that provided outliers based on the z-scores of the
five statistics. We did not implement this code yet, as we
found a mistake when analysing the implementation.

prompt This is nice, but still uses the old logic of if any in-
dividual z > 2, we mark it. You said that looking at individual
stats was not worth it and instead we should look at combined
statistics to find the actual difficulty our solver had

answer Yep — you're right to call that out. “any z > 2”
finds spiky puzzles, not necessarily “overall hard”. What we
want is a combined effort score that only flags puzzles that
are consistently heavy across multiple effort dimensions.

Here are two solid ways to combine the five stats, and then
I’ll show you how to implement it cleanly in your function.

A good combined difficulty score Option A (recom-
mended): weighted Euclidean norm of positive z-scores

This treats “hardness” as “far out in effort-space”, but ig-
nores ‘“‘easier-than-average” negatives.

D= \/Z w; - max(0, z;)?

Why this works:

* A single spiky metric doesn’t dominate as much as with
any z /, threshold

* Being moderately high on several metrics pushes you
over the threshold

* Using only positive z avoids “hard in one metric but
weirdly low in another” cancelling out

My suggested weights:

e rlimit: 1.0 (best proxy for total work)

e decisions: 1.0 (search effort)

 conflicts: 0.7 (learning turbulence; helpful but less sta-
ble)

 propagations: 0.5 (often correlates with encoding den-
sity)

 time: 0.5 (noisy; keep it but don’t let it dominate)

You can tweak these, but this default is defensible.
Option B: sum of positive z-scores (simpler)

D= Zw -maxz(0, ;)

Simpler, but more sensitive to “many slightly-above-average”
metrics.

What threshold to use? For the Euclidean version (Option
A), a good starting point is:



* difficulty > 3.0 — “strong outlier”
« difficulty > 2.5 — “possible hard”

Reason: if two metrics are at z=2, norm ~ sqrt(4+4)=2.83. So
3.0 roughly means “at least two big signals, or three moderate
ones”.

[ChatGPT followed by giving an implementation into our
code]

discussion This conversation was followed by an iterative
process of implementing the hard score using 5 statistics. Af-
ter this, we evaluated the weights and statistics used in this
score by manually altering them and reviewing the resulting
filtered sets. We discussed some of the results with ChatGPT
in order to get more clarity on how to interpret the results as
well as to find better methods for finding the correct set of
weights to use.

prompt ive noticed that the ratios involving rlimits are not
useful, since rlimit is almost always incredibly high. Also, the
ratios dont seem to be hat crazy for the most difficult puzzles,
for instance, the puzzle with hard_score 6.85 has the ratios:
z_C/D: 1.03, z_P/D: -1.52, z_R/D: -1.35 z_T/R="-0.27

answer This is actually a very good observation — and it
tells us something real about your encoding and Z3’s behav-
ior, not that the analysis is “wrong”.

Let me unpack what this means, why it’s expected, and
how I’d adjust the pipeline accordingly.

1. Why rlimit ratios are useless in your case You’re seeing:

* rlimit is huge for almost everything
* rlimit/decision barely discriminates
* 7z R/D and z_T/R cluster near O or negative

This typically means:
Interpretation

* Most of Z3’s internal work is front-loaded and global:
— simplification
— preprocessing
— theory bookkeeping

» That cost dominates and scales roughly with puzzle size,
not search behavior.

So: rlimit is acting like a baseline tax, not a search signal.
This is very common for SMT encodings with:

* heavy arithmetic constraints,
e large numbers of static constraints,
* connectivity constraints (which Hitori has).
Conclusion
* Dropping rlimit ratios is the right call
» Keeping raw rlimit as part of the effort score is still fine

2. Why ratios aren’t “crazy” for the hardest puzzles Your
example actually paints a very coherent picture: What this
says about that puzzle

* High hard_score (6.85) — very high absolute effort (de-
cisions + conflicts + time)

* conflicts/decision only mildly high (1.03) — search is
not chaotic

 propagations/decision very low (-1.52) — propagation
is weak

* rlimit/decision low — per-branch work is not expensive

Interpretation (important) This puzzle is hard because the
solver has to explore a very large search space, not because
it’s making bad decisions.

In other words:

* many decisions,

* each decision is relatively “clean”,

* but constraints don’t propagate much,
* so the solver must branch deeply.

That’s exactly the kind of instance that defeats SMT encod-
ings of Hitori.

So the ratios are not supposed to be extreme for hard puz-
zles — they explain why the puzzle is hard.

3. This tells you something interesting for your thesis You
now have evidence for a strong qualitative claim: The hard-
est puzzles for the SMT encoding are not characterized by
high conflict density or expensive propagation, but by weak
propagation that forces extensive branching.

That’s a much stronger insight than: “some puzzles take
longer”.

You could even contrast:

* hard puzzles: high decisions, low prop/dec
* easy puzzles: low decisions, high prop/dec

4. How I'd refine the analysis pipeline (based on your ob-
servation) Drop these ratios entirely

* rlimit / decision
¢ time / rlimit
They’re not informative for your encoding.
Keep these two
* conflicts / decisions
* propagations / decisions

And use them only diagnostically, not for hardness scoring.
5. How I’d present this in code (small adjustment)
When printing outliers, emphasize interpretation, e.g.:

hard_score=6.85

z_decisions=3.12 z_conflicts=2.94

conf/dec z=+1.03
prop/dec z=-1.52

»> mildly turbulent search

This makes the result explainable, not just numeric.
6. What you should not worry about

* Ratios not being extreme for the hardest puzzles —
that’s expected when hardness comes from breadth, not
chaos

* rlimit ratios being useless — very common; you tested
and validated that empirically

z_propagations=-0.88

> weak propagation (branch-heavy)



That’s good experimental practice.
7. One last conceptual takeaway (worth remembering)
Hardness can come from three very different causes:

1. Bad guidance (high conflicts/decision)
2. Expensive reasoning (high rlimit/decision)
3. Weak propagation (high decisions, low prop/decision)

Your solver is hitting (3).
That’s a clean, defensible conclusion.

The conversation continues with evaluating results and I
attempt to add the bool_vars statistic to the hard-score eval-
uation, after a few prompts, this attempt eventually concludes
with the following prompt and answer.

prompt Since we dont know much about bool_vars and
given that it might not be that useful after all, should we really
take it into account for our score?

answer Short answer: no — you should not include
bool_vars directly in the hard score. Long answer: you use
bool_vars to explain hardness, not to define it.

Let me explain why this distinction matters, and what the
clean design is.

1. What the hard score is supposed to mean Your hard score
currently measures: How much work the solver actually did
on this instance.

That’s why it’s built from:

* decisions (branching effort)
 conflicts (learning effort)

* propagations (interaction volume)

¢ rlimit / log-time (total internal cost)

These are dynamic effort measures.
2. What bool_vars measures (and does not) bool_vars mea-
sures:

* the static size of the Boolean abstraction

It says nothing about:

* how many branches were taken,

* how many conflicts occurred,

* how long the solver ran.

So if you include bool _vars in the hard score, you’d be mix-
ing:

* “how big the model is” with

* “how hard the solver worked”

That muddies the interpretation.

3. Why including bool_vars in the hard score is wrong Let’s
look at the failure mode.

Imagine two puzzles of the same size:

Puzzle bool_vars decisions hard?
A 100k 5k medium
B 200k 5k same

If you include bool _vars:
* Puzzle B looks “harder”

¢ But the solver did the same work

That’s misleading.

The solver did not struggle more on B — the model was
just larger.

4. Where bool_vars does belong As a normalizer or ex-
planatory axis Use bool_vars in ratios like:

e decisions / bool_vars
* propagations / bool_vars
¢ conflicts / bool_vars

These answer: “How much effort was required per unit of
model size?” That’s exactly what you want for interpretation.
5. How to talk about this in your report
A clean separation:

* Hard score — solver effort
 Ratios involving bool_vars — constraint effectiveness

You can phrase it like this: The combined difficulty score cap-
tures solver effort independent of encoding size. Structural
measures such as the number of Boolean variables are used
only in normalized ratios to interpret solver behavior and con-
straint effectiveness. That’s a very defensible methodological
choice.

6. When would it make sense to include bool_vars? Only
in a different kind of score, e.g.:

* an encoding complexity score, or
* a model size comparison across encodings.

But that’s not what your hard score is for.
Bottom line

¢ Do not include bool_vars in the hard score

* Do include decisions / bool_vars and similar ratios as
diagnostics
Your current separation is exactly right.
prompt We currently use the following weights in our

function. I am going to experiment a bit with these to find
the best fit. Can you suggest some ways to do this?

answer Good idea. At this point you've earned the right

to tune the weights, because you now understand what each

metric is actually measuring and what your data is telling you.
I'll structure this as:

1. What the weights are supposed to encode

2. What your observations imply for re-weighting

3. Two concrete alternative weight sets (with justification)
4

. How to validate that the weights make sense (without
overfitting)

No hand-waving.

[More repeat on what the weights mean and my observer-
sations]

3. Recommended weight sets Option A: “Solver-
effort—centric” (my top recommendation) This reflects ex-
actly what your results show.

 decisions”: 1.2, # primary hardness signal
e ’rlimit_count”: 1.0, # total effort

* “conflicts”: 0.6, # turbulence, secondary



* “propagations”: 0.4, # interaction volume, noisy
* ”log_time”: 0.3 # visibility only

Why this is good

* Hard puzzles remain hard

* Branch-heavy puzzles are emphasized

* Time anomalies don’t dominate

» Ratios stay interpretable

If you use this set, your hard score becomes: “How much
branch-heavy effort the solver expended.” Which fits your
conclusions perfectly.

Option B: “Time-aligned” (only if you care about wall-
clock) Use this only if you want hard score ~ runtime.

¢ “decisions”: 1.0,
e ’rlimit_count™: 0.8,
e “conflicts™: 0.6,
» “propagations”: 0.4,
* “log_time”: 0.8
This will:
¢ pull time-hard puzzles upward,
e blur the distinction between effort-hard and time-hard.

I would not recommend this for your thesis, but it’s a useful
comparison.

Option C: Minimalist (very defensible) If you want to be
extremely conservative:

¢ “decisions”: 1.0,

¢ ’rlimit_count™: 0.8,
e “conflicts™: 0.5,

e “propagations”: 0.3
e #no time

Time is reported separately. This is hard to criticize academ-
ically.

4. How to validate the weights (without cheating) You
should not “optimize” weights numerically (that’s overfit-
ting). Instead, do sanity validation: Check 1: Stability

* Do the same puzzles appear in the top 5—10% across:
— Option A
— Option C

* If yes — weights are robust

Check 2: Interpretability For a few top puzzles, ask:

¢ Is hardness explained by:
— high decisions?
— weak propagation?

* Or is it driven by time noise?

If a weight set makes ‘“nonsense-hard” puzzles appear, reject
it.

Check 3: Correlation table (very easy, very strong) Com-
pute Spearman correlation between:

¢ hard_score

¢ decisions
* runtime
You want:
* high corr with decisions
¢ moderate corr with runtime
* not perfect corr with either

That shows your score captures effort, not just time.

5. How to justify weights in writing (important) You do
not need to claim optimality.

Just say something like: Weights were chosen to em-
phasize stable solver effort indicators (decisions and rlimit-
count), while down-weighting metrics that are either noisy
(runtime) or ambiguous in interpretation (propagations). Al-
ternative weightings were evaluated and produced qualita-
tively similar outlier sets. That’s exactly the right level of
rigor.

6. One last important rule (keep this) If changing a weight
slightly changes which puzzles are hard, your metric is un-
stable. If changing a weight slightly only changes ordering
within the hard set, your metric is good.

My clear recommendation Use Option A, and keep time
separate in plots/tables.

prompt Im going to add memory usage as well, since time
doesnt really shows up in difficulty, maybe that will.

answer For Z3’s two memory-related statistics fields:

* memory = current allocated heap size (roughly “how
much Z3 thinks it has allocated right now”), reported
in MiB. This comes from memory::get_allocation_size()
and is then scaled by 1024*1024.

e max-memory = peak (maximum) heap usage seen
so far during the run, also in MiB, from mem-
ory::get_max_used_memory().

And separately (easy to confuse with the above):
max_memory is also a parameter you can set to put a
(soft) memory cap on Z3, expressed in MB/MiB depending
on docs phrasing.

Which one should you use for “difficulty”? Use max-
memory (peak) as your main memory signal.

Reason: “difficulty” is usually about how bad it got at any
point. Peak memory captures clause database blow-ups / big
intermediate states; end-of-run memory can be lower (be-
cause some things are freed) or just not representative.

So:

» Keep collecting both if you want.

* Use max-memory in your hard/easy score, and either ig-
nore memory or treat it as a secondary diagnostic.

[Implemntation of using the statistics in my code]

One more practical note These memory counters are ap-
proximations (not updated on every allocation), so don’t over-
fit weights to tiny differences.

If you want, paste one sample s.statistics() dump (just the
printed stats dict) and I’1l tell you exactly which key spellings
your build is using so you don’t chase another “always the
same” bug.



prompt this also makes me think about including time or
log_time in the weights. Is a hard puzzle purely effort or is
it runtime based, currently we are looking a bit at both, but
mostly effort. I think i want to lean on effort the most and
then take a look at the impact in time afterwards, same goes
for memory

answer That’s a clean and defensible framing, and it
matches what your data has been telling you.

Define “hard” as effort-first In your project, “hard for my
solver” is best defined as:

high internal solver effort (branching + learning + propa-
gation volume), and then you analyze runtime and memory
as outcomes of that effort.

That avoids the trap where noise in wall-clock time (or OS-
/machine effects) changes what counts as “hard”.

Why this is methodologically strong

» Effort stats (decisions/conflicts/propagations/rlimit) are
mostly solver-internal and more reproducible.

* Runtime is a dependent variable: it’s affected by hard-
ware, Python overhead, scheduling, etc.

* Peak memory is also an outcome: it can explode due to
clause learning or preprocessing even if time stays mod-
est (and vice versa).

So: effort — (time, memory) as downstream effects is the
right causal story.

What I"d do with your weights 1) Remove time from the
hard score (or keep it tiny) If you want “effort-hard”, don’t
let time define hardness.

Option A (pure effort):

¢ “decisions”: 1.0,

e “conflicts”: 0.8,

* ”propagations”: 0.6,

e ’rlimit_count™: 0.3,

Option B (still acknowledge time, but not define hardness):
e decisions”: 1.0,

¢ “conflicts”: 0.8,

* “propagations”: 0.6,

e rlimit_count”: 0.3,

* “log_time”: 0.1, # “tie-breaker” level

Given your observation that time doesn’t discriminate
much, I’d pick Option A or B with 0.1.

2) Keep memory OUT of the score; analyze it afterwards
Same logic as time. Make it a reported field, not part of the
definition.

How to “look at impact afterwards” (simple + strong) Once
you have the effort-hard set (say top K per size), do:

* Compare median runtime and median peak memory of:

— effort-hard puzzles
— “normal” puzzles (middle 50
— effort-easy puzzles (bottom K)

* Or compute correlations per size bucket:

— corr(hard_score_effort, log_time)

— corr(hard_score_effort, log_max_mem)

This gives you a solid results narrative:

“Effort-hard puzzles generally correlate with higher run-
time and peak memory, but the relationship is imperfect;
some puzzles are effort-hard but time-light.”

That’s exactly the kind of insight you were already seeing.

Implementation suggestion (tiny change, big clarity)

Store three scores instead of one:

* effort_score (your hard_score with no time/mem)
* z_log_time (reported, not scored)
* z_log_max_mem (reported, not scored)

Then you can filter by effort score and sort within that set by
time or memory depending on what you want to inspect.

Thesis-ready wording you can use Difficulty was defined
primarily in terms of solver effort (decisions, conflicts, propa-
gations, and resource-limit steps). Runtime and peak memory
were analyzed separately as outcomes of solver effort, rather
than as part of the difficulty definition, due to their sensitivity
to external factors and implementation overhead.

That’s rigorous and hard to argue with.

prompt Ive analyzed runtime, memory, conflicts, deci-
sions, propagations and rlimit for the set of difficult puzzles
and an equally sized set of non-hard puzzles. It seems that
only the conflicts, decisions and propagations are noticable
higher for our "harder’ puzzles. rlimit, memory and solving
time is pretty much equal (; 2% difference). This is not what
i expected and makes me doubt on the method we use to de-
termine hard puzzles. What do i do? do i spent more time
trying to make a new way of finding hard puzzles or do i just
report this failure and move on?

answer This is a very important result, and the fact that it
makes you uncomfortable is actually a good sign. Short an-
swer first, then the reasoning:

You should not throw this away or redesign everything.
You should report this result clearly, explain why it happens,
and move on.

This is not a failure of your method. It’s a finding about the
solver and the problem.

1. Why this result is not actually contradictory You found:

* Hard puzzles (by your metric) have:

— much higher decisions

— much higher conflicts

— much higher propagations
* But almost identical:

— runtime

— peak memory

— rlimit
This means: The solver is doing more search work, but that
extra work is cheap.

That is exactly the pattern you were already seeing earlier
with:

* low or negative z(rlimit / decisions),

¢ low z(time),



* branch-heavy but fast reasoning.

So this result is consistent with everything you observed be-
fore — it just becomes clearer when you aggregate.

2. What this tells you about Hitori + your encoding This
strongly suggests:

* The hard instances are combinatorially harder, not com-
putationally heavier.

e 73 handles this kind of Boolean-heavy branching very
efficiently.

¢ Extra decisions and conflicts do not translate into:

— expensive theory reasoning,
— large clause databases,
— or measurable time/memory growth.
In other words: Harder puzzles require more branching, but
each branch is cheap and quickly pruned.
That is a property of the encoding and solver, not a flaw in
your metric.
3. Why redefining “hard” in terms of time or memory
would be worse If you now switch to:

¢ runtime-based hardness, or
* memory-based hardness,
you would actually be measuring noise:
* OS scheduling,
 Python overhead,
¢ cache effects,
* machine variability.

You would lose the solver-internal signal that you do see
clearly (decisions/conflicts/propagations).

So changing the definition now would weaken the method-
ology, not strengthen it.

4. How to frame this correctly (this is the key) The right
interpretation is:

“Difficulty” as measured by solver effort does not neces-
sarily translate to higher runtime or memory usage for this
problem class.

That is a valid and interesting conclusion.

You’re not claiming:

* that your metric predicts runtime,
e or that “hard” means “slow”.
You are claiming:

» that some puzzles induce significantly more solver-
internal work,

» even when this does not manifest in wall-clock perfor-
mance.

That’s a subtle but solid point.
5. What not to do Don’t:

 spend weeks inventing a new hardness metric,

* force time/memory into the definition,

* treat this as an error unless you find a clear bug.
You already validated:

¢ the stats,

* the z-scoring,

* the grouping,

* the comparisons.

Nothing is obviously broken.

6. What you should do instead (concrete steps) 1. Report
this explicitly

In your results section, say something like: While hard
puzzles exhibit substantially higher numbers of decisions,
conflicts, and propagations, no significant differences were
observed in runtime, peak memory usage, or rlimit-count.

2. Explain why this happens You already have the expla-
nation:

* CDCL with non-chronological backtracking
* efficient pruning

* cheap Boolean reasoning

* little theory work

3. Turn doubt into insight This becomes a discussion point,
not a failure:

* “solver effort # runtime”
¢ “branch-heavy # slow”
* “difficulty is multi-dimensional”

That’s exactly the kind of nuance examiners like.
7. If you want one small sanity check (optional) Do one
extra check, then stop:

* Plot or compute correlation:

— effort score vs runtime
— effort score vs memory

If correlation =~ 0, that confirms your conclusion quantita-
tively.

Do not redesign the method unless this check contradicts
your observations.

8. How this actually strengthens your project Many student
projects end with: “Hard puzzles take longer.”

Yours can end with: “Harder puzzles induce more solver
effort, but modern SMT solvers can absorb this effort with-
out measurable runtime or memory impact for this problem
class.”

That’s more interesting.

Bottom line (very important)

* You did not fail to find hard puzzles.

* You found that hardness manifests internally, not exter-
nally.

That’s a real result. Report it, explain it, and move on.

conclusion This conversation helped us refine our method
of defining hard puzzles using an effort-based score and
helped us implement this method in code. Using the re-
sponses from ChatGPT and additional sources from Stack-
Overflow we were able to give meaning to statistics and de-
termine the weights needed to form this score. The weights
were evaluated repeatedly using the methods as suggested by
ChatGPT and with further discussion and manual evaluation
we were able to find a suitable set to use for our experiment.



E.3 Conversations about data uniformality and
statistics

During our experimental evaluation, we required statistical
methods in order to measure significance of our results. Due
to the limited knowledge on statistics by us, we consulted
ChatGPT to help find the correct methods to use.

prompt [ am going to working on my results. The first re-
search question I will be tackling is this one: How does the
size of the SMT encoding and Z3’s solving performance scale
with the increasing Hitori puzzle size? I have multiple encod-
ings that I want to use as a base, such as a Bitvector variant, a
LIA variant and some variants with small variations. In total
these are 7 variantions. 3 are actual different theories used, 3
are variants of the LIA encoding and the final one is a ’lazy’
encoding that uses a completely different strategy. I have the
runtime available, as well as a bunch of stats from Z3 which
i will likely not use. I also have the encoding size in terms
of SMT variables and assertions, but i still need a proper ex-
planation as to why this is sufficient as encoding size. I want
to use proper statistical methods to answer this question, but
dont really know where to start

answer You're actually in a very good position already —
what you’re missing is not data, but structure. Below is a
concrete, defensible way to answer this research question us-
ing standard empirical methods without overclaiming, and in
a way that examiners in constraint solving will recognize as
sound.

1. Precisely restate the research question (this matters) You
are not asking whether one encoding is “better” in absolute
terms. You are asking:

How does encoding size and solver performance scale as a
function of puzzle size, and how do modelling choices affect
that scaling?

This framing immediately justifies:

* asymptotic analysis
* regression on log—log plots
* relative comparison between encodings

You are not required to explain Z3 internals.

2. What you should measure (keep it minimal) Indepen-
dent variable

* Puzzle size n (grid is n X n)

Dependent variables
You only need two, both defensible:

1. Encoding size

¢ Number of SMT variables
¢ Number of assertions

2. Solver performance
* Runtime (elapsed wall-clock time)

Everything else (conflicts, propagations, decisions, rlimit)
can be mentioned as available but unused. That restraint is
a strength, not a weakness.

3. Why “#variables + #assertions” is a valid encoding size
measure This is the key explanation you said you’re missing.
You can argue this cleanly:

Core argument (this is what you write)

* SMT solvers operate on a finite formula composed of:
— declared symbols (variables, functions)
— asserted constraints

* Regardless of the underlying theory (LIA, BV, Bool), all
solving effort originates from these two sources

» 73 internally normalises theory constraints into Boolean
structure via its SAT layer
* Therefore:
— more variables — larger search space
— more assertions — more clauses after preprocess-
ing
You are not claiming this is a perfect measure — only that it
is:
* theory-agnostic
* solver-independent
* monotonic with problem complexity

That’s exactly the right level.

One-sentence justification you can reuse We therefore use
the number of declared SMT variables and assertions as a
proxy for encoding size, as these quantities directly determine
the size of the logical formula presented to the solver, inde-
pendent of the theory used.

That’s enough. You don’t need to cite Z3 internals.

4. Statistical method: what to actually do Step 1: Aggre-
gate properly For each encoding variant and puzzle size:

* run multiple instances (or puzzles)
* report median runtime
— median is preferable due to heavy-tailed runtimes
* optionally show IQR (interquartile range)
Avoid means unless you justify them.
Step 2: Scaling analysis (this is the core)
You expect polynomial or exponential growth. To detect
that:
Use log-log regression For each encoding:
* plot:
— log(n) vs log(encodingsize)
- log(n) vs log(runtime)
Then fit:
log(y) = alog(n) +b
Interpretation:
* slope a = scaling exponent
* higher a = worse scalability
This avoids overfitting and is standard in solver evaluation
papers.
Step 3: Compare encodings by slope, not raw time This is
crucial:

* Raw runtime comparisons are noisy and hardware-
dependent

* Scaling slope is structural

So you say things like:



* “The BV encoding exhibits a steeper scaling slope than
LIA”

e “LIA variants differ mainly in constant factors, not
asymptotic behaviour”

This is exactly aligned with SMT literature.
5. How to handle the 7 encodings cleanly Group them ex-
plicitly:

1. Different theories

e LIA
* Bitvectors
* Boolean / lazy

2. Same theory, modelling variations

¢ LIA baseline
¢ LIA + variants

This allows you to make two separate claims:
» Theory choice affects scaling behaviour
* Small modelling variations mainly affect constants

That distinction is very strong academically.
6. What not to do (important) Do not:

e claim causality (“this constraint causes slowdown”)
e overinterpret Z3 statistics

* do hypothesis tests (t-tests, ANOVA) — unnecessary
and fragile

* average runtimes across different sizes

Scaling analysis is enough.
7. Suggested subsection structure (you can almost copy
this) Results — RQ1: Encoding size and solver scalability

1. Experimental setup
* encodings
* puzzle sizes
* runtime measurement

2. Encoding size growth
e variables vs size
* assertions vs size
¢ log—log analysis
3. Solver performance scaling
* runtime vs size
* regression slopes
4. Comparison across encodings
¢ theory-level differences
* modelling-level differences
5. Discussion
 implications for SMT modelling
* limitations (single solver, single hardware)

8. One final reassuring note You do not need “advanced statis-
tics” to make this rigorous. In solver research, clean plots +
scaling arguments beat p-values every time.

If you want, next we can:

* draft the exact text for the encoding-size justification
* decide whether to show linear or log plots

* sanity-check your regression interpretation before you
write it up

prompt Why use median runtime and not the mean? I was
thinking of using the stadard deviation and such to show sta-
bility and such

answer Good question — this is exactly the kind of thing
examiners do look for. Short answer: solver runtimes are
almost never well-behaved random variables, so the mean +
standard deviation often misrepresents what is going on.

Let’s break this down cleanly and then I’ll show you how
you can still talk about stability without using the mean.

1. The core issue: solver runtimes are not “normal” Mean
and standard deviation implicitly assume something like:

* a symmetric distribution
* light tails
* no extreme outliers

SMT solvers violate all three.
Typical runtime behaviour:

* many “easy’ instances — very fast
 afew “hard” instances — orders of magnitude slower
* sometimes timeouts

This produces:
* right-skewed distributions
* heavy tails
* occasional extreme outliers

In that situation:
* the mean is dominated by rare slow runs
* the standard deviation explodes
* neither reflects “typical” solver behaviour

This is well-known in SAT/SMT benchmarking.

2. What the median gives you (and the mean does not) Me-
dian runtime answers: “How long does the solver typically
take?”

Itis:

* robust to outliers

* stable across repetitions

* interpretable per puzzle size
This is why:

* SAT competitions

* SMT-COMP

* MiniZinc Challenge

all rely heavily on median-based metrics or quantiles.

Using the median is not “less statistical” — it’s more ap-
propriate.

3. Why standard deviation is especially misleading here
Suppose for one encoding and size you get:



Run Runtime (s)
1 0.8
2 0.9
3 0.8
4 0.9
5 12.3

e Mean ~ 3.14 s
e Std dev = very large
* Median =0.9 s
Which reflects reality better?
* The solver usually takes under a second
* QOccasionally it blows up

Mean + std would suggest “unstable and slow”, which is mis-
leading.

4. How to still talk about stability (this is the key) You’re
right that you want to show stability — you just shouldn’t use
standard deviation of the mean to do it.

Instead, use robust dispersion measures: Recommended
options (pick one or two)

1. Interquartile Range (IQR)
* IQR=Q3-Q1
» Shows spread of the middle 50
¢ Immune to outliers

You can say: “Runtime variability is limited, as indi-
cated by a small interquartile range.”

2. Median Absolute Deviation (MAD)
* Less common, but very robust
» Excellent if you want to be fancy and precise
3. Min—max bands or error bars (carefully)
¢ Only if you explicitly say they include outliers
* Good visually, weaker analytically

5. What about repeated runs on the same instance? This is an
important distinction.
Case A: different puzzle instances (most common)

* Runtime variability reflects instance hardness

* Median is the right statistic
Case B: repeated runs on the same instance

e Variability reflects solver nondeterminism

* Here you can talk about stability more explicitly
Even then:

* median + IQR is still preferable

* std dev is only acceptable if you show the distribution is
tight

6. How to justify this in one paragraph (you can reuse this)
Solver runtimes typically exhibit heavy-tailed distributions,
where a small number of hard instances dominate the total
runtime. In such settings, the mean and standard deviation are
highly sensitive to outliers and do not accurately reflect typ-
ical solver behaviour. We therefore report median runtimes,
which provide a robust estimate of central tendency, and use

dispersion measures such as the interquartile range to assess
variability and stability.

That is a textbook-correct justification.

7. If you really want to include standard deviation You can,
but do it carefully:

* Only as a secondary statistic
» Explicitly acknowledge its limitations
* Never base conclusions on it

For example: “Although we also report standard deviation
for completeness, we base our analysis primarily on median-
based statistics due to the skewed nature of runtime distribu-
tions.”

Bottom line

e Median — typical performance
* IQR/MAD — stability
* Mean + std — misleading for solver runtimes

Using median does not weaken your results — it makes them
more credible in the SMT community.

prompt So you assume my data is not uniformally dis-
tributed, how do i make sure this is the case? Does visually
looking at a QQ graph suffice?

answer This is a very good methodological question — and
you’re thinking about it in exactly the right way.

Short answer: Yes, visually inspecting distributions (in-
cluding QQ plots) is sufficient — and in your context, even
preferable — but you should be clear about what you’re
checking and why.

Let’s be precise.

1. First correction: it’s not “uniform”, it’s “normal” What
we actually care about is whether runtimes are approximately
normally distributed, not uniformly distributed.

e Uniform: flat distribution — almost never realistic for
runtimes

e Normal (Gaussian): symmetric, light tails — required
for mean + std to be meaningful

So the real question is: Are solver runtimes approximately
normal?

2. Do you need to prove non-normality? No. You only
need to justify your choice of robust statistics.

In empirical CS and solver research:

 formal normality tests are rare
* visual diagnostics are standard

 prior knowledge of solver behaviour is explicitly ac-
knowledged

Trying to “prove” non-normality with p-values often weakens
papers rather than strengthening them.

3. Is a QQ plot sufficient? Yes — if you use it correctly
and modestly A QQ plot against a normal distribution is one
of the best tools here.

What you’re looking for:

* straight line — roughly normal

e curvature — skewness



* strong deviations in upper tail — heavy-tailed behaviour
(very common!)

Solver runtimes almost always show:
* right-tail deviation
e clustering near small values
» afew very large points

That alone is enough to justify median-based statistics. You
do not need to show the QQ plot in the paper unless you want
to.

4. What about formal tests (Shapiro—Wilk, KS, etc.)? You
can mention them, but I would not recommend relying on
them. Why:

» with large samples, everything becomes “significantly
non-normal”

» with small samples, they lack power

¢ they produce binary outcomes that add little insight
If you use one:

* treat it as supporting evidence

* never as the main justification

5. The strongest justification: empirical + domain knowledge
The best argument combines three elements, not just one.

1. Visual inspection

* histogram or boxplot
* QQ plot showing tail deviations

2. Empirical observation

* large gap between median and max
* occasional extreme runtimes
* presence of timeouts (if any)

3. Domain knowledge

* SMT solvers are known to exhibit heavy-tailed run-
time distributions

* instance hardness varies sharply even at fixed size

This triangulation is far stronger than a single statistical test.

6. What you can safely write (example paragraph) You
can write something like: Preliminary inspection of runtime
distributions revealed strong right-skewness and heavy-tailed
behaviour, with occasional runs taking orders of magnitude
longer than the median. QQ plots against a normal distri-
bution showed substantial deviations in the upper tail. This
behaviour is consistent with known characteristics of SMT
solver runtimes. As a result, mean-based statistics were
deemed inappropriate, and median-based measures were used
instead.

This is:

* honest

 standard

* methodologically sound

7. Do you need to include the QQ plot in the paper? Not
necessary, unless:

* you expect a very statistically-minded reviewer

* or you want to put it in an appendix

Most solver papers do not include distribution diagnostics un-
less the paper is specifically about runtime variability.
8. Bottom line

* You are not making an assumption out of thin air
* Visual inspection (including QQ plots) is sufficient
» Formal normality tests are optional and often unhelpful

e Combining visuals + empirical behaviour + domain
knowledge is best practice

If you want, next we can:
* decide where to put this justification (methods vs results)
* draft a concise “statistical methodology” subsection

* decide whether one illustrative plot in an appendix is
worth it

discussion This conversation helped us visually inspect our
data using QQ-graphs and inspired several experiments to an-
swer our first research question. Based on the QQ-graphs and
prior reasoning, we were able to conclude that our data was
not uniformly distributed.

The following conversation reflected on statistical methods
to use for the second experiment.

prompt For RQ2, i am comparing several redundant con-
straints. I plan on testing them individually by applying them
on top the default gf_ia encoding. How can i best do this in
a statistical approach? I know my data (runtimes) is not uni-
formly distributed. You also mentioned some wilcoxon test
in an earlier conversation, can we use this here?.

answer This is actually a very clean setup for a proper sta-
tistical comparison RQ2 is much easier to treat rigorously
than RQ1 because you are doing paired comparisons.

Below is a concrete, defensible statistical approach that fits
your situation and that you can explain well in the paper.

1. Experimental design (this matters more than the test)
You already made the right design choice:

* Fix one baseline encoding: gf_ia
* Add one redundant constraint at a time
 Evaluate the same set of puzzles with:

— baseline
— baseline + constraint C;

This gives you paired data:

(tbaseline (p); teonstraint (p)) for each PUZZIC p

That pairing is the key to everything that follows.
2. What not to do (and why) Because your runtimes are:

* non-normal

* heavy-tailed

* sometimes dominated by a few very hard instances
You should not:

* use a t-test

¢ compare means



* rely on standard deviation as your main argument

Even log-transforming runtime doesn’t fully fix this in solver
data.
3. Use differences, not absolute runtimes For each puzzle
p, compute either:
Option A: Absolute difference
Ap = tconstaint (P) — tpaseline (p)

Option B (better): Relative change

A, = leonstraint(P)
tbn,seline(p)

or equivalently:

logA, = 10g teonstraint(p) — 109 thasetine ()
Why this helps:
* Normalizes across easy vs hard puzzles
* Makes “speedup vs slowdown” interpretable
* Is standard in solver evaluations

I strongly recommend relative change or log-differences.

4. Wilcoxon signed-rank test — yes, this is exactly the
right tool

When to use it The Wilcoxon signed-rank test is appropri-
ate when:

* data is paired
« differences are not normally distributed
* you want to test systematic improvement or degradation

That is precisely your situation.
What hypothesis it tests
For each constraint C;:

e Hy (null): median difference = 0 — the constraint has
no systematic effect

e Hj: median difference # 0 — the constraint systemati-
cally helps or hurts

You can even use a one-sided test if you want to test: “Does
this constraint improve performance?”

5. What to report (this is crucial) Do not just report a p-
value.

For each constraint, report:

1. Median relative change Example: Median runtime ratio
= 1.18 (meaning 18% slower)

2. Wilcoxon test result Example: Wilcoxon signed-rank
test, p < 0.01

3. Directionality Also report:

* % of puzzles that got faster
* % that got slower

This prevents “statistically significant but meaningless”
results.

6. Visualization (very important) Use paired visualizations,
not boxplots of raw runtime.
Best options:

* Boxplot or violin plot of log runtime ratios

e Scatter plot:
— x = baseline runtime
— y = constraint runtime
— with diagonal y = =

These visually reinforce:

* skew

* pairing

* outliers

7. How to phrase this in your paper (example text)

You can say something like: Since solver runtimes are
highly skewed and non-normally distributed, we evaluate the
effect of redundant constraints using paired non-parametric
tests. For each puzzle, we compare the runtime of the base-
line gf_ia encoding with the runtime obtained by adding a
single redundant constraint. We analyse relative runtime
changes and apply the Wilcoxon signed-rank test to deter-
mine whether a constraint introduces a systematic perfor-
mance difference across instances.

That’s exactly what reviewers expect to see.

8. Interpretation guidance (important for your conclusions)
Be very explicit:

« Statistically significant slowdown — constraint is harm-
ful

* No significant difference — constraint provides no con-
sistent benefit

e Small but significant improvement — limited useful-
ness, likely instance-dependent

9. Sanity checks (optional but nice) You do not need to
prove non-normality again here, but you can:

* mention earlier QQ-plots

* or simply state that solver runtime distributions are well-
known to be heavy-tailed

That’s widely accepted in the SAT/SMT community.

Bottom line Yes — Wilcoxon signed-rank is the correct
test, and your setup is ideal for it. Focus on paired differences,
medians, and directionality, not averages.

If you want, next we can:

e draft a results table template
* write a ready-to-drop-in LaTeX paragraph

* or decide whether to separate results by puzzle size or
difficulty

prompt Are there other statistical test that might be better
applied to our situation? My goal is to show which constraints
show a statistically significant increase or decrease per puzzle
size

answer Yes — there are other tests you can use, and some
are arguably better than Wilcoxon depending on what exactly
you want to claim. Since your goal is: to show which con-
straints show a statistically significant increase or decrease
per puzzle size we should be very precise about what is being
tested. Below is a decision-oriented overview, then a recom-
mended setup that fits your paper well.



1. Wilcoxon signed-rank (baseline choice) You already
know this one, but let’s anchor it.
What it tests

¢ Median paired difference # 0

* Assumes symmetry of differences (often approximately
true after log-ratio)

Strengths
e Simple
* Well-known
* Very defensible for solver runtimes
* Works well per puzzle size
Weakness
* Only tests location (median), not magnitude

* Less informative when distributions are very skewed or
multimodal

Conclusion: Still a very solid baseline, especially if re-
viewers are not statistics-heavy.
2. Sign test (simpler, weaker, but very robust) What it tests

* Do more puzzles get faster or slower?
* Ignores magnitude entirely
When it’s useful
* If runtime variance is extreme
* If a few huge outliers dominate Wilcoxon
* As a sanity check alongside Wilcoxon

Example interpretation “For size 10x10, constraint C
slowed down 73% of instances (sign test, p j 0.01).”
Weakness

* Much lower statistical power
* Does not capture how much slower

Use this only as a supporting test, not your main one.

3. Permutation (randomization) test — arguably the best
fit If you want the strongest methodological argument, this is
it.

What it tests

* Whether the observed median (or mean of log-ratios) is
larger than expected by chance

* No distributional assumptions at all
Why it fits your case perfectly

* Paired data

* Non-normal

* Heavy-tailed

* Small-to-medium sample sizes per puzzle size
How it works (conceptually) For each puzzle:

* Randomly swap “baseline” and “constraint” labels

* Recompute the statistic

* Repeat many times

» Compare observed value to null distribution

What you test Usually:

* Median log runtime ratio

e Mean log runtime ratio (this is OK here!)
Weakness

* Harder to explain in text

* Slightly more work to implement

Verdict Statistically superior to Wilcoxon, but slightly heavier
cognitively for readers.

4. Cliff’s delta + confidence intervals (effect size!) This is
not a test, but it is extremely valuable.

What it measures Probability that a randomly chosen in-
stance is slower with the constraint than without

Values:

* +1 — always slower
* 0 — no effect
e -1 — always faster
Why reviewers like this
 Scale-free
* Intuitive
* Not tied to distribution assumptions

Best use Report together with Wilcoxon or permutation test.
Example: Cliff’s § = 0.62 (large negative effect) This
strengthens your claims a lot.
5. Mixed-effects models? (Probably overkill — and risky)
You could model:

* puzzle size as fixed effect
* puzzle instance as random effect
* constraint as fixed effect
But:
* Assumptions are harder to justify
* Overkill for RP2
* Easy to get wrong
¢ Reviewers may question correctness

I do not recommend this for your project.

6. Recommended setup (clean, strong, defensible) Given
your goals, I recommend:

Per puzzle size n, per constraint C':

1. Compute log runtime ratio

tc(p)
d, = log——————
P gtbaseline(p)
2. Report:

* Median d),
¢ % instances faster / slower

3. Apply one of:

* Wilcoxon signed-rank test (default)
* Permutation test (if you want to be extra solid)

4. Optionally include:



¢ Cliff’s delta (effect size)

7. How to justify this choice in writing You can say: Since
runtimes are paired and exhibit heavy-tailed, non-normal dis-
tributions, we analyse relative runtime changes per puzzle
size. To test whether a redundant constraint introduces a
systematic performance difference, we apply a paired non-
parametric test on the per-instance log runtime ratios.

This wording works for Wilcoxon or permutation tests.

8. Short answer to your question

¢ Yes, there are other tests
* Permutation tests are statistically the strongest

* Wilcoxon signed-rank is perfectly acceptable and ex-
pected

« Effect sizes (Cliff’s §) are more important than p-values
alone

If you want, next I can:
* help you choose Wilcoxon vs permutation definitively
* write a methods subsection
* design a results table that scales across puzzle sizes

e or help you handle multiple-testing correction (which
will come up)

prompt I think ill just stick to the Wilcoxon method. Can
we then just say that if the p-value for n=15 ; O the constraint
is significantly worse? What if the p-value for n=16 ; 0? How
do we deal with these issues? Do i report by size of do we
use some other method? The Holm method which seemed
interesting and involved sorting p-values per constraint, does
this method fit here?

answer Great questions — this is exactly the point where
many papers quietly get things wrong, so it’s good you’re
thinking about this carefully.

I'll answer in layers:

1. What you are allowed to conclude per size

2. Why “p < 0.05 at n=15 but not at n=16" is not a contra-
diction

3. Why multiple-testing correction is required
4. Why Holm correction fits your setup very well
5. What I would actually recommend you report

1. Can you say “for n=15 the constraint is significantly
worse”? Yes — but only locally.
If you do:

* one Wilcoxon test
e at puzzle size n=15
e comparing baseline vs baseline + constraint

then: If p < «, you may conclude that for size 15, the con-
straint has a statistically significant effect. That statement is
correct and defensible.

But it does not mean:

* the constraint is globally bad

* the effect generalises to all sizes

This distinction is important in how you phrase results.

2. What if n=15 is significant but n=16 is not? This is
normal, not a problem.

Reasons:

* sample size per n changes

* runtime variance grows with size

* solver behaviour becomes more chaotic
* effect size may shrink relative to noise

A non-significant result at n = 16 means: we cannot reject
the null hypothesis at this size It does not mean:

¢ the constraint stops being harmful
* the effect reverses

This is why effect sizes and medians must always be shown
alongside p-values.

3. The real problem: multiple testing Here’s the actual
statistical issue you must address:

You are doing:

* many constraints
* X many puzzle sizes
* X possibly multiple variants

That’s dozens of hypothesis tests.

Without correction: false positives are guaranteed So no,
you cannot just say: “p < 0.05 = significant” globally.

4. Does Holm correction fit your situation? Yes — ex-
tremely well. In fact, Holm—Bonferroni is exactly the right
correction here.

Why Holm is a good choice

* Controls family-wise error rate

* Less conservative than Bonferroni
 Standard in empirical CS / solver papers
* Easy to explain and justify

What you sort You were right to notice this: “sorting p-values
per constraint” This is the correct intuition.

5. How to apply Holm correctly in your case The key ques-
tion is: What is a “family” of tests?

You have two defensible options.

Option A (recommended): Holm per constraint across
sizes For each constraint C":

¢ Perform Wilcoxon tests for:
n=10,11,...,18
 Collect p-values:

bc,10,PC,115 - - -

* Apply Holm correction within this set

Interpretation You may then say: Constraint C' shows a sta-
tistically significant slowdown for sizes n = 14 and n = 15
after Holm correction. This directly answers: for which sizes
does this constraint matter? This is the cleanest answer to
your research question.
Option B: Holm per size across constraints (less aligned)
You could instead:



* Fix size n
* Compare all constraints at that size
* Apply Holm across constraints

This answers: Which constraint is worst at size n? But that’s
not your main RQ, so I wouldn’t prioritise this.
6. What NOT to do Avoid:

 pooling sizes into one test (loses structure)

¢ declaring global significance from one size

e reporting only corrected p-values without effect sizes
* hiding non-significant sizes

7. How to phrase conclusions correctly Bad (overclaiming)
Constraint C is significantly worse. Good Constraint C in-
troduces a statistically significant slowdown for puzzle sizes
n > 14, with median runtime increases of 20-35%. Very
good While constraint C shows a consistent slowdown across
all sizes, this effect is only statistically significant for sizes
n = 14 and n = 15 after Holm correction.
8. Suggested reporting structure For each constraint:

* Table or plot:
- sizen
median log ratio
% slower
significance marker (after Holm)

Visually, this reads beautifully.
9. Short answer to your core question

¢ Yes, Wilcoxon is fine

* No, you cannot treat sizes independently without correc-
tion

* Yes, Holm correction per constraint across sizes is ap-
propriate

 This is a strong, reviewer-proof choice

If you want, next I can:

* help you define the exact null/alternative hypotheses

* write a precise LaTeX methods paragraph

* help design a significance annotation scheme for plots

* or sanity-check whether Holm is too conservative given
your sample sizes

discussion This conversation ended with some small dis-
cussion on our implementation of these methods in code.
This conversation resulted in the use of the Wilcoxon method
in combination with the Holm-Bonferroni method for our
second experiment. The final conversation explored methods
to be used for the final experiment.

prompt For my third question, I am analysing puzzles that
have been filtered using different methods. I used two meth-
ods to filter hard puzzles, one using runtime and another using
effort. I ended up with 4 sets, a set containing only effort-
filtered puzzles, a set containing only runtime-filtered puz-
zles, a set containing puzzles filtered by both and a set con-
taining puzzles filtered by none. For each of these puzzle sets,
i can analyze the puzzles for a couple of properties. I want to

figure out if one of these two methods is able to filter out
puzzles that have a significantly different number for any of
the properties against the non-filtered puzzles. What method
could i best use for this?

answer You're basically asking a comparative group anal-
ysis question: Do puzzles selected by method A (runtime)
or method B (effort) differ significantly in certain properties
compared to unfiltered puzzles? And which method is “bet-
ter” at isolating different puzzles? That’s a very standard and
clean statistical setup. Here’s a method that fits your situation
well and is defensible in a research report.

1. Reframe the structure (this helps choose the test) You
have four groups:

1. None — not filtered (baseline / control group)
2. Runtime-only

3. Effort-only

4. Both (runtime N effort)

For each puzzle, you measure one or more numeric properties
(e.g. conflicts, propagations, encoding size, etc.).

Your core comparison is always: Filtered group vs non-
filtered group Not really filtered-vs-filtered.

2. Recommended primary test: Non-parametric group
comparison Given everything you’ve said earlier:

¢ solver metrics are skewed
e distributions are not normal
 sample sizes may differ

Non-parametric tests are the right choice.

Option A (most straightforward): Mann—Whitney U test
Use this when comparing two groups at a time.

For each property:

* Runtime-only vs None
 Effort-only vs None
* Both vs None

This directly answers: “Does this filtering method select puz-
zles with different values for property X?” Why this is good

* No normality assumption
* Works with skewed solver data
* Very common in solver-performance papers

3. Multiple properties — multiple tests — correction Because
you’ll test:

» multiple properties
* for multiple filtered groups

you must correct for multiple testing.

You already implemented Holm—Bonferroni, which is per-
fect here (And more defensible than plain Bonferroni.)

So your pipeline becomes:

1. For a fixed group comparison (e.g. effort-only vs none):
* run Mann—Whitney for each property

2. Collect p-values

3. Apply Holm correction



4. Mark which properties differ significantly

4. Effect size (important!) Significance alone isn’t enough.
You also want to say how they differ.
For Mann—Whitney, report:

¢ Cliff’s delta or
¢ Rank-biserial correlation

Then you can say things like: Effort-filtered puzzles show
significantly higher conflicts (p < 0.01, large effect), whereas
runtime-filtered puzzles only show a small increase. This is
exactly what your research question is really about.
5. How to compare “runtime vs effort” as methods You
don’t need a direct statistical test between the two methods.
Instead, argue comparatively:

* How many properties differ from baseline?
* How strong are the effect sizes?

* Are the directions consistent?

* Does the “both” group amplify effects?

Example interpretation (very strong in a paper): Effort-
based filtering isolates puzzles that differ significantly from
the baseline in conflicts, propagations, and decisions, while
runtime-based filtering only shows a significant difference in
runtime itself. That answers the question qualitatively but
rigorously.

6. Optional global test (nice but not required) If you want
a single “overall” test per property:

» Kruskal-Wallis test across all four groups — followed
by post-hoc Dunn tests vs None

This is clean, but:
e more complex
* harder to explain
* not strictly necessary

Your pairwise approach is perfectly acceptable.

7. How to phrase this in your methodology section You
can say something like: To evaluate whether runtime-based
or effort-based filtering selects puzzles with distinct charac-
teristics, we compared each filtered puzzle set against the
unfiltered baseline. For each puzzle property, we used the
Mann—Whitney U test due to non-normal and skewed distri-
butions. To control for multiple comparisons across proper-
ties, Holm—Bonferroni correction was applied. Effect sizes
were computed to quantify the magnitude and direction of
observed differences. That’s textbook-correct.

TL;DR (recommended method) Use:

e Mann—Whitney U test
* Filtered group vs non-filtered group
* Holm-Bonferroni correction
* Report effect sizes
This directly answers:
* Does runtime filtering work?
* Does effort filtering work better?
* What kinds of puzzles do they actually select?

If you want, I can:
* sanity-check your current code against this setup
* help you choose and interpret effect size thresholds

* help phrase the results section so it doesn’t sound like
fishing

prompt I dont think Holm-bonferroni correction is applica-
ble here, are there other corrections i can use?

answer Good instinct to question this — and yes, there are
good alternatives, some of which arguably fit your setup bet-
ter than Holm—Bonferroni.

Let’s be precise about why Holm—Bonferroni may feel
wrong, and what you can use instead.

1. Why Holm—Bonferroni may indeed be questionable
here Holm-Bonferroni controls the family-wise error rate
(FWER). That means: The probability of making any false
positive across all tests is bounded. This is appropriate when:

» each false positive is costly, or

* you want very strong claims (‘““‘we are sure none of these
are spurious”).
But in your case:

* you’re exploring properties, not testing a single confir-
matory hypothesis

 properties are correlated (conflicts <> propagations <+
decisions)

* you care more about patterns than absolute guarantees
So Holm can be:

* too conservative

* artificially suppress weak-but-consistent signals

* misleadingly suggest “nothing differs” when things
clearly do

That’s a perfectly defensible reason to not use it.

2. Better alternatives for your situation Ben-
jamini—-Hochberg (FDR control) — best overall fit This
is the method I’d recommend first.

What it controls

* False Discovery Rate (FDR): Among the results you call
significant, how many are expected to be false?

Why it fits your research
* You expect some differences
* You’re comparing many related properties

* You want to identify which properties differ, not prove
none do

How to justify it Because we test multiple correlated puzzle
properties in an exploratory analysis, we control the false dis-
covery rate using the Benjamini—-Hochberg procedure. This
is extremely common in empirical CS and solver-analysis pa-
pers.

Benjamini—Yekutieli (more conservative FDR) If you want
to explicitly acknowledge correlation between properties:

* Benjamini—Yekutieli controls FDR under arbitrary de-
pendence



¢ More conservative than BH, less than Holm

You can say: To account for potential dependence between
solver statistics, we applied the Benjamini—Yekutieli correc-
tion. Use this if you want to be extra safe.

Bonferroni (classic) — not recommended here

* Even stricter than Holm
¢ Almost guaranteed to wipe out subtle effects
» Hard to justify for exploratory performance analysis

You’d only use this if your supervisor explicitly demands it.
3. Another option: avoid correction entirely (yes, really)
This is valid if done carefully.
You can:

* treat each property as a separate analysis
* explicitly label results as exploratory
» emphasize effect sizes over p-values

Example justification: Since puzzle properties are analyzed
independently and interpreted jointly via effect sizes and di-
rectionality, no global correction was applied. Reported p-
values are descriptive rather than confirmatory. This is ac-
ceptable if:

* you do not overclaim
* you don’t say “statistically proven”
* you show consistent patterns across properties

That said, this is riskier with some reviewers.

4. Strong alternative framing (often overlooked) Instead of
correcting across properties, correct across groups per prop-
erty.

For a single property:

* runtime-only vs none
e effort-only vs none
* both vs none

That’s three tests, not dozens.
Then:

* apply Holm or Bonferroni per property
* not globally

This is much more defensible and less conservative.
5. What I"d recommend for your paper Best balance of
rigor and signal:
* Mann—Whitney U tests
* Benjamini—Hochberg correction per comparison family
— e.g. “effort vs none across properties”
* Report:
— corrected p-values
— effect sizes
— direction of change
Suggested sentence you can basically copy To account for
multiple comparisons across puzzle properties while main-

taining sensitivity to systematic effects, we controlled the
false discovery rate using the Benjamini—-Hochberg procedure

rather than family-wise error rate corrections. That sentence
alone justifies not using Holm.

TL;DR If Holm feels wrong, you’re probably right.

Use instead:

* Benjamini—-Hochberg (recommended)

* Benjamini—Yekutieli (if you want to mention depen-
dence)

* Or no correction + effect sizes (only if framed carefully)
If you want, I can:

* help you rewrite your existing Holm code to BH in 5
lines

* help you decide whether to correct per property or per
method

* sanity-check the final statistical claims wording

conclusion This conversation once again ended with feed-
back on our implementation of these methods in code. This
conversation helped us find the two methods to use in our
final experiment. All methods suggested by ChatGPT were
manually verified to ensure suitability and to expand our own
understanding of these methods.

E.4 Conversations about rewriting paragraphs

ChatGPT has been used to help with rewriting several para-
graphs for readability, wording and text flow. All of these
conversations followed a similar structure by first prompting
a draft of the paragraph, asking for feedback. The draft was it-
eratively improved by analysing the structure of the response
text from ChatGPT. This process made sure to only improve
on the flow, wording and structure of the text, without chang-
ing any of the contents. All changes were implemented man-
ually and verified to make sure no new information was added
by ChatGPT.

One conversation using this process is shown below. Other
conversations that were used to improve parts of the text fol-
lowed the exact same process and have been left out to con-
serve space. All current parts that were revised using this
process are the following:

* Section 1, SMT and Z3 parts
¢ Section 3.2
¢ Section 4.2
e Section 4.3
¢ Section 5.1

prompt I need some help making this paragraph more read-
able, i especially dislike the second part:

We also implemented a variant that uses only Boolean
logic, without any additional theories. Such an encoding is
already given in [12], however the authors also show that this
approach is very inefficient for large puzzle sizes. Therefore
we decided on a different approach where we rewrite the con-
nectivity constraint such that each white cell is assigned a
Boolean value for each step, indicating whether the cell has
been visited in that step, with only the root cell marked as
visited for the initial step. For n - n + 1 steps and for each
cell (4,7), the cell is visited if either the cell itself or any of



its neighbours was visited in the previous step. The connec-
tivity constraint is satisfied if all white cells are visited after
the final step.

answer Here’s a tightened and more academic-sounding
rewrite that keeps your technical content intact, improves
flow, and removes a bit of redundancy:

We also implemented a variant that relies exclusively on
Boolean logic, without the use of additional theories. A
Boolean encoding for Hitori has previously been proposed by
[12], where the authors show that such an approach becomes
highly inefficient for larger puzzle sizes. Motivated by this
limitation, we adopt a different Boolean formulation of the
connectivity constraint.

In this encoding, each white cell is associated with a
Boolean variable for each discrete step, indicating whether
the cell is visited at that step. Initially, only a designated root
cell is marked as visited. For each of the subsequent n - n + 1
steps and for each cell (4, j), a cell is marked as visited if ei-
ther the cell itself or at least one of its neighbours was visited
in the previous step. The connectivity constraint is satisfied if
all white cells are visited after the final step.

If you want it slightly more compact or less repetitive (e.g.
fewer “visited” mentions), I can do a more aggressive com-
pression version as well.

prompt [I’ve changed it to this now, what do you think?
We also implemented a variant that uses only Boolean logic,
without any additional theories. A Boolean encoding is al-
ready been given in [12], where the authors show that this
approach quickly becomes very inefficient for large puzzle
sizes. Because of this, we attempted a different Boolean ap-
proach, only rewriting our connectivity constraint. In this en-
coding, each white cell is assigned a Boolean value for each
step, indicating whether the cell has been visited in that step,
with only the root cell marked as visited for the initial step.
For n - n + 1 steps and for each cell (i, j), the cell is visited
if either the cell itself or any of its neighbours was visited in
the previous step. The connectivity constraint is satisfied if
all white cells are visited after the final step.

answer It’s definitely better in terms of clarity — there are
just a few small language issues and some phrasing that can
be made more academic and smooth. Here’s a lightly pol-
ished version that stays very close to what you wrote:

We also implemented a variant that uses only Boolean
logic, without any additional theories. A Boolean encoding
has already been proposed in [12], where the authors show
that this approach quickly becomes inefficient for large puz-
zle sizes. For this reason, we instead explore a different
Boolean formulation by rewriting only the connectivity con-
straint.

In this encoding, each white cell is assigned a Boolean vari-
able for each step, indicating whether the cell has been visited
at that step, with only the root cell marked as visited in the ini-
tial step. For each of the n-n+ 1 steps and for each cell (4, 5),
the cell is considered visited if either the cell itself or any of
its neighbours was visited in the previous step. The connec-
tivity constraint is satisfied if all white cells are visited after
the final step.

What changed (briefly):

* Fixed grammar: “is already been given” — “has already
been proposed”

* Slightly more formal phrasing (“because of this” — “for
this reason”)

* “attempted” — “explore” (sounds more deliberate and
academic)

* Minor flow improvements and reduced repetition
If you want, we can also:

» Explicitly contrast this with the original encoding in one
sharper sentence, or

* Add a one-line remark about the encoding size / step
count implication (if you discuss that elsewhere).

prompt I’'ve changed it quite a bit now by adding an equa-
tion as well. I think ill be keeping as this, as im quite happy
with it: We also implemented a variant that uses only Boolean
logic, without any additional theories. A Boolean encoding is
already been given in [12], where the authors show that this
approach quickly becomes inefficient for large puzzle sizes.
For this reason, we implemented an alternative Boolean en-
coding, only rewriting our connectivity constraint. With the
boolean encoding, we aim to visit every white cell within
n? + 1 steps using BFS, starting from a chosen root. We
mark a cell (4, j) as visited in step k by setting visitedy, ; ; to
True. The encoding is formulated as follows: [equation] The
connectivity constraint is satisfied if all white cells are visited
atk =n?+ 1.

answer You're right that this version is solid conceptually,
and the equation helps a lot

I’d keep it too — there are just two small but important lan-
guage issues and one clarity tweak I’d strongly recommend
fixing before final submission.

Here is a minimally corrected version that preserves ev-
erything you intend: We also implemented a variant that
uses only Boolean logic, without any additional theories. A
Boolean encoding has already been given in [12], where the
authors show that this approach quickly becomes inefficient
for large puzzle sizes. For this reason, we implemented an
alternative Boolean encoding, rewriting only the connectivity
constraint.

With the boolean encoding, we aim to visit every white
cell within n? + 1 steps using a breadth-first search (BFS),
starting from a chosen root. We mark a cell (, j) as visited
at step k by setting visitedk, ¢, 7 to True. The encoding is
formulated as follows: [equation] The connectivity constraint
is satisfied if all white cells are visited at step & = n? + 1.

What I fixed (and why)

1. Grammar bug (important)

* “is already been given”
* “has already been given”

2. Academic phrasing

e “only rewriting our connectivity constraint”
— “rewriting only the connectivity constraint”
(clearer scope, standard phrasing)

3. Minor precision



¢ Added “a” before BFS (standard in academic writ-
ing)
e “atk = n? 4+ 1”7 — “at step k = n? + 17 (reads
cleaner)
Nothing else needs changing — the structure, explanation,
and formalization are all very reasonable and well-justified.
This paragraph will read well to reviewers.
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